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Abstract

Anonymous identity-based encryption (AIBE) is an extension of identity-based encryption (IBE)
that enhances the privacy of a ciphertext by providing ciphertext anonymity. In this paper, we introduce
the concept of revocable IBE with anonymous revocation (RIBE-AR), which is capable of issuing an
update key and hiding the revoked set of the update key that efficiently revokes private keys of AIBE.
We first define the security models of RIBE-AR and propose an efficient RIBE-AR scheme in bilinear
groups. Our RIBE-AR scheme is similar to the existing RIBE scheme in terms of efficiency, but is the
first RIBE scheme to provide additional ciphertext anonymity and revocation privacy. We show that
our RIBE-AR scheme provides the selective message privacy, selective identity privacy, and selective
revocation privacy.
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1 Introduction

An anonymous identity-based encryption (AIBE) scheme that provides ciphertext anonymity is an extension
of an identity-based encryption (IBE) scheme that uses an identity string as a public key, and strengthens the
privacy of a ciphertext by providing anonymity for the recipient identity included in the ciphertext. The first
IBE scheme was proposed by Boneh and Franklin using pairing [10], and their IBE scheme was later found
to provide anonymity [1]. Because an AIBE scheme can provide ciphertext anonymity in communication
between users, it can be a very useful tool in fully private communication environments [1,13]. In addition,
an AIBE scheme also can be used for a searchable public-key encryption scheme, which is a new type of
public key encryption that allows searching keywords in encrypted data [9, 41].

In order to manage the private key of a user in a public-key system, how to effectively revoke the private
key is a very important issue. One way to handle the revocation of private keys in an AIBE scheme is to
periodically issue an update key similar to a revocable IBE (RIBE) scheme, which efficiently revokes the
private key of an IBE scheme [7]. In the RIBE scheme, each user which has a private key SK periodically
obtain an update key UK issued by a trusted center. When a sender creates a ciphertext CT associated with
a receiver identity ID and current time T for a receiver, the receiver can decrypt the ciphertext by combining
his private key with an update key at that time. If the private key of the receiver is not revoked in the update
key, the receiver can derive a valid decryption key DK to decrypt the ciphertext. However, in this revocation
method, since the update key exposes the revoked set R of users, there is a problem in that the anonymity of
the ciphertext can be breached by using this revoked set in the update key since the receiver identity of the
ciphertext will not belong to the revoked set.

In this paper, we would like to solve the problem of designing an RIBE scheme that supports the efficient
revocation of user private keys in an AIBE scheme, which provides anonymity of ciphertext, while not
revealing additional revoked information of users in an update key.

1.1 Our Contributions

We first introduce RIBE with revocation privacy (RIBE-AR) which provides ciphertext anonymity and revo-
cation privacy, and define three security models of RIBE-AR. The syntax of RIBE-AR is almost identical to
the syntax of RIBE. In other words, a ciphertext is associated with an identity ID and time T , a private key
is associated with an identity ID, and an update key is associated with a revocation set R and time T . As for
the security model, the existing RIBE defines only message privacy which is IND-CPA, but the RIBE-AR
defines three security models: message privacy (IND-CPA), identity privacy (ANO-CPA), and revocation
privacy (REV-PRV). The IND-CPA security guarantees that the message M of a ciphertext is hidden as be-
fore, and the ANO-CPA security model guarantees that the identity ID of a ciphertext is hidden. Lastly, the
REV-PRV security model guarantees that the revocation set R of an update key is hidden.

Next, we propose an RIBE-AR scheme that provides ciphertext anonymity and revocation privacy in
asymmetric bilinear groups and prove the security of our scheme. In order to devise an RIBE-AR scheme
that provides ciphertext anonymity only, we first constructed a basic RIBE scheme by combining an AIBE
scheme, an IBE scheme, and a tree-based broadcast encryption scheme. However, this basic RIBE scheme
derived in this way does not hide the revocation set of an update key. To provide revocation privacy, we
additionally encrypt all node update keys in the update key by using a symmetric-key encryption scheme
and provide hint values to quickly search for matching nodes. Compared to the existing RIBE scheme, our
RIBE-AR scheme has similar efficiency in terms of private key size and update key size, but it requires
slightly increased computation in the decryption key derivation. The detailed comparison of RIBE schemes
is given in Table 1. Finally, we show that our RIBE-AR scheme satisfies the selective IND-CPA security,
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Table 1: Comparison of RIBE schemes in bilinear groups

Scheme PP Size SK Size UK Size CT Size ANO, RP, DKER

BF [10] O(1) O(1) O(N− r) O(1) Yes, No, Yes

BGK [7] O(1) O(logN) O(r log N
r ) O(1) No, No, No

LV [30] O(λ ) O(logN) O(r log N
r ) O(1) No, No, No

SE [38] O(λ ) O(logN) O(r log N
r ) O(1) No, No, Yes

LLP [27] O(1) O(log2 N) O(r) O(1) No, No, Yes

WES [40] O(1) O(logN) O(r log N
r ) O(1) No, No, Yes

Ours O(1) O(logN) O(⌈r log N
r ⌉) O(1) Yes, Yes, Yes

Let λ be a security parameter, N be the number of all users, and r be the number of revoked users. We count
the number of group elements to measure the size. We use symbols ANO for ciphertext anonymity, RP for
revocation privacy, and DKER for decryption key exposure resistance.

the selective ANO-CPA security, and the selective REV-PRV security.

1.2 Our Techniques

The well-known method of designing an RIBE scheme using IBE schemes is to combine two IBE schemes
and the complete subtree (CS) method [7]. At this time, the private key SK of the RIBE scheme is composed
of IBE private keys corresponding to the path nodes of a binary tree, and the update key UK of the RIBE
scheme is composed of IBE private keys corresponding to the cover nodes that include non-revoked leaf
nodes in the binary tree. The main advantages of this approach to build an RIBE scheme are that a sender
can create a ciphertext CT without knowing revoked users, and the size of an update key UK periodically
issued by a center does not increase linearly with the number of non-revoked users.

Our RIBE-AR scheme also employs this methodology used to design the existing RIBE scheme. At this
time, we combine an AIBE scheme, an IBE scheme, and the CS method to provide ciphertext anonymity.
We modify the AHIBE scheme proposed by Ducas [16] as the underlying AIBE scheme to allow private key
randomization, and use the IBE scheme of Boneh and Boyen [8] as the underlying IBE scheme. However,
this basic RIBE scheme, which simply combines AIBE and IBE schemes with the CS method, does not
provide revocation privacy. The reason is that since an update key is publicly known, if we check which
update key node is used for decryption in the process of deriving a decryption key by combining the update
key and a private key, we can derive a matching node in the update key, which can be used to distinguish
revocation sets.

To ensure revocation privacy, we encrypt each node update keys in an update key by using symmetric
key encryption. To do this, we set each node vi in a binary tree to have a symmetric key κi and encrypts
the corresponding node update key NUKi with the key κi. We also randomly mix all node update keys
included in the update key so that additional information of tree nodes is not exposed. In order to decrypt
the encrypted node update key, we set each node private key NSKi associated with a node vi in a private
key to have a symmetric key κi. If the node private key NSKi of SK and the node update key NUKi of UK
relate to the same node vi, then we can decrypt the encrypted NUKi with κi included in NSKi and checks
the correctness of the decryption. However, this method has the disadvantage of being too slow in deriving
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a decryption key because all possible combinations of all node private keys and all node update keys should
be attempted.

In order to quickly derive a decryption key, we include hint values that allow checking for matching
nodes in each node update key. For reference, this method of using hints has already been used in anonymous
broadcast encryption schemes [18, 29]. To use hint values, the node private key of a private key includes
a random ωi associated with a node vi, and the node update key of an update key also includes a hint
element Yi =V ωi associated with a node vi where the element V is a unique random element for each update
key. In this case, a receiver who owns a private key has exponent values (ω1, . . . ,ωn) corresponding to the
path nodes of a binary tree, and uses the element V of the update key to derive elements (V ω1 , . . . ,V ωn).
Afterwards, the receiver can quickly find a matching node by comparing these derived elements with the
hint values (Y1, . . . ,Ym) included in node update keys of an update key. Note that an attacker who has access
to only a limited set of revoked private keys will not be able to distinguish revoked sets even if he obtains
hint values.

1.3 Related Work

IBE and AIBE. An identity-based encryption (IBE) scheme was first proposed by Boneh and Franklin in
bilinear groups [10], and the security of their scheme was proven under the BDH assumption. The BF-IBE
scheme is also the first anonymous IBE (AIBE) scheme that provides ciphertext anonymity by hiding the
identity of a ciphertext [1]. Boyen proposed an identity-based sign/encryption (IBSE) scheme with cipher-
text anonymity by modifying the BF-IBE scheme [12]. An AIBE scheme can be used for the construction of
a public-key encryption with keyword search (PEKS) scheme that supports keyword searches on encrypted
data [9,41]. The first AIBE and anonymous HIBE schemes without random oracles were proposed by Boyen
and Waters under the decision linear assumption [13]. Gentry also proposed an AIBE scheme without ran-
dom oracles using a strong q-type assumption [19]. Ducas proposed AIBE and anonymous HIBE schemes
using asymmetric bilinear groups [16]. The first lattice-based IBE scheme proposed by Gentry et al. is
also an AIBE scheme because it provides anonymity [20]. Both hidden-vector encryption and inner-product
encryption schemes, which are extensions of IBE, can be easily converted to AIBE schemes through simple
conversion [11, 22].
Revocable IBE. Boneh and Franklin first noticed the private key revocation problem of IBE and proposed
a revocation method of periodically reissuing private keys [10]. However, this method has the disadvantage
that the private key reissuing increases in proportion to the number of users because each individual user
must be issued a new private key periodically. Boldyreva et al. proposed a different method in which a
trusted center periodically generates an update key and broadcasts it for non-revoked users [7]. This method
has the advantage that the update key size does not proportionally increases depending on the number of
users because it uses a tree based broadcast encryption scheme. Seo and Emura updated the previous security
model of RIBE schemes by allowing the decryption key queries of an adversary [38]. Lee et al. proposed
an efficient RIBE scheme with an improved update key size by using the subset difference method instead
of the previous complete subtree method [27]. Many additional studies have been conducted to improve
the security or efficiency of RIBE schemes [30, 34, 35, 40]. Another research direction is being conducted
on RHIBE schemes that can efficiently handle the revocation of the private key in HIBE schemes by using
the similar methods of the RIBE scheme [17, 24, 28, 37, 39]. Recently, generic conversion methods of
designing RIBE or RHIBE schemes using IBE or HIBE schemes in a black-box way have been proposed
[23, 25, 26, 31], but these approaches are somewhat inefficient compared to direct design approaches.
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2 Preliminaries

In this section we review pseudo-random functions, symmetric-key encryption, and the complete subtree
method which is one instance of the subset cover framework.

2.1 Pseudo-Random Function

A pseudo-random function (PRF) is an efficiently computable function F : K×X →Y where K is the key
space, X is the domain, and Y is the range. Let F(k, ·) be an oracle for a uniformly chosen k ∈ K and f (·)
be an oracle for a uniformly chosen function f : X →Y . We say that a PRF is secure if for all probabilistic
polynomial-time adversaries A the advantage AdvPRF

A (λ ) =
∣∣Pr[AF(k,·) = 1]−Pr[A f (·) = 1]

∣∣ is negligible.

2.2 Symmetric-Key Encryption

Symmetric-key encryption (SKE) is an encryption method in which the sender and receiver use the same
symmetric key for encryption and decryption. The syntax of SKE is defined as follows.

Definition 2.1 (Symmetric-Key Encryption, SKE). A symmetric-key encryption (SKE) scheme consists of
three algorithms GenKey, Encrypt, and Decrypt, which are defined as follows:

GenKey(1λ ). The key generation algorithm takes as input a security parameter λ . It outputs a symmetric
key K.

Encrypt(K,M). The encryption algorithm takes as input a message M ∈M and the symmetric key K. It
outputs a ciphertext C.

