
CCA Secure Updatable Encryption
from Non-Mappable Group Actions

Jonas Meers1 and Doreen Riepel2

1 Ruhr-University Bochum, Bochum, Germany
2 University of California San Diego, La Jolla, USA

jonas.meers@rub.de, driepel@ucsd.edu

Abstract. Ciphertext-independent updatable encryption (UE) allows
to rotate encryption keys and update ciphertexts via a token without
the need to first download the ciphertexts. Although, syntactically, UE
is a symmetric-key primitive, ciphertext-independent UE with forward
secrecy and post-compromise security is known to imply public-key en-
cryption (Alamati, Montgomery and Patranabis, CRYPTO 2019).
Constructing post-quantum secure UE turns out to be a difficult task.
While lattices offer the necessary homomorphic properties, the intro-
duced noise allows only a bounded number of updates. Group actions
have become an important alternative, however, their structure is lim-
ited. The only known UE scheme by Leroux and Roméas (IACR ePrint
2022/739) uses effective triple orbital group actions which uses addi-
tional algebraic structure of CSIDH. Using an ideal cipher, similar to
the group-based scheme SHINE (Boyd et al., CRYPTO 2020), requires
the group action to be mappable, a property that natural isogeny-based
group actions do not satisfy. At the same time, other candidates based
on non-commutative group actions suffer from linearity attacks.
For these reasons, we explicitly ask how to construct UE from group
actions that are not mappable. As a warm-up, we present BIN-UE which
uses a bit-wise approach and is CPA secure based on the well-established
assumption of weak pseudorandomness and in the standard model. We
then construct the first actively secure UE scheme from post-quantum
assumptions. Our scheme COM-UE extends BIN-UE via the Tag-then-
Encrypt paradigm. We prove CCA security in the random oracle model
based on a stronger computational assumption. We justify the hardness
of our new assumption in the algebraic group action model.

Keywords: Updatable encryption, group actions, isogenies, algebraic
group action model

1 Introduction

Updatable encryption (UE) allows to update a ciphertext to a new key with-
out first decrypting the ciphertext and then re-encrypting it with the new key.
Instead, the owner of the encryption key computes an update token which can
then be used by a different party to update the ciphertext on behalf of the
owner. This is especially useful in the context of cloud storage where a user
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might want to update the encryption key of some large encrypted file without
the need to first download the file and re-encrypt it locally. This and other real-
world applications have contributed to the fact that UE is a very active field of
research [11, 29, 30, 32, 33, 36, 41]. All these works are concerned with the most
general setting, where tokens can be created independently (i. e., they only de-
pend on the old and new key) and allow to update all ciphertexts encrypted
under the old key. This will also be our focus.

Security of UE. Since the introduction of UE by Boneh, Lewi, Montgomery
and Raghunathan [9], security definitions have evolved. Definitions for standard
symmetric encryption (SE) have been adapted to the setting of UE, capturing
confidentiality and integrity of messages. In contrast to the standard SE set-
ting, however, updating keys aims to provide stronger security, namely, forward
secrecy and post-compromise security. This is captured in security definitions
based on epochs, where some encryption keys and tokens may be revealed. Even
in the presence of adaptive corruptions, we ask for indistinguishability under
chosen message attacks and unlinkability of ciphertexts across updates, both of
which are captured in the IND-UE-CPA definition of [11]. However, defining triv-
ial attacks has turned out to be a complex and subtle task; various properties
of UE schemes, which affect the “inferred” knowledge after a corruption, have
been identified and result in slight adaptations [28, 41]. For sake of clarity, we
will not elaborate further at this point and explain the necessary details in the
main body of the paper. In this work, we also aim for stronger security for UE
capturing chosen ciphertext attacks (IND-UE-CCA), where the adversary is given
additional access to a decryption oracle.

Constructions of UE. In order for a scheme to allow for rotating keys and
updates, proposed schemes make use of public-key primitives with homomor-
phic properties. Indeed, Alamati, Montgomery and Patranabis [3] show that any
ciphertext-independent UE scheme that is forward and post-compromise secure
implies public-key encryption. We provide an overview of existing constructions
in Table 1. There exist various constructions that rely on (elliptic-curve) groups,
e. g., RISE [32], SHINE [11] and the DDH-based instantiation of the Encrypt-and-
MAC (E&M) construction in [30]. While one might hope that these schemes can
be easily transferred to the group action setting, current candidates for group
actions do not allow for this. We will elaborate more on these constructions in
Section 1.1.

The emergence of quantum computers poses an undeniable threat to all
UE constructions based on prime-order groups. Therefore, the interest in post-
quantum secure constructions for UE has grown in recent years. One promis-
ing approach constructs UE based on lattices [28, 29, 41]. The security of these
schemes relies on the Learning with Error (LWE) assumption and updates are
computed using the homomorphic properties of the underlying lattice. More
specifically, the UE constructions rely on a key homomorphic PKE. When using
a key and message homomorphic PKE, an even stronger security notion that
captures uni-directional updates can be achieved, albeit at the price of cipher-
texts and keys growing with the number of epochs. For more details, we refer
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Scheme Security (IND) Assumption Model

Groups RISE [32] (rand,UE,CPA) DDH Standard
E&M [30] (det,ENC/UPD,CCA) DDH ROM
SHINE0 [11] (det,UE,CCA) DDH Ideal Cipher

Pairings NYUAE [30] (rand,ENC/UPD,RCCA) SXDH Standard
SS23 [48] (rand,UE,CPA)+ SXDH Standard

Lattices Jia20 [29] (rand,UE,CPA) LWE Standard
Nis22 [41] (rand,UE,CPA) LWE Standard
GP23 [28] (rand,UE,CPA) LWE Standard

Group Actions GAINE0∗ [33] (det,UE,CCA) Wk-PR Ideal Cipher
TOGA-UE [33] (det,UE,CPA) P-CSSDDH Standard
BIN-UE (Sec. 3) (det,UE,CPA) Wk-PR Standard
COM-UE (Sec. 4) (det,UE,CCA) DLAI ROM+AGAM

∗no secure instantiation known
+satisfies a stronger definition with expiry epochs

Table 1. Overview of existing ciphertext-independent UE constructions and our new
constructions BIN-UE and COM-UE. For each scheme, we note whether updates are
performed using randomness (rand) or deterministically (det). Most schemes are an-
alyzed using the IND-UE security definition from [11], while others use the weaker
IND-ENC and IND-UPD definitions [32]. For a formal comparison of these definitions,
we refer the reader to [11]. The definition of RCCA security [30] has been established
for constructions with randomized updates.

to Section 1.3. The main drawback of these schemes, however, is the fact that
encryption noise increases with each update, resulting in a finite number of up-
dates that the schemes support. Furthermore, these schemes are currently not
IND-UE-CCA secure.

1.1 The Difficulty of Constructing UE from Group Actions

Cryptographic group actions offer a post-quantum secure alternative to prime-
order groups and are therefore another natural candidate for constructing post-
quantum secure UE. Let (G, ·) be a group and X some set. A group action
⋆ : G × X → X defines a map which is compatible with the group operation,
i. e., e ⋆ x = x and (g · h) ⋆ x = g ⋆ (h ⋆ x) for all x ∈ X , g, h ∈ G, where e ∈ G is
the neutral element. Note in particular, that we do not assume any structure on
X which will be one limiting factor in constructing efficient UE schemes. One
popular instantiation of a cryptographic group action is CSIDH [15] which is
based on isogenies between supersingular elliptic curves. Besides close variants
like CSURF [12] and SCALLOP [22], CSIDH is the only known commutative
group action that is believed to offer post-quantum security.

Using ElGamal Encryption. The group-based UE scheme RISE [32] uses
the homomorphic properties of the ElGamal encryption scheme. Recall that the
message in (standard) ElGamal encryption is represented by a group element
which is then multiplied with the public key raised to an ephemeral secret. Due to
the limited structure of group actions, however, we cannot adapt this approach.
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For PKE, this issue can be resolved by applying a hash function first and then
encrypt the message. For UE, this will destroy all the properties required for
updatability. An alternative approach is that of SiGamal [37], which we will
further discuss below.

Using Ideal Ciphers. We now turn to SHINE which is the group-based UE
scheme from [11]. SHINE makes use of an ideal permutation to map the message
(and a nonce) to a group element. Encryption is then simply exponentiation using
the secret key. IND-UE-CPA security assumes DDH and the proof is carried out in
the ideal cipher model which dates back to Shannon [47]. The advantage is that
only exponentiation is used, thus, there is a straightforward generalization to the
group action setting. The resulting scheme GAINE has been proposed by Leroux
and Roméas [33] and they prove IND-UE-CPA security in the ideal cipher model,
assuming weak pseudorandomness (Wk-PR) of the group action. The scheme can
further be made IND-UE-CCA secure by adding a zero-padding to the message
(and nonce), resulting in schemes SHINE0 and GAINE0. However, the way the
ideal cipher is used adds an additional requirement, namely, the group action
must be mappable. In short, a mappable group action comes equipped with
an efficiently computable bijection π : {0, 1}N → X which allows mapping a
message to a set element and vice versa. It turns out that for many popular group
actions like CSIDH, it is notoriously hard to define such a mapping [10, 38]. At
the same time, there is currently no other (non-commutative) group action that
is both mappable and satisfies Wk-PR. In fact, it was recently shown that many
non-commutative group actions are susceptible to linearity attacks, making them
unsuitable for UE [20]. This leaves us with no secure candidate instantiation for
GAINE.

Triple Orbital Group Actions. For the reasons identified above, the authors
in [33] define a new algebraic abstraction called Triple Orbital Group Action
(TOGA). It combines a mappable group action and a weakly pseudorandom
group action into a single structure. The resulting scheme, TOGA-UE, can then be
instantiated with isogenies based on ideas developed for the SiGamal encryption
scheme [37]. While TOGA-UE seems like a promising approach to avoid the ideal
cipher model in the first place, its security relies on the weak-pseudorandomness
of the whole TOGA. More precisely, for the instantiation given in [33] based
on CSIDH this results in an assumption close to the P-CSSDDH assumption
first defined in [37, Definition 10]. Unfortunately, P-CSSDDH does not reduce
to the standard Wk-PR of CSIDH since in P-CSSDDH additional torsion point
information is revealed. Although the revealed information is not sufficient to
apply the SIDH attacks [13,35,46], it makes the hardness of P-CSSDDH less well
understood. Further, apart from CSIDH and its variations there is currently no
other (post-quantum secure) instantiation of TOGA as its definition is rather
dedicated to SiGamal. Lastly, the authors point out that their construction is
malleable; thus, IND-UE-CCA security of TOGA-UE or an adaptation of it seems
currently out of reach.
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CCA Security via Encrypt-and-MAC. As of now, we do not have any post-
quantum secure UE scheme that achieves IND-UE-CCA security. Klooß, Lehmann
and Rupp [30] give a DDH-based UE scheme based on the Encrypt-and-MAC
(E&M) paradigm. Their scheme combines the above-mentioned ElGamal en-
cryption scheme with an updatable PRF based on the construction by Naor,
Pinkas and Reingold [40]. Ignoring for now that we cannot use the same El-
Gamal approach as elaborated above, we want to point out that the updatable
PRF requires hashing into the group (i. e., for group actions this would be the
set), which, although a weaker requirement than being mappable [33], is still an
open question for isogeny-based group actions [10]. Given that known lattice-
based construction also do not achieve IND-UE-CCA security, we do not have
any actively secure UE from post-quantum assumptions.

1.2 Our Contributions

We aim to overcome these difficulties and our goal is to construct detIND-UE-CCA
secure UE from any (non-commutative) group action without requiring the group
action to be mappable.

Our first construction, which we call BIN-UE, maps each bit of the message
to a set element in a black-box way and then encrypts each bit under a different
key. More specifically, for a key k = (k1, · · · , kn) ∈ Gn and a message M =
(m1, . . . ,mn) ∈ {0, 1}n, the encryption algorithm computes

BIN-UE.Enc(k,M ; (x0, x1)) := (k1 ⋆ xm1 , . . . , kn ⋆ xmn) ,

where x0, x1 ∈ X are random set elements used as encryption randomness. Up-
date tokens are of the form ∆i = knewi · (koldi )−1 and applied to each element
of the ciphertext individually. In order to allow for correct decryption, we will
have to define an order on x0 and x1. We will explain the technicalities in Sec-
tion 3, where we formally introduce the scheme. Apart from being applicable to
non-mappable group actions like CSIDH [15], this approach comes with several
additional advantages: First, we prove IND-UE-CPA security assuming that the
group action is weakly pseudorandom, which is considered a standard assump-
tion for CSIDH. Second, our proof does not require idealized models, that is,
security holds in the standard model. This is a direct consequence of not needing
a mappable group action. A natural disadvantage of the bit-wise approach is the
large key size and overall efficiency of the scheme since both grow linearly in the
bit-length of the messages. In group action based cryptography, however, this is
a well understood and accepted compromise [1, 2, 6, 8, 23].

