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Abstract: The income of companies working on data markets steadily grows year by year. 
Private function evaluation (PFE) is a valuable tool in solving corresponding security problems. 
The task of Controlled Private Function Evaluation and its relaxed version was introduced in 
[Horvath et.al., 2019]. In this article, we propose and examine several different approaches for 
such tasks with computational and information theoretical security against static corruption 
adversary. The latter level of security implies quantum-security. We also build known 
techniques and constructions into our solution where they fit into our tasks. The main 
cryptographic primitive, naturally related to the task is 1-out-of-n oblivious transfer. We use 
Secure Multiparty Computation techniques and in one of the constructions functional 
encryption primitive. The analysis of the computational complexity of the constructions shows 
that the considered tasks can efficiently be implemented, however it depends on the range of 
parameter values (e.g. size of database, size of the set of permitted function), the execution 
environment (e.g. concurrency) and of course on the level of security.  
 
Keywords: private function evaluation, secure database access, secure multiparty 
computation, functional encryption 

 

1. Introduction 
 

The growing importance of data is beyond question today [Cattaneo et.al., 2019], [Otto et.al., 
2020]. Due to the current technological trends (proliferation of smart devices and the Internet 
of Things (IoT)), an increasing amount of data is waiting for utilization. According to the 
business model of a data market, a data broker buys data from the owners and sells the collected 
data (possibly in processed form) to a third party that provides value-added services to its users. 
Serious security concerns may arise in connection with the operation of this model. We briefly 
mention a few real-life examples. 

           DNA database contains information about the purpose of each gene. Such databases are 
extremely valuable and thus those are not sold on a whole, but rather users are charged per 
access to the database. On the other hand, the particular DNA sequences accessed by a user 
(e.g. a pharmaceutical company) reveal a lot of information about the interests of the user, e.g., 
for which disease it is developing a medicine. Similarly, requests sent to the stock quotes 
database can reveal information about the investment strategy of the requester or patent search 
patterns can reveal sensitive business information. The database owner wants to control which 
subscriptions allow access to which types of information (it is quite likely that subscription 
prices vary with the type of accessed information). However, this must be reconciled in some 
way with the user’s need for privacy. 
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Private function evaluation (PFE) is a valuable tool in solving this problem. Private function 
evaluation (PFE) is a two-party computation, where the input of user U is an efficiently 
evaluable function f, f ∊ F, and the input x of server S is a value from the domain of f. The user 
receives output f(x). The corresponding functionality defined by its I/O behavior is the 
following: (x, f) → (-, f(x)). 

A refined related task is the Controlled PFE (CPFE) where server S  as part of its input gives 
also a set of impermissible functions FA, FA⊂F,  i.e. ((x, FA), f) → (-, f(x)), if f∉FA, else abort. 
Note if we allowed the identity function as an input value of the user it would completely reveal 
the input of the server. A relaxed version of CPFE (rCPFE) is the task where user U shares his 
set of functions FB with server S, i.e. ((x, FA), (f, FB)) → (-, f(x)), if f ∊ FB∖FA, else abort, 
[Horvath, 2019]. Note the server can control the type of information accessible by the user by 
choosing the set of impermissible functions FA appropriately. Similarly, the user reveals only 
a set of functions (FB, FB⊂F), from which it wants to select its input without revealing the 
actually selected function (f).  
 
In this paper, we propose and examine different solutions for such tasks. We consider both 
computationally and information-theoretically (IT) secure constructions. The main 
cryptographic components in our constructions are 1-out-of-n OT (Oblivious Transfer), SMC 
based on the honest majority as well as functional encryption (FE). We build also on known 
techniques and constructions where they fit into our task.  

           One of the computationally secure constructions is a straightforward one based on a 
computationally secure 1-out-of-n OT protocol. Briefly, instead of the original database, the 
user has (controlled) access to a derived database containing all permitted mappings of the 
original database items. In the two-phase version, the user first obliviously selects the records 
whose functions he wants to know. In this version, we assume the availability of auxiliary 
servers with an honest majority and we perform secret sharing based Secure Multiparty 
Computation (SMC).  

           The other computationally secure construction uses the FE-primitive. In nutshell, the 
principle of operation of the protocol is as follows. The user first obliviously selects a set of 
encrypted database records (E(x1),…, E(xn)), n≥1 encrypted by the server. Next, using another 
oblivious transfer protocol user obtains a secret function key (skf) matching its input (f, f ∊ 
FB∖FA). Finally, the user computes its output f(x1),…,f(xn) by decrypting the ciphertexts. 

           In the IT-secure constructions, we adapt SMC techniques and constructions [Araki et.al., 
2016], [Ishai et.al., 2013], and [Furukawa et.al., 2023]. 

The price of this high level of security is the required access to a set of servers with an honest 
majority or to a trusted correlated randomness setup server, furthermore access to perfect 
secure communication channels.  An important advantage of IT-secure solutions (perfect or 
statistical) is that they provide quantum security. The main price factor is high randomness 
complexity. 

           As the communication media for the protocol will probably be a publicly accessible 
network (e.g. Internet), instances of other, potentially hostile protocols (i.e. protocols designed 
to attack our protocol) may also use the same communication space simultaneously. Therefore 
a desirable feature is a security in general concurrent execution environment ([Canetti, 2002], 
[Canetti et.al., 2002]), which is achieved by some of the presented constructions. Of course, 
this entails additional costs, in particular the availability of appropriate trusted setups. 



3 
 

           Considering potential practical applications, the main related factors are  
(communication-, computation-, randomness-) complexity, setup, and trust assumptions. IT-
secure or UC-secure constructions always require some kind of trusted setup (i.e. non-standard 
model) or honest majority. Deciding whether a construction can be practical depends on the 
size of the task (the number of items in the database, the binary length of database items, the 
size of the set of permitted functions), the circuit complexity of the functions, the speed of 
communication channels, the probability that an assumed honest majority exists. From this 
point of view, we do not carry out a comprehensive comparative analysis in this paper, and we 
mainly focus on the methods of construction. At the same time, we highlight the application-
related advantages and disadvantages of each construction together with numerical examples 
of complexity values.  

  

With this paper, we wanted to contribute to the development process of security technologies 
in the emerging field of data markets.   

The structure of the paper is as follows. In Section 2 we present related works and we name 
our contributions. In Sections 3 and 4 we present the computationally and information-
theoretically secure constructions, respectively.  In Section 5 we discuss related issues on UC 
security as well and here we show a summary table of advantages and disadvantages of 
approaches. Finally, we derive conclusions. 

