
Polylogarithmic Proofs for Multilinears over Binary Towers

Benjamin E. Diamond

Ulvetanna

bdiamond@ulvetanna.io

Jim Posen

Ulvetanna

jposen@ulvetanna.io

Abstract

We introduce a polylogarithmic-verifier polynomial commitment scheme for multilinears over towers
of binary fields. To achieve this, we adapt an idea of Zeilberger, Chen and Fisch’s BaseFold (’23) to the
setting of binary towers, using FRI (ICALP ’18)’s binary-field variant. In the process, we reinterpret Lin,
Chung and Han (FOCS ’14)’s novel polynomial basis so as to make apparent its compatibility with FRI.
We moreover introduce a “packed” version of our protocol, which supports—with no embedding overhead
during its commitment phase—multilinears over tiny fields (including that with just two elements). Our
protocol leverages a new multilinear FRI-folding technique, and exploits the recent tensor proximity gap
of Diamond and Posen (Commun. Cryptol. ’24). We achieve concretely small proofs for enormous binary
multilinears, shrinking the proofs of Diamond and Posen (’23) by an order of magnitude.

1 Introduction

In recent work, Diamond and Posen [DP23b] introduce a sublinear argument designed to capture certain
efficiencies available in towers of binary fields. Using a “block-level encoding” technique, that work evades,
at least during its commitment phase, the embedding overhead prone to arise whenever tiny fields are used,
especially in those protocols which critically utilize Reed–Solomon codes. That work’s key polynomial
commitment scheme features opening proofs whose size and verifier complexity both grow on the order of
the square root of the size (i.e., measured in total data bits) of the committed polynomial.

In this work, adapting an idea of Zeilberger, Chen and Fisch’s BaseFold [ZCF23], we present a mul-
tilinear polynomial commitment scheme—designed for polynomials over binary tower fields—whose proof
size and verifier complexity grow polylogarithmically in the size of the committed polynomial. Our scheme
again evades embedding overhead, even when applied on polynomials over tiny fields (like F2). BaseFold’s
polynomial commitment scheme [ZCF23, § 5], very roughly, identifies a new connection between Ben-Sasson,
Bentov, Horesh and Riabzev’s [BBHR18] celebrated FRI IOP of proximity and multilinear polynomials.
Specifically, that work observes that, in the setting of prime-field FRI—and when the FRI folding arity is
fixed at 2—the constant value of the prover’s final FRI oracle relates to the univariate coefficients of its FRI
message just as a multilinear’s evaluation relates to its multilinear coefficients in the monomial basis. This
fact underlies BaseFold’s use of FRI within its multilinear polynomial commitment scheme. On the other
hand, since the query point might, in general, be known in advance to the prover, whereas FRI’s folding
challenges of course must not be, BaseFold moreover interleaves into the FRI folding process an execution
of the sumcheck protocol, thereby reducing the evaluation of the multilinear at the known query point to its
evaluation at the random point sampled during FRI. We describe BaseFold further in Subsection 1.1 below.

We note that FRI has figured in commitment schemes—both univariate and multilinear—previously. All
prior such uses of FRI, however—that is, with the exception of [ZCF23, § 5]—invoke “quotienting”, and so
suffer from embedding overhead, a phenomenon described at length in [DP23b]. We refer to Haböck [Hab22]
for a description of FRI’s use as a univariate commitment scheme. In the multilinear setting, we note briefly
an approach proposed by Chen, Bünz, Boneh and Zhang [CBBZ23, § B], which itself makes blackbox of
a univariate commitment scheme (presumably FRI). Interestingly, that scheme—assuming the FRI-based
univariate scheme—resembles [ZCF23, § 5], at least during its commitment phase. Its query phase, however,
generically invokes, logarithmically many times, the underlying univariate scheme’s evaluation protocol.

1

mailto:bdiamond@ulvetanna.io
mailto:jposen@ulvetanna.io

1.1 Technical Overview

Each honest FRI prover begins with the evaluation of some polynomial P (X) :=
∑2ℓ−1

j=0 aj · Xj over the

initial FRI domain S(0). Under certain mild conditions—specifically, if the folding factor η divides ℓ, and
the recursion is carried out to its end—the prover’s final oracle will be identically constant over its domain
(and in fact, the prover will rather send the verifier this latter constant in the clear). What will the value of
this constant be, as a function of P (X) and of the verifier’s folding challenges?

In the setting of prime field multiplicative FRI, the folding maps q(i) all take the especially simple form
X 7→ X2η . BaseFold [ZCF23, § 5] makes the interesting observation whereby—again, in the prime field
setting, for η now moreover set to 1, and for q(0), . . . , q(ℓ−1) defined in just this way—the prover’s final FRI
response will be nothing other than a0 + a1 · r0 + a2 · r1 + · · · + a2ℓ−1 · r0 · · · · rℓ−1, where r0, . . . , rℓ−1 are
the verifier’s FRI folding challenges. That is, it will be exactly the evaluation of the multilinear polynomial
a0 + a1 ·X0 + a2 ·X1 + · · ·+ a2ℓ−1 ·X0 · · · ·Xℓ−1 at the point (r0, . . . , rℓ−1).

What about in the binary field setting? In this setting, firstly, the simple folding mapsX 7→ X2η no longer
suffice, as [BBHR18, § 2.1] already remarks; rather, we must choose for the maps q(i) a certain sequence of
linear subspace polynomials of degree 2η. FRI does not suggest precise values for these polynomials, beyond
merely demanding that they feature the right linear-algebraic syntax (roughly, each q(i)’s kernel should
reside entirely inside the domain S(i); we discuss this requirement further in Subsection 2.4 below). Given
syntactically valid subspace polynomials q(i) chosen otherwise arbitrarily—and, we emphasize, FRI does not
suggest a choice—the constant value of the prover’s final oracle will, in general, relate in a complicated way
to the coefficient vector (a0, . . . , a2ℓ−1) and to the verifier’s folding challenges ri (the exact relationship will
depend on the maps q(i)).

The additive NTT and FRI. We recall briefly the “additive NTT” of Lin, Chung, and Han [LCH14]
(we refer to Subsection 2.3 below for a more thorough description). We fix a binary field K, of degree more

than ℓ. The work [LCH14] defines, first of all, a “novel polynomial basis” (Xj(X))
2ℓ−1
j=0 of the K-vector space

consisting of polynomials over K of degree less than 2ℓ (which, of course, differs from the standard monomial

K-basis
(
Xj
)2ℓ−1

i=0
). The essential idea of [LCH14] is that, for a polynomial P (X) :=

∑2ℓ−1
j=0 aj · Xj(X)

expressed with respect to this basis, as opposed to in standard monomial form, the “additive NTT” of P (X)—
that is, the set of P (X)’s evaluations over any appropriately chosen affine F2-vector subspace S ⊂ K—can
be computed from P (X)’s coefficient vector (a0, . . . , a2ℓ−1) in quasilinear time (in the size of S).

We recover using the following technique, in the binary-field setting, the “classical” FRI folding pattern
identified above. For expository purposes, we fix η = 1 (though cf. Subsection 3.3 below). We stipulate first of
all that the prover use the coefficients (a0, . . . , a2ℓ−1) of its input multilinear as the coefficients in Lin, Chung
and Han [LCH14]’s novel polynomial basis—as opposed in the standard univariate monomial basis—of its

initial univariate FRI polynomial P (X) :=
∑2ℓ−1

j=0 aj ·Xj(X). (This choice of basis has the crucial additional

effect of making the prover’s evaluation of P (X) over S(0) computable in quasilinear time.) Essentially, our
insight is that, if we choose the FRI subspace maps q(0), . . . , q(ℓ−1) appropriately, then the prover’s final FRI
oracle becomes, once again, meaningfully related to P (X)’s initial coefficient vector (a0, . . . , a2ℓ−1); that is,
it becomes once again a0 + a1 · r0 + a2 · r1 + · · ·+ a2ℓ−1 · r0 · · · · rℓ−1. Specifically, our construction—which
we explain in detail in Subsection 3.2 below—opts to define the maps q(0), . . . , q(ℓ−1) precisely so that they

factor Lin, Chung and Han [LCH14, § II. C.]’s “normalized subspace vanishing polynomials”
(
Ŵi(X)

)ℓ
i=0

,

in the sense that Ŵi(X) = q(i−1) ◦ · · · ◦ q(0) holds for each i ∈ {0, . . . , ℓ} (see Corollary 3.11). Upon defining
the maps q(0), . . . , q(ℓ−1) in this way, we recover, first of all, a familiar, Fourier-theoretic characterization of

the novel basis polynomials (Xj(X))
2ℓ−1
j=0 (see (2)), as well as a rëınterpretation of the algorithm [LCH14,

§ III.] along more classical lines (see Remark 3.23).
More importantly, our particular choice of the maps q(0), . . . , q(ℓ−1) moreover serves to recover the

coefficient-folding behavior of prime-field FRI (i.e., which was exploited by [ZCF23, § 5]). Indeed, using
the polynomial identity (2)—together with certain “higher-order” analogues of the novel polynomial basis

(Xj(X))
2ℓ−1
j=0 (see also Remark 3.22)—we are able, with some work, to establish the required FRI folding

pattern. Our treatment of these ideas takes place in Theorem 3.20 (see in particular Lemma 3.21).

2

A new FRI folding mechanism. As it happens, we opt moreover to modify FRI itself, so as to induce
a Lagrange-style, as opposed to monomial-style, folding operation. That is, in our FRI variant, the value of
the prover’s final oracle becomes rather a0 · (1− r0) · · · · · (1− rℓ−1) + · · ·+ a2ℓ−1 · r0 · · · · rℓ−1, the evaluation
at (r0, . . . , rℓ−1) of the polynomial whose coefficients in the multilinear Lagrange basis—as opposed to in
the multilinear monomial basis—are (a0, . . . , a2ℓ−1). We moreover introduce a multilinear style of many-
to-one FRI folding, which contrasts with FRI’s univariate approach [BBHR18, § 3.2]. We describe our FRI
folding variant in Subsection 3.3 below (see in particular Definitions 3.13 and 3.15). Interestingly, our FRI-
folding variant makes necessary a sort of proximity gap different from that invoked by FRI. Indeed, while
the soundness proof [Ben+23, § 8.2] of FRI uses the proximity gap result [Ben+23, Thm. 1.5] for low-degree
parameterized curves, our security treatment below makes use of the recent, tensor-folding-based proximity
gap of Diamond and Posen [DP23a, Thm. 3.1]. To bring the proximity gap result [DP23a, Thm. 3.1] to bear
on our multilinear FRI-folding variant, we must perform a degree of algebraic work (see Lemma 3.16).

Our protocols. In Subsection 3.4 below, we present the simplest version of our protocol. That subsection’s
Construction 3.19 can be viewed as binary-field adaptation of [ZCF23, § 5], which moreover leverages our
custom-built binary-field subspace polynomials q(0), . . . , q(ℓ−1), as well as our multilinear folding technique.

Since Construction 3.4 uses Reed–Solomon codes, that construction demands that its input polynomial’s
coefficient fieldK have degree (i.e., over its subfield F2) larger than the polynomial’s number of variables ℓ. In
Subsection 3.5, we present a further construction, which eliminates this restriction. That is, Subsection 3.5’s
Construction 3.24 supports polynomials over arbitrary small coefficient fields (including F2 itself). Internally,
Construction 3.24 uses a “packing” technique first introduced by Diamond and Posen [DP23b, § 3.4], and in
particular an algebraic object—called the tower algebra—introduced in that work (see Definition 2.2 below).
Construction 3.24’s commitment phase lacks embedding overhead entirely, in the sense that the cost of that
phase depends only on the size—in bits—of the committed polynomial (and not on the size of its coefficient
field). To prove the security of Construction 3.24 (see Theorem 3.27), we revisit the security proof of FRI
[BBHR18, § 4.2.2]. In the process, we simplify, reorganize, and streamline that proof, as well as modernize
it, exploiting the recent maturation of the proximity gap phenomenon exhibited by error-correcting codes
[Ben+23]. (We treat FRI’s security only within the unique decoding radius, in contrast with [Ben+23,
§ 8.2].) As was just discussed, our security proof uses the tensor-folding proximity gap [DP23a, Thm. 3.1];
specifically, we use an adaptation of that result to the setting of Reed–Solomon codes over the tower algebra.
Our main coding-theoretic theorem appears as Theorem 2.5 below; that result recapitulates a result already
proven by Diamond and Posen [DP23b, Thm. 3.10], which in turn extends [DP23a, Thm. 3.1].

The complexity of Construction 3.24’s evaluation protocol does depend on the coefficient field, and indeed
becomes rather more expensive as the polynomial’s coefficient field shrinks (i.e., for total data size held
constant). We refer to Subsection 3.6 (see also Tables 1 and 2) for a discussion of this phenomenon. In Section
4, we present a final scheme, we which mitigates this phenomenon. Section 4’s Construction 4.1 generalizes
still further our paper’s technique, so as to incorporate into it ideas from the Brakedown-style protocol
[DP23b]. Construction 4.1 represents a “hybrid” between Construction 3.24 and [DP23b, Cons. 3.11]; that
construction begins as does [DP23b, Cons. 3.11], and yet uses Construction 3.24 for its internal proximity test
(as opposed to the trivial sort of test—used by [DP23b, Cons. 3.11]—in which which P simply sends V the
relevant message). Construction 4.1 in fact, represents essentially a sweeping generalization simultaneously
of [DP23b, Cons. 3.11] and of Construction 3.24, and makes available a far-wider space of tradeoffs. In
Subsection 4.1, we show that Construction 4.1—parameterized appropriately—indeed yields proofs which
are simultaneously smaller than those of Construction 3.24 and of [DP23b, Cons. 3.11], where the advantage
of Construction 4.1 over Construction 3.24 becomes more pronounced as the coefficient field shrinks.

Miscellanea. Throughout Subsection 3.2, we examine in detail various further aspects of binary-field
FRI. For example—even in the abstract IOP model—we must necessarily fix F2-bases of the respective
Reed–Solomon domains S(i), in order to interpret committed functions f (i) : S(i) → K as K-valued strings
(that is, must implicitly lexicographically “flatten” each domain S(i) using some ordered F2-basis of it,
known to both the prover and the verifier). The choice of these bases matters. Indeed, for F2-bases of
S(i) and S(i+1) chosen arbitrarily, the fundamental operation which associates to each y ∈ S(i+1) its fiber

q(i)
−1

({y}) ⊂ S(i)—which both the prover and the verifier must perform repeatedly—could come to assume

3

complexity on the order of dim
(
S(i)

)2
bit-operations, even after a linear-algebraic preprocessing phase.

Below, we suggest a family of bases for the respective domain S(i) with respect to which the maps q(i)

come to act simply by projecting away their first η coordinates. In particular, the application of each map

q(i)—in coordinates—becomes free; the preimage operation q(i)
−1

({y}) comes to amount simply to that
of prepending η arbitrary boolean coordinates to y’s coordinate representation. While bases with these
properties can of course be constructed in FRI even for maps q(i) chosen arbitrarily, our procedure—which,
we emphasize, depends on our specially chosen maps q(i)—moreover yields a basis of the initial domain S(0)

which coincides with that expected by the additive NTT of [LCH14]. In particular, our prover may use as is
the output of the additive NTT as its 0th FRI oracle, without first subjecting that output to the permutation
induced by an appropriate change-of-basis transformation on S(0). We believe that these observations stand
to aid all implementers of binary-field FRI.

1.2 Prior Work

The works most relevant to this one are Zeilberger, Chen and Fisch’s BaseFold [ZCF23] and Diamond
and Posen [DP23b]. BaseFold [ZCF23, § 5] introduces the connection between FRI folding and multilinear
evaluation upon which this work rests (see also Subsection 1.1 above). That work uses only prime-field FRI,
and does not attempt to support small fields (with or without embedding overhead).

The work [DP23b] introduces the use of towers of binary fields in SNARKs, and moreover develops several
key ideas fundamental to this one, including the extension code construction [DP23b, § 3.1] and the tower
algebra [DP23b, Def. 3.8]. That work moreover isolates the phenomenon of embedding overhead, and provides
a sublinear argument designed to evade it, at least during its commitment phase [DP23b, Cons. 3.11]. We
note that [DP23b] supplies not just a multilinear polynomial commitment scheme, but moreover an entire
toolbox of “virtual polynomial protocols” [DP23b, § 4] and a high-level SNARK [DP23b, § 5]. This work
presents only a polynomial commitment scheme (or rather, a sequence of them). The higher-level content of
[DP23b] remains perfectly applicable in our setting; indeed, our scheme serves as a drop-in replacement for
that of [DP23b, § 3], and serves the purposes of [DP23b, §§ 4–5] exactly as [DP23b, § 3] does. Our scheme
equally stands to concretely improve the open-source implementation, called Binius, of [DP23b].

During our main security proofs (see Theorems 3.27 and 4.3), we draw variously on the works [BBHR18]
and [Ben+23]. Neither of those works, on the other hand, contain results which serve as stated to achieve our
purposes; rather, we must instead selectively extract and adapt their ideas. Indeed, our setting differs from
those of those works in at least three ways. For one, our results use codes over the tower algebra, as opposed
to codes over a field. Secondly, we use a different style of FRI folding than those works do, akin more to
multilinear interpolation than to univariate interpolation. Finally, our soundness proof must concern itself
not merely with the prover’s distance from the code, but moreover with the consistency of its oracles. In
any case, the essential ideas of our Lemmas 3.35 and 3.36 below are implicit in [BBHR18, § 4.2.2]; moreover,
our Proposition 3.30 below can be viewed as an adaptation to our setting of a technique of [Ben+23, § 8.2].

Unfortunately, we are not able, in this work, to use the Reed–Solomon-specific proximity gap [Ben+23,
Thm. 1.2], in either of its parameter regimes. The list-decoding regime, for its part, seems simply not to be
useful to us, at least barring an advance in our proof strategy. Indeed, since—as just discussed—we must
demand not just the proximity but the consistency of the prover’s oracles, excessive distance from the code
comes ultimately not to help but to harm us, in a way made precise in the proof of Lemma 3.35 (a similar
phenomenon occurs in [DP23a, Lem. 4.10]). We leave as an open question whether the per-query rejection
probability of this work can be brought, even in principle, above the (relative) unique decoding radius.

On the other hand, we are likewise unable even to use the unique-decoding-specific result [Ben+23,
Thm. 4.1] in this work, albeit for different reasons. Indeed, that result is stated for Reed–Solomon codes
over fields. Despite expending significant effort, we were not able to adapt that result to our setting of Reed–
Solomon codes over the tower algebra (a commutative ring which fails, in general, even to be an integral
domain, though it contains a field). That hypothetical adaptation would serve to shrink our protocol’s
proof sizes, concretely, by a factor of roughly log(3) − 1 ≈ 0.585. Alternatively, a resolution of the general
coding-theoretic conjecture [DP23b, Conj. 2.4] would equally serve this end, at least granting its proof’s
adaptability to the tower algebra. As it stands, we must instead fall back to the generic Theorem 2.5 below,
whose proximity parameter is worse (forced to remain beneath a third of the code’s distance, as opposed to
a half). We discuss these matters thoroughly in Subsection 2.6 below (see also Conjecture 2.6).

4

https://gitlab.com/UlvetannaOSS/binius

2 Background and Notation

We record notation, following Diamond and Posen [DP23b] where possible. We write N for the nonnegative
integers. We write BA for the set of maps between sets A→ B. We fix a binary field K. For each ℓ ∈ N, we
write Bℓ for the ℓ-dimensional boolean hypercube {0, 1}ℓ ⊂ Kℓ. We frequently identify Bℓ with the integer

range {0, . . . 2ℓ − 1} by means of the lexicographic identification v 7→ {v} :=
∑ℓ−1

i=0 2
i · vi. The rings we

treat are nonzero and commutative with unit. For our purposes, an algebra A over a field K, also called a
K-algebra, is a commutative ring A together with an embedding of rings K ↪→ A. We adopt the notational
convention whereby the degree of the 0 polynomial is deg(0) = −∞. For for L / K a field extension and

R ⊂ Lϑ a subset, we write µ(R) := |R|
|L|ϑ .

2.1 Lagrange and Monomial Forms

We review various normal forms for multilinear polynomials, following [DP23b, § 2.1]. An ℓ-variate polyno-
mial in K[X0, . . . , Xℓ−1] is multilinear if each of its indeterminates appears with individual degree at most
1; we write K[X0, . . . , Xℓ−1]

⪯1 for the set of multilinear polynomials over K in ℓ indeterminates. Clearly,
the set of monomials (1, X0, X1, X0 ·X1, . . . , X0 · · · · ·Xℓ−1) yields a K-basis for K[X0, . . . , Xℓ−1]

⪯1; we call
this basis the multilinear monomial basis in ℓ variables.

