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Abstract. We present new secure multi-party computation protocols for linear algebra
over a finite field, which improve the state-of-the-art in terms of security. We look at
the case of unconditional security with perfect correctness, i.e., information-theoretic
security without errors. We notably propose an expected constant-round protocol for
solving systems of m linear equations in n variables over Fq with expected complexity
O(k(n2.5 + m2.5 + n2m0.5)) where k > m(m + n) + 1 (complexity is measured in
terms of the number of secure multiplications required). The previous proposals were
not error-free: known protocols can indeed fail and thus reveal information with
probability Ω(poly(m)/q). Our protocols are simple and rely on existing computer-
algebra techniques, notably the Preparata-Sarwate algorithm, a simple but poorly
known “baby-step giant-step” method for computing the characteristic polynomial of
a matrix, and techniques due to Mulmuley for error-free linear algebra in positive
characteristic.
Keywords: Secure Multi-Party Computation · Linear Algebra · Preparata-Sarwate
Algorithm · Moore-Penrose Pseudo-Inverse

1 Introduction
The importance of linear algebra computation over finite fields for a wild range of tasks is a
well-established fact (e.g. for integer polynomial factorization, Gröbner basis computation,
integer system solving, large integer factorization, discrete logarithms, error correcting
codes,...). The concept of secure multi-party computation (MPC) was introduced by
Yao [Yao86] and allows mutually distrusting parties to run joint computations without
disclosing any participant’s private inputs.

We present new MPC protocols for linear algebra computation over a finite field, improv-
ing state-of-the-art security. We notably propose efficient protocols for (matrix)-polynomial
evaluation, determinant computation, and other linear algebra problems, particularly the
computation of the characteristic polynomial which underlies many problems such as the
resolution of linear systems of equations. We target protocols with everlasting security
unconditionally, without relying on unproven intractability assumptions. There already
exist numerous protocols in this setting, but we require in addition that in our proto-
cols, (honest) parties always get a valid output and that protocols fail with a zero-error
probability. Indeed, known protocols can fail and thus reveal information on the parties’
inputs. Apart from being a natural goal, achieving unconditional security and perfect
correctness provides important security advantages over protocols that have a negligible
probability of failure. Indeed, it has been proven that every protocol that is perfectly
secure in the stand-alone model is secure under concurrent general composition [KLR06].
Moreover, we target efficient multi-party protocols, meaning that our protocols enjoy both
low communication and round complexity. Indeed, since in almost all systems, the time
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spent on sending and receiving messages is large compared to local computation time, one
tries to achieve an expected constant round complexity while keeping the communication
complexity as low as possible.

1.1 Related work
General results in MPC do not yield efficient protocols for linear algebra with information-
theoretic security. Cramer and Damgård [CD01] proposed the first efficient information-
theoretically secure MPC protocols for solving linear systems, i.e. that achieve security even
against computationally unbounded adversaries. The main focus of their proposal was to
achieve constant-round complexity, and they notably proposed a constant-round protocol
for solving m equations in n variables with communication complexity Ω(n4) elements of the
underlying finite field, which can be reduced to O(n3) with the subsequent matrix product
protocol from [MW08]. In 2007, Cramer, Kiltz and Padró [CKP07] designed a constant-
round protocol for solving m equations in n variables with communication complexity O(n4+
n2 m). Then, Mohassel and Weinreb [MW08] developed a constant-round protocol, with
O(t n2+1/t) communication for every constant t ∈ N, for computing the rank and solving
a shared linear system of equations. In all the protocols from [CD01, CKP07, MW08],
non-zero error probabilities arise when the parties happen to select obliviously zeroes of
“hidden” polynomials. This error probability is typically a polynomial in the dimensions of
the matrix considered divided by the cardinal of the underlying finite field (e.g. Θ(m2/q)
in [CKP07, MW08] over a finite field Fq). The authors of [CD01, CKP07, MW08] thus
require to consider only large values of q, typically q superpolynomial in m to achieve
protocols with negligible error probability (which may not be compatible with the problem
being solved), or to instantiate the protocols in large enough extensions of the underlying
finite field (which increase the computation and communication costs). Even in these
cases, the error probability is not null and may reveal information on the parties’ inputs.
In [CD01], Cramer and Damgård mentioned a work in progress (co-authored with Daza)
to achieve perfect security, but as far as we know, this work has not been published, and it
remains an open problem to propose efficient constant-round protocols for linear algebra
with perfect correctness and unconditional security.

Numerous protocols were also proposed for computationally secure MPC linear algebra.
For instance, using the garbled circuit method of Yao [Yao86], one can get a constant-round
two-party protocol for various linear algebraic problems. A protocol due to Nissim and
Weinreb [NW06] was the first to improve the communication complexity to roughly O(n2)
(for n × n matrices), but with a trade-off on a large O(n0.275) round complexity. The
protocols from [CD01, CKP07] can be readily adapted to the computationally-secure
setting using linearly homomorphic encryption schemes, and the resulting schemes achieve
similar complexities. Later, [KMWF07] achieved O(n2 log n) communication complexity
and O(log n) round complexity with an ingenuous concatenation idea to compute itera-
tive powers of a matrix. This protocol to solve linear systems also has a non-zero error
probability of 3n2/q over a finite field of cardinal q. The protocols from [MW08] can also
be adapted to the computational setting (with similar complexities and error probabil-
ity). Finally, Bouman and de Vreede [BdV18] recently proposed two protocols based on
(oblivious) Gaussian elimination with O(n3) computational complexity and O(n) round
complexity, and based on block-recursive matrix decomposition with O(n2) computational
complexity and O(n1.585) round complexity. Both protocols use a preconditioning method,
and non-zero error probabilities also arise.

1.2 Our contributions
We present new secure multi-party computation protocols for linear algebra over a finite
field with unconditional security and perfect correctness, i.e., information-theoretic without
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error. These protocols rely on known techniques in computer algebra and their adaptation
in an MPC setting is actually more routine than innovative. However, even if this paper
assumes an expository character, we contend that describing these protocols is of interest
to the community given the potential impact to design threshold cryptosystems. In
particular, the NIST has recently initiated a process to solicit, evaluate, and standardize
“threshold schemes, for a secure distribution of trust in the operation of cryptographic
primitives”. Variants of our protocols (with security against malicious adversaries) could
find applications to design post-quantum threshold digital signatures. They can be
used to distribute the signing algorithms used, for instance, in the code-based Wave
signatures [DST19] or the multivariate unbalanced Oil and Vinegar signatures [KPG99,
Beu21, BCH+23] (that both require a linear system solving in a small finite field).

Previous efficient proposals [CKP07, KMWF07, MW08] are based on the computation
of a certain characteristic polynomial. Cramer, Kiltz, and Padró [CKP07] presented
a protocol for secure polynomial evaluation of a shared polynomial of degree d at a
shared point that runs in a constant number of rounds and O(d) secure multiplications.
However, the protocol leaks information about the input with probability 1/q over a finite
field of cardinal q. Then, they developed a perfectly correct protocol with O(d) secure
multiplications using Chebyshev polynomials. As a first contribution, we propose simple
secure protocols for polynomial evaluation of a shared polynomial of degree d at a shared
point with perfect correctness that runs in O(t) rounds and has communication complexity
O(t d1/t) for any parameter t ∈ N. For polynomial evaluation of a shared polynomial at
a shared n × n matrix, the complexity increases to O(t n2 d1/t). These protocols are of
independent interest and can be used for instance in the recent Polymath framework from
Lu, Yu, Kate, and Maji [LYKM22] with round complexity (and therefore latency) for
secure polynomial evaluations of scalars and matrices independent of the polynomial degree
and matrix dimensions (and therefore for their interesting use cases of privacy-preserving
evaluation of decision trees and privacy-preserving evaluation of Markov processes).

Using these tools, we propose an expected constant-round protocol for solving systems
of m linear equations in n variables over Fq with expected complexity O(k(n2.5 +m2.5 +
n2m0.5)) (where complexity is measured in terms of the number of secure multiplications
required) for k > m(m+ n) + 1 when the field characteristic is greater than n. This last
condition can be removed via a work of Schönhage [Sch93] for securely computing the
characteristic polynomial over a field of positive characteristic. This increases the cost of
communication by a factor n.