Decrypt(K,C). The decryption algorithm takes as input a ciphertext CT and the symmetric key K. It
outputs a message M or a symbol ⊥.

The correctness of the SKE scheme is defined as follows: For all K generated by GenKey and any message
M ∈M, it is required that Decrypt(K,Encrypt(K,M)) = M.

In general, the IND-CPA security model of the SKE scheme allows multiple challenge ciphertext queries,
but we use a simple security model that allows only one challenge ciphertext query. Note that an SKE
scheme, which is IND-CPA secure for the model that allows multiple challenge ciphertext queries, is nat-
urally guaranteed to be IND-CPA secure even for the simple model that allow one challenge ciphertext
query.

Definition 2.2 (Message Privacy, IND-CPA). The IND-CPA security of SKE is defined in the following
experiment EXPIND-CPA

A (1λ ) between a challenger C and a PPT adversary A:

1. Setup: C generates a symmetric key K by running GenKey(1λ ). It keeps K to itself.

2. Phase 1: A adaptively request a polynomial number of encryption queries. For each encryption query
for a message M, C generates a ciphertext CT by running Encrypt(K,M) and gives CT to A.

3. Challenge: A submits challenge messages M∗0 ,M
∗
1 where |M∗0 | = |M∗1 |. C flips a random coin µ ∈

{0,1} and gives a challenge ciphertext CT ∗ to A by running Encrypt(K,M∗µ).

4. Phase 2: A may continues to request additional encryption queries and C handles these queries as the
same as the phase 1.

6



5. Guess: A outputs a guess µ ′ ∈ {0,1} of µ . C outputs 1 if µ = µ ′ or 0 otherwise.

The advantage of A is defined as AdvIND-CPA
SKE,A (λ ) =

∣∣Pr[EXPIND-CPA
A (1λ ) = 1]− 1

2

∣∣. An SKE scheme is
IND-CPA secure if for all PPT adversary A, the advantage of A is negligible in the security parameter λ .

The key privacy (KEY-PRV) security model of SKE is that an attacker cannot distinguish which of two
symmetric keys K0 and K1 is used for encryption. We use a simple security model that allows one challenge
ciphertext query by modifying the definition of Bellare et al. [6] for PKE into the definition for SKE.

Definition 2.3 (Key Privacy, KEY-PRV [6]). The KEY-PRV security of SKE is defined in the following
experiment EXPKEY -PRV

A (1λ ) between a challenger C and a PPT adversary A:

1. Setup: C generates symmetric keys K0,K1 by running GenKey(1λ ). It keeps K0,K1 to itself.

2. Phase 1: A adaptively request a polynomial number of encryption queries. For each encryption query
for a message M and a choice b∈ {0,1}, C generates a ciphertext CT by running Encrypt(Kb,M) and
gives CT to A.

3. Challenge: A submits a challenge message M∗. C flips a random coin µ ∈{0,1} and gives a challenge
ciphertext CT ∗ to A by running Encrypt(Kµ ,M∗).

4. Phase 2: A may continues to request additional encryption queries and C handles these queries as the
same as the phase 1.

5. Guess: A outputs a guess µ ′ ∈ {0,1} of µ . C outputs 1 if µ = µ ′ or 0 otherwise.

The advantage of A is defined as AdvKEY -PRV
SKE,A (λ ) =

∣∣Pr[EXPKEY -PRV
A (1λ ) = 1]− 1

2

∣∣. An SKE scheme is
KEY-PRV secure if for all PPT adversary A, the advantage of A is negligible in the security parameter λ .

2.3 The Complete Subtree Method

The complete subtree method is one instance of the subset cover revocation framework of Naor et al. [33].
The simplified CS method is given as follows:

CS.Setup(N): Let N be the number of all users where N = 2n for simplicity. It sets a perfect binary tree
BT of depth n. Each user is assigned to a different leaf node in BT . It outputs the binary tree BT .

CS.Assign(BT ,v): Let v be a leaf node assigned to a user. Let (vk0 ,vk1 , . . . ,vkn) be the path from the root
node vk0 = v0 to the leaf node vkn = v. It initializes a private set PV = /0. For all j ∈ {k0, . . . ,kn}, it
adds v j into PV . It outputs the private set PV = {v j}.

CS.Cover(BT ,R): Let R be a set of revoked users which consists of leaf nodes. It computes the Steiner
tree ST R. Let Tk1 , . . .Tkm be all the subtrees of BT that hang off ST R, that is all subtrees whose
roots vk1 , . . .vkm are not in ST R but adjacent to nodes of outdegree 1 in ST R. It initializes a cover set
CV = /0. For all i ∈ {k1, . . . ,km}, it adds vi into CV . It outputs the cover set CV = {vi}.

CS.Match(CV,PV ): It finds a common node vk with vk ∈CV and vk ∈ PV . If there exists a common node,
it outputs (vk,vk). Otherwise, it outputs ⊥.

The correctness of the CS scheme requires that if v ̸∈ R, then CS.Match(CV,PV ) = (vk,vk) for the same vk
where CV and PV are associated with R and v respectively.
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3 Anonymous RIBE with Anonymous Revocation

In this section, we define the syntax and security models of RIBE-AR that provides message privacy, identity
privacy, and revocation privacy.

3.1 Definition

Revocable IBE with anonymous revocation (RIBE-AR) is an extension of IBE and supports the revocation
of user private keys through the issuance of update keys [7]. In an RIBE-AR scheme, a trusted center
creates a user’s private key using the master key and status information and maintains a revocation list. If
the private key of a user is revealed or expired, then the trusted center updates the revocation list by including
the identity of the revoked user. And the trusted center periodically issues an update key using the revocation
list and broadcasts it for non-revoked users. A sender creates a ciphertext by specifying the identity of a
recipient and current time. A receiver can derive a decryption key by combining his private key with the
update key if his private key is not revoked in the update key. By using the decryption key, the recipient can
decrypt the corresponding ciphertext. The more detailed syntax of RIBE is given as follows.

Definition 3.1 (RIBE with Anonymous Revocation, RIBE-AR). An RIBE-AR scheme consists of seven
algorithms Setup, GenKey, UpdateKey, DeriveKey, Encrypt, Decrypt, and Revoke, which are defined
as follows:

Setup(1λ ,N): The setup algorithm takes as input a security parameter 1λ and the maximum number of
users N. It outputs a master key MK, an (empty) revocation list RL, and public parameters PP.

GenKey(ID,MK,ST,PP): The private key generation algorithm takes as input an identity ID ∈ I, the
master key MK, and public parameters PP. It outputs a private key SKID.

UpdateKey(T,RL,MK,ST,PP): The update key generation algorithm takes as input update time T ∈ T ,
the revocation list RL, the master key MK, and public parameters PP. It outputs an update key UKT .

DeriveKey(SKID,UKT ,PP): The decryption key derivation algorithm takes as input a private key SKID, an
update key UKT , and public parameters PP. It outputs a decryption key DKID,T .

Encrypt(ID,T,M,PP): The encryption algorithm takes as input an identity ID ∈ I, time T , a message
M ∈M, and public parameters PP. It outputs a ciphertext CT .

Decrypt(CT,DKID′,T ′ ,PP): The decryption algorithm takes as input a ciphertext CT , a decryption key
DKID′,T ′ , and public parameters PP. It outputs a message M.

Revoke(ID,T,RL): The revocation algorithm takes as input an identity ID to be revoked and revocation
time T , and a revocation list RL. It outputs an updated revocation list RL.

The correctness of RIBE-AR is defined as follows: For all MK, RL, and PP generated by Setup(1λ ,N),
SKID generated by GenKey(ID,MK,PP) for any ID, UKT generated by UpdateKey(T,RL,MK,PP) for
any T and RL such that (ID,Tj) /∈ RL for all Tj ≤ T , CT generated by Encrypt(ID,T,M,PP) for ID, T , and
M, it is required that

• Decrypt(CT,DeriveKey(SKID,UKT ,PP),PP) = M.
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3.2 Security Model

The selective IND-CPA security model of RIBE-AR is an extension of the selective IND-CPA security
model of IBE that allows the revocation of private keys [7, 38]. In this model, an attacker first submits
the challenge identity ID∗ and challenge time T ∗ and receives public parameters. Afterwards, the attacker
can request private key, update key, decryption key, and revocation queries that satisfy some restrictions to
prevent trivial attacks. In the challenge phase, the attacker submits challenge messages M∗0 ,M

∗
1 and receives

a challenge ciphertext for ID∗ and T ∗ that encrypts M∗0 or M∗1 . The attacker can then make additional queries
and succeed if he correctly guesses the challenge ciphertext message. The detailed definition of this security
model is given as follows:

Definition 3.2 (Message Privacy, SE-IND-CPA). The selective IND-CPA (SE-IND-CPA) security of RIBE-
AR is defined in terms of the following experiment EXPSE-IND-CPA

A (1λ ) between a challenger C and a PPT
adversary A:

1. Init: A submits a challenge identity ID∗ and challenge time T ∗.

2. Setup: C generates a master key MK, a revocation list RL, a state ST , and public parameters PP by
running Setup(1λ ,N). It initializes a current time period Tc = 1 and gives PP to A.

3. Phase 1: A adaptively request a polynomial number of queries. C handles these queries as follows:

• Private key query for an identity ID: It checks that if ID = ID∗, then (ID∗,T ) ∈ RL for some
T ≤ T ∗. It generates SKID by running GenKey(ID,MK,PP) and gives SKID to A.

• Update key query: It generates UKTc by running UpdateKey(Tc,RL,MK,PP), sets Tc = Tc +1,
and gives UKTc to A.

• Decryption key query for an identity ID and time T : It checks that (ID,T ) ̸= (ID∗,T ∗) and
1≤ T < Tc. It generates DKID,T by running DeriveKey(SKID,UKT ,PP) and gives DKID,T toA.

• Revocation query for an identity ID: It updates RL by running Revoke(ID,Tc,RL).

4. Challenge: A submits two challenge messages M∗0 ,M
∗
1 with equal length. C flips random µ ∈ {0,1}.

It obtains a challenge ciphertext CT ∗ by running Encrypt(ID∗µ ,T
∗,M∗µ ,PP) and gives CT ∗ to A.

5. Phase 2: A may continue to request additional queries. B handles these queries as the same as the
phase 1.

6. Guess: Finally, A outputs a guess µ ′ ∈ {0,1}, and wins the game if µ = µ ′.

The advantage of A is defined as AdvSE-IND-CPA
RIBE-AR,A (λ ) =

∣∣Pr[EXPSE-IND-CPA
A (1λ ) = 1]− 1

2

∣∣ where the proba-
bility is taken over all the randomness of the experiment. An RIBE-AR scheme is SE-IND-CPA secure if
for all PPT adversary A, the advantage of A is negligible in the security parameter λ .

The selective ANO-CPA security of RIBE-AR is an extension of the selective ANO-CPA security model
of AIBE to allow the revocation of private keys. In this model, an attacker first submits challenge identities
ID∗0, ID∗1 and challenge time T ∗ and receives public parameters. Afterwards, the attacker can request private
key, update key, decryption key, and revocation queries that satisfies some restrictions to prevent trivial
attacks. In the challenge phase, the attacker submits a challenge message M∗ and receives a challenge
ciphertext encrypted with ID∗0 or ID∗1 for T ∗ and M∗. The attacker can then make additional queries and
succeed by correctly guessing the challenge identity in the challenge ciphertext. The detailed definition of
this security model is given as follows:
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Definition 3.3 (Identity Privacy, SE-ANO-CPA). The selective ANO-CPA (SE-ANO-CPA) security of
RIBE-AR is defined in terms of the following experiment EXPSE-ANO-PRV

A (1λ ) between a challenger C and
a PPT adversary A:

1. Init: A submits two challenge identities ID∗0, ID∗1 and challenge time T ∗.

2. Setup: C generates a master key MK, a revocation list RL, a state ST , and public parameters PP by
running Setup(1λ ,N). It initializes a current time period Tc = 1 and gives PP to A.