We introduce the 2 · ℓ-variate polynomial

ẽq(X0, . . . , Xℓ−1, Y0, . . . , Yℓ−1) :=

ℓ−1∏
i=0

(1−Xi) · (1− Yi) +Xi · Yi.

It is essentially the content of Thaler [Tha22, Fact. 3.5]) that the set (ẽq(X0, . . . , Xℓ−1, v0, . . . , vℓ−1))v∈Bℓ

yields a K-basis of the space K[X0, . . . , Xℓ−1]
⪯1.

For each fixed (r0, . . . , rℓ−1) ∈ Lℓ, the vector (ẽq(r0, . . . , rℓ−1, v0, . . . , vℓ−1))v∈Bℓ
takes the form(

ℓ−1∏
i=0

ri · vi + (1− ri) · (1− vi)

)
v∈Bℓ

= ((1− r0) · · · · · (1− rℓ−1), . . . , r0 · · · · · rℓ−1).

We call this vector the tensor product expansion of the point (r0, . . . , rℓ−1) ∈ Lℓ, and denote it by
⊗ℓ−1

i=0(1−
ri, ri). We note that this latter vector can be computed in Θ(2ℓ) time (see e.g. [Tha22, Lem. 3.8]).

As a notational device, we introduce the further 2 · ℓ-variate polynomial:

m̃on(X0, . . . , Xℓ−1, Y0, . . . , Yℓ−1) :=

ℓ−1∏
i=0

1 + (Xi − 1) · Yi;

we note that (m̃on(X0, . . . , Xℓ−1, v0, . . . , vℓ−1))v∈Bℓ
yields precisely the multilinear monomial basis in ℓ inde-

terminates.

2.2 Error-Correcting Codes

We recall details on codes, referring throughout to Guruswami [Gur06].
A code of block length n over the alphabet Σ is a subset of Σn. In Σn, we write d for the Hamming

distance between two vectors (i.e., the number of components at which they differ). We again fix a field K.
A linear [n, k, d]-code over K is a k-dimensional linear subspace C ⊂ Kn for which d(v0, v1) ≥ d holds for
each unequal pair of elements v0 and v1 of C. An [n, k, d]-code C ⊂ Kn’s unique decoding radius is

⌊
d−1
2

⌋
;

indeed, we note that, for each word u ∈ Kn, at most one codeword v ∈ C satisfies d(u, v) < d
2 (this fact is a

direct consequence of the triangle inequality). For u ∈ Kn arbitrary, we write d(u,C) := minv∈C d(u, v) for
the distance between u and the code C.

Given a linear code C ⊂ Kn and an integer m ≥ 1, we have C’s m-fold interleaved code, defined as the
subset Cm ⊂ (Kn)

m ∼= (Km)
n
. We understand this latter set as a length-n block code over the alphabet

Km. In particular, its elements are naturally identified with those matrices in Km×n each of whose rows is

5

a C-element. We write matrices (ui)
m−1
i=0 ∈ Km×n row-wise. By definition of Cm, two matrices in Km×n

differ at a column if they differ at any of that column’s components. That a matrix (ui)
m−1
i=0 ∈ Km×n is

within distance e to the code Cm—in which event we write dm
(
(ui)

m−1
i=0 , Cm

)
≤ e—thus entails precisely

that there exists a subset D := ∆m
(
(ui)

m−1
i=0 , Cm

)
, say, of {0, . . . , n − 1}, of size at most e, for which, for

each i ∈ {0, . . . ,m− 1}, the row ui admits a codeword vi ∈ C for which ui|{0,...,n−1}\D = vi|{0,...,n−1}\D.

We recall Reed–Solomon codes (see [Gur06, Def. 2.3]). For notational convenience, we consider only
Reed–Solomon codes whose message and block lengths are powers of two. We fix nonnegative message

length and rate parameters ℓ and R, as well as a subset S ⊂ K of size 2ℓ+R. We write C ⊂ K2ℓ+R
for

the Reed–Solomon code RSK,S [2
ℓ+R, 2ℓ] is defined to be the set

{
(P (x))x∈S

∣∣∣ P (X) ∈ K[X]≺2ℓ
}
; that is,

RSK,S [2
ℓ+R, 2ℓ] is the set of those 2ℓ+R-tuples which arise as the evaluations of some polynomial of degree

less than 2ℓ over S. The distance of RSK,S [n, k] is d = 2ℓ+R− 2ℓ +1. We write Enc : K[X]≺2ℓ → KS for the
encoding function which maps a polynomial P (X) of degree less than 2ℓ to its tuple of evaluations over S.

We recall the Berlekamp–Welch algorithm for Reed–Solomon decoding within the unique decoding radius
(see [Gur06, Rem. 4]). For self-containedness, we record a slight extension of that algorithm in which the
received word f : S → K is not assumed to reside within the code’s unique decoding radius. The key point
is to study the behavior of the algorithm even in the case d(f, C) ≥ d

2 .

Algorithm 1 (Berlekamp–Welch [Gur06, Rem. 4].)

1: procedure DecodeReedSolomon
(
(f(x))x∈S

)
2: allocate A(X) and B(X) of degrees

⌊
d−1
2

⌋
and 2ℓ+R−

⌊
d−1
2

⌋
−1; write Q(X,Y) := A(X) ·Y +B(X).

3: interpret the equalities Q(x, f(x)) = 0, for x ∈ S, as a system of 2ℓ+R equations in 2ℓ+R+1 unknowns.
4: by finding a nonzero solution of this linear system, obtain values for the polynomials A(X) and B(X).
5: if A(X) ∤ B(X) then return ⊥.
6: write P (X) := −B(X)/A(X).
7: if deg(P (X)) ≥ 2ℓ then return ⊥.
8: return P (X).

We note that the unknown polynomial Q(X,Y) above indeed has
⌊
d−1
2

⌋
+1+ 2ℓ+R −

⌊
d−1
2

⌋
= 2ℓ+R +1

coefficients, as required.
When d(f, C) < d

2 , Algorithm 1 necessarily returns the unique polynomial P (X) of degree less than

2ℓ for which d(f,Enc(P (X))) < d
2 holds. Indeed, this is simply the correctness of Berlekamp–Welch on

input assumed to reside within the unique decoding radius; we refer to [Gur06, Rem. 4] for a thorough
treatment. (We note that the (1, 2ℓ− 1)-weighted degree of Q(X,Y) is at most D = 2ℓ+R−

⌊
d−1
2

⌋
− 1, while

t = 2ℓ+R −
⌊
d−1
2

⌋
; the hypothesis of [Gur06, Lem. 4.3] is therefore fulfilled. We conclude that Q(X,P (X)),

of degree at most D with at least t zeros, is in fact identically zero, so that Y −P (X) | Q(X,Y).) We record
the following converse:

Lemma 2.1. If d(f, C) ≥ d
2 , then Algorithm 1 outputs ⊥.

Proof. We fix a map f : S → K for which d(f, C) ≥ d
2 ; we suppose for contradiction that Algorithm 1, on the

input f , nonetheless successfully outputs a polynomial P (X) (necessarily of degree less than 2ℓ). We first note
that the relation P (X) = −B(X)/A(X) implies the factorization Q(X,Y) = A(X) ·(Y − P (X)). Separately,
since deg(P (X)) < 2ℓ, Enc(P (X)) is a codeword; our hypothesis on f thus implies that d(f,Enc(P (X))) ≥ d

2 .

On the other hand, by its degree, A(X) can have at most
⌊
d−1
2

⌋
< d

2 roots. We conclude that there necessarily
exists some element x∗ ∈ S for which P (x∗) ̸= f(x∗) and A(x∗) ̸= 0 simultaneously hold. Finally, by its
construction, Q(x, f(x)) = 0 necessarily holds for each x ∈ S. Putting these facts together, we see that
0 = Q(x∗, f(x∗)) = A(x∗) · (f(x∗)− P (x∗)) ̸= 0, a contradiction.

Most analyses of the Berlekamp–Welch algorithm assume inputs guaranteed to reside within the unique
decoding radius, and implicitly leave as undefined the algorithm’s behavior on arbitrary words. It is inter-
esting to note that the algorithm (with the aid of a simple additional degree check) serves moreover to detect
whether its input is in the unique decoding radius.

6

2.3 Novel Polynomial Basis

We recall in detail the novel polynomial basis of Lin, Chung and Han [LCH14, § II.]. We fix again a
binary field K, of degree r, say, over F2. For our purposes, a subspace polynomial over K is a polynomial
W (X) ∈ K[X] which splits completely over K, and whose roots, each of multiplicity 1, form an F2-linear
subspace of K. For a detailed treatment of subspace polynomials, we refer to Berlekamp [Ber15, § 11]. We
recall that, for each subspace polynomial W (X) ∈ K[X], the evaluation map W : K → K is F2-linear.

For each fixed ℓ ∈ {0, . . . , r−1}, the set K[X]≺2ℓ of polynomials of degree less than 2ℓ is a K-vector space

of dimension 2ℓ. Of course, the set (1, X,X2, . . . , X2ℓ−1) yields an obvious K-basis of K[X]≺2ℓ . Lin, Chung

and Han define an alternate K-basis of K[X]≺2ℓ—called the novel polynomial basis—in the following way.
We fix once and for all an F2-basis (β0, . . . , βr−1) of the ground field K. For each i ∈ {0, . . . , ℓ−1}, we write
Ui := ⟨β0, . . . , βi−1⟩ for the F2-linear span of the prefix (β0, . . . , βi−1), and define the subspace vanishing

polynomial Wi(X) :=
∏

u∈Ui
X−u, as well as its normalized variant Ŵi(X) := Wi(X)

Wi(βi)
(we note that βi ̸∈ Ui,

so that Wi(βi) ̸= 0). In words, for each i ∈ {0, . . . , ℓ − 1}, Wi(X) vanishes precisely on Ui ⊂ K; Ŵi(X)

moreover satisfies Ŵi(X)(βi) = 1. Finally, for each j ∈ {0, . . . , 2ℓ − 1}, we write Xj(X) :=
∏ℓ−1

i=0 Ŵi(X)ji ;

here, (j0, . . . , jℓ−1) are the bits of j, in the sense that j =
∑ℓ−1

k=0 2
k · jk holds. We note that, for each

j ∈ {0, . . . , 2ℓ−1}, Xj(X) is of degree j. We conclude that the change-of-basis matrix from (1, X, . . . ,X2ℓ−1)
to (X0(X), X1(X), . . . , X2ℓ−1(X)) is triangular (with an everywhere-nonzero diagonal), so that this latter

list indeed yields a K-basis of K[X]≺2ℓ .
As in Subsection 2.4 above, we now fix moreover a rate parameter R ∈ {1, . . . , r − ℓ} and an F2-

subspace S ⊂ K of dimension ℓ + R; now, we require moreover that S contain the F2-subspace Uℓ :=
⟨β0, . . . , βℓ−1⟩. Lin, Chung and Han [LCH14, § III.] show that, for S ⊂ K defined in this way, and for

P (X) :=
∑2ℓ−1

j=0 aj · Xj(X) given in coordinates with respect to the novel polynomial basis defined above,

the encoding (P (x))x∈S can be computed in time Θ(ℓ · 2ℓ+R).
In Remark 3.23 below, we suggest a new interpretation of Lin, Chung and Han’s algorithm [LCH14,

§ III.], based on the techniques of this paper. For now, for self-containedness, we record here in full their key
algorithm, in our notation. We note that Algorithm 2’s equivalence with [LCH14, § III.] is not obvious; we
explain the correctness of this description in Remark 3.23 below. In what follows, we fix as above the degree

and rate parameters ℓ and R. We finally fix a polynomial P (X) =
∑2ℓ−1

j=0 aj ·Xj(X); we write b : Bv+R → K

for (aj)
2ℓ−1
j=0 ’s 2R-fold tiling, so that, for each v ∈ Bℓ+R, b(v) := a{v} (mod 2ℓ) holds.

Algorithm 2 (Lin–Chung–Han [LCH14, § III.].)

1: procedure AdditiveNTT
(
(b(v))v∈Bℓ+R

)
2: for i ∈ {ℓ− 1, . . . , 0} (i.e., in downward order) do
3: for (u, v) ∈ Bℓ+R−i−1 × Bi do
4: define the twiddle factor t :=

∑ℓ+R−i−2
k=0 uk · Ŵi(βi+1+k).

5: overwrite both b(u ∥ 0 ∥ v) += t · b(u ∥ 1 ∥ v) and b(u ∥ 1 ∥ v) += b(u ∥ 0 ∥ v).
6: return (b(v))v∈Bℓ+R

.

We note that the twiddle factor t above depends only on u, and not on v, and can be reused accordingly.
Finally, in the final return statement above, we implicitly identify Bℓ+R ∼= S using the standard basis
β0, . . . , βℓ+R−1 of the latter space (see also Subsection 3.2 below).

2.4 FRI

We recall Ben-Sasson, Bentov, Horesh and Riabzev’s [BBHR18] Fast Reed–Solomon Interactive Oracle Proof
of Proximity (FRI). For K a binary field, and size and rate parameters ℓ and R fixed, FRI yields an IOP of
proximity for the Reed–Solomon code RSK,S [2

ℓ+R, 2ℓ]; here, we require that S ⊂ K be an F2-linear subspace
(of dimension ℓ + R, of course). That is, FRI yields an IOP for the claim whereby some oracle [f]—i.e.,

representing a function f : S → K—is close to a codeword (P (x))x∈S (here, P (X) ∈ K[X]≺2ℓ represents

7

a polynomial of degree less than 2ℓ). FRI’s verifier complexity is polylogarithmic in 2ℓ. We abbreviate
ρ := 2−R, so that RSK,S [2

ℓ+R, 2ℓ] is of rate ρ.
Internally, FRI makes use of a folding constant η—which we fix once and for all to be 1—as well as a

fixed, global sequence of subspaces and maps of the form:

S = S(0) q(0)−−→ S(1) q(1)−−→ S(2) q(2)−−→ · · · q(ℓ−1)

−−−−→ S(ℓ). (1)

Here, for each i ∈ {0, . . . , ℓ − 1}, q(i) is a subspace polynomial of degree η := 1, whose kernel moreover is
contained in S(i). By linear-algebraic considerations, we conclude that S(i+1)’s F2-dimension is 1 less than
S(i)’s is; inductively, we conclude that each S(i) is of dimension ℓ+R− i.

2.5 The Tower Algebra

We recall towers of binary fields, referring throughout to [DP23b, § 2.3]. For simplicity, we present only
Wiedemann’s tower [Wie88]; on the other hand, our results go through without change on other binary
towers (cf. e.g. the Cantor tower given in Li et al. [Li+18, § 2.1]). That is, we set T0 := F2 and T1 :=
F2[X0]/(X

2
0 + X0 + 1), and, for each ι > 1, Tι := Tι−1/(X

2
ι−1 + Xι−2 · Xι−1 + 1). Fan and Paar [FP97]

observe that the basic arithmetic operations in Wiedemann’s tower admit efficient—that is, O
(
2log(3)·ι

)
-

time—algorithms.
The monomial F2-basis of the binary tower Tι is (βv)v∈Bι

:= (m̃on(X0, . . . , Xι−1, v0, . . . , vι−1))v∈Bι
. More

generally, for each pair of integers ι ≥ 0 and κ ≥ 0, the set (m̃on(Xι, . . . , Xι+κ−1, v0, . . . , vι−1)v∈Bι
likewise

yields a Tι-basis of Tι+κ; we again write (βv)v∈Bκ
for this basis.

Fixing again an element ℓ ∈ {0, . . . , 2ι+κ − 1}, and applying the results of Subsection 2.3 to Tι+κ—using
now the multilinear F2-basis (β0, . . . , β2ι+κ−1) of Tι+κ—we obtain as before a corresponding novel polynomial

basis (X0(X), X1(X), . . . , X2ℓ−1(X)) of the Tι+κ-vector space Tι+κ[X]≺2ℓ , as well as, for each S ⊂ Tι+κ of
the form given above, an efficient encoding algorithm for the Reed–Solomon code RSTι+κ,S [2

ℓ+R, 2ℓ].
We recall the tower algebra data structure of Diamond and Posen [DP23b, § 3.4]. The tower algebra is

a mathematical object which algebraically captures our key “packing” technique. Informally, for integers
ι ≥ 0 and κ ≥ 0 fixed, the multilinear basis Tι-basis (βv)v∈Bκ

of Tι+κ allows us to associate, to each vector
(av)v∈Bκ

of Tι-elements, a Tι+κ-element, say α. The tower algebra makes this association algebraic, in such a
way as to give meaning to the “multiplication” of α by a Tτ -element (here, Tτ /Tι is a cryptographically large
extension). This latter multiplication, on the other hand, does not proceed simply by embedding Tι+κ ⊂ Tτ ;
rather, it operates “independently” on α’s 2κ components. This special sort of multiplication will prove
crucial in our packing-based scheme, which we present in Subsection 3.5 below (see Construction 3.24).

We recall the key definition verbatim. We fix parameters ι, κ, and τ in N, where τ ≥ ι; here, Tι represents
our coefficient field, κ is our packing factor, and Tτ yields a cryptographically sized extension of Tι.

Definition 2.2 (Diamond–Posen [DP23b, Def. 3.8]). We define the tower algebra Aι,κ,τ as:

Aι,κ,τ := Tτ [Y0, . . . , Yκ−1]/
(
Y 2
0 +Xι−1 · Y0 + 1, Y 2

1 + Y0 · Y1 + 1, . . . , Y 2
κ−1 + Yκ−2 · Yκ−1 + 1

)
,

where we understand Xι−1 as a Tτ -element (and slightly abuse notation by letting X−1 := 1 in case ι = 0).

Concretely, each Aι,κ,τ -element may be represented as a 2τ−ι×2κ array of Tι-elements (we refer to [DP23b,
Fig. 1]). The left-most column of this array represents the subring consisting of the constant polynomials in
Y0, . . . , Yκ−1; we call this subring, which is isomorphic as a ring to the field Tτ , the constant subring. The
top-most row of the array represents the subring consisting of polynomials in the indeterminates Y0, . . . , Yκ−1

whose coefficients all reside in Tι. We call this latter subring, which is isomorphic as a ring to Tι+κ, the
synthetic subring. These two subrings define Tτ and Tι+κ (respectively) vector-space structures on the ring
Aι,κ,τ ; we call these the constant and synthetic vector space structures (respectively). Similarly, we refer
to Aι,κ,τ as a Tτ -algebra and as a Tι+κ-algebra with these vector space structures, respectively, in mind.
We finally recall the Tτ -vector space isomorphism aι,κ,τ : T 2κ

τ → Aι,κ,τ , which sends the coefficient vector
aι,κ,τ : (ςu)u∈Bκ

7→
∑

u∈Bκ
ςu · m̃on(Y0, . . . , Yκ−1, u0, . . . , uκ−1); following [DP23b, § 3.4], we call this map the

natural embedding.
We recall the extension code construction of [DP23b, § 3.1]. For notational convenience, we specialize

that construction to our setting of interest (namely, to that characterized by a Reed–Solomon code with

8

symbols in the tower algebra). Below, we fix tower height parameters ι, κ, and τ as above, size and rate
parameters ℓ ≥ 0 and R ≥ 0, and finally a domain S ⊂ Tι+κ constructed as in Subsection 2.5.

Definition 2.3 (Diamond–Posen [DP23b, Def. 3.1]). For C ⊂ T 2ℓ+R

ι+κ the code RSTι+κ,S [2
ℓ+R, 2ℓ], and Aι,κ,τ

a tower algebra, we define C’s extension code Ĉ ⊂ A2ℓ+R

ι,κ,τ by reusing C’s generator matrix. Equivalently,

we set as Ĉ :=
{
(P (x))x∈S

∣∣∣ P (X) ∈ Aι,κ,τ [X]≺2ℓ
}

the set of Aι,κ,τ -valued 2ℓ+R-tuples which arise as the

evaluations of some polynomial P (X) of degree less than 2ℓ, with coefficients in Aι,κ,τ , over the domain S.

In Definition 2.3, we give meaning to the expression P (x), for x ∈ S, by embedding S ⊂ Tι+κ ⊂ Aι,κ,τ via

the synthetic ring inclusion. We note that the extension code Ĉ ⊂ A2ℓ+R

ι,κ,τ also has distance d := 2ℓ+R−2ℓ+1
(see [DP23b, Thm. 3.2]).

The following Schwartz–Zippel variant will prove useful below.

Lemma 2.4. Fix a ϑ-variate polynomial s(X0, . . . , Xϑ−1) ∈ Aι,κ,τ [X0, . . . , Xϑ−1], of total degree at most
d say, with coefficients in the tower algebra Aι,κ,τ . If s(X0, . . . , Xϑ−1) is not the zero polynomial, then the
locus E ⊂ T ϑ

τ consisting of tuples (r0, . . . , rϑ−1) ∈ T ϑ
τ for which s(r0, . . . , rϑ−1) = 0 is of mass µ(E) ≤ d

|Tτ | .

