
1

On the Security of Data Markets and Private Function Evaluation

István Vajda
Dept. of Informatics, TU Budapest, Hungary

Email: vajda@hit.bme.hu

Abstract: The income of companies working on data markets steadily grows year by year.
Private function evaluation (PFE) is a valuable tool in solving corresponding security problems.
The task of Controlled Private Function Evaluation and its relaxed version was introduced in
[Horvath et.al., 2019]. In this article, we propose and examine several different approaches for
such tasks with computational and information theoretical security against static corruption
adversary. The latter level of security implies quantum-security. We also build known
techniques and constructions into our solution where they fit into our tasks. The main
cryptographic primitive, naturally related to the task is 1-out-of-n oblivious transfer. We use
Secure Multiparty Computation techniques and in one of the constructions functional
encryption primitive. The analysis of the computational complexity of the constructions shows
that the considered tasks can efficiently be implemented, however it depends on the range of
parameter values (e.g. size of database, size of the set of permitted function), the execution
environment (e.g. concurrency) and of course on the level of security.

Keywords: private function evaluation, secure database access, secure multiparty
computation, functional encryption

1. Introduction

The growing importance of data is beyond question today [Cattaneo et.al., 2019], [Otto et.al.,
2020]. Due to the current technological trends (proliferation of smart devices and the Internet
of Things (IoT)), an increasing amount of data is waiting for utilization. According to the
business model of a data market, a data broker buys data from the owners and sells the collected
data (possibly in processed form) to a third party that provides value-added services to its users.
Serious security concerns may arise in connection with the operation of this model. We briefly
mention a few real-life examples.

 DNA database contains information about the purpose of each gene. Such databases are
extremely valuable and thus those are not sold on a whole, but rather users are charged per
access to the database. On the other hand, the particular DNA sequences accessed by a user
(e.g. a pharmaceutical company) reveal a lot of information about the interests of the user, e.g.,
for which disease it is developing a medicine. Similarly, requests sent to the stock quotes
database can reveal information about the investment strategy of the requester or patent search
patterns can reveal sensitive business information. The database owner wants to control which
subscriptions allow access to which types of information (it is quite likely that subscription
prices vary with the type of accessed information). However, this must be reconciled in some
way with the user’s need for privacy.

2

Private function evaluation (PFE) is a valuable tool in solving this problem. Private function
evaluation (PFE) is a two-party computation, where the input of user U is an efficiently
evaluable function f, f ∊ F, and the input x of server S is a value from the domain of f. The user
receives output f(x). The corresponding functionality defined by its I/O behavior is the
following: (x, f) → (-, f(x)).

A refined related task is the Controlled PFE (CPFE) where server S as part of its input gives
also a set of impermissible functions FA, FA⊂F, i.e. ((x, FA), f) → (-, f(x)), if f∉FA, else abort.
Note if we allowed the identity function as an input value of the user it would completely reveal
the input of the server. A relaxed version of CPFE (rCPFE) is the task where user U shares his
set of functions FB with server S, i.e. ((x, FA), (f, FB)) → (-, f(x)), if f ∊ FB∖FA, else abort,
[Horvath, 2019]. Note the server can control the type of information accessible by the user by
choosing the set of impermissible functions FA appropriately. Similarly, the user reveals only
a set of functions (FB, FB⊂F), from which it wants to select its input without revealing the
actually selected function (f).

In this paper, we propose and examine different solutions for such tasks. We consider both
computationally and information-theoretically (IT) secure constructions. The main
cryptographic components in our constructions are 1-out-of-n OT (Oblivious Transfer), SMC
based on the honest majority as well as functional encryption (FE). We build also on known
techniques and constructions where they fit into our task.

 One of the computationally secure constructions is a straightforward one based on a
computationally secure 1-out-of-n OT protocol. Briefly, instead of the original database, the
user has (controlled) access to a derived database containing all permitted mappings of the
original database items. In the two-phase version, the user first obliviously selects the records
whose functions he wants to know. In this version, we assume the availability of auxiliary
servers with an honest majority and we perform secret sharing based Secure Multiparty
Computation (SMC).

 The other computationally secure construction uses the FE-primitive. In nutshell, the
principle of operation of the protocol is as follows. The user first obliviously selects a set of
encrypted database records (E(x1),…, E(xn)), n≥1 encrypted by the server. Next, using another
oblivious transfer protocol user obtains a secret function key (skf) matching its input (f, f ∊
FB∖FA). Finally, the user computes its output f(x1),…,f(xn) by decrypting the ciphertexts.

 In the IT-secure constructions, we adapt SMC techniques and constructions [Araki et.al.,
2016], [Ishai et.al., 2013], and [Furukawa et.al., 2023].

The price of this high level of security is the required access to a set of servers with an honest
majority or to a trusted correlated randomness setup server, furthermore access to perfect
secure communication channels. An important advantage of IT-secure solutions (perfect or
statistical) is that they provide quantum security. The main price factor is high randomness
complexity.

 As the communication media for the protocol will probably be a publicly accessible
network (e.g. Internet), instances of other, potentially hostile protocols (i.e. protocols designed
to attack our protocol) may also use the same communication space simultaneously. Therefore
a desirable feature is a security in general concurrent execution environment ([Canetti, 2002],
[Canetti et.al., 2002]), which is achieved by some of the presented constructions. Of course,
this entails additional costs, in particular the availability of appropriate trusted setups.

3

 Considering potential practical applications, the main related factors are
(communication-, computation-, randomness-) complexity, setup, and trust assumptions. IT-
secure or UC-secure constructions always require some kind of trusted setup (i.e. non-standard
model) or honest majority. Deciding whether a construction can be practical depends on the
size of the task (the number of items in the database, the binary length of database items, the
size of the set of permitted functions), the circuit complexity of the functions, the speed of
communication channels, the probability that an assumed honest majority exists. From this
point of view, we do not carry out a comprehensive comparative analysis in this paper, and we
mainly focus on the methods of construction. At the same time, we highlight the application-
related advantages and disadvantages of each construction together with numerical examples
of complexity values.

With this paper, we wanted to contribute to the development process of security technologies
in the emerging field of data markets.

The structure of the paper is as follows. In Section 2 we present related works and we name
our contributions. In Sections 3 and 4 we present the computationally and information-
theoretically secure constructions, respectively. In Section 5 we discuss related issues on UC
security as well and here we show a summary table of advantages and disadvantages of
approaches. Finally, we derive conclusions.