We then turn to constructing a scheme that satisfies IND-UE-CCA security,
which is the main contribution of this paper. Our second scheme COM-UE ex-
tends BIN-UE via the Tag-then-Encrypt paradigm, where we encrypt messages
of the form (M,T ) ∈ {0, 1}n+t with BIN-UE. This means a key is now k ∈ Gn+t.
More specifically, to encrypt a message M ∈ {0, 1}n with randomness r, we
compute the following:

COM-UE.Enc(k,M ; r) := BIN-UE.Enc(k,M∥H(M, r); r) ,
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where hash function H is used to compute the tag. The advantage is that up-
datability works exactly as in BIN-UE. In Section 4, we further elaborate on
how this approach compares to the Encrypt-and -MAC construction of [30] and
why Tag-then-Encrypt seems preferable here. While the composition is not se-
cure in general [5], we prove that COM-UE is IND-UE-CCA secure under a new
assumption and in the random oracle model. Our assumption Multi-St-UP is a
non-standard and stronger variant of weak unpredictability for group actions [2].
In order to justify its hardness, we show that in the Algebraic Group Action
Model (AGAM) [24], Multi-St-UP is implied by the Discrete Logarithm Problem
with Auxilary Input [4]. Lastly, COM-UE has the same set of disadvantages as
BIN-UE.

To summarize, we give the first UE scheme from group actions that satisfies
IND-UE-CPA security from standard assumptions. Further, we get the first UE
scheme that satisfies IND-UE-CCA security from post-quantum, however non-
standard, assumptions.

1.3 Further Related Work

Ciphertext-dependent UE, as considered in [7, 9, 17, 18, 26], generates tokens for
individual ciphertexts. While, in general, this allows for more efficient construc-
tions, it requires the owner of the data to download (a part of) the ciphertext
in order to generate the update token.

The direction of updates plays an important role in determining the impact
of key and token corruptions. While our schemes have bi-directional updates,
where the old key can be derived from the new key (and token) and vice versa,
recent works have studied uni- and no-directional updates [28, 29, 41] and their
relations. While these properties are desirable in terms of security guarantees,
schemes are also notoriously harder to construct. This was studied in further de-
tail by [28] who aim at constructing UE from PKE generically. They show how
to construct bi-directional UE scheme from a key homomorphic PKE scheme.
Then, to construct UE with no-directional updates1, they require PKE with
key and message homomorphism. In this construction, ciphertext and key sizes
grow linearly in the number of epochs. A similar construction was given in [36].
Unfortunately, it is not clear how to construct a key and message homomorphic
PKE from group actions since it would require to combine set elements. Further
note that the only known construction in this setting which does not have grow-
ing ciphertexts and keys relies on the strong assumption of indistinguishability
obfuscation [41].

A constructive and composable view on UE was taken in [27] and [34], respec-
tively. Further, Slamanig and Striecks [48] study a stronger security definition
with more fine-grained forward secrecy via expiry epochs.

Updatable MACs [19] are a useful tool to ensure ciphertext integrity in UE.
Unfortunately, known group-based constructions require hashing into the group

1 No-directional and backward-leak uni-directional updates are shown to be equivalent
[28]. They provide strictly stronger security than bi-directional updates which have
been shown to be equivalent to forward-leak unidirectional updates [29].
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and thus, do not directly transfer to the group action setting. Extending UE
with signed ciphertext was recently considered in [45].

Proxy re-encryption is a public-key primitive which enables to re-encrypt a
ciphertext, encrypted to one party’s public key, such that it can be decrypted
by another party’s secret key. Constructions and security models have been con-
sidered in [16,21,31,36,43,44] and also compared to the UE setting [21,31].

Updatable public-key encryption has been constructed from isogenies [25],
however, the goal here is to update public and secret keys asynchronously (and
not to update ciphertexts) to achieve forward secrecy in messaging applications.

2 Preliminaries

Notation. We denote by ≺lex the lexicographical order. For integers m,n where
m < n, [m,n] denotes the set {m,m+ 1, ..., n}. For m = 1, we simply write [n].
For a set S, s $← S denotes that s is sampled uniformly and independently at
random from S. y ← A(x1, x2, ...) denotes that on input x1, x2, ... the proba-
bilistic algorithm A returns y. AO denotes that algorithm A has access to oracle
O. An adversary is a probabilistic algorithm. We will use game-based security
notions, where Pr[G(A) ⇒ 1] denotes the probability that the final output of
game G running adversary A is 1. The notation JXK denotes a boolean test which
returns 1 if the statement X is true and 0 otherwise.

2.1 Group Actions

We recall the definition of (restricted) effective group actions from [2], which
provides an abstract framework to build cryptographic primitives relying on
isogeny-based assumptions such as CSIDH.

Definition 1 (Group Action). Let (G, ·) be a group with identity element
e ∈ G, and X a set. A map

⋆ : G × X → X

is a group action if it satisfies the following properties:

1. Identity: e ⋆ x = x for all x ∈ X .
2. Compatibility: (g · h) ⋆ x = g ⋆ (h ⋆ x) for all g, h ∈ G and x ∈ X .

Remark 1. Throughout this paper, we assume the group action to be commu-
tative and regular. The latter means that for any x, y ∈ X there exists precisely
one g ∈ G satisfying y = g ⋆ x.

Definition 2 (Effective Group Action). Let (G,X , ⋆) be a group action
satisfying the following properties:

1. G is finite and there exist efficient (PPT) algorithms for membership testing,
equality testing, (random) sampling, group operation and inversion.
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Games GWk-PR-b
EGA (A)

00 g $← G
01 b′ ← ASample

02 return b′

Oracle Sample
03 x, y $← X
04 if b = 0: return (x, y)
05 if b = 1: return (x, g ⋆ x)

Fig. 1. Games GWk-PR-b
EGA , where b ∈ {0, 1}, capturing weak pseudorandomness of EGA.

2. The set X is finite and there exist efficient algorithms for membership testing
and to compute a unique representation.

3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm to evaluate the group action, i. e. to com-

pute g ⋆ x given g and x.

Then we call x̃ ∈ X the origin and (G,X , ⋆, x̃) an effective group action (EGA).

Remark 2 (Mappable EGA). Recalling the definition of [33], a mappable effective
group action comes with a bijection π : {0, 1}N → X such that N = log|X |. Since
it is unclear whether such a mapping exists for isogeny-based group actions
[10,38], we explicitly avoid making this assumption.

We will use the definition of weak pseudorandomness [2] which can be viewed as
a multi-instance decisional Diffie-Hellman assumption for group actions.

Definition 3 (Weak Pseudorandomness). Let EGA = (G,X , ⋆, x̃) be an ef-
fective group action. Consider the games GWk-PR-0

EGA and GWk-PR-1
EGA for an adversary

A as defined in Figure 1. We define the advantage of A in distinguishing the two
games as

AdvWk-PR
EGA (A) := |Pr[GWk-PR-1

EGA (A)⇒ 1]− Pr[GWk-PR-0
EGA (A)⇒ 1]| .

2.2 Updatable Encryption

We recall the definition of an updatable encryption scheme and security defini-
tions from [11].

Syntax. An updatable encryption scheme UE for message space M, key space
K and ciphertext space C consists of the following algorithms:

• KeyGen→ k: The key generation algorithm outputs a key k ∈ K.
• Enc(k,M)→ C: On input a key k ∈ K and a message M ∈M, the encryp-
tion algorithm computes a ciphertext C.

• Dec(k,C) → {M,⊥} : On input a key k ∈ K and a ciphertext C ∈ C, the
decryption algorithm outputs a message M or a special symbol ⊥ indicating
failure.

• TokenGen(k, k′) → ∆ : On input two keys k, k′ ∈ K, the token generation
algorithm outputs an update token ∆.

• Upd(∆,C)→ C ′ : On input a token ∆ and a ciphertext C ∈ C, the update
algorithm computes an updated ciphertext C ′.
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If a scheme is defined relative to some public parameters, we assume that they are
implicit input to all algorithms. In this work, we only consider schemes where
Dec, TokenGen and Upd are deterministic algorithms, which we will indicate
accordingly when assigning outputs. Furthermore, we will sometimes make the
encryption randomness and randomness space explicit and denote them with r
and R, respectively.

The execution of the scheme can be described by epochs. Each key and ci-
phertext belong to one epoch e ∈ N which we write as k(e) and C(e), respectively.
A token ∆(e+1) allows to update a ciphertext from epoch e to the next epoch
e+1. For correctness, we ask that an updated ciphertext still decrypts correctly
under the respective key. This is captured in the following definition.

Definition 4 (Correctness of UE). Let UE be an updatable encryption scheme
and ne ∈ N. We say that UE is perfectly correct if for any M ∈ M, for e ∈
[ne − 1], it holds that

Pr[Dec(k(ne), C(ne)) = M ] = 1 ,

where

• k(e), . . . , k(ne) ← KeyGen,
• C(e) ← Enc(k(e),M), and
• ∆(i+1) := TokenGen(k(i), k(i+1)), C(i+1) := Upd(∆(i+1), C(i)) for i∈ [e, ne−1].

We will use the security definitions for UE schemes with deterministic and
bi-directional updates from [11]. Below, we describe and define three different
games, capturing detIND-UE-CPA, detIND-UE-CCA and INT-CTXT security, re-
spectively.

Confidentiality. In the game GdetIND-UE-CPA-b
UE (cf. Figure 2), which is parame-

terized by b ∈ {0, 1}, the adversary A has access to a (non-challenge) encryption
oracle Enc, a challenge oracle Chall, an oracle Next to proceed to the next
epoch, an update oracle Upd, an update oracle for challenges UpdC̃ and corrup-
tion oracles CorrKey and CorrToken to reveal keys and tokens, respectively.

At the beginning of the game, an initial key k(0) is drawn. The game then
initializes variables: an epoch counter e, an encryption counter c, a challenge flag
chall and empty sets (L, L̃, C,K, T ), where

• Set L stores non-challenge ciphertexts produced by Enc or Upd. It records
tuples of the form (c, C, e). Oracle Upd only updates ciphertexts in L.

• Set L̃ stores the challenge ciphertext and updated versions of it. The first
entry will always be the challenge ciphertext C̃ together with the epoch ẽ.
Any call to Next automatically updates the challenge ciphertext into the
new epoch, which A can fetch via UpdC̃.

• Set C stores all epochs in whichA learned an updated version of the challenge
ciphertext.

• Set K stores all epochs in which A corrupted the secret key.
• Set T stores epochs in which A corrupted the update token.
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Games GdetIND-UE-CPA-b
UE (A) GdetIND-UE-CCA-b

UE (A)

00 k(0) ← KeyGen
01 ∆(0) := ⊥
02 (e, c, chall) := (0, 0, 0)
03 (L, L̃, C,K, T ) := (∅, ∅, ∅, ∅, ∅)
04 b′ ← AO

05 if K∗ ∩ C∗ ̸= ∅ or I∗ ∩ C∗ ̸= ∅ :
06 return b′ $← {0, 1}
07 return b′

Oracle Enc(M)

08 C ← Enc(k(e),M)
09 c := c+ 1
10 L := L ∪ {(c, C, e)}
11 return C

Oracle Chall(M̄, C̄)
12 if chall = 1 return ⊥ �only once
13 chall := 1
14 ẽ := e
15 if (·, C̄, e− 1) /∈ L :
16 return ⊥
17 if b = 0 :
18 C̃e ← Enc(k(e), M̄)
19 else if b = 1 :
20 C̃e := Upd(∆(e), C̄)
21 C := C ∪ {e}
22 L̃ := L̃ ∪ {(C̃e, e)}
23 return C̃e

Oracle Next
24 e := e+ 1
25 k(e) ← KeyGen
26 ∆(e) := TokenGen(k(e−1), k(e))
27 if chall = 1 :
28 C̃e := Upd(∆(e), C̃e−1)

Oracle Upd(Ce−1)
29 if ∄j s.t. (j, Ce−1, e− 1) ∈ L :
30 return ⊥
31 Ce := Upd(∆(e), Ce−1)
32 L := L ∪ {(j, Ce, e)}
33 return Ce

Oracle UpdC̃ �return C̃e from Next
34 if chall ̸= 1 return ⊥
35 C := C ∪ {e}
36 L̃ := L̃ ∪ {(C̃e, e)}
37 return C̃e

Oracle CorrKey(ê)
38 if ê > e return ⊥
39 K := K ∪ {ê}
40 return k(ê)

Oracle CorrToken(ê)
41 if ê > e return ⊥
42 T := T ∪ {ê}
43 return ∆(ê)

Oracle Dec(C)

44 if chall = 1 and C ∈ L̃∗ :
45 return ⊥
46 return UE.Dec(k(e), C)

Fig. 2. Games GdetIND-UE-CPA-b
UE (without code in boxes) and GdetIND-UE-CCA-b

UE (including
code in boxes), where b ∈ {0, 1} and adversary A has access to oracles O := {Enc,
Chall,Next,Upd,UpdC̃,CorrKey,CorrToken}. In GdetIND-UE-CCA-b

UE , A addition-
ally has access to oracle Dec. The definition of sets K∗, C∗, I∗ and L̃∗ to prevent
trivial wins is given in the textual description.

The challenge oracle Chall takes as input a message M̄ and a ciphertext C̄ such
that the ciphertext was the output of a query to Enc from the previous epoch.
Then, depending on the bit b, the game either computes a fresh encryption of M̄
or an update of ciphertext C̄. As shown in [11], this captures indistinguishability
of ciphertexts as well as unlinkability of updates at the same time. All oracles
can be queried adaptively and multiple times, except the challenge oracle which
may only be queried once.

