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Abstract. A cryptographic accumulator is a compact data structure for representing a
set of elements coming from some domain. It allows for a compact proof of membership
and, in the case of a universal accumulator, non-membership of an element x in the
data structure. A dynamic accumulator, furthermore, allows elements to be added to and
deleted from the accumulator.

Previously known RSA-based dynamic accumulators were too slow in practice be-
cause they required that an element in the domain be represented as a prime number.
Accumulators based on settings other than RSA had other drawbacks such as requiring a
prohibitively large common reference string or a trapdoor, or not permitting deletions.

In this paper, we construct RSA-based dynamic universal accumulators that do not
require that the accumulated elements be represented as primes. We also show how to
aggregate membership and non-membership witnesses and batch additions and deletions.
We demonstrate that the efficiency gains compared to previously known RSA-based ac-
cumulators are substantial, and, for the first time, make cryptographic accumulators a
viable candidate for a certificate revocation mechanism as part of a WebPKI-type system.

1 Introduction

A cryptographic accumulator [BdM94] is a compact data structure for representing a set of
elements that allows for a compact proof of membership and, in the case of a universal accumu-
lator, non-membership. This makes it attractive for certificate issue and revocation, especially in
a distributed setting. The idea is that membership in a dynamically updated set S is represented
by a single value acc (called the accumulator value); in order to demonstrate that x ∈ S, one
additionally needs a witness wx, also of a small, fixed size. acc can be efficiently updated as
values are added to and deleted from S.

Benaloh and de Mare [BdM94] introduced cryptographic accumulators and gave the first
construction, which was based on RSA. In it, the accumulator’s public key is an RSA modulus
n = pq1; an initial value, acc∅ ← Z∗

n that corresponds to the empty set is also picked. The

value accS = acc
∏

x∈S x

∅ represents a set S; for now, let us think of elements of S as positive
integers. We say that accS is the accumulator for S. The witness wx that x ∈ S is the value

wx = acc
∏

x′∈S,x′ ̸=x x′

∅ ; to verify that x ∈ S using this witness, check that (wx)
x = accS . To

add y to the accumulator, Benaloh and de Mare let the value accS∪{y} = accyS become the
new accumulator value; publishing the value y makes it possible to update all the witnesses:
wx := (wx)

y. (The original proposal did not provide for efficient deletion of elements.)
It is easy to see that this original proposal for a cryptographic accumulator requires some

tweaking to achieve soundness, i.e., to ensure that no polynomial-time adversary could find a
witness wy for y /∈ S. For example, for a composite integer x ∈ S, x = x1x2 for x1 > x2 > 1,
(wx)

x1 will pass as the witness for x2. A natural fix would be to parameterize by ℓ and require
that S ⊆ {2ℓ, . . . , 2ℓ+1 − 1}. This would rule out the possibility that both x = x1x2 and x1 < x
can be in S. However, unfortunately, this restriction is not sufficient2. Aware of this, Benaloh

1 It is important that p and q be safe primes, i.e. p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are both
primes

2 Let x = x1x2 and y = y1y2 where x1, x2, y1, y2 are all distinct and relatively prime to each other,
and 2ℓ < x1y1 < 2ℓ+1. For z = x1y1, we can compute wz such that wz

z = accS from the values
x, y, wx, wy. This is done by using the extended Euclidean GCD algorithm to find a, b such that
ax + by = 1 and using the trick due to Shamir: first, let w = wb

xw
a
y . Note that wxy = (wb

xw
a
y)xy =

wxyb
x wxya

y = accybS accaxS = accax+by
S = accS . Thus wz = wx2y2 will pass as the witness for z = x1y1:

wz
z = (wx2y2)x1y1 = wxy = accS .
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and de Mare argued that in their proposed applications, the value z for which the adversary
would wish to provide a phony witness, will not be under the control of the adversary, but in fact
will be chosen at random. They further argued (somewhat informally) that this would indeed
result in a sound accumulator, i.e., one in which the polynomial-time adversary cannot compute
wz if z /∈ S. Formalizing this argument is one of the contributions of our paper.

Barić and Pfitzmann [BP97] showed that, if the domain of the accumulator is restricted to
prime integers, then Benaloh and de Mare’s construction is sound under the strong RSA assump-
tion. Camenisch and Lysyanskaya [CL02] adapted this prime number accumulator construction
so that the accumulator value can be efficiently updated not just when an element is added to the
set, but also when one is deleted. Li, Li, and Xue [LLX07] further enhanced it to allow efficient
witnesses not just of membership in the set represented by acc, but also of non-membership.

However, in spite of the significant improvements in the functionality and security properties
of RSA-based accumulators these subsequent works provided, RSA-based accumulators were
considered impractical because of the requirement that S ⊂ PRIMES. In order to, for example,
use them to handle certificate revocation, it was necessary to first represent a cryptographic
certificate as a prime integer. In some limited applications this may not present a problem (for
example, in CL anonymous credentials [CL01,CL03,Lys02], there is always a component of the
credential that is already required to be a prime integer), but in general, one would need a hash
function that maps its input domain to PRIMES. That generally incurs an O(logN) overhead,
where N is the upper bound of the integer interval from which primes are sampled. (See Gennaro,
Halevi and Rabin [GHR99] for an analysis of how to efficiently hash to primes.)

Alternative constructions exist as well, but they have drawbacks, too. The bilinear-map-
based construction of Nguyen [Ngu05] and follow-up work [ATSM09] handles deletions extremely
efficiently, but requires either public parameters whose size is linear in the upper bound of the
number of elements that can be added to acc, or that a trusted participant in possession of a
trapdoor compute the accumulator value. Moreover, in the absence of a trusted party with the
trapdoor, adding new elements to the set is as costly as computing the accumulator value from
scratch. The Merkle-tree-based construction of Reyzin and Yakoubov [RY16] (and the earlier
one by Crosby and Wallach [CW09]) has logarithmic (rather than constant) in the size of S
witnesses, and also does not support deletions. These constructions can be combined to achieve
efficient add updates and support deletions at the same time [BCD+17, BKR23]; however, a
prohibitively large common reference string (or a trusted third party with the trapdoor) is still
needed to implement the combined construction.

Our contributions. We propose a random-oracle-based version of the RSA accumulator that
does not require hashing to primes, and is therefore much more efficient in practice than previous
RSA-based accumulators. As in prior work, the public key is an RSA modulus n, and the
initial accumulator value is acc∅ ← Z∗

n. The accumulator value corresponding to the set S is

accS = acc
∏

x∈S H(x)

∅ , where H is an appropriate hash function that we model as a random oracle
in the security analysis, where we prove security under the strong RSA assumption. We show
that this accumulator allows for dynamic additions (easy to see) and deletions (somewhat more
complicated), and adapt Li, Li and Xue’s techniques to show that, in addition to witnesses of
membership, this accumulator allows for witnesses of non-membership.

We also show that, under the adaptive root assumption of Wesolowski [Wes20] and the
strong RSA assumption, we can batch witnesses. In other words, an aggregated witness wS′

for the subset S ′ ⊆ S is of size |wS′ | <
∑

x∈S′ |wx|; similarly, we can batch witnesses of non-
membership such that the non-membership witness w̄S∗ for the set S∗ such that S∗∩S = ∅ is of
size |w̄S∗ | <

∑
x∈S∗ |w̄x|. Update information necessary for updating witnesses can be batched

as well.

Benefits to certificate revocation systems. Let us go over the promise that dynamic ac-
cumulators hold (but so far have not delivered on) when it comes to certificate revocation of a
system such as WebPKI, which is the PKI our browsers rely on for TLS.

For simplicity, suppose that the certification authority (CA) responsible for issuing certificates
is also responsible for revoking them; let us see how it would handle revocation using a dynamic
accumulator. Let acct correspond to the accumulator value at time t; this accumulator value
represents all of the current (unrevoked) certificates, and it is signed by the CA. In order to
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convince a verifier that its certificate x is still valid (i.e. has not been revoked), a web server needs
a witness that its certificate is in the accumulator acct. This is a step that needs to be relatively
practical, but a server can be reasonably expected to have the corresponding connectivity and
computational resources.

Verification of the current validity of certificate x is the part conducted by a browser, on
a potentially limited device, both from the computational and communication point of view,
and therefore it is the part that needs to be optimized. If dynamic accumulators are to be used
in this scenario, then this step would involve just checking that acct is fresh (e.g., the CA’s
signature on it includes a relatively recent time stamp) and that the server has presented the
witness wx that x is in the set corresponding to acct; no communication-intensive steps such
as table lookups are needed for verification purposes. The fact that acct has a small size makes
it a very attractive option for disseminating revocation information that addresses a real need:
for example, in WebPKI, mobile browsers hardly even check for revocation information because
this information is so unwieldy [LTZ+15]; the current front-runner alternative, CRLite [LCL+17]
(put to use by the Mozilla family of browsers in 2020), still requires that a browser receive around
5Mb of data in order to be able to verify that a certificate has not been revoked.

A suitable cryptographic accumulator can potentially offer a significant improvement for
WebPKI. Let us see why our proposed construction is up to the task. First, consider the client’s
side of the transaction, i.e., the step where the browser verifies that the server’s certificate x has
not been revoked. In addition to verifying the CA’s signature on acct, the client in our construc-

tion needs to also verify that w
H(x)
x = acct. This involves one application of a standard hash

function and one modular exponentiation, which are both doable on browser-capable devices.
The fact that, in our construction, the hash function does not need to hash to primes makes

an incredible difference: as we discuss in more detail in Section 6, hashing to even a small, 264-
bit prime (which is the smallest reasonable length since we need to avoid collisions) takes about
0.02 seconds of CPU time on a modern laptop, which can contribute to a significant overhead
for a CA that must issue a very large number of certificates because it will have to hash each
certificate into a prime. Eliminating this costly step makes the RSA accumulator a practical,
viable candidate for use in this scenario. We show that we get the same level of security that one
would get by hashing into a 264-bit prime at the expense of letting the length of H(x) be 2048.
This necessitates a more involved modular exponentiation, but in our experiment comparing
running times of the implementations of both approaches, it was still about 2.3 times faster
than hashing into a 264-bit prime. For larger parameters, the relative benefit is even bigger (see
Section 6 for more details).

Next, we need to make sure that the costs to the CA and server are also reasonable. Here,
we have two options: either the CA has a trapdoor to the accumulator (corresponding to an
increased amount of trust the system places on the CA, which might not be a desirable design
choice) or not. In the former case, a new element x can be added to the accumulator acct without
needing to update it to a different value acct+1 (see Section 5 for this flavor of the construction):
using the trapdoor, the CA will compute wx and communicate it to the server whose certificate
is x. To handle deletions in the former case, and both additions and deletions in the latter case,
the CA will have to update the accumulator from acct to acct+1, and publish some additional
information that would allow each server to update its witness. As we show in Section 7.2, this
information can be batched such that many certificates can be added (in the trapdoorless setting)
or revoked (i.e. deleted from the accumulator) on a single update. The information necessary
to update a server’s membership witness would just be the list of the revoked certificates (note
that each certificate can be represented just by a short hash) and a single element of the group
Z∗
n. Although this design would require that each server regularly download and process lists of

previously revoked certificates, this type of load is comparable to WebPKI, and therefore not
unrealistic in practice for a server, while offering clients vastly better efficiency, and requiring
that the CAs do a comparable amount of work as in current systems.