Proof. We fix a Tτ -basis of Aι,κ,τ (for example, the monomial basis 1, Y0, Y1, . . . , Y0 · · · ·Yκ−1 suffices).
Writing each of s’s coefficients in coordinates with respect to this basis, we obtain a collection of polynomials
(sv(X0, . . . , Xϑ−1))v∈Bκ

, say, in Tτ [X0, . . . , Xϑ−1]—each likewise of total degree at most d—such that, for

each input (r0, . . . , rϑ−1) ∈ T ϑ
τ , s(r0, . . . , rϑ−1) = 0 if and only if sv(r0, . . . , rϑ−1) = 0 holds for each

v ∈ Bκ. Moreover, our hypothesis whereby s is nonzero implies that at least one of these polynomials—say,
sv∗(X0, . . . , Xϑ−1)—is not zero; we see that the standard Schwartz–Zippel lemma applies to sv∗ . Since s’s
vanishing locus in T ϑ

τ is the intersection of those of the respective polynomials (sv(X0, . . . , Xϑ−1))v∈Bκ
, we

conclude that the conclusion of the Schwartz–Zippel lemma applies equally to s.

We note that, in Lemma 2.4, we evaluate s(X0, . . . , Xϑ−1) only on Tτ -valued inputs (r0, . . . , rϑ−1) ∈ T ϑ
τ .

2.6 Proximity Gaps

We turn to proximity gaps, following [DP23a] and [DP23b]. As above, we fix a Reed–Solomon code C :=

RSTι+κ,S [2
ℓ+R, 2ℓ]; we moreover write d := 2ℓ+R − 2ℓ + 1 for C’s distance, as well as Ĉ ⊂ A2ℓ+R

ι,κ,τ for C’s
extension code. We record below the following specialization of a result of Diamond and Posen [DP23b,

Thm. 3.10]. We fix a folding parameter ϑ. Below, we understand the matrix action of
⊗ϑ−1

i=0 (1− ri, ri) via
the constant vector space structure on Aι,κ,τ .

Theorem 2.5. Fix a proximity parameter e ∈
{
0, . . . ,

⌊
d−1
3

⌋}
. If elements u0, . . . , u2ϑ−1 of A2ℓ+R

ι,κ,τ satisfy

Pr
(r0,...,rϑ−1)∈T ϑ

τ

d
[⊗ϑ−1

i=0 (1− ri, ri)
]
·

u0

· · ·
u2ϑ−1

, Ĉ
 ≤ e

 > 2 · ϑ · e+ 1

|Tτ |
,

then dm
(
(ui)

2ϑ−1
i=0 , Ĉ2ϑ

)
≤ e.

Proof. This is exactly the specialization of [DP23b, Thm. 3.10] to the Reed–Solomon code C ⊂ T 2ℓ+R

ι+κ .

It is an important open question to improve the proximity parameter range in Theorem 2.5’s hypothesis
to e ∈

{
0, . . . ,

⌊
d−1
2

⌋}
. It is essentially the content of [DP23a, Thm. 3.1] that—for any linear code, and for

any proximity parameter e ∈
{
0, . . . ,

⌊
d−1
2

⌋}
—the case ϑ = 1 of Theorem 2.5 implies the general case ϑ > 1

(and this reduction goes through even for codes over algebras). Our question would thus follow from an
algebra-theoretic variant of [DP23a, Conj. 2.4]. The conjecture [DP23a, Conj. 2.4] itself appears implicitly
in Ames, Hazay, Ishai, and Venkitasubramaniam’s Ligero [AHIV23, § 4.1.1]. In the Reed–Solomon setting
in particular—and, crucially, over a field—Ben-Sasson et al. [Ben+23, Thm. 4.1] achieve a result essentially
equivalent to [DP23a, Conj. 2.4] (albeit with a slightly worse false witness probability).

9

The prospect of adapting the proof technique of [Ben+23, Thm. 4.1] to the algebra setting is discussed
explicitly in [DP23b, Rem. 3.18]. Unfortunately, while the proof of [DP23a, Thm. 2.1] (which treats only
the range e ∈

{
0, . . . ,

⌊
d−1
3

⌋}
) adapts almost immediately to the algebra setting, that of [Ben+23, Thm. 4.1]

does not. Rather, that latter result invokes in a central way the algebraic properties of the code’s coefficient
field K, and relies heavily on unique factorization and cancellability in the univariate polynomial ring K[Z].
Despite expending significant effort, we were not able to adapt the proof of [Ben+23, Thm. 4.1] to the algebra
setting; we pose that adaptation as a possible future avenue. On the other hand, the algebraic technicalities
raised by that adaptation make plausible the prospect that a direct attack on the general conjecture [DP23a,
Conj. 2.4]—rather than an adaptation of the Reed–Solomon-specific result [Ben+23, Thm. 4.1]—might most
directly serve to advance our goal. Of course, again, this latter endeavor must moreover resolve [DP23a,
Conj. 2.4] by means which adapt to the algebra setting (i.e., akin to those used by [DP23a, Thm. 2.1]).

We record the relevant conjecture as follows.

Conjecture 2.6. We wonder whether Theorem 2.5 holds even for proximity parameters e ∈
{
0, . . . ,

⌊
d−1
2

⌋}
.

3 Polynomial Commitment Schemes

We now present our results. Following the approach of [DP23b, § 3], we present two schemes. Our first,
presented in Subsection 3.4, is a binary-field adaptation of a technique due to Zeilberger, Chen and Fisch
[ZCF23, § 5], which, moreover, introduces a multilinear folding technique. Our second scheme, given in
Subsection 3.5, adjusts our first, in such a way as to make it support even tiny fields with no embedding
overhead. That is, our second scheme is a “packed version” of our first.

3.1 Security Definitions and Notions

We record security definitions. Departing slightly from previous works, we treat polynomial commitment in
the IOP model ; that is, for our purposes, a “polynomial commitment scheme” is an IOP (i.e., a protocol in
which a string oracle is available to both parties) which captures the commitment, and subsequent evaluation,
of a polynomial. Our key security results asserts that a secure “IOPCS”, upon being inlined into a secure
PIOP, yields a secure IOP.

Our approach contrasts with that taken by previous works (we note e.g. Diamond and Posen [DP23b]
and Setty [Set20]). These works opt to define polynomial commitment schemes in the plain (random oracle)
model; these works then argue that a plain PCS, upon being inlined into a secure PIOP, yields a sound
argument. Of course, this latter approach absorbs the Merklization process both into the PCS and into
the composition theorem. Our approach bypasses this technicality, and separates the relevant concerns;
indeed, upon bootstrapping a secure PIOP into a secure IOP (using our composition procedure), we may
finally, by invoking generically the compiler of Ben-Sasson, Chiesa and Spooner [BCS16] from IOPs to secure
arguments, obtain a secure argument.

We begin by defining various oracle models, following [DP23b].

Definition 3.1. An IOP Π = (P,V) is an interactive protocol in which the parties may freely use a certain
vector oracle, which operates as follows, on the security parameter λ ∈ N:

FUNCTIONALITY 3.2 (vector oracle).
An alphabet A (allowed to depend on λ) is fixed.

• Upon receiving (submit, A,m, f) from P, where m ∈ N and f ∈ ABm , output (receipt, A,m, [f])
to all parties, where [f] is some unique handle onto the vector f .

• Upon receiving (query, [f], v) from V, where v ∈ Bm, send V (result, f(v)).

Definition 3.3. A polynomial IOP Π = (P,V) is an interactive protocol in which the parties may freely
use a certain multilinear polynomial oracle, which operates as follows, on the security parameter λ ∈ N:

10

FUNCTIONALITY 3.4 (polynomial oracle).
A field K and a field extension L / K (allowed to depend on λ) are fixed.

• Upon receiving (submit,K, ℓ, t) from P, where ℓ ∈ N and t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]
⪯1,

output (receipt,K, ℓ, [t]) to all parties, where [t] is some unique handle onto the polynomial t.

• On input (query, [t], r) from V, where r ∈ Lℓ, send V (result, t(r0, . . . , rℓ−1)).

Definition 3.5. We say that the IOP or a polynomial IOP (as the case may be) Π = (P,V) is se-
cure with respect to the relation R if, for each PPT adversary A, there is an expected PPT emu-
lator E and a negligible function negl, such that, for each security parameter λ ∈ N and each pair
(i,x), provided that the protocol is run on the security parameter λ, writing w ← EA(i,x), we have
|Pr[⟨A(i,x),V(i,x)⟩ = 1]− Pr[R(i,x,w) = 1]| ≤ negl(λ).

We informally interpret the above definitions in the following way. In Definition 3.1, the oracle queries
at a verifier-supplied point in the cube a prover-supplied mapping defined on the cube; in Definition 3.3, the
oracle queries at an arbitrary verifier-supplied point the multilinear extension of just such a mapping. The
difference between these two models, perhaps superficially minor, is in fact enormous; the primary purpose
of this paper is to construct various IOPCS s—see Definition 3.6 below—each of which, by definition, serves
to bootstrap a vector oracle into a polynomial oracle (and consequently, a PIOP into an IOP).

Definition 3.6. A interactive oracle polynomial commitment scheme (IOPCS) is a tuple of algorithms
Π = (Setup,Commit,P,V), each allowed access to the vector oracle, with the following syntax:

• params ← Π.Setup(1λ, ℓ,K). On input a number-of-variables parameter ℓ and a field K, outputs
params, which includes, among other things, a field extension L / K.

• [f]← Π.Commit(params, t). On input a multilinear polynomial t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]
⪯1,

outputs a handle [f] to a vector.

• b← ⟨P([f], s, r; t),V([f], s, r)⟩ is an IOP, with common input a vector handle [f], an evaluation point
(r0, . . . , rℓ−1) ∈ Lℓ, and a claimed evaluation s ∈ L, where P has as further input a multilinear
polynomial t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]

⪯1, and where V outputs a success bit b.

In order to ensure that elements t(X0, . . . , Xℓ−1) of K[X0, . . . , Xℓ−1]
⪯1 are representable using polyno-

mially many bits, as well as that the opening IOP (P,V) is efficient for both parties, we impose without
further comment the mild assumption whereby both log(|K|) and log(|L|) grow polynomially in λ.

The IOPCS Π is complete if the obvious correctness property holds. That is, for each multilin-
ear polynomial t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]

⪯1 and each honestly generated commitment [f] ←
Π.Commit(params, t), it should hold that, for each r ∈ Lℓ, setting s := t(r0, . . . , rℓ−1), the honest prover
algorithm induces the verifier to accept with probability 1, so that ⟨P([f], s, r; t),V([f], s, r)⟩ = 1.

We now define the security of IOPCSs.

Definition 3.7. For each interactive oracle polynomial commitment scheme Π, security parameter λ, values
ℓ and K, PPT query sampler Q, PPT adversary A, and PPT emulator E , we define the following experiment:

• The experimenter samples params← Π.Setup(1λ, ℓ,K), and gives params to A and E .

• The adversary, after interacting arbitrarily with the vector oracle, outputs a handle [f]← A(params).

• On input A’s record of interactions with the oracle, E outputs t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]
⪯1.

• The query sampler outputs (r0, . . . , rℓ−1)← Q(params); A responds with an evaluation claim s← A(r).

• The experimenter defines the following two random bits:

– By running the evaluation IOP with A as V, obtain the bit b← ⟨A(s, r),V([f], s, r)⟩.

– Obtain the further bit b′ := t(r0, . . . , rℓ−1)
?
= s.

The IOPCS Π is secure if, for each PPT adversary A, there is a PPT emulator E and a negligible function
negl such that, for each λ ∈ N, each ℓ and K, and each PPT query sampler Q, Pr[b = 1 ∧ b′ = 0] ≤ negl(λ).

11

3.2 Using FRI in Novel Polynomial Basis

We begin by proposing a specific construction of those subspace polynomials q(0), . . . , q(ℓ−1) invoked internally
by FRI. They key is to do so in such a way as to induce compatibility with the novel polynomial basis.

Throughout this section, we fix a binary field K, with F2-basis (β0, . . . , βr−1), say, as well as a size
parameter ℓ ∈ {0, . . . , r− 1} and a rate parameter R ∈ {1, . . . , r− ℓ}. We finally recall the (non-normalized)
subspace vanishing polynomials Wi(X) ∈ K[X], for i ∈ {0, . . . , ℓ− 1}, which we now view as F2-linear maps
Wi : K → K (see Subsection 2.3).

Definition 3.8. We initialize S(0) := ⟨β0, . . . , βℓ+R−1⟩. Moreover, for each i ∈ {0, . . . , ℓ− 1}, we set

q(i) :=
Wi(βi)

2

Wi+1(βi+1)
·X · (X + 1),

as well as, inductively, S(i+1) := im
(
q(i)
∣∣
S(i)

)
.

The following lemma demonstrates that this construction fulfills the template demanded by (1).

Lemma 3.9. For each i ∈ {0, . . . , ℓ− 1}, ker
(
q(i)
)
⊂ S(i) holds.

Proof. We note that, trivially, ker
(
q(i)
)
= {0, 1} for each i ∈ {0, . . . , ℓ − 1}. For each i ∈ {0, . . . , ℓ − 1}, we

claim in fact that the inductive invariant S(i) = im
(
Ŵi

∣∣∣
S(0)

)
holds. Assuming this invariant, the conclusion

of the lemma certainly follows; indeed, we see immediately that 1 = Ŵi(βi), while of course βi ∈ S(0).
It thus suffices to argue that the inductive invariant holds throughout. In the base case i = 0, the

claim is a triviality, since Ŵ0(X) = X is the identity. We thus fix an index i ∈ {0, . . . , ℓ − 1}, and show
that the assignment S(i+1) := im

(
q(i)
∣∣
S(i)

)
preserves the inductive invariant; in other words, we must show

that S(i+1) := im
(
q(i)
∣∣
S(i)

) ?
= im

(
Ŵi+1

∣∣∣
S(0)

)
. Unrolling the assumed inductive invariant on this equality’s

left-hand side, we reduce it in turn to the equality im
(
q(i) ◦ Ŵi

∣∣∣
S(0)

)
?
= im

(
Ŵi+1

∣∣∣
S(0)

)
. This latter equality

itself follows from the following direct calculation:(
q(i) ◦ Ŵi

)
(X) =

Wi(βi)
2

Wi+1(βi)
· Ŵi(X) ·

(
Ŵi(X) + 1

)
(by definition of q(i).)

=
Wi(βi)

2

Wi+1(βi+1)
· Wi(X)

Wi(βi)
· Wi(X) +Wi(βi)

Wi(βi)
(by definition of Ŵi.)

=
Wi(X) · (Wi(X) +Wi(βi))

Wi+1(βi+1)
(cancellation of Wi(βi)

2.)

=
Wi+1(X)

Wi+1(βi+1)
(recursive characterization of Wi+1(X).)

= Ŵi+1(X) (by definition of Ŵi+1(X).)

in the second-to-last step, we exploit the recursive identity Wi+1(X) = Wi(X) · (Wi(X) +Wi(βi)), itself a
basic consequence of the definitions of Wi+1 and Wi and of the linearity of Wi.

Lemma 3.9 shows that the maps q(0), . . . , q(ℓ−1) and the spaces S(0), . . . , S(ℓ) yield a valid global param-
eterization, suitable for use in FRI.

We extract and state separately a few corollaries of the proof of Lemma 3.9.

Corollary 3.10. For each i ∈ {0, . . . , ℓ}, S(i) = im
(
Ŵi

∣∣∣
S(0)

)
.

Proof. This fact is shown explicitly in the course of Lemma 3.9.

As a further side effect, Lemma 3.9 shows that the polynomials q(0), . . . , q(ℓ−1) collectively “factor” the
normalized subspace polynomials Ŵ0, . . . , Ŵℓ−1, in the following sense:

12

Corollary 3.11. For each i ∈ {0, . . . , ℓ}, Ŵi = q(i−1) ◦ · · · ◦ q(0).

Proof. This fact admits a simple inductive proof. In the base case i = 0, there’s nothing to prove (the empty
composition is the identity). Letting i ∈ {0, . . . , ℓ − 1} be arbitrary, the proof of Lemma 3.9 shows that

Ŵi+1 = q(i) ◦ Ŵi. Applying induction, we conclude that this latter map in turn equals q(i) ◦ · · · ◦ q(0).

We note finally the following result.

Corollary 3.12. For each i ∈ {0, . . . , ℓ}, the set
(
Ŵi(βi), . . . , Ŵi(βℓ+R−1)

)
is an F2-basis of the space S(i).

Proof. Indeed, the subspace Vi := ⟨βi, . . . , βℓ+R−1⟩ clearly satisfies Vi ⊂ S(0), so that Ŵi(Vi) ⊂ Ŵi(S
(0)),

which itself equals S(i) (by Corollary 3.10). On the other hand, the restriction of Ŵi to Vi is necessarily

injective, since Ŵi’s kernel ⟨β0, . . . , βi−1⟩ intersects Vi trivially. Since S(i) is ℓ + R − i-dimensional, we

conclude by a dimension count that
(
Ŵi(βi), . . . , Ŵi(βℓ+R−1)

)
spans S(i).

The bases
〈
Ŵi(βi), . . . , Ŵi(βℓ+R−1)

〉
= S(i), for i ∈ {0, . . . , ℓ}, allow us to simplify various aspects of

our protocol’s implementation. For example, expressed in coordinates with respect to these bases, each map
q(i) : S(i) → S(i+1) acts simply by projecting away its 0th-indexed component (indeed, for each i ∈ {0, . . . , ℓ},
q(i) maps the basis (Ŵi(βi), . . . , Ŵi(βℓ+R−1)) to (0, Ŵi+1(βi+1), . . . , Ŵi+1(βℓ+R−1))). Similarly, for each
i ∈ {0, . . . , ℓ − 1} and each y ∈ S(i+1), the two K-elements x ∈ S(i) for which q(i)(x) = y differ precisely
at their 0th components, and elsewhere agree with y’s coordinate representation. Below, we often identify
S(i) ∼= Bℓ+R−i as sets, using these bases; moreover, where possible, we eliminate altogether the maps
q(0), . . . , q(ℓ−1) from our descriptions. These measures make our protocol’s description (and in particular, its
implementation) more transparent.

3.3 FRI Folding, Revisited

We now introduce a new FRI-like folding mechanism. We recall that FRI [BBHR18, § 3.2] makes use of
a folding arity constant η; FRI stipulates that, to fold a given oracle, the prover interpolate a univariate
polynomial of degree less than 2η on each coset of the given oracle, and finally evaluate the resulting
polynomials collectively at the verifier’s challenge point. We introduce a new, multilinear folding mechanism
as follows. Informally, we stipulate that the verifier send a fixed and positive—and yet arbitrary—number ϑ of
folding challenges, and that the prover fold its oracle, again coset-wise, using a length-2ϑ tensor combination
(in the sense of Subsection 2.1) of the verifier’s challenges over each coset. Below, we write L /K for a field
extension.

Definition 3.13. We fix an index i ∈ {0, . . . , ℓ − 1} and a map f (i) : S(i) → L. For each r ∈ L, we define
the map fold

(
f (i), r

)
: S(i+1) → L by setting, for each y ∈ S(i+1):

fold
(
f (i), r

)
: y 7→

[
1− r r

]
·

[
x1 −x0

−1 1

]
·

[
f (i)(x0)

f (i)(x1)

]
,

where we write (x0, x1) := q(i)
−1

({y}) for the fiber of q(i) over y ∈ S(i).

Remark 3.14. Definition 3.13’s quantity fold
(
f (i), r

)
(y) is closely related—and yet not equivalent—to FRI’s

expression interpolant
(
f (i)
∣∣
q(i)−1({y})

)
(r). (FRI’s variant, however, admits a similar matrix expression.) The

essential point is that FRI’s variant induces a monomial fold, as opposed to a Lagrange fold; that is, if we
were to use FRI’s variant instead of our own, then our Lemma 3.21 below would remain true, albeit with

the alternate conclusion P (i+1)(X) =
∑2ℓ−i−1−1

j=0 (a2j + r′i · a2j+1) · X(i+1)
j (X). Our entire theory admits a

parallel variant in this latter setting, though that variant introduces further complications.

We finally record the following iterated extension of Definition 3.14.

Definition 3.15. We fix a positive folding factor ϑ, an index i ∈ {0, . . . , ℓ− ϑ}, and a map f (i) : S(i) → L.
For each tuple (r0, . . . , rϑ−1) ∈ Lϑ, we abbreviate fold

(
f (i), r0, . . . , rϑ−1

)
:= fold

(
· · · fold

(
f (i), r0

)
, · · · , rϑ−1

)
.