3. Phase 1: A adaptively request a polynomial number of queries. C handles these queries as follows:

• Private key query for an identity ID: It checks that if ID = ID∗b for some b ∈ {0,1}, then
(ID∗b,T ) ∈ RL for some T ≤ T ∗. It generates SKID by running GenKey(ID,MK,PP) and gives
SKID to A.

• Update key query: It generates UKTc by running UpdateKey(Tc,RL,MK,PP), sets Tc = Tc +1,
and gives UKTc to A.

• Decryption key query for an identity ID and time T : It checks that (ID,T ) ̸= (ID∗b,T
∗) for all

b ∈ {0,1} and 1 ≤ T < Tc. It generates DKID,T by running DeriveKey(SKID,UKT ,PP) and
gives DKID,T to A.

• Revocation query for an identity ID: It updates RL by running Revoke(ID,Tc,RL).

4. Challenge: A submits a challenge message M∗. C flips random µ ∈ {0,1}. It obtains a challenge
ciphertext CT ∗ by running Encrypt(ID∗µ ,T

∗,M∗,PP) and gives CT ∗ to A.

5. Phase 2: A may continue to request additional queries. B handles these queries as the same as the
phase 1.

6. Guess: Finally, A outputs a guess µ ′ ∈ {0,1}, and wins the game if µ = µ ′.

The advantage of A is defined as AdvSE-ANO-CPA
RIBE-AR,A (λ ) =

∣∣Pr[EXPSE-ANO-PRV
A (1λ ) = 1]− 1

2

∣∣ where the proba-
bility is taken over all the randomness of the experiment. An RIBE-AR scheme is SE-ANO-CPA secure if
for all PPT adversary A, the advantage of A is negligible in the security parameter λ .

The selective REV-PRV security of RIBE-AR models that external users who only have revoked private
keys cannot get revocation information from update keys. In this model, an attacker first submits challenge
revocation sets R∗0,R

∗
1 and challenge time T ∗ and receives public parameters. Afterwards, the attacker can

request private key, update key, decryption key, and revocation queries that satisfy some restrictions. One
restriction is that an attacker can only query private keys belonging to R∗0∩R∗1. In the challenge phase, the
attacker receives a challenge update key for R∗0 or R∗1. Afterwards, the attacker can make additional queries
and finally succeed if he can guess the revoked set of the challenge update key. The detailed definition of
this security model is given as follows:

Definition 3.4 (Revocation Privacy, SE-REV-PRV). The selective REV-PRV (SE-REV-PRV) security of
RIBE-AR is defined in terms of the following experiment EXPSE-REV -PRV

A (1λ ) between a challenger C and
a PPT adversary A:

1. Init: A submits two challenge revoked sets R∗0,R
∗
1 and challenge time T ∗ such that |R∗0|= |R∗1|.

2. Setup: C generates a master key MK, a revocation list RL, a state ST , and public parameters PP by
running Setup(1λ ,N). It initializes a current time period Tc = 1 and gives PP to A.
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3. Phase 1: A adaptively request a polynomial number of queries. C handles these queries as follows:

• Private key query for an identity ID: It checks that ID ∈ R∗0∩R∗1. It generates SKID by running
GenKey(ID,MK,PP) and gives SKID to A.

• Update key query: It checks that Tc ̸= T ∗. It generates UKTc by running UpdateKey(Tc,RL,MK,
PP), sets Tc = Tc +1, and gives UKTc to A.

• Decryption key query for an identity ID and time T : It checks that 1 ≤ T < Tc. It generates
DKID,T by running DeriveKey(SKID,UKT ,PP) and gives DKID,T to A.

• Revocation query for an identity ID: It updates RL by running Revoke(ID,Tc,RL).

4. Challenge: C flips random µ ∈ {0,1} and proceeds as follows:

(a) For each ID ∈ R∗µ , it updates RL by adding (ID,T ∗) if (ID,T ) ̸∈ RL for some T < T ∗.

(b) It obtains a challenge update key UK∗ by running UpdateKey(T ∗,RL,MK,PP). It sets Tc =
T ∗+1 and gives UK∗ to A.

5. Phase 2: A may continue to request additional queries. B handles these queries as the same as the
phase 1.

6. Guess: Finally, A outputs a guess µ ′ ∈ {0,1}, and wins the game if µ = µ ′.

The advantage of A is defined as AdvSE-REV -PRV
RIBE-AR,A (λ ) =

∣∣Pr[EXPSE-REV -PRV
A (1λ ) = 1]− 1

2

∣∣ where the proba-
bility is taken over all the randomness of the experiment. An RIBE-AR scheme is SE-REV-PRV secure if
for all PPT adversary A, the advantage of A is negligible in the security parameter λ .

Remark 1. The selective REV-PRV security model we defined is a weak security model because it considers
outsider attackers that only query private keys belonging to R∗0 ∩ R∗1 (private keys of revoked users). A
stronger security model is to consider inside attackers that can additionally query private keys belonging
to (U \R∗0)∩ (U \R∗1) (private keys of non-revoked users) where U is the set of all users. However, our
RIBE-AR scheme in this paper only satisfies this weak security model.

4 Construction from Bilinear Maps

In this section, we propose an anonymous RIBE-AR scheme that provides revocation privacy in bilinear
groups.

4.1 Bilinear Groups

A bilinear group generator G takes as input a security parameter λ and outputs a tuple (p,G,Ĝ,GT ,e) where
p is a random prime and G,Ĝ, and GT be three cyclic groups of prime order p. Let g and ĝ be generators of
G and Ĝ, respectively. The bilinear map e : G× Ĝ→GT has the following properties:

1. Bilinearity: ∀u ∈G,∀v̂ ∈ Ĝ and ∀a,b ∈ Zp, e(ua, v̂b) = e(u, v̂)ab.

2. Non-degeneracy: ∃g ∈G, ĝ ∈ Ĝ such that e(g, ĝ) has order p in GT .

We say that G,Ĝ,GT are asymmetric bilinear groups with no efficiently computable isomorphisms if the
group operations in G,Ĝ, and GT as well as the bilinear map e are all efficiently computable, but there are
no efficiently computable isomorphisms between G and Ĝ.
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4.2 Complexity Assumptions

In this section, we introduce complexity assumptions for the security proof of our RIBE scheme.

Assumption 1 (Decisional Bilinear Diffie-Hellman, DBDH [13]). Let (p,G,Ĝ,GT ,e) be an asymmetric
bilinear group generated by G(1λ ). Let g, ĝ be random generators of G,Ĝ respectively. The decisional
bilinear Diffie-Hellman (DBDH) assumption is that if the challenge tuple

D =
(
(p,G,Ĝ,GT ,e),g,ga,gc, ĝ, ĝa, ĝb) and Z

are given, no PPT algorithm A can distinguish Z = Z0 = e(g, ĝ)abc from Z = Z1 = e(g, ĝ)d with more than a
negligible advantage. The advantage of A is defined as AdvDBDH

A (λ ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) =

0]
∣∣ where the probability is taken over random choices of a,b,c,d ∈ Zp.

Assumption 2 (Decisional eXternal Diffie-Hellman, XDH). Let (p,G,Ĝ,GT ,e) be an asymmetric bilin-
ear group generated by G(1λ ). Let g, ĝ be random generators of G,Ĝ respectively. The decisional XDH
assumption in Ĝ is that if the challenge tuple

D =
(
(p,G,Ĝ,GT ,e),g, ĝ, ĝa, ĝb) and Z

are given, no PPT algorithm A can distinguish Z = Z0 = ĝab from Z = Z1 = ĝc with more than a negligible
advantage. The advantage of A is defined as AdvXDH

A (λ ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]

∣∣ where
the probability is taken over random choices of a,b,c ∈ Zp.

Assumption 3 (Decisional P-Bilinear Diffie-Hellman, PBDH, [16]). Let (p,G,Ĝ,GT ,e) be an asymmetric
bilinear group generated by G(1λ ). Let g, ĝ be random generators of G,Ĝ respectively. The decisional
PBDH assumption is that if the challenge tuple

D =
(
(p,G,Ĝ,GT ,e),g,ga,gab,gc, ĝ, ĝa, ĝb) and Z

are given, no PPT algorithm A can distinguish Z = Z0 = gabc from Z = Z1 = gd with more than a negligible
advantage. The advantage of A is defined as AdvPBDH

A (λ ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]

∣∣ where
the probability is taken over random choices of a,b,c,d ∈ Zp.

4.3 AIBE and IBE Schemes

We describe AIBE and IBE schemes, which are the basis for the design of our RIBE-AR scheme. The
underlying AIBE scheme we describe is a modified key encapsulation mechanism (KEM) version of the
AHIBE scheme proposed by Ducas that supports private key re-randomization [16]. And the underlying
IBE scheme we described is a modified KEM version of the IBE scheme of Boneh and Boyen [8]. In
addition, we added RandKey and ChangeKey algorithms to the existing AIBE and IBE schemes to enable
private key randomization and master-key part randomization in private keys. Using this modification, our
RIBE-AR scheme can be simply described by using the AIBE and IBE schemes in a modular way.

The AIBE scheme for I = Zp from the AHIBE scheme of Ducas is described as follows:

AIBE.Setup(GDS): Let GDS=((p,G,Ĝ,GT ,e),g, ĝ) be the description of a bilinear group with generators
g ∈ G, ĝ ∈ Ĝ. It selects random exponents u′1,h

′
1,w

′
1 ∈ Zp and sets u1 = gu′1 ,h1 = gh′1 ,w = gw′1 , û1 =

ĝu′1 , ĥ1 = ĝh′1 , ŵ = ĝw′1 . It chooses a random exponent γ ∈ Zp and outputs a master key MK = ĝγ ,
master parameters MP = (û1, ĥ1, ŵ), and public parameters PP =

(
GDS,u1,h1,w,Λ = e(g, ĝ)γ

)
.
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AIBE.GenKey(ID,MK,MP,PP): It chooses random exponents r1, . . . ,r6 ∈ Zp and outputs a private key
SKID =

(
K0 = MK(ûID

1 ĥ1)
r1ŵr2 ,K1 = ĝ−r1 ,K2 = ĝ−r2

)
with a rand key RKID =

(
L0,1 = (ûID

1 ĥ1)
r3ŵr4 ,

L1,1 = ĝ−r3 ,L2,1 = ĝ−r4 ,L0,2 = (ûID
1 ĥ1)

r5ŵr6 ,L1,2 = ĝ−r5 ,L2,2 = ĝ−r6
)
.

AIBE.RandKey(SKID,RKID,PP): Let SKID = (K′0,K
′
1,K

′
2) and RKID = (L0,1,L1,1,L2,1,L0,2,L1,2,L2,2). It

chooses random exponents r1,r2 ∈ Zp and outputs a new private key SKID =
(
K0 = K′0 ·L

r1
0,1Lr2

0,2,K1 =

K′1 ·L
−r1
1,1 L−r2

1,2 ,K2 = K′2 ·L
−r1
2,1 L−r2

2,2

)
.

AIBE.ChangeKey(SKID,δ ,RKID,PP): Let SKID = (K′0,K
′
1,K

′
2). It sets T K = (K0 = K′0 · ĝδ ,K1 = K′1,K2 =

K′2). It outputs a new private key SKID by running AIBE.RandKey(T K,RKID,PP).

AIBE.Encaps(ID, t,PP): It outputs a ciphertext header CH =
(
C0 = gt ,C1 = (uID

1 h1)
t ,C2 = wt

)
and a ses-

sion key EK = Λt .

AIBE.Decaps(CH,SKID,PP): Let CH = (C0,C1,C2) and SKID = (K0,K1,K2). It outputs a session key EK
by calculating EK = ∏

2
i=0 e(Ci,Ki).

The IBE scheme for I = Zp from the IBE scheme of Boneh and Boyen is described as follows:

IBE.Setup(GDS): Let GDS=((p,G,Ĝ,GT ,e),g, ĝ) be the group description string of a bilinear group with
a generator g ∈G. It selects random exponents u′2,h

′
2 ∈ Zp and sets u2 = gu′2 ,h2 = gh′2 , û2 = ĝu′2 , ĥ2 =

ĝh′2 . It chooses a random exponent β ∈ Zp and outputs a master key MK = ĝβ and public parameters
PP =

(
GDS,u2,h2, û2, ĥ2,Λ = e(g, ĝ)β

)
.