Technical roadmap. Our first observation is that, if a set S consists of a polynomial number (in
the security parameter ℓ) of odd integers drawn uniformly at random from the set {2ℓ−1, 2ℓ− 1}
(i.e. they are random odd ℓ-bit integers whose most significant bit is 1; from now on, we will
denote this set Odds(2ℓ−1, 2ℓ − 1)), the probability that for some x ∈ S, x |

∏
x′∈S,x′ ̸=x x

′ (i.e.,

x divides the product of the rest of the elements of S) is negligible in ℓ. More precisely, if x
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is chosen uniformly at random from Odds(2ℓ−1, 2ℓ − 1), then with overwhelming probability,
its largest prime factor’s bit length is at least k = Ω(ℓc) for a constant c; as we will see in

Section 2.1, c = 1/4 is possible, and it translates into overwhelming probability 1 − 2
4√
ℓ of the

largest prime factor of x having at least k bits. Since there are at least 2k−log k primes of length
at least k, and a random number is a multiple of p with probability 1/p, by the birthday bound,
a super-polynomial Ω(2(k−log k)/2) samples would have to be taken for the largest prime factor
to repeat.

This observation, formalized in Section 2.1, yields a proof of security in the random ora-

cle model for the following flavor of the RSA-based accumulator: accS = acc
∏

x∈S H(x)

∅ , where

H : {0, 1}∗ 7→ Odds(2ℓ−1, 2ℓ − 1) is a hash function that will be modeled as a random oracle in
the proof of security.

We give a reduction from an adversary that breaks the soundness of this accumulator in
the random-oracle model to solving the flexible RSA problem, contradicting the strong RSA
assumption. In a nutshell, if the adversary provides a phony witness wy for y /∈ S, then

d = gcd(H(y),
∏

x∈S H(x)) < H(y), by our observation. Since the witness verifies, w
H(y)/d
y =

acc
∏

x∈S H(x)/d

∅ ; at the same time, gcd(H(y)/d,
∏

x∈S H(x)/d) = 1. Thus, we can use Shamir’s

trick (Lemma 1) to efficiently compute u such that uH(y)/d = acc∅, which breaks the flexible
RSA problem where the challenge is (n, acc∅).

It is easy to see that dynamic additions to this accumulator are possible: just as in the

original Benaloh and de Mare construction, for accS = acc
∏

s∈S H(s)

∅ , accS∪{y} = acc
H(y)
S =

acc
H(y)

∏
s∈S H(s)

∅ , the value w′
x = w

H(y)
x is the witness that x ∈ S ∪ {y} if wx is the witness

for x ∈ S, since (w′
x)

H(x) = w
H(x)H(y)
x = acc

H(y)
S = accS∪{y}. However, deletions are not as

seamless: the Camenisch-Lysyanskaya observation that the Shamir trick can be used to update
the witness for x after deleting y would require that gcd(H(x), H(y)) = 1, which would be the
case if we hashed to primes, but is not necessarily the case when we hash to Odds(2ℓ−1, 2ℓ − 1).

In order to be able to efficiently update membership witnesses when a deletion has occurred,
we generalize the notion of what counts as a membership witness in a way that still preserves
soundness: Even though more values count as potential witnesses, the adversary will not be
able to find any of them for a false statement. A valid membership witness will now consist of
two components, wx = (w, s) such that s is a multiset/tuple of small factors of H(x) such that
wx = accS , where x = H(x)/

∏
s∈s s. By “small,” we mean that each s ∈ s has bit length less

than k. As we show in Section 4.2, generalizing witnesses this way does not detract from the
soundness of the construction, but it allows efficient updates of membership witnesses. Suppose
that gcd(H(x), H(y)) = s > 1. Note that, if wx = (w, s) is a valid witness for x, then so
is w′

x = (ws, s ∪ {s}). Since gcd(H(x)/s,H(y)/s) = 1, Shamir’s trick works. For details, see
Section 4, where we also show how to generalize non-membership witnesses of Li, Li and Xue to
obtain a universal accumulator.

In Section 5 we focus on the positive (rather than universal) accumulator with a trapdoor,
which allows the holder of the trapdoor to add elements to the accumulator without updating
acc. This is an important use case to consider in view of the application to certificate revocation
described above.

Finally, in Section 7, we get to the question of batching witnesses. In this section, we first
recall the proof of exponentiation (PoE) protocol due to Wesolowski [Wes20]. In this protocol,
a prover capable of a long exponentiation convinces a verifier that ve = u where e is an integer
so large that a verifier cannot carry out the exponentiation himself, and u and v are elements
of a group of unknown order (such as Z∗

n). Previously [Wes20,BBF19] it was known that this
protocol can be made non-interactive in the random-oracle model by hashing into primes. In a
contribution that is of independent interest, we show that this protocol can be adapted to drop
the hash-to-primes requirement. Armed with PoE as a tool, we show that both membership and
non-membership witnesses can be batched, and, moreover, accumulator updates can be batched
as well.



RSA-Based Dynamic Accumulator without Hashing into Primes 5

2 Preliminaries

Notations. A function f : N → [0, 1] is negligible if f(x) = o(x−c) for all c ∈ N. We use
negl(·) to denote a negligible function. We denote the security parameter by λ. For n ∈ N,
we use [n] to denote the set {1, . . . , n}, and QRn to denote the group of quadractic residues
modulo n. For a finite set S, we use #S to denote its cardinality, U(S) to denote the uniform
distribution over S, and a ←$ S to denote that a is sampled uniformly at random from S. Let
Odds(a, b)

def
= {a ≤ n ≤ b : n ≡ 1 mod 2}. For two functions h, g : R→ R, we use h(x) ∼ g(x) to

denote that limx→∞ h(x)/g(x) = 1. Sometimes, we use bold character, z, to denote a tuple, and
for two tuples x = (x1, . . . , xn) and y = (y1, . . . , ym), we use x∥y to denote their concatenation,
i.e., x∥y = (x1, . . . , xn, y1, . . . , ym). We say that x ∈ x if there exists i ∈ [|x|] such that x[i] = x.

Definition 1 (Strong RSA assumption [BP97]). For all λ ∈ N and probabilistic poly-time
(ppt) adversary A, given n = pq, where p and q are poly(λ)-bit safe primes, and u ∈ Z∗

n,

Pr
[
ve ≡ u mod n ∧ e > 1

∣∣(v, e)← A(1λ, u, n)] ≤ negl(λ)

Remark 1. Barić and Pfitzmann [BP97] initially proposed a definition of the strong RSA as-
sumption where p and q are poly(λ)-bit primes and e is a prime. Clearly, their version is at least
as hard as ours.

Lemma 1 (Shamir’s trick [Sha81]). For all n, x, y ∈ N, v, u ∈ Z∗
n such that vx ≡ uy mod n

and gcd(x, y) = 1, there exists w ∈ Z∗
n such that wx ≡ u mod n.

Proof. Since gcd(x, y) = 1, there exists α, β ∈ Z such that αx+βy = 1. Let w = uαvβ . We have
wx ≡ uαxvβx ≡ uαxuβy ≡ u mod n. ⊓⊔

2.1 Number Theoretic Functions

Dickman-ρ function. Let ρ : R≥0 → R be the continuous solution to the differential equation
uρ′(u) + ρ(u − 1) = 0 for u > 1 subjected to the initial condition ρ(u) = 1 for 0 ≤ u ≤ 1. de
Bruijn [dB51] proved that for u > 1, we have

ρ(u) = exp

(
−u
(
log u+ log log u− 1 +O

(
log log u

log u

)))
Therefore, ρ(u) ∼ (u log u)−u as u→∞.

Smooth numbers counting function. A function that will be important for us is a function
that will allow us to count y-smooth numbers (numbers whose largest prime factor is less than
or equal to y) in an arithmetic progression (sequences of the form si = s1 + (i− 1)d) define over
an interval [x], where x ∈ N. To this end, let us consider the function

Ψa,q(x, y)
def
= #{n ∈ [x] : (P+(n) ≤ y) ∧ (n ≡ a mod q)}

where P+(·) is the function returning the largest prime factor of an integer. Based on the survey
of Hildebrand and Tenenbaum [HT93], it follows that for u = log x/ log y and a, q ∈ N such that
gcd(a, q) = 1, if u≪ (log2 x)

1−ϵ, with ϵ > 0, we have

Ψa,q(x, y) =
xρ(u)

q

(
1 +O

(
1√

u log y

))
Hence, Ψa,q(x, y) ∼ (xρ(u))/q as y →∞.

Lemma 2. Given a sufficiently large ℓ ∈ N, for every constant 1 ≤ c ≤ 4
√
ℓ and a←$ Odds(2ℓ−1, 2ℓ−

1),

Pr
[
P+(a) ≤ 2c

√
ℓ
]
≤

(
4
√
ℓ

4
log ℓ

)− 4√
ℓ
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Proof. Let 1 ≤ c ≤ 4
√
ℓ and suppose a←$ Odds(2ℓ−1, 2ℓ − 1). Let η be the number of integers in

Odds(2ℓ−1, 2ℓ − 1) whose largest prime factor is less or equal to 2c
√
ℓ. We have

η = Ψ1,2(2
ℓ − 1, 2c

√
ℓ)− Ψ1,2(2

ℓ−1, 2c
√
ℓ)

=
1

2

(2ℓ − 1)

(√
ℓ

c
log

(√
ℓ

c

))−
√
ℓ/c

− 2ℓ−1

(
ℓ− 1

c
√
ℓ
log

(
ℓ− 1

c
√
ℓ

))−(ℓ−1)/c
√
ℓ


≈ 2ℓ−2

(√
ℓ

c
log

(√
ℓ

c

))−
√
ℓ/c

(since for large ℓ,
2ℓ − 1

2ℓ
≈ 1 and

ℓ− 1

ℓ
≈ 1)

≤ 2ℓ−2

(
4
√
ℓ

4
log ℓ

)− 4√
ℓ

(setting c =
4
√
ℓ)

Hence, Pr
[
P+(a) ≤ 2c

√
ℓ
]
= η

2ℓ−2 ≤
(

4√
ℓ

4 log ℓ
)− 4√

ℓ

⊓⊔

Corollary 1. Given a sufficiently large ℓ ∈ N, for every constant 1 ≤ c ≤ 4
√
ℓ, m ∈ N, and

a1, a2, . . . , am ∼ U
(
Odds(2ℓ−1, 2ℓ − 1)

)
, let E be the event that there exists i ∈ [m] such that

P+(ai) |
∏

j∈[m]\{i} aj. Then,

Pr[E] ≤ m2

 1

2ℓ3/4
+

(
4
√
ℓ

4
log ℓ

)− 4√
ℓ


Proof. Let ℓ be a large integer, and suppose 1 ≤ c ≤ 4
√
ℓ,m ∈ N and a1, a2, . . . , am ∼ U

(
Odds(2ℓ−1, 2ℓ − 1)

)
.