13

We have the following mathematical characterization of this iterated folding operation:

Lemma 3.16. For each positive folding factor ϑ, each index i ∈ {0, . . . , ℓ−ϑ}, and each y ∈ S(i+ϑ), there is
a 2ϑ×2ϑ invertible matrix My with entries in K, which depends only on y ∈ S(i+ϑ), such that, for each map
f (i) : S(i) → L and each tuple (r0 . . . , rϑ−1) ∈ Lϑ of folding challenges, we have the matrix representation:

fold
(
f (i), r0, . . . , rϑ−1

)
(y) =

[⊗ϑ−1
j=0 (1− rj , rj)

]
·

 My

 ·

f (i)(x0)
...

f (i)(x2ϑ−1)

,
where the right-hand vector’s values (x0, . . . , x2ϑ−1) represent the fiber

(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({y}) ⊂ S(i).

Proof. We prove the result by induction on ϑ. In the base case ϑ = 1, the claim is a tautology, in view of

Definition 3.14. We note that that definition’s matrix

[
x1 −x0

−1 1

]
is invertible, since its determinant x1−x0

is nonzero (and in fact equals 1, a fact we shall use below).
We thus fix a folding factor ϑ > 1, and suppose that the claim holds for ϑ − 1. We write (z0, z1) :=

q(i+ϑ−1)−1
({y}), as well as (x0, . . . , x2ϑ−1) :=

(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({y}). Unwinding Definition 3.15, we

recursively express the relevant quantity fold
(
f (i), r0, . . . , rϑ−1

)
(y)—which, for typographical reasons, we call

f—in the following way:

f =
[
1− rϑ−1 rϑ−1

]
·
[
z1 −z0

−1 1

]
·
[
fold

(
f (i), r0, . . . , rϑ−2

)
(z0)

fold
(
f (i), r0, . . . , rϑ−2

)
(z1)

]

=
[
1− rϑ−1 rϑ−1

]
·
[
z1 −z0

−1 1

]
·

 ⊗ϑ−2
j=0 (1− rj , rj) ⊗ϑ−2

j=0 (1− rj , rj)

︸ ︷︷ ︸

these matrices may be interchanged.

·

Mz0

Mz1

 ·

f (i)(x0)

...

f (i)(x2ϑ−1)

.
In the second step above, we apply the inductive hypothesis on both z0 and z1. That hypothesis fur-
nishes the nonsingular, 2ϑ−1 × 2ϑ−1 matrices Mz0 and Mz1 ; we note moreover that the union of the fibers(
q(i+ϑ−2) ◦ · · · ◦ q(i)

)−1
({z0}) and

(
q(i+ϑ−2) ◦ · · · ◦ q(i)

)−1
({z1}) is precisely

(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({y}). In-

terchanging the two matrices bracketed above, we further reëxpress this quantity as:

=
[
1− rϑ−1 rϑ−1

]
·

[⊗ϑ−2
j=0 (1− rj , rj) ⊗ϑ−2

j=0 (1− rj , rj)

]
·

diag(z1) diag(−z0)

diag(−1) diag(1)

 ·

Mz0

Mz1

 ·

f (i)(x0)

...

f (i)(x2ϑ−1)

.
By the standard recursive substructure of the tensor product, the product of the left-hand two matrices
equals exactly

⊗ϑ−1
j=0 (1 − rj , rj). On the other hand, the product of the two 2ϑ × 2ϑ nonsingular matrices

above is itself nonsingular, and supplies the required 2ϑ × 2ϑ matrix My.

We emphasize that, in Lemma 3.16, the matrix My depends only on y ∈ S(i+ϑ)—and of course on ϑ and
i ∈ {0, . . . , ℓ− ϑ}—but not on the map f (i) or the folding challenges (r0, . . . , rϑ−1) ∈ Lϑ.

Remark 3.17. Interestingly, the matrixMy of Lemma 3.16 is nothing other than that of the inverse additive
NTT [LCH14, § III. C.] on the coset (x0, . . . , x2ϑ−1); i.e., it’s the matrix which, given the evaluations of some
polynomial of degree less than 2ϑ on (x0, . . . , x2ϑ−1), computes the coefficients, with respect to the ith-order
novel basis (see Remark 3.22 below), of that polynomial. We currently lack a clean explanation of this fact.

Remark 3.18. For each given map f (i) : S(i) → L—expressed as a table of values, via the identification
S(i) ∼= Bℓ+R−i, say—the table of values of fold

(
f (i), r0, . . . , rϑ−1

)
: S(i+ϑ) → L may be computed efficiently,

given the tuple (r0, . . . , rϑ−1). Indeed, Definitions 3.13 and 3.15 directly suggests a ϑ-pass, Θ(|S(i)|)-time
algorithm for this task. Lemma 3.16 is not interesting algorithmically, but rather mathematically; indeed,
it appears repeatedly in our security proofs below (see Theorem 3.27, and in particular Proposition 3.30).

14

3.4 Our Protocol

We begin by introducing our simple small-field IOPCS, which doesn’t use packing. In order to present a
notationally simpler version of our protocol, we assume below that ϑ | ℓ; this requirement is not necessary.

CONSTRUCTION 3.19 (Simple IOPCS).
We define Π = (Setup,Commit,P,V) as follows.

• params← Π.Setup(1λ, ℓ,K). On input 1λ, ℓ, and K, where the degree r (say) of K over F2 is more
than ℓ, return an extension field L / K for which |L| ≥ 2ω(log λ), a constant Reed–Solomon rate
parameter R ∈ {1, . . . , r − ℓ}, a folding factor ϑ | ℓ, and a repetition parameter γ = ω(log(λ)).
Fix an arbitrary F2-basis (β0, . . . , βr−1) of K; writing (X0(X), . . . , X2ℓ−1(X)) for the resulting

novel K-basis of K[X]≺2ℓ , fix the domains S(0), . . . , S(ℓ) and the polynomials q(0), . . . , q(ℓ−1) as

prescribed by Subsection 3.2. Write C(0) ⊂ K2ℓ+R
for the Reed–Solomon code RSK,S(0) [2ℓ+R, 2ℓ].

• [f] ← Π.Commit(params, t). On input t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]
⪯1, use t’s Lagrange

coefficients (t(v))v∈Bℓ
as the coefficients, in the novel polynomial basis, of a univariate polynomial

P (X) :=
∑

v∈Bℓ
t(v) · X{v}(X), say. Using Algorithm 2, compute the Reed–Solomon codeword

f : S(0) → K defined by f : x 7→ P (x). Submit (submit,K, ℓ +R, f) to the vector oracle. Upon
receiving (receipt,K, ℓ+R, [f]) from the oracle, output the vector handle [f].

We define (P,V) as the following IOP, in which both parties have the common input [f], s ∈ L, and
(r0, . . . , rℓ−1) ∈ Lℓ, and P has the further input t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]

⪯1.

• P writes h(X0, . . . , Xℓ−1) := t(X0, . . . , Xℓ−1) · ẽq(r0, . . . , rℓ−1, X0, . . . , Xℓ−1).

• P and V both abbreviate f (0) := f and s0 := s, and execute the following loop:

1: for i ∈ {0, . . . , ℓ− 1} do
2: P sends V the univariate polynomial hi(X) :=

∑
v∈Bℓ−i−1

h(r′0, . . . , r
′
i−1, X, v0, . . . , vℓ−i−2).

3: V requires si
?
= hi(0) + hi(1). V samples r′i ← L, sets si+1 := hi(r

′
i), and sends P r′i.

4: P defines f (i+1) : S(i+1) → L as the function fold
(
f (i), r′i

)
of Definition 3.13.

5: if i+ 1 = ℓ then P sends c := f (ℓ)(0, . . . , 0) to V.
6: else if ϑ | i+ 1 then P submits (submit, L, ℓ+R− i− 1, f (i+1)) to the oracle.

• V requires sℓ
?
= c · ẽq(r0, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−1).

• V assigns cℓ := c, and executes the following querying procedure:

1: for γ repetitions do
2: V samples u← BR randomly.
3: for i ∈ {ℓ− ϑ, ℓ− 2 · ϑ, . . . , 0} (i.e., in downward order, taking ϑ-sized steps) do
4: for each v ∈ Bϑ, V submits (query, [f (i)], v ∥ u) to the vector oracle.

5: V requires ci+ϑ
?
= fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(u).

6: V samples v ← Bϑ, sets ci := f (i)(v ∥ u), and overwrites u := v ∥ u.

In our commitment procedure above, we give meaning to the commitment of f by implicitly identifying
S(0) ∼= Bℓ+R as sets (as discussed above); similarly, in the prover’s line 6 above, we identify Bℓ+R−i−1

∼=
S(i+1). Conversely, in line 5 of the verifier’s querying procedure above, the verifier must implicitly identify
the Bℓ+R−i−ϑ-element u with an S(i+ϑ)-element—and the Bℓ+R−i-elements (v ∥ u)v∈Bϑ

with S(i)-elements—
in order to appropriately apply Definition 3.15. We note that, in line 5, V has precisely the information it
requires in order to compute fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(u) (namely, the values of f (i) on the fiber (v ∥ u)v∈Bϑ

∼=(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({u})).

The completness of Construction 3.19’s evaluation IOP is not straightforward. For instance, it is simply
not obvious what the folding operation of line 4 does to the coefficients of the low-degree polynomial P (i)(X)
underlying f (i). (Though our folding operation departs slightly from FRI’s—we refer to Remark 3.14 for

15

a discussion of this fact—the conceptual obstacle is essentially the same.) Indeed, the completeness proof
of generic FRI [BBHR18, § 4.1.1] tells us that the folded function f (i+1) represents the evaluations of some
polynomial P (i+1)(X) of appropriate degree on the domain S(i+1). But which one? The proof of [BBHR18,
§ 4.1.1] fails to constructively answer this question, in that it invokes the generic characteristics of the
multivariate reduction—called Q(i)(X,Y)—of P (i)(X) by Y − q(i)(X). (We refer to e.g. von zur Gathen and
Gerhard [GG13, Alg. 21.11] for a thorough treatment of multivariate division.) It seems simply infeasible to
analyze by hand the execution of the multivariate division algorithm with sufficient fidelity as to determine
with any precision the result P (i+1)(Y) = Q(i)(r′i, Y) (though we don’t rule out that a proof could in principle
be achieved by this means).

Instead, we introduce certain, carefully-selected K-bases of the spaces K[X]≺2ℓ−i

, for i ∈ {0, . . . , ℓ}
(essentially, “higher-order” variants of the novel polynomial basis). As it turns out, the respective coeffi-
cients of P (i)(X) and P (i+1)(X) with respect to these bases are tractably related; in fact, their relationship
amounts to an even–odd tensor-fold by the FRI challenge r′i. Proceeding by induction, we obtain the desired
characterization of c.

Theorem 3.20. The IOPCS Π = (Setup,Commit,P,V) of Construction 3.19 is complete.

Proof. We fix P’s input t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]
⪯1, given in Lagrange coefficients as

∑
v∈Bℓ

t(v) ·
ẽq(X0, . . . , Xℓ−1, v0, . . . , vℓ−1). Our primary task is to argue that, provided P follows the protocol, its final
FRI message c is nothing other than t(r′0, . . . , r

′
ℓ−1).

We introduce a family of further polynomial bases. For each i ∈ {0, . . . , ℓ − 1}, we define the ith-order

subspace vanishing polynomials Ŵ
(i)
0 , . . . , Ŵ

(i)
ℓ−i−1 as the polynomials X, q(i), q(i+1) ◦q(i), . . . , q(ℓ−2) ◦ · · · ◦q(i),

respectively (that is, Ŵ
(i)
k := q(i+k−1)◦· · ·◦q(i), for each k ∈ {0, . . . , ℓ−i−1}). Finally, we define the ith-order

novel polynomial basis by setting X
(i)
j :=

∏ℓ−i−1
k=0 Ŵ

(i)
k

jk
, for each j ∈ {0, . . . , 2ℓ−i−1} (here, again, we write

(j0, . . . , jℓ−i−1) for the bits of j). We adopt the notational convention whereby the ℓth basis consists simply

of the constant polynomial X
(ℓ)
0 (X) = 1. Our proof below relies on the following inductive relationship

between the bases
(
X

(i)
j (X)

)2ℓ−i−1

j=0
and

(
X

(i+1)
j (X)

)2ℓ−i−1−1

j=0
. Indeed, for each j ∈ {0, . . . , 2ℓ−i−1 − 1}, the

polynomials X
(i)
2j (X) and X

(i)
2j+1(X) are precisely X

(i+1)
j

(
q(i)(X)

)
and X ·X(i+1)

j

(
q(i)(X)

)
, respectively.

We now pose the following inductive claim:

Lemma 3.21. Fix an index i ∈ {0, . . . , ℓ − 1}. If f (i) : S(i) → L is exactly the evaluation over S(i) of the

polynomial P (i)(X) =
∑2ℓ−i−1

j=0 aj ·X(i)
j (X), then, under honest prover behavior, f (i+1) : S(i+1) → L is exactly

the evaluation over S(i+1) of the polynomial P (i+1)(X) =
∑2ℓ−i−1−1

j=0 ((1− r′i) · a2j + r′i · a2j+1) ·X(i+1)
j (X).

Proof. Given P (i)(X) as in the hypothesis of the lemma, we introduce the even and odd refinements

P
(i+1)
0 (X) :=

∑2ℓ−i−1−1
j=0 a2j · X(i+1)

j (X) and P
(i+1)
1 (X) :=

∑2ℓ−i−1−1
j=0 a2j+1 · X(i+1)

j (X) of P (i)(X). We
note the following key polynomial identity:

P (i)(X) = P
(i+1)
0 (q(i)(X)) +X · P (i+1)

1 (q(i)(X)); (2)

This identity is a direct consequence of the definitions of the higher-order novel polynomial bases.
We turn to the proof of the lemma. We claim that f (i+1)(y) = P (i+1)(y) holds for each y ∈ S(i+1). To

this end, we let y ∈ S(i+1) be arbitrary; we moreover write (x0, x1) := q(i)
−1

({y}) for the fiber of q(i) over y.
We begin by examining the values P (i)(x0) and P (i)(x1). For each b ∈ {0, 1} we have:

P (i)(xb) =

2ℓ−i−1∑
j=0

aj ·X(i)
j (xb) (by definition of P (i).)

=

2ℓ−i−1−1∑
j=0

a2j ·X(i+1)
j

(
q(i)(xb)

)
+ xb ·

2ℓ−i−1−1∑
j=0

a2j+1 ·X(i+1)
j

(
q(i)(xb)

)
(by the identity (2).)

= P
(i+1)
0 (y) + xb · P (i+1)

1 (y). (using q(i)(xb) = y and the definitions of P
(i+1)
0 and P

(i+1)
1 .)

16

Using now our assumption whereby f (i)(xb) = P (i)(xb) for each b ∈ {0, 1}, and unwinding the prescription
of Definition 3.13, we obtain:

f (i+1)(y) =
[
1− r′i r′i

]
·

[
x1 −x0

−1 1

]
·

[
P (i)(x0)

P (i)(x1)

]
(by our hypothesis on f (i), and by Definition 3.13.)

=
[
1− r′i r′i

]
·

[
x1 −x0

−1 1

]
·

[
1 x0

1 x1

]
·

[
P

(i+1)
0 (y)

P
(i+1)
1 (y)

]
(by the calculation just performed above.)

=
[
1− r′i r′i

]
·

[
P

(i+1)
0 (y)

P
(i+1)
1 (y)

]
(cancellation of inverse matrices.)

= P (i+1)(y). (by the definitions of P
(i+1)
0 (X), P

(i+1)
1 (X), and P (i+1)(X).)

To achieve the third equality above, we note that the matrices

[
x1 −x0

−1 1

]
and

[
1 x0

1 x1

]
are inverses; here,

we use the guarantee x1 − x0 = 1, a basic consequence of Definition 3.8 (or rather of ker
(
q(i)
)
= {0, 1}).

Applying Corollary 3.11, we note finally that
(
Ŵ

(0)
k

)ℓ−1

k=0
and

(
X

(0)
j

)2ℓ−1

i=0
themselves yield precisely the

standard subspace vanishing and novel basis polynomials, respectively. It follows that in the base case i = 0 of
Lemma 3.21—and assuming honest behavior by the prover—we have that f (0) is exactly the evaluation over

S(0) of P (0)(X) := P (X) =
∑

v∈Bℓ
t(v)·X(0)

{v}(X). Applying Lemma 3.21 repeatedly, we conclude by induction

that f (ℓ) is the evaluation over S(ℓ) of the constant polynomial
∑

v∈Bℓ
t(v) · ẽq(r′0, . . . , r′ℓ−1, v0, . . . , vℓ−1) =

t(r′0, . . . , r
′
ℓ−1), and that c equals exactly this latter constant value.

We are now prepared to examine the verifier’s check sℓ
?
= c · ẽq(r0, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−1). By the analysis

just performed, under honest behavior by the prover, this latter quantity itself equals exactly t(r′0, . . . , r
′
ℓ−1) ·

ẽq(r0, . . . , rℓ−1, r
′
0, . . . , r

′
ℓ−1). Our claim reduces to the correctness of a certain sumcheck, as we presently

argue. Indeed, for h(X0, . . . , Xℓ−1) := t(X0, . . . , Xℓ−1) · ẽq(r0, . . . , rℓ−1, X0, . . . , Xℓ−1) defined exactly as
above, we note that

∑
v∈Bℓ

h(v) =
∑

v∈Bℓ
t(v0, . . . , vℓ−1) · ẽq(r0, . . . , rℓ−1, v0, . . . , vℓ−1) = t(r0, . . . , rℓ−1). As-

suming now that the prover’s claim is true, we see that s = t(r0, . . . , rℓ−1) =
∑

v∈Bℓ
h(v). The completeness

of the sumcheck thus implies that the verifier will accept its checks si
?
= hi(0) + hi(1). Finally, by the

prover’s description (really the sumcheck’s), we have hi(X) =
∑

v∈Bℓ−i−1
h(r′0, . . . , r

′
i−1, X, v0, . . . , vℓ−i−2) in

each instance of line 3 above. In particular, sℓ = h(r′0, . . . , r
′
ℓ−1) holds. Our analysis above thus shows that

c · ẽq(r0, . . . , rℓ−1, r
′
0, . . . , r

′
ℓ−1) = t(r′0, . . . , r

′
ℓ−1) · ẽq(r0, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−1) = h(r′0, . . . , r

′
ℓ−1) = sℓ.

The completeness of the verifier’s query phase is essentially self-evident; we note that V applies to each
oracle f (i) the same folding procedure as P does. This completes the proof of completeness.

Remark 3.22. Though it seems inessential to the proof of Theorem 3.20, it is interesting to note that, for

each i ∈ {0, . . . , ℓ − 1}, the ith-order basis
(
X

(i)
j

)2ℓ−i−1

i=0
is itself a novel polynomial basis in its own right,

namely that attached to the set of vectors
(
Ŵi(βi), . . . , Ŵi(βℓ−1)

)
. Equivalently, the ith-order subspace

vanishing polynomials
(
Ŵ

(i)
k

)ℓ−i−1

k=0
are simply the subspace vanishing polynomials attached to this latter

set of vectors. Indeed, for each k ∈ {0, . . . , ℓ − i − 1},
〈
Ŵi(βi), . . . , Ŵi(βi+k−1)

〉
⊂ ker

(
Ŵ

(i)
k

)
certainly

holds, since Ŵ
(i)
k ◦ Ŵi = q(i+k−1) ◦ · · · ◦ q(i) ◦ Ŵi = Ŵi+k, which annihilates ⟨β0, . . . , βi+k−1⟩ (here, we use

the definition of Ŵ
(i)
k and Corollary 3.11). On the other hand, Ŵ

(i)
k = q(i+k−1) ◦ · · · ◦ q(i)’s kernel can be of

dimension at most k (say by degree considerations), while the vectors Ŵi(βi), . . . , Ŵi(βi+k−1) are linearly
independent (a consequence of Corollary 3.12). We conclude that the above containment is an equality.

Finally, the subspace polynomials
(
Ŵ

(i)
k

)ℓ−i−1

k=0
are normalized. Indeed, using Corollary 3.11 again, we see

that, for each k ∈ {0, . . . , ℓ− i− 1}, Ŵ (i)
k

(
Ŵi(βi+k)

)
=
(
q(i+k−1) ◦ · · · ◦ q(i) ◦ Ŵi

)
(βi+k) = Ŵi+k(βi+k) = 1.

17

Remark 3.23. Using the techniques of Subsection 3.2 and of Theorem 3.20 above, we are able to suggest a
new explanation of the additive NTT algorithm of Lin, Chung and Han [LCH14, § III.], and of its correctness;
we note also our Algorithm 2 above. (We refer finally to Li, et al. [Li+18, Alg. 2] for a further perspective.) We

fix an index i ∈ {0, . . . , ℓ−1} and a polynomial P (i)(X) :=
∑2ℓ−i−1

j=0 aj ·X(i)
j (X), expressed with respect to the

ith-order novel basis. The key idea is that the values of P (i)(X) on the domain S(i) can be derived—using only

Θ
(
2ℓ+R−i

)
K-operations—given the values of P (i)(X)’s even and odd refinements P

(i+1)
0 (X) and P

(i+1)
1 (X)

(as in the proof of Lemma 3.21) over the domain S(i+1). This is a direct consequence of the identity (2) above.

