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Abstract. This paper shows novel techniques to reduce the signature
size of the code-based signature schemes MEDS and ALTEQ, by a large
factor. For both schemes, the signature size is dominated by the responses
for rounds with nonzero challenges, and we reduce the signature size by
reducing the size of these responses. For MEDS, each of the responses
consists of m2 + n2 field elements, while in our new protocol each re-
sponse consists of only 2k (k is usually chosen to be close to m and n)
field elements. For ALTEQ, each of the responses consists of n2 field ele-
ments, while in our new protocol each response consists of about

√
2n3/2

field elements. In both underlying Σ-protocols of the schemes, the prover
generates a random isometry and sends the corresponding isometry to
the verifier as the response. Instead of doing this, in our new protocols,
the prover derives an isometry from some random code words and their
presumed (full or partial) images. The prover sends the corresponding
code words and images to the verifier as the response, so that the verifier
can derive an isometry in the same way. Interestingly, it turns out that
each response takes much fewer field elements to represent in this way.

Keywords: code-based cryptography · digital signature schemes · post-
quantum cryptography

1 Introduction

In recent years, post-quantum cryptography has come into the spotlight of the
cryptographic community as a result of several standardization efforts includ-
ing that of the National Institute of Standards and Technology of the USA
(NIST) [20]. With the goal of standardizing post-quantum key encapsulation
mechanisms and digital signatures, NIST standardization process has spurred
an enormous amount of new design and cryptanalytic ideas. We now evidently
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have achieved great progress in understanding the security of new, but also rel-
atively old proposals. In fact, some breakthrough cryptanalytic results against
candidates [4,23] in the final round for standardization urged NIST to open an
additional round for digital signatures [1] expecting to achieve more diversity
in underlying hard problems and ratio between signature and key sizes. In this
additional round, NIST indicated that they would like to select schemes with
small signatures and fast verification that are not based on structured lattices.
Immediate candidates that fit the description are multivariate signatures based
on UOV [19], which inherently have very small signatures. The downside of these
is that they typically have huge public keys and no guarantees about the security
of the construction.

On the other end of the spectrum, lie the heavy but provably secure Fiat-
Shamir signatures. In a course of a few years, thanks to generic huge improve-
ments in signature size, they moved from extremely inefficient to reasonable
candidates for standardization. There are now more than 12 candidates in the
additional round based on the Fiat-Shamir paradigm. Three of these, MEDS [11],
ALTEQ [22] and LESS [3] use the GMW Σ-protocol [17] by Goldreich, Micali
and Wigderson, that was originally presented over the graph-isomorphism prob-
lem, but can be constructed from any hard equivalence problem. For example,
MEDS uses the matrix code equivalence problem, in which the objects are ma-
trix codes and the equivalences are two-sided bijective linear transformations.
ALTEQ uses alternating trilinear form equivalence with equivalences again from
the general linear group, but now acting on three “sides”. Finally, LESS uses lin-
ear code equivalence where the objects are Hamming codes and the equivalences
scaled permutations.

In all of these schemes the isometries are encoded in the signature and actu-
ally constitute most of it. Finding a compact representation of isometries thus
directly influences the size of the signature. In this paper, our aim to encode
isometries more efficiently while keeping the impact on the other performance
metrics (public key size and computational performance) moderate.

1.1 Our Contribution

This paper shows novel techniques to reduce the signature size of the code-based
signature schemes MEDS and ALTEQ, by a large factor. For both schemes, the
signature size is dominated by the responses for rounds with nonzero challenges,
and we reduce the signature size by reducing the size of these responses. For
MEDS, each of these responses consists of m2 + n2 field elements, while in our
new protocol each consists of only 2k (k is usually chosen to be close to m
and n) field elements. For ALTEQ, each of these responses consists of n2 field
elements, while in our new protocol each consists of about

√
2n3/2 field elements.

Furthermore, using a similar technique, we can reduce the public key size by
roughly n(n−

√
2n) field elements.

Concrete signature sizes can be found in in Table 1 and Table 3. For NIST
security level I, the smallest signature size in the MEDS submission is 9896 bytes,
while Table 1 shows a parameter set with 2886-byte signatures when our new
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protocol is used. Also for NIST security level I, the smallest signature size of
the ALTEQ submission is 9528 bytes, while Table 3 shows a parameter set with
3752-byte signatures when our new protocol is used. These smaller signature
sizes are obtained without increasing the public key sizes.

1.2 Techniques

In the underlying Σ-protocols of both schemes, the prover generates a random
isometry and sends the isometry, corresponding to the challenge, to the verifier
as the response. Instead of doing this, in our new protocols, the prover derives
an isometry from some random codewords and their presumed (full or partial)
images. The prover sends the corresponding codewords and images to the verifier
as the response, so that the verifier can derive the corresponding isometry in the
same way. Each response takes much fewer field elements to represent in this
way, as the codewords can be represented as their coordinates with respect to
a basis of the code, and as the images do not even have to be sent, but can be
simply considered as public data.

We take inspiration from the public key reduction technique introduced for
MEDS in [11]. There, the fact that an isometry can be efficiently derived from
a small number of matching codewords in the two codes is used in the key-
generation process. Using it, it becomes possible to generate part of the public
key from a public seed, and thus to reduce the overall size of the public key.

Although in this paper we only show new protocols for matrix-code-based
signature schemes, our technique is a general approach for representation of
isometries, and thus it might be efficiently applicable to other schemes as well.
We leave this as future work.

1.3 Related Work: CF-LESS

Since LESS is constructed in a way similar to MEDS and ALTEQ, it seems
reasonable to mention the recent paper [12], which is about reducing signature
size of LESS. The technique of [12] looks quite different from ours. Roughly
speaking, the main idea of [12] is to define an equivalence relation for the set
of all possible codes and to set the commitment to be the canonical element
in an equivalence class. In this way, each response does not need to contain the
information for indicating which code in the equivalence class is the actual target,
so the response size can be saved. In the Σ-protocol for the LESS submission
[2], each response takes k · (⌈log2 n⌉ + ⌈log2(q − 1)⌉) bits (where k is the code
dimension, n is the code length, and q is the field size), while in the best Σ-
protocol of [12], each response takes only n bits.

1.4 Structure of this Paper

Section 2 specifies notations that are useful for the remaining sections. Section 3
reviews how MEDS was designed. Section 4 presents our new Σ-protocols for
MEDS. Section 5 reviews how ALTEQ was designed and presents our new Σ-
protocols for ALTEQ.
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2 Notations

We denote by RS(G) the row space of a matrix G. We denote by RREF(G)
reduced row echelon form of a matrix G. SF(G) is defined to be RREF(G), if
that happens to be of the form (I | H) (i.e., systematic form), or ⊥ otherwise.
We define SF∗(G) as follows.

SF∗(G) =

{
(⊥,⊥), if SF(G) =⊥.
(SF(G),T), such that SF(G) = T ·G, otherwise.

For any v ∈ Fmn
q , matrix(v) is defined as

v0 · · · vn−1

vn · · · v2n−1

...
...

v(m−1)n · · · vmn−1

 ∈ Fm×n
q .

vector performs the inverse operation of matrix. Given A,B ∈ GLm(q)×GLn(q),
πA,B(v) is defined as vector(A ·matrix(v) ·B). Similarly, πA,B can take a matrix
of mn columns as input and outputs the result of applying the operation to each
row. Here are some obvious but useful properties of the operator 4 π:

– G′ = πA,B(G) ⇐⇒ G = πA−1,B−1(G′).
– πA′·A,B·B′(G) = πA′,B′(πA,B(G)).
– T · πA,B(G) = πA,B(T ·G).

3 The MEDS Signature Scheme

This section briefly reviews how the MEDS signature scheme [10] was designed.
In particular, we explain the underlying hard problem, the underlyingΣ-protocol,
and how the signature scheme is constructed by applying the Fiat-Shamir trans-
form and various optimizations to the basic Σ-protocol.

3.1 The Matrix Code Equivalence Problem

Definition 1. Let C and D be two [m×n, k] matrix codes over Fq. We say that
C and D are equivalent if there exist two matrices A ∈ GLm(q) and B ∈ GLn(q)
such that D = A · C ·B, i.e. for all C ∈ C, A ·C ·B ∈ D.