2. Related works

Protocols presented in this article use secure multiparty computation (SMC) techniques, but
we also show a construction based on functional encryption. We show protocols with both
computational and unconditional security.
 The two generic approaches for constructing SMC protocols are the secret-sharing and
the garbled-circuit approaches. The protocols we present are based on the secret-sharing ap-
proach. Such protocols have a number of rounds that are linear in the depth of the circuit be-
ing computed (i.e. not constant). At the same time, their demand for communication band-
width is more favorable.
 SMC has the property that it can be made information-theoretically secure (IT-secure),
which means that it does not rely on some computational hardness assumption. The level of
IT security can be perfect or statistical. The security of such protocols holds against adver-
saries with unlimited computing power, be it classical or quantum computing.
The IT-secure solutions require an honest majority or correlated randomness setup. We show
solutions with such assumptions.
 [Furukawa et.al., 2023] show a generic approach for secure three-party (n=3) compu-
tation of any functionality, with an honest majority and a malicious adversary. It provides se-
curity against malicious adversaries by using Beaver’s multiplication triple approach (a ver-
sion of correlated randomness) together with the statistical cut-and-choose technique. Recall
for comparison that by the classic result in the case of t<n/2 cheaters are just honest-but-curi-
ous plus we assume broadcast channels, in contrast in construction [Furukawa et.al., 2023]
the adversary is malicious and no broadcast channel is assumed. This construction has both
an IT-secure and computationally secure variant, we adapt both to our task, in particular to
the SMC evaluation of 1-out-of-n oblivious transfer.
 In case of the availability of an appropriate correlated randomness setup, secure com-
putation can be achieved with no honest majority. We show a perfectly secure solution for

4

our task against malicious parties based on correlated randomness setup by adapting a con-
struction technique from [Ishai et.al., 2013]. Here we cite [Ishai et.al., 2013]: “Any 2-party
“sender-receiver” functionality, (which takes inputs from a sender and a receiver and delivers
an output only to the receiver), can be perfectly realized against malicious parties given cor-
related randomness.” Note oblivious transfer is such a kind of functionality.

We also consider an FE-based solution for our task. Functional encryption (FE) is naturally
related to the PFE task. However, there are two main obstacles. The set of functions such that
practically efficient FE construction is known is rather restricted. Fortunately, this is not a
problem for linear functionalities and multivariate quadratic polynomials, see [Abdalla et.al.,
2015] and [Elisabetta et.al., 2017], respectively. In our application, a quadratic polynomial
can express many statistical functions for the statistical analysis of database items. Unfortu-
nately, there is a bigger obstacle. In the case of non-adaptive FE, we can work in the standard
cryptographic setting, however, in the case of adaptive input selection, the best we can hope
for is a realization (of the FE primitive) in a random oracle setting [Boneh et.al., 2011]. Partly
due to limited space, we show the cryptographic analysis of this construction in detail, while
in the case of the other constructions we mainly examine the issue of computational complex-
ity and efficiency concerning our task.

A database security task that is related to our goal is called an oblivious transfer with access
control (AC-OT) [Camenisch et.al., 2009]. Their protocol provides the following security
guarantees: “Only authorized users can access the record; the database provider does not
learn which record the user accesses; the database provider does not learn which attributes or
roles the user has when she accesses the database”. In contrast, we allow the user to learn
(any permitted) efficiently computable mapping of database records. We consider also IT-se-
cure constructions, furthermore UC-security, and quantum safety. Furthermore, in several
constructions, we allow active adversaries.
 Report [Horvath, 2019] initiated our work. This report provides preliminary thoughts
about the realization of this task with computational security, including a sketchy analysis in
the stand-alone setting against a static semi-honest adversary.

The contributions of the paper are as follows: this paper

 presents several constructions in connection with the security problems of the data
market, more specifically for the task of Controlled Private Function Evaluation of
obliviously chosen database items, where we consider both the computational and the
information theoretical security,

 defines ideal functionality (FrCPFE) for the task of relaxed Controlled Private Func-
tion Evaluation,

 shows versions with postquantum security as well as with UC security,
 presents numerical examples for the evaluation of computational complexity.

3. Computationally-secure constructions

First, we give a brief overview of the main steps of constructions. We consider three
protocols with computational and two protocols with IT security. The adversary model,
network model, and trust assumptions are given per construction.

5

Within the computationally secure constructions, we consider one- and two-phase
approaches. The one-phase approach is conceptually the most straightforward. The database
server computes a derived database such that it stores all permitted mappings (“statistics”) of
database items. The user chooses an item obliviously from the derived database. In the two-
phase approach, first, the wanted database item x is SMC-selected so that (in this phase) x
remains unknown for both the user and the server, and next mapping f(x) is SMC-computed
so that x (in its entirety) remains unknown for the user and f remains unknown for the server.

 The third computationally secure construction uses an FE-primitive. It is a two-phase
approach. In the first phase user chooses encrypted database records (E(x1),…, E(xn)), n≥1
obliviously to the server. In the second phase user obliviously chooses a secret function key
(skf). Finally, the user computes output f(x1),…,f(xn) by decrypting the chosen ciphertexts.

In all of the constructions presented in this paper, an agreement on the subset of functions
permitted by the server to use by the user is achieved by exchanging the related sets of
functions (FA, FB). This beginning part of the protocols is omitted from the presentation of
the constructions.

The two main issues related to the constructions are the security guarantee and the
complexity. We show numerical examples for the calculation of the complexity to see the
relationship between the size of the task (the size of the database and the set of permitted
functions) and its practical applicability. If for a size, a construction seems to be inefficient
the following straightforward technique may help:

 We can decrease the computational overhead at the expense of a weakened privacy
guarantee (for the user). We partition the database and a user first reveals to the server the
identifier of the portion from which it wants to select an item. Random selection of portions
may enhance privacy especially if the order of the items in the database is related to their
content. This straightforward partitioning technique can be used for all constructions in this
paper. Accordingly, when (in the subsequent chapters) we analyze the implementability of a
protocol concerning the database size, we can consider those sizes as the size of a database
portion. In this sense, all of the protocols can be implemented with practical efficiency if we
can accept a privacy-error probability 1/S where S is the appropriate size of a portion (the
latter probability is the probability of the event that a semi-honest server correctly blind-
guesses the database item the user is interested in). So, essentially, a decision on the practical
efficiency of a construction is transformed into a decision on the accepted level of privacy
error.

 In numerical examples, we want to know whether a protocol can be used in practice or not
(for complexity reasons). These numerical examples aim to illustrate the evaluation of
complexity, and in the case of a concrete application task, the applicability of a protocol must
be decided based on the actual parameter values.

3.1 A straightforward construction

Database server generates a derived database: it stores fi(xj) for all i∊I, j∊X, where {fi, i∊I}is
the set permitted functions and {xj, j∊X}is the set of database items. Let m be the (uniform)
size of database items in the derived database. A computationally secure 1-out-of-N,
N=|I|∙|X| OT protocol is executed.