At some point, A stops and outputs a bit b′. The game checks whether
A could have trivially learned the bit based on its queries and the inferred
knowledge. In order to perform the check, the following sets need to be computed:
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• Set K∗ contains all epochs for which the adversary corrupted the key or
learned the key via a token. Here, it is important to note that we look
at bi-directional updates, meaning the knowledge of a key k(e) and tokens
∆(e), ∆(e+1) allows to compute both k(e−1), k(e+1). More formally, the set K∗

is defined as K∗ := {e ∈ [0, n] | CorrK(e) = true}, where

CorrK(e) = true ⇐⇒ (e ∈ K) ∨ (CorrK(e− 1) ∧ e ∈ T )
∨ (CorrK(e+ 1) ∧ e+ 1 ∈ T ) .

• Set T ∗ contains all epochs for which the adversary corrupted the token or
learned the token via a key. For this note that bi-directional updates allow
to compute a token ∆(e) from keys k(e−1) and k(e), where we additionally
consider keys contained in K∗. More formally, we define the set of tokens as
T ∗ := {e ∈ [0, n] | (e ∈ T ) ∨ (e ∈ K∗ ∧ e− 1 ∈ K∗)}.

• Set C∗ contains the challenge epoch as well as all epochs for which the adver-
sary knows updated versions of the challenge ciphertext. Since we consider
deterministic updates, the knowledge of a ciphertext C̃e along with tokens
∆(e), ∆(e+1) allows to compute both corresponding ciphertexts C̃e−1 and
C̃e+1. More formally, C∗ := {e ∈ [0, n] | ChallEq(e) = true}, where

ChallEq(e) = true ⇐⇒ (e ∈ C) ∨ (ChallEq(e− 1) ∧ e ∈ T ∗)

∨ (ChallEq(e+ 1) ∧ e+ 1 ∈ T ∗) .

Let c be the counter value for the ciphertext used in the challenge and was
previously output by Enc. In the following, we will denote this ciphertext as the
challenge-input ciphertext. We define the two following sets:

• Set I contains the epoch in which the challenge-input ciphertext was first cre-
ated and all epochs for which the adversary learned updates of the challenge-
input ciphertext via Upd. More formally, I := {e ∈ [0, n] | (c, ·, e) ∈ L}.

• Set I∗ contains I and all epochs for which the adversary has inferred knowl-
edge about the challenge-input ciphertext via corrupted tokens (similar to
C∗). More formally, I∗ := {e ∈ [0, n] | ChallinputEq(e) = true}, where

ChallinputEq(e) = true ⇐⇒ (e ∈ I) ∨ (ChallinputEq(e− 1) ∧ e ∈ T ∗)

∨ (ChallinputEq(e+ 1) ∧ e+ 1 ∈ T ∗) .

Finally, in order to prevent trivial attacks, the game checks whether K∗∩C∗ = ∅
and I∗ ∩ C∗ = ∅. If both checks succeed, the game returns A’s output b′ and
otherwise it returns a random bit b′ $← {0, 1}.

When considering active security in the sense of detIND-UE-CCA, the game
additionally provides access to a decryption oracle Dec which allows to decrypt
any ciphertext, except for the challenge ciphertext and updated versions of it. In
order to detect trivial wins, we use set L̃∗ which is updated when the challenge
query is issued and when the challenge ciphertext is updated. In Supplementary
Material B we recall the algorithm to update L̃∗ as given in [11].

We now formally define the advantage of an adversary A in these games.
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Game GINT-CTXT
UE (A)

00 k(0) ← UE.KeyGen
01 ∆(0) := ⊥
02 (e, c) := (0, 0)
03 (chall, twf,win) := (0, 0, 0)
04 (L, C,K, T ) = (∅, ∅, ∅, ∅)
05 AO

06 if twf = 1 :
07 return 0
08 return win

Oracle Enc(M)

09 C ← UE.Enc(k(e),M)
10 c := c+ 1
11 L := L ∪ {(c, C, e)}
12 return C

Oracle Try(C̃)
13 if chall = 1 return ⊥
14 chall := 1
15 if e ∈ K∗or C̃ ∈ L∗ :
16 twf := 1
17 if UE.Dec(k(e), C̃) ̸= ⊥ :
18 win := 1

Oracle Next
19 e := e+ 1
20 k(e) ← UE.KeyGen
21 ∆(e) := UE.TokenGen(k(e−1), k(e))

Oracle Upd(Ce−1)
22 if ∄j s.t. (j, Ce−1, e− 1) ∈ L :
23 return ⊥
24 Ce := UE.Update(∆(e), Ce−1)
25 L := L ∪ {(j, Ce, e)}
26 return Ce

Oracle CorrKey(ê)
27 if ê > e return ⊥
28 K := K ∪ {ê}
29 return k(ê)

Oracle CorrToken(ê)
30 if ê > e return ⊥
31 T := T ∪ {ê}
32 return ∆(ê)

Fig. 3. The INT-CTXT security game for an updatable encryption scheme UE. Adver-
sary A has access to oracles O = {Enc,Next,Upd,CorrKey,CorrToken,Try}.

Definition 5 (detIND-UE-CPA/CCA Security). Let XXX ∈ {CPA,CCA} and
consider the games GdetIND-UE-XXX-0

UE and GdetIND-UE-XXX-1
UE for an updatable en-

cryption scheme UE and an adversary A as defined in Figure 2. We define the
advantage of A in distinguishing the two games as

AdvdetIND-UE-XXX
UE (A) := |Pr[GdetIND-UE-XXX-1

UE (A)⇒ 1]

− Pr[GdetIND-UE-XXX-0
UE (A)⇒ 1]| .

Ciphertext Integrity. In Figure 3, we define the ciphertext integrity game.
The game is similar to the confidentiality games, providing the adversary access
to an encryption oracle Enc, an oracle Next to proceed to the next epoch, an
update oracle Upd and corruption oracles CorrKey and CorrToken. We do
not need a challenge oracle or challenge-update oracle. Instead, the task in this
game is to produce a non-trivial ciphertext C̃ such that C̃ decrypts successfully.
Here, non-trivial refers to the fact that C̃ must not have been an output of Enc
or Upd. As in the previous game, we also need to take into account the (inferred)
knowledge through key and token corruptions. This is captured in oracle Try,
where we use the sets K∗ and L∗. In Supplementary Material B, we recall the
algorithm how to compute L∗, as given in [11]. Note that we only allow one
query to Try, as captured by the INT-CTXTS notion in [11], which is equivalent
to a version with multiple Try queries. We now define INT-CTXT security as
follows.
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Definition 6 (INT-CTXT Security). Consider the game GINT-CTXT
UE for an up-

datable encryption scheme UE and an adversary A as defined in Figure 3. We
define the advantage of A in winning the game as

AdvINT-CTXTUE (A) := Pr[GINT-CTXT
UE (A)⇒ 1] .

Finally, we recall the statement from [11] showing that detIND-UE-CPA and
INT-CTXT together imply detIND-UE-CCA.

Theorem 1 (Theorem 3 in [11]). Let UE be an updatable encryption scheme.
For any adversary A against the detIND-UE-CCA security of UE there exist ad-
versaries B, C against the detIND-UE-CPA and INT-CTXT security of UE such
that

AdvdetIND-UE-CCA
UE (A) ≤ 2 · AdvINT-CTXTUE (B) + AdvdetIND-UE-CPA

UE (C) ,

where the running times of B and C are about that of A.

3 UE from Non-Mappable Group Actions

In this section, we construct a new updatable encryption scheme called BIN-UE.
Its main advantage is that BIN-UE does not require the group action to be map-
pable, making it possible to instantiate BIN-UE from plain CSIDH. Furthermore,
its security relies on a standard assumption.

We define BIN-UE in Figure 4. On a high level, the bits of a message are
encoded into the index of two basis elements x0, x1 ∈ X . These basis elements
are chosen randomly for each encryption, which eliminates the need for either a
nonce or an ideal cipher to ensure detIND-UE-CPA security. For n-bit messages,
the encryption key consists of n group elements. Each bit is then encrypted
individually by applying a group element to one of the basis elements.

Decryption of a message first inverts the group action and subsequently de-
tects whether the resulting element is x0 or x1. Of course, without further con-
straints it is a priori not clear which basis element was used for the 0-bit, which
is why we sort the basis elements lexicographically and use the smaller one (ac-
cording to ≺lex) for the 0-bit. To prevent decryption failures, we set the message
space to be M := {0, 1}n \ {0n, 1n} as otherwise the messages 0n and 1n would
be indistinguishable.

Proposition 1. The BIN-UE scheme is perfectly correct.

Proof. Let M = (m1, . . . ,mn) ∈ M be an arbitrary message, k(0), k(1) ←
UE.KeyGen be two epoch keys for adjacent epochs. We show that

Pr[UE.Dec(k(1), C(1)) = M ] = 1

for C(1) := UE.Update(∆(1), C(0)), ∆(1) := UE.TokenGen(k(0), k(1)) and C(0) ←
UE.Enc(k(0),M). The general case of non-adjacent epochs then follows via in-
duction.
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BIN-UE.KeyGen

00 k := (k1, . . . , kn)
$← Gn

01 return k

BIN-UE.Update(C,∆)
02 Let ∆ = (∆1, . . . ,∆n)

and C = (c1, . . . , cn)
03 return (∆1 ⋆ c1, . . . ,∆n ⋆ cn)

BIN-UE.Enc(k,M)
04 Let M = (m1, . . . ,mn)
05 x0, x1

$← X �x0 ≺lex x1

06 for i ∈ [n] :
07 ci := ki ⋆ xmi

08 return c := (c1, . . . , cn)

BIN-UE.TokenGen(k, k′)

09 Let k = (k1, . . . , kn) and k′ = (k′
1, . . . , k

′
n)

10 return ∆ := (k′
1k

−1
1 , . . . , k′

nk
−1
n )

BIN-UE.Dec(k, C)
11 Let C = (c1, . . . , cn) and k = (k1, . . . , kn)
12 for i ∈ [n] :
13 xi = k−1

i ⋆ ci
14 if |{x1, . . . , xn}| = 2 :
15 Let {x̃0, x̃1} = {x1, . . . , xn} and x̃0 ≺lex x̃1

16 for i ∈ [n] :
17 mi := Jxi = x̃1K
18 return M := (m1, . . . ,mn)
19 return ⊥

Fig. 4. The updatable encryption scheme scheme BIN-UE.

First, we have that

C(0) = (C
(0)
1 , . . . , C(0)

n ) = (k
(0)
1 ⋆ xm1

, . . . k(0) ⋆ xmn
)

for two random set elements x0, x1 ∈ X with x0 ≺lex x1. Essentially, we encode
a bit with either the (lexicographically) larger or smaller set element. Updating
the ciphertext with the token ∆(1) then becomes

C(1) = (∆
(1)
1 ⋆ C

(0)
1 , . . . ,∆(1)

n ⋆ C(0)
n ) = (k

(1)
1 ⋆ xm1

, . . . k(1)n ⋆ xmn
)

because for each entry ∆
(1)
i · k

(0)
i = k

(1)
i (k

(0)
i )−1 · k(0)i = k

(1)
i . Lastly, decrypting

C(1) with k(1) yields

((k
(1)
1 )−1 ⋆ C

(1)
1 , . . . , (k(1)n )−1 ⋆ C(1)

n ) = (xm1 , . . . , xmn)

Note that since M does not contain the bit strings 0n and 1n the above tuple
contains exactly two distinct set elements. We are now left with detecting at
each position whether the element xmi is the (lexicographically) larger or smaller
element, yielding the desired bitstring M = (m1, . . . ,mn). ⊓⊔

3.1 Security

In this section, we establish the security of BIN-UE. To this end, we introduce
the following hardness assumption.

Definition 7 (Multi Strong Pseudorandomness (Multi-St-PR)). Let EGA =
(G,X , ⋆, x̃) and let n ∈ N. Consider the game defined in Figure 5. We define the
advantage of an adversary A winning the Multi-St-PR game as

AdvMulti-St-PR
EGA (A) := |Pr[GMulti-St-PR-1

EGA (A)⇒ 1]− Pr[GMulti-St-PR-0
EGA (A)⇒ 1]| .
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Games GMulti-St-PR-b
EGA (A)

00 g1, . . . , gn
$← G

01 b′ ← AEval

02 return b′

Oracle Eval(β ∈ {0, 1}n)
03 x0, x1, y1, . . . , yn

$← X �x0 ≺lex x1

04 if b = 0:
05 return (x0, x1, y1, . . . , yn)
06 if b = 1:
07 return (x0, x1, g1 ⋆ xβ1 , . . . , gn ⋆ xβn)

Fig. 5. Games GMulti-St-PR-b
EGA for EGA, where b ∈ {0, 1}.

Hybrid Hi(A)
00 g1, . . . , gn

$← G
01 b′ ← AEval

02 return b′

Oracle Eval(β)

03 x0, x1, y1, . . . , yn
$← X �x0 ≺lex x1

04 return (x0, x1, g1 ⋆ xβ1 , . . . , gi ⋆ xβi , yi+1, . . . , yn)

Fig. 6. The i-th hybrid.

Remark 3. The restriction that x0 ≺lex x1 is without loss of generality. More
concretely, one could reduce the “sorted” variant ofMulti-St-PR to an “unsorted”
variant by just querying the unsorted Eval oracle until the output elements are
sorted (which happens with probability 1/2). Note that an adversary can query
Eval multiple times on the same input.

Remark 4. In contrast to the definition of M, we do not require β ̸= 0n, 1n as
it does not affect the reduction to the detIND-UE-CPA security of BIN-UE.