Let Ei be the even that P+(ai) divides
∏

j∈[m]\{i} aj . Since P
+(ai) is a prime, it follows that Ei

is exactly the event that there exists j ∈ [m] \ {i} such that P+(ai) divides aj . We have

Pr[Ei] ≤
∑

j∈[m]\{i}

Pr
[
P+(ai) divides aj

]
≤

∑
j∈[m]\{i}

Pr
[
P+(ai) divides aj | P+(ai) > 2c

√
ℓ
]
+ Pr

[
P+(ai) ≤ 2c

√
ℓ
]

(1)

≤ (m− 1)

 1

2c
√
ℓ
+

(
4
√
ℓ

4
log ℓ

)− 4√
ℓ


≤ (m− 1)

 1

2ℓ3/4
+

(
4
√
ℓ

4
log ℓ

)− 4√
ℓ


Inequality (1) follows from the fact that we have #Odds(2ℓ−1, 2ℓ−1)/P+(ai) multiples of P+(ai)
in Odds(2ℓ−1, 2ℓ − 1). Since E = ∪mi=1Ei, it follows that

Pr[E] ≤
m∑
i=1

Pr[Ei] ≤ m2

 1

2ℓ3/4
+

(
4
√
ℓ

4
log ℓ

)− 4√
ℓ


⊓⊔

3 Cryptographic Accumulator

We recall the definition of universal and positive dynamic accumulators based on [RY16,BCD+17,
DHS15,BKR23]. Our definition of non-membership witness creation is borrowed from the work
of Baldimtsi, Karantaidou and Raghuraman [BKR23]. For a value a, we use â to say that a is
optional. We use t to denote a discrete time counter.
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Definition 2 (Universal Dynamic Accumulator). A universal dynamic accumulator for a
domainM is a tuple of polynomial time algorithms UAcc = (Gen,Add,Delete,NonMemWitCreate,
MemWitUp,NonMemWitUp,MemVerify,NonMemVerify) with the following properties:

– Gen(1λ, aux)→ (pp, ŝk, acc0): This probabilistic algorithm takes as input the security param-
eter 1λ and auxiliary information aux. It outputs the public parameter pp, the (optional)

secret parameter ŝk, and an initial accumulator acc0.

– Add(pp, ŝk, acct, x) → (acct+1, wx,t+1, upmsgt+1): This (probabilistic) algorithm takes as in-

put the parameters pp, ŝk, the accumulator acct, and an element x ∈ M. It adds x to acct,
producing a new accumulator acct+1, a membership witness wx,t+1 for x, and update infor-
mation upmsgt+1 that can be used to update the membership witnesses of other elements in
the accumulator.

– Delete(pp, ŝk, acct, x, ŵx,t) → (acct+1, upmsgt+1): This (probabilistic) algorithm takes as in-

put the parameters pp, ŝk, the accumulator acct, an element x that was previously added to
acct, and an optional membership witness ŵx,t for x with respect to acct. It deletes x from
acct, producing a new accumulator acct+1, and update information upmsgt+1 that can be
used to update the membership witnesses of other elements in the accumulator.

– NonMemWitCreate(pp, x, {upmsgi}ti=1)→ w̄x,t: This (probabilistic) algorithm takes as input
the parameter pp, an element x, a set of update information {upmsgi}ti=1. It returns a non-
membership witness w̄x,t for x.

– MemWitUp(pp, x, wx,t, upmsgt+1) → wx,t+1: This (probabilistic) algorithm takes as input
the parameter pp, an element x, a membership witness wx,t for x, and update information
upmsgt+1. It returns an updated membership witness wx,t+1 for x.

– NonMemWitUp(pp, x, w̄x,t, upmsgt+1)→ w̄x,t+1: This (probabilistic) algorithm takes as input
the parameter pp, an element x, a non-membership witness w̄x,t for x, and update informa-
tion upmsgt+1. It returns an updated non-membership witness w̄x,t+1 for x.

– MemVerify(pp, acct, x, wx,t)→ 0/1: This deterministic algorithm takes as input the parameter
pp, an accumulator acct, an element x, and a membership witness wx,t, and returns 1 if wx,t

is a witness for x’s membership in the set represented by acct, or 0 otherwise.
– NonMemVerify(pp, acct, x, w̄x,t) → 0/1: This deterministic algorithm takes as input the pa-

rameter pp, an accumulator acct, an element x, and a non-membership witness w̄x,t, and
returns 1 if w̄x,t is a witness for x’s non-membership in the set represented by acct, or 0
otherwise.

Next, we need to define what it means for an accumulator to be correct. Reyzin and Yak-
oubov [RY16] were the first to give a formal definition of a correct accumulator (prior work
omitted one); theirs applied only to an additive accumulator, i.e. one that supports dynamic
additions but not deletions. Here, we use a similar approach to define correctness for a universal
accumulator. The goal of a ppt adversary A that attacks the correctness of the system is to inter-
act with the accumulator (with access to an oracle OAdd,Delete) and produce a correctness error:
either a value x in the accumulator whose membership witness fails to verify; or y not in the ac-
cumulator whose non-membership witness fails to verify. More precisely, A will output elements
x and y in the domain of the accumulator with respective up-to-date membership witness wx,t

and non-membership witness w̄y,t such that given the most recent value of the accumulator acct,
either the pair (x,wx,t) fails membership verification or the pair (y, w̄y,t) fails non-membership
verification. The oracle OAdd,Delete is in charge of executing add and del queries. It has access to

the public and secret parameters (pk, ŝk) of the accumulator and is initialized with a discrete
time counter t and tuples v that stores elements added to the accumulator, mwit that stores
membership witnesses of elements in v, and upmsgs that stores all update information pro-
duced after the execution of add and del queries. After each add or del query, OAdd,Delete updates
the all out-of-date membership witnesses stored in mwit, and it keeps track of the most recent
value of the accumulator acct. We give the precise description of the correctness game in Fig. 1.

Definition 3 (Correctness). A universal dynamic accumulator UAcc for a domain M is
correct if for any x, y ∈M such that x was added in the accumulator and y was not, up-to-date
and well-formed membership witness wx,t and non-membership witness w̄y,t pass membership
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CorrectExpA(1λ) :

1 : pp, ŝk, acc0 ← Gen(1λ, aux)

// i and j represent the times at which x was added and w̄y was created, respectively

2 : x, y, i, j ← AOAdd,Delete(1λ, aux, pp, acc0)

3 : if x = y ∨ x ̸= v[i] ∨ y ∈ v : abort

4 : wx,t ←mwit[i]

5 : w̄y,j ← NonMemWitCreate(pp, y, {upmsgs[1], . . . ,upmsgs[j]})
6 : for k ∈ {j + 1, . . . , t} do :

7 : w̄y,k ← NonMemWitUp(pp, y, wy,k−1,upmsgs[k])

8 : return
(
MemVerify(pp, acct, x, wx,t) = 0

)
∨
(
NonMemVerify(pp, acct, y, w̄y,t) = 0

)
OAdd,Delete(op, v) :

1 : Initialize v← (),mwit← (),upmsgs← (), t← 0

2 : if v /∈M : abort

3 : if op = add :

4 : if v ∈ v : abort

5 : (acct+1, wv,t+1, upmsgt+1)← Add(pp, ŝk, acct, v)

6 : v← v∥(v),mwit←mwit∥(wv,t+1),upmsgs← upmsgs∥(upmsgt+1)

7 : for k1 ∈ [t] do : // update membership witnesses of previously added elements

8 : if v[k1] ̸= ⊥ : mwit[k1]← MemWitUp(pp,v[k1],mwit[k1], upmsgt+1)

9 : t← t + 1

10 : return acct+1, wv,t+1, upmsgt+1

11 : if op = del :

12 : if v /∈ v : abort

13 : for k2 ∈ [t] do : // delete v and its membership witness

14 : if v[k2] = v : (acct+1, upmsgt+1)← Delete(pp, ŝk, acct, v, ̂mwit[k2]),

15 : v[k2]← ⊥,mwit[k2]← ⊥
// append ⊥ to v and mwit to ensure that their lenght matches t + 1

16 : v← v∥(⊥),mwit←mwit∥(⊥),upmsgs← upmsgs∥(upmsgt+1)

17 : for k3 ∈ [t] do : // update membership witnesses of previously added elements

18 : if v[k3] ̸= ⊥ : mwit[k3]← MemWitUp(pp,v[k3],mwit[k3], upmsgt+1)

19 : t← t + 1

Fig. 1: Correctness Game for a universal dynamic accumulator

and non-membership verification, respectively, with overwhelming probability. More specifically,
for all λ ∈ N, all ppt adversary A,

Pr
[
CorrectGameA(1λ) = 1

]
≤ negl(λ)

where CorrectGame is defined in Fig. 1.

Definition 4 (Compactness). A universal dynamic accumulator UAcc for a domain M is
compact if for all λ ∈ N and element x ∈ M, we have |acc| = poly(λ), and |wx| = |w̄x| =
poly(λ, |x|).

Remark 2. Although we require witnesses to have size poly(λ, |x|), which is the case of RSA-
based schemes such as [BP97,CL02,LLX07] and Bilinear pairing-based schemes such as [Ngu05,
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CKS09,ATSM09], it should be noted that Merkle tree-based schemes such as [BLL02,CHKO12,
RY16] support witnesses with size poly(λ, log |S|), where S is the set of elements that have been
accumulated.

Definition 5 (Universal Dynamic Accumulator Security). A universal dynamic accumu-
lator UAcc for a domainM is secure if for all ppt adversary A with oracle access to OAdd,Delete,
there exists a negligible function negl(·) such that for all λ ∈ N,

Pr


pp, ŝk, acc0 ← Gen(1λ, aux);

x∗, wx∗,t, w̄x∗,t ← AOAdd,Delete(1λ, aux, pp, acc0) :

MemVerify(pp, acct, x
∗, wx∗,t) = 1

∧ NonMemVerify(pp, acct, x
∗, w̄x∗,t) = 1

 ≤ negl(λ)

where acct is output by OAdd,Delete. For this definition, OAdd,Delete is defined as in Fig. 1 with
the exception that the tuple v that stores elements added to the accumulator is replaced by a set
S, and it does not store membership witnesses and update information. Furthermore, without
loss of generality, adversaries are required to send witness memberships during delete requests.

Remark 3. The definition of correctness (Definition 3) implies that for a given x ∈ M, if x is
present in the accumulator, then there exists a valid membership witness. Otherwise, there exists
a valid non-membership witness. Therefore, if an adversary is able to produce valid membership
and non-membership witnesses for the same element, it must be the case that one of them is a
forgery.

Remark 4. Lipmaa [Lip12] proposed an alternative definition for the security of universal ac-
cumulators that is more suited for static settings where an accumulator does not need secret
parameters to operate. In that definition, the goal of an adversary is to output an accumulator
value acc∗ in addition to outputting an element x with valid membership and non-membership
witnesses wx and w̄x, respectively. Lipmaa’s definition was further extended to dynamic settings
by Boneh, Bünz and Fisch [BBF19]. Without secret parameters, an adversary does not need
access to an oracle to add and remove elements from an accumulator.

Definition 6 (Positive Dynamic Accumulator). A positive dynamic accumulator for a do-
mainM is a tuple of polynomial time algorithms PAcc = (Gen,Add,Delete,MemWitUp,MemVerify)
whose properties are as elaborated in Definition 2.

The definitions of correctness and compactness for a positive dynamic accumulator PAcc
are obtained from the definition of those notions for a universal dynamic accumulator (refer to
definitions 3 and 4) by removing the parts regarding non-membership witnesses.

Definition 7 (Positive Dynamic Accumulator Security). A positive dynamic accumulator
PAcc for a domainM is secure if for all ppt adversary A with oracle access to OAdd,Delete, there
exists a negligible function negl(·) such that for all λ ∈ N,

Pr

 pp, ŝk, acc0 ← Gen(1λ, aux);

x∗, wx∗,t ← AOAdd,Delete(1λ, aux, pp, acc0) :

x∗ /∈ S ∧MemVerify(pp, acct, x
∗, wx∗,t) = 1

 ≤ negl(λ)

where acct is output by OAdd,Delete. For this definition, OAdd,Delete is defined as in Fig. 1 with the
exception that the tuple v that stores elements added to the accumulator is replaced by a set S,
and it does not store membership witnesses and update information. Furthermore, without loss
of generality, adversaries are required to send witness memberships during delete requests.