As mentioned above, our protocols are simple and rely on existing computer algebra
techniques. In particular, we make use of the Preparata-Sarwate algorithm [PS78]. It
is a simple “baby-step giant-step” method for computing the characteristic polynomial,
determinant, and adjugate of a n × n matrix using only ring operations together with
exact divisions by small integers with complexity O(n2.5). This algorithm is poorly known
and has been rediscovered several times (see e.g. [Joh20]). We adapt this algorithm for
secure MPC using classical techniques. The algorithm boils down to performing O(

√
n)

multiplications of matrices, each naively requiring O(n2) operations in the ring. We
take up a technique sketched without details in [MW08] allowing us to perform these
multiplications at a communication cost similar to O(n2) secure multiplications (but always
with a computational cost in O(n3)).

Using this error-free protocol, we follow the blueprint from [CKP07] and obtain an
error-free protocol for the computation of the Moore–Penrose pseudo-inverse of a matrix A
over a finite field. This requires computing the characteristic polynomial of the so-called
Gram matrix of A from which we can compute the Moore–Penrose pseudo-inverse via a
technique due to Diaz-Toca, Gonzalez–Vega and Lombardi [DGL05] as an extension of
the work of Mulmuley [Mul86] to achieve perfect correctness (and avoid the errors and
possible leakage on the parties’ inputs from [CKP07]).
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2 Preliminaries
We denote by Fq a finite field with q elements, and by GLn(Fq) the subset of non-singular
matrices over Fn×n

q which is a group for multiplication (with n ∈ N).

Secure Multi-Party Computation (MPC). MPC deals with a set of parties who want to
compute a public function of their secret inputs such that each party obtains the correct
result but no additional information about the other parties’ inputs. We consider the
honest but curious model (or semi-honest setting), in which parties try to find out as much
as possible about the other inputs despite following the protocol.

Security Model. Protocols can be categorized based on their security into two main types:
those relying on computational hardness assumptions and those deemed unconditionally
secure (information-theoretical). We focus on the second category: we construct secure
protocols against adversaries with unlimited computing resources and time. Moreover, our
protocols do not leak information with probability 1, and thus achieve perfect correctness.
In the following, when we say that a protocol is secure, we mean that it is unconditionally
secure.

Complexity Measures. Two measures of complexity are important for our protocols. The
first one is the communication complexity, i.e., the total number of bits exchanged during
the whole execution of the protocol. This complexity only depends on the number of
secure multiplications that the protocol requires, since, for protocols relying on linear
secret sharings (see below) only secure multiplications involve communication between
parties. We consider a secure multiplication protocol that needs to communicate 2
field elements per invocation. Hence, to determine the communication complexity of a
protocol, it is equivalent to computing the number of calls to the secure multiplication
subprotocol. Fortunately, parties can batch some multiplications before interacting with
others, decreasing the communication complexity. The second complexity measure is the
round complexity, i.e., the number of sequential rounds of secure multiplication that the
protocol invokes. In other words, it corresponds to the number of interactions during
which each party is allowed to send one flow of messages to other parties.

2.1 Definitions of our theoretical information model
The protocols that we present do not rely on any cryptographic assumption, except that
the underlying secret sharing has to be unconditionally secure. Let P1, . . . , Pk be k parties
taking part in some MPC protocol. We use a linear secret sharing scheme to design secure
MPC protocols to share values over a finite field Fq.

Linear secret sharing scheme. A secret sharing scheme is a cryptographic primitive with a
sharing and a reconstruction phase. The sharing phase allows a secret to be distributed
among a group of parties (by some dealer). Once the secret has been distributed, each
of the parties holds a share of the secret. On its own, this share does not reveal any
information about the secret, unless combined with sufficient other shares of a subset of
the participants (the reconstruction phase). One denotes by [s] = ([s]1, . . . , [s]k) ∈ Fk

q

a secret sharing of s ∈ Fq with [s]i the share of the party Pi (for 1 ≤ i ≤ k). A secret
sharing scheme is linear if the reconstruction function of the secret from the shares is a
linear mapping. Due to the linearity of the secret sharing, given secret sharings [a] and
[b] and a third field element c ∈ Fq, parties can compute their share of the secret sharing
[a+ cb] locally (i.e. without communication). Furthermore, we require our linear secret
sharing scheme to be multiplicative. In a nutshell, this means that a party Pi can use their
shares from [a] and [b] to locally compute a value ci. Then, via some computation using
the ci’s, parties communicate to realize a refreshing step. Based on a public reconstruction
vector λ ∈ Fk

q , the product ab can be reconstructed, hence leading to a secret sharing of
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ab. Moreover, one can construct a multiplicative linear secret sharing scheme from any
linear secret sharing scheme without loss of efficiency [CDM00].

We may use Shamir’s secret sharing along with BGW protocol [BGW88] with quadratic
communication (in the number of parties) per secure multiplication. But any other
linearly homomorphic secret sharing with, for example, the Damgård-Nielsen multiplication
protocol [DN07] yields a protocol with linear communication at the cost of preparing a
pair of random double sharings for each multiplicative gate.

The sharing of a vector or more generally of a matrix is seen component-wisely. In
the same spirit, the sharing of a polynomial p(x) =

∑n
i=0 aix

i ∈ Fq[x] is defined as
[p(x)]` =

∑n
i=0 [ai]`x

i, for 1 ≤ ` ≤ k.
A well-known multiplicative linear secret sharing scheme is the Shamir secret sharing

based on polynomial interpolation over some finite field. Given a public set of k distinct
non-zero field points {α1, . . . , αk} ∈ Fq, the share of Pi is p(αi) := [s]i (for 1 ≤ i ≤ k),
where p(x) ∈ Fq[x] is a random polynomial with constant term s and degree d < k. In
particular, the field size has to be larger than the number of players. Any subset of d+ 1
shares enables recovery of the secret, however, a subset with less than d+ 1 shares does
not reveal any information about the secret.

Field elements multiplication. Given a multiplicative secret sharing, one assumes that it
has a secure MPC protocol Mult which computes the product of sharing of a, b ∈ Fq as

[ab]← Mult([a], [b])

with constant communication and round complexity. We detail this protocol in the
proof of Theorem 2. For example, when dealing with the Shamir secret sharing, the
BGW protocol [BGW88] straightly provides Mult([a], [b]) (and requires k2 log2(q) bits to
communicate where k is the number of parties, which corresponds to one round of dealing).
Thus, the communication complexity, which usually corresponds to the number of bits
exchanged during the protocol, can also be expressed in terms of the number of secure
multiplications over the field (for every considered protocol, a factor k2 is hidden in the
communication complexity). As an example, if a protocol involves α secure multiplications
in parallel and later in the protocol β secure multiplications in parallel, then the round
complexity is at most 2 and the communication complexity is α+ β. Up to now, we have
been looking at the communication complexity over Fq, but at some point, we may need
to work over a field extension. The complexity will still be stated over the base field (i.e.
the number of secure multiplication over the base field).

Random element. To generate a sharing of a random value, each party Pi chooses at
random a sharing [ri] of a random element ri ∈ Fq and deals it with the other parties such
that at the end Pi gets {[r1]i, . . . , [rk]i}. This defines a share of the sharing [r] =

∑k
i=1[ri]

of the random element r =
∑k

i=1 ri ∈ Fq. The communication complexity is k2 log q thus
bounded by one invocation of the secure multiplication protocol.

Test to zero. Assume that each party owns a share of a ∈ Fq, and suppose that they would
like to compute a share of 1 if a 6= 0 or a share of 0 if a = 0. For this purpose, there
exists a protocol from Damgård et al. [DFK+06] in a constant number of rounds and with
O(log log q) communication, improved by Nishide and Ohta [NO07] with a protocol in
O(1) communication complexity.

Matrix multiplication. Let A ∈ Fm×` and B ∈ F`×n be shared matrices. A naive approach
to compute [AB] would be to compute it component-wisely with n`m parallel invocation of
Mult. The work [MW08] reduces this communication complexity from O(m`n) to O(mn).
We immediately adapt this protocol for inner-product (with constant communication),
and for matrix-vector multiplication with linear communication (in the size of the vector)
and constant rounds.
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Generation of random non-singular matrices. To generate a set of m random non-singular
matrices, consider the following Protocol 1.

Protocol 1: Generation of random non-singular matrices (NonSingularMatrix)
Data: The target number m of drawn non-singular n× n matrices over Fq, I ← ∅,

and a counter η ← 1.
Result: A set of m such random non-singular matrices.

1. Parties conjointly construct c couples of random shared matrices
{Ri, Si}i∈{1,...,c} ∈ Fn×n

q × Fn×n
q in parallel, and securely multiply RiSi := Ti

with O(n2) communication and O(1) rounds for each i ∈ {1, . . . , c}.

2. Parties reveal Ti and publicly check whether Ti is non-singular, for each
i ∈ {1, . . . , c}. If it does, then Ri is non-singular and I ← I ∪ {Ri}.
If #I ≥ m, go to 3. Otherwise, set I ← ∅, η ← η + 1 and go back to 1.