Indeed, applying that identity, we see that, for y ∈ S(i+1) arbitrary, with fiber (x0, x1) := q(i)
−1

({y}), say, we
have the equalities P (i)(x0) := P

(i+1)
0 (y) + x0 ·P (i+1)

1 (y) and P (i)(x1) := P
(i+1)
0 (y) + x1 ·P (i+1)

1 (y). Since x0

and x1 in fact differ by exactly 1, we see that P (i)(x1) can be computed from P (i)(x0) using a single further
K-addition. We recover the key butterfly diagram of [LCH14, Fig. 1. (a)] (see also Algorithm 2 above) upon
carrying out this procedure recursively, with the convention whereby we flatten (using the space’s canonical
basis) and interleave the two copies of S(i+1) at each instance. The base case of the recursion consists of
the 2ℓ-fold interleaving of the domain S(ℓ), into which P (0)’s coefficients are tiled 2R times. The final stage
of the butterfly diagram yields the desired evaluation of P (0)(X) on S(0). Algorithm 2’s twiddle factors in
its ith stage, then, are nothing other than the respective first lifts x0 of y, as the image y = q(i)(x0) varies

throughout S(i+1). These latter elements x0, in turn, take precisely the form
∑ℓ+R−i−2

k=0 uk · Ŵi(βi+1+k), for

u ∈ Bℓ+R−i−1
∼= S(i+1) arbitrary; indeed, we suppress throughout the 0th canonical basis element Ŵi(βi) = 1

of S(i), since that element is subsumed into each butterfly. We find it interesting that the same polynomial
identity underlies both the correctness of [LCH14, § III.] and our above analysis of FRI’s folding.

We refrain from proving the security of Construction 3.19; rather, we defer instead to the security proof
of Construction 3.24 below. The proof of the former construction can be derived from that of the latter,
upon specializing that construction’s packing factor κ := 0.

3.5 Packing-Based Scheme

In this subsection, we describe a variant of Construction 3.19, designed for the use of very small fields (like
F2). We recall throughout the algebraic content of Subsection 2.5. Before presenting our construction, we
discuss how it must adapt the preliminary material of Subsection 3.2. In short, we must construct our novel
polynomial basis in the tower field Tι+κ; as a consequence, the entire content of Subsection 3.2 must be
understood in this field. In particular, below, we universally understand the domains S(0), . . . , S(ℓ−κ) as
subsets of Tι+κ, and hence as subsets of Aι,κ,ι ⊂ Aι,κ,τ via the synthetic ring inclusion. On the other hand,
the verifier’s folding challenges all r′i come from Tτ , and must operate on Aι,κ,τ via the constant vector-space
structure. Finally, the maps f (i) : S(i) → Aι,κ,τ , in general take values in the full tower algebra.

We explain this concretely in the following way. For each i ∈ {0, . . . , ℓ− κ− 1} and each y ∈ S(i+1), we
study in detail the meaning we must give to the expression fold

(
f (i), r′i

)
(y) of Definition 3.13. Of course, y, as

well as its preimages x0 and x1, resides in the synthetic subring of Aι,κ,τ ; on the other hand, we understand
1−r′i and r′i as elements of Aι,κ,τ ’s constant subring. Finally, the values f

(i)(x0) and f (i)(x1), in general, are
general elements of the algebra Aι,κ,τ . Thus, while the expression for fold

(
f (i), r′i

)
(y) remains superficially

identical, it involves both of Aι,κ,τ ’s named subrings.
Our packing-based polynomial commitment scheme proceeds as follows.

CONSTRUCTION 3.24 (Packed IOPCS).
We define Π = (Setup,Commit,P,V) as follows.

• params← Π.Setup(1λ, ℓ, ι). On input 1λ, ℓ, and ι, return a constant, positive rate parameter R ∈
N, a packing factor κ ≥ 0 for which 2ι+κ ≥ ℓ−κ+R, a folding factor ϑ | ℓ−κ, a tower height τ ≥
log(ω(log λ)), and a repetition parameter γ = ω(log(λ)). Write (X0(X), . . . , X2ℓ−κ−1(X)) for the

novel Tι+κ-basis of Tι+κ[X]≺2ℓ−κ

, and fix S(0), . . . , S(ℓ−κ) and q(0), . . . , q(ℓ−κ−1) as in Subsection

3.2. Write C(0) ⊂ T 2ℓ−κ+R

ι+κ for the Reed–Solomon code RSTι+κ,S(0) [2ℓ−κ+R, 2ℓ−κ].

18

• [f] ← Π.Commit(params, t). On input t(X0, . . . , Xℓ−1) ∈ Tι[X0, . . . , Xℓ−1]
⪯1, apply the natu-

ral embedding chunk-wise to t’s Lagrange coefficients (t(v))v∈Bℓ
, so obtaining the Tι+κ-vector(

t̂(v)
)
v∈Bℓ−κ

, say. Write P (X) =
∑

v∈Bℓ−κ
t̂(v) ·X{v}(X). Using Algorithm 2, compute the Reed–

Solomon codeword f : S(0) → Tι+κ defined by f : x 7→ P (x). Submit (submit, Tι+κ, ℓ− κ+R, f)
to the vector oracle. Upon receiving (receipt, Tι+κ, ℓ− κ+R, [f]) from the oracle, output [f].

We define (P,V) as the following IOP, in which both parties have the common input [f], s ∈ Tτ , and
(r0, . . . , rℓ−1) ∈ T ℓ

τ , and P has the further input t(X0, . . . , Xℓ−1) ∈ Tι[X0, . . . , Xℓ−1]
⪯1.

• P writes h(X0, . . . , Xℓ−1) := t(X0, . . . , Xℓ−1) · ẽq(r0, . . . , rℓ−1, X0, . . . , Xℓ−1); P moreover abbre-
viates h′(X0, . . . , Xℓ−κ−1) :=

∑
u∈Bκ

h(u0, . . . , uκ−1, X0, . . . , Xℓ−κ−1).

• P and V both abbreviate f (0) := f and s0 := s, and execute the following loop:

1: for i ∈ {0, . . . , ℓ− κ− 1} do
2: P sends V the polynomial h′

i(X) :=
∑

v∈Bℓ−κ−i−1
h′(r′0, . . . , r

′
i−1, X, v0, . . . , vℓ−κ−i−2).

3: V requires si
?
= h′

i(0) + h′
i(1). V samples r′i ← Tτ , sets si+1 := h′

i(r
′
i), and sends P r′i.

4: P defines f (i+1) : S(i+1) → Aι,κ,τ as the function fold
(
f (i), r′i

)
of Definition 3.13.

5: if i+ 1 = ℓ then P sends c := f (ℓ−κ)(0, . . . , 0) to V.
6: else if ϑ | i+ 1 then P submits (submit, Aι,κ,τ , ℓ− κ+R− i− 1, f (i+1)) to the oracle.

• By reversing the natural embedding, V destructures (cu)u∈Bκ
:= c as a T 2κ

τ -element.

• V requires sℓ−κ
?
= ẽq(rκ, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−κ−1) ·

∑
u∈Bκ

cu · ẽq(r0, . . . , rκ−1, u0, . . . , uκ−1).

• V assigns cℓ−κ := c, and executes the following querying procedure:

1: for γ repetitions do
2: V samples u← BR randomly.
3: for i ∈ {ℓ− κ− ϑ, ℓ− κ− 2 · ϑ, . . . , 0} (i.e., in downward order, taking ϑ-sized steps) do
4: for each v ∈ Bϑ, V submits (query, [f (i)], v ∥ u) to the vector oracle.

5: V requires ci+ϑ
?
= fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(u).

6: V samples v ← Bϑ, sets ci := f (i)(v ∥ u), and overwrites u := v ∥ u.

The polynomial h′(X0, . . . , Xℓ−κ−1) :=
∑

u∈Bκ
h(u0, . . . , uκ−1, X0, . . . , Xℓ−κ−1) serves essentially to effect a

“partial sumcheck” on h(X0, . . . , Xℓ−1). Indeed, the intent of Construction 3.24’s sumcheck is essentially to
“cut short” that of h at the ℓ− κth round; on the other hand, we must specialize h’s last ℓ− κ variables, as
opposed to its first. (We could have equally remedied this issue by specializing right-to-left in the sumcheck,
instead of left-to-right, and using h directly.)

Theorem 3.25. The IOPCS Π = (Setup,Commit,P,V) of Construction 3.24 is complete.

Proof. We require first an analogue of Lemma 3.21 in the packed setting. Indeed, that lemma goes through ex-

actly as written; we emphasize, however, that the (higher-order) novel basis polynomials
(
X

(i)
j (X)

)2ℓ−κ−i−1

j=0

have coefficients in the synthetic subring Aι,κ,ι ⊂ Aι,κ,τ of the tower algebra. The elements y, x0, and x1 in
the proof of that lemma all reside in the synthetic subring, while r′i resides in the constant subring; finally,
the coefficients a0, . . . , a2ℓ−κ−i−1 of P (i)(X), in general, are general members of the tower algebra. The proof
of that lemma otherwise goes through without change. For completeness, we state the relevant analogue:

Lemma 3.26. Fix an index i ∈ {0, . . . , ℓ − κ − 1}. If f (i) : S(i) → Aι,κ,τ is exactly the evaluation of the

polynomial P (i)(X) =
∑2ℓ−κ−i−1

j=0 aj ·X(i)
j (X), then, under honest prover behavior, f (i+1) : S(i+1) → Aι,κ,τ

is exactly the evaluation of the polynomial P (i+1)(X) =
∑2ℓ−κ−i−1−1

j=0 ((1− r′i) · a2j + r′i · a2j+1) ·X(i+1)
j (X).

Proof. This lemma’s proof is the same as Lemma 3.21’s.

19

Applying Lemma 3.26 inductively, we conclude as in the proof of Theorem 3.20 that P’s final FRI message
c =

∑
v∈Bℓ−κ

t̂(v) · ẽq
(
r′0, . . . , r

′
ℓ−κ−1, v0, . . . , vℓ−κ−1

)
(here, each coefficient t̂(v) is an algebra element in

the synthetic subring, on which the scalar on right acts by the constant structure). By definition of the
constant vector space structure, the destructuring (cu)u∈Bκ

of this latter quantity has, at each of its indices
u ∈ Bu, the component cu =

∑
v∈Bℓ−κ

t(u0, . . . , uκ−1, v0, . . . , vℓ−κ−1) · ẽq(r′0, . . . , r′ℓ−κ−1, v0, . . . , vℓ−κ−1) =

t(u0, . . . , uκ−1, r
′
0, . . . r

′
ℓ−κ−1) (in the last equality, we use a standard property of multilinear evaluation).

On the other hand, again as in the proof of Lemma 3.20—and assuming now that the prover’s claim
is correct—we have the equality s = t(r0, . . . , rℓ−1) =

∑
v∈Bℓ

h(v) =
∑

v∈Bℓ−κ
h′(v). The correctness of

the sumcheck, applied to h′(X0, . . . , Xℓ−κ−1), thus implies that the verifier will accept its checks si
?
=

h′
i(0) + h′

i(1), as well as that sℓ−κ = h′(r′0, . . . , r
′
ℓ−κ−1). We unroll this latter quantity in the following way:

h′(r′0, . . . , r
′
ℓ−κ−1) =

∑
u∈Bκ

h(u0, . . . , uκ−1, r
′
0, . . . , r

′
ℓ−κ−1)

=
∑
u∈Bκ

t(u0, . . . , uκ−1, r
′
0, . . . , r

′
ℓ−κ−1) · ẽq(r0, . . . , rℓ−1, u0, . . . , uκ−1, r

′
0, . . . , r

′
ℓ−κ−1)

=
∑
u∈Bκ

cu · ẽq(r0, . . . , rℓ−1, u0, . . . , uκ−1, r
′
0, . . . , r

′
ℓ−κ−1)

= ẽq(rκ, . . . , rℓ−1, r
′
0, . . . , r

′
ℓ−κ−1) ·

∑
u∈Bκ

cu · ẽq(r0, . . . , rκ−1, u0, . . . , uκ−1),

which is exactly what the verifier compares sℓ−κ to. In the third equality above, we use the identity
cu = t(u0, . . . , uκ−1, r

′
0, . . . r

′
ℓ−κ−1), already explained above.

We now prove the security of Construction 3.24. Our key technical results below (see Propositions 3.30
and 3.34), essentially, jointly constitute a variant of FRI’s soundness statement [BBHR18, § 4.2.2]. Our
proofs of these results incorporate—in an attenuated form—various ideas present in [BBHR18, § 4.2.2] and
[Ben+23, § 8.2]. We also introduce a number of new ideas, which, by and large, pertain to our new folding
technique (see Subsection 3.3).

Theorem 3.27. The IOPCS Π = (Setup,Commit,P,V) of Construction 3.24 is secure.

Proof. We define a straight-line emulator E as follows.

1. By inspecting A’s messages to the vector oracle, E immediately recovers the function f : S(0) → Tι+κ

underlying the handle [f] output by A.

2. E runs Algorithm 1 on the word f : S(0) → Tι+κ. If that algorithm outputs P (X) = ⊥, then
E sets t(X0, . . . , Xℓ−1) := 0. Otherwise, E expresses the output P (X) =

∑
v∈Bℓ−κ

t̂(v) · X{v}(X)
in coordinates with respect to the novel polynomial basis. By reversing the natural embedding on
each of P (X)’s coordinates (see Subsection 2.5), E obtains the T Bℓ

ι -element (t(v))v∈Bℓ
, say. E writes

t(X0, . . . , Xℓ−1) ∈ Tι[X0, . . . , Xℓ−1]
⪯1 for the polynomial given in Lagrange coordinates by (t(v))v∈Bℓ

.

3. E outputs t(X0, . . . , Xℓ−1) and terminates.

We now argue that E fulfills the requirements of Definition 3.7 with respect to the protocol Π.
We define various notions, adapting [BBHR18, § 4.2.1]. For each i ∈ {0, ϑ, . . . , ℓ − κ} (i.e., ascending

in ϑ-sized steps), we write C(i) ⊂ T 2ℓ−κ+R−i

ι+κ for the Reed–Solomon code RSTι+κ,S(i) [2ℓ−κ+R−i, 2ℓ−κ−i],

as well as Ĉ(i) ⊂ A2ℓ−κ+R−i

ι,κ,τ for its extension code. We recall that C(i) and Ĉ(i) are both of distance

di := 2ℓ−κ+R−i− 2ℓ−κ−i +1. We write f (0), f (ϑ), . . . , f (ℓ−κ−ϑ) for the oracles committed by A; we moreover
write f (ℓ−κ) : S(ℓ−κ) → Aι,κ,τ for the identically-c function (here, c ∈ Aι,κ,τ is A’s final FRI message). For
each i ∈ {0, ϑ, . . . , ℓ − κ − ϑ}, we write ∆

(
f (i+ϑ), g(i+ϑ)

)
⊂ S(i+ϑ) for the disagreement set between the

elements f (i+ϑ) and g(i+ϑ) of A2ℓ+R−i−ϑ

ι,κ,τ ; that is, ∆
(
f (i+ϑ), g(i+ϑ)

)
is the set of elements y ∈ S(i+ϑ) for which

f (i+ϑ)(y) ̸= g(i+ϑ)(y). We moreover write ∆(i)
(
f (i), g(i)

)
⊂ S(i+ϑ) for the fiber-wise disagreement set of the

elements f (i) and g(i) of A2ℓ+R−i

ι,κ,τ . That is, ∆(i)
(
f (i), g(i)

)
denotes the set of elements y ∈ S(i+ϑ) for which

20

the respective restrictions of f (i) and g(i) to the fiber
(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({y}) ⊂ S(i) are not identically

equal. We define d(i)
(
f (i), Ĉ(i)

)
:= ming(i)∈Ĉ(i)

∣∣∆(i)
(
f (i), g(i)

)∣∣. We note that, if d(i)
(
f (i), Ĉ(i)

)
< di+ϑ

2 , then

d
(
f (i), Ĉ(i)

)
< di

2 a fortiori holds. (Each offending fiber contributes at most 2ϑ errors; on the other hand,

2ϑ ·
⌊
di+ϑ−1

2

⌋
≤
⌊
di−1
2

⌋
.) In any case, in case the oracle f (i) : S(i) → Aι,κ,τ is such that d

(
f (i), Ĉ(i)

)
< di

2

happens to hold, we write f (i) ∈ Ĉ(i) for the unique codeword for which d
(
f (i), f (i)

)
< di

2 .
We begin with the following elementary fact.

Lemma 3.28. For each i ∈ {0, ϑ, . . . , ℓ−κ−ϑ}, in case d
(
f (i), Ĉ(i)

)
< di

2 holds, then, for each tuple of fold-

ing challenges (r′i, . . . , r
′
i+ϑ−1) ∈ T ϑ

τ , ∆
(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

))
⊂ ∆(i)

(
f (i), f (i)

)
.

Proof. For each y ∈ S(i+ϑ) for which the restrictions f (i)
∣∣
(q(i+ϑ−1)◦···◦q(i))

−1
({y}) = f (i)

∣∣
(q(i+ϑ−1)◦···◦q(i))

−1
({y})

are identically equal, fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(y) = fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(y) certainly also holds.

Of course, the conclusion Lemma 3.28 holds for each pair of elements f (i) and g(i) of A2ℓ+R−i

ι,κ,τ , and not

just for f (i) and f (i); we will use it only in the form just given.
We now define a sequence of bad folding events. For each i ∈ {0, ϑ, . . . , ℓ−κ−ϑ} (i.e., ascending in steps

of size ϑ), the bad subset Ei ⊂ T ϑ
τ depends only on the already-committed oracle f (i). Our definition of Ei is

case-based, and depends on the status of f (i). If f (i) is within the (fiber-wise) unique decoding radius, then
Ei captures the event whereby the generic inclusion of Lemma 3.28 becomes strict. Otherwise, Ei captures
the “bad batching” event whereby fold(f (i), r′i, . . . , r

′
i+ϑ−1) becomes close to Ĉ(i+ϑ).

Definition 3.29. For each i ∈ {0, ϑ, . . . , ℓ − κ − ϑ}, we define the bad subset Ei ⊂ T ϑ
τ as the set of tuples

(r′i, . . . , r
′
i+ϑ−1) ∈ T ϑ

τ for which, as the case may be:

in case d(i)
(
f (i), Ĉ(i)

)
<

di+ϑ

2
: ∆(i)

(
f (i), f (i)

)
̸⊂ ∆

(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

))
.

in case d(i)
(
f (i), Ĉ(i)

)
≥ di+ϑ

2
: d
(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, Ĉ(i+ϑ)

)
< di+ϑ

3 .

We now bound the bad subsets Ei of Definition 3.29. We recall that µ(Ei) :=
|Ei|
|Tτ |ϑ signifies the probability

mass of the set Ei ⊂ T ϑ
τ .

Proposition 3.30. For each i ∈ {0, ϑ, . . . , ℓ− κ− ϑ}, µ(Ei) ≤ ϑ · |S
(i+ϑ)|
|Tτ | holds.

Proof. We treat separately the two cases of Definition 3.29.
We begin with the first case. We fix an element y ∈ ∆(i)

(
f (i), f (i)

)
, we moreover write Ey

i ⊂ T ϑ
τ for

the set of tuples (r′i, . . . , r
′
i+ϑ−1) ∈ T ϑ

τ for which y ̸∈ ∆
(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

))
.

We argue that µ(Ey
i) ≤ ϑ

|Tτ | . This latter claim suffices to complete the proof of the first case; indeed, since

Ei =
⋃

y∈∆(i)(f(i),f(i))E
y
i , assuming the claim, we conclude that µ(Ei) ≤

∣∣∆(i)
(
f (i), f (i)

)∣∣· ϑ
|Tτ | ≤ |S

(i+ϑ)|· ϑ
|Tτ | .

For y ∈ ∆(i)
(
f (i), f (i)

)
chosen as above, we apply Lemma 3.16 to the words f (i) and f (i). Applying that

lemma, we see that (r′i, . . . , r
′
i+ϑ−1) ∈ Ey

i holds if and only if we have the following matrix identity:

0 =
[⊗ϑ−1

j=0 (1− r′i+j , r
′
i+j)

]
·

 My

 ·

f (i)(x0)− f (i)(x0)
...

f (i)(x2ϑ−1)− f (i)(x2ϑ−1)

, (3)

where we again write (x0, . . . , x2ϑ−1) :=
(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)−1
({y}). Our hypothesis y ∈ ∆(i)

(
f (i), f (i)

)
entails precisely that the right-hand vector of (3)—whose entries reside in Aι,κ,τ—is not identically zero.
Lemma 3.16 guarantees that My, whose entries reside in Tι+κ, is nonsingular; we conclude that the image
of the right-hand vector of (3) under My is likewise not identically zero (the nonsingular Tι+κ-matrix My

necessarily induces an injective map on the space of length-2ϑ Aι,κ,τ -vectors). Writing (a0, . . . , a2ϑ−1) for this

21

latter vector—which, we repeat, is not zero—we conclude that Ei ⊂ T ϑ
τ is precisely the vanishing locus of the

restriction to T ϑ
τ of the ϑ-variate polynomial s(X0, . . . , Xϑ−1) :=

∑
v∈Bϑ

a{v}·ẽq(X0, . . . , Xϑ−1, v0, . . . , vϑ−1).