The underlying hard problem in MEDS is the Matrix Code Equivalence
(MCE) Problem. The problem is known to be at least as difficult as the Linear
Code Equivalence problem (LCE) and as difficult as the Isomorphism of polyno-
mials (IP) problem [7] and the Alternating Trilinear Form Equivalence (ATFE)
problem [18,22]. The computational version of it, which is relevant for the MEDS
signature construction as well as our optimization is defined as follows.

4 The operator πA,B can also be represented as the matrix B⊤ ⊗A where − ⊗ − is
the Kronecker product.
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Public Data
q,m, n, k ∈ N.
A0 = Im ∈ GLm(q),
B0 = In ∈ GLn(q).

I. Keygen()

1. G0
$←−− Fk×mn

q .

2. A1,B1
$←−− GLm(q)×GLn(q).

3. G1,T1 ← SF∗(πA1,B1(G0)).
If G1 =⊥, go to the 2nd step.

4. sk← (A1,B1,T1) and pk← (G0,G1).
Return (sk, pk).

II. Commit(pk)

1. Set Ã, B̃
$←−− GLm(q)×GLn(q).

2. G̃← SF(πÃ,B̃(G0)).

If G̃ =⊥, go to the 1st step.
3. cmt← G̃. Return cmt.

IV. Response(sk, pk, cmt, ch)

1. rsp← (Ã ·A−1
ch ,B

−1
ch · B̃).

Return rsp.

III. Challenge()

1. ch
$←−− {0, 1}. Return ch.

V. Verify(pk, cmt, ch, rsp)

1. Parse rsp into (A′,B′). If A′ /∈ GLm(q)
or B′ /∈ GLn(q), return “reject”.

2. cmt′ ← SF(πA′,B′(Gch)).
If cmt′ =⊥, return “reject”.

3. If cmt′ = cmt, return “accept”. Other-
wise, return “reject”.

Fig. 1. MEDS Σ-protocol. Note that T1 is not used in this protocol actually, but it
will be used for the protocols in Figure 2 and Figure 4.

Problem 1 (Matrix Code Equivalence). MCE(k, n,m, C,D):
Given: Two k-dimensional matrix codes C,D ⊂ Fm×n

q .
Goal: Find - if any - A ∈ GLm(q),B ∈ GLn(q) such that D = A · C ·B.

The map (A,B) : C 7→ A ·C ·B is called an isometry between C and D, in
the sense that it preserves the rank i.e. Rank(C) = Rank(A ·C ·B).

3.2 The MEDS Σ-protocol

The MEDS scheme is based on a three-pass Σ-protocol, of which the security is
based on MCE. In matrix notation, the main structure of the protocol is given
in Figure 1. The key generation algorithm generates two codes by generating
the corresponding generator matrices G0,G1 such that G1 = T1 · πÃ1,B̃1

(G0).

In the commitment algorithm, the prover generates a random isometry (Ã, B̃),
applies the isometry to the code generated by G0, and sets the commitment cmt
to (systematic form of a generator matrix of) the resulting code. The prover sets
the response rsp to (Ã, B̃) if the challenge ch is equal to 0, or (Ã ·A−1

1 ,B−1
1 · B̃)

if the challenge ch is equal to 1. The verifier parses the response as an isometry
(A′,B′), applies the isometry to the code generated by Gch ∈ {G0,G1}, and
returns “accept” or “reject” depending on whether the resulting code is equal
to the code represented by cmt.
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3.3 Fiat-Shamir and Common Tricks to Reduce Signature Size

MEDS, as many other signature schemes, is constructed by applying the Fiat-
Shamir transform [14] to the underlying Σ-protocol. The signature scheme con-

sists of t rounds of the Σ-protocol. The challenges ch(0), . . . , ch(t−1) for all rounds
are derived from a hash value of the commitments and the message. MEDS makes
use of some common techniques to reduce signature size:

1. Using more than two matrix codes in the public key. Instead of the
matrix code equivalence problem, it is possible to use the multiple ma-
trix code equivalence problem, where the attacker is asked to find the
isometry between any 2 of s matrix codes. This problem is polynomial-time-
equivalent to the MCE problem, therefore there is no need to use it in MEDS
in addition to the MCE problem. When applying this optimization, the pub-
lic key becomes s generator matrices G0, . . . ,Gs−1, and (ch(0), . . . , ch(t−1))
becomes a random element in {0, . . . , s − 1}t (instead of {0, 1}t) [13]. This
has the benefit of reducing the soundness error to 1/s < 1/2, and thus it
reduces the number of rounds t required in the resulting signature scheme.
For simplicity, Figure 1 and all other Σ-protocols in this paper are presented
under the assumption s = 2. Note that this trick reduces the signature size,
at the cost of much larger public keys.

2. Seeding responses when ch(i) = 0. The idea is to generate the isometry
in the commitment algorithm by expanding a short seed [5]. In this way,
signature size can be saved by sending the seed as the response whenever
the challenge is 0. Each response still consists of a random isometry when
the challenge is nonzero.

3. Using fixed-weight challenges. Instead of making (ch(0), . . . , ch(t−1)) a
random element in {0, . . . , s−1}t, the idea is to make it a vector of Hamming
weight w [5]. w is often chosen to be small compared to t . In this way, the
main components of each signature become t − w seeds and w isometries.
This helps to reduce the signature size, as an isometry typically takes much
more bits to represent than a seed.

4. Generating seeds from a seed tree. The previous trick can be refined
to obtain even smaller signatures. The idea is to build a binary tree of seeds
[5], such that the children of each node can be obtained by hashing the node,
together with a salt for the tree to mitigate collision attacks. In this way,
the t − w seeds can be compressed into a smaller number of seeds (using a
puncturable PRF [16]). The number of required seeds depends on the actual
challenges. [8] shows that the number of required seeds is upper bounded by
N (t, w) := 2⌈log2 w⌉ + w · (⌈log2 t⌉ − ⌈log2 w⌉ − 1).

Overall, with the tricks above, the signature size in bytes can be calculated as

w · ⌈isobits/8⌉+N (t, w) · ℓtree seed + ℓsalt + ℓdigest. (1)
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Here, isobits is the number of bits each response takes when ch(i) ̸= 0, which
is same as the number of bits every response takes before applying the tricks.
Since in Figure 1 each response consists of a matrix in Fm×m

q and a matrix in
Fn×n
q , isobits is set to be (m2+n2) · ⌈log2(q)⌉. ℓtree seed is the byte-length of each

node in the seed tree. ℓsalt is the byte-length of the salt. ℓdigest is the byte-length
of the hash value of the commitments and the message. The values of ℓtree seed,
ℓsalt, and ℓdigest for the MEDS submission are specified in [10, Table 2].

3.4 Reducing Public-key Size

The multiple public keys optimization discussed in the previous section can
reduce the signature size quite substantially, but there is a prize to pay - the
public key increases. In order to reduce the impact on the public key of this nice
optimization (and to allow for even shorter signatures by reparametrization) a
technique for public key compression was introduced in [11]. It basically trades
public key size for efficiency, and allows part of the public key to be generated
from a public seed, and then be used together with (part of) the secret key to
derive the whole secret isometry and the rest of the public key. Typically, the
whole isometry can be derived from two seeded codewords in the public key,
resulting in reduction of the public key size by 2s(mn− k).

4 Optimizing the MEDS Σ-protocol

This section presents our new Σ-protocols for MEDS. Each response in the new
Σ-protocols is represented with fewer field elements than those in the original
MEDS Σ-protocol (Figure 1) when k is not too large compared to m and n. The
new protocols are inspired by the public key compression trick (see Section 3.4).

Before explaining the new protocols, let us introduce some notation and terms
from the original MEDS Σ-protocol. We define Ci = {matrix(v) | v ∈ RS(Gi)}.
The code C0 is considered as the “domain code” for the prover, while Cch is
considered as the “domain code” for the verifier. In the commitment algorithm,
with (Ã, B̃) and C0, the prover derives its “image code”

Ã · C0 · B̃ =
{
matrix(v) | v ∈ RS(πÃ,B̃(G0))

}
and represent it as cmt = SF(πÃ,B̃(G0)). Similarly, in the verification algorithm,
with (A′,B′) and Cch, the verifier derives its “image code”

A′ · Cch ·B′ =
{
matrix(v) | v ∈ RS(πA′,B′(Gch))

}
and represent it as cmt′ = SF(πA′,B′(Gch)). In our new Σ-protocols, each of the
prover and verifier still needs to derive the image code from the domain code
and an isometry, but the isometry is obtained in a different way.

