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Abstract. We formally define the Lattice Isomorphism Problem for
module lattices (module-LIP) in a number field K. This is a gener-
alization of the problem defined by Ducas, Postlethwaite, Pulles, and
van Woerden (Asiacrypt 2022), taking into account the arithmetic and
algebraic specificity of module lattices from their representation using
pseudo-bases. We also provide the corresponding set of algorithmic and
theoretical tools for the future study of this problem in a module setting.
Our main contribution is an algorithm solving module-LIP for modules
of rank 2 in K2, when K is a totally real number field. Our algorithm
exploits the connection between this problem, relative norm equations
and the decomposition of algebraic integers as sums of two squares. For
a large class of modules (including O2

K), and a large class of totally real
number fields (including the maximal real subfield of cyclotomic fields) it
runs in classical polynomial time in the degree of the field and the residue
at 1 of the Dedekind zeta function of the field (under reasonable number
theoretic assumptions). We provide a proof-of-concept code running over
the maximal real subfield of some cyclotomic fields.

Keywords: Module Lattices · Lattice Isomorphism Problem · Crypt-
analysis.

1 Introduction

The Lattice Isomorphism Problem (LIP) is an algorithmic problem recently in-
troduced in cryptography [15,2]. In its search version, LIP asks to find a linear
isometry, that is, a distance-preserving linear transformation, mapping a lattice
L1 onto an isomorphic lattice L2.4 The decisional variant asks, given two lattices
L1 and L2, to determine whether they are isomorphic. Algorithms for solving
4 Lattices are geometric objects, so an isomorphism between lattices should respect

the group structure and the geometry.
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either variant of the problems have been studied independently of cryptography
first [20], with more recent cryptanalytic works since then [7,26,13,12]. For the
search variant, the best known algorithm to solve LIP is due to Haviv and Regev
[20] and it runs in time nO(n) where n is the dimension of the space. It requires
to enumerate (possibly many) short vectors in both lattices and solving a Graph
Isomorphism Problem to reconstruct a linear isometry. Therefore, to our current
understanding, the hardness of LIP seems to hinge on the one of SVP.

An algebraic variant of LIP (named module-LIP) was introduced in 2023
in [14], and used to construct the scheme Hawk, currently in evaluation in NIST’s
additional call5 for digital post-quantum signature. The security of the scheme
relies on the hardness to find a given isomorphism to O2

K , where OK is the ring
of integers of a power-of-two cyclotomic field. The authors of [14] provided some
analysis on the security of this new variant, based on the algorithms solving
LIP in the unstructured case. In other words, so far, the only algorithms we
know for solving the module-LIP variant from [14] consist in forgetting about
the algebraic structure, treating the instance as a non-structured one. Generally,
the cryptographic novelty of the problem means that there are few tools for
cryptanalysts to understand it. The main goal of this work is to initiate the
development of these tools, motivated by the following question:

Is it possible to exploit the algebraic structure of module-LIP to solve it more
efficiently than LIP?

Contributions. Our first contribution is to formalize the framework for the
module-LIP problem. The definition from [14] was restricted to free modules
over a CM number field (see preliminaries for the definition of a CM field). Our
extended definition covers any module M and any number field, using the notion
of pseudo-bases [10]. While our formulation is slightly different from the one
in [14], with our definition, forging a signature against Hawk reduces to solving
the module-LIP instance defined by the public key. During the exposition of our
framework, we provide tools and security foundations for the future study of this
problem. This extends standard tools for the unstructured case to the module
setting, such as a worst-case to average-case reduction and algorithms such as
the Cholesky decomposition.

Our main technical contribution is an algorithm solving module-LIP when
the module M ⊂ K2 has rank-2 and when the number field K is a totally real
number field.6 An important family of totally real fields is K = Q(ζ + ζ−1),
with ζ a primitive root of unity, which is a degree 2 subfield of the cyclotomic
field Q(ζ), called its maximal totally real subfield. The precise complexity of our
algorithm is related to arithmetic properties of the module. Informally, when the
“gap” between the ideal generated by the coordinates of vectors in the module
and the ideal generated by the norms of these vector is small, our algorithm

5 https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
6 Our algorithm relies on arithmetic properties of the module, and does not extend to

modules M ⊂ K2
R, where KR := K ⊗Q R.

