
DISTRIBUTION OF CYCLES IN SUPERSINGULAR ℓ-ISOGENY GRAPHS

ELI ORVIS

Abstract. Recent work by Arpin, Chen, Lauter, Scheidler, Stange, and Tran [2] counted the number of

cycles of length r in supersingular ℓ-isogeny graphs. In this paper, we extend this work to count the number

of cycles that occur along the spine. We provide formulas for both the number of such cycles, and the
average number as p → ∞, with ℓ and r fixed. In particular, we show that when r is not a power of 2, cycles

of length r are disproportionately likely to occur along the spine. We provide experimental evidence that

this result holds in the case that r is a power of 2 as well.

1. Introduction

Supersingular isogeny graphs have enjoyed great interest in the past decade, primarily due to their applica-
tions to the study of modular forms [5] and their use in constructing post-quantum cryptographic primitives.
For distinct primes p, ℓ, we denote the directed graph whose vertices are Fp-isomorphism classes of supersin-
gular elliptic curves, and whose edges are isogenies of degree ℓ up to post-composition by an automorphism
by Gp,ℓ. We will use simply Gℓ when there is no risk of confusion. These graphs have (ℓ + 1)-regular out-
degree, ⌊(p− 1)/12⌋+ ϵ vertices where ϵ ∈ {0, 1, 2}, and Pizer has proven that they are Ramanujan [16].

Avoiding the existence of small cycles in Gp,ℓ is advantageous in many isogeny-based cryptographic protocols.
Charles, Goren, and Lauter described a method for guaranteeing that there are no small cycles in Gp,ℓ when
they introduced the CGL hash function, which was the first isogeny-based protocol [3]. In order to assess
the soundness of SIDH-based identification protocols, Ghantous, Katsumata, Pintore, and Veroni obtained
upper bounds on the expected number of cycles of a given length at a random vertex of Gp,ℓ [7]. More
recently, Arpin, Chen, Lauter, Scheidler, Stange, and Tran obtained a formula for the exact number of cycles
of a given length in Gp,ℓ in terms of class numbers of imaginary quadratic fields [2].

The spine of the graph, introduced by Arpin, Camacho-Navarro, Lauter, Lim, Newlso, Scholl, and Sotáková
in [1], is another graph-theoretic feature of interest to isogenists. The spine is the subgraph induced by the
vertices whose j-invariants are defined over Fp, or alternatively, the subgraph induced by the set of vertices
fixed by the Frobenius automorphism. It is known that for a density 1 set of primes ℓ, Frobenius is the only
automorphism of the graph [14]. In most cases therefore, the set of vertices of the spine is the set of fixed
points of the only non-trivial symmetry of Gp,ℓ. We denote the spine by Sp,ℓ.

In this paper we consider the distribution of cycles within the graph, in particular with respect to the spine.
We study the ratio of cycles of length r that intersect the spine, for odd r, and show that as p → ∞, the
proportion of cycles of length r that intersect the spine eventually depends only on the residue class of p
modulo a large, but computable integer. In particular, we introduce the notation nt and ns for the total
number of r-cycles in Gp,ℓ, and the total number of r-cycles in Gp,ℓ that intersect the spine, respectively, and
we prove the following theorem:

Theorem (Theorem 4.1). Let ℓ and r be fixed, with r odd. Then there exists a modulus M depending on ℓ
and r such that for p ≫ 0, nt and ns depend only on p modulo M .

The idea behind the proof of Theorem 4.1 is to count the number of cycles along the spine in terms of imagi-
nary quadratic class numbers. By Theorem 2.9 (Theorem 3.2 in [2]), every cycle of length r in Gℓ is obtained
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by forgetting orientations on a subset of the oriented supersingular curves, where the orientations are from
a finite set of imaginary quadratic discriminants. We then use a result of Chen and Xue [4], which says
that the 2-torsion subgroup of the class group of O acts freely and transitively on the primitively O-oriented
supersingular curves to find that, for large enough p, the number of cycles of length r intersecting the spine
depends only on p modulo M .

As a corollary to Theorem 4.1, we show that for sufficiently large p, the r-cycles in Gℓ either disproportionately
intersect the spine, or never intersect the spine:

Corollary (Corollary 4.2). Let ℓ and r be fixed, with r odd, and M be the modulus obtained in the previous
Theorem. Then for any [m] ∈ Z/MZ, one of the following holds for all sufficiently large p ∈ [m]:

(1) nt/#V (Gp,ℓ) < ns/#V (Sp,ℓ);
(2) ns = 0,

where #V (G) denotes the number of vertices of G.

Our final result is a formula for the average value of ns when we vary p and fix ℓ and r. Specifically, Theorem
6.10 provides a formula for the average of the sequence ns,pi

(r), where ns,pi
(r) is the number of cycles of

length r in Gpi,ℓ that intersect the spine, and (pi) is a sequence of consecutive primes:

Theorem (Theorem 6.10). Let (pi)
∞
i=1 be an increasing sequence of consecutive primes. Then

lim
n→∞

1

n

n∑
i=1

ns,pi
(r) =

∑
d|r

µ(d)#d(Iℓ,n| rd ),

where d(Iℓ,n| rd ) is defined in Proposition 6.1.

These results become particularly interesting in two contexts. First, interpreting cycles in Gp,ℓ as cyclic endo-
morphisms, our results say that for large p, ℓ-power endomorphisms of a fixed degree are disproportionately
likely to occur for supersingular elliptic curves defined over Fp, as opposed to supersingular curves defined
over Fp2 . The methods in this paper rely primarily on the structure of the supersingular isogeny graphs
and the arithmetic of quaternion algebras. An independent proof from the viewpoint of arithmetic geometry
would be of interest.

Second, we can compare these results for supersingular isogeny graphs with the behavior of random (ℓ+1)-
regular graphs. A common heuristic is that, with the exception of the existence of an automorphism of
order 2, the supersingular isogeny graphs “behave like random (ℓ+1)-regular graphs.” Our analysis provides
another potential comparison between supersingular isogeny graphs and random graphs, by showing that odd
length r-cycles in supersingular isogeny graphs do not distribute randomly throughout the graph. Instead,
they are disproportionately likely to occur along the fixed vertices of the involution. It is therefore of interest
to compare these results with the case of random graphs with an involution. Unfortunately, we were not
able to find a construction of random graphs with an involution in the random-graph literature.

1.1. Roadmap. The paper is structured as follows: In Section 2 we provide preliminaries on supersingular
elliptic curves and orientations. We also fix notation, and we recall results from the literature that will be
used later on. In Section 3 we give results on the location of Fp-vertices in oriented supersingular isogeny
graphs. Section 4 gives the proofs of Theorem 4.1 and Corollary 4.2. We then give explicit examples of these
results in Section 5. We address the expected number of cycles along the spine in Section 6. Finally, we give
partial results in the case of even length cycles in Section 7.

1.2. Acknowledgments. The author would like to thank Joseph Macula, James Rickards, and Katherine
E. Stange for helpful conversations, and Katherine E. Stange for helpful comments on an earlier draft of this
paper.

2. Preliminaries

Throughout, we will use OD for the imaginary quadratic order of discriminant D, and simply O when the
discriminant is not relevant or is clear from context. We will use cℓ(O) for the ideal class group of an order
O, and h(O) for the class number of O. The Hilbert class polynomial of an order O will be denoted by
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HO(x). It is well known that HO(x) ∈ Z[x], and so for any prime p we can consider the reduction mod-

ulo p. We denote this reduction by H̃O(x) when there is no risk of confusion regarding the prime of reduction.