In our new protocols, codewords in domain codes are represented as their
coordinate vectors: the coordinate vector of C ∈ Ci (with respect to Gi) is
defined as the vector c ∈ Fk

q such that C = matrix(c ·Gi). Such a representation
is crucial for reducing the number for field elements each response takes.
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For ease of understanding, the reader can simply assume that k ∈ {m,n} in
this section, which holds for all parameter sets shown in Section 4.4, and we have
m = n = k for all the parameter sets proposed in the MEDS submission [10].

4.1 New Σ-protocol for MEDS with m = n

Our first new protocol for MEDS requires that m = n. Instead of generating
an isometry directly and using it to derive the image code, the prover derives
an isometry (Ã, B̃) from a codeword C̃ ∈ GLn(q) in the domain code and a
presumed codeword D ∈ GLn(q) in the image code such that D = Ã · C̃ · B̃.
Instead of receiving an isometry directly and using it to derive the image code,
the verifier derives an isometry (A′,B′) from a codeword C′ ∈ GLn(q) in the
domain code and the same presumed codeword D ∈ GLn(q) in the image code,
such that D = A′ · C′ · B′. To make sure that there is only 1 possibility for
isometry (Ã, B̃) or (A′,B′), Ã is generated in the commitment algorithm, and
A′ is included in the response, as in Figure 1. Each response then takes only
n2+ k (instead of 2n2) field elements: n2 for A′, and k for the coordinate vector
of the codeword C′ in the domain code for the verifier. The codeword D is
considered as public data, so it is not included in rsp.

The new protocol is presented in Figure 2. The public data and the key gen-
eration algorithm are mostly same as in Figure 1, except for the public matrices
D ∈ GLn(q) and T0 = Ik. In the commitment algorithm, the prover selects a
random codeword C̃ ∈ GLn(q)∩C0, generates a random matrix Ã ∈ GLn(q), and
derives B̃ as (ÃC̃)−1D. The prover includes A′ = Ã ·A−1

ch and the coordinate

vector c̃ · T−1
ch of C′ = Ach · C̃ ·Bch ∈ GLn(q) ∩ Cch in the response. Note that

C′ can be viewed as the codeword in Cch corresponding to C̃. In the verification
algorithm, the verifier derives B′ as (A′C′)−1D.

Theorem 1. The protocol in Figure 2 is a Σ-protocol for the MCE relation.

Proof. In order to show that the protocol is a Σ-protocol we need to prove the
properties of completeness, special soundness and honest-verifier zero-knowledge.

Completeness: Given an honestly generated commitment-response pair (cmt0,
rsp0) for ch = 0 5 , it is easy to see that Verify(pk, cmt0, 0, rsp0) = “accept” as
C′ = C̃ and A′ = Ã.

Given an honestly generated commitment-response pair (cmt1, rsp1 = (A′,
c′)) for ch = 1, we have

C′ = matrix(c′ ·G1) = matrix(c̃ ·T−1
1 ·G1) = A1 · C̃ ·B1, (2)

and thus B′ = (A′C′)−1D = (Ã · C̃ ·B1)
−1D = B−1

1 · B̃. Therefore,

RS(πA′,B′(G1)) = RS(πÃ·A−1
1 ,B−1

1 ·B̃(G1)) = RS(πÃ,B̃(G0)), (3)

which implies that SF(πA′,B′(G1)) = SF(πÃ,B̃(G0)) = cmt1.

5 “Honestly generated” means that the pair is obtained by running cmt0 ←
Commit(pk) and then rsp0 ← Response(sk, pk, cmt0, ch).
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Public Data
q,m, n, k ∈ N, such that m = n.
A0 = B0 = In ∈ GLn(q). T0 = Ik ∈ GLk(q).
D ∈ GLn(q).

II. Commit(pk)

1. Set c̃
$←−− Fk

q . C̃← matrix(c̃ ·G0).

If C̃ /∈ GLn(q), repeat this step.

2. Set Ã
$←−− GLn(q). B̃← (ÃC̃)−1D.

3. G̃← SF(πÃ,B̃(G0)).

If G̃ =⊥, go to the 1st step.
4. cmt← G̃. Return cmt.

IV. Response(sk, pk, cmt, ch)

1. rsp← (Ã ·A−1
ch , c̃ ·T

−1
ch ).

Return rsp.

III. Challenge()

1. ch
$←−− {0, 1}. Return ch.

V. Verify(pk, cmt, ch, rsp)

1. Parse rsp into (A′, c′).
If A′ /∈ GLn(q), return “reject”.

2. C′ ← matrix(c′ ·Gch).
If C′ /∈ GLn(q), return “reject”.

3. B′ ← (A′C′)−1D.
4. cmt′ ← SF(πA′,B′(Gch)).

If cmt′ =⊥, return “reject”.
5. If cmt = cmt′, return “accept”.

Otherwise, return “reject”.

Fig. 2. New MEDS Sigma Protocol for m = n. Keygen as in Figure 1.

Zero-knowledge: To simulate a commitment-response pair for ch = 0, ap-
parently the simulator can simply run ˆcmt0 ← Commit(pk) and also provide
ˆrsp0 ← Response( sk∗, pk, ˆcmt0, 0), where sk

∗ is a dummy argument that is not
actually used.

Let Commit(G1) be the modified version of Commit where G0 is replaced
by G1. We claim that for ch = 1, the simulator can simulate a commitment-
response pair by running ˆcmt1 ← Commit(G1)(pk) and correspondingly ˆrsp1 =

(Â, ĉ)← Response(sk∗, pk, ˆcmt1, 0). In other words, we claim that an honestly
generated pair (cmt1, rsp1 = (Ã ·A−1

1 , c̃ ·T−1
1 )) for ch = 1 has exactly the same

distribution as ( ˆcmt1, ˆrsp1).

To see that the claim is true, first consider a modified version of the protocol,
where each SF is replaced by RREF (replacement also happens in Commit(G1)).

With procedures in this modified protocol, Â will be a uniform random element
in GLn(q), and ĉ will be the coordinate vector of a uniform random element

in C1 ∩ GLn(q). (Ã · A−1
1 , c̃ · T−1

1 ) has the same distribution as (Â, ĉ): Ã is
uniform random in GLn(q), and Equation (2) shows that c̃ ·T−1

1 has the same
distribution as ĉ.

Then, the proof of completeness shows that there is a deterministic proce-
dure that can be used to derive cmt1 from (rsp1,G1,D) and to derive ˆcmt1 from
( ˆrsp1,G1,D), so (rsp1, cmt1) has the same distribution as ( ˆrsp1, ˆcmt1). Finally,
changing RREF back to SF simply means adding the same constraint to cmt1
and ˆcmt1, so (rsp1, cmt1) still has the same distribution as ( ˆrsp1, ˆcmt1) when the
original protocol is considered.
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Input: C0,C1,D0,D1 ∈ Fm×n
q .

Output: (A,B) ∈ GLm(q)×GLn(q) such that AC0B = D0 and AC1B = D1, or ⊥.

1. Build a linear system of 2nm equations and m2 + n2 variables by considering

AC0 = D0B
−1,AC1 = D1B

−1,

where entries in A and B−1 are considered as variables.
2. If the solution space of the linear system does not have dimension 1, return ⊥.
3. Pick any nontrivial solution in the solution space to obtain (A,B−1) ∈ Fm×m

q ×
Fn×n
q . If A /∈ GLm(Fq) or B

−1 /∈ GLn(Fq), return ⊥. Otherwise, return (A,B).

Fig. 3. The function Solve.

Special soundness: Given cmt, rsp0, rsp1 such that Verify(pk, cmt, 0, rsp0) =
“accept” = Verify(pk, cmt, 1, rsp1), there exists an efficient algorithm that out-
puts Ã, B̃,A′,B′, such that

SF(πÃ,B̃(G0)) = cmt = SF(πA′,B′(G1)).

Then, ((A′)−1 · Ã, B̃ · (B′)−1) yields a solution to the MCE instance (G0,G1).
⊓⊔

One might expect that the protocol still works:

– if the prover simply picks an arbitrary (Ã, B̃) such that Ã · C̃ · B̃ = D, and
– if the verifier simply picks an arbitrary (A′,B′) such that A′ ·C′ ·B′ = D.