2. Related works 
 
Protocols presented in this article use secure multiparty computation (SMC) techniques, but 
we also show a construction based on functional encryption. We show protocols with both 
computational and unconditional security. 
           The two generic approaches for constructing SMC protocols are the secret-sharing and 
the garbled-circuit approaches. The protocols we present are based on the secret-sharing ap-
proach. Such protocols have a number of rounds that are linear in the depth of the circuit be-
ing computed (i.e. not constant). At the same time, their demand for communication band-
width is more favorable. 
           SMC has the property that it can be made information-theoretically secure (IT-secure), 
which means that it does not rely on some computational hardness assumption. The level of 
IT security can be perfect or statistical. The security of such protocols holds against adver-
saries with unlimited computing power, be it classical or quantum computing. 
The IT-secure solutions require an honest majority or correlated randomness setup. We show 
solutions with such assumptions. 
           [Furukawa et.al., 2023] show a generic approach for secure three-party (n=3) compu-
tation of any functionality, with an honest majority and a malicious adversary. It provides se-
curity against malicious adversaries by using Beaver’s multiplication triple approach (a ver-
sion of correlated randomness) together with the statistical cut-and-choose technique. Recall 
for comparison that by the classic result in the case of t<n/2 cheaters are just honest-but-curi-
ous plus we assume broadcast channels, in contrast in construction [Furukawa et.al., 2023] 
the adversary is malicious and no broadcast channel is assumed. This construction has both 
an IT-secure and computationally secure variant, we adapt both to our task, in particular to 
the SMC evaluation of 1-out-of-n oblivious transfer.  
           In case of the availability of an appropriate correlated randomness setup, secure com-
putation can be achieved with no honest majority. We show a perfectly secure solution for 
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our task against malicious parties based on correlated randomness setup by adapting a con-
struction technique from [Ishai et.al., 2013]. Here we cite [Ishai et.al., 2013]: “Any 2-party 
“sender-receiver” functionality, (which takes inputs from a sender and a receiver and delivers 
an output only to the receiver), can be perfectly realized against malicious parties given cor-
related randomness.” Note oblivious transfer is such a kind of functionality. 
             
We also consider an FE-based solution for our task. Functional encryption (FE) is naturally 
related to the PFE task. However, there are two main obstacles. The set of functions such that 
practically efficient FE construction is known is rather restricted. Fortunately, this is not a 
problem for linear functionalities and multivariate quadratic polynomials, see [Abdalla et.al., 
2015] and [Elisabetta et.al., 2017], respectively. In our application, a quadratic polynomial 
can express many statistical functions for the statistical analysis of database items. Unfortu-
nately, there is a bigger obstacle. In the case of non-adaptive FE, we can work in the standard 
cryptographic setting, however, in the case of adaptive input selection, the best we can hope 
for is a realization (of the FE primitive) in a random oracle setting [Boneh et.al., 2011]. Partly 
due to limited space, we show the cryptographic analysis of this construction in detail, while 
in the case of the other constructions we mainly examine the issue of computational complex-
ity and efficiency concerning our task. 
  
A database security task that is related to our goal is called an oblivious transfer with access 
control (AC-OT) [Camenisch et.al., 2009]. Their protocol provides the following security 
guarantees: “Only authorized users can access the record; the database provider does not 
learn which record the user accesses; the database provider does not learn which attributes or 
roles the user has when she accesses the database”. In contrast, we allow the user to learn 
(any permitted) efficiently computable mapping of database records. We consider also IT-se-
cure constructions, furthermore UC-security, and quantum safety. Furthermore, in several 
constructions, we allow active adversaries. 
           Report [Horvath, 2019] initiated our work. This report provides preliminary thoughts 
about the realization of this task with computational security, including a sketchy analysis in 
the stand-alone setting against a static semi-honest adversary. 
  
The contributions of the paper are as follows: this paper 

 presents several constructions in connection with the security problems of the data 
market, more specifically for the task of Controlled Private Function Evaluation of 
obliviously chosen database items, where we consider both the computational and the 
information theoretical security, 

 defines ideal functionality (FrCPFE) for the task of relaxed Controlled Private Func-
tion Evaluation, 

 shows versions with postquantum security as well as with UC security, 
 presents numerical examples for the evaluation of computational complexity. 

 
 

3. Computationally-secure constructions 
 

First, we give a brief overview of the main steps of constructions. We consider three 
protocols with computational and two protocols with IT security. The adversary model, 
network model, and trust assumptions are given per construction. 
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Within the computationally secure constructions, we consider one- and two-phase 
approaches. The one-phase approach is conceptually the most straightforward. The database 
server computes a derived database such that it stores all permitted mappings (“statistics”) of 
database items. The user chooses an item obliviously from the derived database. In the two-
phase approach, first, the wanted database item x is SMC-selected so that (in this phase) x 
remains unknown for both the user and the server, and next mapping f(x) is SMC-computed 
so that x (in its entirety) remains unknown for the user and f remains unknown for the server. 

           The third computationally secure construction uses an FE-primitive. It is a two-phase 
approach. In the first phase user chooses encrypted database records (E(x1),…, E(xn)), n≥1 
obliviously to the server. In the second phase user obliviously chooses a secret function key 
(skf). Finally, the user computes output f(x1),…,f(xn) by decrypting the chosen ciphertexts. 

In all of the constructions presented in this paper, an agreement on the subset of functions 
permitted by the server to use by the user is achieved by exchanging the related sets of 
functions (FA, FB). This beginning part of the protocols is omitted from the presentation of 
the constructions. 

The two main issues related to the constructions are the security guarantee and the 
complexity. We show numerical examples for the calculation of the complexity to see the 
relationship between the size of the task (the size of the database and the set of permitted 
functions) and its practical applicability. If for a size, a construction seems to be inefficient 
the following straightforward technique may help: 

           We can decrease the computational overhead at the expense of a weakened privacy 
guarantee (for the user). We partition the database and a user first reveals to the server the 
identifier of the portion from which it wants to select an item. Random selection of portions 
may enhance privacy especially if the order of the items in the database is related to their 
content. This straightforward partitioning technique can be used for all constructions in this 
paper. Accordingly, when (in the subsequent chapters) we analyze the implementability of a 
protocol concerning the database size, we can consider those sizes as the size of a database 
portion. In this sense, all of the protocols can be implemented with practical efficiency if we 
can accept a privacy-error probability 1/S where S is the appropriate size of a portion (the 
latter probability is the probability of the event that a semi-honest server correctly blind-
guesses the database item the user is interested in). So, essentially, a decision on the practical 
efficiency of a construction is transformed into a decision on the accepted level of privacy 
error.  