6

 An advantage of this solution (in addition to its simplicity) is that no auxiliary server
is required. The obvious disadvantage is the significant increase in complexity caused by the
|I|-times increase in the size of the (original) database.
 Example: An 1-out-of-N OT protocol can be constructed from 1-out-of-2 OT protocol
by an appropriate extension step. In the Naor-Pinkas’s extension ([Naor and Pinkas, 1999])
the additional complexity of extension is the computation of decryption keys that requires
number log N l-out of-2 OT executions plus kN evaluations of a PRF (N=2k for some k).
Communication complexity is determined by the transmission of N encrypted database items
plus log N decryption keys. Accordingly, the communication complexity is mN + l log N
bits, where l is the length of the secret key of the PRF. The randomness complexity is small.
For instance, if 1 second is the bound on latency then the required speed of communication
channel between the server and the user is at least this complexity value. For instance, a big-
size task with 1 million records, 256 permitted functions, and a record length of 1kb a
communication channel with a speed of at least 256 Gbps is required between the server and
(each) user. We can significantly reduce this complexity for the user by the two-stage
approach detailed subsequently.

3.2 A construction with auxiliary servers

Instead of choosing an item from the derived database with a size of N=|I|∙|X| items, first we
choose an item from the (original) database of |X| elements, next from a set of |I| elements
while keeping the privacy requirements.
 This protocol assumes the availability of auxiliary servers with appropriate trust
assumptions (detailed subsequently). For the simplicity of presentation first suppose that
parties (database server, user) have access to two sets of three auxiliary servers in each. These
servers are denoted servers D1, D2, and D3 (auxiliary D-servers) in the first set and F1, F2, and
F3 (auxiliary F-servers) in the second set. We assume an honest majority in both of these sets
of auxiliary servers. The main steps of the protocol are summarized in Fig. 1.

Fig. 1: Main steps of the two-stage protocol

This construction provides the following security guarantees. Dishonest auxiliary servers
learn neither x nor f. The user can learn the mapping of a database item computed with a

Step 1: Database server and user distribute shares of the (original) database and shares of
the chooser index (pointing at a database item x), respectively, among auxiliary D-servers.
D-servers run a 3-party secret-sharing type secure function evaluation algorithm for the
evaluation of 1-out-of-|X| OT functionality as a circuit. D-servers compute shares [x]k ,
k=1,2,3 of database item x.

Step 2: The set of F-servers 3-party SMC-evaluate function fi() on the shares of x, for all
i∊I as follows. Server Fk receives as input share [x]k from the output of the D-server
assigned to it and SMC-computes share [fi(x)]k of fi(x) for all i∊I and stores these shares,
k=1,2,3.

Step 3: User executes 1-out-of-I OT protocol with each F-server separately in a 2-party
computation and learns shares [fi*(x)]k, k=1,2,3, where fi*() is the function chosen by the
user. Finally, the user combines the shares and outputs fi*(x).

7

permitted function only, while the entire database item x remains hidden from the user
(assuming the identity function is not included in the set of permitted functions).

An important observation is that a single set of three auxiliary servers is sufficient. The above
setup of servers can be reduced to a single set of auxiliary servers by using the servers in all
three steps.

For an implementation of the protocol, below apply the computationally secure version of the
generic protocol of [Furukawa, 2023] as a subprotocol. This is a protocol for secure three-
party computation of any functionality, with an honest majority and a malicious adversary.
We apply it to compute the OT functionalities in Steps 1 and 2. Accordingly, an honest
majority is assumed among the auxiliary servers with at most one malicious server.
Construction [Furukawa, 2023] uses the Beaver’s multiplication triple correlated randomness
technique [Beaver, 1995]. These triplets (together with a cut-and-choose statistical technique)
are used to force a malicious party to compute correct (AND) values (and remain semi-
honest). The AND-complexity of the circuit determines the computational complexity of the
protocol. Accordingly, to assess the complexity of our protocol we need an upper bound on
the AND complexity of 1-out-of-n OT (m=1). Our corresponding claim is as follows:

Claim 1: An upper bound on the AND complexity of 1-out-of-n OT (m=1) is n∙log2(n). An
upper bound on the circuit size (when both the AND and the XOR gates are considered) is
twice this value plus n-1. (n=2k, k≥1)

Proof: For the simplicity of presentation, we show the circuit complexity for an instance, but
the general case can be reconstructed from this easily.
 Let n=4 and we use the following notation: the input of the sender is denoted by xi ∊
{0,1}, where i∊{0,1,2,3}, the input of the receiver (a 2-bit chooser string) is denoted by (σ0,
σ1) ∊{0,1}2 . The following circuit implements a 1-out-of-4 OT functionality:

x0∙(σ0+1)∙(σ1+1)+ x1∙(σ0+1)∙(σ1+0)+x2∙(σ0+0)∙(σ1+1)+x3∙(σ0+0)∙(σ1+0)

Accordingly an upper bound on the number of XOR and AND gates is n(log2(n)+1) – 1 and
nlog2(n), respectively. ■

To feel the magnitude of the computational complexity of the protocol, now we estimate it
for the following numerical values of parameters: 1 million database items with a size of 256
bits each and 256 different permitted functions (statistics), i.e. |X|=220, |I|=28, N=228, m=28.
Let’s consider the first phase with 1-out-of 220 OT. We get an upper bound 28∙220∙20 ~ 5.2
billion on the number of AND gates. For an estimate of the computational complexity
measured in the time of execution of the OT protocol, we rely on related experimental data
published in the paper [Furukawa, 2023]. We cite this paper: “On a cluster of three 20-core
servers with a 10Gbs connection, the protocol achieves a rate of computation of 7 billion
AND gates per second.” Extrapolating from these figures to our case, the first phase of the
protocol can be executed in time less than a second.
 A relatively high-speed communication channel between the database server and the
auxiliary servers is still required. Indeed, random shares of the original database is
transmitted in Step 1. This requires a channel speed of at least m|X| bps (at 1 sec latency),
however it is significantly smaller than m|X||I| bps we got in the case of a straightforward
approach. The practically more important advantage is that the communication complexity
for the user drastically decreases, requiring a channel speed of at least m|I| bps between the

8

user and each auxiliary server (see Step 3). Notice the set of three auxiliary servers with an
honest majority is on the cost side of this advantage.
 The randomness complexity of the database server significantly increases compared
to the straightforward solution, since the server computes three random shares of the
database. Assuming this triplet of shares for a database item x is (x+r1+r2, r1, r2) where x, r1,
r2 ∊{0,1}m, and r1, r2 are randomly chosen, the number of random bits used by the database
server is at least 2m|X|. For instance, a large task when |X|=220 and m=29 requires ~ 1 billion
truly random bits. The server must run a hardware random number generator (TRNG) speed
of 1Gbps to keep 1 second latency. The aim of this latter numerical example is to show that
the implementation of even such large tasks is not unrealistic (e.g. PEN-drive size random
generators with the speed of the order of 100Mbps are commercially available). Medium-size
tasks can be implemented with less extreme high-speed TRNG.