In this way, rsp does not need to include A′. However, now it is no longer
guaranteed that (A′,B′) = (Ã · A−1

ch ,B
−1
ch · B̃). Consequently, it is very likely

that SF(πÃ,B̃(G0)) ̸= SF(πA′,B′(Gch)), which means completeness is broken.

Variants of the protocol. There are some natural variants of the protocol. For
example, instead of having D as public data, D can be considered as a part of
the public key. As another example, D can be chosen as a random invertible
matrix and included in the response. The proof for Theorem 1 also applies to
these variants. We note that in the second variant, to save signature size, the
signer can send a short seed from which D’s for all rounds can be derived in a
pseudo-random fashion.

4.2 New Σ-protocol for MEDS with |m − n| ≤ 1

The second new Σ-protocol for MEDS requires that |m−n| ≤ 1. The main idea
of the new protocol is that each of the prover and verifier derives an isometry that
maps a pair of codewords in the domain code to a pair of presumed codewords

10



Public Data
q,m, n, k ∈ N, such that |m− n| ≤ 1.
A0 = Im ∈ GLm(q).
B0 = In ∈ GLn(q).
T0 = Ik ∈ GLk(q).
Full-rank, linearly independent D0,D1 ∈ Fm×n

q .

II. Commit(pk)

1. Set (c̃0, c̃1)
$←−− Fk

q×Fk
q . If c̃0 and c̃1 are

linearly dependent, repeat this step.
2. For i ∈ {0, 1}, C̃i ← matrix(c̃i ·G0). If

C̃0 or C̃1 is not full rank, go to the 1st
step.

3. (Ã, B̃)← Solve(C̃0, C̃1,D0,D1).
If (Ã, B̃) =⊥, go to the 1st step.

4. G̃ ← SF(πÃ,B̃(G0)). If G̃ =⊥, go to
the 1st step.

5. cmt← G̃. Return cmt.

IV. Response(sk, pk, cmt, ch)

1. rsp← (c̃0 ·T−1
ch , c̃1 ·T

−1
ch ). Return rsp.

III. Challenge()

1. ch
$←−− {0, 1}. Return ch.

V. Verify(pk, cmt, ch, rsp)

1. Parse rsp into (c′0, c
′
1). If c

′
0 and c′1

are linearly dependent, return “re-
ject”.

2. For i ∈ {0, 1}, C′
i ← matrix(c′i ·

Gch). If C
′
0 or C′

1 is not full rank,
return “reject”.

3. (A′,B′)← Solve(C′
0,C

′
1, D0,D1).

If (A′,B′) =⊥, return “reject”.
4. cmt′ ← SF(πA′,B′(Gch)).

If cmt′ =⊥, return “reject”.
5. If cmt = cmt′, return “accept”.

Otherwise, return “reject”.

Fig. 4. New MEDS Sigma Protocol for |m− n| ≤ 1. Keygen as in Figure 1.

in the image code. The prover generated the codewords in the domain code.
For the verifier, the codewords in the domain code are included in the response.
Since the codewords in the response are represented as coordinate vectors, the
response takes only 2k field elements to represent. As in the protocol shown in
the previous subsection, the presumed codewords are considered as public data,
so they are not included in the response.

The prover and verifier make use of the procedure Solve (c.f. Figure 3) to
derive an isometry mapping C0,C1 ∈ Fm×n

q in the domain code to D0,D1 ∈
Fm×n
q in the image code. The procedure computes an isometry by solving the

linear system of 2mn equations and m2 + n2 equations formed by

AC0 = D0B
−1,AC1 = D1B

−1,

where entries in A and B−1 are considered as variables. Note that Solve is
allowed to return any (A,B) as long as (A,B−1) ∈ GLm(q) × GLn(q) is in
the solution space, under the condition that the solution space has dimension
exactly 1. This makes sense: Under the condition, the set of all valid solutions
must be of the form {(αA, αB−1) | α ∈ F∗

q}, and παA,α−1B(G) is independent
of the choice of α.

In the new protocol shown in Figure 4, the public data and the key generation
algorithm is mostly same as in Figure 1, except for the public matrices T0 = Ik

11



and D0,D1 ∈ Fm×n
q . In the commitment algorithm, the prover generates two

full-rank, linearly independent codewords C̃0, C̃1 ∈ C0 and uses Solve to find an
isometry (Ã, B̃) that maps C̃0, C̃1 to D0,D1. The response (c̃0 ·T−1

ch , c̃1 ·T−1
ch )

is essentially the coordinate vectors (w.r.t. Gch) of the two codewords in Cch
corresponding to C̃0 and C̃1. In the verification algorithm, the verifier derives
two codewords C′

0,C
′
1 ∈ Cch from the coordinate vectors in the response, and

uses Solve to find an isometry (A′,B′) that maps C′
0,C

′
1 to D0,D1.

As in the previous section, Di’s can also be considered as a part of the public
key or chosen as random matrices. The proof for the following theorem also
applies to these variants.

Theorem 2. The protocol in Figure 4 is a Σ-protocol for the MCE relation.

Proof. We show completeness, zero knowledge, and special soundness:

Completeness. Given an honestly generated commitment-response pair (cmt0,
rsp0) for ch = 0, it is easy to see that Verify(pk, cmt0, 0, rsp0) = “accept” as
(A′,B′) = (αÃ, α−1B̃) for some α ∈ F∗

q .
Given an honestly generated commitment-response pair (cmt1, rsp1 = (c′0, c

′
1))

for ch = 1, we have C′
i = A1 ·C̃i ·B1 for i ∈ {0, 1} according to the completeness

proof of Theorem 1. This implies that

A ·C′
i ·B = Di, for i ∈ {0, 1} =⇒ AA1 · C̃i ·B1B = Di, for i ∈ {0, 1}

and

A · C̃i ·B = Di, for i ∈ {0, 1} =⇒ AA−1
1 ·C′

i ·B−1
1 B = Di, for i ∈ {0, 1}.

In other words, there is a bijective map between the set of (A,B)’s mapping C̃i’s
to Di’s and the set of (A,B)’s mapping C′

i’s to Di’s, and thus the two sets have
the same cardinality. Therefore, the solution space for A′, (B′)−1 (in the verifica-
tion algorithm) must be of dimension 1, and (A′,B′) = (αÃA−1

1 , α−1B−1
1 B̃) for

some α ∈ F∗
q . We conclude that Equation (3) holds and thus SF(πA′,B′(G1)) =

SF(πÃ,B̃(G0)) = cmt1.

Zero knowledge. The ch = 0 case is trivial as in the proof for zero knowl-
edge for Theorem 1. We claim that for ch = 1, the simulator can simulate a
commitment-response pair by running ˆcmt1 ← Commit(G1)(pk), and ˆrsp1 =
(ĉ0, ĉ1) ← Response(sk∗, pk, ˆcmt1, 0). That is, we claim that honestly gener-
ated (cmt1, rsp1 = (c̃0 · T−1

1 , c̃1 · T−1
1 )) for ch = 1 has the same distribution as

( ˆcmt1, ˆrsp1).
We follow the proof for zero knowledge for Theorem 1 to first consider the

modified protocol where SF is replaced by RREF. With the modified procedures,
(ĉ0, ĉ1) is going to be coordinate vectors (w.r.t. G1) of 2 uniform random code-

words Ĉ0, Ĉ1 ∈ C1 such that

– Ĉ0, Ĉ1 are linearly independent and full-rank and
– Solve(Ĉ0, Ĉ1,D0,D1) ̸=⊥.

12



The proof for completeness shows that (c̃0 ·T−1
1 , c̃1 ·T−1

1 ) has the same distri-
bution as (ĉ0, ĉ1). The remainder of the proof is similar to the proof for zero
knowledge for Theorem 1.

Special soundness. The proof is essentially the same as the one for Theorem 1,
so we do not repeat it here. ⊓⊔

Why is the dimension of the solution space restricted to 1 in Solve? When the
dimension is 0, the only solution of the linear system will lead to (A,B−1) =
(0, 0), which is not desired. When the dimension is larger than 1, it is no longer
guaranteed that (A′,B′) = (αÃA−1

1 , α−1B−1
1 B̃), so completeness is broken.