For the execution of a universal/positive dynamic accumulator, we consider three types of
actors:

– an accumulator manager: it is in charge of executing the algorithms Gen,Add and Delete.
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– Gen(1λ,⊥):
1. Select primes p, q, p′, q′ such that p = 2p′ + 1, q = 2q′ + 1 and log2 p

′ = log2 q
′ = λ.

2. Compute n← pq and u←$ QRn \ {1}.
3. Return pp = (n, u), sk = 4p′q′, acc = u.

– Add(pp, acc, x):
1. Parse pp as (n, u).
2. Compute acc′ ← accH(x) mod n.
3. Let s = (1), wx = (acc, s) and upmsg = (add, H(x), 1, acc, acc′).
4. Return acc′ , wx, and upmsg.

– Delete(pp, sk, acc, x, wx):
1. Parse pp as (n, u).
2. If wx = ⊥ or MemVerify(pp, acc, x, wx) = 0, do:

(a) Compute γ ← 1/H(x) mod sk, and let δ = 1.
(b) Compute acc′ ← accγ mod n.

3. Else if MemVerify(pp, acc, x, wx) = 1, do:

(a) Parse wx as (w, s), compute δ ←
∏|s|

i=1 s[i], and let acc′ = w.
4. Let upmsg = (del, H(x), δ, acc, acc′).
5. Return acc′, and upmsg.

Fig. 2: Accumulator Manager’s algorithms

– a user: it is in charge of managing witnesses by executing the algorithms NonMemWitCreate,
MemWitUp, and NonMemWitUp. It can also issue add and del requests to an accumulator
manager.

– a verifier: it executes the algorithms MemVerify and NonMemVerify. Note that since verifica-
tion algorithms do not take secret parameters as input, a user can be a verifier.

For the rest of the paper, we are going to forgo the discrete time counter t and denote a new
version of an accumulator acc with acc′ and a new version of a membership witness wx (resp.
non-membership witness w̄x) for an element x with w′

x (resp. w̄′
x).

4 Universal Dynamic Accumulator Construction

In this section, we present our universal dynamic accumulator in the random oracle model. Our
construction is based on [CL02,LLX07] with the exception that we work over large odd integers.

Let H : {0, 1}∗ → Odds(2ℓ−1, 2ℓ−1) be a random oracle such that ℓ = poly(λ), and
√
ℓ ≤ τ ≤

ℓ3/4 be a value chosen such that for x ∈ {0, 1}∗, P+(H(x)) > 2τ with overwhelming probability.

Remark 5. The random oracle H can be instantiated by using a random oracle H ′ : {0, 1}∗ →
1∥{0, 1}ℓ−2∥1 such that for any x ∈ {0, 1}∗, H(x) = int(H ′(x)), where int(·) is the conventional
function that maps bits to integers.

Our construction is presented in three figures: the algorithms executed by an accumulator
manager are described in Fig. 2, those executed by users are described in Fig. 3, and finally,
those executed by verifiers are described in Fig. 4. Each element x ∈ {0, 1}∗ is first hashed into a
large odd integer using the random oracle H such that the large odd integer admits a large prime
factor with overwhelming probability. The presence of that large prime factor will help us ensure
that membership witnesses can only be forged with negligible probability and non-membership
witnesses do not exist with negligible probability.

Batching addition. As in [CL02] and [LLX07], we note that the addition of multiple elements
can be batched by adding the product of their H evaluations to the accumulator. In addition,
after a batch addition, the (non-)membership witness for an element x ∈ {0, 1}∗ can be updated
by using the update information upmsg′ = (add, v′, δ′, acc, acc′) in conjunction with MemWitUp
or NonMemWitUp, where v′ represents the product ofH evaluations of added or deleted elements,
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– NonMemWitCreate(pp, x, {upmsgi}mi=1):
1. Parse pp as (n, u).
2. Let S = ∅, and d = (1).
3. For each upmsg ∈ {upmsgi}mi=1 do:

(a) Parse upmsg as (op, v, δ, acc, acc′).
(b) If op = add, set S ← S ∪ {v}.
(c) Else if op = del, set S ← (S \ {v}) and d← d∥(δ).

4. Compute θ ←
∏

y∈S y
∏|d|

i=1 d[i].
5. Let x← H(x) and s← (1).
6. While gcd(θ, x) ̸= 1, set x← x/ gcd(θ, x), s← s∥(gcd(θ, x)).
7. Find a, b ∈ Z such that aθ + bx = 1.
8. Compute B← ub mod n.
9. Return w̄x = (a, B, s).

– MemWitUp(pp, x, wx, upmsg):
1. Parse pp as (n, u), wx as (w, s), and upmsg as (op, v, δ, acc, acc′).
2. If op = add, compute w′ ← wv mod n, and let w′

x = (w′, s).
3. Else if op = del, do:

(a) Compute x← H(x)/
∏|s|

i=1 s[i] and v← v/δ.
(b) Compute a, b ∈ Z such that ax + bv = gcd(v, x).
(c) Compute w′ ← (acc′)awb mod n.
(d) If gcd(v, x) ̸= 1, let s′ ← s∥(gcd(v, x)). Otherwise, let s′ ← s.
(e) Let w′

x = (w′, s′).
4. Return w′

x.

– NonMemWitUp(pp, x, w̄x, upmsg):
1. Parse pp as (n, u), w̄x as (a, B, s), and upmsg as (op, v, δ, acc, acc′).

2. Compute x← H(x)/
∏|s|

i=1 s[i], and v← v/δ.
3. If op = add, do:

(a) Let d← 1 and x′ ← x.
(b) While gcd(v, x′) ̸= 1, set x′ ← x′/ gcd(v, x′), and

d← d · gcd(v, x′).
(c) Find a, b ∈ Z such that av + bx′ = 1.
(d) Compute a′ ← aa mod x′.
(e) Compute z ← ⌊aa/x′⌋v + ab.
(f) Compute B′ ← acczBd mod n.
(g) If d ̸= 1, let s′ ← s∥(d). Otherwise, s′ ← s.
(h) Let w̄′

x = (a′, B′, s′).
4. Else if op = del, do:

(a) Compute a′ ← av mod x.
(b) Compute z ← ⌊av/x⌋.
(c) Compute B′ ← (acc′)zB mod n.
(d) Let w̄′

x = (a′, B′, s).
5. Return w̄′

x.

Fig. 3: User’s algorithms

δ′ = 1, acc represents the last accumulator value for which the witness to be updated is valid
and acc′ represents the new accumulator’s value.

4.1 Correctness and Compactness

In this section, we analyze the correctness and compactness and of our construction.

Lemma 3. Let n be the RSA modulus produced by Gen(1λ), and suppose x ∈ {0, 1}∗. Then,
H(x)−1 mod ϕ(n) does not exist with probability at most 1/2λ−2.

Proof. Given that n is an output of Gen(1λ), it follows that ϕ(n) = 4p′q′, where log2 p
′ =

log2 q
′ = λ. For x ∈ {0, 1}∗, we have H(x) ∼ U(Odds(2ℓ−1, 2ℓ − 1)). H(x)−1 mod ϕ(n) does not
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– MemVerify(pp, acc, x, wx):
1. Parse pp as (n, u), and wx as (w, s).
2. For i ∈ [|s|], if s[i] > 2τ , return 0.

3. Compute x← H(x)/
∏|s|

i=1 s[i].
4. If wx ≡ acc mod n return 1. Otherwise, return 0.

– NonMemVerify(pp, acc, x, w̄x):
1. Parse pp as (n, u), and w̄x as (a, B, s).
2. For i ∈ [|s|], if s[i] > 2τ , return 0.

3. Compute x← H(x)/
∏|s|

i=1 s[i].
4. If accaBx ≡ u mod n return 1. Otherwise, return 0.

Fig. 4: Verifier’s algorithms

exist when gcd(H(x), ϕ(n)) ̸= 1, which happens when p′ or q′ divides H(x). Since p′ > 2λ−1 and
q′ > 2λ−1, using the union bound we have Pr [(p′ | H(x)) ∨ (q′ | H(x))] ≤ 2

2λ−1 = 1
2λ−2 ⊓⊔

Corollary 2. Delete fails with probability at most 1/2λ−2.

Proof. This follows from Lemma 3. ⊓⊔

Lemma 4. NonMemWitCreate fails to output correct a non-membership witness for an element
that has not been accumulated with probability at most

(q + 1)2

 1

2ℓ3/4
+

(
4
√
ℓ

4
log ℓ

)− 4√
ℓ
+

1

2
√
ℓ

where q ∈ N represents the number of elements present in the accumulator.

Proof. Let acc be an accumulator produced by our construction and {upmsg}ni=1 the set of update
information produced after a series of Add and Delete operations that generated acc. Suppose
x ∈ {0, 1}∗ was not added to acc. From {upmsg}ni=1, we can recover a set S that contains H
evaluation of elements that are present in acc and a tuple d that contains products of 2τ -smooth
integers that divide previously deleted elements (in the description of NonMemWitCreate, confer

Fig. 3, those products are denoted by δ). Let θ =
∏

y∈S y
∏|d|

i=1 d[i]. Given that H(x) /∈ S
with overwhelming probability and from Corollary 1, H(x) ∤ θ with overwhelming probability,
it follows that there exists x, k ∈ Z such that H(x) = kx, k | θ, P+(x) = P+(H(x)), and
gcd(θ, x) = 1. Let a, b ∈ Z such that aθ + bx = 1, and B = ub mod n. Since uθ ≡ acc mod n, we
have acca(B)x ≡ u mod n.

Let s be a tuple that represents a factorization of k. Since x is computed in such a way that
k | θ and the probability that an integer c > 2τ , with

√
ℓ ≤ τ ≤ ℓ3/4, divides both H(x) and θ is

less than or equal to 2−
√
ℓ, it follows that each component of s is less than or equal to 2τ with

overwhelming probability.
Let Bad be the event that NonMemWitCreate fails, D the event that H(x) | θ, E the event

that there exists j ∈ [|s|] such that s[j] > 2τ , and q = #S. We have

Pr[Bad] = Pr[Bad|D] Pr[D] + Pr[Bad|D̄] Pr[D̄]
≤ Pr[D] + Pr[Bad|D̄,E] Pr[E|D̄] + Pr[Bad|D̄, Ē] Pr[Ē|D̄]
(1)

≤ Pr[D] + Pr[E]

≤ (q + 1)2

 1

2ℓ3/4
+

(
4
√
ℓ

4
log ℓ

)− 4√
ℓ
+

1

2
√
ℓ

Inequality (1) follows from the fact that E and D are independent. Therefore, unless Bad happens,
w̄x = (a, B, s) is a valid non-membership witness for x. ⊓⊔
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Lemma 5. MemWitUp fails to output a correct updated membership witness with probability at

most 2−
√
ℓ.

Proof. Let acc be an accumulator produced by our construction and acc′ its update. Let x ∈
{0, 1}∗ be an accumulated element, wx = (w, s) its valid membership witness with respect to
acc, and w′

x = (w′, s′) its membership witness with respect to acc′ generated by MemWitUp. We

show that w′
x is valid with probability at least 1 − 2−

√
ℓ. Let y ∈ {0, 1}∗, x = H(x)/

∏|s|
i=1 s[i],

and x′ = H(x)/
∏|s′|

i=1 s
′[i]. Without lost of generality, let us consider the following cases:

– Case 1: acc′ was produced by adding y to acc, i.e., acc′ = accH(y). After executingMemWitUp,
we have w′ = wH(y) and s′ = s, so x = x′. Hence, (w′)x

′
= (wx)H(y) = accH(y) = acc′. In

addition, since wx is valid, it follows that all components of s are less than 2τ , and this is
also the case for s′.