2

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures


runs in polynomial time. This is the case for the important module M = O2
K for

which the result is stated in Corollary 4.7.
The general complexity statement of the algorithm (for any totally real field

K and any module M ⊂ K2) is provided in Corollary 4.8. We want to stress
that this result does not break the Hawk signature scheme. Indeed, our algorithm
only works for totally real number fields, whereas the Hawk scheme is defined
over a power-of-two cyclotomic field. However, our algorithm rules out a large
class of possibly interesting fields, showing that using them for instantiations
could result in an insecure scheme.

We provide a proof-of-concept implementation of our algorithm using a mix
of Sagemath [33] and PARI/GP [32]. The code is available at https://gitlab.inria.
fr/capsule/code-for-module-lip. We were able to run our algorithm successfully
on module lattice isomorphic to O2

K , when K is the maximal totally real subfield
of a cyclotomic field up to conductor 256 (which means that the lattices involved
have dimension 128) — see also Table 1.

Technical details. A central tool for our definition of module-LIP is the notion
of pseudo-Gram matrices. Modules usually do not admit bases but only pseudo-
bases, as defined by Cohen in [10]. A pseudo-basis B of a module M consists
of a matrix B ∈ Kℓ×ℓ and a list of ℓ fractional ideals I1, . . . , Iℓ, such that
M = {

∑
i xibi |xi ∈ Ii}, where bi are the columns of B. In a natural way, we

define the pseudo-Gram matrix associated to the pseudo-basis B to be G =
(B∗B, (Ii)1≤i≤ℓ).

In the same way that a Gram matrix-based formulation is the better fit in
the unstructured case, this basic ingredient leads us to a well-defined version of
the module-LIP problem. Let B,C be two pseudo-bases of a module M , and
let G be the pseudo-Gram matrix of C (the pseudo-basis B is fixed, and will
be a parameter of the problem). The module-LIP problem with parameter B
(wc-smodLIPB

K) is, given as input G, to recover a pseudo-basis C ′ of M such
that its Gram matrix is G (C is a solution to this problem, but it may not be
unique).7 Let us explain briefly why this definition of the module-LIP problem
includes the problem underlying the security of Hawk. In Hawk, the secret key is
a basis C of O2

K , and the public key contains the Gram matrix G = C∗C. Since
O2
K is free, no ideals are involved. The secret key C is then a solution of the

module-LIP problem with parameter I2 (the trivial basis of O2
K), on input G. It

can be checked that any other solution C ′ to this problem can be used to forge
valid signatures.

The tools that we provide in Section 3 for manipulating module-LIP are
generalization of the results known for non-structured lattices. This extension
is easy once the formal framework is set up. For example, the worst-case to
average-case reduction (Appendix A) is the adaptation to the module context of
the reduction provided in [15]. The latter used a standard algorithm in lattice
theory, which computes a short basis of a lattice L given as input short linearly

7 This definition is not formulated exactly in the same way as Definition 3.11 below,
but both are equivalent.
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independent vectors and a (potentially large) basis of L. A module variant of
this algorithm was provided in [17], and we used it to complete our reduction.

Algorithm for module-LIP. We now explain how our algorithm for module-LIP
works, when K is totally real. To simplify the description in this introduction,
we will restrict ourselves to the case where the problem is parameterized by the
module O2

K (with basis B = I2), and where the input of the problem is a Gram
matrix G (instead of a pseudo-Gram matrix G). In other words, we are given as
input G ∈ M2(OK) are we are asked to compute C ∈ GL2(OK) a basis of O2

K

such that C∗C = CTC = G. We are thus looking for u, v, r, t ∈ O2
K such that(

u v
r t

)
·
(
u r
v t

)
=

(
u2 + v2 ur + vt
ur + vt r2 + v2

)
= G.