This also explains why we require that |m− n| ≤ 1: When |m− n| > 1, we have
2mn+1 < m2+n2, so the dimension of the solution space will be larger than 1.

Success probability of Solve. The linear systems in Solve are highly structured
and should not be considered as random linear systems. Nevertheless, for most
Di’s, experiment results show that the probability Solve returns an isometry

is close to the probability that a random matrix in F2mn×(m2+n2)
q has a kernel

space of dimension 1. This means that when m = n, Solve returns ⊥ with a
high probability, so the signing algorithm is expected to be inefficient. In the
next subsection, we give some arguments regarding the success probability (and
complexity) of Solve for a specific choice of D0,D1 ∈ Fm×n

q with n = m+ 1.

4.3 A Specific Choice for D0,D1

For the |m−n| ≤ 1 protocol (c.f. Figure 4) introduced in the previous subsection,

the linear systems in Solve are of the form Lx = 0, where L ∈ F2mn×(m2+n2)
q .

In general, one would expect that it takes O(n6) field operations to solve such a
linear system. However, we found that, due to setting n = m + 1 and by using
D0 = (Im | 0) ∈ Fm×n

q , D1 = (0 | Im) ∈ Fm×n
q , we can obtain a much more

sparse and structured linear system such that the cost can be reduced to only
O(n3) field operations.

With such a choice for Di’s, the matrix L is going to be in the shape il-
lustrated in Figure 5a. After various row operations are applied, the matrix is
transformed into the form illustrated by Figure 5f, which is almost in row echelon
form. Then, computing reduced row echelon form of L boils down to comput-

ing reduced row echelon form of M ∈ F(m−1)×m
q plus backward substitutions.

Note that checking whether L has a dimension-1 kernel space also boils down
to checking whether M has a dimension-1 kernel space. Below we explain why
L is of the shape of Figure 5a and how the matrix in Figure 5f is obtained by
applying a sequence of row operations.

Let ai,j be the variable for Ai,j , and let bi,j be the variable for (B−1)i,j .
Consider D0B

−1−AC0 = 0. We have (AC0)i,j =
∑

k Ai,k(C0)k,j , and D0B
−1

is simply the firstm rows ofB−1. This leads to equations bi,j−
∑m−1

k=0 (C0)k,jai,k,
for i = 0, . . . , n − 2 and j = 0, . . . , n − 1. This explains the first mn rows of

13



Figure 5a: for any (i, j), the equation is represented in row in+ j of L, while the
first n2 columns of L correspond to

b0,0, . . . , b0,n−1, b1,0, . . . , b1,n−1, . . . , bn−1,0, . . . , bn−1,n−1,

and the last m2 columns of L correspond to

a0,0, . . . , a0,m−1, a1,0, . . . , a1,m−1, . . . , am−1,0, . . . , am−1,m−1,

Following the discussion above, it is easy to see that the lastmn rows of Figure 5a
are for D1B

−1 −AC1 = 0.
Figure 5f is derived from Figure 5a by carrying out the steps below.

– Figure 5b is obtained by rearranging rows in Figure 5a. This step takes 0
field operations.

– Figure 5c is obtained by eliminating the In’s in the last (m − 1)n rows of
Figure 5b. This step takes 0 field operations as we only need to replace the
In’s by 0 and replace some zero submatrices by CT

0 .

– Figure 5d is obtained by applying Gaussian eliminations to the (−CT
1 | CT

0 )
blocks in Figure 5c. Note that we can always reduce (−CT

1 | CT
0 ) to the form[

Im N
0 v

]
where v ∈ Fm

q , as C1 is full rank. This step takes O(n2m) = O(n3) field
operations.

– Figure 5e is obtained by rearranging rows in Figure 5d. This step takes 0
field operations.

– Figure 5f is obtained by eliminating elements in the last m − 1 rows in
Figure 5e. It turns out that the rows of M are determined by v and N as
we have:

M =


v · (−N)0

v · (−N)1

v · (−N)2

...
v · (−N)m−2

 ∈ F(m−1)×m
q .

Therefore, this step takes O(n3) field operations, if each row is computed as
the product of the previous row and −N.

Computing reduced row echelon form of M takes O(n3) field operations.
Backward substitutions also take O(n3) field operations. Checking whether A
andB−1 are invertible again takes O(n3) field operations. Therefore, we conclude
that Solve takes O(n3) field operations in total. For comparison, each of the
πÃ,B̃, πA′,B′ , and SF operations in the commitment and verification algorithms

takes O(n4) field operations, under the asssumption that k = O(n).
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Fig. 5. Process of solving the block diagonal system.
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Success Probability. According to the discussion above, the matrix L is full rank
if M is full rank. Whether M is full rank depends on whether the dimension of
the Krylov space generated by N and v is at least m− 1. According to [15], for
a random matrix in Fm×m

q , the m→∞ limit of the probability that its minimal
polynomial is the same as its characteristic polynomial (such a matrix is called
a nonderogatory matrix), is (1− 1

q5 )/(1 +
1
q3 ). According to [9, Theorem 9], the

probability that the Krylov space generated by a nonderogatory matrix in Fm×m
q

and a random vector v ∈ Fm
q is of dimension m, is lower bounded by 0.218

1+logq m .

For parameter sets with n = m + 1 shown in the next subsection, q is always
much larger than m, and experiment results show that the success probability
of Solve is much closer to 1 than to 0.218, presumably because the dimension
of the Krylov space is only required to be at least m− 1.

Constant time implementation. For the signing operation, system solving must
be computed in constant time to avoid leakage of secret information via timing
variations. Computing N and v in constant time from (−CT

1 | CT
0 ) is very similar

to computing the systematic form in constant time — the same row operations as
for systemization are simply only performed for the first m rows (while including
the last row in pivoting and elimination).

Solving the subsystem M requires more effort since we need to compute
not a systematic form but a reduced row echelon form from M. This can be
an expensive computation when performed in constant time, since all following
columns need to be conditionally swapped with with pivoting column to make
sure to find a pivot. Nevertheless, since we have the condition that the overall
system and hence M must have a solution space of dimension one, it is sufficient
to perform a single conditional swap with the last column during each pivoting
operation. We count how often a column swap actually is necessary: If more
than one swap needs to be performed, M has more than one solution and system
solving is aborted with an error code. If M can be solved successfully, to obtain a
complete constant time operation, we need to perform conditional column swaps
on the remaining system matrix for back-substitution (logically, since the system
matrix never is generated completely) and finally on the solution vector.

4.4 Results

Table 1 shows the impact of the |m−n| ≤ 1 Σ-protocol from Section 4.2 on the
signature sizes, public key sizes, and signing time, when D0 and D1 are chosen
in the way as discussed in Section 4.3 (which means we have n −m = 1). The
verification time is similar to signing time without further verification-specific
optimization and hence not explicitly shown in the table. We integrated our
optimization as proof-of-concept into the public source code of the MEDS refer-
ence implementation6. For a fair comparison, as the reference implementation,
our modifications are constant time. The cycle counts were obtained on a AMD
Ryzen 7 PRO 5850U.

6 https://github.com/MEDSpqc/meds
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For each parameter set, the first row (“spec [10]”) shows the performance of
the original MEDS reference implementation without our optimization. Also the
second row (“spec n++”) is without our optimization, but n is changed to m+1
(i.e., incremented by one) to identify what impact on performance is due to the
parameter change and what impact is due to the additional computation for the
signature size optimization. The third row (“sig opt”) shows the performance
including our |m − n| ≤ 1 signature size optimization from Section 4.2. The
signature size for the “sig opt” cases can be computed using Equation (1) and
by setting isobits to 2k⌈log2(q)⌉.

In all six parameter set cases, the increase in computing time for signing
when using the signature optimization compared to the original parameter set
is less than 50% and when focusing just on the change for n = m + 1 the
increase is less than 30%. The impact is more moderate for higher parameter
sets due to other dominating computations that are the same with and without
the optimization. For the Level I parameter set, our optimization reduces the
signature size to under one quarter. Since the size of w non-seeded responses
drops from quadratic to linear in the security parameters (m2 + n2 to 2k), we
obtain a particularly strong up to over 20× improvement in signature size for
the larger parameter sets.