2.1. Background on Supersingular Elliptic Curves. In this section, we present some general back-
ground material on elliptic curves. Our primary reference on elliptic curves is [17].

An isogeny ϕ : E1 → E2, between two elliptic curves E1, E2, is a rational map taking 0E1
to 0E2

. The degree
of ϕ is the degree of the corresponding extension of function fields [K(E1) : ϕ

∗(K(E2))]. If the degree of ϕ
is ℓ then we call ϕ an ℓ-isogeny.

An elliptic curve defined over Fp is said to be supersingular if its endomorphism ring is non-commutative.

By [17, p. III.9.4], this implies that End(E) := {isogenies E → E defined over Fp} is a maximal order in the
unique (up to isomorphism) quaternion algebra over Q ramified at only p and ∞. We denote this quaternion
algebra by Bp,∞.

We are primarily interested in counting cycles in the ℓ-isogeny graph, so we record here the definition of an
isogeny cycle from [2]. When we use the word “cycle” in reference to Gℓ we will always mean an isogeny
cycle.

Definition 2.1. An isogeny cycle is a closed walk, forgetting basepoint, in Gℓ containing no backtracking
(no consecutive edges compose to multiplication-by-ℓ) which is not a power of another closed walk (i.e. not
equal to another closed walk repeated more than once).

Remark 2.2. Note that in Definition 2.1, we consider the two cycles obtained from a sequence {j0, j1, . . . , jr−1}
of j-invariants traversed in opposite directions as different cycles. We are therefore counting directed cycles,
which agrees with what was done in previous literature [2].

We will also use a refinement of supersingular elliptic curves, known as oriented supersingular curves. For
additional background on oriented supersingular curves and the oriented isogeny graph, see [2].

Let K be an imaginary quadratic field, O an order of K, and E be a supersingular elliptic curve. Recall the
following definitions from [2]:

Definition 2.3. A K-orientation of E is an embedding ι : K → End(E)⊗Q.

Definition 2.4. A K-oriented elliptic curve is a pair (E, ι), where E is an elliptic curve and ι is a K-
orientation of E.

Definition 2.5. A K-orientation ι : K → End(E) is an O-orientation if ι(O) ⊂ End(E). We say that an
O-orientation is O-primitive if ι(O) = End(E) ∩ ι(K).

Definition 2.6. Let O be an imaginary quadratic order. Then O is ℓ-fundamental if ℓ does not divide the
conductor of O.

Given an isogeny ϕ : E1 → E2, we define the K-orientation induced on E2 from a K-orientation ι on E1 as
follows:

(ϕ∗ι)(α) :=
1

[deg ϕ]
ϕ ◦ ι(α) ◦ ϕ̂.

A K-oriented isogeny is an isogeny ϕ : (E1, ι1) → (E2, ι2) such that ϕ∗ι1 = ι2. Two K-oriented elliptic
curves are K-isomorphic if there exists an isomorphism η : E1 → E2 such that η∗ι1 = ι2.

We can now introduce the oriented isogeny graph for a fixed prime p:

Definition 2.7. We denote the K-oriented supersingular ℓ-isogeny graph by GK,ℓ. This is the graph whose

vertices are K-isomorphism classes of K-oriented supersingular elliptic curves over Fp, and whose edges are
K-oriented ℓ-isogenies. We further denote by GO,ℓ the subgraph of GK,ℓ induced by restricting vertices to
the primitively O-oriented supersingular curves.
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In Arpin, Chen, Lauter, Scheidler, Stange, and Tran [2], the authors describe the structure of the oriented
isogeny graph, as well as how cycles in Gℓ are obtained from cycles in GK,ℓ by forgetting orientations. In
particular, we have the following results:

Proposition 2.8 ([2], Proposition 2.16). A connected component of GK,ℓ, when identifying ℓ-isogenies with
their duals, has at most one cycle, passing through the the vertices that are primitively O-oriented for some
ℓ-fundamental order O.

Theorem 2.9 ([2], Theorem 3.2). Let r > 2. There is a bijection between cycles of length r in Gℓ and directed
rims of size r in

∐
K GK,ℓ, identified up to conjugation of the orientation. We use

∐
K GK,ℓ to denote the

disjoint union of the K-oriented isogeny graphs, where K ranges over all imaginary quadratic fields.

We also recall a tool used in proving the theorems cited above: the class group action on oriented curves.
To define the action, we begin with the following definition from [2]:

Definition 2.10. Let (E, ι) be a primitively O-oriented supersingular elliptic curve. Let a be an integral
ideal of O coprime to p. Define the intersection:

E[ι(a)] :=
⋂
α∈a

ker((ι(α)).

This group defines an isogeny ϕ
(E,ι)
a : E → E/E[ι(a)]. The action of a on (E, ι) is defined as a ∗ (E, ι) :=

(ϕ
(E,ι)
a (E), (ϕ

(E,ι)
a )∗ι).

We also define an action of the two-element group {1, πp} generated by the Frobenius automorphism πp of
Fp2 by

πp ∗ (E, ι) := (E(p), ι(p)), πp ∗ φ = φ(p)

where ι(p) := (πp)∗(ι).

We can now give the primary result concerning the class group action on oriented curves:

Proposition 2.11 ([2], Proposition 2.26). The actions of Definition 2.10 and Frobenius commute and hence
give an action of cℓ(O) × ⟨πp⟩ on the primitively O-oriented supersingular elliptic curves over Fp. This
action is transitive and its point stabilizers are either all trivial or all ⟨πp⟩.

2.2. Background on Quadratic Orders in Bp,∞. In this section, we recall several results from the liter-
ature about quadratic orders in the quaternion algebra Bp,∞.

First, we have the following result of Kaneko, which says roughly that a maximal order in Bp,∞ can only
contain two quadratic discriminants D1, D2 if D1D2 is sufficiently large:

Theorem 2.12 ([10], Theorem 2). Let D1 and D2 be two imaginary quadratic discriminants, and p be a
prime such that the reductions of elliptic curves with CM by D1 and D2 are supersingular. If D1D2 < 4p,

then H̃OD1
(x) and H̃OD2

(x) have no common roots in Fp.

In another format this gives the following:

Theorem 2.13 ([10], Theorem 2’). Suppose that two quadratic orders OD1 and OD2 are optimally embedded
in a maximal order of Bp,∞ with different images. Then the inequality D1D2 ≥ 4p holds. If Q(

√
D1) =

Q(
√
D2), this inequality can be replaced by D1D2 ≥ p2.

Chen and Xue note the following corollary, which will also be of use to us:

Corollary 2.14 ([4], Corollary 2.7). Let O be an imaginary quadratic order, p be a prime that does not split
in O, and P be a prime of the Hilbert class field of O lying over p. If p > |disc(O)|, then the reduction map
rP from isomorphism classes of elliptic curves over Q with CM by O to the set of isomorphism classes of

supersingular elliptic curves over Fp is injective.

Finally, we will use the following result of Onuki, which determines when the reduction map from a CM
elliptic curve E to a supersingular elliptic curve Ẽ gives an optimal embedding of End(E) into End(Ẽ):
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Lemma 2.15 ([15], Lemma 3.1). Let E be an elliptic curve over a number field L containing K with
End(E) ∼= O ⊂ K, and p a prime ideal of L above p such that E has good reduction at p. Then the reduced

curve Ẽ modulo p is supersingular if and only if p does not split in K. Furthermore, let c be the conductor
of O and write c = prc0, where p ∤ c0. Then

End(Ẽ) ∩ [K]Ẽ = [Z+ c0OK ]Ẽ ,

where [·]Ẽ reduction map between endomorphism algebras.