Although Multi-St-PR appears non-standard at first, we show that it reduces to
the standard Wk-PR assumption.

Proposition 2 (Wk-PR ⇒ Multi-St-PR). Let EGA = (G,X , ⋆, x̃). For any
adversary A against Multi-St-PR of EGA, there exists an adversary B against
Wk-PR of EGA such that

AdvMulti-St-PR
EGA (A) ≤ n · AdvWk-PR

EGA (B)

where n is defined as in Figure 5 and the running time of B is about that of A.

Proof. We prove the statement via a hybrid argument where in each hybrid we
embed the Wk-PR challenge at one position in the Multi-St-PR tuple.

Let H0, . . . ,Hn be hybrids where Hi is then defined as in Figure 6. It is
clear that H0 = GMulti-St-PR-0

EGA and Hn = GMulti-St-PR-1
EGA . We now show that for any

adversary A that distinguishes two adjacent hybrids there exists an adversary B
against Wk-PR such that

|Pr[Hi−1(A)⇒ 1]− Pr[Hi(A)⇒ 1]| ≤ AdvWk-PR
EGA (B) .

Consider the reduction in Figure 7. Evidently, if the oracle Sample returns
tuples of the form (x, g ⋆ x) for uniformly random x ∈ X and some fixed g ∈ G,
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Adversary BSample

00 g1, . . . , gi−1
$← G

01 b′ ← AEval

02 return b′

Oracle Eval(β)

03 (x0, y0)← Sample �yi = g ⋆ xi or yi
$← X

04 (x1, y1)← Sample �w.l.o.g. x0 ≺lex x1

05 yi+1, . . . , yn
$← X

06 if βi = 0:
07 ỹ := y0
08 else :
09 ỹ := y1
10 return (x0, x1, g1 ⋆ xβ1 , . . . , gi−1 ⋆ xβi−1 , ỹ, yi+1, . . . , yn)

Fig. 7. Adversary B for the proof of Proposition 2, simulating either the hybrid Hi−1

or Hi to A.

then B perfectly simulates Hi. Likewise, if Sample returns tuples of the form
(x, y) for uniformly random x, y ∈ X , then B perfectly simulates Hi−1. Finally,

AdvMulti-St-PR
EGA (A) = |Pr[GMulti-St-PR-1(A)⇒ 1]− Pr[GMulti-St-PR-0(A)⇒ 1]|

= |Pr[H0(A)⇒ 1]− Pr[Hn(A)⇒ 1]|

≤
n∑

i=1

|Pr[Hi−1(A)⇒ 1]− Pr[Hi(A)⇒ 1]|

= n · AdvWk-PR
EGA (B) ,

which concludes the proof. ⊓⊔

We are now ready to establish the passive security of BIN-UE. We highlight
that no ideal cipher is necessary to prove detIND-UE-CPA security of BIN-UE.
Intuitively, the reason for this is that the definition of Multi-St-PR allows the
adversary to supply the value β to the Eval oracle. As we showed in the previous
reduction this does not weaken the hardness of Multi-St-PR as it is essentially as
hard as Wk-PR (up to a tightness loss). In the detIND-UE-CPA proof, however,
this allows the reduction to directly forward messages to the Eval oracle without
needing to program an ideal cipher to ensure consistent randomness.

Theorem 2. Let BIN-UE be the scheme described in Figure 4. For any adver-
sary A against the detIND-UE-CPA security of BIN-UE, there exists an adversary
B against Wk-PR such that

AdvdetIND-UE-CPA
BIN-UE (A) ≤ 2n(ne + 1)3 · AdvWk-PR

EGA (B) ,

where ne is the number of epochs and n is the length of a message in bits. The
running time of B is about that of A.

We use the same proof technique as [11, 33], that is, a hybrid argument across
insulated regions. Due to the strong similarities with the security proofs for
GAINE and SHINE we defer the full proof to Supplementary Material C and
provide a proof sketch below.
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In each hybrid, we embed our challenge on the left boundary of the insulated
region, also called the left firewall. Outside the insulated region, all keys and
tokens are generated honestly, while inside the insulated region, tokens are sim-
ulated without knowing the corresponding keys. This allows to answer queries
to both Upd and UpdC̃. Fresh ciphertexts are randomized using the “basis”
elements x0, x1, eliminating the need for a nonce. Since in the Multi-St-PR game
the adversary can control the bit string β, we do not need a programmable ideal
cipher in order to embed messages into ciphertexts. Lastly, we note that updates
are deterministic.

We give a reduction B which plays the Multi-St-PR game and perfectly sim-
ulates the i-th hybrid to A if the oracle Eval returns “real” tuples (i. e. b = 1)
and a random game otherwise. More specifically, the values g1 ⋆xβ1

, . . . , gn ⋆xβn

returned by the Eval oracle will be used as the ciphertext of a message M =
(β1, . . . , βn). Therefore, we embed the elements g1, . . . , gn into the key of the
chosen challenge epoch. Lastly, if the adversary A can correctly distinguish be-
tween an update and a fresh encryption, we assume that Eval returns “real”
tuples. On the other hand if the Eval oracle returns random tuples, all encryp-
tions and updates are truly random as well, making it impossible to distinguish
an update from a fresh encryption.

3.2 Instantiation from CSIDH

CSIDH [15] is a popular cryptographic group action based on isogenies between
supersingular elliptic curves over Fp. Although CSIDH has many useful proper-
ties, it has the disadvantage of not being a mappable group action. Fortunately,
BIN-UE does not require the group action to be mappable, which means it can
be instantiated from plain CSIDH. Note that in contrast to many other (non-
commutative) group actions [20], CSIDH is believed to be weakly pseudorandom,
even in the post-quantum setting [14].

On the Performance of Updates. Because CSIDH is in general a restricted
effective group action (see Supplementary Material A), computing an update

token is very expensive. The reason is that any component k
(e)
i of an epoch key is

an element of the group G, which is generated by the elements (g1, . . . , gν). Since
the group action can only be efficiently evaluated for the elements (g1, . . . , gν)

one therefore writes k
(e)
i as a product

k
(e)
i =

ν∏
j=1

g
mj

j

for some exponents mj ∈ Z. For performance reasons, one further assumes that
the mj are coming from a small interval [−δ, δ]. This, however, means that a

product k
(e+1)
i · (k(e)i )−1 could result in exponents larger than ±δ. It is therefore

necessary to reduce each element k
(e+1)
i · (k(e)i )−1 modulo the so-called lattice of
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relations to get a short representation [6]. Unfortunately, a good basis for the
lattice of relations is unknown in general (apart from the CSIDH-512 parameter
set) and takes subexponential time to compute. Furthermore, even under the
knowledge of a basis for the lattice of relation, the reduction essentially consists
of a CVP instance which, depending on the quality of the lattice basis, takes
subexponential time to solve asymptotically as well.

Recent developments like the SCALLOP group action [22] try to mitigate this
issue, however, these alternatives are currently not practical as a single group ac-
tion evaluation takes minutes to compute. Furthermore, the recently introduced
group action CLAPOTIS [42] promises to be a proper EGA, however a complete
description of the group action, a security analysis as well as performance results
are currently not available. Lastly, we remark that the above performance issues
and their possible mitigations also apply to GAINE and TOGA-UE [33].

4 An Actively Secure Variant

In this section, we introduce a generic transformation inspired by the Tag-then-
Encrypt paradigm [39]. Although detIND-UE-CCA security of this transforma-
tion does not hold in general [5], we show that by applying the transformation
to BIN-UE we get a new scheme called COM-UE that can indeed be proven
detIND-UE-CCA secure in the random oracle model. The proof requires a non-
standard assumption, however, we further show that in the AGAM [24] this
assumption can be reduced to a variant of the group action discrete logarithm
problem.

4.1 The Tag-then-Encrypt Transformation

We start by stating two important properties of an updatable encryption scheme
that are needed for the transformation. To this end, let us recall the defini-
tions of randomness-preserving and randomness-recoverable updatable encryp-
tion schemes [30].

Definition 8 (Randomness-Preserving UE). Let UE = (UE.KeyGen,UE.Enc,
UE.Dec,UE.TokenGen,UE.Update) be an updatable encryption scheme. Further,
let r ∈ R be the explicit randomness of UE.Enc, i. e.,

UE.Enc(k,M) = UE.Enc(k,M ; r) .

The scheme is called randomness-preserving (RP) if for all keys k, k′ $← UE.KeyGen,
tokens ∆ := UE.TokenGen(k, k′) and messages M ∈M we have

UE.Update(∆,UE.Enc(k,M ; r)) = UE.Enc(k′,M ; r) .

Definition 9 (Randomness-Recoverable Updatable Encryption). Let
the notation be as in the previous definition. A scheme UE is called randomness-
recoverable (RR) if for all keys k $← UE.KeyGen, messages M ∈M and random-
ness r ∈ R:

UE.Dec(k,UE.Enc(k,M ; r)) = (M, r) .
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If UE fulfills both Definitions 8 and 9, then we say that UE is an RP/RR scheme
or simply RP/RR for short. Evidently, BIN-UE is RP/RR with encryption ran-
domness r = (x0, x1).

The Transformation. Let UE = (UE.KeyGen,UE.Enc,UE.Dec,UE.TokenGen,
UE.Update) be an RP/RR updatable encryption scheme with a message space
that can be written as M = M+ × {0, 1}t and randomness space R. Further
let H : M+ ×R → {0, 1}t be a cryptographic hash function. We define a new
scheme UE+ = (UE.KeyGen,UE+.Enc,UE+.Dec,UE.TokenGen,UE.Update) that
is identical to UE except for:

• The message space is M+.
• UE+.Enc(k,M ; r) : Compute M ′ = (M ||H(M, r)) and subsequently return
C = UE.Enc(k,M ′; r).

• UE+.Dec(k,C) : Compute (M ′, r) = UE.Dec(k,C) and parse M ′ as (M ||T ).
If T = H(M, r) then output M , else output ⊥.

Evidently, the transformation only applies a preprocessing on the message M
and therefore does not fundamentally change the way encryption and decryption
work. Thus, UE+ inherits correctness and detIND-UE-CPA security directly from
the underlying scheme UE.

Lemma 1. The following statements hold:

• If UE is (perfectly) correct, then UE+ is also (perfectly) correct.
• If UE is detIND-UE-CPA secure, then UE+ is also detIND-UE-CPA secure.

Remark 5. Making the encryption randomness implicitly accessible to the ad-
versary via the tag does not weaken security. In fact, for any RP/RR scheme
an adversary can learn the randomness of a ciphertext by issuing a key corrupt
followed by a regular decryption. When transitioning to the next epoch (which
might be the challenge epoch) this randomness is preserved. This is, however,
not problematic as the existing security proofs for schemes like GAINE, SHINE
and BIN-UE show.

4.2 A Full Description of COM-UE

By applying the transformation from Section 4.1 to BIN-UE we get a new scheme
called COM-UE which is formally defined in Figure 8. We let the message space
be M = {0, 1}n \ {0n, 1n}. Furthermore, we make use of a random oracle H such
that H : {0, 1}n × X 2 → {0, 1}t, where t ∈ N determines the length of the tag.
Lastly, we set ℓ = n+ t to be the total number of set elements in a ciphertext.

On the surface, COM-UE has some similarities with existing constructions in
the literature. In particular, one could view COM-UE.Enc(k,M ; r) as

BIN-UE.Enc(k,M ; r)||BIN-UE.Enc′(k′,H(M, r); r)
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COM-UE.KeyGen

00 k := (k1, . . . , kℓ)
$← Gℓ

01 return k

COM-UE.Update(C,∆)
02 Let ∆ = (∆1, . . . ,∆ℓ)

and C = (c1, . . . , cℓ)
03 return (∆1 ⋆ c1, . . . ,∆n ⋆ cℓ)

COM-UE.Enc(k,M)
04 Let M = (m1, . . . ,mn)
05 x0, x1

$← X �x0 ≺lex x1

06 M ′ := (m′
1, . . . ,m

′
ℓ) := (M ||H(M,x0, x1))

07 for i ∈ [ℓ] :
08 ci := ki ⋆ xm′

i

09 return c := (c1, . . . , cℓ)

COM-UE.TokenGen(k, k′)

10 Let k = (k1, . . . , kℓ) and k′ = (k′
1, . . . , k

′
ℓ)

11 return ∆ := (k′
1k

−1
1 , . . . , k′

ℓk
−1
ℓ )

COM-UE.Dec(k, C)
12 Let C = (c1, . . . , cℓ) and k = (k1, . . . , kℓ)
13 for i ∈ [ℓ] :
14 yi := k−1

i ⋆ ci
15 if |{y1, . . . , yℓ}| = 2 :
16 Let {x̃0, x̃1} = {y1, . . . , yℓ} �x̃0 ≺lex x̃1

17 for i ∈ [ℓ] :
18 m′

i := Jyi = x̃1K
19 Parse M ′ = (m′

1, . . . ,m
′
ℓ) = (M ||T )

20 if T = H(M, x̃0, x̃1) :
21 return M
22 return ⊥

Fig. 8. The scheme COM-UE. The random oracle H is defined in the main body.

for some modified BIN-UE.Enc′ that encrypts t bits instead of n. This resembles
the Encrypt-and -MAC construction of [30] where a ciphertext has the form
C = (c, τ) with c = Enc(k,M ; r) and τ = PRF(kPRF, (M, r)) for some updatable
pseudorandom function PRF.