3.3 A construction with functional encryption

In this two-phase construction, no auxiliary servers are required. Informally speaking, we
replace the SMC computation with FE encryption. Briefly, in the first phase we use a 1-out-
of-|I| OT protocol (OT1) to choose the secret function key to function fi*. In the second
phase, we execute a 1-out-of-|X| OT protocol (OT2) to choose an FE-encrypted database
item E(x). Finally, user decodes fi*(x).

As mentioned in Section 2 there are two serious drawbacks. Firstly, the set of functions for
which practically efficient FE construction is known is rather restricted. Fortunately, this is
not a problem for linear functionalities and multivariate quadratic polynomials, see [Abdalla
et.al., 2015] and [Elisabetta et.al., 2017], respectively. Fortunately, the latter has several
practical applications as a quadratic polynomial can express many statistical functions for
statistical analysis of database items.
 Secondly, in practical application the FE-adaptivity issue arises naturally, implying
that it is necessary to assume the availability of a public random oracle (to achieve provable
security). A public random oracle is a trusted external party accessible by all parties of the
protocol and behaves like a truly random function. Such an oracle is a theoretical construct.
However, there are special, interesting cases where the FE adaptivity issue does not arise.
Such cases are batch processing and parallel processing scenarios. A frequent change of the
FE master key pair may also resolve this problem.

We consider the case of passive (semi-honest) and active (malicious) adversaries, both. A
passive adversary attacks the privacy of the parties. An active adversary that corrupts the
server may cheat with the function keys to distort the output of the user. Accordingly,
guarantees against a passive adversary are as follows: the entire x is hidden from the user, the
function chosen by the user is hidden from the server and the server controls the set of
permitted functions. In addition to the guarantees against a passive adversary, the protocol
provides also correctness properties for the following type of active attack: a malicious server
cheats with a function key in such a way that the function key provided by the server does not
match the request
 We do not consider a countermeasure against dishonest computation of encryptions of
database items because this is more or less equivalent to changing (distorting) database items
directly and we exclude such an attack. (We note that it is possible to expand the attacker's
model with this attack, but this causes a significant increase in the complexity of a
corresponding provably secure protocol.)

9

In the case of a passive adversary, we do the analysis in three steps as follows:
1. definition of ideal functionality FrCPFE
2. definition of OT1, OT2 – hybrid protocol
3. definition of simulator for the hybrid protocol and the analysis of its success

For security against an active adversary, we extend the semi-honest protocol. The user
verifies the correctness of the function keys by using the function keys on test ciphertexts
generated by itself. We can modify the above steps of analysis accordingly.

Here we make a presentation-technical observation. The protocol can be viewed as a
successive execution of two OT sub-protocols, so from space saving reasons we shorten the
presentation of the ideas of analysis. Accordingly, subsequently, we focus on the first phase
(on oblivious selection of function keys) and we simplify the second phase. The server
simply transmits to the user the encryption of a subset {x1,…,xn} of database items, i.e. we
omit the OT2 sub-protocol in the subsequent presentation of the analysis.

3.3.1 Single session ideal functionality FrCPFE

Definition of single session ideal functionality FrCPFE is shown in Fig. 2.

10

Fig. 2: Single-session ideal functionality FrCPFE

Intuitively, session id sid=(S, sid’) is associated with a FE key pair (PK, MK) generated by
server S. A single user sends a single database request to the database.

3.3.2 FOT1-hybrid realization of functionality FrCPFE

Parties: S (server), U (user). Parameters: F (base set of functions)

1. Upon receiving an input (KeyGen, sid) from party S, ideal functionality verifies
that sid = (S, sid’) for some fresh value sid’. If not so, then it ignores the input.
Otherwise, it hands (KeyGen, sid) to the (ideal system) adversary (simulator, Sim).
Sim generates public key pk. Upon receiving (Pub_key, sid, pk) from Sim, it
outputs (Pub_key, sid, pk) to S.
2. Upon receiving an input message (InicUser, sid, FB) from party U, it verifies that
{sid=(S, sid’)}. If not so, then it ignores the input. Else, it verifies that {FB⊆F}. If
so, then it stores (sid, FB) and sends a private delayed message (InicUser, sid, FB)
to party S, else it sends message Abort1 to party S and aborts the session.
3. Upon receiving an input message (InicServer, sid, FA) from party S, it verifies
that {sid=(S, sid’)}. If not so, then it ignores the input. Otherwise, it verifies that FA
∩ FB is not empty. If so, then it stores (sid, FA) and sends a private delayed
message (InicServer, sid, FA) to party U, else it sends message Abort2 to party U
and aborts the session.
4. Upon receiving an input message (InputUser, sid, f) from party U, it verifies that
{sid=(S, sid’). If not, it ignores the input, else stores (sid, f).
5. Upon the condition that {“Inic” inputs have been set for both parties} AND {an
input function f from party U has already been stored} it verifies that {f ∊ FB∖FA}. If
not so, then it sends the message Abort3 to (honest) party S and aborts the session.
6. Upon receiving an input message (InputServer, sid, x1,…,xn) from party S, it
verifies if {sid=(S, sid’)}. If not so, then it ignores the input, else it stores (sid,
x1,…,xn).
7. Upon the condition that {all inputs with id sid have been set for both parties}, it
sends output (Output, sid, f(x1),…,f(xn)) to party U and halts the session.
8. Upon receiving (Corrupt, sid, ssid, U) from the adversary followed by a pair (f’,
F’B) and no output has been yet written to U in session sid, then it stores (sid, f, FB),
where f=f’, FB = F’B).
Upon receiving (Corrupt, sid, S) from the adversary and an input (sid, x1,…,xn, FA)
has already been received from S, ideal functionality discloses this input to the
adversary. If the adversary tries to change honest output (y1=f(x1),…, yn = f(xn)) to
party U to a different (well-formatted) sequence (y’1=g(x’1),…, y’n = g(x’n)), where
g, g≠f , g∊F ideal functionality sends output Abort 4 to honest party U and
terminates.

11

FOT1-hybrid protocol π is shown in Fig. 3. (Plain model of communication is assumed.)

Fig. 3: The FOT1-hybrid protocol π for realization of single-session functionality FrCPFE

In the single-session scenario, the database serves a single request with a single input
function f. The order of message sendings (i.e. the order of requesting secret function keys
and ciphertexts) will guarantee a Non-Adaptivity (NA) setting for the FE-primitive.
Specifically, the user has to send its request (function f) before it sees encrypted database
records.