IBE.GenKey(T,MK,PP): It chooses a random exponent r ∈ Zp and outputs a private key SKT =
(
U0 =

MK(ûT
2 ĥ2)

r,U1 = ĝ−r
)
.

IBE.RandKey(SKT ,PP): Let SKT = (U ′0,U
′
1). It chooses a random exponent r ∈ Zp and outputs a random-

ized private key SKT =
(
U0 =U ′0 · (ûT

2 ĥ2)
r,U1 =U ′1 · ĝ−r

)
.

IBE.ChangeKey(SKT ,δ ,PP): Let SKT = (U ′0,U
′
1). It sets T K = (U0 =U ′0 · ĝδ ,U1 =U ′1). It outputs a new

private key SKT by running IBE.RandKey(T K,PP).

IBE.Encaps(T, t,PP): Let t be a random exponent in Zp. It outputs a ciphertext header CHT =
(
C0 =

gt ,C1 = (uT
2 h2)

t
)

and a session key EK = Λt .

IBE.Decaps(CHT ,SKT ′ ,PP): Let CHT = (C0,C1) and SKT ′ = (U0,U1). If T = T ′, then it outputs a session
key EK by computing EK = e(C0,U0) · e(C1,U1). Otherwise, it outputs ⊥.

4.4 RIBE-AR Construction

The basic idea of designing our RIBE-AR scheme is to follow the existing design method of combining
two IBE schemes and a tree-based revocation system [7, 38]. For ciphertext anonymity, we use an AIBE
scheme instead of the first IBE scheme. For revocation privacy, we encrypt each node update key in an
RIBE-AR update key by using an SKE scheme. At this time, a symmetric key used for the encryption of
the node update key is uniquely associated with each node of a binary tree, and an RIBE-AR private key has
symmetric keys corresponding to the path nodes of the binary tree. In this case, if a common node associated
with the path node in the private key and the cover nodes in the update key exists, it is possible to decrypt
the node update key by using the common symmetric key associated with the common node. However,
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the algorithm for deriving a decryption key has the problem of being slow since it is needed to try all tree
nodes included in the update key. To overcome this, we use an efficient method that can quickly find the
matching node by providing hint information in an update key, which was devised for anonymous broadcast
encryption [18, 29]. Additionally, we randomly mix all node update keys in the update key.

Let PRF be a pseudo-random function for K = {0,1}λ , X = {0,1}∗, and Y = Z2
p×{0,1}λ . Let Label

be a function that uniquely maps a leaf node vi to a bit string in {0,1}∗. Our RIBE-AR scheme for I = Zp,
T = Zp, andM∈GT is described as follows:

RIBE-AR.Setup(1λ ,N): Let λ be a security parameter and N be the maximum number of users.

1. It generates asymmetric bilinear groups G,Ĝ,GT of prime order p with two random generators
g, ĝ of G,Ĝ respectively. It sets GDS = ((p,G,Ĝ,GT ,e),g, ĝ).

2. It obtains MKAIBE ,MPAIBE , and PPAIBE by running AIBE.Setup(GDS). It also obtains MKIBE

and PPIBE by running IBE.Setup(GDS). It obtains BT by running CS.Setup(N) and selects a
random PRF key z.

3. Finally, it chooses a random exponent α ∈Zp and outputs a master key MK = (MKAIBE ,MPAIBE ,
MKIBE ,α), an empty revocation list RL, a state ST = (BT ,z), and public parameters PP =(
PPAIBE ,PPIBE ,Ω = e(g, ĝ)α

)
.

RIBE-AR.GenKey(ID,MK,ST,PP): Let MK = (MKAIBE ,MPAIBE ,MKIBE ,α) and ST = (BT ,z).

1. It assigns ID to a random leaf node v ∈ BT and obtains a private set PV = {v0, . . . ,vn} by
running CS.Assign(BT ,v).

2. For 0≤ j ≤ n, it computes (γ j,ω j,κ j) = PRF(z,Label(v j)) and proceeds as follows: It obtains
SKAIBE, j and RKAIBE, j by running AIBE.GenKey(ID, ĝγ j ,MPAIBE ,PPAIBE). It creates a node
private key NSK j =

(
SKAIBE, j,ω j,κ j

)
.

3. Finally, it sets RKID = RKAIBE,0 and outputs a private key SKID =
(
NSK0, . . . ,NSKn,RKID

)
.

RIBE-AR.UpdateKey(T,RL,MK,ST,PP): Let MK = (MKAIBE ,MPAIBE ,MKAIBE ,α) and ST = (BT ,z).

1. It derives a revoked set R on time T from RL and obtains a cover set CV = {v1, . . . ,vℓ} by running
CS.Cover(BT ,R). Let r = |R|, ℓ= |CV |, and ℓm = ⌈r log(N/r)⌉. It selects a random exponent
s ∈ Zp and sets V = ĝs.

2. For 1 ≤ i ≤ ℓ, it computes (γi,ωi,κi) = PRF(z,Label(vi)) and proceeds as follows: It ob-
tains SKIBE,i by running IBE.GenKey(T, ĝα−γi ,PPIBE). It computes CUi = SKE.Encrypt(κi,
SKIBE,i). It creates a node update key NUKi =

(
CUi,Yi

)
by setting a hint value Yi =V ωi .

3. For ℓ+ 1 ≤ i ≤ ℓm, it proceeds as follows: It sets a random ˜SKIBE,i = (Ũi,0,Ũi,1) by selecting
random Ũi,0,Ũi,1 ∈ Ĝ. It computes CUi = SKE.Encrypt(κ̃i, ˜SKIBE,i) by using a random κ̃i. It
creates a node update key NUKi =

(
CUi,Ỹi

)
by selecting a random Ỹi ∈ Ĝ.

4. Finally, it selects a random permutation π : {1, . . . , ℓm}→ {1, . . . , ℓm} and outputs an update key
UKT =

(
NUKπ(1), . . . ,NUKπ(ℓm),V

)
.

RIBE-AR.DeriveKey(ID,T,SKID,UKT ,PP): Let SKID =(NSK0, . . . ,NSKn,RKID) and UKT =(NUK1, . . . ,
NUKℓm ,V ).

1. It retrieves ω j from NSK j for all j ∈ {0, . . . ,n} and sets a list (Y ′0 = V ω0 , . . . ,Y ′n = V ωn). It also
retrieves Yi from NUKi for all i ∈ {1, . . . , ℓm} and sets a list (Y1, . . . ,Yℓm).
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2. It finds two indexes j ∈ {0, . . . ,n} and i ∈ {1, . . . , ℓm} such that Y ′j = Yi in the lists, then it
retrieves the corresponding NSK j = (SKAIBE, j,ω j,κ j) and NUKi = (CUi,Yi). Next, it computes
SKIBE,i = SKE.Decrypt(κ j,CUi).

3. It selects a random exponent δ ∈Zp. It obtains SKAIBE by running AIBE.ChangeKey(SKAIBE, j,
δ ,RKID,PPAIBE). It also obtains SKIBE by running IBE.ChangeKey(SKIBE,i,−δ ,PPIBE). Fi-
nally, it outputs a decryption key DKID,T =

(
SKAIBE ,SKIBE

)
.

RIBE-AR.Encrypt(ID,T,M,PP): It chooses a random exponent t ∈ Zp. It obtains CHAIBE and EKAIBE by
running AIBE.Encaps(ID, t,PPAIBE). Next it obtains CHIBE and EKIBE by running IBE.Encaps(T, t,
PPIBE). It outputs a ciphertext CT =

(
CHAIBE ,CHIBE ,C = Ωt ·M

)
.

RIBE-AR.Decrypt(CT,DKID,T ,PP): Let CT = (CHAIBE ,CHIBE ,C) and DKID,T = (SKAIBE ,SKIBE). It de-
rives EKAIBE and EKIBE by running AIBE.Decaps(CHAIBE ,SKAIBE ,PPAIBE) and IBE.Decaps(CHIBE ,

SKIBE ,PPIBE) respectively. It outputs a decrypted message M =C ·
(
EKAIBE ·EKIBE

)−1.

RIBE-AR.Revoke(ID,T,RL): If ID is not assigned in BT , then it outputs ⊥. Otherwise, it updates RL by
adding (ID,T ) to RL.

4.5 Correctness

To show the correctness of the above RIBE-AR scheme, we first show that a decryption key DKID,T is
correctly derived from a private key SKID and an update key UKT . Let SKID = (NSK0, . . . ,NSKn,RKID)
for PV and UKT = (NUK1, . . . ,NUKℓm ,V ) for CV where NSK j = (SKAIBE, j,ω j,κ j) and NUKi = (CUi,Yi =
V ωi). If ID ̸∈ R, then PV ∩CV ̸= /0. Thus, there exist a node vk ∈ PV and vk ∈ CV such that V ωk = Yk
where ωk ∈ NSKk = (SKAIBE,k,ωk,κk) and Yk ∈ NUKk = (CUk,Yk). By decrypting CUk with a valid key
κk, SKIBE,k is derived. From the RIBE-AR.GenKey and RIBE-AR.UpdateKey algorithms, the master key
parts of SKAIBE,k and SKIBE,k are associated with γk and α− γk respectively. The master key part of SKAIBE

derived from AIBE.ChangeKey still associated with γk +δ and the master key part of SKIBE derived from
IBE.ChangeKey still associated with α−γk−δ . Thus the RIBE-AR.DeriveKey algorithm is correct since
we have α if we add two master key parts of the decryption key.

Next, we show that a message is correctly decrypted by the decryption algorithm. The correctness of the
RIBE-AR.Decrypt algorithm can be shown by the correctness of the AIBE.Decaps and IBE.Decaps. That
is, we have e(g,g)(γk+δ )t from the correctness of AIBE and e(g,g)(α−γk−δ )t from the correctness of IBE.
Thus, the message M can be easily obtained by using these session keys.

4.6 Discussion

Construction from Lattices. It is possible to design an RIBE-AR scheme that provides revocation privacy
based on lattices. A lattice-based RIBE-AR scheme was previously proposed [15,21], but revocation privacy
was not provided. To provide revocation privacy, the similar method of our pairing based RIBE-AR scheme
that uses symmetric key encryption to hide node update keys can be used. And to quickly search for tree
nodes that match in a private key and an update key, a hint system based on the LWR assumption that does
not include noise can be used. A detailed description of the lattice-based RIBE-AR scheme is provided in
Appendix A.
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5 Security Analysis

In this section, we prove the three security features that our RIBE-AR scheme must satisfy: message privacy,
identity privacy, and revocation privacy.

5.1 AIBE and IBE Security

The underlying AIBE scheme in this paper is an AIBE scheme capable of private key re-randomization by
modifying the AHIBE scheme of Ducas [16]. For reference, Ducas also described the AIBE scheme, but it
is not suitable for the RIBE-AR scheme which requires decryption key derivation since this AIBE scheme
does not support private key re-randomization. The AHIBE scheme of Ducas provides selective IND-CPA
security under the DBDH assumption and selective ANO-CPA security under the PBDH assumption.

Theorem 5.1 ( [16]). The above AIBE scheme is selectively IND-CPA secure if the DBDH assumption holds.

Theorem 5.2 ( [16]). The above AIBE scheme is selectively ANO-CPA secure if the PBDH assumption
holds.

The underlying IBE scheme in this paper is a KEM version of the IBE scheme of Boneh and Boyen [8],
which provides selective IND-CPA security under the DBDH assumption.

Theorem 5.3 ( [8]). The above IBE scheme is selectively IND-CPA secure if the DBDH assumption holds.

5.2 IND-CPA Security

The IND-CPA security proof of our RIBE-AR scheme is almost similar to the IND-CPA security proof of
the existing RIBE scheme. In other words, the simulator of the security proof divides attackers into two
types: one that do not query the private key corresponding to the challenge identity ID∗ and another that
queries the private key for ID∗. And then the simulator handles the simulation of private keys and update
keys differently for each type of attackers. To simplify the simulation of the RIBE-AR security proof, we
use simulators of the AIBE and IBE schemes as sub-simulators.