2.3. Setup. Throughout, we will use the following set of imaginary quadratic orders:

Iℓ,r =

imaginary quadratic orders O :
O is an ℓ-fundamental order,
(ℓ) = ll splits in O,
and [l] has order r in cℓ(O).

 .

We note that Iℓ,r is a finite set, since the last two conditions require that ℓr is primitively represented by
the norm form of O. We are considering only orders with positive-definite norm forms, so there are only
finitely many O where this condition holds.

We will also use the following related definitions:

SSp := {isomorphism classes of supersingular elliptic curves over Fp}
d(Iℓ,r) := {d : d is the discriminant of O for some O ∈ Iℓ,r},
EℓℓIℓ,r

:= {elliptic curves E over C such that O ∼= End(E) for some O ∈ Iℓ,r },
EℓℓpIℓ,r

:= {E ∈ SSp such that ∃O ∈ Iℓ,r embedding optimally in End(E)},
Mℓ,r := max{4,max{d1d2/4 : d1, d2 ∈ d(Iℓ,r)}}.

In the second set, we take curves up to isomorphism over C, and in the third up to isomorphism over Fp.

It is well-known that the j-invariants of elliptic curves with CM by an imaginary quadratic order O are the
roots of HO(x). The j-invariants of the supersingular elliptic curves E over Fp with O optimally embedded
in End(E) are the roots of the reduction of HO(x) modulo p. Since we are interested in curves that lie on

the spine of Gℓ, we will be interested in the Fp-roots of H̃O. The following result, which is Theorem 1.1 in
[4], will be helpful in describing these roots:

Theorem 2.16 ([4], Theorem 1.1). Let K be an imaginary quadratic field and O be an order in K. Let p

be a prime inert in K and strictly greater than |disc(O)|, and Hp be the set of Fp-roots of H̃O(x). If Hp

is nonempty, then it admits a regular action by the 2-torsion subgroup cℓ(O)[2] ⊂ cℓ(O). In particular, the

number of Fp-roots of H̃O(x) is either zero or | cℓ(O)[2]|.
Moreover, Hp ̸= ∅ if and only if for every prime factor q of disc(O), one of the two conditions below holds,
depending on the parity of q:

(1) q ̸= 2 and the Legendre symbol
(

−p
q

)
= 1;

(2) q = 2 and one of the following conditions holds:
(a) p ≡ 7 (mod 8);

(b) −p+ disc(O)
4 ≡ 0, 1, or 4 (mod 8);

(c) −p+ disc(O) ≡ 1 (mod 8).

We note the following corollary, which has been noted elsewhere in the literature, for example in [8]:

Corollary 2.17. Let OD be the maximal order in an imaginary quadratic field K, and p be a prime that
does not split in OD. Suppose that the class number of OD is odd. Then HOD

(x) has exactly one root in Fp.

We will omit the proof of Corollary 2.17, which can be done via a case-by-case analysis from Theorem 2.16.
Neither the proof nor the result will be needed in the rest of the paper. For future reference, however, we
include Theorem 2.18 below. This theorem is the other key ingredient in the proof of Corollary 2.17.

Theorem 2.18 ([6], Proposition 3.11). Let D ≡ 0, 1 (mod 4) be negative, and let r be the number of odd
primes dividing D. Define the number µ as follows: if D ≡ 1 (mod 4), then µ = r, and if D ≡ 0 (mod 4)
then D = −4n, where n > 0, and µ is determined by the following table:
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n µ
n ≡ 3 (mod 4) r
n ≡ 1, 2 (mod 4) r + 1
n ≡ 4 (mod 8) r + 1
n ≡ 0 (mod 8) r + 2

Then the class group C(D) has exactly 2µ−1 elements of order ≤ 2.

Remark 2.19. Corollary 2.17 inspired us to investigate the proportion of cycles of length r in Gp,ℓ that
intersect the spine. To illustrate why, suppose that we have O ∈ Iℓ,r of discriminant d, such that p
does not split in O, and p does not divide the conductor of O. We have a class group action by [l] on
EℓℓO := {elliptic curves over C that have End(E) = O}. This action partitions EℓℓO into cℓ(O)/r orbits
each of size r. Since p does not split in O, each curve E ∈ EℓℓO reduces to a supersingular curve modulo p.
If we further assume that p > d, then the reduction map from elliptic curves with CM by O to supersingular
curves is injective by Corollary 2.14. The cℓ(O)/r orbits therefore reduce to distinct r-cycles in Gℓ. Thus, if
ℓ generates cℓ(O), and # cℓ(O) is odd, Corollary 2.17 shows us that the reduced curves form a cycle of odd
length that is guaranteed to intersect the spine. This provides a way of constructing cycles along the spine.

Finally, in order to give precise counts of the number of cycles through the spine, we will need the following
lemma:

Lemma 2.20. Let p > Mℓ,r. Then for any prime p and number field L such that all curves in EℓℓIℓ,r
are

defined over L and have good reduction at p, the reduction map ρp : EℓℓIℓ,r
→ EℓℓpIℓ,r

is injective.

Proof. Our assumption on the size of p is chosen to guarantee that for any Ẽ ∈ EℓℓpIℓ,r
, there is only one

O ∈ Iℓ,r that is optimally embedded in End(Ẽ), and that there is only one such embedding of O. The as-
sumption will further guarantee that for any E ∈ EℓℓIℓ,r

, ρp(End(E)) is optimally embedded in End(ρp(E)).
Together, these will prove that ρp is injective into EℓℓpIℓ,r

.

By Lemma 2.15, in order to show that ρp optimally embeds endomorphism rings, it suffices to show that our
assumption guarantees that p > |d| for all d ∈ d(Iℓ,r). This is elementary, since for |d| > 4, we have that
d2/4 > |d|. Thus p > 4 and p > d1d2/4 for all d1, d2 ∈ Iℓ,r guarantee that p > |d| for all d ∈ d(Iℓ,r). These
conditions hold by the assumption that p > Mℓ,r.

To show that there is only one O ∈ Iℓ,r that optimally embeds in End(Ẽ) for any Ẽ ∈ EℓℓpIℓ,r
, we use

Theorem 2.13. This says that if there is a maximal order in Bp,∞ containing optimally embedded copies of

both Od1 and Od2 , then p < d1d2

4 . Thus our assumption guarantees that Bp,∞ contains no such order for

d1, d2 ∈ d(Iℓ,r). Since End(Ẽ) is a maximal order in Bp,∞, it follows that there is only one O ∈ Iℓ,r that

optimally embeds in End(Ẽ).

We now show that the reduction map ρp is injective. Let E1, E2 ∈ EℓℓIℓ,r
be elliptic curves with CM by Od1

,
Od2

, respectively. First, consider the case that d1 = d2. In this case, both j(E1) and j(E2) satisfy HOd1
.

We have shown that our assumption guarantees p > |d1|, and by Corollary 2.14, this guarantees that HOd1

has no repeated roots modulo p. Thus we see that E1 and E2 cannot reduce to supersingular curves with
the same j-invariant, and so ρp(E1) ̸= ρp(E2).