Assume we impose an (a priori) upper bound q1 on the number of secret function key queries
from FE key setup functionality func.KeyGen (i.e. m≤q1 above), similarly an upper bound q2
on the number of encrypted messages (i.e. the number of database items ≤q2). Accordingly,
we assume the availability of a (q1, q2)-NA-SIM (Non-Adaptive SIMulatably secure)
functional encryption scheme. Such construction exists in the standard setting [Gorbunov
et.al., 2012].

Theorem 1: Assuming (q1, q2)-NA-SIM FE scheme and simulation-secure 1-out-of-m string
OT scheme, FOT1-hybrid protocol π is a secure realization of single-session functionality
FrCPFE.

3.3.3 Analysis

First we define the simulator. Simulator Sim runs the FE-simulator. In particular, it can run
the key generation (KeyGen: 1n→(PK, MK)), the function key simulation (func_KeyGen: f
→fsk*, f∊F), and the ciphertext simulation (Encrypt: x → c*, x∊X) algorithms of the FE-
simulator. Simulator Sim simulates also ideal functionality FOT.

We show the steps of the simulation by the steps of the hybrid protocol.

Key setup:

Party S calls KeyGen(1n) → (PK, MK) algorithm of the FE scheme and publishes PK.

The protocol:

1. U → S : FB; if not FB⊆F, then S outputs Abort1 and aborts
2. S → U : FA; if not FA⊆F or FA ∩ FB is empty then U outputs Abort2 and aborts
3. U → FOT1 : (the index of function) f
4. S → func.KeyGen : {f1,…,fm} (= FB∖FA)
 func.KeyGen → S : skf1, …, skfm
 S → FOT1 : skf1, …, skfm
5. FOT1 → U : skf , if f ∊ FB∖FA else
 ⊥ , when S outputs Abort3 and aborts
 U : if Ver(skf)=0, then U outputs Abort4 and aborts
6. S → Encrypt : x1,…,xn
 Encrypt → S : c1=E(x1),…,cn=E(xn)
 S → U : c1,…,cn
7. U : outputs Dskf (c1),…,Dskf (cn)

12

Case 1: corrupt S

FE key setup phase:

Party S receives an input (KeyGen, sid) (from the calling environment Z). Sim forwards this
input to party S. Upon receiving a call to key generation algorithm KeyGen from S, simulator
Sim runs the algorithms and hands public key PK to party S. At the same time Sim forwards
input (KeyGen, sid) also to functionality FrCPFE, and for the corresponding call from the
functionality Sim simulates the same public key PK. When FrCPFE outputs public key PK to
party S, simulator Sim outputs PK to the calling environment.

Simulation of the main part of FOT1 -hybrid protocol:

Step 1. Sim(U)→S:

Honest party U sends an input FB to functionality FrCPFE. The functionality may send output
message FB or Abort1 to (corrupted) party S. Sim learns this output. If the message is FB (more
precisely, not an abort message) then Sim forwards the message to party S via internal
interaction. If the message is Abort1 then Sim forwards it to the environment via external
interaction and halts.

Step 2. S→Sim(U):

Party S sends a message FA to party U. Sim captures the message and sends it as input to ideal
functionality FrCPFE on behalf of S via external interaction. The functionality may send output
message FA or Abort2 to (honest) party U.

Step 3. U→Sim(FOT1):

Honest party U sends an input f ∊ FB∖FA to functionality FrCPFE.

Step 4.
S → Sim(func.KeyGen):
Sim(func.KeyGen) → S:
Simulator Sim runs the FE-simulator, in this step it runs the function key simulator for party S.
Simulator simulates function keys sk*f1, …, sk*fm for function requests f1,…,fm.

S → Sim(FOT1):

Party S sends as input message sk’f1, …, sk’fm to FOT, Sim captures the message and verifies
it. Sim randomly chooses i∊{1,…,m}. If sk’fi ≠ sk*fi then Sim induces Abort 4 for party via the
ideal functionality.

Step 6.
S → Sim(Encrypt) : x1,…,xn
Sim(Encrypt) → S : c*1=E*(x1),…,c*n=E*(xn)

Simulator Sim runs the FE-simulator, in this step, it runs the encryption simulator for party S.
The simulator simulates ciphertexts c*1,…,c*n for plaintexts x1,…,xn. Simulator sends x1,…,xn
as input to ideal functionality FrCPFE on behalf of S via external interaction. Ideal functionality
FrCPFE outputs f(x1),…,f(xn) to party U.

Case 2: corrupt U

There is a preliminary step of key generation similar to the case of corrupt S.

Step 1. U→Sim(S):

13

Party U sends a message FB to party U. Sim captures the message and sends it as input to ideal
functionality FrCPFE on behalf of U via external interaction.

Step 2. Sim(S)→U:

Party S sends an input FA to functionality FrCPFE that the functionality outputs to party U. Sim
learns this output and forwards it to party U.

Step 3. U→ Sim(FOT1):

Party U sends (the index of) a function f as input to functionality FOT. Sim captures the message
and sends it as input to ideal functionality FrCPFE on behalf of U via external interaction.

Step 5. Sim(FOT1)→U:

(In this step simulation takes place under output constraint (f(x1),…,f(xn).)

Ideal functionality FrCPFE outputs f(x1),…,f(xn) to party U. Simulator captures this message and
learns the output constraint.

Simulator prepares and simulates ciphertexts c”1,…,c”n and a function key sk” such that the
ciphertexts are decoded into the wanted outputs f(x1),…,f(xn) with decoding key sk”.,
respectively.

The simulator forwards sk” to U via internal interaction.

The simulator sends the simulated ciphertexts to party U via internal interaction. The simulator
forwards messages between party U and the environment.

∎

By definition the view of a corrupted party (adversary) at a step of a protocol: {input, random
tape, messages received so far}. We perform (stand-alone) straight-line simulation so that
message transmissions are in sync with the order of the messages in the real system. Therefore,
it is sufficient to examine the indistinguishability of the views of the adversary only at the end
of the run. We distinguish the executions with and without an abort event.

Case of no abort

Message views of corrupted parties are as follows (received messages are shown in time order
of their arrival):
Ideal system (FrCPFE):
Corrupted S: FB, sk*f1, …, sk*fm, c*1,…,c*n
Corrupted U: FA, sk”, c”1,…,c”n, f(x1),…,f(xn)
Real system (FOT1 -hybrid protocol):
Corrupted S: FB, skf1, …, skfm, c1=E(x1),…,cn=E(xn)
Corrupted U: FA, skf, c1,…,cn, f(x1),…,f(xn)
The FE simulation guarantees that the matching views are indistinguishable.