3. For m matrices Ri ∈ I, parties publicly inverse the corresponding Ti and
multiply [Si]T

−1
i = [R−1

i ].

The security of this protocol relies on the security of previous protocols (generation of
random elements, secure multiplication protocol) and on the fact that GLn(Fq) is a group
for multiplication. Indeed, we then get that Ti = RiSi is a uniform random element of
GLn(Fq) and thus Step 2 of Protocol 1 reveals no information.

Lemma 1. Protocol 1 to randomly generate m non-singular n× n matrices over Fq has
expected O(mn2) communication and expected O(1) rounds complexity.

Proof. In the following, we pick c = Θ(m), thus the overall communication complexity
is O(ηmn2). Since Step 1 is realized in parallel, the overall round complexity is O(η).
Indeed, Step 1 can be realized via the Random element protocol from subsection 2.1 with
O(mn2) communication and constant rounds. We show via the Chernoff Bound Theorem
that the overall protocol has in fact expected O(mn2) communication and O(1) rounds
complexity. We apply the lower tail of the Chernoff Bounds Theorem (see Appendix 10).
Consider η trials of (1 + 3

q−1 )m drawings of two random non-singular matrices over Fq.
The result of the j-th drawing of the i-th trial is modelled by the random variable Xi,j :{

Xi,j = 1 if both matrices are non-singular;
Xi,j = 0 otherwise.

Let X =
∑η

i=1 Xi such that{
Xi = 1 if

∑(1+ 3
q−1 )m

j=1 Xi,j ≥ m;

Xi = 0 otherwise.

One discusses about P[Xi,j = 1]. From [Ran93], if q > 2,

GLn(Fq)

Mn(Fq)
=

(qn − 1)(qn − q) . . . (qn − qn−1)

qn2 >
q − 2

q − 1
,

where Mn(Fq) is the monoid of n × n matrices over Fq. Otherwise, the probability for
a matrix to be invertible is at least 1/4. See Appendix 8 for further details. Therefore,
the probability that in a couple, both random matrices are non-singular is at least(
1− 1

q−1

)2

> 1− 2
q−1 (at least 1/16 over F2). If one draws (1 + 3

q−1 )m couples (in step 1
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of Protocol 1), then the expected number of couples with both non-singular matrices is at
least (

1− 2

q − 1

)(
1 +

3

q − 1

)
m > m.

By defining µ := E[X] = η E[Xi], one has that µ > ηm. Since the Xi,j ’s are independent
random variables, so are the Xi’s. Xi is a characteristic function for the number of pairs
of random non-singular matrices among (1 + 3

q−1 )m drawings being less than m or not
during the i-th trial. Therefore, X is a sum of independent Bernoulli trials, thus we can
apply Chernoff Bounds Theorem (see Appendix 10), and the lower tail gives us

P(X ≤ (1− δ)µ) ≤ e−µδ2/2 for all 0 < δ < 1.

Since µ > ηm ≥ η, one has:

P(X ≤ (1− δ)η) ≤ e−µδ2/2 for all 0 < δ < 1.

Let ε ∈]0, 1] and choose δ such that e−
δ2

4(1−δ) < ε. As long as η ≥ 1
2(1−δ) ,

e−
δ2

4(1−δ) < ε =⇒ e−
η δ2

2 < ε

=⇒ e−
µ δ2

2 < ε

=⇒ P(X ≤ (1− δ)η) < ε

=⇒ P(X ≤ 1/2) < ε

=⇒ P(X = 0) < ε.

Therefore for every ε as small as possible, there exists a constant (which depends on δ)
such that the probability that the counter η in Protocol 1 exceeds this constant is bounded
by ε.

Matrix inversion. Let A ∈ Fn×n be a shared non-singular matrix. The inversion protocol
from Bar-Ilan and Beaver [BB89] works as follows: parties generate a shared random
non-singular matrix R ∈ Fn×n with Protocol 1, and securely compute AR with (expected)
O(n2) communication. They reveal and invert it publicly. Then they locally compute
[R](AR)−1 = [A−1]. Since GLn(F) is a group for multiplication, AR is a uniform random
element of GLn(F) and thus reveals no information. With Lemma 1, this protocol has
expected O(n2) communication and O(1) rounds complexity.

2.2 Power of a matrix
Let A ∈ Fn×n

q . The following protocol to compute the sharing of powers of A is based
on a variant of an iterative products method developed in [BB89] and works as follows.
Generate two non-singular shared random matrices M and N in Fn×n

q . Following the
above discussion, parties securely compute [M−1] and [N−1]. Then they securely compute
[N1] = [AN−1] and [N2] = [NAM−1], reveal it and multiply them publicly as N1N2. They
deduce [A2] = N1N2[M ] by local computation. This reasoning can be iterated to get a
higher shared power of A. Hence, to compute the first m shared power of A, one protocol
needs to generate 2m non-singular matrices (e.g. with Protocol 1).

One presents the following protocol to compute the first m powers of a matrix A ∈ Fn×n
q :

{[A2], . . . , [Am]} ← Power([A],m).

This protocol 2, for computing the first m powers of a matrix A ∈ Fn×n
q , has expected

O(mn2) communication and O(1) rounds complexity. Step 1 yields to expected O(mn2)
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Protocol 2: Basic Power Computation Protocol (Power)
Data: [A] with A ∈ Fn×n

q ,m ∈ N
Result: [A2], . . . , [Am]

1. Parties call to Protocol 1 to get 2m non-singular matrices {[R1], . . . , [Rm]}
and {[S1], . . . , [Sm]}, so that they can securely compute {[R−1

1 ], . . . , [R−1
m ]};

2. They securely compute shares of Ri−1A := Mi for every 2 ≤ i ≤ m;

3. They securely compute shares of MiR
−1
i := Ni for every 2 ≤ i ≤ m and

AR−1
1 = N1;

4. They reveal all the Ni’s and compute in the clear Pj =
∏j

i=1 Ni for every
1 ≤ j ≤ m;

5. They multiply Pj [Rj ] = [Aj ] for every 1 ≤ j ≤ m.

communication and constant round with Lemma 1. Step 2 and 3 both implies O(n2)
communication for each 2 ≤ i ≤ m and thus can be done with O(mn2) communication
and O(1) rounds (in parallel). Step 4 leads to O(mn2) communication and O(1) rounds
(in parallel) for broadcasting the shares. Step 6 is local.

However, this protocol is not perfectly correct because of step 4: if the matrix A is
singular, then the protocol reveals its determinant. One will explain later how to manage
this leakage by developing and proving a secure protocol.

2.3 Managing the error-probability
The Power protocol to compute powers of A ∈ Fn×n in sharing needs, after drawing two
random non-singular matrices M,N ∈ Fn×n in sharing, to reveal [MAN−1] and so if its
determinant is 0 then one learns information about the determinant of A. To overcome
this problem, one increases the size of the matrix A by 2 by adding identity block matrices:

A+ =

(
A −In
In 0

)
∈ F2n×2n, (1)

so that det(A+) = 1 regardless the invertibility of A.
Once shared powers of A+ are computed, parties would like to get shared powers of A.

For 0 ≤ i ≤ m, from sharing of I2n, A+, A+2
, . . . , A+i, one can deduce sharing of Ai using

linear combinations (via linearity of the secret sharing). Indeed, the n× n top-left block
of A+i denoted by A+i

1 equals

A+i
1 =

bi/2c∑
j=0

αi,i−2jA
i−2j

with some αi,j ∈ F. This leads to the following triangular invertible linear system

α0,0

...
. . .

αm,0 . . . αm,m




In
A
A2

...
Am

 =


In
A+1

1

A+2
1

...
A+m

1

 , (2)
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where
αi,i = 1, αi,i−1 = 0,

αi,0 = 1{i≡0 mod 2}(i) for 0 ≤ i ≤ m,

and
αi,j = αi−1,j−1 + αi−2,j for 2 ≤ i ≤ m, 1 ≤ j ≤ m.

In the following, we call Am the matrix of this system.

Remark 1. Note that the recurrence relationship defining Chebyshev polynomials appears
in the inverse of the matrix Am in Equation 2, these same polynomials used by [CKP07].

The above discussion yields to the following secure protocol SecPower with the same
complexity as Power i.e. expected constant round and O(mn2) communication to securely
compute the first m powers of a matrix A ∈ Fn×n:

{[A2], . . . , [Am]} ← SecPower([A],m).