– Case 2: acc′ was produced by deleting y from acc. Let upmsg be the update message that was
generated after deleting y from acc. Then, upmsg = (del, H(y), δ, acc, acc′), where δ ≥ 1 is a
2τ -smooth integer that divides H(y). By setting v = H(y)/δ, it follows that acc = (acc′)v.
Let d = gcd(v, x). After executing MemWitUp, we have w′ = (acc′)awb, where a, b ∈ Z such
that ax+ bv = d, and s′ = s∥(d) if d > 1, else s′ = s. Therefore, x′ = x/d, and

(w′)x
′
= ((acc′)awb)x/d

= ((acc′)awb)xv(1/v)(1/d) (this follows from Lemma 3)

=
(
((acc′)v)ax(wx)bv

)(1/v)(1/d)
= (accaxaccbv)(1/v)(1/d)

= acc1/v = acc′

Each component of s is less than or equal to 2τ since wx is valid, and if d = 1, it follows that
components of s′ are also less than or equal to 2τ . Otherwise, s′ = s∥(d), and given that d

divides both H(x) and H(y) and
√
ℓ ≤ τ ≤ ℓ3/4, it follows that d < 2τ with probability at

least 1−2−
√
ℓ. Therefore, each component of s′ is less than or equal to 2τ with overwhelming

probability.

Notice that w′
x will be incorrect if there exists an index j ∈ [|s′|] such that s′[j] > 2τ , and this

happens with probability at most 2−
√
ℓ. ⊓⊔

Lemma 6. NonMemWitUp fails to output a correct updated non-membership witness with prob-

ability at most
(

4√
ℓ

4 log ℓ
)− 4√

ℓ

+ 2−
√
ℓ.

Proof. Let acc be an accumulator produced by our construction and acc′ its update. Let x ∈
{0, 1}∗ be an element that was not added to the accumulator, w̄x = (a, B, s) its valid non-
membership witness with respect to acc, and w̄′

x = (a′, B′, s′) its non-membership witness with
respect to acc′ generated by NonMemWitUp. We show that w̄′

x is incorrect with probability at

most
(

4√
ℓ

4 log ℓ
)− 4√

ℓ

+ 2−
√
ℓ. Let y ∈ {0, 1}∗, x = H(x)/

∏|s|
i=1 s[i], and x′ = H(x)/

∏|s′|
i=1 s

′[i].

Without lost of generality, let us consider the following cases:

– Case 1: acc′ resulted from adding y to acc, i.e., acc′ = accH(y). From Lemma 2, P+(H(x)) >
2τ with overwhelming probability. Since w̄x is valid, it follows that P+(x) = P+(H(x)), so
x ∤ H(y) with overwhelming probability. As a result, there exists r, d ∈ Z such that x = dr,
d | H(y), P+(r) = P+(x) and gcd(H(y), r) = 1. After executing NonMemWitUp, x′ = r, and
s′ = s if d = 1, else s′ = s∥(d). In addition, we have a′ = aa mod x′ = aa − ⌊aa/x′⌋x′, and
B′ = accz1Bd, where z1 = ⌊aa/x′⌋H(y) + ab, and a, b ∈ Z such that aH(y) + bx′ = 1. Hence,

(acc′)a
′
(B′)x

′
= (accH(y))aa−⌊aa/x′⌋x′(acc⌊aa/x

′⌋H(y)+abBd)x
′

= acca(aH(y)+bx′)Bdx
′

= accaBx = u
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In case d = 1, all components of s′ are less than or equal to 2τ since w̄x is valid. Otherwise,
s′ = s∥(d), and given that d divides both H(x) and H(y) and

√
ℓ ≤ τ ≤ ℓ3/4, it follows that

d < 2τ with overwhelming probability. Therefore, each component of s′ is less than or equal
to 2τ with overwhelming probability.
Since in this case w̄′

x is correct if P+(H(x)) > 2τ and there does not exist j ∈ [|s′|] such
that s′[j] > 2τ , it follows that failure probability of NonMemWitUp is upper bounded by(

4√
ℓ

4 log ℓ
)− 4√

ℓ

+ 2−
√
ℓ.

– Case 2: acc′ was produced by deleting y from acc. Let upmsg be the update message that was
generated after deleting y from acc. Then, upmsg = (del, H(y), δ, acc, acc′), where δ ≥ 1 is a
2τ -smooth integer that divides H(y), and acc = (acc′)v, with v = H(y)/δ. After executing
NonMemWitUp, we have s′ = s, so x′ = x. Also, a′ = av mod x = av − ⌊av/x⌋x, and
B′ = (acc′)z2B, where z2 = ⌊av/x⌋. Hence,

(acc′)a
′
(B′)x

′
= (acc′)av−⌊av/x⌋x((acc′)⌊av/x⌋B)x

= (acc′)avBx

= accaBx = u

Since s′ = s and w̄x is valid, it follows that all components of s′ are less than or equal to 2τ .
Hence, in this case, w̄′

x is always correct.

Therefore, NonMemWitUp fails with probability at most
(

4√
ℓ

4 log ℓ
)− 4√

ℓ

+ 2−
√
ℓ. ⊓⊔

Theorem 1. Our construction is correct with a probability of at least 1− negl(λ).

Proof. This follows from Corollary 2, and lemmas 4, 5 and 6.

Theorem 2. Our construction is compact.

Proof. Let λ ∈ N be a security parameter used as input to Gen, ℓ = poly(λ) be the chosen

bit-length of H’s outputs, and
√
ℓ ≤ τ ≤ ℓ3/4 be a value chosen such that for any x ∈ {0, 1}∗,

P+(H(x)) > 2τ with overwhelming probability. From the description of our construction (confer
Figs. 2, 3, and 4), acc ∈ Z∗

n, where log2 n ≈ 2(λ + 1), so |acc| ≤ 2(λ + 2). For any x ∈ {0, 1}∗
with membership witness wx = (w, s), we have w ∈ Z∗

n and s, which is a tuple whose components
are 2τ -smooth integers that divide H(x) and their products also divide H(x). Since we need less
than ℓ bits to represent all components of s, we can conclude that |wx| < 2(λ+ 2) + ℓ. Finally,
for any y ∈ {0, 1}∗ with non-membership witness w̄y = (a, B, s′), we have a ∈ ZH(y), B ∈ Z∗

n, and
s′ that is defined as s. Hence, |w̄x| < 2(λ+ 2 + ℓ).

⊓⊔

4.2 Security

Theorem 3. Assume H is a random oracle. Under the strong RSA assumption, our construc-
tion is a secure universal dynamic accumulator.

Proof. We proceed by contraposition. Let A be a ppt adversary that, given (1λ,⊥, pp, acc0)
as input, outputs (x∗, wx∗ , w̄x∗) with non-negligible probability ε(λ) such that (x∗, wx∗) and
(x∗, w̄x∗) are both valid with respect to acc, where acc is the accumulator value generated after
A’s queries to OAdd,Delete. Using A, we construct a ppt adversary B that breaks the strong RSA
assumption as follows:

1. B receives (1λ, v, n) as input from the Strong RSA challenger. Then, it computes u = v2 mod
n and initialises an empty map T : {0, 1}∗ → Odds(2ℓ−1, 2ℓ − 1), a set S = ∅, and an integer
d = 1.

2. B sets pp = (n, u), acc = acc0 = u and sends (1λ, pp, acc0) to A.
3. B simulates answers to A’s oracle queries as follows:

– For H queries, when A sends x ∈ {0, 1}∗, B returns T[x] if T[x] ̸= ⊥. Else, B samples
r ←$ Odds(2ℓ−1, 2ℓ − 1), sets T[x]← r and returns r.
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– For add queries, when A sends (add, x), B simulates H with x as input, but it does not
return the output to A. If T[x] ∈ S, B aborts. Otherwise, B updates S ← S ∪ {T[x]},
defines s ← (1) and wx ← (acc, s) and computes acc′ ← accT[x] mod n. Next, B returns
acc′, wx and upmsg = (add,T[x], 1, acc, acc′). Finally, B sets acc← acc′.

– For del queries, when A sends (del, x, wx), B simulates H with x as input, but it does
not return the output to A. If T[x] /∈ S, B aborts. Next, B sets S ← S \ {T[x]}, and if

wx ̸= ⊥ andMemVerify(pp, acc, x, wx) = 1, B parses wx as (w, s), computes δ ←
∏|s|

i=1 s[i],

d← d · δ, and acc′ ← w. Otherwise, B sets δ ← 1 and computes acc′ ← ud
∏

y∈S y mod n.
After, B returns acc′ and upmsg = (del,T[x], δ, acc, acc′). Finally, B sets acc← acc′.

4. Once A outputs (x∗, wx∗ , w̄x∗), B does the following:
(a) If MemVerify(pp, x∗, wx∗ , acc) ̸= 1 or NonMemVerify(pp, x∗, w̄x∗ , acc) ̸= 1, abort.
(b) Parse wx∗ as (w, s), w̄x∗ as (a, B, s̄).

(c) Compute θ ← d
∏

y∈S y, x = T[x∗]/
∏|s|

i=1 s[i] and x̄ = T[x∗]/
∏|s̄|

i=1 s̄[i].

(d) If T[x∗] ∈ S, it follows that x̄ | θ, so gcd(1 − aθ, x̄) = 1. Furthermore, given that
x̄ is odd, gcd(2(1 − aθ), x̄) = 1. Since (acc)aBx̄ ≡ uaθBx̄ ≡ u ≡ v2 mod n, we have
Bx̄ ≡ v2(1−aθ) mod n. By applying Lemma 1 with respect to (B, x̄, v, 2(1− aθ)), compute
and output the x̄-root of v.

(e) Otherwise, If T[x∗] /∈ S, from Corollary 1, it follows that T[x∗] ∤ θ with overwhelm-
ing probability, and since wx∗ is valid, we have P+(T[x]) = P+(x). Hence, x ∤ θ. Let
x̃ = x/ gcd(2θ, x) and θ̃ = 2θ/ gcd(2θ, x). Since wx ≡ acc ≡ uθ ≡ v2θ mod n and
from Lemma 3, gcd(2θ, x)−1 mod ϕ(n) exists with overwhelming probability, we have

wx̃ ≡ vθ̃ mod n and gcd(θ̃, x̃) = 1. By applying Lemma 1 with respect to (w, x̃, v, θ̃),
compute and output the x̃-root of v. Note that if gcd(2θ, x)−1 mod ϕ(n) does not exist,
then gcd(2θ, x) admits a prime p′ as a divisor such that 2p′+1 divides n, so B can factor
n and easily solve the strong RSA challenge.

Note that during the execution of del queries, if A sends a tuple (del, y, wy) such that T[y] ∈ S
and wy = (w, s) is valid, it follows that w ≡ acc1/y ≡ u(T[y]/y)

∏
z∈S\{T[y]} z ≡ uδ

∏
z∈S\{T[y]} z mod n,

with δ ←
∏|s|

i=1 s[i] and y← T[y]/δ.
In addition, as long as B properly simulates OAdd,Delete, if A issues a forgery (x∗, wx∗ , w̄x∗)

such that T[x∗] ∈ S, then B will solve the strong RSA challenge. Otherwise, as long T[x∗] ∤ θ
or gcd(2θ, x) does not exist, B will still be able to solve the strong RSA challenge. B will fail to
properly simulate OAdd,Delete if it aborts during the execution of an add query for an element that
was not accumulated or if it does not abort during the execution of a del query for an element
that was not accumulated, and those events will happen only if there is a collision among A’s
queries to the random oracle H. Therefore, B succeeds with probability

Pr[B wins] ≥ ε(λ)

(
1− q2H

2ℓ−1

)
(1− ν)

where qH represents the number of unique H’s queries performed by A and

ν = q2H

(
1

2ℓ
3/4 +

(
4√
ℓ

4 log ℓ
)− 4√

ℓ
)(

1− 1
2λ−2

)
.