However, on close inspection BIN-UE.Enc(k,H(M, r); r) cannot be viewed
as an updatable PRF. First, observe that we still need to randomize the en-
cryption, which means that the output of the supposed pseudorandom function

P̂RF(kPRF, ·) = BIN-UE.Enc(kPRF, ·) does not only depend on the key kPRF, but
also on some additional randomness r, which is not intended for a PRF. Second,
even if we assume that we could find a consistent definition of a “randomized
PRF”, it seems unavoidable that P̂RF commits to its own randomness r, which is
additionally shared with BIN-UE.Enc(k,M ; r). Although the latter issue can be
circumvented, it still appears hard to reduce the INT-CTXT security of COM-UE

exclusively to security guarantees provided by the function P̂RF. We conclude
that COM-UE cannot be viewed as a mere instantiation of the Encrypt-and-MAC
construction of [30], making a dedicated security proof necessary.

4.3 Active Security of COM-UE

We now prove that in the random oracle model COM-UE is INT-CTXT secure un-
der a new assumption that we call Multi Strong Unpredictability (Multi-St-UP).
In a next step, we show that in the AGAM [24] Multi-St-UP reduces to the Dis-
crete Logarithm Problem with Auxilary Input (DLAI). Due to Lemma 1 and
Theorem 1 we get a post-quantum detIND-UE-CCA secure updatable encryption
scheme from a reasonable assumption.

We begin by defining our new security assumption.

Definition 10 (Multi Strong Unpredictability (Multi-St-UP)). Let EGA =
(G,X , ⋆, x̃) and t ∈ N. Consider the game defined in Figure 9. We define the
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Game GMulti-St-UP
EGA (A)

00 g1, . . . , gt
$← G

01 γ $← {0, 1}t
02 (y1, . . . , yt)← AEval,Chall

03 if yi = gi ⋆ x̃γi for all i ∈ [t] :
04 return 1
05 return 0

Oracle Eval
06 β $← {0, 1}t
07 x0, x1

$← X �x0 ≺lex x1

08 return (β, x0, x1, g1 ⋆ xβ1 , . . . , gt ⋆ xβt)

Oracle Chall(x̃0, x̃1) �only one query
09 return γ

Fig. 9. The Multi-St-UP game for t ∈ N, where we require x̃0 ≺lex x̃1.

advantage of an adversary A winning the Multi-St-UP game as

AdvMulti-St-UP
EGA (A) := Pr[GMulti-St-UP

EGA (A)⇒ 1] .

Intuitively, Multi-St-UP captures that for a fixed key (g1, . . . , gt) it should be
hard to come up with a correct ciphertext for a random message γ. Of course,
this is not directly applicable to COM-UE as messages are, in general, chosen
by the adversary and therefore not random. However, this intuition does apply
to the second part of a plaintext, which in the case of COM-UE is a hash value
H(M, r), assuming H is a random oracle. In the ROM we can then embed the
responses from the Eval and Chall oracles into these hash values, making the
second part of the plaintext uniformly random.

Theorem 3. Let COM-UE be the scheme described in Section 4.2. For any ad-
versary A against the INT-CTXT security of COM-UE, there exists an adversary
B against Multi-St-UP of EGA such that

AdvINT-CTXTCOM-UE (A) ≤ (q + nE)(ne + 1) · AdvMulti-St-UP
EGA (B) + 1

2t
+

4nE

|X |2
,

where ne is the number of epochs, nE is the number of encryption queries and q
is the number of queries to the random oracle. The running time of B is about
that of A.

The following proof is based on the same idea as the INT-CTXT proof of SHINE0
[11, Theorem 5.1]. However, we improve the proof in two ways:

We first observe that the authors of [11] did not consider giving the adversary
direct access to the ideal cipher2. Like in the random oracle model, each party
should have access to the ideal cipher and therefore have the ability to query it
on any input. In their proof, however, the authors implicitly assume that if the
ideal cipher is defined on some input, then the output value must have been set
during a call to the Enc oracle. This assumption, however, is insufficient and
omits the case where an adversary queries the ideal cipher directly.

Secondly, our proof strategy is tighter than the one found in [11]. This is
based on the observation that one can abort the adversary once it queried the
Try oracle. Therefore, it is only necessary to guess the left border fwl of the
insulated region instead of both the left and right border. If the guess for fwl

2 Which plays a similar role as the random oracle in the case of COM-UE.
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was correct, then the adversary calls Try before the end of the insulated region,
essentially marking the end of the region itself.

Proof. Assume that at some point, the adversary A submits a ciphertext C̃
to the Try oracle, say in epoch e. Further, assume that no trivial win con-
dition is triggered until that point and that C̃ is a well-formed BIN-UE ci-
phertext. Therefore, C̃ is a fresh ciphertext that was not produced by the
game before and additionally there exists an insulated region around epoch e.
Let BIN-UE.Dec(k(e), C̃) = ((M ||T ), x0, x1) ̸= ⊥ where we make explicit that
BIN-UE.Dec also outputs the randomness used for the ciphertext C̃. In the fol-
lowing, we denote the random oracle by H and store queries in a list H[·], where
each entry is initialized to be empty (i. e., ⊥). We distinguish three cases:

• H[M,x0, x1] is undefined, i. e., (M,x0, x1) has not been queried to the ran-
dom oracle. Denote the event that the adversary wins in this case with E0.

• H[M,x0, x1] exists and its value was set during a direct query to H. Denote
the event that the adversary wins in this case with E1.

• H[M,x0, x1] exists and its value was set during an encryption query. Denote
the event that the adversary wins in this case with E2.

Note that these three events are mutually exclusive. In particular, if H[M,x0, x1]
is defined then it must have been queried to oracle H before on that exact input.
This can either happen via a direct query to H initiated by the adversary or via
an encryption query, during which the INT-CTXT game needs to query H (cf.
Figure 8 and recall that the COM-UE.Dec oracle is not present in the INT-CTXT
game). We now have

AdvINT-CTXTCOM-UE (A) = Pr[GINT-CTXT
COM-UE (A)⇒ 1] (1)

= Pr[BIN-UE.Dec(k(e), C̃) ̸= ⊥] (2)

·Pr[GINT-CTXT
COM-UE (A)⇒ 1 | BIN-UE.Dec(k(e), C̃) ̸= ⊥]

+ Pr[BIN-UE.Dec(k(e), C̃) = ⊥]
·Pr[GINT-CTXT

COM-UE (A)⇒ 1 | BIN-UE.Dec(k(e), C̃) = ⊥]
≤ Pr[GINT-CTXT

COM-UE (A)⇒ 1 | BIN-UE.Dec(k(e), C̃) ̸= ⊥] (3)

≤ Pr[E0] + Pr[E1] + Pr[E2] , (4)

where in Equation (3) we used the fact that

Pr[GINT-CTXT
COM-UE (A)⇒ 1 | BIN-UE.Dec(k(e), C̃) = ⊥] = 0 .

First, observe that Pr[E0] ≤ 1
2t as the reduction can simply choose a random bit

string in {0, 1}t for the value H[M,x0, x1]. The probability of this string being
equal to T is exactly 1

2t , therefore C̃ is a well-formed COM-UE ciphertext with
the same probability.

The other two probabilities follow from Lemmata 2 and 3 stated below.
Collecting all the probabilities yields the statement in Theorem 3. ⊓⊔
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Lemma 2. Let the notation be as in Theorem 3. We then have

Pr[E1] ≤ q(ne + 1) · AdvMulti-St-UP
EGA (B) + 2nE

|X |2
,

where ne is the number of epochs, nE is the number of encryption queries and q
is the number of queries to the random oracle.

Proof. Consider the reduction in Figure 10. The main idea is to embed the
group elements (g1, . . . , gt) of the Multi-St-UP assumption into the second half
of the secret key in the challenge epoch of the INT-CTXT game. To this end,
the reduction first guesses the left border fwl of the firewall around the challenge
epoch, resulting in an advantage loss of (ne + 1). The reason why only the left
border suffices is that we stop the adversary A once it queries the Try oracle
since at that point the reduction has all the necessary information to extract the
solution for the Multi-St-UP assumption. To the left of the challenge epoch, the
reduction simulates keys and tokens by itself, whereas inside of the firewall, the
reduction simulates partial update tokens. Note that we do not need to simulate
anything to the right of the epoch where Try is queried. In fact, in the reduction
in Figure 10 we simulate update tokens for all epochs e ∈ [fwl, ne] as we expect
the adversary to query Try before the end of the insulated region. If instead the
adversary queries for instance the CorrKey oracle for an epoch ê ≥ fwl then
the guess for fwl was simply wrong and the reduction aborts. Furthermore, we
do not need to keep track of trivial win conditions explicitly (in particular the
twf and win flags).

Of course, the reduction needs to provide consistent encryption randomness
(i. e., consistent basis elements x0, x1) which is especially important for cipher-
texts that are updated into the firewall. We get around this issue in the same way
as in the proof of Theorem 2: For each encryption query to the left of the firewall,
reduction B queries its own Eval oracle to obtain a tuple (β, x0, x1, y1, . . . , yt)
which it stores for later use. It then programs the random oracle such that the
“tag” T = H[M,x0, x1] equals β and then encrypts M ′ = (M ||T ) with the cur-
rent secret key and randomness (x0, x1). If H[M,x0, x1] is already set, then this
programming fails and the reduction needs to abort. Note that the probability
of this event is bounded by 2nE/|X |2 (the additional factor of 2 comes from the
fact that x0 ≺lex x1). In the description of B in Figure 10, we implicitly assume
this event does not happen.

Once an update or a new encryption is requested for an epoch inside the
firewall, reduction B uses the values yi = gi ⋆ xβi from memory to embed the

elements gi into the secret key elements (k
(fwl)
n+1 , . . . , k

(fwl)
n+t ). Note that the first n

elements of the secret key are always known to the reduction.
To embed the challenge of the Multi-St-UP game, reduction B guesses a query

index q∗ and embeds the challenge γ into the q∗-th query to the random oracle H.
Recall that for event E1 we assume that the solution C̃ that A presents to Try
is essentially a fresh encryption of a message M since H[M,x0, x1] exists and
A queried H on that exact input. In particular, the query H(M,x0, x1) did not
occur during an Enc query. If the guess was correct and A successfully provided
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such a fresh ciphertext, then reduction B reverses potential (implicit) updates
to the provided C̃, resulting in a valid ciphertext for epoch e = fwl. It is then
easy to verify that the last t elements of that ciphertext are a valid solution for
the Multi-St-UP assumption which completes the proof. ⊓⊔

Lemma 3. Let the notation be as in Theorem 3. We then have

Pr[E2] ≤ nE(ne + 1) · AdvMulti-St-UP
EGA (B) + 2nE

|X |2
,

where ne is the number of epochs and nE is the number of encryption queries.

The proof is almost identical to the proof of Lemma 2, except that now the
reduction embeds the challenge during a call to Enc. We defer the full proof to
Supplementary Material D.

4.4 Hardness of Multi-St-UP

Our new assumption Multi-St-UP is non-standard, but it abstracts away all the
overhead of updatable encryption and allows us to focus on a single, succinct as-
sumption. We now show that in the AGAM introduced by [24] Multi-St-UP is es-
sentially as hard as the Discrete Logarithm Problem with Auxilary Input (DLAI).
A more general version of DLAI was introduced in [4] and shown to be hard in
the GGAM [24]. For a detailed description of the AGAM we refer the reader to
Supplementary Material E.

Definition 11 (Discrete Logarithm Problem with Auxilary Input).
Let EGA = (G,X , ⋆, x̃), m ∈ N be an integer and N = ord(G) be prime. We
say that an adversary A solves the Discrete Logarithm Problem with Auxilary
Input (DLAI) if

A(z0, . . . , zm) = h ,

where the zi are given by zi = hi ⋆ x̃ for h $← G.

Remark 6. The authors of [4] defined DLAI for arbitrary (composite) order groups
which requires a more intricate choice of the exponents. In particular, the pow-
ers of h have to fulfill rather technical constraints related to invertibility modulo
N . The results in this section can be adapted to the case of composite order
groups at the expense of a much more convoluted notation. In particular, for
cryptographic group actions like CSIDH one could constrain DLAI to a large
prime-order subgroup of G as long as its group structure is known3.