Protocol 3: Secure Power Computation (SecPower)
Data: [A] ∈ Fn×n, m ∈ N
Result: [A2], . . . , [Am]

1. Parties randomly compute sharing of 0 and 1 to get [A+] as defined in
Equation 1;

2. They invoke Power([A+],m);

3. They compute in the clear the matrix of the linear system 2, invert it publicly
to locally get shares of the solution of this system.

Theorem 1. Let A ∈ Fn×n, and m ∈ N. Then, SecPower is a secure protocol with perfect
correctness for computing the first m power of A with expected O(mn2) communication
and O(1) rounds complexity.

Proof. The correctness relies on the one from Power and of the linear system 2. The round
complexity is the same as Power (step 1 and 2 have constant and expected constant rounds
in parallel). Step 3 contains no interaction between parties, thus the communication
complexity is dominated by step 2, which is doubled compared to Power. We show that
the protocol does not leak information about A. The crucial step is the fifth in Power
during which values are revealed. Firstly, we call Power with the non-singular matrix A+,
thus the discussion in 2.3 ensures us that no information about the determinant of A leaks
in step 5 of Power when A is singular. Moreover, keeping notation from Power, for every
2 ≤ i ≤ m the couple (Ri−1, R

−1
i ) is hiding A+ because they are elements of GL2n(F), a

group under multiplication, thus Ni = Ri−1A
+Ri is a random element of GL2n(F). So,

revealing Ni does not leak any information about A. At the end, each party has a share for
each power of A, thus we shall check that it does not give additional information on A. In
the last step of Power, shares of Aj are constructed as Pj [Rj ] = [Aj ]. We have seen in the
proof of Power that the Ni’s and so the Pj =

∏j
i=1 Ni’s are random elements of GL2n(F),

hence sharing of powers of A are independent of each other and of the sharing of A.



10 Secure Multi-Party Linear Algebra with Perfect Correctness

2.4 Secure matrix multiplication
With the naive approach based on the usual matrix multiplication, one would have a O(n3)
communication complexity (and constant rounds) protocol for secure matrix multiplication.
One uses [MW08] for an efficient protocol with O(n2) communication.

Consider the Shamir secret sharing scheme to illustrate the need of a conjoint refresh-
ing/resharing step. Let a, b ∈ F with |F| = q encoded by fa(x) and fb(x) via Shamir secret
sharing, where fa and fb are two random rational polynomials of degree ` over F with `
smaller than k the number of parties. Note that the constant term of g(x) := fa(x)fb(x)
is ab. Ben-Or et al. [BGW88] noticed two problems with using g(x) to encode the product
ab. The first one is that the degree of g(x) is 2`. As long as q > 2` interpolation is possible,
however, the degree raises during each multiplication, and this limits the number of multi-
plication that can be handled. The second problem comes from the fact that g(x) is not a
random polynomial of degree 2`: for example g(x) is never irreducible. To overcome these
two problems, we randomize the coefficients of g(x) and reduce its degree while keeping
the constant coefficient unchanged as a refreshing step. Mohassel and Weinreb [MW08]
took into account these remarks when stating the following theorem.

Theorem 2. Let two shared matrices A and B where A ∈ Fm×n, B ∈ Fn×j. Then there
exists a secure MPC protocol for computing a secret sharing of the product AB with a
constant number of rounds and O(jm) communication.

One takes advantage to give more details about this theorem, in particular, one proves
the following corollary. For the sake of completeness, this corollary states a more general
statement by adapting the algorithm of Mohassel and Weinreb to securely compute the
inner product, where 〈·, ·〉 denotes the inner product.

We introduce the following protocol InnerProd, and for a, b ∈ Fn one writes

[〈a, b〉]← InnerProd([a], [b]).

Protocol 4: Secure Inner Product Protocol (InnerProd)
Data: [a], [b] ∈ Fn

Result: [〈a, b〉]
1. Each party Pt locally computes c̃t =

∑n
i=1 [ai]t[bi]t for 1 ≤ t ≤ k;

2. Each party Pt shares c̃t in [c̃t]1, . . . , [c̃t]k and sends [c̃t]h to Ph for 1 ≤ h ≤ k;

3. Each party Pt deduces a share of the secret by computing ct =
∑k

h=1 λh[c̃t]h,
where (λ1, . . . , λk) is the public recombination vector for the sharing scheme.

Corollary 1. Given two shared vectors a and b in Fn, InnerProd is a secure protocol for
computing a secret sharing of the inner product 〈a, b〉 with a constant number of rounds
and O(1) communication.

Proof. Protocol InnerProd has communication complexity in O(1): the only communication
occurs during step 2 where each party sends a share of its secret to other parties. The
correctness of InnerProd follows from the proof of Corollary 1. We prove the security of
InnerProd). Parties may learn information about a or b during the second step when they
communicate with each other. From step 1, each party Pt computes a secret c̃t and sends
to the other a share of it. This sharing created by Pt is independent of all the other
sharings created by the other parties. Thus, Pt does not learn more information about a
or b by receiving shares of other parties. Let’s prove the correctness of Protocol 2.4 when
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dealing with the Shamir secret sharing scheme. Let a, b ∈ Fn
q , and define faj

(x) and fbj (x)
rational polynomials of degree ` respectively encoding aj and bj for 1 ≤ j ≤ n via the
Shamir secret sharing. Assume that k ≥ 2`+1 where k is the number of parties. Consider
that party Pi holds the values faj (i) and fbj (i) for every j ≤ n. Define

fajbj (x) := faj (x)fbj (x) = αj
2`x

2` + · · ·+ αj
1x+ ajbj

for every j ≤ n, and f〈a,b〉(x) :=
∑n

j=1 fajbj (x). Thus

f〈a,b〉(i) =

n∑
j=1

fajbj (i) =

n∑
j=1

faj (i)fbj (i)

for 1 ≤ i ≤ k. This yields the following Vandermonde linear system:

A


〈a, b〉∑n
i=1 α

i
1

...∑n
i=1 α

i
2`

 =


f〈a,b〉(1)
f〈a,b〉(2)

...
f〈a,b〉(2`+ 1)

 ,

where the ij-th coefficient of the (2`+1)× (2`+1) matrix A is ij−1. Clearly, A is invertible
and we denote the first row of its inverse as (λ1, . . . , λ2`+1), the fixed recombination vector.
Then

〈a, b〉 =
2`+1∑
i=1

λif〈a,b〉(i).

Now one refreshes: Pi shares the value f〈a,b〉(i) by choosing a random polynomial gi(x)
of degree ` such that gi(0) = f〈a,b〉(i). They give the value gi(j) to Pj for every party.
Therefore, each party Pj can compute their share of 〈a, b〉 via the polynomial G(x) =∑

i λigi(x) of degree `: they locally compute the linear combination G(j) =
∑

i λigi(j).
G(1), . . . , G(k) determine G(0) = 〈a, b〉 (via polynomial interpolation).

Remark 2. Note that the proof of Corollary 1 can be adapted to prove Theorem 2. We
can derive a protocol for secure matrix multiplication by invoking n2 times in parallel
the protocol InnerProd. This is the algorithm of Mohassel and Weinreb [MW08], where
each party Pt first locally compute [A]t[B]t before resharing this matrix with other parties,
whence O(n2) communication. Note also that secure matrix-vector multiplication can be
computed with O(n) communication complexity via n invocation of InnerProd.

Now, we state a simple but important fact about InnerProd which will be mainly used
in the following to batch communication:

InnerProd([a], [b]) + InnerProd([c], [d])

= InnerProd(
(
[a]
[c]

)
,

(
[b]
[d]

)
). (3)

In particular, we can apply this batching for the sum of matrix products, i.e. if
we are dealing with n × n matrices the secure computation of the sum implies O(n2)
communication.

2.5 Moore-Penrose pseudo-inverse
The existence of solution(s) of a linear system Ax = b over a field K only depends on the
rank of the concatenated matrix A‖b. The rank of A can be computed via the characteristic
polynomial of G := ATA, the so-called Gram matrix of A. To apply this, we have to
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avoid non-trivial intersection between some subspaces and their orthogonals. However,
it may appear over fields with positive characteristic as explained in [CKP07]. For this
purpose, we will use a work of Mulmuley [Mul86] for computing rank over arbitrary field
along with the paper from Diaz-Toca, Gonzalez–Vega and Lombardi [DGL05] for solving
linear system. A previous work of [CKP07] gives a probabilistic algorithm without perfect
correctness. By taking a sufficient large extension, we can get rid of this probability.

In the following, let K be a field. Let V ⊂ Ki be a subspace, then one defines the set
V ⊥ := {u ∈ Ki | 〈u, v〉 = 0 ∀v ∈ Ki}. For K = C or R, the subspace V ⊥ ∩ V is trivial.
However, this result is not true over a field of positive characteristic.