Case of abort: We have to show the indistinguishability of the two systems in case of aborts.
Concretely, we have to show that the corresponding probabilities of aborts are equal in the two
systems. Note this is obvious for abort events caused by dishonestly chosen function sets and
functions (Abort1-3).

In the real system, an abort event Abort4 happens when corrupted party S chooses
function keys as input to functionality OT1 maliciously. The randomized test performed by the
simulator results in equal probabilities of abort (Abort4) in the real and the ideal system. ∎

14

3.3.4 Extensions to the single-session scenario

1. Batch processing of multiple database requests:

A frequent (i.e. per database query) change of the FE key pair (PK, MK) limits the
application possibilities of the single-session scenario. We can significantly reduce this
disadvantage by making the user interested in sending its requests to the database at the same
time in a batch (e.g. by offering a more favourable price of service per request in an
application scenario). Note that with such an extension, we are still in the non-adaptive FE
scenario.
 A further possibility for a natural extension within the NA setting is when different
users are served synchronously (in parallel) by the database, where the requests from
different users are collected into a single request message. The formal definition of the
parallelized version of ideal functionality FrCPFE is the same as the base functionality except
for a few straightforward differences. The technical details of the analysis for the parallel
version are essentially the same as for the base case.

2. Multiple session extension

2.1. Single database

The next natural step of extension is a multiple session scenario, where multiple users use the
same database multiple times and we assume a single, stand-alone database. An arbitrary
number of requests (to the database items and to the functions) may be sent from arbitrarily
different users to the database. Such a scenario implies an adaptive scenario for the FE
encryption, accordingly, it requires an AD-SIM FE scheme ([Matt and Maurer, 2015]). Such
a scheme can be implemented only in a non-standard setting with the assumption of a
programmable random oracle model. Such an oracle is a trusted external party running a truly
random function for the parties of the protocol. It is a theoretical concept.
 However, if we accept the Fiat-Shamir paradigm we can implement a non-provably
secure protocol efficiently by modeling a hash function as a random oracle. It is based on the
belief that a secure hash function is a practical (efficient) implementation of a pseudorandom
function.
 In the proof of security in the RO model, the simulator simulates (also) the
corresponding FRO ideal functionality, which enables the simulator to learn the queries of all
involved parties and to program any “random-looking” (i.e. computationally
indistinguishable from truly random) values as outputs.

2.2. Multiple databases

The definition of multi-session ideal functionality is very similar to the single-session
functionality except for a few differences. The difference is that by the multi-session
functionality F’rCPFE, the database can be queried an arbitrary number of times by an arbitrary
number of users under the same main session identifier sid but under different fresh sub-
session identifiers (ssid). Intuitively, the (main) session id value sid=(S, sid’) corresponds to a
fresh FE key pair (PK, MK) generated by server S. We assume that a new pair of such keys is
generated for a new database. Sub-session identifier ssid=(U, S, ssid’) corresponds to the
ssid’-th instance of the functionality run by parties U and S. A natural choice is to bind ssid to
a fresh instance of communication keys (i.e. to a fresh instance of secret channel) between U

15

and S. (From space-saving reasons we omit the presentation of the definition of this ideal
functionality.)

4. IT-secure constructions

In this section, we adapt two different generic approaches to our task. Both methods use
correlated randomness technique and we apply them for the derived database. One of them
([Araki et.al., 2016], [Furukawa et.al., 2023]) requires an honest majority in a set of auxiliary
servers and achieves IT security. We apply these constructions as subprotocols in
Construction 1 below. In the other approach ([Ishai et.al., 2013]), no honest majority is
assumed. In this case, secure function evaluation is carried out by a two-party protocol with
correlated randomness setup. This protocol provides perfect security. We adapt this technique
to our task in Construction 2 below.
 IT security implies high (or extremely high) complexity cost, in general. A central
question in multiparty computation is to understand the amount of communication needed to
securely evaluate a circuit of size s, with the obvious aim of minimizing communication
complexity. However, in the case of IT-secure designs, first of all, the high randomness
complexity (the number of required genuine random bits) is the bottleneck, as we
demonstrate below with numerical examples.
 A fixed cost element of IT-secure protocols comes from the requirement of perfect
secure communication channels. Such channels can be implemented using one-time pad
encryption together with IT-secure authentication using a one-time message authentication
code (MAC). The total randomness complexity consists of the amount of random bits used in
the computation plus the amount used in communication.

4.1 Construction 1

Here we apply the IT-secure versions of the generic approach [Araki et.al., 2016], [Furukawa
et.al., 2023] to our task, in particular to the evaluation of the circuit corresponding to the 1-out-
of-N, N=|I|∙|X| (m=1) oblivious transfer functionality. Using the terminology of Section 3, here
we consider a one-phase approach. The database server and the user outsource this computation
to a set of three auxiliary servers (SMC-servers). Database server distributes random shares of
the derived database between the SMC-servers. User does the same for its chooser string.
Finally, the user processes the outputs of the SMC-servers.
 The perfect secure construction [Araki et.al., 2016] requires an honest majority in the
set of SMC servers (2 honest servers + (at most) 1 semi-honest server). In the statistically secure
version ([Furukawa et.al., 2023]) the dishonest server can be malicious.
 In these constructions, for the evaluation of an AND gate, the servers generate a triplet
of correlated random bits (x0, x1, x2) such that x0+x1+x2=0. The triplet is generated as follows:
party Pi chooses a random bit bi and sends it to party P(i+1) mod 3, i=0,1,2. Party Pi computes xi
by adding bi and the received bit mod 2. Consequently, an estimate of the number of random
bits used in the computation (of the SMC servers) is 3∙mNlog(N).
 For instance, for the task with parameter values |X|=215, |I|=26, m=27 execution of the
protocol would require 21∙228 truly random bits per SMC-server. Considering random bit
generation with a speed of 1Gbps per SMC-server we get ~ 5 second latency.

16

 The statistically secure version secure against an active adversary consumes
considerably more random bits [Furukawa et.al., 2023]. The driving force behind the high
randomness complexity is the “wasteful” statistical algorithm (cut-and-choose algorithm) used
for forcing semi-honest behavior in the computation of the AND gates. Therefore, it is suitable
only for appropriately small database problems. More correctly, we should partition the
database to such an extent that the size of a partition already enables efficient implementation.
Of course, we can only do this at the expense of increasing privacy error.