Proposition 3 (DLAI⇒ Multi-St-UP in the AGAM). Let A be an algebraic
adversary A against Multi-St-UP for t ∈ N such that A issues at most qEval

3 Knowing the group structure in CSIDH is necessary for updatability already, see
Section 3.2.
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Adversary BEval,Chall

00 k(0) $← BIN-UE.KeyGen
01 ∆(0) := ⊥
02 e, c, q := 0
03 H[·] := ⊥
04 L := ∅
05 fwl $← [0, ne]
06 q∗ $← [1, q]
07 for j ∈ [0, fwl− 1] :
08 k(j) ← BIN-UE.KeyGen
09 ∆(j) := BIN-UE.TokenGen(k(j−1), k(j)) �†
10 for j ∈ [fwl, ne] :

11 k
(j)
1 , . . . , k

(j)
n

$← Gn
12 for j ∈ [fwl+ 1, ne] :
13 for ℓ ∈ [1, n] :

14 ∆
(j)
ℓ := k

(j)
ℓ /k

(j−1)
ℓ

15 for ℓ ∈ [n+ 1, t] :

16 ∆
(j)
ℓ

$← G
17 Run AO

18 return ⊥ to GMulti-St-UP
EGA �Try never called

Oracle Enc(M)
19 Let M = (m1, . . . ,mn)
20 c := c+ 1
21 τ := (β, x0, x1, y1, . . . , yt)← Eval
22 H[M,x0, x1] := β
23 M ′ := (M ||H[M,x0, x1])
24 if e < fwl :
25 C

(e)
j := k

(e)
j ⋆ xm′

j

26 else :
27 for j ∈ [1, n] :

28 C
(e)
j := k

(e)
j ⋆ xmj

29 for j ∈ [1, t] :

30 C
(e)
n+j := yj

31 C(e) := (C
(e)
1 , . . . , C

(e)
n+t)

32 L := L ∪ {(c,M ′, C(e), e, τ)}
33 return C(e)

Oracle Next
34 e := e+ 1

Oracle CorrKey(ê)
35 if ê > e : return ⊥
36 if ê ≥ fwl : abort �wrong guess for fwl
37 return k(ê)

Oracle Try(C̃)

38 (M ′, x0, x1) := BIN-UE.Dec(k(e), C̃)
39 Let M ′ = (M ||T )
40 if H[M,x0, x1] ̸= γ : abort �wrong guess
41 Set C(e) = C̃
42 for ℓ ∈ [e, fwl] : �backwards iteration
43 for j ∈ [n+ 1, n+ t] :

44 C
(ℓ−1)
j := (∆

(ℓ)
j )−1 ⋆ C

(ℓ)
j

45 return C
(fwl)
n+1 , . . . , C

(fwl)
n+t to GMulti-St-UP

EGA

Oracle Upd(C(e−1))

46 if ∄c : (c,M ′, C(e−1), e− 1, τ) ∈ L :
47 return ⊥
48 Let τ = (β, x0, x1, y1, . . . , yt)
49 if e < fwl :
50 Let M ′ = (m′

1, . . . ,m
′
n+t)

51 C
(e)
j := k

(e)
j ⋆ xm′

j

52 else :
53 Let M ′ = (M ||T )
54 for j ∈ [1, n] :

55 C
(fwl)
j := k

(fwl)
j ⋆ xmj

56 for j ∈ [1, t] :

57 C
(fwl)
n+j := yj

58 for ℓ ∈ [fwl+ 1, e] :

59 C
(ℓ)
j := ∆

(ℓ)
j ⋆ C

(ℓ−1)
j

60 L := L ∪ {(c,M ′, C(e), e, τ)}
61 return C(e)

Oracle H(M,x0, x1)
62 if H[M,x0, x1] = ⊥ :
63 q := q+ 1
64 if q = q∗ :
65 γ ← Chall(x0, x1)
66 H[M,x0, x1] := γ
67 else :
68 β $← {0, 1}t
69 H[M,x0, x1] := β
70 return H[M,x0, x1]

Oracle CorrToken(ê)
71 if ê > e : return ⊥
72 if ê = fwl : abort �wrong guess for fwl
73 return ∆(ê)

Fig. 10. The reduction B simulating game GINT-CTXT
COM-UE and event E1. The set of or-

acles that A has access to is defined as O = {Enc,Try,Next,Upd,CorrKey,
CorrToken,H}. † indicates that the computation of ∆(0) is skipped.
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queries to oracle Eval. Then, there exists an adversary B against DLAI for
m = 2qEval(t+ 1) such that

AdvMulti-St-UP
EGA (A) ≤ 1

1− (3/4)t−1
· AdvDLAI

EGA (B)

and the running time of B is about that of A.

Remark 7. Recall that in COM-UE the parameter t represents the output length
of the random oracle H. Therefore, the tightness loss of our reduction is close to
1 for cryptographically sized parameters.

Proof. Let qEval be the number of queries that A issues to the Eval oracle.
Recall that the DLAI challenge consists ofm+1 many set elements (zi)i∈[0,m] with
zi = hi ⋆ x̃, where m = 2qEval(t+1) and t comes from the Multi-St-UP challenge.
To simplify the proof and its notation, reduction B will not rerandomize set
elements that it outputs to A. Furthermore, we assume that adversary A also
does not rerandomize elements it outputs. In the AGAM these simplifications
are without loss of generality as we discuss in Supplementary Material E.1.

Adversary B(z0, . . . , zm)
00 c := 0
01 γ $← {0, 1}t
02 y1, . . . , yt ← AEval,Chall

03 h := Extract(y1, . . . , yt)
04 return h

Oracle Chall(x̃0, x̃1) �x̃0 ≺lex x̃1

05 return γ

Oracle Eval
06 β $← {0, 1}t
07 i0 := 1 + 2c · (t+ 1)
08 i1 := 1 + (2c+ 1) · (t+ 1)
09 x0 := zi0
10 x1 := zi1 �w.l.o.g. x0 ≺lex x1

11 c := c+ 1
12 for k ∈ [t]
13 ν := k + iβk

14 yk := zν
15 return (β, x0, x1, y1, . . . , yt)

Fig. 11. Adversary B for the proof of Proposition 3, where m = 2qEval(t + 1). The
Extract algorithm is described in the main body of the proof. Recall that we do not
explicitly rerandomize elements as discussed in Supplementary Material E.1.

Consider the reduction depicted in Figure 11. Here, reduction B implicitly
embeds the group elements (h, h2, . . . , ht) into the secret key (g1, . . . , gt) as fol-
lows. Assume c = 0, i. e. the Eval oracle is queried for the first time. B first
samples a random β $← {0, 1}t, computes the indices i0 = 1 and i1 = t + 2 and
subsequently defines

x0 = z1 = h ⋆ x̃ ,

x1 = zt+2 = ht+2 ⋆ x̃ .

If the i-th bit βi = 0, then B has to compute the element

hi ⋆ x0 = hi ⋆ z1 = hi · h ⋆ x̃ = z1+i .
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Query Bitstring Basis h1 h2 h3 h4 h5

Eval β = 10010
x0 = z1 z3 z4 z6

x1 = z7 z8 z11

Eval β = 01110
x0 = z13 z14 z18
x1 = z19 z21 z22 z23

Chall γ = 10100
x̃0 = z3 z5 z7 z8
x̃1 = z11 z12 z14

Eval β = 00101
x0 = z25 z26 z27 z29
x1 = z31 z34 z36

Table 2. Visualization of the proof. The individual rows of the table represent different
queries to the oracles. The elements h1 through h5 represent the secret key elements.
The set elements in the main body of the table represent the elements that Eval
outputs for each query. These elements together with the basis elements are all the
elementsA receives throughout its execution. The encircled elements are those elements
that A chooses as its base elements x̃0, x̃1. The set elements in the challenge row
represent the elements y1, . . . , yt that A has to produce. The boxed elements are set
elements that A has not yet seen and therefore their representation must contain a
power of h.

This amounts to a simple lookup of the element zi+1 that B was provided by the
DLAI assumption. This method can be generalized to the case βi = 1 and c > 0
(see lines 08-15 in Figure 11). Therefore B successfully embeds (h, h2, . . . , ht)
into the secret key. See also Table 2 which further illustrates this idea for t = 5.

Eventually, say after the c-th query, A calls Chall on two basis elements
(x̃0, x̃1). Since we assume A to be algebraic and to not rerandomize (x̃0, x̃1) we
can write

x̃0 = zj0 , x̃1 = zj1 , j0, j1 ∈ [0, 2c · (t+ 1)] .

B then returns a random γ $← {0, 1}t and continues simulating the Eval oracle.

The Extract Algorithm. At some point A responds with the set elements
(y1, . . . , yt). Since we assume A to be successful, we have that

yi = hi ⋆ x̃γi
=

{
hi ⋆ zj0 , if γi = 0

hi ⋆ zj1 , if γi = 1

for all i ∈ [1, t]. However, since A is algebraic it must provide a representation
(s, v) for each yi = hi ⋆ zj∗ relative to a previously received set element (which
form a subset of {z0, . . . , zm}). There are now two cases:

1. A has previously received hi ⋆ zj∗ = zj∗+i for each i ∈ [1, t]. In this case
the representation could be trivial (up to rerandomization), i. e. (s, v) =
(1, zj∗+i).

2. A has not previously received hi ⋆ zj∗ for at least one i ∈ [1, t]. In this case
the corresponding representation (s, v) cannot be trivial. More concretely, if
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v = zℓ then we must have s = hj∗+i−ℓ ̸= 1 (again up to rerandomization).
Call this event E.

Of course, B can only extract h in the latter case by taking an appropriate root
of s. As we will argue next, however, this case is extremely likely.

Claim. Pr[E] ≥ 1−
(
3
4

)t−1
.

We lower bound the probability by splitting it up into two disjoint events which
we analyze separately:

Pr[E] =Pr[E | j0, j1 > m− t] · Pr[j0, j1 > m− t] + (5)

Pr[E | j0 ≤ m− t ∨ j1 ≤ m− t] · Pr[j0 ≤ m− t ∨ j1 ≤ m− t]

≥min {Pr[E | j0, j1 > m− t],Pr[E | j0 ≤ m− t ∨ j1 ≤ m− t]} . (6)

Case 1. First assume that j0, j1 > m− t. Then

yt = ht ⋆ zjb = ht · hjb ⋆ x̃ /∈ {z0, . . . , zm} , b ∈ {0, 1} ,

because t+ jb > m. In that case, the representation (s, v) for yt is never trivial,
i. e. yt = s ⋆ v with s = hκ for some κ > 0 and v = zℓ for some ℓ ∈ [0,m].
Therefore we have

Pr[E | j0, j1 > m− t] = 1

and in fact Equation (6) reduces to

Pr[E] ≥ Pr[E | j0 ≤ m− t ∨ j1 ≤ m− t] .

Case 2. Now assume that (w.l.o.g.) j0 ≤ m − t. If γi = 0 for an index i ∈ [1, t]
then by definition the adversary A has to produce the element zj0+i and an
accompanying representation. Clearly, this representation can only be trivial if
A has received the element zj0+i from the Eval oracle before.

Concretely, if we let ∆ = (δ1, . . . , δt) ∈ {0, 1}t be defined via

δi =

{
1 if zj0+i was output by Eval

0 else

then the previous paragraph can be rephrased as

Pr[E] ≥ Pr[∃i ∈ [1, t] : δi = 0 ∧ γi = 0] .

For instance, in the running example in Table 2 we have j0 = 3 and thus ∆ =
(10111).

Claim. δi is a random bit if j0 + i ̸= 1 + k · (t+ 1) for k ∈ N. In particular, the
βi and γi are independent.
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Essentially, the claim says that δi is a random bit except for those i where zj0+i

appeared as one of the basis elements returned by the Eval oracle (in which
case we always have δi = 1). Note that there can be at most one such index i in
the interval [j0 + 1, . . . , j0 + t]. For all other indices we have that δi essentially
depends on the bit string β that was chosen for the corresponding Eval query.
Since each β is uniformly random, so are the δi.

Concretely, for each i ∈ [1, t] the corresponding δi satisfies the following
equality: Assume that zj0 was returned in the c-th query to Eval, which we write

explicitly as (β(c), x
(c)
0 , x

(c)
1 , y

(c)
1 , . . . , y

(c)
t ). We then have x

(c)
0 = zµ, x

(c)
1 = zµ+t+1

and zj0 = zµ+η for some appropriate indices µ ≤ m − t and 0 ≤ η ≤ 2t + 1.
Furthermore, let β(c+1) be the bitstring returned in the subsequent Eval query.
We now have

δi =



Jβ(c)
i+η = 0K, if i+ η < t+ 1

1, if i+ η = t+ 1

Jβ(c)
i+η−t−1 = 0K, if t+ 1 < i+ η < 2t+ 2

1 if i+ η = 2t+ 2

Jβ(c+1)
i+η−2t−3 = 0K, if i+ η > 2t+ 2

.

Evidently, apart from two special cases in which i+η = k ·(t+1) for some k ∈ N,
the δi only depend on the bitstrings β(c), β(c+1) and not on the challenge γ. In
summary, we therefore have that

Pr[E] ≥ 1− Pr[∀i ∈ [1, t] : δi = 1 ∨ γi = 1] ≥ 1−
(
3

4

)t−1

.

Lastly, B can extract h from the non-trivial representation by first computing
the indices jb and ℓ. This can be done by merely comparing zjb and zℓ to each
element zi that B received from the DLAI assumption. B can then compute
κ = (jb + t− ℓ) and thus compute h = s1/κ. ⊓⊔

Remark 8. The assumption that x0 ≺lex x1 in Figure 11, line 13 is without loss
of generality as reduction B can simply swap the elements x0, x1 if necessary. It
then has to keep track of this change throughout the reduction, but this does
not fundamentally change the proof. Also keep in mind that the elements x0, x1

are implicitly rerandomized, which means that the distribution of these elements
is still correct even after a swap.

Remark 9. The proof also applies to a group action that supports twists. That
is, a group action that comes equipped with an efficient algorithm that on input
y = g ⋆ x̃ computes yT = g−1 ⋆ x̃. However, in that case the probability of the
event E changes to

Pr[E] ≥ 1−
(
3

4

)⌊t/2⌋−1

.
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This is due to the fact that, given a set element y, the adversary knows the
representation of two set elements instead of only one (namely y and yT). This
way we can only argue for ⌊ t2⌋− 1 many independent random bits δi, decreasing
the overall probability of the event E.