The next lemma characterizes the rank of a matrix via the coefficients of the character-
istic polynomial of its Gram-matrix. In the following, one identifies a matrix A ∈ Kn×n as
a linear endomorphism of Kn.

Lemma 2. Let A ∈ Km×n, and G its Gram-matrix. Assume that (ImA)⊥ ∩ ImA = {0}
and (ImAT )⊥ ∩ ImAT = {0}. Consider χG(x) =

∑m
i=1 aix

m−i + xm the characteristic
polynomial of G. Then rankA = max1≤i≤m{i | ai 6= 0}.

Proof. [Mul86, CKP07]

For a general matrix over a finite field, the conditions on the vector spaces intersection
do not always hold. However, there exists a matrix that always satisfies these conditions
and has the same rank as the initial matrix. We use a work of Mulmuley [Mul86] that
proposes a technique to compute the rank over an arbitrary field. He considered the
transcendental field extension K(x). Over this extension, for every matrix A ∈ Km×n, the
matrix diag(1, x, . . . , xm−1)A := DA ∈ Km×n(x) satisfy (ImDA)⊥ ∩ ImDA = {0} and
then lemma 2 holds for DA. This yields a method for computing the rank of A (with
perfect correctness) since it’s equal to the rank of DA.

We now introduce the notion of pseudo-inverse. A pseudo-inverse of a matrix A ∈ Km×n

is a matrix X ∈ Kn×m that exists for a class of matrices larger than the class of non-
singular matrices, and reduces to the classical inverse when A is non-singular. In this
paper, we consider the class of Moore-Penrose pseudo-inverse determined by the following
four properties, also known as the Penrose equations [Pen55]:

AXA = A, XAX = X, (AX)T = AX, (XA)T = XA.

In this case, we denote X by A†. A† exists if and only if rank(AAT ) = rank(ATA) =
rank(A), and existence implies uniqueness.

Our motivation for studying this pseudo inverse is the following: let b ∈ Kn then the
system Ax = b has at least one solution if and only if AA†b = b. In this case, all the
solutions are given by

x = A†b+ (In −A†A)v

with arbitrary v ∈ Kn. If a solution exists, then either the solution is unique when A†A
has full column rank (i.e. A†A = In) or there exists infinitely many solutions when A†A
does not have full column rank. We mention other motivations such as the least squares
problem or even the minimum norm problem for a linear system.

3 (Matrix)-Polynomial Evaluation
Based on Paterson and Stockmeyer work [PS73], a preliminary protocol can be unrolled for
evaluating a public polynomial of degree d into a shared element running with a constant
number of rounds and O(

√
d) communication. This protocol leaks information on the

secret with probability 1/q. Later, Cramer, Kiltz and Padro [CKP07] presented a secure
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and perfectly correct protocol with constant rounds and O(d) communication. One starts
by adapting the protocol following the technique [PS73] to get a protocol with expected
O(t) rounds and O(t d1/t) communication for any t ∈ N. Then one uses [CKP07] and an
idea of Bar-Ilan and Beaver to obtain a perfectly correct protocol with the same expected
complexity. For any t ∈ N, we obtain the following result for the evaluation of a degree-t
polynomial with a n× n matrix:

Table 1: Complexity and correctess of n×n matrix secure evaluation of degree-t polynomial
round complexity comm. complexity correctness

based on [PS73] O(1) O(n3
√
d) 1/q

[CKP07] O(1) O(n3d) perfect
Our work expected O(t) expected O(n2 t d1/t) perfect

The technique of [PS73] can be applied to [CKP07], leading to a communication complexity
in O(n3

√
d). When the polynomial is also shared, then [CKP07] has also O(n3d) communica-

tion complexity since their protocol for iterative powers requires O(n3d) communication. The
generalization of our work to shared polynomials does not increase the communication complexity.

Firstly, we will detail our non-perfectly-correct protocol. Let s ∈ F shared via the Shamir
secret sharing scheme, p a public polynomial of degree d, and t ∈ N. If the polynomial was
shared, then our construction could be easily adapted. We could directly apply SecPower to get a
protocol with O(d) communication, but we follow another path to get a better complexity. If one
computes shares of power of s via Power, one would leak information when s = 0 (i.e., when s
is not invertible since one applies the iterative products’ method from Bar-Ilan Beaver, see the
discussion in 2.3). That’s why one apply Power to [s + r] with a random r ∈ Fq to randomize
the input and reduce its probability to be non-zero to 1/q. For this purpose, parties conjointly
generate a random element r ∈ F∗ and reveal r. Let m = dd1/te.

For the baby steps, parties first compute the sharings [s + r], . . . , [(s + r)m] by invoking
Power([s+ r],m). Then they locally compute [s2], . . . , [sm] via the commutativity of Fq and the
linearity of the secret sharing scheme. This is done recursively using Newton binomial

[(s+ r)i] =

i∑
k=0

[

(
i

k

)
skri−k] =

i∑
k=0

(
i

k

)
ri−k[sk].

For the giant steps, parties proceed in expected O(t) rounds of communication. Once they
know [sm

j

] for 1 ≤ j ≤ t − 1, they can invoke Power([sm
j

+ r],m) with an expected constant
number of rounds to get [(sm

j

+ r)2], . . . , [(sm
j

+ r)m] and locally deduce [s2m
j

], . . . , [sm
j+1

] via
Newton binomial as in baby-step:

[(sm
j

+ r)i] =
i∑

k=0

(
k

i

)
ri−k[skm

j

]. (4)

This procedure leads to an expected number of O(t) rounds and expected O(t·d1/t) communication.
This step is secure as long as s+ r 6≡ 0 mod q which happens with probability 1− 1/q.

Note that a degree-d polynomial p(x) can be decomposed as follows:

p(x) =
mt−1∑
i=0

ximpi(x), (5)

where pi are public polynomials of degree at most m− 1. Let’s denote pi(x) = aim + aim+1x+
· · ·+ a(i+1)m−1x

m−1. Therefore parties can invoke InnerProd([a], [b]) with

a = (a0, a1s, a2s
2, . . . , amtsm

t

) (6)

b = (1, . . . , 1︸ ︷︷ ︸
m times

, sm, . . . , sm︸ ︷︷ ︸
m times

, s2m, . . . , s2m︸ ︷︷ ︸
m times

, . . . , sm
t−m, . . . , sm

t−m︸ ︷︷ ︸
m times

, sm
t

), (7)
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since [a] and [b] can been locally deduced from previously computation. In particular, when
iterative powers of s have been computed, this evaluation requires O(1) calls to the secure
multiplication protocol.

Remark 3. If the polynomial p(x) was shared between the parties, before calling to InnerProd([a], [b]),
we should compute [a] which would add d calls to the secure multiplication protocol and lead to
O(n2d) communication. However, the protocol InnerProd can be generalized to sum with three
terms

∑d
i=0[ai][s

i][b]i as long as the number of participants is larger than 3`, where ` is the degree
of the encoding polynomials for the Shamir secret sharing scheme.

3.1 Secure polynomial evaluation
In the following and for the sake of generality, one considers the more general case of matrix-
polynomial evaluation. Let p(x) ∈ Fq[x] be a rational polynomial of degree d with public (shared)
coefficients and a shared matrix [A] ∈ Fn×n

q .
One modifies the previous approach to get a perfectly correct protocol with an expected O(t)

number of rounds and expected O(n2td1/t) communication for computing [p(A)] =
∑mt−1

i=0 ximpi(x)

following the decomposition from Equation 5, with m = d t
√
de and pi(x) public (shared) polynomial

of degree at most m− 1.

Protocol 5: Secure Polynomial Evaluation (PolyEval)
Data: [A] ∈ Fn×n

q , t ∈ N, m = dd1/te, and p ∈ Fq[x] of degree d
Result: [p(A)]
For 0 ≤ i ≤ t− 1 :

1. Parties invoke SecPower([Ami

],m) and derive a sharing of
A2mi

, A3mi

, . . . , Ami+1 with Equation 4;

2. For each [Aim][pi(A)], they call to InnerProd([a], [b]) = [p(A)] with [a] and [b]
from Equations 6 and 7.

If p is shared among the parties, then step 2 is modified as explained in Remark 3: each inner
product is substituted by a sum of three terms.

Theorem 3. Let A ∈ Fn×n
q be a shared matrix, p ∈ F[x] a public polynomial of degree d, and

t ∈ N. Then PolyEval is a secure with perfect correctness protocol to evaluate p(A) with expected
O(t) rounds and O(n2td1/t) communication.