4.2 Construction 2

In the previous section, a correlated triplet was used to securely evaluate an AND gate (small
parts of the whole circuit) and such triplets were generated and used by the SMC-servers
evaluating the circuit. Now, a setup server provides correlated randomness setup for the user
and the server. We adapt construction technique from [Ishai et.al., 2013].
 A brief outline of the protocol follows. For easier explanation, consider the ideal case
when a single fully trusted auxiliary server (S*) is available. The execution of the protocol is
divided into two stages, the preprocessing and the online stages. We represent the derived
database as a matrix where rows correspond to different database items and columns to
different permitted functions. The setup server computes a one-time permutation of this matrix.
Given that a permutation will be only used once, a random cyclic shifts can be used (row-wise
and column-wise) instead of a random permutation.
 The corresponding protocol is denoted π0 and shown in Fig. 5. Parties (user and data
server) receive shares of the permuted matrix from the setup server. Additionally, the user
receives the permutation applied by rows and columns. In the online phase, the user
reconstructs both shares of the wanted (derived) database item.

Fig. 5: Protocol π0

Now we make a weaker assumption, by assuming the availability of a pair of auxiliary servers
(S1*, S2*) such that one of these may be corrupted by a semi-honest adversary. The main steps
of the corresponding protocol (π1) are shown in Fig. 6.

Functionality:
– Parties: S, U and auxiliary server S*
– Server (S) has input matrix D’ (derived database) .
– User (U) has input x ∈ X (index of a data item) and y ∈ Y (index of a function).
– U learns z = D’(x, y).

Pre-processing: (performed by S*)
1. Sample random r ∈ X, s ∈ Y and let D* be the permutation of D’:
D*(x+r, y+s) = D’(x, y).
2. Sample a random matrix M1 ∈ ZX×Y and let M2 = D* − M1.
3. Output (M1, s, r) to U and M2 to S.

Protocol:
1. U sends u = x + r, v = y + s to S
2. S sends M2(u,v) to U
3. U outputs sum M1(u,v) + M2(u,v)

17

Fig. 6: Main steps of protocol π1

Protocol π1 guarantees privacy for both parties. In the next extension, we allow one of the
parties (database server, user) may maliciously execute the protocol. The construction follows
the technique of MAC-enhanced OTTT in [Ishai et.al., 2013]. Accordingly, a pair of
authentication tag matrices is computed by the setup servers. A one-time ε-secure MAC
scheme is assumed (see Definition 1 in [Ishai et.al., 2013]). The modified protocol π0 is
denoted π0* and is shown in Fig. 7. Now, protocol π0* is used in protocol π1 instead of π0.

Fig. 7: Protocol π0*

This protocol guarantees perfect security. The randomness complexity is determined by the
sampling of random matrix M1, which means (m+2t)|X||I| random bits, where t is the length
of MAC. For instance, for concrete parameter values |X|=215, |I|=26, m=27, t=64 this means 229
random bits per setup server. Considering random bit generation with a speed of 1Gbps per
SMC-server we get ~ 0.5 second latency. The communication randomness complexity is of the
same order of magnitude.

1. Server S distributes shares D’1, D’2 of database D’ between servers S1* and S2*,
2. Servers S1* and S2* perform the pre-processing phase with input D’1 and D’2,

respectively, similarly to protocol π0.
3. Parties S and U execute the online phase of protocol π0 twice, first with S1* and

next S2*,
4. Finally U combines (adds) the outputs received from these two executions.

Preprocessing:
1. Sample random keys for one-time ε-secure MAC scheme with key space
K and MAC space W. Choose randomly a pair of keys k1, k2 from space K and sample
random r ∈ X, s ∈ Y. Let matrix D* ∊ (ZxWxW)XxY be such that

D*(x+r, y+s) = {D’(x, y) , Tagk1(D’(x, y)), Tagk1(D’(x, y))},

2. Sample a random matrix M1 ∈ (ZxWxW)XxY and let M2 = D* − M1
3. Output (M1, r, s, k1) to U and (M2, k2) to S.

Protocol:
1. U sends u = x + r , v = y + s to S
2. S sends M2(u,v) to U
3. Each party parses M1(u,v) + M2(u,v) as (z, t1, t2)
4. If Verk1 (z, t1) = 1, party U outputs z, otherwise it outputs ⊥
 If Verk2 (z, t2) = 0, party S outputs “malicious user”

18

5. Discussion

 Perfect security may imply UC security. In particular, the perfect secure constructions
in Chapter 4. are UC-secure since those are based on protocols shown as UC-secure in papers
[Araki et.al., 2016], [Ishai et.al., 2013]. [Furukawa et.al., 2023]. In particular, these latter
protocols were proven secure with a black-box non-rewinding simulator in the classic stand-
alone setting and since the inputs of all parties are fixed before the execution begins, such a
proof automatically guarantees UC security.
 Now we consider the computationally secure construction based on functional
encryption (Sec. 3.3). The two computationally secure primitives used in the construction
must be UC-secure. This means a fully adaptive AD-SIM-secure FE scheme [Matt, Maurer;
2015] and a UC-secure OT protocol. Both these components require a trusted setup. As usual,
the difficulty comes primarily from the realization of the setup.
 First, we consider the setup for the FE primitive. According to the ideal functionality
defined in Section 3.3. different databases correspond to different sid values, i.e. different
databases have their own independent random oracle instances that serve all user-server
sessions with identifier (sid, ssid) for some ssid. Following the (ad-hoc) logic an assumption
of independent random oracle instance per protocol instance (with identifier sid) is intuitively
impractical as a large number of different secure hash functions do not exist. It seems that the
only solution is to assume that different instances of the protocol have shared access to a global
setup functionality, i.e. we consider global RO models. In this case, only a single secure hash
function is required for an ad-hoc implementation of the global random oracle.
 The question that arises here is whether it is possible to use a global oracle, serving
different service providers, or a service provider with different databases. Here we face a proof-
technical obstacle. Namely, in the GUC framework of Canetti, the (calling and distinguishing)
environment also has direct access to the global oracle and this fact has serious consequences:
the global version of (Canetti’s) FRO functionality is the strictest among all RO models. Indeed,
the simulator is neither allowed to observe the environment's random-oracle queries nor to
program its answers. Therefore, to give an advantage to the simulator seems impossible.
However, it turned out (see [Camenisch et.al., 2018]) that even such strict functionality allows
GUC-secure practical constructions for digital signatures and public-key encryption. The
breakthrough observation was (see the details in [Camenisch et.al., 2018]) that the (classic)
proof technique of rewinding (of the oracle) can be applied in the part of the proof about
indistinguishability, instead of within the simulation algorithm (where the rewinding tool is
usually applied). Our point here is that we can apply the mentioned proof technique from
[Camenisch et.al., 2018] also in our task:

Claim 2: There exists a global universally composable (GUC-secure) adaptively secure FE
scheme in a programmable random GUC-oracle setting.