However, for Level I and III, the attack cost actually is reduced when incre-
menting n by one, based on the attacks described in the MEDS specification [10].
Hence, to maintain the security level, we need to increase m, n, and k by one,
which increases all public key size, signature size, and signing time, as shown in
the fourth row of the Level I and III parameter sets. Nevertheless, due to the
significant reduction of the signature size compared to the original “spec [10]”
case, we can compensate for these performance penalties by modifying the per-
formance parameters, i.e., by reducing s (to reduce the public key size), by
reducing t (to reduce signing time), and by increasing w correspondingly (which
increases the signature size). The result of this is shown in the fifth row for the
Level I and III parameter sets and in the fourth row for the Level V parameters.

Overall, our signature optimization allows us to reduce the signature size
significantly to about 30% at Level I, to about 12% at Level III, and to about
6% on Level V at little to no negative impact on public key size and signing
time (which for smaller parameter sets even can be improved as well depending
on what trade-offs are chosen for the performance parameters s, t, and w).

5 Extending Our Technique to ALTEQ

Our technique is designed to apply to group-action Fiat-Shamir signatures using
matrix codes. It is however not immediately clear whether it is still a valid
approach under specific constraints. In this section we answer positively this
question for the case of matrix codes arising from alternating trilinear forms
used by ALTEQ [22,6]. In this case the isometries can be represented by a
single matrix, and the matrix codes show a specific symmetry, coming from
the alternating-ness, not present in random matrix codes.
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q n m k bit sec. s t w
pk

(byte)
sig

(byte)
sign

(mcyc)

NIST Security Level I

Ia 1 spec [10] 4093 14 14 14 146.52 4 1152 14 9 923 9 896 486.89

Ia 2 spec n++ 15 130.05† 10 685 10 512 551.40

Ia 3 sig opt 15 130.05† 10 616 2 252 708.81

Ia 4 sig opt 16 15 15 148.61 13 196 2 294 896.85
Ia 5 sig opt 16 148.61 2 256 30 4 420 2 886 199.24

Ib 1 spec [10] 4093 14 14 14 146.52 5 192 20 13 220 12 976 82.34

Ib 2 spec n++ 15 130.05† 14 236 13 856 88.38

Ib 3 sig opt 15 130.05† 14 144 2 056 120.43

Ib 4 sig opt 16 15 15 148.61 17 584 2 116 147.61
Ib 5 sig opt 16 148.61 2 144 48 4 420 4 016 112.22

NIST Security Level III

IIIa 1 spec [10] 4093 22 22 22 216.83 4 608 26 41 711 41 080 1 244.56

IIIa 2 spec n++ 23 195.38† 43 697 42 848 1 325.20

IIIa 3 sig opt 23 195.38† 43 592 5 044 1 730.32

IIIa 4 sig opt 24 23 23 213.64 50 024 5 122 2 027.83
IIIa 5 sig opt 24 213.64 3 480 31 33 360 5 203 1 572.73

IIIb 1 spec [10] 4093 22 22 22 216.83 5 160 36 55 604 54 736 332.91

IIIb 2 spec n++ 23 195.38† 58 252 57 184 361.72

IIIb 3 sig opt 23 195.38† 58 112 4 840 450.68

IIIb 4 sig opt 24 23 23 213.64 66 688 4 948 524.62
IIIb 5 sig opt 24 213.64 3 128 69 33 360 6 241 425.93

NIST Security Level V

Va 1 spec [10] 2039 30 30 30 291.31 5 192 52 134 180 132 528 1 229.89

Va 2 spec n++ 31 298.24 138 804 136 896 1 285.49
Va 3 sig opt 31 298.24 138 632 8 092 1 623.09
Va 4 sig opt 31 298.24 4 144 74 103 982 10 302 1 257.84

Vb 1 spec [10] 2039 30 30 30 291.31 6 112 66 167 717 165 464 726.48

Vb 2 spec n++ 31 298.24 173 497 171 008 750.95
Vb 3 sig opt 31 298.24 173 282 7 526 955.19
Vb 4 sig opt 31 298.24 5 112 86 138 632 8 546 955.76

†For these cases, inceasing n to m+ 1 reduces the security under the desired
level. To compensate for this, the security paramters need to be increased.

Table 1. Comparison of the |m− n| ≤ 1 signature size optimization from Section 4.2
(“sig opt”) in several variants with the original parameter sets (“spec [10]”) and the
original parameter sets using n = m+ 1 (“spec n++”).
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Alternating Trilinear Forms. An alternating trilinear form (ATF ) on Fn
q is a

function
ϕ : Fn

q × Fn
q × Fn

q → Fq

such that it is:

– Trilinear: It is linear in each of its three arguments.
– Alternating: Whenever xi = xj , for some i ̸= j, then ϕ(x1,x2,x3) = 0.

The vector space of alternating trilinear forms on Fn
q is denoted by

∧3 Fn
q . When

q is odd, every alternating form is also skew-symmetric, i.e. ϕ(x1,x2,x3) =
−ϕ(xτ(1),xτ(2),xτ(3)) for any transposition τ ∈ S3.

A trilinear form is, by trilinearity, completely determined by its value on all
triples of basis vectors cijk = ϕ(ei, ej , ek) for 1 ≤ i, j, k ≤ n. If in addition the
form is alternating, there is redundancy in these values, since cijk = −cikj =
ckij = −cjik = cjki = −ckji Therefore, an ATF is completely determined by
cijk = ϕ(ei, ej , ek) for 1 ≤ i < j < k ≤ n and can be represented by

(
n
3

)
field

elements.
For a given v ∈ Fn

q , we will use the notation ϕv = ϕ(−,−,v) to denote a
partially fixed trilinear form. Similarly, we will write ϕi = ϕei = ϕ(−,−, ei) in
the case of basis vectors. By abuse of notation we will sometimes write ϕv for the
skew-symmetric matrix (ϕv)jk = ϕv(ej , ek). In our optimization we will make
use of the following observation:

ϕ(u,v,w) = [ϕ1(u,v), . . . , ϕn(u,v)] ·w, ∀ u,v,w ∈ Fn
q

Here · represents the standard inner product. For simplicity we will denote

ϕu,v = [ϕ1(u,v), . . . , ϕn(u,v)] ∈ Fn
q .

Note that alternating-ness implies that ϕu,v = ϕv,u.

A Cryptographic Group Action. The Alternating Trilinear Form Equivalence
problem can be seen as the vectorization problem of a group action of GLn(q)

on
∧3 Fn

q . This group action can be constructed as follows, given a linear trans-

formation A ∈ GLn(q) we can naturally lift this to
∧3 Fn

q via

ϕ ·A = ϕ ◦A = ϕ(A(−),A(−),A(−)).

In this way we get a right group action of GLn(q) on
∧3 Fn

q . Now, given the group
action, we define the Alternating Trilinear Form Equivalence (ATFE) problem:

Problem 2 (Alternating Trilinear Form Equivalence). ATFE(n, ϕ, ψ):
Input: Two alternating trilinear forms ϕ, ψ.
Question: Find – if any – A ∈ GLn(q) such that ϕ ·A = ψ i.e.:

ϕ(Ax,Ay,Az) = ψ(x,y, z) ∀x,y, z ∈ Fn
q .

Since ATFE is a hard problem, we obtain a cryptographic group action.
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The ATFE problem can be restated in terms of matrix codes. Given an al-
ternating trilinear form ϕ, we denote by ⟨ϕ1, . . . , ϕn⟩ the code generated by the
matrices ϕ1, . . . , ϕn. We will say that this code is the matrix code representation
of ϕ. We now have the following formulation:

Problem 3 (Alternating Trilinear Form Equivalence (Matrix Code formulation)).
ATFE(n, ϕ, ψ):
Input: Two alternating trilinear forms in matrix code representation ⟨ϕ1, . . . , ϕn⟩,
⟨ψ1, . . . , ψn⟩.
Question: Find – if any –A ∈ GLn(q) such thatA⊤ϕiA ∈ ⟨ψ1, . . . , ψn⟩ ⊂ Fn×n

q

for all 1 ≤ i ≤ n.

This restatements shows that ATFE can be considered as a matrix code equiv-
alence problem with restriction on the type of isometry and the structure of the
codes. Note that both MCE and ATFE are TI-complete as shown in [21] and [18].