Proof. The correctness of Protocol 5 relies on the correctness of SecPower. We now prove the
complexity of Protocol 5. The first step of the protocol can be done with expected O(t) rounds
and O(n2td1/t) communication: each invocation of SecPower requires O(n2d1/t) communication.
The step 2 is done with O(n2) secure multiplication using the batching property 2. Finally, we
prove the security of Protocol 5. First, notice that parties never reconstruct a secret value. For
the first three steps, we have seen that SecPower is secure and that knowing shares of different
powers of A does not reveal information about A (see proof of security of SecPower). The security
of the last step follows from the one of InnerProd.

4 Computation of the Characteristic Polynomial
Leverrier’s Lemma and Preparata-Sarwate Algorithm. In 1840, Le Verrier pub-
lished a method to compute the characteristic polynomial χA(X) = Xn +

∑n
i=1 X

n−idi of
A ∈ Fn×n

q summarized in the following lemma. It was redeveloped by many authors including
Faddeev. We use this latter version. Define by recurrence the following sequence of matrices
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(Ai)0≤i≤n−1 ∈ Fn×n
q :

A0 = A;

Ai = A

(
Ai−1 −

1

i
tr(Ai−1)In

)
for 1 ≤ i ≤ n− 1.

Then it holds that di = − 1
i
tr(Ai−1) for 1 ≤ i ≤ n where tr is the trace operator.

Lemma 3. (Leverrier’s Lemma). The coefficients d1, d2, · · · , dn of the characteristic polyno-
mial of the matrix A ∈ Fn×n

q satisfy
1
t1 2
t2 t1 3
...

...
...

. . .
tn−1 tn−2 tn−3 t1 n




d1
d2
d3
...
dn

 = −


t1
t2
t3
...
tn

 (8)

where tj := tr(Aj).

Note that if Fq has characteristic greater than n, then the matrix is guaranteed to be
non-singular since its determinant is

∏n
i=1 i 6≡ 0 mod q.

Preparata and Sarwate [PS78] introduced a new idea improving Leverrier and Faddeev’s
method. It relies on the computation of the trace of the product AB for A = (ai,j)1≤i,j≤n, B =
(bi,j)1≤i,j≤n ∈ Fn×n via

tr(AB) =
∑

1≤k,l≤n

ak,lbl,k =
∑

1≤k≤n

〈aT
k , b

k〉 (9)

with ak the k-th line of A and bk the k-th column of B. Thus, the complete matrix product AB
is not necessary. Hence computing [tr(AB)] only requires one invocation of InnerProd, since the n
inner products from Equation 9 can be batched via Equation 3. This yields to O(1) secure matrix
multiplication. Moreover, in order to apply Leverrier’s Lemma, Preparata and Sarwate used a baby-
step giant-step approach: one only needs to precompute A2, A3, . . . , Am and A2m, A3m, . . . , Am2

for m = d
√
ne. Indeed, to get t2, t3, . . . , tn, we can compute ti+jm = tr(Ai+jm) = tr(AiAjm) with

O(1) communication. See Appendix 7 for the complete protocol.

4.1 Secure protocol for the characteristic polynomial
Let A ∈ Fn×n

q be a shared matrix, Fq of characteristic greater than n (denoted as char(Fq) in the
following), m = d

√
ne, and A+ the augmented matrix defined in Equation 1. Then, based on

previous secure protocols and on the above discussion on characteristic polynomial computation,
we propose the following protocol.

Theorem 4. Let A ∈ Fn×n
q be a shared matrix with char(Fq) > n. Then PolyChar is a secure

protocol with perfect correctness with expected O(n2.5) communication complexity and O(1) rounds.

To compare with the work [CKP07] who achieved a protocol with small error probability
O(n2/q) and O(m4 +m2n) multiplications.

Proof. The correctness and security of Protocol 6 follows from the one of SecPower, InnerProd,
and the linear system 8. About this linear system, we have seen in Matrix inversion 2.1 that our
inversion protocol is secure, and the security of the matrix-vector product relies on the one of
InnerProd. Moreover, notice that parties never reconstruct a secret value, and knowing shares of
different powers of A does not reveal information about A (see proof of security of SecPower).

Complexity of step 1 and 2 is equivalent to the one of SecPower, with expected O(mn2) =
O(n2.5) communication and constant rounds. During step 3, for each trace, parties can compute
a sharing of it by invoking InnerProd with Equation 9 and the batching Equation 3. This yields
to O(1) communication complexity in constant rounds for each trace, thus an overall of O(n)
communication. Since the computation of all the traces is done in parallel, it yields to an
overall constant number of rounds. In step 4, they securely compute the inverse of the Toeplitz
matrix via Matrix inversion 2.1 (O(n2) communication) and then apply the secure matrix-vector
multiplication as in Remark 2 with O(n) communication (and a constant number of rounds).
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Protocol 6: Secure Computation of the Characteristic Polynomial (PolyChar)
Data: [A] with A ∈ Fn×n

q , char(Fq) > n, and m = d
√
ne

Result: [χA(x)] the shared characteristic polynomial of A
1. Baby-Step: Parties invoke SecPower([A],m);

2. Giant-Step: Once having shares of Am, parties invoke SecPower([Am],m). Let
B = Am for the sake of clarity;

3. Parties compute their share of each trace (in parallel) by invoking once
InnerProd for each trace via

[tr(Ai+mj)] = [tr(AiBj)] =
∑
k,l

[aik,l][b
j
l,k]

with 0 ≤ i ≤ m− 1, 0 ≤ j ≤ m, ai and bj respective coefficients of Ai and Bj ;

4. Parties securely resolve the linear system 8 by securely computing the inverse
of the Toeplitz matrix and by doing the secure matrix-vector multiplication
invoking n times InnerProd.

Remark 4. Protocol 6 can be generalized to finite fields of any characteristic by using in step 4 the
method from Schönhage mentioned in Appendix 9 instead of Leverrier’s Lemma. The generalized
protocol yields to O(n3.5) communication.

5 Computation of Moore-Penrose Pseudo-Inverse
We have already discussed solving a shared non-singular linear system with O(n2) secure multi-
plications (see Matrix inversion 2.1). Thus, our protocol PolyChar along with Cayley-Hamilton
is not an improvement in terms of complexity. However, for a matrix A ∈ Fm×n

q of rank r,
the generalized Moore-Penrose pseudo-inverse (see subsection 2.5 and [Pen55]) can be obtained
through the characteristic polynomial of its generalized Gram-matrix. We first work over a finite
field Fq with char(Fq) > m. A generalization over finite field of any positive characteristic follows
from a work from Schönhage [Sch93] (see Appendix 9 and Remark 4). Our work is based on a
paper from Mulmuley [Mul86] which was later expanded by Diaz-Toca et al. [DGL05]. The latter
started by working over the real or complex field. With the purpose of generalizing their result for
an arbitrary field, they followed the idea of Mulmuley and introduced a parameter t to work over
a transcendental field extension for the reason mentioned in subsesction 2.5. We make the choice
to work over a sufficient large extension instead of a transcendental extension. The following table
compares our result with previous works with t ∈ N, k ∈ N such that k > r(n+m− 2r) + 1:

Table 2: Complexity and correctness of Moore-Penrose pseudo-inverse secure computation

round complexity comm. complexity correctness
[CD01]+[MW08] O(1) O(n3) Θ(poly(n)/q)

[CKP07] O(1) O(n4 +mn2) Θ(poly(n)/q)
[MW08] O(t) O(tn2+1/t) Θ(poly(n)/q)

Our work expected O(1) expected O(k(n2.5 +m2.5 + n2m0.5)) perfect

Let k ∈ N such that k > r(n+m− 2r) + 1, and let p(x) ∈ Fq[x] be irreducible of degree k. Let F
be the splitting field of p and ζ a root of p. By taking the intersection of all sub-extensions of F/Fq

containing ζ, one can consider F[x]/(p(x)) ' Fq(ζ) ' Fqk which is the smallest field extension
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containing ζ. However, one has to reveal k and by choosing it in this way one reveals information
about the rank of A. Thus, one chooses k such that k > m(n+m) + 1 > r(n+m− 2r) + 1. The
first step consists of detailing the complexity of the secure matrix multiplication over Fq(ζ). We
define by diag(u1, ..., u`) ∈ F`×`

q the diagonal matrix of size ` with coefficient u1, ..., u`.

Lemma 4. Let A ∈ Fq(ζ)
m×n and B ∈ Fq(ζ)

n×m be two shared matrices, then a sharing of the
product AB can be securely computed with expected constant round and O(km2) communication.