Corollary 1. Let COM-UE be the scheme described in Section 4.2. For any
algebraic adversary A against the detIND-UE-CCA security of COM-UE, there
exist adversaries B, C against Wk-PR and DLAI in the random oracle model such
that

AdvdetIND-UE-CCA
COM-UE (A) ≤ 2ℓ(ne + 1)3 · AdvWk-PR

EGA (B)

+
(q + nE)(ne + 1)

1− (3/4)t−1
· AdvDLAI

EGA (C) + 1

2t
,

where ℓ = n + t is the length of a message and tag in bits, ne is the number of
epochs, nE is the number of encryption queries and q is the number of queries
to the random oracle.
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Supplementary Material

A Restricted Effective Group Actions and Twisting

In practice, the requirements from the definition of EGA are often too strong.
Therefore we will consider the weaker notion of restricted effective group actions.

Definition 12 (Restricted Effective Group Action). Let (G,X , ⋆) be a
group action and let g = (g1, ..., gν) be a generating set for G. Assume that the
following properties are satisfied:

1. The group G is finite and ν = poly(log(#G)).
2. The set X is finite and there exist efficient algorithms for membership testing

and to compute a unique representation.
3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm that given gi ∈ g and x ∈ X , outputs

gi ⋆ x and g−1
i ⋆ x.

Then we call (G,X , ⋆, x̃) a restricted effective group action (REGA).

Popular group actions like CSIDH [15] support so-called twists. We recall the
definition of a twist in the group action setting.

Definition 13 (Effective Group Action with Twists). Let (G,X , ⋆, x̃) be
an EGA. We call it an Effective Group Action with Twists (EGAT) if there is an
efficient algorithm that, given y = g ⋆ x̃, computes yT = g−1 ⋆ x̃.

B Algorithms to Compute Sets L∗ and L̃∗

In Figure 12, we provide the description of algorithms to update sets L̃∗ and
L∗ which are used to prevent trivial wins in the detIND-UE-CCA and INT-CTXT
games.

Algorithm UpdateL̃∗

00 if Chall or UpdC̃ happens :
01 L̃∗ := L̃∗ ∪ {(C̃, ·)}
02 if chall = 1 and CorrToken happens :
03 for i ∈ T ∗ and (C̃i−1, i− 1) ∈ L̃∗

04 L̃∗ := L̃∗ ∪ {(C̃, i)}

Algorithm UpdateL∗

05 if Enc or Upd happens :
06 L∗ := L∗ ∪ {(·, C, ·)}
07 if CorrToken happens :
08 for i ∈ T ∗

09 for (j, Ci−1, i− 1) ∈ L∗

10 Ci := Upd(∆(i), Ci−1)
11 L∗ := L∗ ∪ {(j, Ci, i)}

Fig. 12. Algorithms to update sets L̃∗ and L̃∗ used in games in Figures 2 and 3.
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C Full Proof of Theorem 2

Theorem 2. Let BIN-UE be the scheme described in Figure 4. For any adver-
sary A against the detIND-UE-CPA security of BIN-UE, there exists an adversary
B against Wk-PR such that

AdvdetIND-UE-CPA
BIN-UE (A) ≤ 2n(ne + 1)3 · AdvWk-PR

EGA (B) ,

where ne is the number of epochs and n is the length of a message in bits. The
running time of B is about that of A.

Proof. For simplicity, we reduce the detIND-UE-CPA security of BIN-UE to the
Multi-St-PR assumption. The theorem then follows from Proposition 2.

The hybrids. We partition the non-corrupted key space as follows: {0, . . . , ne}\
K∗ =

⋃
(i,fwli,fwri)∈FW{fwli, fwri} where fwli and fwri are the firewalls of the i-th

insulated region. For b ∈ {0, 1} we define the game Gb
i as GdetIND-UE-CPA-b

BIN-UE (A)
except for:

1. The game picks fwli, fwri
$← {0, . . . , ne} randomly and if they are not the i-th

firewall, the game aborts and returns a random bit b′. This loss is upper-
bounded by (ne + 1)2.

2. For the challenge (M̄, C̄) made in epoch ẽ the game returns an update of C̄
if ẽ < fwli and an encryption of M̄ if ẽ > fwri. Lastly, if fwli ≤ ẽ ≤ fwri the
game returns an update of C̃ if b = 1 and an encryption of M̃ otherwise.

3. After A outputs b′ the game will simply output b′ as well if no trivial win
condition was triggered and no ABORT occurred.

If fwli, fwri are the correct values, then G0
1 is GdetIND-UE-CPA-0

BIN-UE , that is, inside
each firewall the challenge is an encryption of M̄ . Let nr ≤ ne + 1 be the total
number of insulated regions. Then G1

nr
is exactly GdetIND-UE-CPA-1

BIN-UE , i. e., inside
each firewall the challenge is an update of C̄. Let E be the event that the guess
for fwli, fwri is correct. Subsequently we have for all i ∈ [1, ne +1] and b ∈ {0, 1}
that Pr[Gb

i (A)⇒ 1|¬E] = 1/2. Therefore

Pr[G1
nr
(A)⇒ 1] = Pr[G1

nr
(A)⇒ 1|E] · Pr[E] + Pr[G1

nr
(A)⇒ 1|¬E] · Pr[¬E]

= Pr[GdetIND-UE-CPA-1
BIN-UE (A)⇒ 1] · 1

(ne + 1)2
+

1

2

(
1− 1

(ne + 1)2

)
Pr[G0

1(A)⇒ 1] = Pr[G0
1(A)⇒ 1|E] · Pr[E] + Pr[G0

1(A)⇒ 1|¬E] · Pr[¬E]

= Pr[GdetIND-UE-CPA-0
BIN-UE (A)⇒ 1] · 1

(ne + 1)2
+

1

2

(
1− 1

(ne + 1)2

)
.

Thus we get

|Pr[G1
nr
(A)⇒ 1]− Pr[G0

1(A)⇒ 1]| = 1

(ne + 1)2
· AdvdetIND-UE-CPA

BIN-UE (A) .
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Adversary BEval

00 b $← {0, 1}
01 k(0) ← BIN-UE.KeyGen
02 ∆(0) := ⊥
03 e, c, twf, chall := 0
04 L, L̃, C,K, T := ∅
05 fwli, fwri

$← [0, ne]
06 for j ∈ [fwli − 1] ∪ [fwri + 1, ne] :
07 k(j) ← BIN-UE.KeyGen
08 ∆(j) := BIN-UE.TokenGen(k(j−1), k(j)) �†
09 for j ∈ [fwli + 1, fwri] :
10 ∆(j) $← Gn
11 b′ ← AO

12 if K∗ ∩ C∗ ̸= ∅ or I∗ ∩ C∗ ̸= ∅
or ABORT or (i, fwli, fwri) /∈ FW

13 b′ $← {0, 1}
14 return Jb = b′K

Oracle Enc(M)
15 Let M = (m1, . . . ,mn)
16 c := c+ 1
17 τ := (x0, x1, y1, . . . , yn)← Eval(M)
18 if e /∈ [fwli, fwri] :

19 for j ∈ [n] : C
(e)
j := k

(e)
j ⋆ xmj

20 else :
21 for j ∈ [n] : C

(e)
j := yj

22 for ℓ ∈ [fwli + 1, e] :

23 for j ∈ [n] : C
(ℓ)
j := ∆

(ℓ)
j ⋆ C

(ℓ−1)
j

24 C(e) := (C
(e)
1 , . . . , C

(e)
n )

25 L := L ∪ {(c,M,C(e), e, τ)}
26 return C(e)

Oracle Next
27 e := e+ 1

Oracle CorrToken(ê)
28 if ê > e return ⊥
29 if ê ∈ {fwl, fwr + 1} : abort
30 T := T ∪ {ê}
31 return ∆(ê)

Oracle CorrKey(ê)
32 if ê > e return ⊥
33 if ê ∈ [fwl, fwr] : abort
34 K := K ∪ {ê}
35 return k(ê)

Oracle Chall(M̄, C̄)
36 if chall = 1 return ⊥ �only once
37 chall := 1
38 ẽ := e
39 if (·, ·, C̄, e− 1, τ ′) /∈ L :
40 return ⊥
41 if b = 0 :
42 τ := (x0, x1, y1, . . . , yn)← Eval(M̄)

43 for j ∈ [n] : C̃
(e)
j := yj

44 else if b = 1 :
45 Let τ ′ = (x′

0, x
′
1, y

′
1, . . . , y

′
n)

46 for j ∈ [n] : C̃
(e)
j := y′

j

47 for ℓ ∈ [0, fwli − 1] :
48 for j ∈ [n] :

49 C̃
(ℓ)
j :=

∏e−2
k=ℓ+1(∆

(k)
j )−1 ⋆ C̄j �update

50 C̃(ℓ) := (C̃
(ℓ)
1 , . . . , C̃

(ℓ)
n )

51 for ℓ ∈ [fwli + 1, fwri] :
52 for j ∈ [n] :

53 C̃
(ℓ)
j := ∆

(ℓ)
j ⋆ C̃

(ℓ−1)
j �embed

54 C̃(ℓ) := (C̃
(ℓ)
1 , . . . , C̃

(ℓ)
n )

55 for ℓ ∈ [fwri + 1, ne] :
56 for j ∈ [n] :

57 C̃
(ℓ)
j := k

(ℓ)
j ⋆ xβj �fresh encryption

58 C̃(ℓ) := (C̃
(ℓ)
1 , . . . , C̃

(ℓ)
n )

59 L̃ := L̃ ∪ne
e=0 {(C̃(e), e)}

60 return C̃(e)

Oracle Upd(C(e−1))

61 if ∄ c : (c,M,C(e−1), e− 1, τ) ∈ L :
62 return ⊥
63 Let τ = (x0, x1, y1, . . . , yn)
64 if e /∈ [fwli, fwri] :
65 Let M = (m1, . . . ,mn)

66 C
(e)
j := k

(e)
j ⋆ xmj

67 else :
68 C

(fwli)
j := yj

69 for ℓ ∈ [fwli + 1, e] :

70 C
(ℓ)
j := ∆

(ℓ)
j ⋆ C

(ℓ−1)
j

71 C(e) := (C
(e)
1 , . . . , C

(e)
n )

72 L := L ∪ {(c,M,C(e), e, τ)}
73 return Ce

Oracle UpdC̃
74 if chall ̸= 1 return ⊥
75 C := C ∪ {e}
76 find (C̃(e), e) ∈ L̃
77 return C̃(e)

Fig. 13. The reduction B simulating game Gb
i . † indicates that the computation of

∆(fwri+1) and ∆(0) is skipped.
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Observe that the games G1
i−1 and G0

i are identical. Therefore we have that

|Pr[G1
nr
(A)⇒ 1]− Pr[G0

1(A)⇒ 1]| ≤
nr∑
i=1

|Pr[G1
i (Ai)⇒ 1]− Pr[G0

i (Ai)⇒ 1]|

and it is only left to show that

|Pr[G1
i (Ai)⇒ 1]− Pr[G0

i (Ai)⇒ 1]| ≤ 2 · AdvMulti-St-PR
EGA (B) .

The i-th hybrid. Let Ai be an adversary that tries to distinguish G0
i from

G1
i . For all non-challenge queries, the responses of both games are identical.

Therefore we assume that Ai asks for its challenge in the i-th insulated region.
In that same region, the reduction will embed the samples from its Multi-St-PR
oracle.

Consider the reduction B given in Figure 13. Here reduction B first samples a
random bit b and then either simulates game Gb

i to Ai or a game where the chal-
lenge ciphertext is independent of M̄ and C̄. More concretely: In the case where
the oracle Eval(β) returns “real” tuples of the form (x0, x1, g1⋆xβ1 , . . . , gn⋆xβn)
reduction B perfectly simulates the game Gb

i to adversary A. In the case where
the oracle Eval(β) returns “random” tuples of the form (x0, x1, y1, . . . , yn) re-
duction B simulates a random game where in the i-th firewall encryptions and
updates result in truly random (and therefore inconsistent) ciphertexts. There-
fore both games G0

i and G1
i are completely indistinguishable in this case. Lastly,

if A correctly guesses the bit b, then reduction B guesses that Eval returns
“real” tuples. We now explain various aspects of reduction B in more detail.

Setup. In the setup phase B initially guesses the boundaries of the i-th firewall
fwli and fwri. Subsequently, it generates all keys and update tokens in advance
except for k(fwli), . . . , k(fwri), ∆(fwli), ∆(fwri+1). If Ai corrupts any of these keys or
tokens then the guess for the i-th firewall was wrong and B aborts.

Non-Challenge Ciphertexts. In order to simulate non-challenge ciphertexts
in epoch e, reduction B will proceed as follows:

• If B is asked for an encryption of a message M = (m1, . . . ,mn) it queries
the Eval oracle on input M , receiving a tuple τ = (x0, x1, y1, . . . , yn). There
are two cases:
1. e /∈ [fwli, fwri]. In this case, the current epoch e is not inside the i-th

firewall, so B can simply use the basis elements x0, x1 and its generated
epoch key k(e) to compute an honest encryption C(e).

2. e ∈ [fwli, fwri]. In this case, the current epoch e belongs to the i-th fire-
wall, therefore B does not know a corresponding epoch key. Nevertheless,
B can use the elements (y1, . . . , yn) as ciphertext C(fwli) for epoch fwli
and subsequently use its generated tokens ∆(fwli), . . . ,∆(e) to update
C(fwli) to the desired epoch. This again yields the ciphertext C(e).