 In numerical examples, we want to know whether a protocol can be used in practice or not 
(for complexity reasons). These numerical examples aim to illustrate the evaluation of 
complexity, and in the case of a concrete application task, the applicability of a protocol must 
be decided based on the actual parameter values. 

 

 

3.1 A straightforward construction 
 

Database server generates a derived database: it stores fi(xj) for all i∊I, j∊X, where {fi, i∊I}is 
the set permitted functions and {xj, j∊X}is the set of database items. Let m be the (uniform) 
size of database items in the derived database. A computationally secure 1-out-of-N, 
N=|I|∙|X| OT protocol is executed.  
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 An advantage of this solution (in addition to its simplicity) is that no auxiliary server 
is required. The obvious disadvantage is the significant increase in complexity caused by the 
|I|-times increase in the size of the (original) database.  
 Example: An 1-out-of-N OT protocol can be constructed from 1-out-of-2 OT protocol 
by an appropriate extension step. In the Naor-Pinkas’s extension ([Naor and Pinkas, 1999]) 
the additional complexity of extension is the computation of decryption keys that requires 
number log N  l-out of-2 OT executions plus kN evaluations of a PRF (N=2k for some k). 
Communication complexity is determined by the transmission of N encrypted database items 
plus log N decryption keys. Accordingly, the communication complexity is mN + l log N 
bits, where l is the length of the secret key of the PRF. The randomness complexity is small. 
For instance, if 1 second is the bound on latency then the required speed of communication 
channel between the server and the user is at least this complexity value. For instance, a big-
size task with 1 million records, 256 permitted functions, and a record length of 1kb a 
communication channel with a speed of at least 256 Gbps is required between the server and 
(each) user. We can significantly reduce this complexity for the user by the two-stage 
approach detailed subsequently.  
 

3.2 A construction with auxiliary servers 
 
Instead of choosing an item from the derived database with a size of N=|I|∙|X| items, first we 
choose an item from the (original) database of |X| elements, next from a set of |I| elements 
while keeping the privacy requirements.  
 This protocol assumes the availability of auxiliary servers with appropriate trust 
assumptions (detailed subsequently). For the simplicity of presentation first suppose that 
parties (database server, user) have access to two sets of three auxiliary servers in each. These 
servers are denoted servers D1, D2, and D3 (auxiliary D-servers) in the first set and F1, F2, and 
F3 (auxiliary F-servers) in the second set. We assume an honest majority in both of these sets 
of auxiliary servers. The main steps of the protocol are summarized in Fig. 1. 
 

 
Fig. 1: Main steps of the two-stage protocol 

 
This construction provides the following security guarantees. Dishonest auxiliary servers 
learn neither x nor f. The user can learn the mapping of a database item computed with a 

Step 1: Database server and user distribute shares of the (original) database and shares of 
the chooser index (pointing at a database item x), respectively, among auxiliary D-servers. 
D-servers run a 3-party secret-sharing type secure function evaluation algorithm for the 
evaluation of 1-out-of-|X| OT functionality as a circuit. D-servers compute shares [x]k , 
k=1,2,3 of database item x. 

Step 2: The set of F-servers 3-party SMC-evaluate function fi() on the shares of x, for all 
i∊I as follows. Server Fk receives as input share [x]k from the output of the D-server 
assigned to it and SMC-computes share [fi(x)]k of fi(x) for all i∊I and stores these shares, 
k=1,2,3.   

Step 3:  User executes 1-out-of-I OT protocol with each F-server separately in a 2-party 
computation and learns shares [fi*(x)]k, k=1,2,3, where fi*() is the function chosen by the 
user. Finally, the user combines the shares and outputs fi*(x).  
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permitted function only, while the entire database item x remains hidden from the user 
(assuming the identity function is not included in the set of permitted functions). 
 
An important observation is that a single set of three auxiliary servers is sufficient. The above 
setup of servers can be reduced to a single set of auxiliary servers by using the servers in all 
three steps. 
 
For an implementation of the protocol, below apply the computationally secure version of the 
generic protocol of [Furukawa, 2023] as a subprotocol. This is a protocol for secure three-
party computation of any functionality, with an honest majority and a malicious adversary. 
We apply it to compute the OT functionalities in Steps 1 and 2. Accordingly, an honest 
majority is assumed among the auxiliary servers with at most one malicious server. 
Construction [Furukawa, 2023] uses the Beaver’s multiplication triple correlated randomness 
technique [Beaver, 1995]. These triplets (together with a cut-and-choose statistical technique) 
are used to force a malicious party to compute correct (AND) values (and remain semi-
honest). The AND-complexity of the circuit determines the computational complexity of the 
protocol. Accordingly, to assess the complexity of our protocol we need an upper bound on 
the AND complexity of 1-out-of-n OT (m=1). Our corresponding claim is as follows: 
 
Claim 1: An upper bound on the AND complexity of 1-out-of-n OT (m=1) is n∙log2(n).  An 
upper bound on the circuit size (when both the AND and the XOR gates are considered) is 
twice this value plus n-1.  (n=2k, k≥1) 

Proof: For the simplicity of presentation, we show the circuit complexity for an instance, but 
the general case can be reconstructed from this easily.  
 Let n=4 and we use the following notation: the input of the sender is denoted by xi ∊ 
{0,1}, where i∊{0,1,2,3}, the input of the receiver (a 2-bit chooser string) is denoted by (σ0, 
σ1) ∊{0,1}2 . The following circuit implements a 1-out-of-4 OT functionality: 
 
x0∙(σ0+1)∙(σ1+1)+ x1∙(σ0+1)∙(σ1+0)+x2∙(σ0+0)∙(σ1+1)+x3∙(σ0+0)∙(σ1+0) 

Accordingly an upper bound on the number of XOR and AND gates is n(log2(n)+1) – 1 and 
nlog2(n), respectively.  ■ 
 