Since s(X0, . . . , Xϑ−1)’s respective values over the cube {0, 1}ϑ ⊂ T ϑ
τ are exactly (a0, . . . , a2ϑ−1), s is certainly

not zero. Applying Schwartz–Zippel—precisely, the variant of that lemma given in Lemma 2.4 above—to
s(X0, . . . , Xϑ−1), we conclude that the relevant locus is of mass at most µ(Ey

i) ≤ ϑ
|Tτ | , as required.

We turn to the second case of Definition 3.29; in particular, we assume that d(i)
(
f (i), Ĉ(i)

)
≥ di+ϑ

2 .

We define an interleaved word
(
f
(i+ϑ)
j

)2ϑ−1

j=0
—i.e., a 2ϑ × 2ℓ−κ+R−i−ϑ matrix, with entries in Aι,κ,τ—in the

following way. For each y ∈ S(i+ϑ), writing My for the matrix guaranteed to exist by Lemma 3.16, we define:
f
(i+ϑ)
0 (y)

...

f
(i+ϑ)

2ϑ−1
(y)

 :=

 My

 ·

f (i)(x0)
...

f (i)(x2ϑ−1)

. (4)

We note that the resulting 2ϑ × 2ℓ−κ+R−i−ϑ matrix
(
f
(i+ϑ)
j

)2ϑ−1

j=0
—i.e., that whose columns are given by

the respective left-hand sides of (4), for y ∈ S(i+ϑ)—satisfies, for each (r′i, . . . , r
′
i+ϑ−1) ∈ T ϑ

τ ,

fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
=
[⊗i+ϑ−1

j=i (1− r′j , r
′
j)

]
·

f
(i+ϑ)
0

...

f
(i+ϑ)

2ϑ−1

. (5)

Indeed, this is essentially the content of Lemma 3.16, which we apply here jointly to all elements y ∈ S(i+ϑ).

We claim that the interleaved word
(
f
(i+ϑ)
j

)2ϑ−1

j=0
constructed in this way is far from the interleaved code

Ĉ(i+ϑ)
2ϑ

.

Lemma 3.31. Under our hypothesis d(i)
(
f (i), Ĉ(i)

)
≥ di+ϑ

2 , we have d2
ϑ

((
f
(i+ϑ)
j

)2ϑ−1

j=0
, Ĉ(i+ϑ)

2ϑ
)
≥ di+ϑ

2 .

Proof. We fix an arbitrary interleaved codeword
(
g
(i+ϑ)
j

)2ϑ−1

j=0
∈ Ĉ(i+ϑ)

2ϑ

. We define a “lift” g(i) ∈ Ĉ(i) of(
g
(i+ϑ)
j

)2ϑ−1

j=0
in the following way. Writing, for each j ∈ {0, . . . , 2ϑ − 1}, P (i+ϑ)

j (X) :=
∑2ℓ−κ−i−ϑ−1

k=0 aj,k ·

X
(i+ϑ)
k (X) for the polynomial—expressed in coordinates with respect to the i+ ϑth-order novel polynomial

basis—for which g
(i+ϑ)
j = Enc(P

(i+ϑ)
j) holds, we define

P (i)(X) :=

2ϑ−1∑
j=0

2ℓ−κ−i−ϑ−1∑
k=0

aj,k ·X(i)

k·2ϑ+j
;

that is, P (i)’s list of ith-order coefficients is precisely the 2ϑ-fold interleaving of the polynomials

P
(i+ϑ)
0 (X), . . . , P

(i+ϑ)

2ϑ−1
(X)’s respective lists of i+ ϑth-order coefficients. Finally, we define g(i) := Enc(P (i)).

We argue that the codeword g(i) ∈ Ĉ(i) constructed in this way stands in relation to
(
g
(i+ϑ)
j

)2ϑ−1

j=0
just

as f (i) does to
(
f
(i+ϑ)
j

)2ϑ−1

j=0
(i.e., it also satisfies a matrix identity analogous to (4) for each y ∈ S(i+ϑ)). To

prove this, we fix an arbitrary element y ∈ S(i+ϑ); we moreover fix a row-index j ∈ {0, . . . , 2ϑ−1}. We write

(j0, . . . , jϑ−1) for the bits of j (i.e., so that j =
∑ϑ−1

k=0 2
k ·jk holds). We first note that the functions g

(i+ϑ)
j and

fold
(
g(i), j0, . . . , jϑ−1

)
agree identically over the domain S(i+ϑ). Indeed, this is a direct consequence of Lemma

22

3.26 and of the construction of g(i) (g
(i+ϑ)
j (y)’s underlying polynomial’s coefficients are the jth refinement of

g(i)’s underlying polynomial’s). On the other hand, applying Lemma 3.16 to y ∈ S(i+ϑ) and g(i), with the
folding tuple (j0, . . . , jϑ−1), we see that the dot product between My’s j

th row and
(
g(i)(x0), . . . , g

(i)(x2ϑ−1)
)

is exactly fold
(
g(i), j0, . . . , jϑ−1

)
(y) = g

(i+ϑ)
j (y), where the latter equality was just argued.

Since g(i) ∈ Ĉ(i) is a codeword, our hypothesis d(i)
(
f (i), Ĉ(i)

)
≥ di+ϑ

2 applies to it. That hypothesis

entails precisely that, for at least di+ϑ

2 elements y ∈ S(i+ϑ), the restrictions f (i)
∣∣
(q(i+ϑ−1)◦···◦q(i))

−1
({y}) and

g(i)
∣∣
(q(i+ϑ−1)◦···◦q(i))

−1
({y}) are not identically equal. For each such y ∈ S(i+ϑ), since My is invertible (and

since both f (i) and g(i) satisfy (4)), we conclude that the columns
(
f
(i+ϑ)
j (y)

)2ϑ−1

j=0
and

(
g
(i+ϑ)
j (y)

)2ϑ−1

j=0
are in

turn unequal. Since
(
g
(i+ϑ)
j

)2ϑ−1

j=0
was arbitrary, we conclude that d2

ϑ

((
f
(i+ϑ)
j

)2ϑ−1

j=0
, Ĉ(i+ϑ)

2ϑ
)
≥ di+ϑ

2 .

Applying Lemma 3.31, we conclude directly that the contraposition of Theorem 2.5 is fulfilled with

respect to the code Ĉ(i+ϑ) ⊂ A2ℓ+R−i−ϑ

ι,κ,τ , the proximity parameter e :=
⌊
di+ϑ−1

3

⌋
< di+ϑ

2 , and the interleaved

word
(
f
(i+ϑ)
j

)2ϑ−1

j=0
. That theorem’s contraposition immediately implies that the set Ei ⊂ T ϑ

τ consisting of

those tuples (r′i, . . . , r
′
i+ϑ−1) ∈ T ϑ

τ for which d
(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, Ĉ(i+ϑ)

)
< di+ϑ

3 holds—and here, we

use (5)—is of mass at most µ(Ei) ≤ 2 · ϑ · e+1
|Tτ | ≤ ϑ · 2

ℓ−κ+R−i−ϑ

|Tτ | = ϑ · |S
(i+ϑ)|
|Tτ | , as required.

Proposition 3.32. The probability that any of the bad events E0, Eϑ, . . . , Eℓ−κ−ϑ occurs is at most 2ℓ−κ+R

|Tτ | .

Proof. Applying Proposition 3.30, we upper-bound the quantity of interest as:

ϑ

|Tτ |
· (|Sϑ|+ · · ·+ |Sℓ−κ|) =

ϑ

|Tτ |
·
(
2ℓ−κ+R−ϑ + · · ·+ 2R

)
≤ ϑ

|Tτ |
· 2ϑ

2ϑ − 1
· 2ℓ−κ+R−ϑ ≤ 2ℓ−κ+R

|Tτ |
,

which completes the proof. In the last two steps, we use the geometric series formula and the inequality
ϑ

2ϑ−1
≤ 1 (which holds for each ϑ ≥ 1), respectively.

In light of Proposition 3.32, we freely assume that none of the events E0, Eϑ, . . . , Eℓ−κ−ϑ occur. Under
this assumption, we proceed with the proof.

We record the following key compliance condition:

Definition 3.33. For each index i ∈ {0, ϑ, . . . , ℓ− κ− ϑ}, we say that A’s ith oracle f (i) is compliant if the

conditions d(i)
(
f (i), Ĉ(i)

)
< di

2 , d
(
f (i+ϑ), Ĉ(i+ϑ)

)
< di+ϑ

2 , and f (i+ϑ) = fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
all hold.

Proposition 3.34. If any of A’s oracles is not compliant, then V accepts with at most negligible probability.

Proof. We suppose that at least one of A’s oracles is not compliant; we write i∗ ∈ {0, ϑ, . . . , ℓ − κ − ϑ} for
A’s highest-indexed noncompliant oracle. As a trivial consequence of Definition 3.33 and of the definition

of i∗, we note immediately that, for each i ∈ {i∗ + ϑ, . . . , ℓ − κ − ϑ}, the conditions d(i)
(
f (i), Ĉ(i)

)
< di

2 ,

d
(
f (i+ϑ), Ĉ(i+ϑ)

)
< di+ϑ

2 , and f (i+ϑ) = fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
all hold.

Lemma 3.35. For i∗ ∈ {0, ϑ, . . . , ℓ−κ−ϑ} as above, we have d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, f (i∗+ϑ)

)
≥ di∗+ϑ

3 .

Proof. We again treat two cases, corresponding to those isolated by Definition 3.29.

Assuming first that d(i
∗)
(
f (i∗), Ĉ(i∗)

)
<

di∗+ϑ

2 , we write f (i∗) ∈ Ĉ(i∗) for the codeword for which∣∣∆(i∗)
(
f (i∗), f (i∗)

)∣∣ < di∗+ϑ

2 holds. Since d
(
f (i∗), f (i∗)

)
< di∗

2 a fortiori holds, by Definition 3.33 and our

choice of i∗, we necessarily have f (i∗+ϑ) ̸= fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
. On the other hand, by Lemma 3.28,

23

∣∣∆(i∗)
(
f (i∗), f (i∗)

)∣∣ < di∗+ϑ

2 implies that d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, fold

(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

))
<

di∗+ϑ

2 .

Finally, by the reverse triangle inequality, d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, f (i∗+ϑ)

)
is at least:

d
(
f (i∗+ϑ), fold

(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

))
− d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, fold

(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

))
.

Since f (i∗+ϑ) and fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
are unequal codewords in Ĉ(i∗+ϑ), this quantity in turn is

greater than di∗+ϑ − di∗+ϑ

2 ≥ di∗+ϑ

2 , and the proof of the first case is complete.

In the case d(i
∗)
(
f (i∗), Ĉ(i∗)

)
≥ di∗+ϑ

2 , our assumption whereby Ei∗ didn’t occur implies, by def-

inition, that d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, Ĉ(i∗+ϑ)

)
≥ di∗+ϑ

3 . Since f (i∗+ϑ) ∈ Ĉ(i∗+ϑ) is a codeword,

d
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, f (i∗+ϑ)

)
≥ di∗+ϑ

3 in particular holds, and the proof is again complete.

In order to simplify the statement of the following lemma, we tacitly replace the query phase in Construc-
tion 3.19 above by a variant in which V, in each iteration of its main query loop, first collects its equalities,
and only then checks them, aborting upon encountering a failure (as opposed to progressing through them
one by one, and aborting immediately upon encountering a failure). Clearly, this latter variant is functionally
equivalent to the written one.

Lemma 3.36. If its level-i∗+ϑ point ci∗+ϑ ∈ ∆
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i+ϑ−1

)
, f (i∗+ϑ)

)
, then the verifier rejects.

Proof. We initialize i := i∗ + ϑ, and argue inductively as follows. Our hypothesis entails exactly that
fold
(
f (i−ϑ), r′i−ϑ, . . . , r

′
i−1

)
(ci) ̸= f (i)(ci). We first claim that if f (i)(ci) = f (i)(ci), then V rejects. In-

deed, in this case, we see immediately that fold
(
f (i−ϑ), r′i−ϑ, . . . , r

′
i−1

)
(ci) ̸= f (i)(ci) = f (i)(ci); this

is precisely the equality checked by the verifier in its line 5 above. If on the other hand f (i)(ci) ̸=
f (i)(ci) instead holds, then ci+ϑ =

(
q(i+ϑ−1) ◦ · · · ◦ q(i)

)
(ci) certainly satisfies ci+ϑ ∈ ∆(i)

(
f (i), f (i)

)
, by

definition of this latter set. Using our assumption whereby the event Ei didn’t occur, we conclude
in turn that ci+ϑ ∈ ∆

(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

))
. This latter set itself equals

∆
(
fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
, f (i+ϑ)

)
, by our guarantee whereby f (i+ϑ) = fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(a con-

sequence of the maximality of i∗). We see that fold
(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(ci+ϑ) ̸= f

(i+ϑ)
(ci+ϑ). We have thus

“pushed” our hypothesis on i to the same hypothesis on i+ ϑ. Since f (ℓ−κ) and f (ℓ−κ) agree identically on
S(ℓ−κ), this process must eventually terminate in a rejection by the verifier.

We are now ready to prove the proposition. Lemma 3.35 guarantees (i.e., assuming Ei∗ doesn’t occur) that

ci∗+ϑ ∈ ∆
(
fold
(
f (i∗), r′i∗ , . . . , r

′
i∗+ϑ−1

)
, f (i∗+ϑ)

)
holds with probability at least 1

|S(i∗+ϑ)| ·
di∗+ϑ

3 ≥ 1
3 −

1
3·2R

in each of the verifier’s query iterations. By Lemma 3.36, the verifier rejects in each such iteration (i.e.,
assuming none of the events Ei∗+ϑ, . . . , Eℓ−κ−ϑ occur). We see that V accepts with probability at most(
2
3 + 1

3·2R
)γ
, which is negligible (we recall that R is a positive constant). This completes the proof.

If any of A’s oracles is noncompliant, then Proposition 3.34 (together with our assumption whereby
none of the events E0, Eϑ, . . . , Eℓ−κ−ϑ occur, itself justified by Proposition 3.32) completes the proof. In
particular, we may ignore the case in which Algorithm 1 outputs P (X) = ⊥ in step 2 above, as we presently
argue. Indeed, if P (X) = ⊥, then certainly d

(
f (0), C(0)

)
≥ d0

2 holds (by the correctness of the Berlekamp–

Welch algorithm). Under this guarantee, we note that d
(
f (0), Ĉ(0)

)
≥ d0

2 too necessarily holds; indeed, each

codeword in Ĉ(0) whose entries don’t reside exclusively in the subring Aι,κ,ι ⊂ Aι,κ,τ must have at least d0
entries not in this subring—essentially by the argument of [DP23b, Thm. 3.2]—and so must be of distance
at least d0 from f (0) (whose entries do reside exclusively in Aι,κ,ι ⊂ Aι,κ,τ). We thus conclude as claimed

that d
(
f (0), Ĉ(0)

)
≥ d0

2 , so that A’s 0th oracle is bad, and the proof is complete by Proposition 3.34.

We’re thus left with the case in which Algorithm 1 terminates successfully in step 2 above. We write
t(X0, . . . , Xℓ−1) ∈ Tι[X0, . . . , Xℓ−1]

⪯1 for the polynomial output by E in that step. We write (r0, . . . , rℓ−1) ∈
T ℓ
τ for the evaluation point output by Q, and s ∈ Tτ for A’s response. We must show that the probability

with which s ̸= t(r0, . . . , rℓ−1) and V accepts is negligible. It suffices to assume that s ̸= t(r0, . . . , rℓ−1), and
to argue conditionally that V accepts with negligible probability. We thus assume that s ̸= t(r0, . . . , rℓ−1).

24

Under our assumption, justified above, whereby all of A’s oracles are compliant, we inspect the value of
A’s final FRI message c. We apply Definition 3.33 inductively. In the base case i = 0, we note that f (0)

is the encoding of P (0)(X) =
∑

v∈Bℓ−κ
t̂(v) · X(0)

{v}(X), precisely by E ’s construction of
(
t̂(v)

)
v∈Bℓ−κ

. On

the other hand, for each i ∈ {0, ϑ, . . . , ℓ − κ − ϑ}, writing P (i)(X) ∈ Aι,κ,τ [X]≺2ℓ−κ−i

for the polynomial
for which Enc(P (i)) = f (i) holds, the condition f (i+ϑ) = fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

)
implies that f (i+ϑ) is

exactly the encoding of the polynomial P (i+ϑ)(X) ∈ Aι,κ,τ [X]≺2ℓ−κ−i−ϑ

obtained by repeatedly applying the
conclusion of Lemma 3.26 to P (i)(X) (with the folding challenges r′i, . . . , r

′
i+ϑ−1, respectively). Carrying out

the induction, we see that f (ℓ−κ) is identically equal to
∑

v∈Bℓ−κ
t̂(v) · ẽq

(
r′0, . . . , r

′
ℓ−κ−1, v0, . . . , vℓ−κ−1

)
, so

that c =
∑

v∈Bℓ−κ
t̂(v) · ẽq

(
r′0, . . . , r

′
ℓ−κ−1, v0, . . . , vℓ−κ−1

)
holds.

We turn to the sumcheck. As in Construction 3.24, we write h(X0, . . . , Xℓ−1) := t(X0, . . . , Xℓ−1) ·
eq(r0, . . . , rℓ−1, X0, . . . , Xℓ−1) and h′(X0, . . . , Xℓ−κ−1) :=

∑
u∈Bκ

h(u0, . . . , uκ−1, X0, . . . , Xℓ−κ−1). Since,
as before, t(r0, . . . , rℓ−1) =

∑
v∈Bℓ

h(v), we see that our hypothesis s ̸= t(r0, . . . , rℓ−1) amounts to the
condition s ̸=

∑
v∈Bℓ

h(v) =
∑

v∈Bℓ−κ
h′(v). The soundness analysis of the sumcheck (we refer to Thaler

[Tha22, § 4.1]) states that, under this very assumption, the probability that the verifier accepts and sℓ−κ =

h′(r′0, . . . , r
′
ℓ−κ−1) holds is at most 2·(ℓ−κ)

|Tτ | over V’s choice of its folding challenges (r′0, . . . , r
′
ℓ−κ−1). We thus

assume finally that sℓ−κ ̸= h′(r′0, . . . , r
′
ℓ−κ−1).

Putting the pieces together, we see that, under our various assumptions introduced above, we have
that sℓ−κ ̸= h′(r′0, . . . , r

′
ℓ−κ−1) = ẽq(rκ, . . . , rℓ−1, r

′
0, . . . , r

′
ℓ−κ−1) ·

∑
u∈Bκ

cu · ẽq(r0, . . . , rκ−1, u0, . . . , uκ−1),
so that V rejects. The final equality above is justified—i.e., under precisely the assumption whereby c =∑

v∈Bℓ−κ
t̂(v) · eq

(
r′0, . . . , r

′
ℓ−κ−1, v0, . . . , vℓ−κ−1

)
—in the proof of Theorem 3.25. This completes the proof

of the theorem.

Remark 3.37. If Conjecture 2.6 were true, then we could replace the expression di+1

3 with di+1

2 throughout
the proof of Theorem 3.27 (including in the second case of Definition 3.29, in the final steps of Proposition
3.30, and in the conclusion of Lemma 3.35). Moreover, we could improve the concrete soundness error at
the end of that theorem’s proof from

(
2
3 + 1

3·2R
)γ

to
(
1
2 + 1

2·2R
)γ
.

3.6 Efficiency Analysis

We examine the efficiency of Construction 3.24, both asymptotic and concrete. Throughout our below analy-
sis, we view the coefficient size parameter ι and the Reed–Solomon rate parameter R as constants, though we
note in passing our protocol’s various dependencies on these values. For simplicity, we undertake a simplified
analysis, in which we allow the dependence—for both parties—on the security parameter to be polynomial.
In fact, were we to instantiate the tower degree 2τ , the hash digest width, and the repetition parameter γ
appropriately carefully—specifically, by dictating that these quantities all grow strictly polylogarithmically
(i.e., with exponent greater than 1) in λ—we could obtain a variant of our protocol with only asymptoti-
cally polylogarithmic dependence on λ for both the prover and the verifier. As this fact appears to be of
essentially theoretical interest, we refrain from developing it (though we refer to [DP23b, Thm. 3.14] for a
related treatment).