For the second case, suppose that d1 ̸= d2, and suppose ρp(E1) = ρp(E2) = E. Then since ρp optimally
embeds the endomorphism rings of E1, E2 into End(E), we have that End(E) is a maximal order of Bp,∞ with
optimally embedded copies of Od1

and Od2
. This contradicts Theorem 2.13, and so the result is proven. □

Remark 2.21. We remark that the results and proof of Lemma 2.20 continue to hold for a finite set {r1, . . . , rn}
of r-values, provided that Mℓ,r is replaced by the maximum of the Mℓ,ri . This will be used in Section 7
when considering the case of even cycles.
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3. Fp-vertices on oriented isogeny cycles and the even class number case

In this section we will count the number Fp vertices on oriented isogeny cycles. This will allow us to extend
the ideas from Remark 2.19 to the case of even class number. Our strategy is to apply results of Chen and
Xue [4] about the class group action on Fp-roots of the Hilbert class polynomial to oriented supersingular
curves. We will conclude that for p > d, the number of r-cycles obtained from primitive O-orientations that
intersect the spine is either 0 or 2µ, where µ defined as in Theorem 2.18.

Our first theorem in this section describes the action of the class group on Fp-vertices of oriented isogeny
cycles:

Theorem 3.1. Let p > |disc(O)|. Then the restriction of the action of cℓ(O)× ⟨πp⟩ to cℓ(O)[2]× ⟨πp⟩ acts
transitively on the Fp-vertices.

Proof. By Proposition 2.11, the action of cℓ(O)× ⟨πp⟩ is transitive on the vertices of GO,ℓ, so we need only

show that for k ∈ {1, 2} and (E, ι) with j(E) ∈ Fp, (E(a,πk
p), ι(a,π

k
p)) has j(E(a,πk

p)) ∈ Fp if and only if
[a] ∈ cℓ(O)[2].

Suppose that j(E) ∈ Fp. Then j(E(p)) = j(E). Since E(a,πp) = (E(p))a, we are reduced to showing
that j(Ea) ∈ Fp if and only if [a] ∈ cℓ(O)[2]. This follows from Theorem 2.16 under the assumption that
p > |disc(O)|. □

As a corollary, we see that any two cycles in GO,ℓ containing at least one Fp-vertex must contain the same
number of Fp-vertices:

Corollary 3.2. Let C1, C2 be cycles in GO,ℓ such that both contain an Fp-vertex. If p > |disc(O)|, then C1

and C2 have the same number of Fp-vertices.

Proof. By Proposition 2.8, we know that each connected component of GK,ℓ has at most one cycle. By
definition 2.7, GO,ℓ is the subgraph of O-rims, so we see that GO,ℓ is a collection of disjoint cycles, possibly
containing isolated vertices. Since the action of cℓ(O)× ⟨πp⟩ preserves adjacency, we get that cℓ(O)× ⟨πp⟩
takes cycles of GO,ℓ to cycles.

Let C1, C2 be cycles in GO,ℓ, and let Cp
i = {vertices (E, ι) ∈ Ci such that j(E) ∈ Fp}. Let v1, v2 be elements

of Cp
1 , C

p
2 , respectively. We will show that #Cp

1 = #Cp
2 . By Theorem 3.1, there exists an element g ∈

cℓ(O)[2] × ⟨πp⟩ taking v1 to v2, and therefore necessarily taking C1 to C2. Further, g acts injectively, and
takes Cp

1 to Cp
2 . We see therefore that #Cp

2 ≥ #Cp
1 . Replacing g by g−1 gives the opposite inequality, which

proves that #Cp
1 = #Cp

2 . □

Finally, we will show that for sufficiently large p and odd r, the number of Fp-vertices on a cycle in GO,ℓ is
either 0 or 1, for any O ∈ Iℓ,r.

We begin by making explicit a result from Arpin, Chen, Lauter, Scheidler, Stange, and Tran [2]:

Lemma 3.3. Let r be odd, and O ∈ Iℓ,r. Then every cycle in GO,ℓ has length r.

Proof. We will show that every edge in GO,ℓ comes from the action of [l] or [l] via a counting argument.

Since ℓ splits in O and does not divide the conductor of O, we have by [2, Proposition 2.15] that there are 2
horizontal ℓ-isogenies out of each (E, ι) ∈ GO,ℓ. We now consider the isogeny ϕl : (E, ι) → [l] ⋆ (E, ι) whose
kernel is E[ι(l)]. Since N(l) = ℓ, ϕl is an ℓ-isogeny, and by definition of the orientation on [ℓ] ⋆ (E, ι), ϕl is a
K-oriented ℓ-isogeny. Thus ϕl is one of the horizontal edges out of (E, ι), and by the same argument we get
an isogeny ϕl that gives the other horizontal edge.

The previous paragraph allows us to explicitly describe the action of [l] on GO,ℓ. Since each vertex in GO,ℓ

has two horizontal ℓ-isogenies out of it, we see that there are no isolated vertices in GO,ℓ, and so GO,ℓ is a
disjoint union of cyclic subgraphs. Further, [l] acts on GO,ℓ by cyclicly permuting the vertices in each cycle.
The length of each cycle is therefore the minimum s such that [ls] acts as the identity on each vertex. By
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Proposition 2.11, the point stabilizers of the vertices in GO,ℓ are all either trivial or ⟨πp⟩, so we see that we
must have [ls] is the identity in cℓ(O). Thus the length of each cycle is equal to the order of [l] in the class
group, namely r.

□

We aim to prove that for sufficiently large primes p, every odd cycle intersecting the spine contains at most
one Fp-vertex. Our first step is to prove Lemma 3.6 below, which says that for large enough p, a cycle C of
length r through the spine is either fixed by action of Frobenius, or its orientation is reversed. To make this
precise, we recall the following definition from [2]:

Definition 3.4. Given a cycle C := ϕ1, ϕ2, . . . , ϕn in Gℓ, we define the opposite cycle to be the cycle Ĉ given
by the dual isogenies in the reverse order. Graph theoretically, the opposite cycle is a cycle that traverses
the same vertices in the opposite order.

Remark 3.5. We remark that Definition 3.4 requires special care at the vertices j = 0 and j = 1728. The
extra automorphisms at these vertices make it possible for more than one outgoing edge to correspond to
the same incoming edge when taking the dual. This subtelty is handled in [2] by defining a safe arbitrary
assignment (see Definition 3.13 in [2]). For our purposes, it is sufficient to know that we can make suitable
choices so that every cycle has a unique corresponding opposite cycle. Further, if θ is the endomorphism

corresponding to the composition of the isogenies in C, then ±θ̂ is the endomorphism corresponding to the
composition of the isogenies in Ĉ. The interested reader can consult section 3 of [2] for details.

Lemma 3.6. Let p > Mℓ,r, πp be Frobenius, and C be a cycle of length r in Gℓ. Suppose that C contains

an Fp-vertex v. Then we have that πp(C) ∈ {C, Ĉ}.

Proof. Since v is defined over Fp, we have that πp(v) = v. Further, we know that πp is a graph isomorphism,
and so πp takes C to a cycle of length r through v. By Theorem 2.9, every such cycle corresponds to an
optimal embedding of some O ∈ Iℓ,r into End(v). Lemma 2.20 tells us that, up to conjugation, there is only
one such optimal embedding. Thus there are only two cycles of length r through C, and they correspond to
dual endomorphisms. The two cycles must therefore be opposite, which proves the πp(C) ∈ {C, Ĉ}. □

We can now prove that each r-cycle has at most one Fp-vertex.

Proposition 3.7. Let r be odd, and p > Mℓ,r. Then the number of Fp-vertices on each r-cycle in GO,ℓ is
either 0 or 1. The same result also holds for r-cycles in Gℓ.