To feel the magnitude of the computational complexity of the protocol, now we estimate it 
for the following numerical values of parameters: 1 million database items with a size of 256 
bits each and 256 different permitted functions (statistics), i.e. |X|=220, |I|=28, N=228, m=28. 
Let’s consider the first phase with 1-out-of 220 OT. We get an upper bound 28∙220∙20 ~ 5.2 
billion on the number of AND gates.  For an estimate of the computational complexity 
measured in the time of execution of the OT protocol, we rely on related experimental data 
published in the paper [Furukawa, 2023]. We cite this paper: “On a cluster of three 20-core 
servers with a 10Gbs connection, the protocol achieves a rate of computation of 7 billion 
AND gates per second.” Extrapolating from these figures to our case, the first phase of the 
protocol can be executed in time less than a second.  
 A relatively high-speed communication channel between the database server and the 
auxiliary servers is still required. Indeed, random shares of the original database is 
transmitted in Step 1. This requires a channel speed of at least m|X| bps (at 1 sec latency), 
however it is significantly smaller than m|X||I| bps we got in the case of a straightforward 
approach. The practically more important advantage is that the communication complexity 
for the user drastically decreases, requiring a channel speed of at least m|I| bps between the 
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user and each auxiliary server (see Step 3). Notice the set of three auxiliary servers with an 
honest majority is on the cost side of this advantage. 
 The randomness complexity of the database server significantly increases compared 
to the straightforward solution, since the server computes three random shares of the 
database. Assuming this triplet of shares for a database item x is (x+r1+r2, r1, r2) where x, r1, 
r2 ∊{0,1}m, and r1, r2 are randomly chosen, the number of random bits used by the database 
server is at least 2m|X|. For instance, a large task when |X|=220 and m=29 requires ~ 1 billion 
truly random bits. The server must run a hardware random number generator (TRNG) speed 
of 1Gbps to keep 1 second latency. The aim of this latter numerical example is to show that 
the implementation of even such large tasks is not unrealistic (e.g. PEN-drive size random 
generators with the speed of the order of 100Mbps are commercially available). Medium-size 
tasks can be implemented with less extreme high-speed TRNG.  
 
 

3.3 A construction with functional encryption 
 

In this two-phase construction, no auxiliary servers are required. Informally speaking, we 
replace the SMC computation with FE encryption. Briefly, in the first phase we use a 1-out-
of-|I| OT protocol (OT1) to choose the secret function key to function fi*. In the second 
phase, we execute a 1-out-of-|X| OT protocol (OT2) to choose an FE-encrypted database 
item E(x). Finally, user decodes fi*(x).  

As mentioned in Section 2 there are two serious drawbacks. Firstly, the set of functions for 
which practically efficient FE construction is known is rather restricted. Fortunately, this is 
not a problem for linear functionalities and multivariate quadratic polynomials, see [Abdalla 
et.al., 2015] and [Elisabetta et.al., 2017], respectively. Fortunately, the latter has several 
practical applications as a quadratic polynomial can express many statistical functions for 
statistical analysis of database items.  
 Secondly, in practical application the FE-adaptivity issue arises naturally, implying 
that it is necessary to assume the availability of a public random oracle (to achieve provable 
security). A public random oracle is a trusted external party accessible by all parties of the 
protocol and behaves like a truly random function. Such an oracle is a theoretical construct. 
However, there are special, interesting cases where the FE adaptivity issue does not arise. 
Such cases are batch processing and parallel processing scenarios. A frequent change of the 
FE master key pair may also resolve this problem.  
   
We consider the case of passive (semi-honest) and active (malicious) adversaries, both. A 
passive adversary attacks the privacy of the parties. An active adversary that corrupts the 
server may cheat with the function keys to distort the output of the user. Accordingly, 
guarantees against a passive adversary are as follows: the entire x is hidden from the user, the 
function chosen by the user is hidden from the server and the server controls the set of 
permitted functions. In addition to the guarantees against a passive adversary, the protocol 
provides also correctness properties for the following type of active attack: a malicious server 
cheats with a function key in such a way that the function key provided by the server does not 
match the request  
 We do not consider a countermeasure against dishonest computation of encryptions of 
database items because this is more or less equivalent to changing (distorting) database items 
directly and we exclude such an attack. (We note that it is possible to expand the attacker's 
model with this attack, but this causes a significant increase in the complexity of a 
corresponding provably secure protocol.)  
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In the case of a passive adversary, we do the analysis in three steps as follows: 
1. definition of ideal functionality FrCPFE 
2. definition of OT1, OT2 – hybrid protocol 
3. definition of simulator for the hybrid protocol and the analysis of its success 

 
For security against an active adversary, we extend the semi-honest protocol. The user 
verifies the correctness of the function keys by using the function keys on test ciphertexts 
generated by itself. We can modify the above steps of analysis accordingly.  

Here we make a presentation-technical observation. The protocol can be viewed as a 
successive execution of two OT sub-protocols, so from space saving reasons we shorten the 
presentation of the ideas of analysis. Accordingly, subsequently, we focus on the first phase 
(on oblivious selection of function keys) and we simplify the second phase.  The server 
simply transmits to the user the encryption of a subset  {x1,…,xn} of database items, i.e. we 
omit the OT2 sub-protocol in the subsequent presentation of the analysis.  

 

3.3.1 Single session ideal functionality FrCPFE  
 

Definition of single session ideal functionality FrCPFE is shown in Fig. 2. 
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Fig. 2: Single-session ideal functionality FrCPFE 

Intuitively, session id sid=(S, sid’) is associated with a FE key pair (PK, MK) generated by 
server S. A single user sends a single database request to the database.  

3.3.2 FOT1-hybrid realization of functionality FrCPFE  
 

Parties: S (server), U (user). Parameters: F (base set of functions) 