The diagonal coefficients of G must hence be the sum of two squares in OK .
Sums of two squares x2 + y2 = a over Z are the topic of Fermat’s two-squares
theorem. Algorithms such as Cornacchias’s allow to find all solutions of this
equation efficiently, and the equation usually does not have too many solutions
(this depends on the number of prime factors of a). A similar situation happens
when Z is changed to the ring of integers OK of a totally real field K.

Let us explain the principles behind the algorithm solving equations of the
form x2+y2 = a (with unknowns x, y ∈ OK). As K is totally real, it contains no
square roots of −1. Thus there is a quadratic extension L = K(i) where i is such
that i2 = −1. To any solution (x, y) of our equation corresponds the element
z := x+ iy ∈ OL. By definition of L, the relative norm NL|K(z) of this element
is precisely zz̄ = x2 + y2 = a. Hence, two-squares decompositions reduces to the
computation of all solutions z ∈ OL of zz̄ = a.8

To solve this norm equation NL|K(z) = a, we use the Gentry-Szydlo algo-
rithm, as described by Lenstra and Silverberg in [23]. Given a = zz ∈ OK and
I = zOL, the Gentry-Szydlo algorithms recovers z in polynomial time. To apply
it in our setting, we then need to compute the ideal I = zOL for all possible
solutions z. To do so, we observe that I · I = zz̄OL = aOL is known. Hence,
the ideals I we are looking for are principal divisors of the ideal aOL. It then
only remains to factor the ideal aOL and test all possible divisors I of it. The
number of such divisors is exponential in the number of prime factors of aOL, so
our algorithm is, also, exponential in the number of prime factors of aOL. These
two steps are handled by our provided code.

Combining everything, we obtain an algorithm which finds all the matrices
C ∈ M2(OK) such that CTC = G (so it solves module-LIP), but whose com-
plexity is, for the moment, exponential in the number of prime factors of the
diagonal coefficients q1 and q2 of the Gram matrix G. To make this algorithm
polynomial time, we re-randomize the matrix G (by computing G′ = U−1GU
with U ∈ GL2(OK), which transforms C into C ′ = CU), until its two diagonal
8 The set of z ∈ OL with zz̄ = a might be strictly larger than the set of solutions,

since we may have OK + iOK ⊊ OL, but we can easily check, given a z = x+ iy if
(x, y) is a solution to our equation.
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coefficients q1 and q2 are prime. Under some heuristic (formalised in Assump-
tion 1), we expect to find a good re-randomized matrix G′ in polynomial time
polynomial in the input size and in ρK , the residue of the Dedekind zeta function
of K at 1.

2 Preliminaries

Notations. Vectors are by default column vectors, and are denoted by bold lower
case letters (e.g., v). Matrices are denoted by non-bold upper case letters (e.g.,
B), and pseudo-matrices by bold upper case letters (e.g., B). For a ring R, we
write GLn(R) the set of n×nmatrices whose determinant is an invertible element
of R. We let On(R) be the set of orthogonal real matrices, Un(C) be the set of
unitary complex matrices, S>0

n (R) be the set of real symmetric positive definite
matrices, andH>0

n (C) be the set of complex Hermitian positive definite matrices.
For vectors v in Rn or in Cn, we let ∥v∥ (resp. ∥v∥∞, ∥v∥1) denote their ℓ2 (resp.
ℓ∞, ℓ1) norm. For a matrix B ∈ Cn×m with column vectors b1, . . . , bm, we use
the notation ∥B∥ := maxi ∥bi∥. For a field K and a subset S of a K-vector space
H, we write SpanK(S) for the K-vector subspace of H spanned by S. We use
log to refer to the natural logarithm (in base e).