Theorem 5.4. The above RIBE-AR scheme is SE-IND-CPA secure if the PRF scheme is secure and the
DBDH assumption holds.

Proof. Let ID∗ be the challenge identity submitted by an adversary. To prove the SE-IND-CPA security of
our RIBE-AR scheme, we classify the type of adversaries into two types.

Type-1. An adversary is Type-1 if it does not request a private key for ID∗.

Type-2. An adversary is Type-2 if it requests a private key for ID∗.

Suppose that an adversary is τ-type. The security proof for the τ-type adversary A consists of the
sequence of hybrid games. We define the games as follows:

Game G0. This game is the original security game. That is, a simulator B obtains (γi,ωi,κi) for a node vi

by running PRF.

Game G1. This game G1 is similar to the game G0 except that the PRF is replaced by a truly random
function. That is, B selects fixed random (γi,ωi,κi) for a node vi if vi is used for the generation of a
private key (or an update key).
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Game G2. This final game G2 is similar to the game G1 except the generation of the challenge ciphertext
CT ∗. Let CT ∗ = (CH∗AIBE ,CH∗IBE ,C

∗) be the challenge ciphertext. In this game G2, C∗ is replaced
by a random element in GT . Note that the advantage of A in this game is zero since the challenge
ciphertext is not related to µ .

Let AdvGi
A be the advantage of A in a game Gi. Let Eτ be the event that the adversary behaves like

τ-type. From the Lemmas 5.5 and 5.6, we obtain the following equation

AdvG0
A ≤

2

∑
τ=1

Pr[Eτ ] ·
∣∣AdvG0

A −AdvG2
A
∣∣≤ 2AdvPRF

B (λ )+2AdvDBDH
B (λ ).

This completes our proof.

Lemma 5.5. If the PRF scheme is secure, then no PPT type-τ adversary can distinguish between G0 and
G1 with a non-negligible advantage.

Proof. The proof is relatively straightforward if a simulator that distinguishes whether an oracle is PRF or
not simply generates the master key MK of RIBE-AR by himself. We omit the details of this proof.

Lemma 5.6. If the DBDH assumption holds, then no PPT type-τ adversary can distinguish between G1 and
G2 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that attacks the above RIBE-AR scheme with a non-negligible
advantage. A meta-simulator B that solves the DBDH assumption using A is given: a challenge tuple
D = (g,ga,gb,gc, ĝ, ĝa, ĝb) and Z where Z = Z0 = e(g, ĝ)abc or Z = Z1 = e(g, ĝ)d . Let BAIBE be the simulator
for AIBE and BIBE be the simulator for IBE. Then B that interacts with A is described as follows:

Init: A initially submits a challenge identity ID∗ and challenge time T ∗. B runs BAIBE by giving D and Z,
and runs BIBE by giving D and Z.
Setup: B proceeds as follows:

1. It submits ID∗ to BAIBE and receives PPAIBE . It also submits T ∗ to BIBE and receives PPIBE .

2. It obtains BT by running CS.Setup(N). It sets RL as an empty one and sets ST = (BT ). It fixes a
random leaf node v∗ ∈ BT that will be assigned to ID∗.

3. If τ = 1, it sets ChalPath = /0. Otherwise (τ = 2), it sets ChalPath = Path(v∗).

4. It publishes public parameters PP =
(
PPAIBE ,PPIBE ,Ω = e(ga, ĝb)

)
.

Phase 1: A adaptively requests a polynomial number of private key, update key, and decryption key queries.
If this is a private key query for an identity ID, then B proceeds as follows:

• Case τ = 1: In this case, we have ID ̸= ID∗ and ChalPath = /0.

1. It queries an AIBE private key for ID ̸= ID∗ to BAIBE and receives SKAIBE,ID and RKAIBE,ID.

2. It assigns ID to a new leaf node v ̸= v∗ and obtains PV = {v0, . . . ,vn} by running CS.Assign(BT ,v).
3. For 0≤ j≤ n, it retrieves (γ j,ω j,κ j) of the node v j and performs the steps: It obtains SKAIBE, j by

running AIBE.ChangeKey(SKAIBE,ID,−γ j,RKAIBE,ID,PPAIBE). It sets NSK j =(SKAIBE, j,ω j,κ j).

4. It creates SKID =
(
NSK0, . . . ,NSKn,RKAIBE,ID

)
.
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• Case τ = 2∧ ID ̸= ID∗: In this case, we have PV ∩ChalPath ̸= /0.

1. It queries an AIBE private key for ID ̸= ID∗ to BAIBE and receives SKAIBE,ID and RKAIBE,ID.

2. It assigns ID to a new leaf node v ̸= v∗ and obtains PV = {v0, . . . ,vn} by running CS.Assign(BT ,v).
3. For 0≤ j ≤ n, it retrieves (γ j,ω j,κ j) of the node v j and performs the steps:

(a) If v j ∈ChalPath, then it obtains SKAIBE, j and RKAIBE, j by running AIBE.GenKey(ID, ĝγ j ,
MPAIBE ,PPAIBE).

(b) Otherwise (v j ̸∈ ChalPath), it obtains SKAIBE, j by running AIBE.ChangeKey(SKAIBE,ID,
−γ j,RKAIBE,ID,PPAIBE).

(c) It sets NSK j = (SKAIBE, j,ω j,κ j).

4. It creates SKID =
(
NSK0, . . . ,NSKn,RKAIBE,ID

)
.

• Case τ = 2∧ ID = ID∗: In this case, we have PV = ChalPath.

1. It retrieves the leaf node v∗ and obtains PV = {v0, . . . ,vn} by running CS.Assign(BT ,v∗).
2. For 0≤ j ≤ n, it retrieves (γ j,ω j,κ j) of the node v j and performs the steps: It obtains SKAIBE, j

and RKAIBE, j by running AIBE.GenKey(ID, ĝγ j ,MPAIBE ,PPAIBE). It sets NSK j =(SKAIBE, j,ω j,κ j).

3. It creates SKID =
(
NSK0, . . . ,NSKn,RKAIBE,0

)
.

If this is an update key query for time T , then B proceeds as follows:

• Case τ = 1: In this case, we have ChalPath = /0.

1. It defines a revoked set R on time T from RL and obtains CV = {v1, . . . ,vℓ} by running CS.Cover
(BT ,R). Let r = |R|, ℓ = |CV |, and ℓm = ⌈r log(N/r)⌉. It sets V = ĝs by selecting a random
s ∈ Zp.

2. For 1 ≤ i ≤ ℓ, it retrieves (γi,ωi,κi) of the node vi and performs the steps: It obtains SKIBE,i

by running IBE.GenKey(T, ĝγi ,PPIBE). It computes CUi = SKE.Encrypt(κi,SKIBE,i) and sets
NUKi = (CUi,Yi =V ωi).

3. For ℓ+1≤ i≤ ℓm, it performs the steps: It sets a random ˜SKIBE,i by selecting random elements
and computes CUi = SKE.Encrypt(κ̃i, ˜SKIBE,i) by using a random key κ̃i. It selects a random
Ỹi and creates NUKi = (CUi,Ỹi).

4. It creates UKT =
(
NUKπ(1), . . . ,NUKπ(ℓm),V

)
where π is a random permutation.

• Case τ = 2 and T ̸= T ∗: In this case, we have CV ∩ChalPath ̸= /0.

1. It queries an IBE private key for T ̸= T ∗ to BIBE and receives SKIBE,T .

2. It defines a revoked set R on time T from RL obtains CV = {v1, . . . ,vℓ} by running CS.Cover
(BT ,R). Let r = |R|, ℓ = |CV |, and ℓm = ⌈r log(N/r)⌉. It sets V = ĝs by selecting a random
s ∈ Zp.

3. For 1≤ i≤ ℓ, it retrieves (γi,ωi,κi) of the node vi and performs the steps:

(a) If vi ∈ChalPath, then it obtains SKIBE,i by running IBE.ChangeKey(SKIBE,T , ĝ−γi ,PPIBE).
(b) Otherwise (vi ̸∈ ChalPath), it obtains SKIBE,i by running IBE.GenKey(T, ĝγi ,PPIBE).
(c) It computes CUi = SKE.Encrypt(κi,SKIBE,i) and sets NUKi = (CUi,Yi =V ωi).
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4. For ℓ+1≤ i≤ ℓm, it performs the steps: It sets a random ˜SKIBE,i by selecting random elements
and computes CUi = SKE.Encrypt(κ̃i, ˜SKIBE,i) by using a random key κ̃i. It selects a random
Ỹi and creates NUKi = (CUi,Ỹi).

5. It creates UKT =
(
NUKπ(1), . . . ,NUKπ(ℓm),V

)
where π is a random permutation.

• Case τ = 2 and T = T ∗: In this case, we have CV ∩ChalPath = /0 since ID∗ is revoked on time T ∗.

1. It defines a revoked set R∗ on time T ∗ from RL and obtains CV = {v1, . . . ,vℓ} by running
CS.Cover(BT ,R∗). Let r = |R|, ℓ = |CV |, and ℓm = ⌈r log(N/r)⌉. It sets V = ĝs by select-
ing a random s ∈ Zp.

2. For 1 ≤ i ≤ ℓ, it retrieves (γi,ωi,κi) of the node vi and performs the steps: It obtains SKIBE,i

by running IBE.GenKey(T, ĝγi ,PPIBE). It computes CUi = SKE.Encrypt(κi,SKIBE,i) and sets
NUKi = (CUi,Yi =V ωi).

3. For ℓ+1≤ i≤ ℓm, it performs the steps: It sets a random ˜SKIBE,i by selecting random elements
and computes CUi = SKE.Encrypt(κ̃i, ˜SKIBE,i) by using a random key κ̃i. It selects a random
Ỹi and creates NUKi = (CUi,Ỹi).

4. It creates UKT =
(
NUKπ(1), . . . ,NUKπ(ℓm),V

)
where π is a random permutation.

If this is a decryption key query for an identity ID and time T , then B proceeds as follows:

• Case ID ̸= ID∗: It queries an AIBE private key for ID ̸= ID∗ to BAIBE and receives SKAIBE,ID and
RKAIBE,ID. It selects a random exponent δ ∈ Zp. It obtains SKAIBE by running AIBE.ChangeKey
(SKAIBE,ID,−δ ,RKAIBE,ID,PPAIBE). It obtains SKIBE by running IBE.GenKey(T, ĝδ ,PPIBE). It cre-
ates DKID,T = (SKAIBE ,SKIBE).

• Case ID = ID∗ and T ̸= T ∗: It queries an IBE private key for T ̸= T ∗ to BIBE and receives SKIBE,T .
It selects a random exponent δ ∈ Zp. It obtains SKAIBE and RKAIBE by running AIBE.GenKey(ID,
ĝδ ,MPAIBE ,PPAIBE). It obtains SKIBE by running IBE.ChangeKey(SKIBE,T ,−δ ,PPIBE). It creates
DKID,T = (SKAIBE ,SKIBE).

If this is a revocation query for an identity ID and time T , thenB updates RL by running RIBE-AR.Revoke(ID,
T,RL,ST ).

Challenge: A submits two challenge messages M∗0 ,M
∗
1 . B flips a random bit µ ∈ {0,1} and proceeds as

follows:

1. It submits M∗0 ,M
∗
1 to BAIBE and receives a challenge CH∗AIBE and EK∗AIBE . It also submits M∗0 ,M

∗
1 to

BIBE and receives a challenge CH∗IBE and EK∗IBE .

2. It creates CT ∗ =
(
CH∗AIBE ,CH∗IBE ,Z ·M∗µ

)
and gives it to A.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B outputs 0 if µ = µ ′ or 1 otherwise. This completes our
proof.
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5.3 ANO-CPA Security

In order to argue the selective ANO-CPA security proof of our RIBE-AR scheme, we first classify attackers
into four types. And we use the simulators of AIBE and IBE schemes as sub-simulators to configure an
RIBE-AR simulator to easily handle private keys and update keys for individual types of attackers. Then,
we play hybrid games that change the elements of an AIBE ciphertext header into random elements, showing
that the challenge identity ID∗µ is not revealed in the ciphertext.