1. Upon receiving an input (KeyGen, sid) from party S, ideal functionality verifies 
that sid = (S, sid’) for some fresh value sid’. If not so, then it ignores the input. 
Otherwise, it hands (KeyGen, sid) to the (ideal system) adversary (simulator, Sim). 
Sim generates public key pk. Upon receiving (Pub_key, sid, pk) from Sim, it 
outputs (Pub_key, sid, pk) to S. 
2. Upon receiving an input message (InicUser, sid, FB) from party U, it verifies that 
{sid=(S, sid’)}. If not so, then it ignores the input. Else, it verifies that {FB⊆F}.  If 
so, then it stores (sid, FB) and sends a private delayed message (InicUser, sid, FB) 
to party S, else it sends message Abort1 to party S and aborts the session.  
3. Upon receiving an input message (InicServer, sid, FA) from party S, it verifies 
that {sid=(S, sid’)}. If not so, then it ignores the input. Otherwise, it verifies that FA 
∩ FB is not empty.  If so, then it stores (sid, FA) and sends a private delayed 
message (InicServer, sid, FA) to party U, else it sends message Abort2 to party U 
and aborts the session.  
4. Upon receiving an input message (InputUser, sid, f) from party U, it verifies that 
{sid=(S, sid’). If not, it ignores the input, else stores (sid, f).  
5. Upon the condition that {“Inic” inputs have been set for both parties} AND {an 
input function f from party U has already been stored} it verifies that {f ∊ FB∖FA}. If 
not so, then it sends the message Abort3 to (honest) party S and aborts the session.  
6. Upon receiving an input message (InputServer, sid, x1,…,xn) from party S, it 
verifies if {sid=(S, sid’)}. If not so, then it ignores the input, else it stores (sid, 
x1,…,xn).  
7. Upon the condition that {all inputs with id sid have been set for both parties}, it 
sends output (Output, sid, f(x1),…,f(xn)) to party U and halts the session.  
8. Upon receiving (Corrupt, sid, ssid, U) from the adversary followed by a pair (f’, 
F’B) and no output has been yet written to U in session sid, then it stores (sid, f, FB), 
where f=f’, FB = F’B).  
Upon receiving (Corrupt, sid, S) from the adversary and an input (sid, x1,…,xn, FA) 
has already been received from S, ideal functionality discloses this input to the 
adversary. If the adversary tries to change honest output (y1=f(x1),…, yn = f(xn)) to 
party U to a different (well-formatted) sequence (y’1=g(x’1),…, y’n = g(x’n)), where 
g, g≠f , g∊F ideal functionality sends output Abort 4 to honest party U and 
terminates.  
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FOT1-hybrid protocol π is shown in Fig. 3. (Plain model of communication is assumed.) 

 

Fig. 3: The FOT1-hybrid protocol π for realization of single-session functionality FrCPFE 
 

In the single-session scenario, the database serves a single request with a single input 
function f. The order of message sendings (i.e. the order of requesting secret function keys 
and ciphertexts) will guarantee a Non-Adaptivity (NA) setting for the FE-primitive. 
Specifically, the user has to send its request (function f) before it sees encrypted database 
records.  

Assume we impose an (a priori) upper bound q1 on the number of secret function key queries 
from FE key setup functionality func.KeyGen (i.e. m≤q1 above), similarly an upper bound q2 
on the number of encrypted messages (i.e. the number of database items ≤q2). Accordingly, 
we assume the availability of a (q1, q2)-NA-SIM (Non-Adaptive SIMulatably secure) 
functional encryption scheme. Such construction exists in the standard setting [Gorbunov 
et.al., 2012].  

Theorem 1: Assuming (q1, q2)-NA-SIM FE scheme and simulation-secure 1-out-of-m string 
OT scheme, FOT1-hybrid protocol π is a secure realization of single-session functionality 
FrCPFE. 
 

3.3.3 Analysis 
 

First we define the simulator. Simulator Sim runs the FE-simulator. In particular, it can run 
the key generation (KeyGen: 1n→(PK, MK)), the function key simulation (func_KeyGen: f 
→fsk*, f∊F), and the ciphertext simulation (Encrypt: x → c*, x∊X) algorithms of the FE-
simulator. Simulator Sim simulates also ideal functionality FOT.  

We show the steps of the simulation by the steps of the hybrid protocol.  

Key setup: 

Party S calls KeyGen(1n) → (PK, MK) algorithm of the FE scheme and publishes PK. 

The protocol: 

1. U → S  : FB; if not FB⊆F, then S outputs Abort1 and aborts 
2. S → U  : FA; if not FA⊆F or FA ∩ FB is empty then U outputs Abort2 and aborts 
3. U → FOT1   : (the index of function) f 
4. S → func.KeyGen  : {f1,…,fm} (= FB∖FA) 
    func.KeyGen → S  : skf1, …, skfm 
    S → FOT1   : skf1, …, skfm 
5. FOT1 → U   : skf , if f ∊ FB∖FA else  
     ⊥ , when S outputs Abort3 and aborts 
    U   : if Ver(skf)=0, then U outputs Abort4 and aborts 
6. S → Encrypt  : x1,…,xn 
    Encrypt → S  : c1=E(x1),…,cn=E(xn) 
    S → U  : c1,…,cn   
7. U   : outputs Dskf (c1),…,Dskf (cn) 
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Case 1: corrupt S   

FE key setup phase:  

Party S receives an input (KeyGen, sid) (from the calling environment Z). Sim forwards this 
input to party S. Upon receiving a call to key generation algorithm KeyGen from S, simulator 
Sim runs the algorithms and hands public key PK to party S. At the same time Sim forwards 
input (KeyGen, sid) also to functionality FrCPFE, and for the corresponding call from the 
functionality Sim simulates the same public key PK. When FrCPFE outputs public key PK to 
party S, simulator Sim outputs PK to the calling environment. 

Simulation of the main part of FOT1 -hybrid protocol: 

Step 1. Sim(U)→S: 

Honest party U sends an input FB to functionality FrCPFE. The functionality may send output 
message FB or Abort1 to (corrupted) party S. Sim learns this output. If the message is FB (more 
precisely, not an abort message) then Sim forwards the message to party S via internal 
interaction. If the message is Abort1 then Sim forwards it to the environment via external 
interaction and halts.  

Step 2. S→Sim(U): 

Party S sends a message FA to party U. Sim captures the message and sends it as input to ideal 
functionality FrCPFE on behalf of S via external interaction. The functionality may send output 
message FA or Abort2 to (honest) party U.  

Step 3. U→Sim(FOT1):  

Honest party U sends an input f ∊ FB∖FA to functionality FrCPFE.  

Step 4.  
S → Sim(func.KeyGen):  
Sim(func.KeyGen) → S: 
Simulator Sim runs the FE-simulator, in this step it runs the function key simulator for party S. 
Simulator simulates function keys sk*f1, …, sk*fm for function requests f1,…,fm. 

S → Sim(FOT1):     

Party S sends as input message sk’f1, …, sk’fm  to FOT, Sim captures the message and verifies 
it. Sim randomly chooses i∊{1,…,m}. If sk’fi ≠ sk*fi then Sim induces Abort 4 for party via the 
ideal functionality.  

Step 6.  
S → Sim(Encrypt) : x1,…,xn 
Sim(Encrypt) → S  : c*1=E*(x1),…,c*n=E*(xn) 
 
Simulator Sim runs the FE-simulator, in this step, it runs the encryption simulator for party S. 
The simulator simulates ciphertexts c*1,…,c*n for plaintexts x1,…,xn. Simulator sends x1,…,xn 
as input to ideal functionality FrCPFE on behalf of S via external interaction. Ideal functionality 
FrCPFE outputs f(x1),…,f(xn) to party U.  