Proof. Let C be a cycle containing at least one Fp-vertex in GO,ℓ, C̃ be the cycle in Gℓ obtained by forgetting

orientations, and C̃p be the set of Fp-j-invariants appearing as vertices in C̃. We define Cp similarly. By
Lemma 3.3 we know that the length of C is r. We will show that #Cp is odd.

By Lemma 3.6, we have that Frobenius fixes the vertex set of C̃, and therefore also fixes the set of j-invariants
that appear in vertices of C. There is therefore an even number of Fp2-vertices in C and in C̃. Since there
is an odd number of total vertices in C, we see that there is an odd number of Fp-vertices in C.

We now show that our assumption on p guarantees there are a 2-power number of Fp-vertices in GO,ℓ. By
Theorem 2.16, the number of Fp-j-invariants obtained by forgetting orientations from GO,ℓ is 2

µ−1. We can
therefore count Fp-vertices in GO,ℓ by counting how many distinct orientations we obtain on each j-invariant.
By the argument in Lemma 2.20, our assumption that p > Mℓ,r implies that p > |d|. Thus p cannot ramify
in O, and so we must have that p is inert in O. By [2, Proposition 4.2], this implies that for any orientation
ι of E, (E, ι) and (E, ι) are non-isomorphic as oriented supersingular curves. As argued in Lemma 2.20, the
assumption that p > Mℓ,r also guarantees that there is only one embedding of O into End(E), so we see
that j(E) appears exactly twice in GO,ℓ. Thus the number of Fp-vertices in GO,ℓ is 2(2µ−1) = 2µ.

By Corollary 3.2, each cycle with at least one Fp-vertex in GO,ℓ has the same number of Fp-vertices. This
number is odd by the argument in the second paragraph. The total number of Fp-vertices in GO,ℓ is 2µ by
the arguments above. Letting 2k + 1 be the number Fp-vertices on any cycle in GO,ℓ with at least one such
vertex, we see that #{cycles in GO,ℓ with an Fp-vertex}(2k + 1) = 2µ. It follows that k = 0, and so there is
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either 0 or 1 such vertices on each cycle. Thus #Cp ∈ {0, 1}.

Finally, we note that this implies #C̃ ∈ {0, 1} as well, since the sets of j-invariants appearing as vertices in

C and C̃ are the same. □

4. Limiting Distribution of cycles on and off the spine

By the results of the previous sections, we know that for sufficiently large primes p, all of the following hold:

(1) Iℓ,r is a finite list of imaginary quadratic orders O such that every cycle of length r in Gℓ consists of
vertices whose j-invariants satisfy the reduction modulo p of the Hilbert class polynomial for some
O ∈ Iℓ,r.

(2) For each order O ∈ Iℓ,r, the number of cycles obtained from the reductions of curves with CM by O
is either 0 if p splits in O, or 2h(O)/r otherwise.

(3) The number of cycles obtained from the reduction of curves with CM by O that lie along the spine
is either 0, or 2µ. By Theorem 2.16, whether there are 0 or 2µ cycles along the spine depends only
on the discriminant, and the value of p modulo 8.

Together, these allow us to prove the first Theorem of the introduction:

Theorem 4.1. Let ℓ and r be fixed, with r odd. Then there exists a modulus M depending on ℓ and r such
that for p ≫ 0, nt and ns depend only on p modulo M .

Proof. We will see that for sufficiently large p, the number of r-cycles contributed by each order O ∈ Iℓ,r,
both in total, and along the spine, depends only on congruence conditions on p.

Specifically, O contributes no r-cycles if p splits in O, which is equivalent to d being a quadratic residue
modulo p. By quadratic reciprocity this is equivalent to certain congruence conditions on p modulo d or 4d.
On the other hand, if p does not split in O, then O gives 2µ or 0 cycles along the spine according to p mod-
ulo 8 and congruence conditions on pmodulo q for q | d, as in Theorem 2.16, and gives 2h(O)/r cycles in total.

For each discriminant d ∈ d(Iℓ,r), we therefore have three sets of congruences Sd,1, Sd,2, Sd,3 ⊆ Z/8dZ with
the following properties: if [p] ∈ Sd,1 then there are no cycles in Gℓ obtained from reduction of O; if [p] ∈ Sd,2

then there are 2h(O)/r cycles in Gℓ obtained from reduction of O, none of which lie along the spine; and if
[p] ∈ Sd,3, then there 2h(O)/r cycles in Gℓ obtained from reduction of O, with 2µ of them lying along the
spine. For p > Mℓ,r, we have that the cycles obtained by O1 and O2 ̸= O1 are distinct by Lemma 2.20,
so we can obtain the exact count of cycles both in total, and along the spine from the value of p modulo
lcm(8, d1, . . . , dk), where the {d1, . . . , dk} = d(Iℓ,r). □

We are now in a position to prove the following Corollary as well:

Corollary 4.2. Let ℓ and r be fixed, with r odd, and M be the modulus obtained in the previous Theorem.
Then for any [m] ∈ Z/MZ, one of the following holds for all sufficiently large p ∈ [m]:

(1) nt/#V (Gp,ℓ) < ns/#V (Sp,ℓ);
(2) ns = 0.

Proof. In [1], the authors give the number of spine vertices as a constant multiple of either h(O−4p) or h(O−p),

depending on p modulo 8. It is a standard bound in analytic number theory that h(Od) ≤ C
√
|d| log(|d|) for

imaginary quadratic discriminants d, and a constant C [9, Equation 8.11]. Letting s be the number of spine
vertices we therefore have that s = O(

√
p log p). On the other hand, the number of vertices in Gp,ℓ is O(p).

Let nt and ns be as in the Corollary statement. Using the notation from the proof of Theorem 4.1, we see
that if [m] ∈ Sd,1 or [m] ∈ Sd,2 for all d ∈ d(Iℓ,r), then ns = 0 for all sufficiently large p ∈ [m]. Otherwise,
we have that ns, nt > 0.

Proposition 3.7 says that each cycle along the spine contains 1 spine vertex. Further, for p > Mℓ,r, all of the
r-cycles in Gp,ℓ are disjoint, unless the two cycles are the same up to direction of traversal. We therefore see
that, for p sufficiently large, each spine vertex contained in an r-cycle is contained in exactly two r-cycles.
Thus there are ns/2 spine vertices that are part of an r-cycle. Each r-cycle contains r-total vertices, and as
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discriminant class number
(

d
4643

)
F46432 j-invariants

-23 3 -1 173, 1283z2 + 3319, 3360z2 + 937
-44 3 1
-59 3 1 1896, 1161, 851
-83 3 1 3690, 2630, 1486
-92 3 -1 4537, 732z2 + 4024, 3911z2 + 1326
-104 6 -1 2549z2 + 3241, 3268z2 + 3162, 3037z2 + 3085, 2094z2 +

2967, 1606z2 + 2560, 1375z2 + 73
-107 3 1 3870, 1520, 637

Table 1. Discriminants in I3,3, and corresponding data for the prime p = 4643. The
variable z2 is a root of the polynomial x2 − 9x− 4638 ∈ F4643[x].

argued above, for sufficiently large p, the r-cycles are all disjoint, except for a cycle and its opposite. Thus
there are rnt/2 vertices contained in r-cycles. We therefore have that for p ≡ m (mod M), the proportion
of spine vertices contained in an r-cycle is ns/O(

√
p log(p)), while the proportion of all vertices contained in

an r-cycles is nt/O(p). Since O(p) is asymptotically greater than O(
√
p log(p)), we see that the proportion

of spine vertices with an r-cycle is eventually greater than the proportion of all vertices. □

5. Explicit examples

In this section, we present explicit examples illustrating the key ideas in Theorem 4.1 and Corollary 4.2. We
consider the distribution of 3 cycles in the 3-isogeny graph.