For the purposes of asymptotic analysis, we thus assume that 2τ = Θ(λ) (this choice more-than-satisfies
the requirement 2τ ≥ ω(log λ) of Π.Setup). Similarly, we assume that γ = Θ(λ), as well as that the random
oracle’s digests are of length λ. We finally assume throughout that ϑ is bounded from above by a constant
(increasing ϑ is universally an option, and not a requirement). Though the packing factor κ—for fixed ι
and R—must grow as ℓ grows, we may arrange that it does so at most logarithmically in ℓ. Indeed, we
recall that Π.Setup may choose κ minimally so that 2ι+κ ≥ ℓ− κ+R holds; in particular, it may safely set
κ = ⌈log(ℓ+R)⌉ − ι ≤ log(ℓ) + C, where C is some constant depending on R and ι.

Putting these facts together, we see that each Tι+κ-element takes at most O(ℓ) bits to represent, and
that each Tτ -element takes O(λ) bits to represent. Similarly, each Tι+κ-operation takes poly(ℓ) time, and
each Tτ -operation poly(λ) time. Finally, each algebra element Aι,κ,τ takes 2κ+τ = O(λ · ℓ) bits to represent.
Similarly, each Aι,κ,τ -operation—and here, we refer to [DP23b, § 2.3]—takes at most poly(λ · ℓ) time (in
fact, we may take the relevant exponent to be at most log(3)).

The commitment phase of Construction 3.24 amounts to a Reed–Solomon encoding operation in the code
C(0) = RSTι+κ,S(0) [2ℓ−κ+R, 2ℓ−κ]. By Lin, Chung and Han [LCH14, § III. D.] (see also Algorithm 2), this

25

operation can be carried out in Θ
(
(ℓ− κ) · 2ℓ−κ+R) Tι+κ-operations (specifically, using (ℓ− κ) · 2ℓ−κ+R and

(ℓ− κ) · 2ℓ−κ+R−1 Tι+κ-additions and Tι+κ-multiplications, respectively). The prover P’s opening protocol
entails a (truncated) sumcheck on the polynomial h(X0, . . . , Xℓ−1)—whose individual degree in each variable
is at most 2—and an execution of our 2ϑ-ary multilinear FRI variant (see Subsection 3.3) on the ℓ−κ-variate
committed word f . By the sumcheck prover analysis of Thaler [Tha22, Lem. 4.5], the first task takes Θ(2ℓ)
Tτ -operations, which represents O(2ℓ) · poly(λ) total work. It follows essentially by inspection that our
prover’s FRI-incumbent work amounts to Θ(2ℓ−κ+R) Aι,κ,τ -operations. We conclude that our prover takes

O(2ℓ−κ+R) · poly(λ · ℓ) = Õ(2ℓ+R) · poly(λ) time.
In the variant of Construction 3.24 in which, by means of the BCS transform [BCS16], the use of

vector oracles is eliminated, the prover must Merkle-hash f (0) during its commitment phase, as well
as f (ϑ), . . . , f (ℓ−κ−ϑ) during its opening proof; these commitments represent total work on the order of
Θ
(
2ι+ℓ+R). During the query phase, the prover must, for each of the γ query repetitions and at each step

i ∈ {ℓ − κ − ϑ, ℓ − κ − 2 · ϑ, . . . , 0}, send a length-ℓ − κ + R − i − ϑ Merkle path, as well as 2ϑ Aι,κ,τ -
elements. The total prover work during the query phase is thus O

(
γ ·
(
λ · (ℓ− κ+R)2 + ℓ−κ

ϑ · 2
ϑ · 2κ+τ

))
=

O
(
γ ·
(
λ · (ℓ− κ+R)2 + ℓ ·O(λ · ℓ)

))
= O

(
γ · (λ · ℓ2)

)
. Using our further assumption γ = Θ(λ), we upper-

bound the prover’s work during the query phase as O
(
λ2 · ℓ2

)
.

Construction 3.24’s verifier complexity is essentially that of the sumcheck verifier plus that of the FRI
verifier. These latter tasks entail Θ(ℓ−κ) Tτ -operations and Θ(γ ·2ϑ· ℓ−κ

ϑ) Aι,κ,τ -operations, respectively. (We
recall that the individual degree of h is at most 2, a constant.) These latter Aι,κ,τ -operations amount to O(γ ·
ℓ) ·poly(λ ·ℓ) = O(ℓ2) ·poly(λ) total work. In the non-oracle variant of the protocol, in which the verifier must
check Merkle paths, the verifier’s FRI cost becomes rather O

(
γ ·
(
λ · (ℓ− κ+R)2 + ℓ−κ

ϑ · 2
ϑ · poly(λ · ℓ)

))
,

which is again O(ℓ2) · poly(λ). Upon receiving the prover’s final FRI message c, the verifier must moreover
compute the evaluations (ẽq(r0, . . . , rκ−1, u0, . . . , uκ−1))u∈Bκ

; this task takes Θ(2κ) = Θ(ℓ) time (we recall
from Subsection 2.1 the standard algorithm for this task).

The communication cost of Construction 3.24’s main phase amounts to two Tτ -elements per round of
the sumcheck, together with the final Aι,κ,τ -element c. During the query phase—and assuming the BCS-
transformed version—we encounter a further cost of O

(
γ ·
(
λ · (ℓ− κ+R)2 + ℓ−κ

ϑ · 2
ϑ · 2κ+τ

))
= O

(
λ2 · ℓ2

)
bits.

Concrete soundness. In our concrete proof size analysis below, we incorporate various fairly straight-
forward optimizations. For example, for each query repetition, each i ∈ {ℓ − κ − ϑ, . . . , ϑ, 0}, and each
u ∈ Bℓ+R−i−ϑ, the required leaves

(
f (i)(v ∥ u)

)
v∈Bϑ

are adjacent in the prover’s ith Merkle tree. We thus

opt to send only a single shortened Merkle path—of height only ℓ−κ+R− i−ϑ—as well as the 2ϑ relevant
algebra elements, at each such query step. Separately, we opt to send the entire jth layer of the Merkle
tree—as opposed to only its root—in each round i ∈ {0, ϑ, . . . , ℓ−κ−ϑ}, where j is an appropriately chosen
constant. (For those i for which j ≥ ℓ−κ+R− i−ϑ, we simply send the prover’s entire oracle in the clear.)
Increasing j increases the fixed cost of each Merkle tree, but also causes each among the γ subsequently
sent paths to become shorter. The optimal truncation height turns out to be j := ⌈log2(γ)⌉. In our below
benchmarks, we use a straightforward generalization of our protocol in which the requirement ϑ | ℓ − κ is
dropped.

In order to appropriately select the query repetition parameter γ, we must examine the concrete security
of our protocol (we refer to [DP23b, § 3.5] for an analogous analysis). It follows immediately from the proof
of Theorem 3.27 that Construction 3.24’s concrete soundness error is bounded from above by

2 · (ℓ− κ)

|Tτ |
+

2ℓ−κ+R

|Tτ |
+

(
2

3
+

1

3 · 2R

)γ

; (6)

above, the first summand is sumcheck-specific, whereas the latter two come from Propositions 3.32 and 3.34,
respectively. If Conjecture 2.6 were in fact assumed, then (6)’s final summand would become

(
1
2 + 1

2·2R
)γ

instead. In any case, for each desired concrete security level Ξ, we thus set γ minimally so that (6) (or its
conjectured analogue, as the case may be) becomes bounded from above by Ξ. Clearly, this is possible only

when τ is sufficiently large that Ξ > 2·(ℓ−κ)
|Tτ | + 2ℓ−κ+R

|Tτ | holds. We say in this case that Construction 3.24

attains − log2(Ξ) bits of security.

26

We now record proof sizes. In each example, we set τ := 7, as well as the rate parameter R = 2 (so that
the code’s rate ρ = 1

4). Throughout each benchmark, we achieve 90 bits of concrete security. In each case,
we set κ ≥ 0 minimally so that 2ι+κ ≥ ℓ − κ + R holds, and moreover manually select the folding factor
ϑ. Table 1 below records our provably secure benchmarks; these attain 90 bits of security, using γ = 217
queries. We use the Merkle tree truncation height j = 8.

Total Data Size Num. Vars ℓ Coeff. Size ι Pack. Factor κ Fold. Factor ϑ Prf. Size (MiB)

32 MiB (228 bits) 22 6 0 4 0.382

25 3 2 3 0.806

28 0 5 2 3.786

512 MiB (232 bits) 26 6 0 4 0.549

29 3 2 3 1.144

32 0 5 2 4.889

8.192 GiB (236 bits) 30 6 0 4 0.742

33 3 3 3 2.182

36 0 6 2 10.773

Table 1: Proof sizes of the packed Construction 3.24.

In Table 2 below, we record analogous benchmarks, in which we moreover assume Conjecture 2.6. In
this setting, we need only γ = 133 queries throughout; we again set the Merkle cap j = 8.

Total Data Size Num. Vars ℓ Coeff. Size ι Pack. Factor κ Fold. Factor ϑ Prf. Size (MiB)

32 MiB (228 bits) 22 6 0 3 0.264

25 3 2 3 0.536

28 0 5 2 2.472

512 MiB (232 bits) 26 6 0 4 0.375

29 3 2 3 0.775

32 0 5 2 3.154

8.192 GiB (236 bits) 30 6 0 4 0.496

33 3 3 2 1.442

36 0 6 2 7.151

Table 2: Proof sizes of the packed Construction 3.24, assuming Conjecture 2.6.

We emphasize that, if Conjecture 2.6 is resolved, then the query parameter γ = 133 of Table 2 will
immediately become sufficient; no further protocol changes will be needed in this setting.

4 Hybrid Brakedown–FRI-Style Protocol

In this section, we describe a further generalization of Construction 3.24. This section’s generalization
combines Construction 3.24 with ideas from [DP23b, Cons. 3.11]; essentially, it can be viewed as a “hy-
brid” protocol, which begins as does the Brakedown-style protocol of [DP23b, Cons. 3.11], and yet uses

27

the construction of Subsection 3.5 above for its key “inner proximity test”. The protocol of this section
may alternatively be viewed as an instance of the batched FRI technique of Ben-Sasson, et al. [Ben+23,
§ 8.2], where our batching combination is actually a Brakedown-style tensor fold (and where we moreover
incorporate packing and the tower algebra).

The idea is, informally, to exploit the fact whereby the prover’s initial oracle takes values in the ground
field Tι+κ (while its subsequent oracles take values in the larger algebra). To take advantage of this fact,
we stipulate that the prover do a very high-arity, Brakedown-style fold in its initial round, and proceed as
in Construction 3.24 subsequently. We obtain a hybrid protocol which is more efficient for both the prover
and the verifier.

We present our protocol below.

CONSTRUCTION 4.1 (Hybrid Brakedown–FRI IOPCS).
We define Π = (Setup,Commit,P,V) as follows.

• params← Π.Setup(1λ, ℓ, ι). On input 1λ, ℓ, and ι, choose integers ℓ0 and ℓ1 for which ℓ0 + ℓ1 = ℓ,
a constant, positive rate parameter R ∈ N, a packing factor κ ≥ 0 for which 2ι+κ ≥ ℓ1 − κ +R,
a folding factor ϑ | ℓ1 − κ, a tower height τ ≥ log(ω(log λ)), and a repetition parameter γ =

ω(log(λ)). Write (X0(X), . . . , X2ℓ1−κ−1(X)) for the novel Tι+κ-basis of Tι+κ[X]≺2ℓ1−κ

, and fix

S(0), . . . , S(ℓ1−κ) and q(0), . . . , q(ℓ1−κ−1) as in Subsection 3.2. Write C(0) ⊂ T 2ℓ1−κ+R

ι+κ for the
Reed–Solomon code RSTι+κ,S(0) [2ℓ1−κ+R, 2ℓ1−κ].

• [f]← Π.Commit(params, t). On input t(X0, . . . , Xℓ−1) ∈ Tι[X0, . . . , Xℓ−1]
⪯1, reshape t’s Lagrange

coefficients (t(v))v∈Bℓ
into a 2ℓ0×2ℓ1 matrix (ti)

2ℓ0−1
i=0 . By grouping the column indices {0, . . . , 2ℓ1−

1} into length-2κ chunks, and applying the natural embedding chunk-wise, express (ti)
2ℓ0−1

i=0 as a

2ℓ0 ×2ℓ1−κ matrix
(
t̂i
)2ℓ0−1

i=0
with entries in Tι+κ. Independently encode each row of

(
t̂i
)2ℓ0−1

i=0
using

C(0); in this way, obtain the further matrix (fi)
2ℓ0−1

i=0 , say. For each i ∈ {0, . . . , 2ℓ0 − 1}, submit

(submit, Tι+κ, ℓ1 − κ+R, fi) to the vector oracle. Output the list of handles [f] := ([fi])
2ℓ0−1
i=0 .

We define (P,V) as the following IOP, in which both parties have the common input [f] = ([fi])
2ℓ0−1
i=0 ,

s ∈ Tτ , and (r0, . . . , rℓ−1) ∈ T ℓ
τ , and P has the further input t(X0, . . . , Xℓ−1) ∈ Tι[X0, . . . , Xℓ−1]

⪯1.

• P computes the matrix–vector product f (0) :=
⊗ℓ−1

i=ℓ1
(1− ri, ri) · (fi)2

ℓ0−1
i=0 . Interpreting this latter

vector as a map f (0) : S(0) → Aι,κ,τ , P sends (submit, Aι,κ,τ , ℓ1−κ+R, f (0)) to the vector oracle.

• P defines t′(X0, . . . , Xℓ1−1) := t(X0, . . . , Xℓ1−1, rℓ1 , . . . , rℓ−1). As in Construction 3.24, P more-
over writes h(X0, . . . , Xℓ1−1) := t′(X0, . . . , Xℓ1−1) · ẽq(r0, . . . , rℓ1−1, X0, . . . , Xℓ1−1), and finally
abbreviates h′(X0, . . . , Xℓ1−κ−1) :=

∑
u∈Bκ

h(u0, . . . , uκ−1, X0, . . . , Xℓ1−κ−1).

• P and V run the main loop of Construction 3.24 on the values f (0) and s. That is, they execute:

1: for i ∈ {0, . . . , ℓ1 − κ− 1} do
2: P sends V the polynomial h′

i(X) :=
∑

v∈Bℓ1−κ−i−1
h′(r′0, . . . , r

′
i−1, X, v0, . . . , vℓ1−κ−i−2).

3: V requires si
?
= h′

i(0) + h′
i(1). V samples r′i ← Tτ , sets si+1 := h′

i(r
′
i), and sends P r′i.

4: P defines f (i+1) : S(i+1) → Aι,κ,τ as the function fold
(
f (i), r′i

)
of Definition 3.13.

5: if i+ 1 = ℓ1 then P sends c := f (ℓ1−κ)(0, . . . , 0) to V.
6: else if ϑ | i+ 1 then P submits (submit, Aι,κ,τ , ℓ1 − κ+R− i− 1, f (i+1)) to the oracle.

• By reversing the natural embedding, V destructures (cu)u∈Bκ
:= c as a T 2κ

τ -element.

• V requires sℓ1−κ
?
= ẽq(rκ, . . . , rℓ1−1, r

′
0, . . . , r

′
ℓ1−κ−1) ·

∑
u∈Bκ

cu · ẽq(r0, . . . , rκ−1, u0, . . . , uκ−1).

• V assigns cℓ1−κ := c, and executes the following querying procedure:

28

1: for γ repetitions do
2: V samples u← BR randomly.
3: for i ∈ {ℓ1 − κ− ϑ, ℓ1 − κ− 2 · ϑ, . . . , 0} (i.e., in downward order, taking ϑ-sized steps) do
4: for each v ∈ Bϑ, V submits (query, [f (i)], v ∥ u) to the oracle.

5: V requires ci+ϑ
?
= fold

(
f (i), r′i, . . . , r

′
i+ϑ−1

)
(u).

6: V samples v ← Bϑ, sets ci := f (i)(v ∥ u), and overwrites u := v ∥ u.
7: for each i ∈ {0, . . . , 2ℓ0−1}, V submits (query, [fi], u) to the oracle.

8: V requires c0
?
=
⊗ℓ−1

i=ℓ1
(1− ri, ri) · (fi(u))2

ℓ0−1
i=0 .

We suggest the following interpretation of Construction 4.1. Construction 4.1’s evaluation protocol
amounts, essentially, to an execution of that of Construction 3.24 on the partially evaluated polynomial
t′(X0, . . . , Xℓ1−1) := t(X0, . . . , Xℓ1−1, rℓ1 , . . . , rℓ−1), using moreover the evaluation point (r0, . . . , rℓ1−1) ∈
T ℓ1
τ . Construction 4.1, finally, augments Construction 3.24’s query phase so as to test moreover the consis-

tency between the virtual oracle
⊗ℓ−1

i=ℓ1
(1− ri, ri) · (fi)2

ℓ0−1
i=0 and f (0).

Theorem 4.2. The IOPCS Π = (Setup,Commit,P,V) of Construction 4.1 is complete.

Proof. We write (t′(v))v∈Bℓ1

for the vector of Lagrange coefficients of the partially evaluated polyno-

mial t′(X0, . . . , Xℓ1−1) := t(X0, . . . , Xℓ1−1, rℓ1 , . . . , rℓ−1). We note the fundamental tensor relationship

(t′(v))v∈Bℓ1

=
⊗ℓ−1

i=ℓ1
(1 − ri, ri) · (ti)2

ℓ0−1
i=0 (here, we again reshape, in row-major order, t(X0, . . . , Xℓ−1)’s

Lagrange coefficients into a 2ℓ0 × 2ℓ1 matrix). Finally, we write
(
t̂′(v)

)
v∈Bℓ1

−κ
for the result of applying the

natural embedding, chunk-wise, to (t′(v))v∈Bℓ1

.

By the linearity of Ĉ(0), we note that f (0) : S(ℓ1−κ) → Aι,κ,τ is exactly the Reed–Solomon encoding of(
t̂′(v)

)
v∈Bℓ1

. Applying Lemma 3.26 inductively to f (0), we conclude as in the proof of Theorem 3.25 that c =∑
v∈Bℓ1−κ

t̂′(v) · ẽq
(
r′0, . . . , r

′
ℓ1−κ−1, v0, . . . , vℓ1−κ−1

)
. As in that proof, we note further that the destructuring

(cu)u∈Bκ
has, at each of its indices u ∈ Bu, the component cu =

∑
v∈Bℓ1−κ

t′(u0, . . . , uκ−1, v0, . . . , vℓ1−κ−1) ·
ẽq(r′0, . . . , r

′
ℓ1−κ−1, v0, . . . , vℓ1−κ−1) = t′(u0, . . . , uκ−1, r

′
0, . . . r

′
ℓ1−κ−1).

Assuming now that s = t(r0, . . . , rℓ−1) holds—i.e., that the prover’s claim is correct—we note as in
the proof of Theorem 3.25 that s = t(r0, . . . , rℓ−1) = t′(r0, . . . , rℓ1−1) =

∑
v∈Bℓ1

h(v) =
∑

v∈Bℓ1−κ
h′(v).

We conclude that V will accept throughout its execution of the sumcheck, as well as that sℓ1−κ =
h′(r′0, . . . , r

′
ℓ1−κ−1) = ẽq(rκ, . . . , rℓ1−1, r

′
0, . . . , r

′
ℓ1−κ−1) ·

∑
u∈Bκ

cu · ẽq(r0, . . . , rκ−1, u0, . . . , uκ−1), where the
latter equality is proven—i.e., under the condition whereby cu = t′(u0, . . . , uκ−1, r

′
0, . . . , r

′
ℓ1−κ−1) holds for

each u ∈ Bκ—exactly as is the analogous equality in Theorem 3.25.

In our security theorem below, we assume that the query sampler Q outputs a uniformly random eval-
uation point (r0, . . . , rℓ−1) ← Q(params) in T ℓ

τ for each params. This assumption is discussed at length in
[DP23a, § 4.1], and is fulfilled in the protocol of [DP23b, § 5].

Theorem 4.3. If Q is uniform, then the IOPCS Π = (Setup,Commit,P,V) of Construction 3.24 is secure.

Proof. We define a straight-line emulator E as follows.

1. By inspecting A’s messages to the vector oracle, E immediately recovers, for each i ∈ {0, . . . , 2ℓ0 − 1},
the function fi : S

(0) → Tι+κ underlying the handle [fi] output by A.