Case 2: corrupt U 

There is a preliminary step of key generation similar to the case of corrupt S.   

Step 1. U→Sim(S): 
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Party U sends a message FB to party U. Sim captures the message and sends it as input to ideal 
functionality FrCPFE on behalf of U via external interaction. 

Step 2. Sim(S)→U: 

Party S sends an input FA to functionality FrCPFE that the functionality outputs to party U. Sim 
learns this output and forwards it to party U.  

Step 3. U→ Sim(FOT1):  

Party U sends (the index of) a function f as input to functionality FOT.  Sim captures the message 
and sends it as input to ideal functionality FrCPFE on behalf of U via external interaction.  

Step 5.  Sim(FOT1)→U:  

(In this step simulation takes place under output constraint (f(x1),…,f(xn).) 

Ideal functionality FrCPFE outputs f(x1),…,f(xn) to party U. Simulator captures this message and 
learns the output constraint.  

Simulator prepares and simulates ciphertexts c”1,…,c”n and a function key sk” such that the 
ciphertexts are decoded into the wanted outputs f(x1),…,f(xn) with decoding key sk”., 
respectively.   

The simulator forwards sk” to U via internal interaction. 

The simulator sends the simulated ciphertexts to party U via internal interaction. The simulator 
forwards messages between party U and the environment.  

∎ 

By definition the view of a corrupted party (adversary) at a step of a protocol: {input, random 
tape, messages received so far}. We perform (stand-alone) straight-line simulation so that 
message transmissions are in sync with the order of the messages in the real system. Therefore, 
it is sufficient to examine the indistinguishability of the views of the adversary only at the end 
of the run. We distinguish the executions with and without an abort event.  

Case of no abort 

Message views of corrupted parties are as follows (received messages are shown in time order 
of their arrival): 
Ideal system (FrCPFE): 
Corrupted S: FB, sk*f1, …, sk*fm, c*1,…,c*n 
Corrupted U: FA, sk”, c”1,…,c”n, f(x1),…,f(xn) 
Real system (FOT1 -hybrid protocol):  
Corrupted S: FB, skf1, …, skfm, c1=E(x1),…,cn=E(xn) 
Corrupted U: FA, skf, c1,…,cn, f(x1),…,f(xn)  
The FE simulation guarantees that the matching views are indistinguishable. 

Case of abort: We have to show the indistinguishability of the two systems in case of aborts. 
Concretely, we have to show that the corresponding probabilities of aborts are equal in the two 
systems. Note this is obvious for abort events caused by dishonestly chosen function sets and 
functions (Abort1-3).  

In the real system, an abort event Abort4 happens when corrupted party S chooses 
function keys as input to functionality OT1 maliciously. The randomized test performed by the 
simulator results in equal probabilities of abort (Abort4) in the real and the ideal system.   ∎ 
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3.3.4 Extensions to the single-session scenario 
 

1. Batch processing of multiple database requests:  

A frequent (i.e. per database query) change of the FE key pair (PK, MK) limits the 
application possibilities of the single-session scenario. We can significantly reduce this 
disadvantage by making the user interested in sending its requests to the database at the same 
time in a batch (e.g. by offering a more favourable price of service per request in an 
application scenario). Note that with such an extension, we are still in the non-adaptive FE 
scenario.  
 A further possibility for a natural extension within the NA setting is when different 
users are served synchronously (in parallel) by the database, where the requests from 
different users are collected into a single request message. The formal definition of the 
parallelized version of ideal functionality FrCPFE is the same as the base functionality except 
for a few straightforward differences. The technical details of the analysis for the parallel 
version are essentially the same as for the base case.   
 
2. Multiple session extension 

2.1. Single database 

The next natural step of extension is a multiple session scenario, where multiple users use the 
same database multiple times and we assume a single, stand-alone database. An arbitrary 
number of requests (to the database items and to the functions) may be sent from arbitrarily 
different users to the database. Such a scenario implies an adaptive scenario for the FE 
encryption, accordingly, it requires an AD-SIM FE scheme ([Matt and Maurer, 2015]). Such 
a scheme can be implemented only in a non-standard setting with the assumption of a 
programmable random oracle model. Such an oracle is a trusted external party running a truly 
random function for the parties of the protocol. It is a theoretical concept.  
 However, if we accept the Fiat-Shamir paradigm we can implement a non-provably 
secure protocol efficiently by modeling a hash function as a random oracle. It is based on the 
belief that a secure hash function is a practical (efficient) implementation of a pseudorandom 
function.  
 In the proof of security in the RO model, the simulator simulates (also) the 
corresponding FRO ideal functionality, which enables the simulator to learn the queries of all 
involved parties and to program any “random-looking” (i.e. computationally 
indistinguishable from truly random) values as outputs. 

2.2. Multiple databases 

The definition of multi-session ideal functionality is very similar to the single-session 
functionality except for a few differences. The difference is that by the multi-session 
functionality F’rCPFE, the database can be queried an arbitrary number of times by an arbitrary 
number of users under the same main session identifier sid but under different fresh sub-
session identifiers (ssid). Intuitively, the (main) session id value sid=(S, sid’) corresponds to a 
fresh FE key pair (PK, MK) generated by server S. We assume that a new pair of such keys is 
generated for a new database.  Sub-session identifier ssid=(U, S, ssid’) corresponds to the 
ssid’-th instance of the functionality run by parties U and S. A natural choice is to bind ssid to 
a fresh instance of communication keys (i.e. to a fresh instance of secret channel) between U 
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and S. (From space-saving reasons we omit the presentation of the definition of this ideal 
functionality.) 

 

4. IT-secure constructions 
 

In this section, we adapt two different generic approaches to our task. Both methods use 
correlated randomness technique and we apply them for the derived database. One of them 
([Araki et.al., 2016], [Furukawa et.al., 2023]) requires an honest majority in a set of auxiliary 
servers and achieves IT security. We apply these constructions as subprotocols in 
Construction 1 below. In the other approach ([Ishai et.al., 2013]), no honest majority is 
assumed. In this case, secure function evaluation is carried out by a two-party protocol with 
correlated randomness setup. This protocol provides perfect security. We adapt this technique 
to our task in Construction 2 below.  
 IT security implies high (or extremely high) complexity cost, in general. A central 
question in multiparty computation is to understand the amount of communication needed to 
securely evaluate a circuit of size s, with the obvious aim of minimizing communication 
complexity. However, in the case of IT-secure designs, first of all, the high randomness 
complexity (the number of required genuine random bits) is the bottleneck, as we 
demonstrate below with numerical examples.  
 A fixed cost element of IT-secure protocols comes from the requirement of perfect 
secure communication channels. Such channels can be implemented using one-time pad 
encryption together with IT-secure authentication using a one-time message authentication 
code (MAC). The total randomness complexity consists of the amount of random bits used in 
the computation plus the amount used in communication.  