⊓⊔

5 Positive Dynamic Accumulator Construction

In this section, we present a positive dynamic accumulator that is based on the CL-RSA-B
construction of Baldimtsi et al. [BCD+17] and our universal accumulator presented in Section 4.

For this construction, we only present the algorithm Add in Fig. 5 because the algorithms Gen,
Delete, MemVerify are exactly the same algorithms presented in Section 4, and for MemWitUp,
only step 2, regarding the update of membership witnesses after Add operations, is removed.
However, pp = n instead of (n, u), and acc, the old value of the accumulator, is removed from
upmsg since it is not needed to update membership witnesses. An advantage of this construction is
its reduced communication complexity. The values of the accumulator and membership witnesses
are only updated during the execution of Delete operations.
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– Add(pp, sk, acc, x):
1. Parse pp as n.
2. Compute γ ← 1/H(x) mod sk.
3. Compute w← accγ mod n.
4. Let s = (1), wx = (w, s) and upmsg = (add, H(x), 1,⊥).
5. Return acc , wx, and upmsg.

Fig. 5: Description of the algorithm Add for the positive dynamic accumulator

5.1 Security

Theorem 4. Assume H is a random oracle. Under the strong RSA assumption, the above con-
struction is a secure positive dynamic accumulator.

Proof. We proceed by contraposition. Let A be a ppt adversary that, given (1λ,⊥, pp, acc0) as
input, after a total of qH unique queries toH and a total of qdel deletion queries toOAdd,Delete, out-
puts (x∗, wx∗) with non-negligible probability ε(λ) such that x∗ /∈ S andMemVerify(pp, acc, x∗, wx∗) =
1, where S is the set and acc is the accumulator generated after A’s queries to OAdd,Delete. We
build a ppt adversary B, using A, that breaks the strong RSA assumption as follows:

1. B receives (1λ, v, n) as input from the Strong RSA Challenger. Then, it computes u =
v2 mod n and initialises an empty map T : {0, 1}∗ → Odds(2ℓ−1, 2ℓ − 1) and a set S = ∅.

2. B samples α1, . . . , αqH ←$ Odds(2ℓ−1, 2ℓ − 1), j1 ←$ [qH ], and j2 ←$ {0} ∪ [qdel] such that
αc ̸= αe for c, e ∈ [qH ] and c ̸= e.

3. B computes θ ← αj2
j1

∏
i∈[qH ],i̸=j1

αqdel
i and acc = acc0 = uθ mod n. Then, B sets pp← n, and

initializes k ← 1.
4. B sends (1λ, pp, acc0) to A and simulates answers to A’s oracle queries as follows:

– For H queries, when A sends x ∈ {0, 1}∗, B returns T[x] if T[x] ̸= ⊥. Otherwise, B sets
T[x]← αk, k ← k + 1, and returns T[x].

– For add queries, when A sends (add, x), B simulates H with x as input, but it does not
return the output to A. If T[x] ∈ S, B aborts. Otherwise, B computes w← uθ/T[x] mod n,
initializes s← (1), and sets wx ← (w, s). Finally, B sets S ← S ∪{T[x]}, and returns acc,
wx, and upmsg = (add,T[x], 1,⊥).

– For del queries, when A sends (del, x, wx), B simulates H with x as input, but it does
not return the output to A. If T[x] /∈ S or if T[x] = αj1 and j2 = 0, B aborts. Next, B
sets S ← S \ {T[x]}, and if wx ̸= ⊥ and MemVerify(pp, acc, x, wx) = 1, B parses wx as

(w, s), computes δ ←
∏|s|

i=1 s[i], θ ← θ/(T[x]/δ), and acc′ ← w. Otherwise, B sets δ ← 1,
computes θ ← θ/T[x], acc′ ← uθ mod n. In addition, if T[x] = αj1 , B sets j2 ← j2 − 1.
Finally, B returns acc′ and upmsg = (del,T[x], δ, acc′), and then sets acc← acc′.

5. Once A outputs (x∗, wx∗), B proceeds as follows:
(a) If T[x∗] ̸= αj1 or j2 ̸= 0 or MemVerify(pp, x∗, wx∗ , acc) ̸= 1, B aborts.

(b) Parse wx∗ as (w, s), and compute x = T[x∗]/
∏[|s|]

i=1 s[i] = αj1/
∏[|s|]

i=1 s[i].
(c) Using a process similar to the one described in step 4e of the proof of Theorem 3, if

gcd(2θ, x)−1ϕ(n) exists, compute the x̃-root of v, where x̃ = x/ gcd(2θ, x). Otherwise,
use gcd(2θ, x) to factor n.

Note that during the execution of del queries, if A sends a tuple (del, y, wy) such that T[y] ∈ S
and wy = (w, s) is valid, it follows that w ≡ acc1/y ≡ uθ/y mod n, where y← T[y]/

∏|s|
i=1 s[i].

Since α1, . . . , αqH are random and distinct from each other, if B correctly guessed j2, then it
will correctly simulateOAdd,Delete’s answers for add and del queries. In step 5, if B correctly guessed
j1, then as long as gcd(2θ, x)−1 mod ϕ(n) exists and αj1 does not divide θ or gcd(2θ, x)−1

mod ϕ(n) does not exists, B will be able to break the strong RSA assumption with probability

Pr[B wins] ≥ ε(λ)

qH(qdel + 1)

(
1− ν +

ν

2λ−2

)
where ν = q2H

(
1

2ℓ
3/4 +

(
4√
ℓ

4 log ℓ
)− 4√

ℓ
)
. ⊓⊔
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λ Hprime length Hprime time (s) HOdds length HOdds time(s)

256 264 0.01718 211 0.00010
512 521 0.23695 213 0.00028
1024 1034 1.1978 214 0.00060

Table 1: Hprime versus HOdds. Hprime length is the binary output length of Hprime and is set such
that we have O(λ/2) security. HOdds length is the binary output length of HOdds and is set such
that its 3/4-root is greater than or equal to Hprime output length. The times listed are averages
of 5 trials.

λ Hprime length Hprime + Z∗
n time (s) HOdds length HOdds + Z∗

n time(s)

256 264 0.01833 211 0.00781
512 521 0.23912 213 0.03048
1024 1034 1.20190 214 0.06117

Table 2: Hprime plus modular exponentiation versus HOdds plus modular exponention. bit-lengths
are set as in Table 1. The times listed are averages of 5 trials.

6 Experimentation

In this section, we compare the time it takes to hash to a prime integer with the time it takes
to hash to a large odd integer.

More specifically, let Hprime be a hash function that hashes to primes and HOdds be a hash
function that hashes to large odds integers. Assuming that for a collision resistant hash function
whose outputs are λ bits we have O(λ/2) security, i.e., it takes O(2λ/2) time to find a collision,
we are interested in comparing the time it takes to execute a Hprime such that we have O(λ/2)
security with the time it takes to execute a HOdds such that its outputs’ largest prime factors have
rougly the same size as the outputs of Hprime. From the prime number theorem, to get O(λ/2)
security from Hprime, we will need to hash to prime in the set [N ] where log2(N) ≈ λ+ log2(λ),
and so, for x ∈ {0, 1}∗ we will need log2(P

+(HOdds(x))) ≥ λ+log2(λ). Note that from Lemma 2, if
outputs of HOdds are ℓ-bit length, then log2(P

+(HOdds(x))) > ℓ3/4 with overwhelming probability.
In addition, we compare the time it takes to execute Hprime and accumulate its output with the
time it takes to execute HOdds and accumulate its output. The results are compiled in Tables 1
and 2.

We performed our experimentation on a laptop equipped with an Intel Core i7-11800H 2.30
GHz CPU and 16 GB of RAM running Ubuntu 22.04.03 LTS via Windows Subsytem for Linux.
We used SageMath version 9.5 to implement our prototype. We used Blake2s with a 32-byte
digest from the PyCryptodome library version 3.19.0 [pyc] to instantiate HOdds. Hprime was in-
stantiated using the construction of Barić and Pfitzmann [BP97], and the underlying collision
resistant hash function was instantiated using Blake2s with a 32-byte digest. We used 10-bit
inputs for both Hprime and HOdds, and all modular exponentiation were performed over an RSA
modulus of 4096-bits.

7 PoE without Primes and Witness Aggregation

In this section, we introduce a variant of Wesolowski’s Proof of Exponentiation (PoE) [Wes20]
that does not necessitate hashing into primes. In addition, we show how the techniques presented
by Boneh, Bünz, and Fisch [BBF19] to aggregate (non-)membership witnesses for accumulators
defined over primes can be generalized to our setting and how to use the variant of Wesolowski’s
PoE to reduce the verification time of aggregated (non-)membership witnesses.

7.1 Proof of Exponentiation

Definition 8 (Hidden Order Group Sampler [BHR+21,BBF19]). A hidden order group
sampler is a ppt algorithm GGen that takes as input a security parameter 1λ and outputs an
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abelian group G whose order is at most 2poly(λ) and a trapdoor sk that can be used to efficiently
compute the exact order of G. In addition, for all ppt adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N,

Pr

ge = 1G ∧ e ̸= 0

∣∣∣∣∣∣∣
(G, sk)← GGen(1λ)

g ←$ G
e← A(1λ,G, g)

 ≤ negl(λ)

Definition 9 (Adaptive Root assumption [Wes20]). A hidden order group sampler GGen
satisfies the adaptive root assumption with respect to a challenge space C ⊂ Z if for all ppt
adversary A = (A1,A2), there exists a negligible function negl(·) such that for all λ ∈ N,

Pr

vc = u ̸= 1G

∣∣∣∣∣∣∣∣∣
(G, sk)← GGen(1λ)

(u, state)← A1(1
λ,G)

c←$ C
v ← A2(u, state, c)

 ≤ negl(λ)

Remark 6. Special care must be taken when selecting the challenge space C. For instance, if
#C = poly(λ), then the adversary A can have A1 sample h ←$ G, compute and output u =
h
∏

i∈C i , which will guarantee that A always wins by having A2 compute and output v =
h
∏

i∈C,i ̸=c i for any challenge c ∈ C. One might think that picking C such that #C = 2poly(λ) might
be enough to ensure that A wins with at most negligible probability, but Boneh, Bünz, and
Fisch [BBF18] noted that if a←$ C is B-smooth with non-negligible probability and #PRIMES∩
[B] = poly(λ), then even though the challenge space is of size Θ(2poly(λ)), A can win with non-

negligible probability by having A1 compute and output u = (h′)
∏

p∈PRIMES∩[B] p
k

, where h′ ∈ G
and k is a large integer.

Given a pair of interactive Turing machines M and N, let ⟨M,N⟩(x) denote the output of N
after its interaction with M on a common input x.