5.1 The Basic ALTEQ Protocol

The basic ALTEQ protocol is a straightforward application of Fiat-Shamir to
an equivalence problem. It is similar to the basic MEDS protocol except that
the ATF is represented using its compact representation that requires only

(
n
3

)
entries (as opposed to a matrix code representation that requires n3 entries). It is
given in Figure 6. Note that the basic ALTEQ protocol can be optimized similarly
to other group-action Fiat-Shamir signatures using standard techniques such
as multiple public keys, fixed-weight challenges and seed-trees (see Section 3).
The authors in [6] consider as part of their submission only the first two. They
provide an implementation of seed-trees as well, but leave as open their usage
for optimization of the signature size.

Remark 1. The ALTEQ specifications [6] considers a left group action instead
of a right group action. These two can be easily translated to each other since
acting on the right with A is equivalent to acting on the left with A⊤ and vice-
versa. It is clear that choosing either has no impact on the validity or security
of the protocol. For the sake of this exposition and for reducing the amount of
transpose symbols, we will use the right group action throughout. Therefore we
also state the basic ALTEQ protocol with a right group action in Figure 6.

5.2 The Solve Procedure for ALTEQ

The main idea of our technique introduced in the previous sections is to recover
the full isometry from a small given part of the isometry itself and matching
pairs of codewords from the two isometric codes that the isometry maps one to
another. In MEDS, the isometry is the most general one, so it is rather easy to
find Ã and B̃ from part of T̃ and two pairs of matching codewords.

In ALTEQ, if we view it in matrix code representation, we have Ã = B̃ = T̃.
Trying to find algebraically the coefficients of Ã and Ã−1 as in MEDS, might
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Public Data
q, n, λ ∈ N.
A0 = In ∈ GLn(q).

I. Keygen()

1. ϕ0
$←−−

∧3 Fn
q .

2. A1
$←−− GLn(q).

3. ϕ1 ← ϕ0 ·A1.
4. sk← A1 and pk← (ϕ0, ϕ1).
5. Return (sk, pk).

II. Commit(pk)

1. Ã
$←−− GLn(q).

2. ψ ← ϕ0 · Ã.
3. cmt← ψ.
4. Return cmt.

IV. Response(sk, pk, cmt, ch)

1. rsp← A−1
ch · Ã.

2. Return rsp.

III. Challenge()

1. ch
$←−− {0, 1}. Return ch.

V. Verify(pk, cmt, ch, rsp)

1. Parse rsp into A′.
2. If A′ /∈ GLn(q), return “reject”.
3. cmt′ ← ϕch ·A′.
4. If cmt′ = cmt, return “accept”. Other-

wise, return “reject”.

Fig. 6. ALTEQ Sigma Protocol.

not be the best strategy. The matrices being the same seems to cause a problem
and next, we see why. Nevertheless, we show how we can actually make use of
it to achieve a similar effect as in MEDS.

Let us fix the first α columns of Ã. Denote by Ai the ith column of Ã. Now,
since for i ≤ α, we know that Ãei = Ai, we can compute the matrices:

ϕ(Ãei, Ã(−), Ã(−)) = ϕAi
(Ã(−), Ã(−)), ∀i ≤ α.

Now, just as in MEDS we can consider these to be codewords, fix matching
target codewords in the ephemeral ATF , and build a system of equations to
find the rest of the isometry. For example, we can fix a skew-symmetric matrix
ψi and create a system using the following equality:

ϕAi
(Ã(−), Ã(−)) = ψi(−,−).

However, as we can see, this expression is quadratic in the Ã variables, which
would be too inefficient to solve during signing. We could try to take one Ã to
the other side:

ϕAi
(Ã(−),−) = ψi(−, Ã−1(−)).

However, to make sure that Ã and Ã−1 are in fact each others inverses, we again
need quadratic equations, which is a problem since the final system will likely
be inefficient to solve.

What we can do to avoid quadratic equations, is fix one more argument in
ϕ. Now we calculate, for i ̸= j and i ≤ α

ϕ(Ãei, Ãej , Ã(−)) = ϕ(Ai, Aj , Ã(−)) = ϕAi,Aj
· Ã.
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Now, this is promising, as ϕAi,Aj · Ã is just a linear expression. If we fix a target

vector Ψ̄i,j ∈ Fn
q to match it with, we should get n equations in the Ã variables.

Or at least, so it seems: We do have to be careful here, because for k ≤ α,

(Ψ̄i,j)k = (ϕAi,Aj
· Ã)k = ϕAi,Aj

· Ã · ek = ϕAi,Aj
·Ak.

But this equation does not contain any Ã variables! So it will almost surely be
an inconsistent equation. To avoid this from happening, we fix the last n − α
positions of the vector Ψ̄i,j as Ψi,j ∈ Fn−α

q and consider only the last n − α

columns of Ã, which we denote by Ãx, resulting in:

Ψi,j = ϕAi,Aj
· Ãx

Now since we fixed αn entries of our isometry, and for every pair i, j ≤ α
we get n − α equations, we need to choose target vectors for n pairs i, j ≤ α.
Furthermore, by symmetry, ϕAi,Aj

= ϕAj ,Ai
, so Ψi,j = Ψj,i. In other words, we

need n pairs with i ≤ j ≤ α. This gives the condition
(
α
2

)
≥ n which determines

how big must α be.
Let (i1, j1), . . . , (in, jn) be such a list of n distinct pairs with ik ≤ jk ≤ α.

Then let us construct the following matrices:

ΦÃ =

ϕAi1
,Aj1

...
ϕAin ,Ajn

 ∈ Fn×n
q and Ψ =

Ψi1,j1
...

Ψin,jn

 ∈ Fn×(n−α)
q .

We can now write our equations as:

ΦÃ · Ãx = Ψ.

When ΦÃ is invertible, which happens with probability 1/q, we can compute the

remaining values of Ã as Ãx = Φ−1

Ã
·Ψ . Since we want an isometry, we only have

to check that the entire Ã is full rank, which happens with chance 1/q.
Thus to conclude, if we fix α columns of our isometry and a random matrix

Ψ ∈ Fn×(n−α)
q , then we can create a system in the remaining entries of Ã that

has at most one solution with chance roughly 2/q. We summarize the above
discussion in the procedure SolveΨ given in Figure 7. In the description, we use
an injective function I = (I1, I2) : {1, . . . , n} → {(i, j) | 1 ≤ i < j ≤ α} whose
purpose is to ease the notation by providing an ordering on the two-dimensional
indices relevant in the construction.

5.3 The Optimized Protocol

The above method, following the same reasoning as for MEDS in the previous
sections, suggests to execute the protocol using a specific, fixed choice of Ψ for
all alternating forms we use. Denote the set of all alternating forms ϕ ∈ ∧3 Fn

q

with this fixed Ψ by AΨ .
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Constants: Ψ ∈ Fn×(n−α)
q , and an injective function I : {1, . . . , n} → {(i, j) | 1 ≤ i <

j ≤ α}.
Input: ϕ0 ∈

∧3 Fn
q , Ai ∈ Fn

q for i ≤ α.
Output: Ã ∈ GLn(q) such that
Ãi = Ai for i ≤ α and (ϕ0 · Ã)(eI1(i), eI2(i), ej+α) = Ψi,j , or ⊥.

1. Construct ΦÃ = {ϕ0

(
AI1(i), AI2(i), ej

)
}i,j

2. If ΦÃ /∈ GLn(q), return ⊥.
3. Ã = (A1 · · · Aα | Φ−1

Ã
Ψ).

4. If Ã /∈ GLn(q), return ⊥. Otherwise return Ã.

Fig. 7. The function SolveΨ .

To see that restricting the protocol to AΨ does not impact the security we
make the following argument.

Let us assume that ATFE restricted to AΨ is an easy problem, i.e. given

ϕ̃, ψ̃ ∈ AΨ , we can find an isometry ϕ̃
A−→ ψ̃ efficiently. Now we want to show

that with assumption, ATFE is easy as well to obtain a contradiction.

Let ϕ, ψ ∈ ∧3 Fn
q , then we can, using Solve, efficiently find ϕ̃, ψ̃ ∈ AΨ and

Ã, B̃ ∈ GLn(q) with ϕ
Ã−→ ϕ̃ and ψ

B̃−→ ψ̃. But now, using our assumption,

we can efficiently find an isometry ϕ̃
A−→ ψ̃. Using this we can construct the

isometry B̃−1 ◦A ◦ Ã : ϕ → ψ. Hence we could solve ATFE efficiently, which is
a contradiction.