 

4.1 Construction 1 
 

Here we apply the IT-secure versions of the generic approach [Araki et.al., 2016], [Furukawa 
et.al., 2023] to our task, in particular to the evaluation of the circuit corresponding to the 1-out-
of-N, N=|I|∙|X| (m=1) oblivious transfer functionality. Using the terminology of Section 3, here 
we consider a one-phase approach. The database server and the user outsource this computation 
to a set of three auxiliary servers (SMC-servers). Database server distributes random shares of 
the derived database between the SMC-servers. User does the same for its chooser string. 
Finally, the user processes the outputs of the SMC-servers.   
 The perfect secure construction [Araki et.al., 2016] requires an honest majority in the 
set of SMC servers (2 honest servers + (at most) 1 semi-honest server). In the statistically secure 
version ([Furukawa et.al., 2023])  the dishonest server can be malicious.  
 In these constructions, for the evaluation of an AND gate, the servers generate a triplet 
of correlated random bits (x0, x1, x2) such that x0+x1+x2=0. The triplet is generated as follows: 
party Pi chooses a random bit bi and sends it to party P(i+1) mod 3, i=0,1,2. Party Pi computes xi 
by adding bi and the received bit mod 2. Consequently, an estimate of the number of random 
bits used in the computation (of the SMC servers) is 3∙mNlog(N).  
 For instance, for the task with parameter values |X|=215, |I|=26, m=27 execution of the 
protocol would require 21∙228 truly random bits per SMC-server. Considering random bit 
generation with a speed of 1Gbps per SMC-server we get ~ 5 second latency.  
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 The statistically secure version secure against an active adversary consumes 
considerably more random bits [Furukawa et.al., 2023]. The driving force behind the high 
randomness complexity is the “wasteful” statistical algorithm (cut-and-choose algorithm) used 
for forcing semi-honest behavior in the computation of the AND gates. Therefore, it is suitable 
only for appropriately small database problems. More correctly, we should partition the 
database to such an extent that the size of a partition already enables efficient implementation. 
Of course, we can only do this at the expense of increasing privacy error. 
 
  

4.2 Construction 2 
 
In the previous section, a correlated triplet was used to securely evaluate an AND gate (small 
parts of the whole circuit) and such triplets were generated and used by the SMC-servers 
evaluating the circuit. Now, a setup server provides correlated randomness setup for the user 
and the server. We adapt construction technique from [Ishai et.al., 2013]. 
 A brief outline of the protocol follows. For easier explanation, consider the ideal case 
when a single fully trusted auxiliary server (S*) is available. The execution of the protocol is 
divided into two stages, the preprocessing and the online stages. We represent the derived 
database as a matrix where rows correspond to different database items and columns to 
different permitted functions. The setup server computes a one-time permutation of this matrix. 
Given that a permutation will be only used once, a random cyclic shifts can be used (row-wise 
and column-wise) instead of a random permutation. 
 The corresponding protocol is denoted π0 and shown in Fig. 5. Parties (user and data 
server) receive shares of the permuted matrix from the setup server. Additionally, the user 
receives the permutation applied by rows and columns. In the online phase, the user 
reconstructs both shares of the wanted (derived) database item.  
  
 

Fig. 5: Protocol π0  
 
Now we make a weaker assumption, by assuming the availability of a pair of auxiliary servers 
(S1*, S2*) such that one of these may be corrupted by a semi-honest adversary. The main steps 
of the corresponding protocol (π1) are shown in Fig. 6. 

Functionality: 
–  Parties: S, U and auxiliary server S* 
– Server (S) has input matrix D’ (derived database) . 
– User (U) has input x ∈ X (index of a data item) and y ∈ Y (index of a function). 
– U learns z = D’(x, y). 
 
Pre-processing: (performed by S*) 
1. Sample random r ∈ X, s ∈ Y and let D* be the permutation of D’: 
D*(x+r, y+s) = D’(x, y).  
2. Sample a random matrix M1 ∈ ZX×Y and let M2 = D* − M1. 
3. Output (M1, s, r) to U and M2 to S. 
 
Protocol: 
1. U sends u = x + r, v = y + s to S 
2. S sends M2(u,v) to U 
3. U outputs sum M1(u,v) + M2(u,v) 
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Fig. 6: Main steps of protocol π1 
 
Protocol π1 guarantees privacy for both parties. In the next extension, we allow one of the 
parties (database server, user) may maliciously execute the protocol. The construction follows 
the technique of MAC-enhanced OTTT in [Ishai et.al., 2013]. Accordingly, a pair of 
authentication tag matrices is computed by the setup servers. A one-time ε-secure MAC 
scheme is assumed (see Definition 1 in [Ishai et.al., 2013]).  The modified protocol π0 is 
denoted π0* and is shown in Fig. 7. Now, protocol π0* is used in protocol π1 instead of π0. 
 
 

Fig. 7: Protocol π0* 
 
This protocol guarantees perfect security. The randomness complexity is determined by the 
sampling of random matrix M1, which means (m+2t)|X||I| random bits, where t is the length 
of MAC. For instance, for concrete parameter values |X|=215, |I|=26, m=27, t=64 this means 229 
random bits per setup server. Considering random bit generation with a speed of 1Gbps per 
SMC-server we get ~ 0.5 second latency. The communication randomness complexity is of the 
same order of magnitude. 
 
 
 
 

1. Server S distributes shares D’1, D’2 of database D’ between servers S1* and S2*, 
2. Servers S1* and S2* perform the pre-processing phase with input D’1 and D’2, 

respectively, similarly to protocol π0. 
3. Parties S and U execute the online phase of protocol π0 twice, first with S1* and 

next S2*, 
4. Finally U combines (adds) the outputs received from these two executions. 