Theorem 5.7. The above RIBE-AR scheme is SE-ANO-CPA secure if the PRF scheme is secure and the
PBDH assumption holds.

Proof. Let ID∗0, ID∗1 be the challenge identities submitted by an adversary. To prove the SE-ANO-CPA
security of our RIBE-AR scheme, we classify the type of adversaries into four types.

Type-1. An adversary is Type-1 if it does not request a private key for ID∗0 and ID∗1.

Type-2. An adversary is Type-2 if it does not request a private key for ID∗0, but it requests a private key for
ID∗1.

Type-3. An adversary is Type-3 if it requests a private key for ID∗0, but it does not request a private key for
ID∗1.

Type-4. An adversary is Type-4 if it requests private keys for ID∗0 and ID∗1.

Suppose that an adversary is type-τ . The security proof for the type-τ adversary A consists of the
sequence of hybrid games. We define the games as follows:

Game G0. This game is the original security game. That is, a simulator B obtains (γi,ωi,κi) for a node vi

by running PRF.

Game G1. This game G1 is similar to the game G0 except that the PRF is replaced by a truly random
function. That is, B selects fixed random (γi,ωi,κi) for a node vi if vi is used for the generation of a
private key (or an update key).

Game G2. This game G2 is similar to the game G1 except the generation of the challenge ciphertext CT ∗.
Let CT ∗ = (CH∗AIBE ,CH∗IBE ,C

∗) be the challenge ciphertext. In this game G2, C∗ is replaced by a
random element in GT .

Game G3. This final game G3 is similar to the game G2 except the generation of the challenge AIBE
ciphertext header CH∗AIBE . Let CH∗AIBE = (C∗0 ,C

∗
1 ,C

∗
2) be the challenge AIBE ciphertext header. In

this game, C∗1 and C∗2 are replaced by random elements in G. Note that the advantage of A in this
game is zero since the challenge ciphertext is not related to µ .

Let AdvGi
A be the advantage of A in a game Gi. Let Eτ be the event that the adversary behaves like

type-τ . From the Lemmas 5.8, 5.9, and 5.10, we obtain the following equation

AdvG0
A ≤

4

∑
τ=1

Pr[Eτ ] ·
∣∣AdvG0

Aτ
−AdvG2

Aτ

∣∣≤ 4AdvPRF
B (λ )+4AdvDBDH

B (λ )+4AdvA3DH
B (λ ).

This completes our proof.
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Lemma 5.8. If the PRF scheme is secure, then no PPT type-τ adversary can distinguish between G0 and
G1 with a non-negligible advantage.

We omit the proof of this lemma since it is the same as Lemma 5.5.

Lemma 5.9. If the DBDH assumption holds, then no PPT type-τ adversary can distinguish between G1 and
G2 with a non-negligible advantage.

We omit the proof of this lemma since it is the same as Lemma 5.6.

Lemma 5.10. If the PBDH assumption holds, then no PPT type-τ adversary can distinguish between G2
and G3 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that attacks the above RIBE-AR scheme with a non-negligible
advantage. A meta-simulator B that solves the A3DH assumption using A is given: a challenge tuple
D = (g,ga,gab,gc, ĝ, ĝa, ĝb) and Z where Z = Z0 = e(g, ĝ)abc or Z = Z1 = e(g, ĝ)d . Note that a challenge
tuple DDBDH = (g,ga,gc, ĝ, ĝa, ĝb) for the DBDH assumption can be derived from the given D. Let BAIBE

be the simulator for AIBE and BIBE be the simulator for IBE. Then B that interacts with A is described as
follows:

Init: A initially submits challenge identities ID∗0, ID∗1 and challenge time T ∗. B runs BAIBE by giving DPBDH

and Z, and runs BIBE by giving DDBDH and Z.
Setup: B proceeds as follows:

1. It submits ID∗0, ID∗1 to BAIBE and receives PPAIBE . It also submits T ∗ to BIBE and receives PPIBE .

2. It obtains BT by running CS.Setup(N). It initializes UL as an empty one. It sets RL as an empty one
and sets ST = (BT ,UL). It fixes random leaf nodes v∗0,v

∗
1 ∈ BT that will be assigned to ID∗0, ID∗1,

respectively.

3. If τ = 1, it sets ChalPath = /0. If τ = 2, it sets ChalPath = Path(v∗1). If τ = 3, it sets ChalPath
= Path(v∗0). If τ = 4, it sets ChalPath = Path(v∗0)∪Path(v∗1).

4. It publishes public parameters PP =
(
PPAIBE ,PPIBE ,Ω = e(ga, ĝb)

)
.

Phase 1: A adaptively requests a polynomial number of private key, update key, and decryption key queries.
If this is a private key query for an identity ID, then B proceeds as follows:

• Case τ = 1: In this case, we have ID ̸= ID∗b for any b ∈ {0,1} and ChalPath = /0.

1. It queries an AIBE private key for ID ̸= ID∗b to BAIBE and receives SKAIBE,ID and RKAIBE,ID.

2. It assigns ID to a new leaf node v ̸= v∗ and obtains PV = {v0, . . . ,vn} by running CS.Assign(BT ,v).
3. For 0≤ j ≤ n, it retrieves (γ j,ω j,κ j) of the node v j and performs the steps: It obtains SKAIBE, j

by running AIBE.ChangeKey(SKAIBE,ID,−γ j,RKAIBE,ID,PPAIBE). It sets NSK j = (SKAIBE, j,
ω j,κ j).

4. It creates SKID =
(
NSK0, . . . ,NSKn,RKAIBE,ID

)
.

• Case (τ = 2∧ ID ̸= ID∗1)∨ (τ = 3∧ ID ̸= ID∗0)∨ (τ = 4∧ ID ̸= ID∗0): In this case, we have ID ̸= ID∗b
for any b ∈ {0,1} and PV ∩ChalPath ̸= /0.
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1. It queries an AIBE private key for ID ̸= ID∗b to BAIBE and receives SKAIBE,ID and RKAIBE,ID.

2. It assigns ID to a new leaf node v ̸= v∗b and obtains PV = {v0, . . . ,vn} by running CS.Assign(BT ,v).
3. For 0≤ j ≤ n, it retrieves (γ j,ω j,κ j) of the node v j and performs the steps:

(a) If v j ∈ChalPath, then it obtains SKAIBE, j by running AIBE.GenKey(ID, ĝγ j ,MPAIBE ,PPAIBE).
(b) Otherwise (v j ̸∈ChalPath), it obtains SKAIBE, j by running AIBE.ChangeKey(SKAIBE,ID,−γ j,

RKAIBE,ID,PPAIBE).
(c) It sets NSK j = (SKAIBE, j,ω j,κ j).

4. It creates SKID =
(
NSK0, . . . ,NSKn,RKAIBE,ID

)
.

• Case (τ = 2∧ ID = ID∗1) or (τ = 3∧ ID = ID∗0) or (τ = 4∧ (ID = ID∗0∨ ID = ID∗1)): In this case, we
have PV ⊆ ChalPath.

1. It retrieves the leaf node v∗b of ID and obtains PV = {v0, . . . ,vn} by running CS.Assign(BT ,v∗b).
2. For 0≤ j ≤ n, it retrieves (γ j,ω j,κ j) of the node v j and performs the steps: It obtains SKAIBE, j

and RKAIBE, j by running AIBE.GenKey(ID, ĝγ j ,MPAIBE ,PPAIBE). It sets NSK j =(SKAIBE, j,ω j,κ j).

3. It creates SKID =
(
NSK0, . . . ,NSKn,RKAIBE,0

)
.

If this is an update key query for time T , then B proceeds as follows:

• Case τ = 1: In this case, we have CV ∩ChalPath = /0 since ChalPath = /0.

1. It defines a revoked set R on time T from RL and obtains CV = {v1, . . . ,vℓ} by running CS.Cover
(BT ,R). Let r = |R|, ℓ = |CV |, and ℓm = ⌈r log(N/r)⌉. It sets V = ĝs by selecting a random
s ∈ Zp.

2. For 1 ≤ i ≤ ℓ, it retrieves (γi,ωi,κi) of the node vi and performs the steps: It obtains SKIBE,i

by running IBE.GenKey(T, ĝγi ,PPIBE). It computes CUi = SKE.Encrypt(κi,SKIBE,i) and sets
NUKi = (CUi,Yi =V ωi).

3. For ℓ+1≤ i≤ ℓm, it performs the steps: It sets a random ˜SKIBE,i by selecting random elements
and computes CUi = SKE.Encrypt(κ̃i, ˜SKIBE,i) by using a random key κ̃i. It selects a random
Ỹi and creates NUKi = (CUi,Ỹi).

4. It creates UKT =
(
NUKπ(1), . . . ,NUKπ(ℓm),V

)
where π is a random permutation.

• Case (τ = 2∧T ̸=T ∗)∨(τ = 3∧T ̸=T ∗)∨(τ = 4∧T ̸=T ∗): In this case, we have CV ∩ChalPath ̸= /0
and CV ̸⊆ ChalPath.

1. It queries an IBE private key for T ̸= T ∗ to BIBE and receives SKIBE,T .

2. It defines a revoked set R on time T from RL and obtains CV = {v1, . . . ,vℓ} by running CS.Cover
(BT ,R). Let r = |R|, ℓ = |CV |, and ℓm = ⌈r log(N/r)⌉. It sets V = ĝs by selecting a random
s ∈ Zp.

3. For 1≤ i≤ ℓ, it retrieves (γi,ωi,κi) of the node vi and performs the steps:

(a) If vi ∈ChalPath, then it obtains SKIBE,i by running IBE.ChangeKey(SKIBE,T , ĝ−γi ,PPIBE).
(b) Otherwise (vi ̸∈ ChalPath), it obtains SKIBE,i by running IBE.GenKey(T, ĝγi ,PPIBE).
(c) It computes CUi = SKE.Encrypt(κi,SKIBE,i) and sets NUKi = (CUi,Yi =V ωi).
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4. For ℓ+1≤ i≤ ℓm, it performs the steps: It sets a random ˜SKIBE,i by selecting random elements
and computes CUi = SKE.Encrypt(κ̃i, ˜SKIBE,i) by using a random key κ̃i. It selects a random
Ỹi and creates NUKi = (CUi,Ỹi).

5. It creates UKT =
(
NUKπ(1), . . . ,NUKπ(ℓm),V

)
where π is a random permutation.

• Case (τ = 2∧T =T ∗)∨(τ = 3∧T =T ∗)∨(τ = 4∧T =T ∗): In this case, we have CV ∩ChalPath= /0
since ID∗b is revoked on time T ∗.

1. It defines a revoked set R∗ on time T ∗ from RL and obtains CV = {v1, . . . ,vℓ} by running
CS.Cover(BT ,R∗). Let r = |R|, ℓ = |CV |, and ℓm = ⌈r log(N/r)⌉. It sets V = ĝs by select-
ing a random s ∈ Zp.

2. For 1 ≤ i ≤ ℓ, it retrieves (γi,ωi,κi) of the node vi and performs the steps: It obtains SKIBE,i

by running IBE.GenKey(T, ĝγi ,PPIBE). It computes CUi = SKE.Encrypt(κi,SKIBE,i) and sets
NUKi = (CUi,Yi =V ωi).

3. For ℓ+1≤ i≤ ℓm, it performs the steps: It sets a random ˜SKIBE,i by selecting random elements
and computes CUi = SKE.Encrypt(κ̃i, ˜SKIBE,i) by using a random key κ̃i. It selects a random
Ỹi and creates NUKi = (CUi,Ỹi).

4. It creates UKT =
(
NUKπ(1), . . . ,NUKπ(ℓm),V

)
where π is a random permutation.