Definition 10 (Proof of Exponentiation [Wes20, BBF19]). For λ ∈ N, let (G, sk) ←
GGen(1λ), and consider the language LPoE,G = {(v, u, e) ∈ G2×Z : ve = u}. A proof of exponen-
tiation (PoE) for LPoE,G is an interactive protocol (argument) between a ppt prover P and a ppt
verifier V such that on a common input (v′, u′, e′) ∈ G2 × Z, V outputs 1 after its interaction
with P if it is convinced that (v′, u′, e′) ∈ LPoE,G. Otherwise, V outputs 0. In addition, a PoE
for LPoE,G must satisfy the following properties:

– Completeness: for all (v, u, e) ∈ LPoE,G,

Pr[⟨P,V⟩(v, u, e) = 1] = 1

– Soundness: for all (v, u, e) /∈ LPoE,G,

Pr[⟨P,V⟩(v, u, e) = 1] ≤ negl(λ)

Remark 7. For a PoE to be useful, a verifier V should perform less than O(log e) group operations
for an input (v, u, e) ∈ G2 × Z, especially if e is large, because it is always possible to check if
(v, u, e) ∈ LPoE,G using O(log e) group operations via repeated squaring.

Wesolowski [Wes20] constructed a PoE for LPoE,G where for a statement (v, u, e) ∈ G2×Z, e is
a power of 2. To prove that (v, u, e) ∈ LPoE,G, V samples a random prime c←$ PRIMES(2λ), where
PRIMES(2λ) represents the set of 22λ first positive primes, and sends c to P. Next, P computes
π ← v⌊e/c⌋ and sends it to V. Finally, V computes r ← e mod c and outputs 1 if πcvr = u.
Wesolowski proved that his PoE is sound under the adaptive root assumption with challenge
space C = PRIMES(2λ). In addition, since V’s message is completely random, Wesolowski PoE
can be converted into a non-interactive protocol via the Fiat-Shamir heuristic [FS87] in the
random-oracle model. However, in practice, converting Wesolowski PoE into a non-interactive
protocol incurs an O(λ) overhead because we will need to hash into primes in the set [N ], where
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Initialization:

1. Run (G, sk) ← GGen(1λ). Then, set ℓ = poly(λ) and
√
ℓ ≤ τ ≤ ℓ3/4 such that for a ←$

Odds(2ℓ−1, 2ℓ−1), P+(a) > 2τ with high probability. Finally, send (1λ,G, ℓ) to prover P and
verifier V.

2. Statement: (v, u, e) ∈ G2 × Z.

Interaction:

1. V samples c←$ Odds(2ℓ−1, 2ℓ − 1) and sends it to P.
2. P computes π ← v⌊e/c⌋ and sends it to V.
3. V computes r ← e mod c. Then, it outputs 1 if πcvr = u. Otherwise, it outputs 0.

Fig. 6: SimPoE: Wesolowski PoE without primes.

log2 N ≈ 2λ+log2 λ. Boneh, Bünz, and Fisch [BBF19] further generalized Wesolowski’s protocol
by allowing e to be any integer (rather than a power of 2 as in Wesolowski’s work).

In Fig. 6, we present a variant of Wesolowski PoE that does not require hashing to primes,
which we call SimPoE, because it is more simple. The message issued by V is sampled from
Odds(2ℓ−1, 2ℓ − 1), where ℓ = poly(λ) is selected such that for a←$ Odds(2ℓ−1, 2ℓ − 1), P+(a) >

2
√
ℓ with overwhelming probability (Lemma 2). Since an integer sampled uniformly at random

from Odds(2ℓ−1, 2ℓ−1) is not smooth with overwhelming probability and #Odds(2ℓ−1, 2ℓ−1) =
2ℓ−2, it follows that the adaptive root assumption with the challenge space C = Odds(2ℓ−1, 2ℓ−1)
should hold for a hidden order group G because it will be hard for a ppt adversary to execute
the strategies mentioned in Remark 6.

Theorem 5. Assume GGen is a hidden order group sampler, and for λ ∈ N, let (G, sk) ←
GGen(1λ). Let ℓ = poly(λ) and

√
ℓ ≤ τ ≤ ℓ3/4 such that for a ←$ Odds(2ℓ−1, 2ℓ − 1), P+(a) >

2τ with overwhelming probability 1 −
(

4√
ℓ

4 log ℓ
)− 4√

ℓ

. Under the adaptive root assumption with

challenge space C = Odds(2ℓ−1, 2ℓ − 1), SimPoE (Fig. 6) is sound.

Proof. We proceed by contraposition. Let P∗ be a ppt prover that, given (1λ,G, ℓ) as input,
makes a verifier V output 1 after executing SimPoE on a statement (u, v, e) /∈ LPoE,G with non-
negligible probability ε(λ). We use P∗ to build a ppt adversary B = (B1,B2) that breaks the
adaptive root assumption with challenge space C = Odds(2ℓ−1, 2ℓ − 1) as follows:

1. After receiving the statement (u, v, e), B1 sends u/ve to the adaptive root challenger, which
replies with a challenge c ←$ Odds(2ℓ−1, 2ℓ − 1). Note that since (u, v, e) /∈ LPoE,G, we have
ve ̸= u, and so u/ve ∈ G \ {1}.

2. Next, B1 sends c to P∗ and (u/ve, c) to B2.
3. After receiving c, P∗ computes and sends π to B2. If πcve−⌊e/c⌋c ̸= u, B2 aborts. Otherwise,

it sends π/v⌊e/c⌋ to the adaptive root challenger.

If P∗’s message is correct, then (π/v⌊e/c⌋)c = u/ve. Therefore, Pr[B wins] = ε(λ). ⊓⊔

For completeness sake, in Fig. 7, we provide a description of a non-interactive version of
SimPoE, called NI-SimPoE, in the random oracle model. It uses a random oracle H : G2 ×
Z → Odds(2ℓ−1, 2ℓ − 1). Note that H can be instantiated via a random oracle H ′ : {0, 1}∗ →
Odds(2ℓ−1, 2ℓ − 1) such that for (u, v, e) ∈ G2 × Z, H(u, v, e) = H ′(bin(u, v, e)), where bin(·, ·, ·)
is a function that efficiently maps elements of G2 × Z to binary strings.

Candidate for GGen. As mentioned in [Wes20, BBF18, BHR+21], a candidate for GGen is
a ppt algorithm that samples a random RSA group where the modulus is a product of safe
primes, i.e., it takes as input 1λ and output n = p.q and sk = (p − 1)(q − 1), where p and q
are O(λ)-bit safe primes. However, Boneh, Bünz, and Fisch [BBF19] noted that over Z∗

n, the
soundness of Wesolowski PoE does not hold because with (v, u, e) ∈ LPoE,Z∗

n
we can generate a

valid interaction for (v,−u, e) by having P reply with π = −1 · v⌊e/c⌋ after receiving c from V.
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– Setup(1λ):
1. Execute (G, sk)← GGen(1λ), and publish G.

– Prove(u, v, e):
1. Compute c← H(u, v, e), and then π ← v⌊e/c⌋.
2. Return π.

– Verify(u, v, e, π):
1. Compute c← H(u, v, e), and then r ← e mod c.
2. Return 1 if πcvr = u. Otherwise, return 0.

Fig. 7: NI-SimPoE.

Therefore, the subgroup QRn or the quotient group Z∗
n/{−1, 1} is prefered. In the case of QRn,

testing for membership is hard and that makes it an unpractical choice in general, but for our
application, QRn will be enough.

7.2 Aggregating Witnesses

We extend our universal dynamic accumulator construction presented in Section 4 to allow users
to aggregate (non-)membership witnesses. This allows a user with a collection of elements and
their respective (non-)membership witnesses to generate a witness that can be used to prove
membership or non-membership of all the elements in the collection.

First, we extend the definition of universal dynamic accumulator to account for witness
aggregation. Remember that we use t to denote a discrete time counter and â to denote that the
value a is optional.

Definition 11 (Accumulator with Witness Aggregation). A universal dynamic accumu-
lator UAcc for a domainM supports witness aggregation if it satisfies definitions 2, 3, 4, and 5
and supports the following ppt algorithms:

– MemWitAggr(pp, âcct, {(xi, wxi,t)}mi=1) → w(x1,...,xm),t: This (probabilistic) algorithm takes
as input the public parameter pp, an optional accumulator value âcct, a set of element and
membership witness pairs {(xi, wxi,t)}mi=1. It outputs a membership witness w(x1,...,xm),t that
can be used to attest the membership of {x1, . . . , xm}.

– NonMemWitAggr(pp, âcct, {(xi, w̄xi,t)}mi=1)→ w̄(x1,...,xm),t: This (probabilistic) algorithm takes
as input the public parameter pp, an optional accumulator value âcct, and a set of element
and non-membership witness pairs {(xi, w̄xi,t)}mi=1. It outputs a non membership witness
w̄(x1,...,xm),t that can be used to attest the non-membership of {x1, . . . , xm}.

– MemAggrVerify(pp, acct, {xi}mi=1, w(x1,...,xm),t) → 0/1: This deterministic algorithm takes as
input the public parameter pp, an accumulator acct, a set of elements {x1, . . . , xm} and the
aggregation of their membership witnesses w(x1,...,xm),t. It returns 1 if w(x1,...,xm),t certifies
that {x1, . . . , xm} is a subset of the set represented by acct. Otherwise, it returns 0.

– NonMemAggrVerify(pp, acct, {xi}mi=1, w̄(x1,...,xm),t)→ 0/1: This deterministic algorithm takes
as input the public parameter pp, an accumulator acct, a set of elements {x1, . . . , xn} and
the aggregation of their non-membership witnesses w̄(x1,...,xm),t. It returns 1 if w̄(x1,...,xm),t

certifies that {x1, . . . , xm} is disjointed from the set represented by acct. Otherwise, it returns
0.

Remark 8. Boneh, Bünz, and Fisch [BBF19] proposed a mechanism to aggregate (non-)membership
witnesses for RSA-based accumulators defined over primes. However, they did not provide a clear
syntax. Srinivasan et al. [SKBP22] proposed a definition for trapdoorless accumulators in the
batching setting, i.e., elements accumulated are sets. However, their proposed syntax includes
algorithms to aggregate (non-)membership witnesses of singletons.

We do not provide a formal definition of correctness as it can be obtained by modifying the
game presented in Definition 3 (confer Fig. 1) to allow a ppt adversary A to choose a set of
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accumulated elements {x1, . . . , xm} and a point of time t1 at which the oracle OAdd,Delete should
aggregate the membership witnesses of those elements. In addition,A can choose a set of elements
{y1, . . . , ym′} not in the accumulator and a point of time t2 at which their non-membership
witnesses should be aggregated. A wins if ({x1, . . . , xm}, w(x1,...,xm),t1) fails MemAggrVerify with
respect to acct1 or ({y1, . . . , ym′}, w̄(y1,...,ym′ ),t2) fails NonMemAggrVerify with respect to acct2 .
We say that a universal dynamic accumulator with witness aggregation supports is correct if A
wins with negligible probability.

Note that aggregated witnesses should also satisfy the definition of compactness (Defini-
tion 4). More specifically, for a set {x1, . . . , xm}, it must be the case that |w(x1,...,xm),t| =
|w̄(x1,...,xm),t| = poly(λ, |x1|, . . . , |xm|).

Definition 12 (Witness Aggregation Security [BBF19]). A universal dynamic accumula-
tor UAcc, for a domainM, that supports witness aggregation is secure if for all ppt adversary A
with oracle access to OAdd,Delete, there exists a negligible function negl(·) such that for all λ ∈ N,

Pr


pp, ŝk, acc0 ← Gen(1λ, aux);

X , wX ,t,Y, w̄Y,t ← AOAdd,Delete(1λ, aux, pp, acc0) :

MemAggrVerify(pp, acct,X , wX ,t) = 1

∧ NonMemAggrVerify(pp, acct,Y, w̄Y,t) = 1 ∧ X ∩ Y ≠ ∅

 ≤ negl(λ)

OAdd,Delete is defined as in Definition 5, and acct is the accumulator value managed by OAdd,Delete.