Referring to Table 1, we see that I3,3 = {−23,−44,−59,−83,−92,−104,−107}. For p > (−104)(−107)
4 , we

have that the reductions of the curves with CM by these orders are all distinct. In these cases we can count
the number of cycles in Gℓ that intersect Sℓ by counting the number resulting from each order separately.
We will assume that p is sufficiently large for the rest of this example.

Consider the order O of discriminant −23. Reductions of curves with CM by O are supersingular if and only

if
(

−23
p

)
= −1. By quadratic reciprocity, this occurs if and only if

p ≡ 3, 5, 17, 21, 23, 27, 31, 33, 35, 37, 39, 45, 47, 53, 55, 57, 59, 61, 65, 71, 75, 87, 89 (mod 92).

If p is in one of these residue classes, then the reductions of the curves with CM by O form two directed
3-cycles in the 3-isogeny graph. Further,

(−p
23

)
= 1 in each of these cases, so Theorem 2.16 tells us that these

3-cycles intersects the spine.

Next, we analyze the case of d = −104, where more complicated scenarios can occur. We find again by
quadratic reciprocity, that the curves with CM by O−104 reduce to supersingular curves if and only if

(1) p ≡ 11, 19, 23, 29, 33, 41, 53, 55, 57, 59, 61, 67, 69, 73, 77, 79, 83, 87, 89, 95, 97, 99, 101, 103 (mod 104).

The class group of O−104 is isomorphic to Z/6Z, so that for p > 104, there are either 0 or 2 Fp-roots of the
Hilbert Class Polynomial. By Theorem 2.16, there are 2 Fp-roots as long as

(1)
(−p
13

)
= 1, and

(2) at least one of the following holds:
(a) p ≡ 7 (mod 8),
(b) −p− 26 ≡ 0, 1, or 4 (mod 8), or,
(c) −p− 104 ≡ 1 (mod 8).

Simplifying these conditions shows that p must be in the following residue classes:

(2) p ≡ 23, 29, 53, 55, 61, 69, 77, 79, 87, 95, 101, 103 (mod 104).

Thus the discriminant O−104 produces 4 directed 3-cycles in Gp,3 if and only if p is in one of the residues
listed in (1), and these four 3-cycles lie along the spine if and only if p is in one of the residues listed in (2).
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The analyses of the remaining discriminants are similar. For our purposes, it suffices to note that in each
case, we can give an explicit list of residues modulo some mi where the order produces supersingular curves,
and further, when the class number is even we can give an explicit subset of these residues where there are
2µ reduced curves along the spine. Considering each residue class in (Z/ lcm(mi)Z)×, we can then count the
number of 3-cycles in the graph Gp,3, as well as the number of 3-cycles along the spine. By explicit computa-
tion, we see that in this case, lcm(mi) = 13, 786, 935, 448, so that for sufficiently large primes p, the number
of 3-cycles in total and along the spine in the 3-isogeny graph depends only on p modulo 13, 786, 935, 448.

For example, consider p = 4643. Table 1 shows that in this case only the orders O−23, O−92, and O−104

produce supersingular j-invariants, and further we have that none of the 3-cycles coming from O−104 lie
along the spine. We therefore have that 1/2 of the 3-cycles lie along the spine and 1/2 lie off of the spine.
Since this ratio depends only on p modulo 13, 786, 935, 448, we see that for large enough p equivalent to 4643
modulo 13, 786, 935, 448, 1/2 of the three cycles in Gp,3 lie along spine, while the proportion of vertices that
are on the spine approaches 0.

6. Expected values for ns

In this section, we give an explicit formula for ns, as well as for the expected value of ns as p → ∞. These
formulae are given in terms of imaginary quadratic class numbers and discriminants, but without conditions
on the order or splitting behavior of ℓ in the class group.

We first recall a convenient description for the set ∪n|rd(Iℓ,n) given in the proof of Theorem 7.4 in [2]:

Proposition 6.1. The set of imaginary quadratic discriminants ∆ where ℓO∆ splits, the primes above ℓ
have order dividing r, and the conductor is not divisible by ℓ, is given by{

x2 − 4ℓr

f2
: 0 < x < 2ℓr/2, x ̸≡ 0 (mod ℓ), f2 | x2 − 4ℓr, and

x2 − 4ℓr

f2
≡ 0, 1 (mod 4)

}
.

We will denote this by d(Iℓ,n|r).

Proof. Let p, ℓ, and r be fixed. Theorem 7.4 of [2] shows that the set of discriminants corresponding to

cycles whose length divides r in Gp,ℓ is given by the set of x2−4ℓr

f2 such that all of the conditions above hold,

but also x2−4ℓr is not a quadratic residue modulo p and has valuation at most 1 at p. The set above simply
removes the conditions on p. □

We now aim to compute the average number of spine cycles for large p. We first use Möbius inversion to
find a formula for this count for a specific p. Let ns,p(r) be the number of spine cycles of length r in Gℓ.

Theorem 6.2. Let p, ℓ, and r be fixed, with p > Mℓ,r. Then

ns,p(r) = 2
∑
d|r

µ(d)
∑

∆∈d
(
Iℓ,n| r

d

) δp(∆)h2(∆),

where h2(∆) = | cℓ(O∆)[2]|, and δp(∆) =

1
p is inert in O and
HO(x) has a solution in Fp,

0 otherwise.

Remark 6.3. Note that using Theorem 2.16 and Theorem 2.18, δp(∆) and h2(∆) can both be calculated
using only the factorization of ∆, legendre symbol computations, and modular arithmetic. Thus the formula
in Theorem 6.2 depends entirely on “elementary” techniques, and does not require knowledge of the relevant
class groups.

Proof. By Theorem 2.9, we have a map from isogeny cycles of length r in Gℓ to orders in Iℓ,r, given
by finding the unique order O such that the cycle appears as a rim in GO,ℓ. Restricting to cycles along
the spine, Corollary 3.2 shows that if O produces spine cycles, then it produces 2h2(∆) of them, with
the factor of 2 coming from considering directions of traversal. We therefore have that

∑
d|r ns,p(d) =

2
∑

∆∈d(Iℓ,n|d) δp(∆)h2(∆), and Möbius inversion finishes the proof. □

Turning to the average number of spine cycles as p varies, we have the following corollary:
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Corollary 6.4. Let {p1, . . . , pn} be a set of primes, all of which are greater than or equal to Mℓ,r. Then we
have that

(3)
1

n

n∑
i=1

ns,pi(r) = 2
∑
d|r

µ(d)
∑

∆∈d(Iℓ,n| r
d
)

(
1

n

n∑
i=1

δpi(∆)

)
h2(∆).

Proof. This follows from Theorem 4.1 by collecting all terms with the same d,∆. □

In order to compute the product on the right hand side of (3), we turn our attention to computing the
average of the δpi(∆).