If this is a decryption key query for an identity ID and time T , then B proceeds as follows:

• Case ID ̸= ID∗: It queries an AIBE private key for ID ̸= ID∗ to BAIBE and receives SKAIBE,ID and
RKAIBE,ID. It selects a random exponent δ ∈ Zp. It obtains SKAIBE by running AIBE.ChangeKey
(SKAIBE,ID,−δ ,RKAIBE,ID,PPAIBE). It obtains SKIBE by running IBE.GenKey(T, ĝδ ,PPIBE). It cre-
ates DKID,T = (SKAIBE ,SKIBE).

• Case ID = ID∗ and T ̸= T ∗: It queries an IBE private key for T ̸= T ∗ to BIBE and receives SKIBE,T .
It selects a random exponent δ ∈Zp. It obtains SKAIBE and RKAIBE by running AIBE.GenKey(ID, ĝδ ,
MPAIBE ,PPAIBE). It obtains SKIBE by running IBE.ChangeKey(SKIBE,T ,−δ ,PPIBE). It creates DKID,T

= (SKAIBE ,SKIBE).

If this is a revocation query for an identity ID and time T , thenB updates RL by running RIBE-AR.Revoke(ID,
T,RL,ST ).

Challenge: A submits a challenge message M∗. B proceeds as follows:

1. It submits M∗ to BAIBE and receives a challenge CH∗AIBE and EK∗AIBE . It also submits M∗ to BIBE and
receives a challenge CH∗IBE and EK∗IBE .

2. It creates CT ∗ =
(
CH∗AIBE ,CH∗IBE ,e(g, ĝ)

d ·M∗
)

by selecting a random d and gives it to A.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′. This completes our proof.

5.4 REV-PRV Security

In order to prove the selective REV-PRV security of our RIBE-AR scheme, we construct hybrid games that
change all challenge node update keys included in the challenge update key UK∗ to random elements one
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by one. In this way, if all challenge node update keys are changed to random elements, an attacker will
not be able to distinguish the challenge update key because the challenge revoked set R∗µ is not exposed.
The reason why all elements of the challenge update key can be converted into random elements is because
the security model does not allow querying a private key that can be derived to a correct decryption key in
combination with the challenge update key.

Theorem 5.11. The above RIBE-AR scheme is SE-REV-PRV secure if the PRF is secure, the SKE scheme is
IND-CPA and KEY-PRV secure, and the XDH assumption holds.

Proof. The security proof consists of a sequence of hybrid games G0,G1,G2. The first game will be the
original security game and the last one will be a game in which an adversary has no advantage. We define
the games as follows:

Game G0. This game is the original security game. That is, a simulator B obtains (γi,ωi,κi) for a node vi

by running PRF.

Game G1. This game G1 is similar to the game G0 except that the PRF is replaced by a truly random
function. That is, B selects fixed random (γi,ωi,κi) for a node vi if vi is used for the generation of a
private key (or an update key).

Game G2. This final game G2 is similar to the game G1 except that generation of the challenge update key
UK∗. Let UK∗ = (NUK∗1 , . . . ,NUK∗ℓm

,V ∗) be the challenge update key where NUK∗i = (CUi,Yi) is the
challenge node update key. In this game, each NUKi is replaced by random. That is, CUi is replaced
by SKE encryption of a random message with a random key and Yi is replaced by a random element
in Ĝ. Note that the advantage of A in this game is zero since the challenge update key is not related
to µ .

To argue that the adversary cannot distinguish G1 from G2, we also define a sequence of hybrid games
G1,0 = G0, . . . ,G1,k, . . . ,G1,ℓ = G2 which are defined as follows:

Game G1,0. This game is equal to the game G1. That is, all challenge node update keys in the challenge
update key are generated normally.

Game G1,k. In this game G1,k, each challenge node update key NUK∗i for 1≤ i≤ k is generated randomly,
but each challenge node update key NUK∗i for k+1≤ i is generated normally.

Game G1,ℓ. This game G1,ℓ is equal to the game G2. That is, all challenge node update keys in the challenge
update key are generated randomly.

To argue the indistinguishability of G1,k−1 and G1,k, we additionally define a sequence of hybrid games
Hk,0,Hk,1,Hk,2,Hk,3. Let NUK∗k = (CUk,Yk) be the challenge node update key of the node vk ∈ CV ∗.
Through these hybrid games, we change the generation of this node update key. We define the games
as follows:

Game Hk,0. This game is equal to the game G1,k−1. That is, CUk and Yk are generated normally.

Game Hk,1. In this game Hk,1, CUk is generated by encrypting random elements with a valid key, but Yk is
generated normally. That is, CUk = SKE.Encrypt(κk,(Ũk,0,Ũk,1)) by selecting random Ũk,0,Ũk,1.

Game Hk,2. In this game Hk,2, CUk is generated by encrypting random elements with a random key, but Yk
is generated normally. That is, CUk = SKE.Encrypt(κ̃k,(Ũk,0,Ũk,1)) by selecting random Ũk,0,Ũk,1
and a random key κ̃k.
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Game Hk,3. This game Hk,3 is equal to the game G1,k. In this game, CUk is generated by encrypting random
elements with a random key and Yk is also generated randomly. That is, Yk is replaced by a random
element Ỹk.

Let AdvG j
A be the advantage ofA in the game G j. We have that AdvSE-REV -PRV

RIBE-AR,A (λ ) = AdvG0
A and AdvG2

A = 0.
From the following Lemmas 5.12, 5.13, 5.14, and 5.15, we obtain the equation

AdvG0
A (λ )≤

2

∑
j=1

∣∣AdvG j−1
A −AdvG j

A
∣∣+AdvG2

A

≤
∣∣AdvG0

A −AdvG1
A
∣∣+ ℓ

∑
k=1

∣∣AdvG1,k−1
A −AdvG1,k

A
∣∣

≤
∣∣AdvG0

A −AdvG1
A
∣∣+ ℓ

∑
k=1

3

∑
j=1

∣∣AdvHk, j−1
A −AdvHk, j

A
∣∣

≤ AdvPRF
B (λ )+ r logN

(
AdvIND-CPA

SKE,B (λ )+AdvKEY -PRV
SKE,B (λ )+AdvXDH

B (λ )
)

where r is the maximum number of revoked users in an update key. This completes the proof.

Lemma 5.12. If the PRF is secure, then no PPT adversary can distinguish G0 from G1 with a non-negligible
advantage.

The proof of this lemma is the same as Lemma 5.5.

Lemma 5.13. If the SKE scheme is IND-CPA secure, then no PPT adversary can distinguish Hk,0 from Hk,1
with a non-negligible advantage.

Proof. Suppose there exists an adversary A that attacks the above RIBE-AR scheme with a non-negligible
advantage. A simulator B that breaks the IND-CPA security of an SKE scheme using A is described as
follows:

Init: A initially submits challenge revoked sets R∗0,R
∗
1 and challenge time T ∗. B chooses a random bit

µ ∈ {0,1} and obtains a challenge cover set CV ∗ = {v1, . . . ,vk, . . . ,vℓ} by running CS.Cover(BT ,R∗µ). Let
r = |R∗µ |, ℓ= |CV ∗|, and ℓm = ⌈r log(N/r)⌉.
Setup: B obtains MK,RL,ST by running RIBE-AR.Setup(1λ ,N). Note that the random κk of the node
vk ∈CV ∗ is unknown to B since κk is implicitly associated with the encryption key of the SKE scheme.
Phase 1: B handles private key, update key, and decryption key queries as follows: It can create a private
key SKID by using MK and ST although κk of the node vk is unknown since PV ∩CV ∗ = /0 by the restriction
of the security model. It can create an update key UKT by using MK and ST by using the encryption oracle
of the SKE scheme for the node vk. It can also easily create a decryption key DK by using MK.
Challenge: B creates a challenge update key UK∗ as follows:

1. It selects a random exponent s ∈ Zp and sets V ∗ = ĝs.

2. For 1≤ i≤ k−1, it retrieves (γi,ωi,κi) of the node vi and proceeds as follows: It sets a random ˜SKIBE,i

by selecting random Ũi,0,Ũi,1. It computes CUi = SKE.Encrypt(κi, ˜SKIBE,i). It creates NUK∗i =(
CUi,Yi = (V ∗)ωi

)
.

3. For i = k, it retrieves (γk,ωk,−) of the node vk and proceeds as follows:
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(a) It sets a random ˜SKIBE,k by selecting random Ũk,0,Ũk,1. It obtains a normal SKIBE,k by running
IBE.GenKey(T, ĝα−γk ,PPIBE).

(b) It submits challenge messages M∗0 = ˜SKIBE,k,M∗1 = SKIBE,k to the challenge oracle of the SKE
scheme and obtains a challenge ciphertext CT ∗ from the challenge oracle of SKE.

(c) It creates NUK∗k =
(
CUk =CT ∗,Yk = (V ∗)ωk

)
.

4. For k+ 1 ≤ i ≤ ℓ, it retrieves (γi,ωi,κi) of the node vi and proceeds as follows: It obtains a normal
SKIBE,i by running IBE.GenKey(T, ĝα−γi ,PPIBE). It computes CUi = SKE.Encrypt(κi,SKIBE,i). It
creates a normal NUK∗i =

(
CUi,Yi = (V ∗)ωi

)
.

5. For ℓ+ 1 ≤ i ≤ ℓm, it proceeds as follows: It sets a random ˜SKIBE,i by selecting random Ũi,0,Ũi,1. It
computes CUi = SKE.Encrypt(κ̃i, ˜SKIBE,i) by using a random key κ̃i. It creates a random NUK∗i =(
CUi,Ỹi

)
by selecting a random Ỹi.

6. It creates UK∗ =
(
NUK∗

π(1), . . . ,NUK∗
π(ℓm)

,V ∗
)

where π is a random permutation.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

If a right message M∗1 is encrypted in the IND-CPA game, then CUk = SKE.Encrypt(κk,SKIBE,k) which
is equal to the game Hk,0. Otherwise (a left message M∗0 is encrypted), CUk = SKE.Encrypt(κk, ˜SKIBE,k)
which is equal to the game Hk,1. This completes our proof.

Lemma 5.14. If the SKE scheme is KEY-PRV secure, then no PPT adversary can distinguish Hk,1 from Hk,2
with a non-negligible advantage.

Proof. The proof of this lemma is almost similar to that of Lemma 5.13 except the generation of CUk in
NUK∗k . LetA be an adversary that attacks the above RIBE-AR scheme with a non-negligible advantage and
B be a simulator that breaks the KEY-PRV security of an SKE scheme using A. The generation of private
keys, update keys, and decryption keys are the same since the encryption oracle of the SKE scheme is given.
The generation of NUK∗i in a challenge update key UK∗ is also similar except the generation of NUK∗k . The
k-th node update key NUK∗k is generated as follows:

• For i = k, it retrieves (γk,ωk,−) of the node vk and proceeds as follows:

1. It sets a random ˜SKIBE,k by selecting random Ũk,0,Ũk,1.

2. It submits a challenge message M∗ = ˜SKIBE,k to the challenge oracle of the SKE scheme and
receives a challenge ciphertext CT ∗ from the challenge oracle of SKE.

3. It creates NUK∗k =
(
CUk =CT ∗,Yk = (V ∗)ωk

)
.

If a valid encryption key κk is used in the KEY-PRV game, then CUk = SKE.Encrypt(κk, ˜SKIBE,k) which
is equal to the game Hk,1. Otherwise (a random encryption key κ̃k is used), CUk =SKE.Encrypt(κ̃k, ˜SKIBE,k)
which is equal to the game Hk,2. This completes our proof.