Preprocessing:  
1. Sample random keys for one-time ε-secure MAC scheme with key space 
K and MAC space W. Choose randomly a pair of keys k1, k2 from space K and sample 
random r ∈ X, s ∈ Y. Let matrix D* ∊ (ZxWxW)XxY be such that 
 
D*(x+r, y+s) = {D’(x, y) , Tagk1(D’(x, y)), Tagk1(D’(x, y))}, 
 
2. Sample a random matrix M1 ∈ (ZxWxW)XxY and let M2 = D* − M1 
3. Output (M1, r, s, k1) to U and (M2, k2) to S.  
 
Protocol: 
1. U sends u = x + r , v = y + s to S 
2. S sends M2(u,v) to U 
3. Each party parses M1(u,v) + M2(u,v) as (z, t1, t2) 
4. If Verk1 (z, t1) = 1, party U outputs z, otherwise it outputs ⊥ 
    If Verk2 (z, t2) = 0, party S outputs “malicious user” 
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5. Discussion 
 
 Perfect security may imply UC security. In particular, the perfect secure constructions 
in Chapter 4. are UC-secure since those are based on protocols shown as UC-secure in papers 
[Araki et.al., 2016], [Ishai et.al., 2013]. [Furukawa et.al., 2023]. In particular, these latter 
protocols were proven secure with a black-box non-rewinding simulator in the classic stand-
alone setting and since the inputs of all parties are fixed before the execution begins, such a 
proof automatically guarantees UC security.  
 Now we consider the computationally secure construction based on functional 
encryption (Sec. 3.3). The two computationally secure primitives used in the construction 
must be UC-secure. This means a fully adaptive AD-SIM-secure FE scheme [Matt, Maurer; 
2015] and a UC-secure OT protocol. Both these components require a trusted setup. As usual, 
the difficulty comes primarily from the realization of the setup. 
 First, we consider the setup for the FE primitive. According to the ideal functionality 
defined in Section 3.3. different databases correspond to different sid values, i.e. different 
databases have their own independent random oracle instances that serve all user-server 
sessions with identifier (sid, ssid) for some ssid. Following the (ad-hoc) logic an assumption 
of independent random oracle instance per protocol instance (with identifier sid) is intuitively 
impractical as a large number of different secure hash functions do not exist. It seems that the 
only solution is to assume that different instances of the protocol have shared access to a global 
setup functionality, i.e. we consider global RO models. In this case, only a single secure hash 
function is required for an ad-hoc implementation of the global random oracle.   
 The question that arises here is whether it is possible to use a global oracle, serving 
different service providers, or a service provider with different databases. Here we face a proof-
technical obstacle. Namely, in the GUC framework of Canetti, the (calling and distinguishing) 
environment also has direct access to the global oracle and this fact has serious consequences: 
the global version of (Canetti’s) FRO functionality is the strictest among all RO models. Indeed, 
the simulator is neither allowed to observe the environment's random-oracle queries nor to 
program its answers. Therefore, to give an advantage to the simulator seems impossible. 
However, it turned out (see [Camenisch et.al., 2018]) that even such strict functionality allows 
GUC-secure practical constructions for digital signatures and public-key encryption. The 
breakthrough observation was (see the details in [Camenisch et.al., 2018]) that the (classic) 
proof technique of rewinding (of the oracle) can be applied in the part of the proof about 
indistinguishability, instead of within the simulation algorithm (where the rewinding tool is 
usually applied). Our point here is that we can apply the mentioned proof technique from 
[Camenisch et.al., 2018] also in our task: 
   
Claim 2: There exists a global universally composable (GUC-secure) adaptively secure FE 
scheme in a programmable random GUC-oracle setting.  
 
Proof (Sketch): Boneh’s AD-Sim-secure brute force construction [Boneh et.al., 2011] is GUC-
secure in a programmable random GUC-oracle model defined in [Camenisch et.al., 2018]. To 
prove it a proof technique in Ch. 4.2 of [Camenisch et.al., 2018]) can be adapted. ∎ 
 
Now we consider the oblivious transfer primitive. In the paper [Choi et.al., 2014] an efficient, 
universally composable oblivious transfer (OT) was proposed, where a single, ’global’, 
common reference string (CRS) can be used for multiple invocations of oblivious transfer by 
arbitrary pairs of parties. It is also round-optimal (3 rounds) with static security. A complexity 
comparison of UC-secure OT constructions can also be found in Table 1. [Choi et.al., 2014]. 
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The realization of the setups is most straightforward if the parties can find an external trusted 
party for this purpose. However, if the interests of the parties conflict, this is rarely the case. 
A more realistic scenario is that the setup is based on a set of external parties (servers) with an 
honest majority (like the auxiliary servers in the constructions of this paper).  
 

6. Conclusions 
 

A summary comparision of the pros and cons of the constructions is shown if Table 1. 

Protocol Type of 
security 

Pros Cons 

Sec.3.1 computational conceptually simple 
no aux. servers 

large increase in database size 
 

Sec.3.2 computational balanced complexity 
(potential quantum-safe 
version) 

3 aux. servers with honest majority 

Sec.3.3 computational balanced complexity 
no aux. servers 

restricted set of functions 
non-adaptive scenarios  

Sec.4.1 IT quantum-safety 
low comm. complexity 
between aux. servers 

3 aux. servers with honest majority 
high randomness complexity 

Sec.4.2 IT quantum-safety 
conceptually simple 
low online complexity  

a pair of setup servers 
high randomness complexity 

 
Table 1. 

In this paper, we showed several constructions for the task of Controlled Private Function 
Evaluation of obliviously chosen database items. The practical efficiency of the constructions 
highly depends on the size of the task measured in the triplet of the number of database items, 
the bit-length of the items, and the number of permitted functions. The complexity problem 
can be mitigated by partitioning the database. Accordingly, the fourth parameter affecting the 
practical applicability is the tolerated level of privacy error.  
 We considered both computationally and information-theoretically secure solutions. 
Though IT-secure solution have typically very high randomness complexity, interestingly, 
even in the complex task we consider in this paper, even such level of security can be reached 
at realistic parameter values. Of course, this requires truly random generators with very high 
speeds (in our examples with the speed of 1Gbps). Furthermore, it is required that a set of 
three auxiliary servers with honest majority or a pair of setup servers with at most one is 
semi-honest is available. At the same time, at the cost of this increase in complexity, we 
“automatically” get a postquantum secure protocol.  
 These perfect secure solutions are also UC-secure, i.e. guaranteeing secure general 
composability. As for the computational secure solutions, we examined UC-security for one of 
the computational constructions that is based on functional encryption (FE) primitive. 
However, in this case, in contrast to perfect secure constructions, a UC-secure FE-based 
construction cannot be implemented in the standard setting, since it requires access to 
programmable random oracles.  
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