Computing this average from Theorem 2.16 is possible via a case-by-case analysis, but we will give a more
conceptual proof based on the work of Li, Li, and Ouyang. We begin with the following theorem:

Theorem 6.5 ([12], Theorem 4.1). Let O be an order in an imaginary quadratic field K, and HO(x) be its
Hilbert class polynomial. Let F be the genus field of O, F+ = F ∩R, and p be a prime that does not split in
K. Further, assume that p ∤ discHO(x) and p ∤ disc(O). Then HO(x) has a root in Fp if and only if p splits
completely in F+,

In the cases of interest to us, the requirements that p ∤ discHO(x) and p ∤ disc(O) will always be satisfied,
as the following lemma shows:

Lemma 6.6. If p > Mℓ,r, then p ∤ discHO(x) and p ∤ disc(O) for all O ∈ Iℓ,r.

Proof. By definition of Mℓ,r, we have that p > Mℓ,r implies that p > disc(O) for all O ∈ Iℓ,r. Thus
p ∤ disc(O) for any O ∈ Iℓ,r. Further, Corollary 2.14 implies that HO(x) has no repeated roots modulo p,
and so we see that p ∤ discHD(x) as well. □

We now use Theorem 6.5 to reinterpret δpi
(∆) in terms of the Artin symbol

(
F/Q
p

)
:

Lemma 6.7. Let ∆ ∈ d(Iℓ,r), and p be a prime such that p > Mℓ,r. Let σ ∈ Gal(F/Q) be the unique Galois

element such that σ|F+ is the identity, and σ|K is conjugation. Then δp(∆) = 1 if and only if
(

F/Q
p

)
= σ.

Proof. Since p > Mℓ,r we have that p > ∆, and so p is unramified in K = Frac(O∆). Since F is contained
in the Hilbert class field of K, which is an unramified extension of K, we have that p is unramified in F as

well. Thus
(

F/Q
p

)
is well-defined.

Next, we note that σ is well-defined, since F+ ⊂ R, and K is imaginary quadratic, so we have that
F+ ∩ K = Q. Thus [F+K : Q] = [K : Q][F+ : Q] = 2(2µ−1). This is equal to the degree of F over
Q, and since F+K ⊂ F , we have that F = F+K. It follows that Gal(F/Q) ∼= Gal(F+/Q) × Gal(K/Q),
which shows that σ is well-defined.

Finally, we come to the proof that δp(∆) = 1 if and only if
(

F/Q
p

)
= σ. By Theorem 6.5 and Lemma 6.6,

δp(∆) = 1 if and only if p is inert in K and splits completely in F+. Since p is unramified in F+, the second
requirement is equivalent to requiring that the inertia degree of p is 1, which is in turn equivalent to the

assertion that
(

F/Q
p

)
= 1 by [6, Corollary 5.21]. Similarly, the first condition is equivalent to the inertia

degree of p in K being 2, which is equivalent to
(

K/Q
p

)
being conjugation since this is the only element of

order 2 in Gal(K/Q).

Finally, by [6, Exercise 5.16], we have that
(

F+/Q
p

)
is the restriction of

(
F/Q
p

)
to F+, and similarly for

K. □

We now use Chebotarev density to determine 1
n

∑n
i=1 δpi

(∆). Recall the following version of Chebotarev
density:
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Theorem 6.8 ([11], pg. 167). Let K/Q be an abelian extension, and let σ ∈ Gal(K/Q). Then

lim
x→∞

#{p : p ≤ x, p unramified,
(

K/Q
p

)
= σ}

#{p : p ≤ x}
=

1

[K : Q]
,

where
(

K/Q
p

)
is the Artin symbol.

We have the following lemma:

Lemma 6.9. Let (pi)
∞
i=1 be an increasing sequence of consecutive primes, with p1 > Mℓ,r, and ∆ ∈ d(Iℓ,r).

Then

lim
n→∞

1

n

n∑
i=1

δpi
(∆) =

1

2µ
.

Proof. Let πσ(x) = #{p : p ≤ x, p unramified, and δp(∆) = 1} and π(x) = #{p : p ≤ x}. By Lemma 6.7
and Theorem 6.8, we have

lim
x→∞

πσ(x)

π(x)
=

1

[F : Q]
=

1

2µ
.

We now show that

lim
n→∞

πσ(pn)

π(pn)
=

1

n

n∑
i=1

δpi
(∆).

Extend δp(∆) to all primes p by setting δp(∆) =

{
1 if

(
K/Q
p

)
= σ

0 otherwise
. Then we can compute directly that

πσ(pn)

π(pn)
=

∑n
i=1 δpi(∆) +

∑
p<p1

δp(∆)

n+ π(p1)

=

(
1 +

π(p1)

n

)−1
(
1

n

n∑
i=1

δpi
(∆)

)
+

(
1 +

π(p1)

n

)−1
(
1

n

∑
p<p1

δp(∆)

)
,

and the result follows by taking n → ∞. □

Combining Lemma 6.9 and Corollary 6.4, we can prove the final result from the introduction:

Theorem 6.10. Let (pi)
∞
i=1 be an increasing sequence of consecutive primes. Then

lim
n→∞

1

n

n∑
i=1

ns,pi
(r) =

∑
d|r

µ(d)#d(Iℓ,n| rd ).

Proof. We first note that since the sequence (pi) is increasing, only finitely many of the terms are less than
Mℓ,r. Thus Corollary 6.4 applies unchanged.

Next, note that the first two sums in Corollary 6.4 are finite, we can interchange the limit and the sums to
get that

lim
n→∞

1

n

n∑
i=1

ns,pi(r) =
∑
d|r

µ(d)
∑

∆∈d
(
Iℓ,n| r

d

) 2h2(∆) lim
n→∞

(
1

n

n∑
i=1

δpi(∆)

)
.

The theorem follows from the fact that h2(∆) = 2µ−1, and the remaining limit is 1
2µ by Lemma 6.9. □

As an example, we compute the expected number of 3-cycles along the spine in G3.

Example 6.11. Using Proposition 6.1, we see that

d(I3,n|3) = {−107,−104,−92,−83,−59,−44,−23,−11,−8},
and d(I3,n|1) = {−11,−8}. Thus the expected number of 3-cycles along the spine in G3 is given by

µ(1)#d(I3,n|3) + µ(3)#d(I3,n|1) = 9− 2 = 7.
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Figure 1. Average numbers of 3-cycles along the spine in the 3-isogeny and 5-isogeny
graphs

Example 6.11 demonstrates the following corollary:

Corollary 6.12. With the notation and assumptions from Theorem 6.10, suppose further that r is prime.
Then

lim
n→∞

1

n

n∑
i=1

ns,pi(r) = #d(Iℓ,r).

Proof. Since r is prime, the only divisors of r are 1 and r. By Theorem 6.10, we have that

lim
n→∞

1

n

n∑
i=1

ns,r(pi) = µ(1)#d(Iℓ,n|r) + µ(r)#d(Iℓ,n|1)

= µ(1)(#d(Iℓ,r) + #d(Iℓ,1)) + µ(r)#d(Iℓ,1)
= #d(Iℓ,r) + #d(Iℓ,1)−#d(Iℓ,1)
= #d(Iℓ,r).

□

6.1. Remarks on computational verification. To verify the results of Theorem 6.10 and Corollary 6.4,
we collected data on 3-cycles in the 3-isogeny and 5-isogeny graphs for all primes up to 10, 000.

Figures 1a and 1b show the results, with the black lines indicating the predicted limit in Theorem 6.4. In
the case of Figure 1a, 2, 789 was chosen because it is the first prime larger than M3,3. Since M5,3 = 61, 876,
considering only primes larger than M5,3 was impractical, so 1, 000 was chosen arbitrarily. In particular, we
see that even at primes less than Mℓ,r, the average converges quickly toward the final limit.