Lemma 5.15. If the XDH assumption holds, then no PPT adversary can distinguish Hk,2 from Hk,3 with a
non-negligible advantage.
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Proof. Suppose there exists an adversary A that attacks the above RIBE-AR scheme with a non-negligible
advantage. A simulator B that solves the XDH assumption using A is given: a challenge tuple D =
((p,G,Ĝ,GT ,e),g, ĝ, ĝa, ĝb) and Z where Z = Z0 = ĝab or Z = Z1 ∈R Ĝ. Then B that interacts with A
is described as follows:

Init: A initially submits challenge revoked sets R∗0,R
∗
1 and challenge time T ∗. B chooses a random bit

µ ∈ {0,1} and obtains a challenge cover set CV ∗ = {v1, . . . ,vk, . . . ,vℓ} by running CS.Cover(BT ,R∗µ). Let
r = |R∗µ |, ℓ= |CV ∗|, and ℓm = ⌈r log(N/r)⌉.
Setup: B obtains MK,RL,ST by running RIBE-AR.Setup(1λ ,N). Note that the random ωk of the node
vk ∈CV ∗ is unknown to B since ωk is implicitly associated with dlog(ĝb) of the XDH assumption.
Phase 1: B handles private key, update key, and decryption key queries as follows: It can create a private
key SKID by using MK and ST although ωk of the node vk is unknown since PV ∩CV ∗ = /0 by the restriction
of the security model. It can create an update key UKT by using MK and ST by using ĝωk = ĝb for the node
vk and selecting a random exponent s.
Challenge: Let UK∗ be the challenge update key that should be created in this step. B sets V ∗ = ĝa by
implicitly setting s = a and creates all CUi in UK∗ randomly. Next it creates the hint values of UK∗ as
follows:

1. For 1≤ i≤ k−1, it retrieves (γi,ωi,κi) of the node vi and sets a random Yi.

2. For i = k, it retrieves (γk,−,κk) of the node vk and sets Yk = Z by implicitly setting ωk = b.

3. For k+1≤ i≤ ℓ, it retrieves (γi,ωi,κi) of the node vi and sets Yi = (ĝa)ωi .

4. For ℓ+1≤ i≤ ℓm, it retrieves (γi,ωi,κi) of the node vi and sets a random Yi.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

If a valid Z = gab is given, then a valid hint Yk = ĝab = (ĝωk)s is created like in the game Hk,1. Otherwise
(a random Z = gc is given), a random hint Yk = ĝc is created like in the game Hk,2. This completes our
proof.

6 Conclusion

In this paper, we introduced the concept of RIBE-AR that provides ciphertext anonymity with revocation
privacy, and proposed an efficient RIBE-AR scheme by combining AIBE and IBE schemes with the CS
method in bilinear groups. Our RIBE-AR scheme has similar private key size, update key size, and cipher-
text size compared to the previous efficient RIBE schemes, despite the revocation set of an update key is
hidden. We proved the selective IND-CPA, selective ANO-CPA, and selective REV-PRV security of our
RIBE-AR scheme under complexity assumptions in bilinear groups with the security of underlying PRF and
SKE schemes. Since our RIBE-AR scheme can provide the weak revocation privacy that hides revocation
set against outsider attackers who can only obtain revoked private keys, it is an interesting problem to design
an RIBE-AR scheme that provides the strong revocation privacy that hides the revoked set against internal
attackers who have access to private keys that were not revoked.
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A Construction from Lattices

In this section, we present an RIBE-AR scheme from lattices without DKER. By following the method of
Katsumata et al. [21], our RIBE-AR scheme can be modified to provide DKER.

A.1 Lattices

Lemma A.1. Let n,m, m̃,q be positive integers with m ≥ 2n logq and q prime. There are polynomial time
algorithms for generating short basis of lattices as follows:

GenTrap(1n,1m,q): It is a randomized algorithm that outputs a full rank matrix A ∈ Zn×m
q and a trapdoor

basis TA ∈ Zm×m for Λ⊥q (A) such that A is statistically close to uniform and ∥TA∥GS = O(
√

n logq)
with overwhelming probability in n [3, 4, 32].

ExtendRandLeft(A,F,TA,q): It is a randomized algorithm that, given as input matrices A ∈ Zn×m
q , F ∈

Zn×m̃
q , a basis TA of Λ⊥q (A), and a Gaussian parameter σ ≥ ∥TA∥GS ·ω(

√
logn), outputs a matrix

T[A|F] ∈ Z(m+m̃)×(m+m̃) distributed statistically close to D [14].

ExtendRandRight(A,G,R,TG,σ): It is a randomized algorithm that, given as input a full rank matrix
A,G ∈ Zn×m

q , a matrix R ∈ Zm×m, a basis TG of Λ⊥q (G), and a Gaussian parameter σ ≥ ∥R∥2 ·
∥TG∥2 ·ω(

√
logn), outputs a matrix T[A|AR+G] ∈ Z2m×2m distributed statistically close to D [2].

There exists a fixed full rank matrix G ∈ Zn×m
q such that the lattice Λ⊥q (G) has a publicly known basis TG

with ∥TG∥GS ≤
√

5 [32].

Lemma A.2. There are polynomial time algorithms for sampling a short vector as follows:

SampleLeft(A,F,TA,u,σ): It is a randomized algorithm that, given as input a full rank matrix A ∈ Zn×m
q ,

a matrix F ∈ Zn×m
q , a basis TA ∈ Zm×m of Λ⊥q (A), a vector u ∈ Zn

q, and a Gaussian parameter
σ ≥ ∥TA∥GS ·ω(

√
logn), outputs a vector e ∈ Zm+m̃ sampled from a distribution statistically close to

DΛu
q([A|F]),σ [2, 32].

Assumption 4 (Learning with Errors, LWE [36]). The LWE problem is to distinguish the following distri-
butions:

(A,A⊤s+x) and (A,u)

where A ∈ Zn×m
q , s ∈ Zn

q, x ∈ D, u ∈ Zm
q are independently sampled. The advantage of LWE is defined as

AdvLWE
A = |Pr[A(A,A⊤s+x) = 1]−Pr[A(A,u) = 1]|. We say that the LWE assumption holds if the above

advantage is negligible for all PPT adversaries.

Assumption 5 (Learning with Rounding, LWR [5]). The LWR problem is to distinguish the following
distributions:

(A,⌊A⊤s⌉p) and (A,v)

where A ∈ Zn×m
q , s ∈ Zn

q, x ∈ D, v ∈ Zm
p are independently sampled. The advantage of LWR is defined as

AdvLWR
A = |Pr[A(A,⌊A⊤s⌉p) = 1]−Pr[A(A,v) = 1]|. We say that the LWR assumption holds if the above

advantage is negligible for all PPT adversaries.
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A.2 Construction

Let PRF be a pseudo-random function for K = {0,1}λ , X = {0,1}∗, and Y = Zp. Our RIBE-AR scheme
for I = {0,1}n, T = {0,1}n, andM∈ {0,1} is described as follows:

RIBE-AR.Setup(1λ ,N): Let λ be a security parameter and N be the maximum number of users. Let n= λ .

1. It obtains (A1,TA1) and (A2,TA2) by running GenTrap(1n,1m,q) and GenTrap(1n,1m,q) re-
spectively. It also samples uniformly random matrix B← Zn×m

q and vector u← Zn
q.

2. It generates two PRF keys z1,z2 and obtains BT by running CS.Setup(N).

3. Finally, it outputs a master key MK = (TA1 ,TA2 ,z1,z2), a revocation list RL = /0, a state ST =
(BT ), and public parameters PP =

(
A1,A2,B,u

)
.

RIBE-AR.GenKey(ID,MK,ST,PP): Let MK = (TA1 ,TA2 ,z1,z2) and ST = (BT ).

1. It assigns ID to a random leaf node v ∈ BT and obtains a private set PV = {S0, . . . ,Sn} by
running CS.Assign(BT ,v).

2. For j = 0 to j = n, it proceeds as follows: Let L j = Label(S j) be a label string. It computes
(u j,w j) = PRF1(z1,L j) and κ j = PRF2(z2,L j) where u j,w j ∈ Zn

q. It samples a vector e j by
running SampleLeft(A1,E(ID),u j,TA1 ,σ) such that

[A1|E(ID)]⊤e j = u j.

Next, it creates a node private key NSK j =
(
e j,w j,κ j).

3. It obtains an extended basis T[A2|E(ID)] by running ExtendRandLeft(A2,E(ID),TA2 ,σ).

4. Finally, it outputs a private key SKID =
(
NSK0, . . . ,NSKn,T[A2|E(ID)]

)
.

RIBE-AR.UpdateKey(T,RL,MK,ST,PP): Let MK = (TA1 ,TA2 ,z1,z2) and ST = (BT ).

1. It derives a revoked set R on time T from RL and obtains a cover set CV = {S1, . . . ,Sℓ} by
running CS.Cover(BT ,R). Let r = |R|, ℓ= |CV |, and ℓm = ⌈r log(N/r)⌉.

2. It selects a uniformly random matrix V ∈ Zn×n
q .

3. For 1≤ i≤ ℓ, it proceeds as follows: Let Li = Label(Si) be a label string. It computes (u j,w j) =
PRF1(z1,L j) and κ j = PRF2(z2,L j) where u j,w j ∈ Zn

q. It samples a vector fi by running Sam-
pleLeft(A1,F(T ),u−ui,TA1 ,σ) such that

[A1|F(T )]⊤fi = u−ui.

It obtains a ciphertext CUi = SKE.Encrypt(κi, fi). Next, it sets a hint vector yi = ⌊V⊤wi⌉p and
creates a node update key NUKi =

(
CUi,yi

)
.

4. For ℓ+1≤ i≤ ℓm, it proceeds as follows: It selects random fi and obtains CUi =SKE.Encrypt(κi, fi)
by using a random key κi. It creates a node update key NUKi =

(
CUi,yi

)
.

5. Finally, it selects a random permutation π : {1, . . . , ℓm}→ {1, . . . , ℓm} and outputs an update key
UKT =

(
NUKπ(1), . . . ,NUKπ(ℓm),V

)
.

RIBE-AR.DeriveKey(ID,T,SKID,UKT ,PP): Let SKID =(NSK0, . . . ,NSKn,T[A2|E(ID)]) and UKT =(NUK1, . . . ,
NUKℓm ,V).
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1. It retrieves w j from NSK j for all j∈{0, . . . ,n} and sets a list (y′0 = ⌊V⊤w0⌉p, . . . ,y′n = ⌊V⊤wn⌉p).
It also retrieves yi from NUKi for all i ∈ {1, . . . , ℓm} and sets a list (y1, . . . ,yℓm).

2. It finds two indexes j ∈ {0, . . . ,n} and i ∈ {1, . . . , ℓm} such that y′j = yi in the lists, then it
retrieves the corresponding NSK j = (e j,w j,κ j) and NUKi = (CUi,yi). Next, it decrypts fi =
SKE.Decrypt(κ j,CUi).

3. It parses e j = [e j,L|e j,R] and fi = [fi,L|fi,R] where e j,L, fi,L,e j,R, fi,R ∈ Zm. Then it computes d1 =
[e j,L + fi,L|e j,R|fi,R] such that

[A1|E(ID)|F(T )]⊤d1 = u.

4. It also samples d2 by running SampleLeft([A2|E(ID)],F(T ),u,T[A2|E(ID)],σ) such that

[A2|E(ID)|F(T )]⊤d2 = u.

5. Finally, it outputs a decryption key DKID,T =
(
d1,d2

)
.

RIBE-AR.Encrypt(ID,T,M,PP): It first samples uniformly random vectors s1,s2 ∈ Zn
q. It also samples

x← DZ,αq, x1,x2← DZ3m,α ′q and sets

c0 = u⊤(s1 + s2)+ x+M⌊q/2⌋,
c1 = [A1|E(ID)|F(T )]⊤s1 +x1,

c2 = [A2|E(ID)|F(T )]⊤s2 +x2.

Finally, it outputs a ciphertext CT =
(
c0,c1,c2

)
.

RIBE-AR.Decrypt(CT,DKID,T ,PP): Let CT = (c0,c1,c2) and DKID,T = (d1,d2). From the ciphertext and
the decryption key, it computes

c′ = c0− c⊤1 d1− c⊤2 d2.

It outputs 1 if |c′−⌊q/2⌋|< ⌊q/4⌋ and 0 otherwise.

RIBE-AR.Revoke(ID,T,RL): If ID is not assigned in BT , then it outputs ⊥. Otherwise, it updates RL by
adding (ID,T ) to RL.
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