Lastly, the tuple (c,M,C(e), e, τ) is stored in memory for later use (in partic-
ular, this allows B to provide consistent updates). Here c is simply a counter
that counts the number of encryptions.
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• If B is asked for an update of a ciphertext C(e−1) from a previous epoch, it
first recovers the corresponding tuple (c,M,C(e−1), e − 1, τ) from memory.
Then B simply re-encrypts the message M as outlined above using the same
value τ that was restored from memory.

Challenge Ciphertexts. Assume that the adversary makes the challenge
query in epoch ẽ, providing a tuple (M̄, C̄) where C̄ was created during the c-th
encryption query. First, observe that the adversary cannot query the Upd oracle
for an update of C̄ for any epoch e ≥ fwli as this would trigger the trivial win
condition [fwli, fwri] ⊆ I∗ ∩ C∗ ̸= ∅. Instead, the adversary can only obtain an
update of the challenge ciphertext by querying UpdC̃.

Reduction B can simulate challenge-equal ciphertexts in an epoch e as follows:

• If ẽ < fwli then B can simply compute Upd(C̄) with the token it created
itself.

• If ẽ > fwri then B can simulate Enc(M̄) using the key it created itself.
• If ẽ ∈ [fwli, fwri] then B proceeds as follows. If b = 0 then B simulates
Enc(M̄) and if b = 1 then it simulates Upd(C̄). Both oracles can be simu-
lated the same way as in the case of non-challenge ciphertexts. In particular,
Enc(M̄) can be simulated by first querying Eval(M̄), which results in a
tuple τ = (x0, x1, y1, . . . , yn). The elements (y1, . . . , yn) are now used as ci-
phertext C(fwli) and updated to the required epoch ẽ by using the update
tokens ∆(fwli), . . . ,∆(ẽ). Similarly, to simulate Upd(C̄) the reduction first
recovers the corresponding tuple (c,M, ·, ·, τ) from memory and re-encrypts
M using the value τ that was provided by Eval during the c-th encryption
query. If necessary, B updates the ciphertext to the required epoch ẽ by using
the tokens ∆(fwli), . . . ,∆(ẽ).

Eventually, Ai will output a bit b′. If b = b′ then B guesses that Eval re-
turns “real” tuples of the form (x0, x1, g1 ⋆ xβ1

, . . . ) and thus returns 1 to the
Multi-St-PR game. Otherwise if b ̸= b′ then B assumes that Eval returns “ran-
dom” tuples (x0, x1, y1, . . . ) and therefore returns 0 to the Multi-St-PR game.
Observe now that if Eval returns real tuples, then B perfectly simulates Gb

i .
If instead Eval returns random tuples, then B simulates a completely random
game to Ai, which in turn means that Ai guesses the bit b with probability
exactly 1/2. In summary, we have

AdvMulti-St-PR
EGA (B) =

∣∣Pr[GMulti-St-PR-1
EGA (B)⇒ 1]− Pr[GMulti-St-PR-0

EGA (B)⇒ 1]
∣∣

=

∣∣∣∣(1

2
Pr[G0

i (Ai)⇒ 0] +
1

2
Pr[G1

i (Ai)⇒ 1]

)
− 1

2

∣∣∣∣
=

∣∣∣∣12 (
(1− Pr[G0

i (Ai)⇒ 1]) + Pr[G1
i (Ai)⇒ 1]

)
− 1

2

∣∣∣∣
=

1

2

∣∣Pr[G1
i (Ai)⇒ 1]− Pr[G0

i (Ai)⇒ 1]
∣∣ .

Collecting all the probabilities yields the desired bound. ⊓⊔
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D Full Proof of Lemma 3

Lemma 3. Let the notation be as in Theorem 3. We then have

Pr[E2] ≤ nE(ne + 1) · AdvMulti-St-UP
EGA (B) + 2nE

|X |2
,

where ne is the number of epochs and nE is the number of encryption queries.

Proof. Consider the reduction in Figure 14. The main idea is again to embed
the group elements (g1, . . . , gt) of the Multi-St-UP assumption into the second
half of the secret key in the challenge epoch of the INT-CTXT game. To this end,
the reduction first guesses the left border fwl of the firewall around the challenge
epoch, resulting in an advantage loss of (ne + 1). To the left of the challenge
epoch, the reduction simulates keys and tokens by itself, whereas inside of the
firewall the reduction simulates partial update tokens. Note that we do not need
to simulate anything to the right of the epoch where Try is queried. In fact, in
the reduction in Figure 14 we simulate update tokens for all epochs e ∈ [fwl, ne]
as we expect the adversary to query Try before the end of the insulated region.
If instead the adversary queries for instance the CorrKey oracle for an epoch
ê ≥ fwl then the guess for fwl was simply wrong and the reduction aborts.
Furthermore, we do not need to keep track of trivial win conditions explicitly
(in particular the twf and win flags).

The reduction provides consistent encryption randomness (i. e. consistent ba-
sis elements x0, x1) in the same way as in the proof of Theorem 2: For each
encryption query to the left of the firewall, reduction B queries its own Eval
oracle to obtain a tuple (β, x0, x1, y1, . . . , yt) which it stores for later use. It then
programs the random oracle such that the “tag” T = H[M,x0, x1] equals β and
then encrypts M ′ = (M ||T ) with the current secret key and randomness (x0, x1).
If H[M,x0, x1] is already set then this programming fails and the reduction needs
to abort. Note that the probability of this event is bounded by 2nE/|X |2 (the
additional factor of 2 comes from the fact that x0 ≺lex x1), which we will leave
implicit in Figure 14.

Once an update or a new encryption is requested for an epoch inside the
firewall, reduction B uses the values yi = gi ⋆ xβi

from memory to embed the

elements gi into the secret key elements (k
(fwl)
n+1 , . . . , k

(fwl)
n+t ). Note that the first n

elements of the secret key are always known to the reduction.
To embed the challenge of the Multi-St-UP game, reduction B guesses a query

index c∗ and embeds the challenge γ into the c∗-th query to the Enc oracle.
Recall that in the event E2 the ciphertext C̃ provided by A is an updated version
of a previous ciphertext C(e) since H[M,x0, x1] exists but was not queried directly
by A. Therefore, the only other possibility is that the value of H[M,x0, x1] was
set during a call to Enc. If the guess was correct and A successfully provided
such a ciphertext, then reduction B reverses potential (implicit) updates to the
provided C̃, resulting in a valid ciphertext for epoch e = fwl. It is then easy
to verify that the last t elements of that ciphertext are a valid solution for the
Multi-St-UP assumption.
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Adversary BEval,Chall

00 k(0) ← BIN-UE.KeyGen
01 ∆(0) := ⊥
02 e, c := 0
03 H[·] := ⊥
04 L := ∅
05 fwl $← [0, ne]
06 c∗ $← [1, nE ]
07 for j ∈ [0, fwl− 1] :
08 k(j) ← BIN-UE.KeyGen
09 ∆(j) := BIN-UE.TokenGen(k(j−1), k(j)) �†
10 for j ∈ [fwl, ne] :

11 k
(j)
1 , . . . , k

(j)
n

$← Gn
12 for j ∈ [fwl+ 1, ne] :
13 for ℓ ∈ [1, n] :

14 ∆
(j)
ℓ := k

(j)
ℓ /k

(j−1)
ℓ

15 for ℓ ∈ [n+ 1, t] :

16 ∆
(j)
ℓ

$← G
17 Run AO

18 return ⊥ to GMulti-St-UP
EGA �Try never called

Oracle Enc(M)
19 Let M = (m1, . . . ,mn)
20 c := c+ 1
21 if c = c∗ :
22 x0, x1

$← X �x0 ≺lex x1

23 γ ← Chall(x0, x1)
24 H[M,x0, x1] := γ
25 τ = ⊥
26 else :
27 τ := (β, x0, x1, y1, . . . , yt)← Eval
28 H[M,x0, x1] := β
29 M ′ := (M ||H[M,x0, x1])
30 if e < fwl :
31 C

(e)
j := k

(e)
j ⋆ xm′

j

32 else if e ≥ fwl and c ̸= c∗ :
33 for j ∈ [1, n] :

34 C
(e)
j := k

(e)
j ⋆ xmj

35 for j ∈ [1, t] :

36 C
(e)
n+j := yj

37 else : abort �wrong guess for fwl

38 C(e) := (C
(e)
1 , . . . , C

(e)
n+t)

39 L := L ∪ {(c,M ′, C(e), e, τ)}
40 return C(e)

Oracle Next
41 e := e+ 1

Oracle Try(C̃)

42 (M ′, x0, x1) := BIN-UE.Dec(k(e), C̃)
43 Let M ′ = (M ||T )
44 if H[M,x0, x1] ̸= γ : abort �wrong guess c∗

45 Set C(e) = C̃
46 for ℓ ∈ [e, fwl] : �backwards iteration
47 for j ∈ [n+ 1, n+ t] :

48 C
(ℓ−1)
j := (∆

(ℓ)
j )−1 ⋆ C

(ℓ)
j

49 return C
(fwl)
n+1 , . . . , C

(fwl)
n+t to GMulti-St-UP

EGA

Oracle Upd(C(e−1))

50 if ∄c : (c,M ′, C(e−1), e− 1, τ) ∈ L :
51 return ⊥
52 if τ = ⊥ : abort �wrong guess for c∗ or fwl
53 Let τ = (β, x0, x1, y1, . . . , yt)
54 if e < fwl :
55 Let M ′ = (m′

1, . . . ,m
′
n+t)

56 C
(e)
j := k

(e)
j ⋆ xm′

j

57 else :
58 Let M ′ = (M ||T )
59 for j ∈ [1, n] :

60 C
(fwl)
j := k

(fwl)
j ⋆ xmj

61 for j ∈ [1, t] :

62 C
(fwl)
n+j := yj

63 for ℓ ∈ [fwl+ 1, e] :

64 C
(ℓ)
j := ∆

(ℓ)
j ⋆ C

(ℓ−1)
j

65 L := L ∪ {(c,M ′, C(e), e, τ)}
66 return C(e)

Oracle H(M,x0, x1)
67 if H[M,x0, x1] = ⊥ :
68 β $← {0, 1}t
69 H[M,x0, x1] := β
70 return H[M,x0, x1]

Oracle CorrToken(ê)
71 if ê > e : return ⊥
72 if ê = fwl : abort �wrong guess for fwl
73 return ∆(ê)

Oracle CorrKey(ê)
74 if ê > e : return ⊥
75 if ê ≥ fwl : abort �wrong guess for fwl
76 return k(ê)

Fig. 14. The reduction B simulating game GINT-CTXT
COM-UE and event E2. The set of or-

acles that A has access to is defined as O = {Enc,Try,Next,Upd,CorrKey,
CorrToken,H}. † indicates that the computation of ∆(0) is skipped.

Compared to Lemma 2, there are a few more situations where the reduc-
tion needs to abort. For instance, A might ask for an update of C(e) in an
epoch e′ ≥ fwl, which the reduction B cannot provide as it does not know
the corresponding secret key k(e

′). Furthermore, H[M,x0, x1] is programmed to
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be γ = Chall(x0, x1), therefore the reduction is not provided with elements
(y1, . . . , yt) that would normally be used to update a ciphertext into the firewall.
However, if that case occurs then the guess for the firewall was simply wrong and
the reduction aborts. A similar argument can be made for the other situations
where the reduction needs to abort. This completes the proof. ⊓⊔

E The Algebraic Group Action Model

We recall a slightly adapted definition of the Algebraic Group Action Model
introduced in [24].

Definition 14 (Algebraic Group Action Algorithms). Let (G,X , ⋆, x̃) be
a fixed cyclic effective group action. An algorithm A is called algebraic if for
each output element y ∈ X it additionally provides a representation relative to
a previously received set element. Concretely, if (x1, . . . , xℓ) ∈ X ℓ is the list of
received set elements so far, A additionally provides a group element s ∈ G and
an element v ∈ {x1, . . . , xℓ} such that y = s ⋆ v. If an oracle is queried on some
set elements, then A also has to provide a representation for each set element
contained in that query.

Additionally, if the group action supports twists, we extend the representation
by a bit b, indicating whether the base element was twisted before applying the
group action. We require that all auxiliary input provided to the adversary which
is not in X does not depend on elements from X .

In the Algebraic Group Action Model (AGAM) we assume every adversary to
be algebraic.

E.1 A Note on Rerandomization in the AGAM

In the AGAM we do not need to model rerandomization explicitly. Let A,B,R
be three algorithms where A interacts with R and R interacts with B. Assume
B to be an algebraic algorithm.

First, we note that any rerandomization that B applies to an input element
x is futile as B is an algebraic algorithm and therefore always has to output a
corresponding representation (s, x) which gives away the rerandomization s. We
can therefore assume that B does not rerandomize elements.

Next, we argue that we do not need to model R’s rerandomization explicitly
as well. For this, assume that R receives a set element x ∈ X from A that it
wants to rerandomize and then forward to B. For this, R samples a uniform
g ∈ G, stores g for later use and sends y = g ⋆ x to B. If at any point R
receives a set element z together with a representation (s, y) then certainly (sg, x)
is an equivalent representation for z. Therefore, from R’s perspective the set
element and representation output by B can be turned into a representation that
only involves the element output by A. We can thus assume R to rerandomize
elements implicitly without the need to make this rerandomization explicit in
the proof.
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