In Figure 1a, we see that the average remains slightly above the predicted limit even at the largest primes.
We hypothesize that this happens due to inequalities in prime races. The number of 3-cycles along the spine
produced by each determinant in Iℓ,r is determined by congruence conditions on p modulo d or 4d, so it is
likely that certain congruences are more common for small values of p. If these congruences produce more
or less than the average number of 3-cycles along the spine, then this would cause the average number of
3-cycles along the spine for primes up to large bounds to remain slightly above or below the limit.

7. Cycles of even length

We now consider the case of even cycles, where we are able to obtain partial results. The only place where
our assumption that r has odd length was used in an essential fashion is in Proposition 3.7, when we proved
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that each cycle of length r contains either 0 or 1 Fp-vertices.

In this argument we showed that for large enough p, the number of Fp-vertices on each cycle in GO,ℓ of length
r is either 0 or odd. Further, this number has to divide a power of 2. This allowed us to conclude that
any cycle of odd length r in Gℓ with one Fp-vertex has exactly one Fp-vertex. In the case where r is even,
however, the number of Fp-vertices on each cycle in GO,ℓ can be a non-trivial power of 2. In this section, we
alter the graph theoretic arguments to show that under some additional assumptions, the number of such
vertices is exactly 2. We begin by defining a modified version of our bound Mℓ,r:

Definition 7.1. Let r be even. We set M strong
ℓ,r := max{Mℓ,ri : ri < r}.

Remark 7.2. We expect that M strong
ℓ,r is always equal to Mℓ,r, since the discriminants where primes above

ℓ have order r in the class group will generally be larger than discriminants where they have order ri for
ri < r. For the purposes of this paper, however, it is most important to have a finite bound.

We can now state partial results for Theorem 4.1 in the case where r is even:

Theorem 7.3. Let r be an even number that is not a power of 2, and p > M strong
ℓ,r . Then the results of

Theorem 4.1 and Corollary 4.2 hold unchanged.

The proof strategy will be the same, except that we will replace the result of Proposition 3.7 with Proposition
7.5 below. This proposition says that instead of 0 or 1 Fp-vertex, each cycle will contain 0 or 2 Fp-vertices.
Thus, we will get the following modified version of Theorem 6.10:

Theorem 7.4. Let (pi)
∞
i=1 be an increasing sequence of consecutive primes, and r be even. Then if r is not

a power of 2 we have

lim
n→∞

1

n

n∑
i=1

ns,pi(r) =
1

2

∑
d|r

µ(d)#d(Iℓ,n| rd ).

The only modification of the proofs of Theorem 4.1 and Theorem 6.10 needed to prove Theorem 7.3 and
Theorem 7.4 is replacing Proposition 3.7 with the following proposition:

Proposition 7.5. Let r be even and p > M strong
ℓ,r . If r is not a power of 2, and C is an r-cycle in Gℓ, then

the number of Fp-vertices on C is either 0 or 2.

Before proving Proposition 7.5, we prove the following Lemma:

Lemma 7.6. Let p > M strong
ℓ,r , and C be an isogeny cycle in Gℓ of length r. Let v be a vertex in C.

Then there is only one incoming and one outgoing edge connected to v in C. Further, if C ′ is the cycle in
GO,ℓ corresponding to C via Theorem 2.9, then the map from C ′ to C obtained by forgetting orientations is
injective on vertices.

Proof. Under the bijection of Theorem 2.9, there is an order O ∈ Iℓ,r, and a cycle C ′ in GO,ℓ that corre-
sponds to C after forgetting orientations. The conclusion of the Lemma holds for C ′ by Proposition 2.8,
and forgetting orientations preserves sources and targets of edges, so we need only show that forgetting
orientations is injective on vertices.

Suppose instead that there are two vertices in C ′ with the same j-invariant. Let j be this j-invariant. We
then obtain two cycles in Gℓ through j upon forgetting orientations. Both of these cycles have length at
most r. By composing the isogenies in these cycles, we obtain two cyclic endomorphisms in End(E(j)), of
degree ℓri , ℓrj for ri, rj < r. These endomorphisms then give embeddings of imaginary quadratic orders in

Iℓ,ri and Iℓ,rj into End(E(j)). This contradicts Remark 2.21, because we have chosen p > M strong
ℓ,r . Thus

we see that forgetting orientations is injective on vertices. □

We now return to the proof of Proposition 7.5.

Proof (Proposition 7.5). By Corollary 3.2, there is a constant K such that each r-cycle in GO,ℓ containing
an Fp-vertex contains K Fp-vertices. Since the total number of such vertices is a power of 2, the number
of vertices on each cycle cannot be r, since r is not a power of 2. By Lemma 7.6, each r-cycle in Gℓ also
contains r vertices, and the number of Fp-vertices is again a power of 2. Thus each r-cycle in Gℓ contains
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Figure 2. Average numbers of 4-cycles (resp. 6-cycles) along the spine in the 3-isogeny
(resp. 2-isogeny) graph

Fp2 -vertices. Let C be such a cycle containing at least one Fp-vertex. We will show that C contains exactly
2 Fp-vertices.

Let C be given by a sequence of isogenies ϕ1, ϕ2, . . . , ϕr. Since we are forgetting basepoint in Definition 2.1,
we may assume that the domain of ϕ1 is an Fp-vertex, and the codomain is an Fp2-vertex. Let i be the first
index such that the codomain of ϕi is an Fp-vertex, and let v be this vertex. We will show that i = r

2 , from
which it will follow that there are exactly two Fp-vertices in C.

By changing basepoint to v if necessary, we may assume that i ≤ r
2 . Applying Frobenius to the sequence

of isogenies ϕ1, ϕ2, . . . , ϕi, we obtain a sequence ϕ
(p)
1 , ϕ

(p)
2 , . . . , ϕ

(p)
i , which begins at the domain of ϕ1, and

ends at v. The vertices in between in this sequence are distinct from the vertices traversed in the sequence
ϕ1, ϕ2, . . . , ϕi by the assumption that i is the first index where the codomain of ϕi is defined over Fp. Taking

duals therefore gives a closed walk ϕ1, . . . , ϕi, ϕ̂
(p)
i , . . . , ϕ̂

(p)
1 with no-backtracking through v. This is an

isogeny cycle of length 2i ≤ r, which we denote by C ′. By Remark 2.21, our assumption that p > M strong
ℓ,r

guarantees that this cycle is either C or Ĉ. Since C and Ĉ have the same vertices, and there are exactly 2
Fp-vertices in C ′, we see that C has exactly 2 Fp-vertices. This finishes the proof.

□

See Figures 2a and 2b for experimental data verifying the results of Theorem 7.4. We note that Figure 2a
provides computational evidence that the results of Theorem 7.3 and Theorem 7.4 both hold even in the case
where r is a power of 2. In this case however, the possibility of cycles through the spine that are completely
fixed by Frobenius makes the graph theoretic arguments in Propostion 7.5 fail to provide a proof.

We end with a remark on an interesting consequence of Proposition 7.5:

Remark 7.7. By taking r = 2n, Proposition 7.5 says that there are infinitely many primes p where Gℓ contains
spine vertices of distance at most n from each other. The vertices on the spine are exactly the vertices whose
endomorphism rings contain an embedded copy of Z[

√
−p]. Boneh and Love studied the distribution of

vertices with small endomorphisms in [13], and found that small endomorphisms have a repelling effect.
In this context, our result says that vertices with endomorphisms of degree roughly

√
p can remain close

together in Gℓ.
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