Proof. Over Fq(ζ) ' Fqk , the sharing computation of AB requires O(m2 log2(q
k)) = O(km2 log2(q))

bits communication (with InnerProd over Fqk), which corresponds to O(km2) call to the secure
multiplication protocol (defined over the base field Fq) or in other words O(km2) communication.
A more detailed proof would be to decompose A and B as

A =

k−1∑
i=0

Aiζ
i, B =

k−1∑
i=0

Biζ
i (10)

where A0, . . . , Ak−1 ∈ Fm×n
q and B0, . . . , Bk−1 ∈ Fn×m

q . Then

AB =

k−1∑
v=0

ζv
k−1∑
y=0

∑
0≤z≤k−1

y+z≡v mod k

AyBz :=

k−1∑
j=0

ζjβj ,

with β0, . . . , βk−1 ∈ Fm×m
q . The double sum βj can be securely computed with O(n2) communi-

cation via InnerProd and Equation 3 where the batching is applied to the sum of matrix product.
Finally, we get an overall communication complexity of O(km2).

Remark 5. As a direct implication of the Lemma 4, the communication complexity of SecPower,
PolyEval, and PolyChar are all affected by a factor k when working over an extension of degree k.

Let Qn = diag(1, ζ, ζ2, . . . , ζn−1) ∈ Fq(ζ)
n×n and Qm = diag(1, ζ, ζ2, . . . , ζm−1) ∈ Fq(ζ)

m×m,
and define

A0 := Q−1
n ATQm ∈ Fq(ζ)

n×m.

Consider the generalized Gram-matrix G := AA0 ∈ Fq(ζ)
m×m and its characteristic polynomial

χG(x) ∈ Fq(ζ)[x]. One has that χG(x) = (−1)mxmη(1/x) where η(x) = det(Im + xG) =
1 + a1(ζ)x+ · · ·+ am(ζ)xm, with a0 = 1 and a2(x), . . . , am(x) are Laurent polynomials. Given
the previous notations, we are able to introduce the result from Diaz-Toca et al. [DGL05] that
generalize the work due to Decell [jD65] for fields of positive characteristic to compute the
generalized Moore-Penrose pseudo-inverse introduced in subsection 2.5.

Theorem 5. (generalized Moore-Penrose pseudo-inverse). Let r be the rank of A ∈ Fq(ζ)
m×n.

Then the Moore-Penrose pseudo-inverse of A is given by

A† = a−1
r (ar−1In − ar−2A

0A+ · · ·+ (−1)r−1(A0A)r−1)A0.

This yields to the following protocol to securely compute A†.

Theorem 6. Let Fq be a finite field, A ∈ Fm×n
q of rank r and consider the field extension Fqk

where k > m(n+m) + 1. Then Protocol 7 is a secure protocol with perfect correctness to compute
the Moore-Penrose pseudo-inverse with expected constant round and O(k(n2.5 +m2.5 + n2m0.5))
communication as long as char(Fq) > n.

Proof. Correctness of Protocol 7 follows from Theorem 5, the correctness of InnerProd (when using
Lemma 4), PolyChar, SecPower, PolyEval and Test to zero protocol from [NO07]. The security of
genInverse relies on the security of these subprotocols.

Let’s prove the complexity. The first step requires O(k(n2 + m2)) communication thanks
to Lemma 4 and the fact that Qn and Qm are public (so we use the linearity of the sharing).
Theorem 4 with Remark 5 implies that step 2 requires O(km2.5) communication. Still with
Remark 5, step 3 yields to O(kn2.5) communication, and step 4 to O(kn2m1/2) (Theorem 3 with
t = 2).
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Protocol 7: Secure Computation of the generalized Moore-Penrose inverse
(genInverse)

Data: [A] with A ∈ Fq(ζ)
m×n of rank r

Result: [A†]

1. Parties locally compute a sharing of A0 and then securely and conjointly
compute a sharing of G = AA0 and of A0A with Lemma 4;

2. Parties invoke PolyChar([G]);

3. Parties invoke SecPower([A0A],
√
n) and then SecPower([(A0A)

√
n],
√
n);

4. Parties compute a sharing of pr(A0A) :=
∑r−1

i=0 (−1)iar−1−i(A
0A)i with

PolyEval where pr is shared;

5. Parties securely compute [a−1
r ];

6. Parties compute [a−1
r ][pr(A

0A)][A0] = [A†] with InnerProd.

We give additional details on the different step of Protocol 7. In particular, we detail the
invocation of PolyChar over the extension field. In step 1 of Polychar, the augmented matrix
G+ is obviously defined over the extension. SecPower invokes Power where shared non-singular
matrices are drawn at random over the field extension. One refers to the discussion 2.3 about
the probability of drawing a non-singular matrix over Fpk . The security is preserved because
GL2m(Fp(ζ)) is a group for multiplication. The last step of SecPower yields shared powers of G
from shared powers of G+ by solving the linear system 2: the public matrix A√

m is inverted, and
the parties locally compute

k−1∑
i=0

ζiA−1√
m




Im

G+
1,i

G+2
1,i

...
G+

√
m

1,i



 =




Im
G
G2

...
G

√
m



 ,

where G+j
1,i ∈ Fm×m

p is the m × m top-left block of G+j
i which is the (i + 1)-th term in the

decomposition of G+j as a polynomial in ζ, where G+j is the j-th power of G+. This is realized
with expected constant rounds and O(km2.5) communication. Take a look at the third step
of PolyChar. For every 0 ≤ i ≤

√
m − 1 and 0 ≤ j ≤

√
m, we consider the polynomial in ζ

Gi+j
√
m =

∑k−1
v=0 ζ

vGi+j
√
m

v (with all the Gv ∈ F2m×2m
q ). Define H := G

√
m, then via the linearity

of the trace and of the secret sharing

[tr(Gi+j
√

m)] = [tr(GiHj)] =

k−1∑
v=0

ζv
k−1∑
y=0

∑
0≤z≤k−1

y+z≡v mod k

[
tr
(
Gi

yH
j
z

)]
.

We have seen that a trace over Fq can be computed with one invocation of InnerProd, and by
batching these two double sums of inner products with Remark 2, this yields to O(k) communication
for trace of each power of G and an overall of O(km) communication (in parallel). Finally, they
securely solve the linear system 8 by adapting the Bar-Ilan and Beaver’s protocol for secure Matrix
inversion in subsection 2.1 with O(km2) communication. The matrix-vector multiplication is also
adapted and requires O(km) communication.

Step 4 requires developing a protocol for securely computing the rank of a shared matrix. By
defining gi := (−1)mai(ζ), one has that χG(X) =

∑m
i=0 giX

m−i with g0 = 1. From each sharing
of gi for i ∈ {0, . . . ,m}, the parties can compute a sharing of hi defined as:

hi =

{
1 if gi 6= 0
0 otherwise.



Jules Maire, Damien Vergnaud 19

This can be done using the protocol Test to zero 2.1 in parallel with O(1) rounds and O(k)
invocations of the secure multiplication protocol for each coefficient (and thus an overall of O(1)
rounds and O(mk) communication). Let define

Pj(X) :=

j−1∑
i=0

aj−1−iX
i

for j ∈ {2, . . . ,m}. Parties can locally compute a sharing of Pj(X) for each j. Then, one can
readily see that the Moore-Penrose pseudo-inverse is equal to

a−1
r βm(A0A)A0 = a−1

r Pr(A
0A)A0

where one defines recursively

β1(X) = h1

βi(X) = hiPi(X) + (1− hi)βi−1(X) for 2 ≤ i ≤ m.

Indeed, if hi = 1, we obtain βi = Pi and if hi = 0, we obtain βi = βi−1. One can expand the
following expression as the algebraic expression:

hmPm(X) + (1− hm) [hm−1Pm−1(X) + (1− hm−1) (. . . )]

and by expanding it one can see that it can be expressed as a linear combination of elements of
the form

(1− hm),

(1− hm)(1− hm−1), . . . ,

(1− hm)(1− hm−1)(1− hm−2) . . . (1− h2)

and of the form

(1− hm)hm−1Pm−1(X),

(1− hm)(1− hm−1)hm−2Pm−2(X), . . . ,

(1− hm)(1− hm−1) . . . (1− h2)h1P1(X).