2. For each i ∈ {0, . . . , 2ℓ0 − 1}, E runs Algorithm 1 on the word fi : S
(0) → Tι+κ. If any among that

algorithm’s executions outputs Pi(X) = ⊥, then E sets t(X0, . . . , Xℓ−1) := 0. Otherwise, E expresses,
for each i ∈ {0, . . . , 2ℓ0−1}, the ith output Pi(X) =

∑
v∈Bℓ1−κ

t̂i(v)·X{v}(X) in coordinates with respect

to the novel polynomial basis. By reversing the natural embedding on each of Pi(X)’s coordinates,

E obtains the T Bℓ1

ι -element (ti(v))v∈Bℓ1

, say. E writes t(X0, . . . , Xℓ−1) ∈ Tι[X0, . . . , Xℓ−1]
⪯1 for the

polynomial whose Lagrange coordinates are given by the 2ℓ0×2ℓ1 matrix (ti)
2ℓ0−1
i=0 (in row-major order).

3. E outputs t(X0, . . . , Xℓ−1) and terminates.

29

We now argue that E fulfills the requirements of Definition 3.7 with respect to the protocol Π.
We augment the proof of Theorem 3.27 with a handful of further definitions. We recall that C(0) ⊂

T 2ℓ1−κ+R

ι+κ denotes the Reed–Solomon code RSTι+κ,S(0) [2ℓ1−κ+R, 2ℓ1−κ]. Following the proof of Theorem 3.27,

for each i ∈ {0, . . . , 2ℓ0 − 1}, in case d
(
fi, C

(0)
)
< d0

2 , we write f i ∈ C(0) for the codeword for which

d
(
fi, f i

)
< d0

2 holds. The following definition directly extends Definition 3.33:

Definition 4.4. We say that A’s initial committed matrix (fi)
2ℓ0−1
i=0 is compliant if the conditions

d2
ℓ0

(
(fi)

2ℓ0−1
i=0 , C(0)2

ℓ0

)
< d0

2 , d
(
f (0), Ĉ(0)

)
< d0

2 , and f (0) =
⊗ℓ−1

i=ℓ1
(1− ri, ri) ·

(
f i

)2ℓ0−1

i=0
all hold.

It is useful to think of A’s initial matrix (fi)
2ℓ0−1
i=0 informally as its “−1th oracle”. We define a fi-

nal bad event, following Definition 3.29. Importantly—and here, we use our hypothesis on Q—the tuple

(rℓ1 , . . . , rℓ−1)← Q(params) is uniformly random, and is sampled after A commits (fi)
2ℓ0−1
i=0 .

Definition 4.5. We define the bad subset E−1 ⊂ T ℓ0
τ as the empty set if d2

ℓ0

(
(fi)

2ℓ0−1
i=0 , C(0)2

ℓ0

)
< d0

2 holds,

and otherwise as the set of tuples (rℓ1 , . . . , rℓ−1) ∈ T ℓ0
τ for which d

(⊗ℓ−1
i=ℓ1

(1− ri, ri) · (fi)2
ℓ0−1

i=0 , Ĉ(0)
)
< d0

3 .

The following proposition is analogous to Proposition 3.30.

Proposition 4.6. The probability mass µ(E−1) ≤ ℓ0 ·
|S(0)|
|Tτ | .

Proof. If d2
ℓ0

(
(fi)

2ℓ0−1
i=0 , C(0)2

ℓ0

)
< d0

2 , there’s nothing to prove. Otherwise, applying the contraposition

of Theorem 2.5 to the interleaved word (fi)
2ℓ0−1
i=0 and the code C(0), with the proximity parameter e :=⌊

d0−1
3

⌋
< d0

2 , we conclude immediately that µ(E−1) ≤ 2 · ℓ0 · e+1
|Tτ | ≤ ℓ0 · |S

(0)|
|Tτ | , as required.

We restate this proposition in the following way:

Proposition 4.7. The probability that the bad event E−1 occurs is at most ℓ0 · 2
ℓ1−κ+R

|Tτ | .

Proof. This is simply Proposition 4.6.

Combining Propositions 3.32 and 4.7, we see that the probability that any of the bad events
E−1, E0, Eϑ, . . . , Eℓ−κ−ϑ occurs is negligible. We thus assume that none of them occur.

Proposition 4.8. If A’s initial matrix is not compliant, then V accepts with at most negligible probability.

Proof. If any among A’s oracles f (0), f (ϑ), . . . , f (ℓ1−κ−ϑ) fails to be compliant the sense of Definition 3.33
above, then Proposition 3.34 implies the proposition’s conclusion. We thus assume that all of A’s oracles
f (0), f (ϑ), . . . , f (ℓ1−κ−ϑ) are compliant in the sense of Definition 3.33. In particular, we obtain the guarantee

d
(
f (0), Ĉ(0)

)
< d0

2 . The proposition’s hypothesis implies, in this case, that either d2
ℓ0

(
(fi)

2ℓ0−1
i=0 , C(0)2

ℓ0

)
≥

d0

2 or f (0) ̸=
⊗ℓ−1

i=ℓ1
(1− ri, ri) ·

(
f i

)2ℓ0−1

i=0
. In each case, we have the following analogue of Lemma 3.35:

Lemma 4.9. We have d
(⊗ℓ−1

i=ℓ1
(1− ri, ri) · (fi)2

ℓ0−1
i=0 , f (0)

)
≥ d0

3 .

Proof. We first assume that d2
ℓ0

(
(fi)

2ℓ0−1
i=0 , C(0)2

ℓ0

)
< d0

2 and f (0) ̸=
⊗ℓ−1

i=ℓ1
(1− ri, ri) ·

(
f i

)2ℓ0−1

i=0
both hold

(the first of these assumptions implies that the codewords
(
f i

)2ℓ0−1

i=0
of the second assumption’s right-hand

side are well-defined). The first of these assumptions implies that d
(⊗ℓ−1

i=ℓ1
(1− ri, ri) · (fi)2

ℓ0−1
i=0 , Ĉ(0)

)
< d0

2 ,

as well as that the codeword closest to this latter word is none other than
⊗ℓ−1

i=ℓ1
(1− ri, ri) ·

(
f i

)2ℓ0−1

i=0
. Our

30

second hypothesis, whereby this latter word is unequal to f (0), implies—by a reverse triangle calculation

analogous to that of Lemma 3.35—that d
(⊗ℓ−1

i=ℓ1
(1− ri, ri) · (fi)2

ℓ0−1
i=0 , f (0)

)
≥ d0 − d0

2 ≥
d0

3 , as desired.

In the case d2
ℓ0

(
(fi)

2ℓ0−1
i=0 , C(0)2

ℓ0

)
≥ d0

2 , our assumption whereby E−1 didn’t occur entails exactly

that d
(⊗ℓ−1

i=ℓ1
(1− ri, ri) · (fi)2

ℓ0−1
i=0 , Ĉ(0)

)
≥ d0

3 ; in this case, d
(⊗ℓ−1

i=ℓ1
(1− ri, ri) · (fi)2

ℓ0−1
i=0 , f (0)

)
≥ d0

3 in

particular certainly holds, since f (0) ∈ Ĉ(0) is a codeword.

We now record an analogue of Lemma 3.36. If any among A’s “standard” oracles f (0), f (ϑ), . . . , f (ℓ1−κ−ϑ)

fails to be compliant, then Lemma 3.36 serves our needs. For the purposes of the following lemma, therefore,
we assume that each among A’s oracles f (0), f (ϑ), . . . , f (ℓ1−κ−ϑ) is compliant, but its initial matrix is not.
Under exactly this hypothesis, we have:

Lemma 4.10. If its level-0 point satisfies c0 ∈ ∆
(⊗ℓ−1

i=ℓ1
(1− ri, ri) · (fi)2

ℓ0−1
i=0 , f (0)

)
, then the verifier rejects.

Proof. The proof is analogous to that of Lemma 3.36. We first claim that if f (0)(c0) = f (0)(c0), then V rejects.

Indeed, in this case, we see immediately under our hypothesis that
⊗ℓ−1

i=ℓ1
(1−ri, ri)·(fi(c0))2

ℓ0−1
i=0 ̸= f (0)(c0) =

f (0)(c0), so that the verifier rejects in line 8 above. If on the other hand f (0)(c0) ̸= f (0)(c0) instead holds,
then, by definition, cϑ = q(0)(c0) satisfies cϑ ∈ ∆(0)

(
f (0), f (0)

)
. Using our assumption whereby the event E0

didn’t occur, we conclude in turn that cϑ ∈ ∆
(
fold
(
f (0), r′0, . . . , r

′
ϑ−1

)
, fold

(
f (0), r′0, . . . , r

′
ϑ−1

))
. This latter set

itself equals ∆
(
fold
(
f (0), r′0, . . . , r

′
ϑ−1

)
, f (ϑ)

)
, by our guarantee whereby f (ϑ) = fold

(
f (0), r′0, . . . , r

′
ϑ−1

)
(we’ve

assumed that A’s oracles f (0), f (ϑ), . . . , f (ℓ1−κ−ϑ) are compliant). We see that fold
(
f (0), r′0, . . . , r

′
ϑ−1

)
(cϑ) ̸=

f (ϑ)(cϑ). We are thus ready, in this case, to begin the induction of Lemma 3.36 at the index i := ϑ.

The rest of the proof of the proposition proceeds exactly as does that of Proposition 3.34. We continue
to assume that all of A’s oracles f (0), f (ϑ), . . . , f (ℓ1−κ−ϑ) are compliant (as is justified by Proposition 3.34).
In this case—and assuming now the hypothesis of the proposition—Lemma 4.9 implies (i.e., assuming E−1

doesn’t occur) that c0 ∈ ∆
(⊗ℓ−1

i=ℓ1
(1− ri, ri) · (fi)2

ℓ0−1
i=0 , f (0)

)
holds with probability at least 1

|S(0)| ·
d0

3 ≥
1
3 −

1
3·2R in each of the verifier’s query iterations. By Lemma 3.36, the verifier rejects in each such iteration

(i.e., assuming none of the events E0, Eϑ, . . . , Eℓ−κ−ϑ occur). We see that V accepts with probability at
most

(
2
3 + 1

3·2R
)γ
, which is negligible. This completes the proof.

Applying Propositions 4.6 and 4.8 (together with Propositions 3.32 and 3.34), we assume that all of
A’s oracles, including its initial matrix, are compliant. Under this assumption, we note first of all that E ’s
invocations of Algorithm 1 all succeed. Exactly as in E ’s description, we write, for each i ∈ {0, . . . , 2ℓ0 − 1},(
t̂i(v)

)
v∈Bℓ1−κ

for the vector of coefficients—in the novel polynomial basis—of the polynomial Pi(X) extracted

by E , and (ti(v))v∈Bℓ1

for this vector’s unpacking. Finally, we write t(X0, . . . , Xℓ−1) for the polynomial

ultimately output by E , and t′(X0, . . . , Xℓ1−1) := t(X0, . . . , Xℓ1−1, rℓ1 , . . . , rℓ−1). As in the proof of Theorem

4.2, we note the tensor identity (t′(v))v∈Bℓ1

=
⊗ℓ−1

i=ℓ1
(1 − ri, ri) · (ti)2

ℓ0−1
i=0 . Theorem 4.2’s proof shows,

in precisely this situation, that f (0) is the encoding of the packing
(
t̂′(v)

)
v∈Bℓ1−κ

of this latter vector, as

well as that P’s final FRI message is exactly c =
∑

v∈Bℓ1−κ
t̂′(v) · ẽq

(
r′0, . . . , r

′
ℓ1−κ−1, v0, . . . , vℓ1−κ−1

)
, an

algebra-element whose uth component—for each u ∈ Bκ—is cu = t′(u0, . . . , uκ−1, r
′
0, . . . r

′
ℓ1−κ−1). Finally,

that proof shows that, in this setting, h′(r′0, . . . , r
′
ℓ1−κ−1) = ẽq(rκ, . . . , rℓ1−1, r

′
0, . . . , r

′
ℓ1−κ−1) ·

∑
u∈Bκ

cu ·
ẽq(r0, . . . , rκ−1, u0, . . . , uκ−1) moreover holds.

As in the proofs of Theorems 3.27 and 4.2, our hypothesis s ̸= t(r0, . . . , rℓ−1) implies that s ̸=
t(r0, . . . , rℓ−1) = t′(r0, . . . , rℓ1−1) =

∑
v∈Bℓ1

h(v) =
∑

v∈Bℓ1−κ
h′(v). Under this hypothesis, the soundness of

the sumcheck implies that—except with probability at most 2·(ℓ1−κ)
|Tτ | over V’s choice of folding challenges

(r′0, . . . , r
′
ℓ1−κ−1)—we have in turn that sℓ1−κ ̸= h′(r′0, . . . , r

′
ℓ1−κ−1); in this latter case, we conclude that

sℓ1−κ ̸= ẽq(rκ, . . . , rℓ1−1, r
′
0, . . . , r

′
ℓ1−κ−1) ·

∑
u∈Bκ

cu · ẽq(r0, . . . , rκ−1, u0, . . . , uκ−1), so that V rejects.

31

4.1 Efficiency Analysis

We examine the concrete efficiency of Construction 4.1, closely following Subsection 3.6, and focusing here
on concrete efficiency. Analogously to (6), we record here the concrete soundness error of Construction 4.1:

2 · (ℓ1 − κ)

|Tτ |
+ (l0 + 1) · 2

ℓ1−κ+R

|Tτ |
+

(
2

3
+

1

3 · 2R

)γ

. (7)

The first summand above is again a sumcheck error. The middle summand corresponds jointly to Propositions
3.32 and 4.7. The final summand corresponds to Propositions 3.34 and 4.8. If Conjecture 2.6 were assumed,
we could once again improve (7)’s final summand to

(
1
2 + 1

2·2R
)γ
.

We incorporate various concrete proof size optimizations, extending those discussed in Subsection 3.6.
For example, we stipulate that the prover, during its commitment phase, send a Merkle root whose leaves

are the respective columns (fi(u))
2ℓ0−1
i=0 , for u ∈ Bℓ1−κ+R. This allows P to justify each column (fi(u))

2ℓ0−1
i=0 ,

in line 7 above, using a single Merkle path of length ℓ1 − κ+R.
In Table 3 below, we benchmark the proof size of Construction 4.1. In each case, we again set τ := 7,

set R = 2, and obtain 90 bits of concrete security, again using γ = 217 queries and the Merkle truncation
height j = 8. We refrain, in the below table, from presenting benchmarks for those cases for which the choice
κ = 0 is available; in each such case, Construction 3.24 beats Construction 4.1 (albeit only slightly). In each
benchmark, we choose the matrix shape parameters ℓ0 and ℓ1 for which ℓ0 + ℓ1 = ℓ holds, as well as the
folding factor ϑ ≥ 1, optimally.

Total Data Size ℓ0 + ℓ1 = ℓ Coeff. Size ι Pack. Factor κ Fold. Factor ϑ Prf. Size (MiB)

32 MiB (228 bits) 7 + 18 = 25 3 2 3 0.682

10 + 18 = 28 0 4 2 1.601

512 MiB (232 bits) 7 + 22 = 29 3 2 3 0.950

8 + 24 = 32 0 5 2 3.509

8.192 GiB (236 bits) 8 + 25 = 33 3 2 3 1.282

8 + 28 = 36 0 5 2 4.584

Table 3: Proof sizes of Construction 4.1.

In Table 4 below, we record analogous benchmarks, in which we moreover assume Conjecture 2.6. In
this setting, we need only γ = 133 queries throughout; we again set the Merkle cap j = 8. x

Total Data Size ℓ0 + ℓ1 = ℓ Coeff. Size ι Pack. Factor κ Fold. Factor ϑ Prf. Size (MiB)

32 MiB (228 bits) 7 + 18 = 25 3 2 3 0.441

10 + 18 = 28 0 4 2 1.119

512 MiB (232 bits) 7 + 22 = 29 3 2 3 0.622

8 + 24 = 32 0 5 2 2.963

8.192 GiB (236 bits) 6 + 27 = 33 3 2 3 0.822

8 + 28 = 36 0 5 2 2.962

Table 4: Proof sizes of Construction 4.1.

We note that Construction 4.1’s proofs are smaller than those of Construction 3.24 by as much as half,
with the gains most prominent in the case ι = 0.

32

References

[AHIV23] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. “Ligero:
lightweight sublinear arguments without a trusted setup”. In: Designs, Codes and Cryptography
(2023). doi: 10.1007/s10623-023-01222-8.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast Reed–Solomon Inter-
active Oracle Proofs of Proximity”. In: International Colloquium on Automata, Languages, and
Programming. Ed. by Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Don-
ald Sannella. Vol. 107. Leibniz International Proceedings in Informatics. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 14:1–14:17.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In: Inter-
national Conference on Theory of Cryptography. Vol. 9986. Berlin, Heidelberg: Springer-Verlag,
2016, pp. 31–60. isbn: 978-3-662-53644-5. doi: 10.1007/978-3-662-53644-5_2.

[Ben+23] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. “Proximity
Gaps for Reed–Solomon Codes”. In: Journal of the ACM 70.5 (Oct. 2023). doi: 10.1145/
3614423.

[Ber15] Elwyn Berlekamp. Algebraic Coding Theory. Revised Edition. World Scientific Publishing, 2015.

[CBBZ23] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. “HyperPlonk: Plonk with Linear-
Time Prover and High-Degree Custom Gates”. In: Advances in Cryptology – EUROCRYPT
2023. Ed. by Carmit Hazay and Martijn Stam. Vol. 14005. Lecture Notes in Computer Science.
Cham: Springer Nature Switzerland, 2023.

[DP23a] Benjamin E. Diamond and Jim Posen. Proximity Testing with Logarithmic Randomness. Cryp-
tology ePrint Archive, Paper 2023/630. 2023. url: https://eprint.iacr.org/2023/630.

[DP23b] Benjamin E. Diamond and Jim Posen. Succinct Arguments over Towers of Binary Fields. Cryp-
tology ePrint Archive, Paper 2023/1784. 2023. url: https://eprint.iacr.org/2023/1784.

[FP97] John L. Fan and Christof Paar. “On efficient inversion in tower fields of characteristic two”. In:
Proceedings of IEEE International Symposium on Information Theory. 1997.

[GG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. 3rd Edition. Cam-
bridge University Press, 2013.

[Gur06] Venkatesan Guruswami. Algorithmic Results in List Decoding. Vol. 2. Foundations and Trends
in Theoretical Computer Science 2. now publishers, 2006.

[Hab22] Ulrich Haböck. A summary on the FRI low degree test. Cryptology ePrint Archive, Paper
2022/1216. 2022. url: https://eprint.iacr.org/2022/1216.

[LCH14] Sian-Jheng Lin, Wei-Ho Chung, and Yunghsiang S. Han. “Novel Polynomial Basis and Its Ap-
plication to Reed–Solomon Erasure Codes”. In: IEEE 55th Annual Symposium on Foundations
of Computer Science. 2014, pp. 316–325. doi: 10.1109/FOCS.2014.41.

[Li+18] Wen-Ding Li, Ming-Shing Chen, Po-Chun Kuo, Chen-Mou Cheng, and Bo-Yin Yang. “Frobenius
Additive Fast Fourier Transform”. In: ACM International Symposium on Symbolic and Algebraic
Computation. 2018. isbn: 9781450355506. doi: 10.1145/3208976.3208998.

[Set20] Srinath Setty. “Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup”. In:
Advances in Cryptology – CRYPTO 2020. Ed. by Daniele Micciancio and Thomas Ristenpart.
Cham: Springer International Publishing, 2020, pp. 704–737. isbn: 978-3-030-56877-1. doi: 10.
1007/978-3-030-56877-1_25.

[Tha22] Justin Thaler. Proofs, Arguments and Zero-Knowledge. Vol. 4. Foundations and Trends in Pri-
vacy and Security 2–4. now publishers, 2022.

[Wie88] Doug Wiedemann. “An Iterated Quadratic Extension of GF (2)”. In: The Fibonacci Quarterly
26.4 (1988), pp. 290–295.

[ZCF23] Hadas Zeilberger, Binyi Chen, and Ben Fisch. BaseFold: Efficient Field-Agnostic Polynomial
Commitment Schemes from Foldable Codes. Cryptology ePrint Archive, Paper 2023/1705. 2023.
url: https://eprint.iacr.org/2023/1705.

33

https://doi.org/10.1007/s10623-023-01222-8
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1145/3614423
https://doi.org/10.1145/3614423
https://eprint.iacr.org/2023/630
https://eprint.iacr.org/2023/1784
https://eprint.iacr.org/2022/1216
https://doi.org/10.1109/FOCS.2014.41
https://doi.org/10.1145/3208976.3208998
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://eprint.iacr.org/2023/1705

	Introduction
	Technical Overview
	Prior Work

	Background and Notation
	Lagrange and Monomial Forms
	Error-Correcting Codes
	Novel Polynomial Basis
	FRI
	The Tower Algebra
	Proximity Gaps

	Polynomial Commitment Schemes
	Security Definitions and Notions
	Using FRI in Novel Polynomial Basis
	FRI Folding, Revisited
	Our Protocol
	Packing-Based Scheme
	Efficiency Analysis

	Hybrid Brakedown–FRI-Style Protocol
	Efficiency Analysis