In Figs. 8 and 9, we present the algorithms needed to enable witness aggregation for our
universal dynamic accumulator construction. They are based on the work of Boneh, Bünz, and
Fisch [BBF19], except that (1) they apply to our accumulator rather than that of Li, Li and
Xue [LLX07]; and (2) the Wesolowski challenge e need not be prime. We use a random oracle
H : {0, 1}∗ → Odds(2ℓ−1, 2ℓ − 1) whose properties are defined as in Section 4. Without PoE, for
a set {y1, . . . , ym}, verifying its (non-)membership using an aggregated witness would require
O(mℓ) group operations in Z∗

n. However, by having users prepare PoE proofs using NI-SimPoE
(confer Fig. 7) and include those proofs in the aggregated witnesses, we are able to reduce the
number of group operations to O(ℓ), eliminating dependence on m. In addition, since PoE proofs
are performed for elements in QRn (witnesses contain components in QRn and the accumulator
value acc belongs to QRn), we do not suffer from the PoE soundness issue that arises by working
over Z∗

n as mentioned in Section 7.1.
In Fig. 8, we describe two helper algorithms Mem2Aggr and NonMem2Aggr that are used

to compute the aggregation of two membership and non-membership witnesses, respectively.
Both take as input a public parameter pp, an accumulator value acc, two elements x1, x2 with
their respective membership witnesses wx1 , wx2 in the case of Mem2Aggr or their respective non-
membership witnesses w̄x1

, w̄x2
in the case of NonMem2Aggr, and a value isDone that is either

equal to 0 or 1 and is used to determine whether NI-SimPoE proofs should be computed and
included in the aggregated witness. In Fig. 9, we useMem2Aggr in the description ofMemWitAggr
and NonMem2Aggr in the description of NonMemWitAggr to show how we can aggregate the
(non-)membership witnesses ofm > 2 elements by recursively aggregating the (non-)membership
witnesses of two elements.

Witness disaggregation. For a set {x1, . . . , xm} with either aggregated membership witness
wx1,...,xm

or aggregated non-membership witness w̄x1,...,xm
, it is possible to disaggregate the

aggregated witness and obtain a witness for each xi ∈ {x1, . . . , xm}:

– Disaggregating wx1,...,xm : From the description ofMemWitAggr in Fig. 9, we have wx1,...,xm =
(wx1,...,xm

, s1, . . . , sm, πx1,...,xm
). To recover a membership witness for xi ∈ {x1, . . . , xm},

compute

wxi
← w

∏m
j=1,j ̸=i

(
H(xj)/

∏|sxj
|

k=1 sxj
[k]

)
x1,...,xm

and set wxi
= (wxi

, sxi
).



22 Victor Youdom Kemmoe and Anna Lysyanskaya

– Mem2Aggr(pp, acc, x, wx, y, wy, isDone):
1. Parse pp as (n, u), wx as (wx, sx), and wy as (wy, sy).

2. Compute x← H(x)/
∏|sx|

i=1 sx[i] and y← H(y)/
∏|sy|

i=1 sy[i].
3. Find a, b ∈ Z such that ax + by = gcd(x, y).
4. Compute wx,y ← wbxw

a
y, y′ ← y/ gcd(x, y), and set s′y ← sy∥(gcd(x, y)).

5. If isDone = 0, return wx,y = (wx,y, sx, s
′
y).

6. Else if isDone = 1:
(a) Compute πx,y ← NI-SimPoE.Prove(wx,y, acc, xy

′).
(b) Return wx,y = (wx,y, sx, s

′
y, πx,y).

– NonMem2Aggr(pp, acc, x, w̄x, y, w̄y, isDone):
1. Parse pp as (n, u), w̄x as (ax, Bx, sx), and w̄y as (ay, By, sy).

2. Compute x← H(x)/
∏|sx|

i=1 sx[i] and y← H(y)/
∏|sy|

i=1 sy[i].
3. Find a, b ∈ Z such that ax + by = gcd(x, y).
4. Let x′ = x/ gcd(x, y), y′ = y/ gcd(x, y), and set s′y ← sy∥(gcd(x, y)).
5. Compute γ ← axby

′ + ayax
′ and ax,y ← γ mod xy′.

6. Compute Bx,y ← acc⌊γ/xy
′⌋BbxB

a
y mod n.

7. If isDone = 0, retun w̄x,y = (ax,y, Bx,y, sx, sy).
8. Else if isDone = 1:

(a) Compute C← accax,y mod n and D← B
xy′
x,y mod n.

(b) Compute πC,(x,y) ← NI-SimPoE.Prove(acc, C, ax,y).
(c) Compute πD,(x,y) ← NI-SimPoE.Prove(Bx,y, D, xy

′).
(d) Return w̄x,y = (ax,y, Bx,y, sx, sy, πC,(x,y), πD,(x,y), C, D).

Fig. 8: Helper Algorithms for Witness Aggregation.

– Disaggregating w̄x1,...,xm : From the description of NonMemWitAggr in Fig. 9, w̄x1,...,xm =
(ax1,...,xm

, Bx1,...,xm
, s1, . . . , sm, πC,(x1,...,xm), πD,(x1,...,xm), C, D).

To recover a non-membership witness for xi ∈ {x1, . . . , xm}, first compute xi ← H(xi)/
∏|sxi

|
i=1 sxi

[i].
Then, compute axi ← ax1,...,xm mod xi and

Bxi
← acc⌊ax1,...,xm/xi⌋B

∏m
j=1,j ̸=i

(
H(xj)/

∏|sxj
|

k=1 sxj
[k]

)
x1,...,xm

Finally, set w̄xi
= (axi

, Bxi
, sxi

).

Batching deletion. Remember that to delete an element x ∈ {0, 1}∗ from our accumulator,
we need to provide x and its membership witness wx. Now, with the possibility to aggregate
membership witnesses, we can batch the deletion of multiple elements by providing the product
of their H evaluations and an aggregation of their membership witnesses. After a batch deletion
of elements {x1, . . . , xm}, the (non-)membership witness of an element x′ can be updated by
executing MemWitUp or NonMemWitUp with the update information upmsg′, where upmsg′ is
formed as follows:

– Compute v′ ←
∏m

i=1 H(xi).
– If the H evaluations of xi ∈ {x1, . . . , xm} was used during the batch deletion, set δ′ = 1.

Otherwise, if wx1,...,xm
was used, compute δ′ ←

∏m
i=1

∏|sxi
|

j=1 sxi
[j].

– Finally, set upmsg′ = (del, v′, δ′, acc, acc′), where acc is the old accumulator value for which
the witness to be updated is valid and acc′ is the new accumulator value.

Theorem 6. Our universal dynamic accumulator with support for witness aggregation is com-
pact.

Proof. For a set {x1, . . . , xm} with membership witness wx1,...,xm
, we have

|wx1,...,xm
| < 4(λ+2)+mℓ, and for a set {y1, . . . , ym′} with non-membership witness w̄y1,...,ym′ ,

we have |w̄y1,...,ym′ | < 10(λ+ 2) + 2m′ℓ. ⊓⊔
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– MemWitAggr(pp, acc, {(x1, wx1), . . . , (xm, wxm)}):
1. If m = 2, return Mem2Aggr(pp, acc, x1, wx1 , x2, wx2 , 1).
2. Else if m > 2 do:

(a) Compute wx1,x2 ← Mem2Aggr(pp, acc, x1, wx1 , x2, wx2 , 0).
(b) For i = 3 to m− 1, do:

wx1,...,xi ← Mem2Aggr(pp, acc, (xj)
i−1
j=1, wx1,...,xi−1 , xi, wi, 0).

(c) Return Mem2Aggr(pp, acc, (xj)
m−1
j=1 , wx1,...,xm−1 , xm, wm, 1).

– NonMemWitAggr(pp, acc, {(x1, w̄x1), . . . , (xm, w̄xm)}):
1. If m = 2, return NonMem2Aggr(pp, acc, x1, w̄x1 , x2, w̄x2 , 1).
2. Else if m > 2 do:

(a) Compute wx1,x2 ← NonMem2Aggr(pp, acc, x1, w̄x1 , x2, w̄x2 , 0).
(b) For i = 3 to m− 1, do:

wx1,...,xi ← NonMem2Aggr(pp, acc, (xj)
i−1
j=1, w̄x1,...,xi−1 , xi, w̄i, 0).

(c) Return NonMem2Aggr(pp, acc, (xj)
m−1
j=1 , w̄x1,...,xm−1 , xm, w̄m, 1).

– MemAggrVerify(pp, acc, {xi}mi=1, wx1,...,xm):
1. Parse pp as (n, u), wx1,...,xm as (wx1,...,xm , sx1 , . . . , sxm , πx1,...,xm).
2. For i ∈ [m] do:

(a) For j ∈ [|sxi |], if sxi [j] > 2τ , return 0.

(b) Compute xi ← H(xi)/
∏|sxi

|
k=1 sxi [k].

3. Return NI-SimPoE.Verify(wx1,...,xm , acc,
∏n

i=1 xi, πx1,...,xm).

– NonMemAggrVerify(pp, acc, {xi}mi=1, w̄x1,...,xm) :
1. Parse pp as (n, u), w̄x1,...,xm as (ax1,...,xm , Bx1,...,xm , sx1 , . . . , sxm ,

πC,(x1,...,xm), πD,(x1,...,xm), C, D).
2. For i ∈ [m] do:

(a) For j ∈ [|sxi |], if sxi [j] > 2τ , return 0.

(b) Compute xi ← H(xi)/
∏|sxi

|
k=1 sxi [k].

3. Return NI-SimPoE.Verify(acc, C, ax1,...,xm , πC,(x1,...,xm))
∧ NI-SimPoE.Verify(Bx1,...,xm , D,

∏n
i=1 xi, πD,(x1,...,xm)) ∧ CD ≡ u mod n.

Fig. 9: Witness Aggregation Algorithms.

Theorem 7. Our universal dynamic accumulator with support for witness aggregation is correct.

Proof. This follows from Theorem 1 and by inspecting how aggregated (non-)membership wit-
nesses are computed. ⊓⊔
Theorem 8. Assume H is a random oracle. Under the strong RSA assumption and the adaptive
root assumption, our universal dynamic accumulator with support for witness aggregation is
secure.

Proof. We proceed by contraposition. Let A be a ppt adversary that, on input (1λ,⊥, pp, acc0),
where (pp, acc0) are output of Gen(1λ,⊥), can output (X , wX ,Y,
w̄Y) with probability ε(λ) such that wX and w̄Y are valid, X ∩Y ̸= ∅, and ε(λ) is non-negligible.
We use A to either break the strong RSA assumption or the adaptive root assumption as follows:

– If there exists x ∈ X ∩Y such that after extracting its membership witness wx from wX and
its non-membership w̄x from w̄Y , wx and w̄x are valid, then from Theorem 3, it follows that
we can use x,wx, w̄x to break the strong RSA assumption.

– If it is not the case, then either the PoE proof πX associated to wX or the PoE proofs πC,Y
and πD,Y associated to w̄Y are forgeries, and from Theorem 5, we can use them to break the
adaptive root assumption.

Hence, with probability at least ε(λ), we can either break the strong RSA assumption or the
adaptive root assumption in polynomial time. ⊓⊔
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