Using an iterated products’ protocol largely inspired by SecPower with the same complexity, the
parties can compute shared values of the first three lines with O(1) rounds invoking O(m) times
the secure multiplication protocol. When this is done, they can compute sharing of elements
of the last three lines with O(1) rounds invoking O(m) times the secure multiplication protocol.
Then parties can compute [βm(A0A)] = [Pr(A

0A)] with the baby-step giant-step method. Indeed,
each Pj can be computed as follows:

Pj(A
0A) =

j−1∑
i=0

aj−1−i(A
0A)i =

j̃∑
i=0

(A0A)ij̃Qi(A
0A),

where j̃ = d
√
j − 1e and each Qi is a polynomial of degree at most j̃−1. These latter polynomials

can be deduced locally: Qj̃(X) = a0X
j̃ and Qi(X) =

∑j̃−1
s=0 aij̃+s−j+1X

s for i 6= j̃. Once sharing
of successive powers of A have been computed, a sharing of Qi(A

0A) can be deduced with O(kn2)
communication using Lemma 4 and batching the sum. Finally, [Pr(A

0A)] follows with O(kn2)

communication by applying the same idea for the sum of product of the form [(A0A)ij̃ ][Qi(A
0A)].

Step 5 also requires the protocol for securely computing the rank of a shared matrix. But
first, we need to check that ar is invertible. By definition,

ar := ar(ζ) = ζ−r(n−r)

r(m+n−2r)∑
l=0

ar,lζ
l
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where ak,l are called the generalized Gram coefficients. By the choice of k and of ζ of degree k, one
knows that ar 6= 0. Using the same procedure as one used to compute [βm(A0A)] = [Pr(A

0A)],
one defines

α1(X) = h1

αi(X) = hiai(X) + (1− hi)αi−1(X) for 2 ≤ i ≤ m.

And ar is securely inverted with O(mk) secure multiplications.

Finally, we can extend this result to fields of any positive characteristic by adapting the work
of Schönhage [Sch93] (see Appendix 9). When n ≥ m, this yields to a protocol with O(n5.5)
communication.
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Supplementary Material

6 Secure Computation of the Rank
As an additional application, one presents a secure protocol computing the rank of a shared matrix
with perfect correctness. Let Fq be a finite field with characteristic greater than n, an extension
degree k chosen as in Section 5, and let A ∈ Fm×n

q . One works over Fqk ' Fq(ζ) where ζ of degree
k is defined as in Section 5. Let A0 := Q−1

n AtQm ∈ Fqk with Qn = diag(1, ζ, ζ2, . . . , ζn−1) and
Qm = diag(1, ζ, ζ2, . . . , ζm−1).

Parties can securely compute the generalized Gram matrix G = AA0 ∈ Fm×m

qk
with expected

O(1) rounds and O(km2) communication. Let χG(z) be the characteristic polynomial of G.
Parties can compute it with O(km2.5) communication by invoking PolyChar. Recall that χG(z) =
(−1)mzmq(1/z) where q(z) = det(Im + zG) = 1 + a1(ζ)z + · · ·+ am(ζ)zm.

At this point, we can characterize the rank of A by adapting [Mul86].

Lemma 5. (generalized Gram conditions for the rank). The rank of A is equal to r if and only if
ak(ζ) = 0 for every k > r and ar(ζ) 6= 0.

Define gi := (−1)mai(ζ), then χG(X) =
∑m

i=0 giX
m−i with g0 = 1. It now remains to

compute the rank of A as the largest integer k ∈ {0, . . . ,m} such that gk 6= 0. In order to
do so, from each sharing of gi for i ∈ {0, . . . ,m}, the parties will compute a sharing of hi for
i ∈ {0, . . . ,m} defined as:

hi =

{
1 if gi 6= 0
0 otherwise.

One has seen that this can be done in parallel in O(1) rounds and O(mk) invocations of the
secure multiplication protocol.

Following a previous reasoning, the rank is equal to αm where we define recursively

α1 = h1

αi = hii+ (1− hi)αi−1 for i ∈ {2, . . . ,m}.

Again, one can expand the following expression as the algebraic expression:

hmm+ (1− hm) [hm−1(m− 1) + (1− hm−1) (. . . )] (11)

and by expanding it one can see that it can be expressed as a linear combination of elements of
the form

(1− hm),

(1− hm)(1− hm−1), . . . ,

(1− hm)(1− hm−1)(1− hm−2) . . . (1− h2),

and of the form

(1− hm)hm−1,

(1− hm)(1− hm−1)hm−2, . . . ,

(1− hm)(1− hm−1) . . . (1− h2)h1.

Using an iterated products’ method as in SecPower, the parties can compute shared values of
the first three lines in O(1) rounds and invoking O(m) times the secure multiplication protocol.
When this is done, they can compute sharings of elements of the last three lines again in O(1)
rounds and invoking O(m) times the secure multiplication protocol.

Eventually, they can all compute locally a sharing of the expression given in (11) which is the
rank of the matrix A.

Theorem 7. Let Fq be a finite field with characteristic greater than n, and consider k >
m(m+n)+1, and A ∈ Fm×n of rank r. Then there exists a secure protocol with perfect correctness
computing the rank in expected constant round protocol with expected communication complexity in
O(km2.5 +mk).

A generalization over finite fields of any characteristic is possible using Remark 4 and Ap-
pendix 9 leading to O(km3.5 +mk) communication.
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7 Secure Trace Computation of a Matrix-Product
We propose a slight adaptation of InnerProd to securely compute the trace of a product of shared
matrices. It is based on Equation 9, and yields to a protocol with O(1) communication.

Protocol 8: Secure MPC for the trace of a product
Data: For 1 ≤ t ≤ k, party Pt holds the shares [A]t = ([ai,j ]t)1≤i,j≤n and

[B]t = ([bi,j ]t)1≤i,j≤n

Result: Shares [c]1, . . . , [c]k determining the trace of AB

1. Each party Pt locally computes c̃t =
∑

k,l [ak,l]t[bl,k]t;

2. Each party Pt re-shares c̃t, resulting in shares [c̃t]1, . . . , [c̃t]k, and sends [c̃t]h to
party Ph for 1 ≤ h ≤ k;

3. Each party Pt recombines their share by computing [c]t =
∑k

h=1 λh[c̃h]t, where
(λ1, . . . , λk) is the fixed recombination vector for the secret sharing scheme [·].

Complexity in communication is constant since parties communicate only during step 2 and
send one element to each other party. Complexity and security proofs are identical to these for
InnerProd.

8 Probability of Singularity
Assume that |F| = p > 2. We follow [Ran93] to derive the probability to draw a non-singular
n× n matrix over F:

GLn(F)
Mn(F)

=
(pn − 1)(pn − p)...(pn − pn−1)

pn2

=

∏n−1
i=0 (p

n − pi)

pn2 .

By developing the first terms of the previous product, one can show that the number of
non-singular matrices is greater than

pn
2

(
1−

n−1∑
i=0

pi

pn

)
= pn

2
(
1− pn − 1

pn(p− 1)

)
> pn

2
(
p− 2

p− 1

)
.

Hence, the probability to draw a non-singular matrix is greater than p−2
p−1

.
If |F| = 2, then the probability for a matrix to be non-singular is at least 1/4. Indeed, the

number of non-singular matrices over F2 is greater than

n−1∏
i=0

(2n − 2i) = 2n−1

(
n−2∏
i=0

(2n − 2i)

)

> 2n−12n(n−1)

(
1−

n−2∑
i=0

2i

2n

)

>
2n

2

4
.
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9 Computation of Characteristic Polynomials over Field
of any Characteristic

Let A be a n× n matrix over F of characteristic p. The condition on the characteristic of the field
in PolyChar comes from the determinant of the system 8: for a field of characteristic p, the inversion
failed as soon as n ≥ p since n! has to be invertible in the field. Schönhage [Sch93] adapted Le
Verrier’s power sum method to compute the characteristic polynomial over a finite field F of any
characteristic p. For this purpose, he worked over a transcendental extension F′ = F[y]/(yn+1). As
we have seen in Lemma 4, the communication complexity for the computation of the characteristic
polynomial will increase by a factor one. Indeed, each element a ∈ F′ can be decomposed as
a =

∑n
i=0 aiy

i with all the ai’s in F. This leads to a O(n3.5) communication complexity.

10 Chernoff Bounds Theorem
We state the theorem for the case of a sum of independent Bernoulli trials.

Theorem 8. (Chernoff Bounds Theorem). Let X =
∑n

i=1 Xi, where Xi = 1 with probability pi
and Xi = 0 with probability 1− pi, and all Xi are independent. Let µ = E(X) =

∑n
i=1 pi. Then

1. Upper Tail: P[X ≥ (1 + δ)µ] ≤ e−
δ2

2+δ
µ for all δ > 0.

2. Lower Tail: P[X ≤ (1− δ)µ] ≤ e−µδ2/2 for all 0 < δ < 1.
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