To summarize the discussion, we present our optimized protocol in Figure 8.
We formally show its security with the following theorem.

Theorem 3. The protocol in Figure 8 is a Σ-protocol for the ATFE relation.

Proof. We prove as usual the properties of completeness, special soundness and
honest-verifier zero-knowledgeness.

Completeness: For (cmt0, rsp0) being an honestly generated commitment-response
pair for ch = 0, rsp0 consists of the first α columns, A1, . . . , Aα, of Ã. This
means that A′ is parsed into exactly these columns which results in Ã′ = Ã and
Verify(pk, cmt0, 0, rsp0) = “accept”.

For ch1, the response rsp1 consists of the columns A′
i = A−1

1 Ai for 1 ≤ i ≤ α.
Now for i ≤ j ≤ α we have the following equality:

ψA′
i,A

′
j
= ψ(A−1

1 Ai,A
−1
1 Aj ,A

−1
1 A1−)

= ϕ(Ai, Aj ,A1−)
= ϕAi,Aj

·A1.
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Public Data
q, n, λ ∈ N.
A0 = In ∈ GLn(q).
α = min{m | m ∈ N,

(
m
2

)
≥ n}.

An injective function
I : {1, . . . , n} → {(i, j)|1 ≤ i < j ≤ α}.
Ψ ∈ Fn×(n−α)

q .

I. Keygen()

1. ϕ0
$←−− AΨ .

2. Ai
$←−− Fn

q for 1 ≤ i ≤ α.
3. A1 ← SolveΨ (ϕ0, {Ai})
4. ϕ1 ← ϕ0 ·A1.
5. sk← A1 and pk← (ϕ0, ϕ1).
6. Return (sk, pk).

II. Commit(pk)

1. Ai
$←−− Fn

q for 1 ≤ i ≤ α.
2. Ã← SolveΨ (ϕ0, {Ai})
3. If Ã =⊥, restart at 1.
4. ψ ← ϕ0 · Ã.
5. cmt← ψ.
6. Return cmt.

IV. Response(sk, pk, cmt, ch)

1. rsp← A−1
ch · (A1 · · · Aα) ∈ Fn×α

q .
2. Return rsp.

III. Challenge()

1. ch
$←−− {0, 1}. Return ch.

V. Verify(pk, cmt, ch, rsp)

1. Parse rsp into A′ ∈ Fn×α
q .

2. A′
i ← A′ei, for 1 ≤ i ≤ α.

3. Ã′ ← SolveΨ (ϕch, {A′
i})

4. If Ã′ =⊥, return “reject”.
5. ψ ← ϕch · Ã′.
6. cmt′ ← ψ.
7. If cmt′ = cmt, return “accept”. Other-

wise, return “reject”.

Fig. 8. Optimized Σ-protocol for ALTEQ.

Thus, in our Solve procedure the matrix ΦÃ′ that we build from ψ and A′
is is

equal to:

ΦÃ′ =

ψA′
i1

,A′
j1

...
ψA′

in
,A′

jn

 =

ϕAi1
,Aj1
·A1

...
ϕAin ,Ajn

·A1

 = ΦÃ ·A1

A first conclusion is that invertibility of ΦÃ is equivalent to invertibility of ΦÃ′ .
Then, when we solve ΦÃ′A′ = Ψ , we obtain

A′ = Φ−1

Ã′Ψ = A−1
1 Φ−1

Ã
Ψ = A−1

1 Ã.

In other words A′ = A−1
1 Ã proving completeness.

Zero-knowledge: The proof for Zero-knowledge again follows a similar struc-
ture as the ones for the optimized MEDS protocols. The case of ch0 is straight-
forward to simulate since the honest procedure for obtaining the pair (cmt0, rsp0)
does not involve the secret key. Because of completeness, we can immediately con-
clude that running the honest commit procedure without the secret key but in-
stead of ϕ, using ψ produces a valid transcript (cmt1, ch1, rsp1). Now since we can
sample from {Ã ∈ GLn(q) | ψ · Ã ∈ AΨ} uniformly random and the ephemeral
isometry is sampled uniformly random from {Ã ∈ GLn(q) | ϕ · Ã ∈ AΨ}, it
follows that distribution of the transcripts of the honest and simulated protocol
are the same, so we have zero-knowledge.
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Special-soundness: The premise of the optimization of the protocol is to send
isometries with less information. Since one can construct the respective isometry
from each response, special soundness is evident.

5.4 New Sizes

For the comparison of the new sizes to the original protocol we take the same
conventions. We denote by C the amount of public keys (excluding ϕ0), by r
the number of rounds in the Fiat-Shamir construction, and by K the amount of
rounds with non-zero challenge. Furthermore we denote by λ the security param-
eter and the size of our seeds. Now the security of the Fiat-Shamir construction
can still be calculated as: (

r

K

)
· CK

The new public key-size and signature size can be computed as:

PubKeySize = C

((
n

3

)
− n(n− α)

)
· ⌈log2 q⌉+ λ

SigSize = (r −K + 2) · λ+K · α · n · ⌈log2 q⌉
For NIST Security Level I, III, and V we take λ to be 128, 192 and 256

respectively, in line with the original ALTEQ specification.
Since the sizes of the public keys and isometries have changed, it can be

worthwhile to re-optimize the Fiat-Shamir parameters. For the balanced param-
eters we optimized on pk + sig. For the ShortSig parameter sets we limited the
public key to be of size 512 KB, 1 MB, and 2 MB respectively, in line with the
original specs. These re-optimizations of the Fiat-Shamir parameters are indi-
cated by a “+”-sign. In the re-optimizations we did not take computational speed
into account. One could always limit the number of rounds and re-optimize.

These size reductions come at a small computational cost. We call Ciso the
cost of a group action computation, Cmulti the cost of a matrix multiplication and
Cinverse the cost of matrix inversion then we can state the costs of the original
protocol as follows:

CKeygen = C · Ciso

CCommit = r · Ciso +K · Cmulti

CVerify = r · Ciso

In the optimized protocol we have the added computational cost of Solve. If we
assume that computing ΦÃ in Solve is as costly as Ciso then we can state its
computational costs as follows:

C ′
Keygen = C · (2 · Ciso + Cmulti + Cinverse)

C ′
Commit = r · (2 · Ciso + Cmulti + Cinverse) +K · Cmulti

C ′
Verify = r · (2 · Ciso + Cmulti + Cinverse)

This is a small price for the reduction in signature size.
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n α C r K
pk

(byte)
sig

(byte)
pk+ sig
(byte)

NIST Security Level I

Balanced spec [6] 13 − 7 84 22 8 024 15 896 23 920
Balanced optimized 13 6 7 84 22 5 476 7 888 13 364
Balanced+ optimized 13 6 3 160 23 2 356 9 400 11 756

NIST Security Level III

Balanced spec [6] 20 − 7 201 28 31 944 49 000 80 944
Balanced optimized 20 7 7 201 28 24 664 19 880 44 544
Balanced+ optimized 20 7 2 306 36 7 064 26 688 33 752

NIST Security Level V

Balanced spec [6] 25 − 8 119 48 73 632 122 336 195 968
Balanced optimized 25 8 8 119 48 60 032 40 736 100 768
Balanced+ optimized 25 8 2 424 47 15 032 49 728 64 760

Table 2. Comparison of the public key and signature sizes after optimization using
the “Balanced” parameter sets from (“spec [6]”).

n α C r K
pk

(byte)
sig

(byte)

NIST Security Level I

ShortSig spec [6] 13 − 458 16 14 523 968 9 528
ShortSig optimized 13 6 458 16 14 357 256 4 432
ShortSig+ optimized 13 6 657 29 11 512 476 3 752

NIST Security Level III

ShortSig spec [6] 20 − 229 39 20 1 044 264 32 504
ShortSig optimized 20 7 229 39 20 806 104 11 704
ShortSig+ optimized 20 7 297 69 17 1 045 464 10 816

NIST Security Level V

ShortSig spec [6] 25 − 227 67 25 2 088 432 63 908
ShortSig optimized 25 8 227 67 25 1 702 532 21 408
ShortSig+ optimized 25 8 276 88 23 2 070 032 20 544

Table 3. Comparison of the public key and signature sizes after optimization using
the “ShortSig” parameter sets from (“spec [6]”).
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