Proof (Sketch): Boneh’s AD-Sim-secure brute force construction [Boneh et.al., 2011] is GUC-
secure in a programmable random GUC-oracle model defined in [Camenisch et.al., 2018]. To
prove it a proof technique in Ch. 4.2 of [Camenisch et.al., 2018]) can be adapted. ∎

Now we consider the oblivious transfer primitive. In the paper [Choi et.al., 2014] an efficient,
universally composable oblivious transfer (OT) was proposed, where a single, ’global’,
common reference string (CRS) can be used for multiple invocations of oblivious transfer by
arbitrary pairs of parties. It is also round-optimal (3 rounds) with static security. A complexity
comparison of UC-secure OT constructions can also be found in Table 1. [Choi et.al., 2014].

19

The realization of the setups is most straightforward if the parties can find an external trusted
party for this purpose. However, if the interests of the parties conflict, this is rarely the case.
A more realistic scenario is that the setup is based on a set of external parties (servers) with an
honest majority (like the auxiliary servers in the constructions of this paper).

6. Conclusions

A summary comparision of the pros and cons of the constructions is shown if Table 1.

Protocol Type of
security

Pros Cons

Sec.3.1 computational conceptually simple
no aux. servers

large increase in database size

Sec.3.2 computational balanced complexity
(potential quantum-safe
version)

3 aux. servers with honest majority

Sec.3.3 computational balanced complexity
no aux. servers

restricted set of functions
non-adaptive scenarios

Sec.4.1 IT quantum-safety
low comm. complexity
between aux. servers

3 aux. servers with honest majority
high randomness complexity

Sec.4.2 IT quantum-safety
conceptually simple
low online complexity

a pair of setup servers
high randomness complexity

Table 1.

In this paper, we showed several constructions for the task of Controlled Private Function
Evaluation of obliviously chosen database items. The practical efficiency of the constructions
highly depends on the size of the task measured in the triplet of the number of database items,
the bit-length of the items, and the number of permitted functions. The complexity problem
can be mitigated by partitioning the database. Accordingly, the fourth parameter affecting the
practical applicability is the tolerated level of privacy error.
 We considered both computationally and information-theoretically secure solutions.
Though IT-secure solution have typically very high randomness complexity, interestingly,
even in the complex task we consider in this paper, even such level of security can be reached
at realistic parameter values. Of course, this requires truly random generators with very high
speeds (in our examples with the speed of 1Gbps). Furthermore, it is required that a set of
three auxiliary servers with honest majority or a pair of setup servers with at most one is
semi-honest is available. At the same time, at the cost of this increase in complexity, we
“automatically” get a postquantum secure protocol.
 These perfect secure solutions are also UC-secure, i.e. guaranteeing secure general
composability. As for the computational secure solutions, we examined UC-security for one of
the computational constructions that is based on functional encryption (FE) primitive.
However, in this case, in contrast to perfect secure constructions, a UC-secure FE-based
construction cannot be implemented in the standard setting, since it requires access to
programmable random oracles.

20

6. References

[1] Abdalla, M., Bourse, F., De Caro, A. and Pointcheval, D., “Simple Functional
Encryption Schemes for Inner Products”, PKC 2015: Public-Key Cryptography, pp. 733–751.
[2] T. Araki, J. Furukawa, Y. Lindell, A. Nof and K. Ohara, “High-Throughput Semi-
Honest Secure Three-Party Computation with an Honest Majority”, 23rd ACM CCS, 2016,
pp. 805–817.
[3] Beaver, D., “Precomputing Oblivious Transfer”, In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, Springer, Heidelberg (1995), pp. 97–109.
[4] Boneh, D., Sahai, A. and Waters, B.,”Functional Encryption: Definitions and
Challenges”, Proceedings of Theory of Cryptography Conference (TCC) 2011, pp 253-273.
[5] Canetti, R., “Universally Composable Security: A New Paradigm for Cryptographic
Protocols”, In 34th STOC 2002, pp. 494-503.
[6] Canetti, R. et. al.,”Universally composable two-party and multi-party secure
computation”, In 34th ACM STOC, Montreal, Quebec, Canada, ACM Press, pp. 494–503.
[7] Camenisch, J., Dubovitskaya, M. and Neven, G., “Oblivious Transfer with Access
Control”, 16th ACM Conference on Computer and Communications Security (ACM CCS
2009), pp. 131-140.
[8] Camenisch, J. et al., “The Wonderful World of Global Random Oracles”, in Advances in
Cryptology – EUROCRYPT 2018, pp 280-312.
[9] Cattaneo, G. et. al., “The European data market monitoring tool, Key facts
& figures, first policy conclusions, data landscape and quantified stories: d2.9 final study
report”. Publications Office of the EU, July 2020.
[10] Choi, S.G. et. al., “Efficient, Adaptively Secure, and Composable Oblivious Transfer
with a Single, Global CRS”, https://eprint.iacr.org/2012/700.pdf
[11] Elisabetta, C., Baltico, Z., Catalano, D., Fiore, D. and Romain G., “Practical Functional
Encryption for Quadratic Functions with Applications to Predicate Encryption”, July 2017,
Annual International Cryptology Conference
[12] Furukawa, J., Lindell, Y, Nof, A. and Weinstein, O., “High-Throughput Secure Three-
Party Computation for Malicious Adversaries and an Honest Majority”, Journal of
Cryptology, Volume 36, Issue 3, Jul 2023
[13] Gorbunov, S., Vaikuntanathan, V. and Wee, H. (2012), “Functional Encryption with
Bounded Collusions via Multi-Party Computation”, Advances in Cryptology – CRYPTO
2012, pp 162-179.
[14] Horvath, M. et. al., “There Is Always an Exception: Controlling Partial Information
Leakage in Secure Computation”, Cryptology ePrint Archive: Report 2019/1302
[15] Ishai,Y., Kushilevitz, E., Meldgaard, S., Orlandi, C. and Paskin-Cherniavsky, A., “On
the Power of Correlated Randomness in Secure Computation”, A. Sahai (Ed.): TCC 2013,
LNCS 7785, pp. 600–620.
[16] Matt, C. and Maurer, U., “A definitional framework for functional encryption”. In IEEE
28th Computer Security Foundations Symposium, CSF 2015, Verona, Italy, 13-17 July,
2015, pp. 217–231.
[17] Naor, M., B. Pinkas, B., “Oblivious transfer and polynomial evaluation”, In Proceedings
of the 31st ACM Symposium on Theory of Computing, 1999, pp.145-254.
[18] Otto, B. et. al., “Data ecosystems. Conceptual foundations, constituents and
recommendations for action”, Technical report, Fraunhofer Institute for Software and
Systems Engineering ISST, 10 2019.