2.1 Lattices

We call lattice any set of the form L =
∑

1≤i≤r bi · Z, where b1, . . . , bn ∈ Rm
are R-linearly independent vectors. It is a discrete additive subgroup of Rm. The
integer n is called the rank of L, when n = m we say that the lattice has full
rank. The matrix B = (b1 | . . . | bn) is called a basis of L and all bases of L are
obtained by multiplication on the right by a unimodular matrix U ∈ GLn(Z).
For a given matrix B ∈ GLn(R), we write L(B) the lattice spanned by B. The
determinant (or volume) of a lattice L is det(L) :=

√
det(BT ·B) for any basis

B of L. For 1 ≤ i ≤ n, the i-th successive minimum λi(L) of the lattice L is
the smallest real number r > 0 such that the set {v ∈ L | ∥v∥ ≤ r} spans a
real vector space of dimension at least i. We define analogously the successive
minima of L in the ℓ∞-norm. Minkowski’s first theorem states that λ(∞)

1 (L) ≤
det(L)1/n and λ1(L) ≤

√
n · det(L)1/n. The dual of a lattice L is the lattice

L∗ = {x ∈ SpanR(L) | ⟨x,v⟩ ∈ Z, ∀ v ∈ L}.

The lattice isomorphism problem. Two lattices L,L′ (with respective basesB,B′)
are said isomorphic if there exists an orthogonal transformation O such that
L′ = O · L. In terms of matrices, L(B) and L(B′) are isomorphic if and only if
there exists a unimodular transformation U ∈ GLn(Z) such that B′ = OBU .
The search version of the problem is precisely to find either such O or U .

Definition 2.1 (wc-sLIPB). For a matrix B ∈ GLn(R), the worst-case search
Lattice Isomorphism Problem with parameter B (wc-sLIPB) is, given a basis
B′ ∈ GLn(R) of a lattice L′ ⊂ Rn isomorphic to L(B), to find O ∈ On(R) or
U ∈ GLn(Z) such that B′ = OBU.
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For convenience, we restate LIP in terms of quadratic forms. The Gram
matrix associated to a basis B ∈ GLn(R) is the definite positive quadratic form
G = BTB ∈ S>0

n (R). Two quadratic forms Q,Q′ ∈ S>0
n (R) are said congruent if

there exists U ∈ GLn(Z) such that Q′ = UTQU .

Definition 2.2 (wc-sLIPQ). For a quadratic form Q ∈ S>0
n (R), the worst-case

search LIP problem with parameter Q (wc-sLIPQ) is, given any quadratic form
Q′ ∈ S>0

n (R) congruent to Q, to find a unimodular transformation U ∈ GLn(Z)
such that Q′ = UTQU .

The two problems are polynomial-time equivalent, thanks to the Cholesky
decomposition for quadratic forms.

Discrete Gaussian distributions. The Gaussian function over Rm with parameter
s ∈ R>0 is ρs(v) = exp(−π·∥v∥2/s2) for all v ∈ Rm. For a rank-n lattice L ⊂ Rm,
the discrete Gaussian distribution DL,s over L with parameter s (and center 0)
is the probability distribution defined over L by

PrX∼DL,s(X = v) =
ρs(v)

ρs(L)
,

for all v ∈ L, where ρs(L) =
∑

v∈L ρs(v).
For ε > 0 and L a rank-n lattice, the smoothing parameter ηε(L) is the

smallest real number s > 0 such that ρ1/s(L∗ \ {0}) ≤ ε. Instantiating [27,
Lemma 3.3] with ε = 1/2, we obtain the following upper bound, for any rank-n
lattice L

η1/2(L) ≤
√

log(6n)

π
· λn(L). (1)

Lemma 2.3 (Proof of [27, Lemma 4.4]). Let L be a rank-n lattice, ε > 0
and s ≥ ηε(L), then

ρs(L) ∈ [1− ε, 1 + ε] · sn

det(L)
.

One can efficiently sample discrete Gaussian distributions over lattices, pro-
vided the parameter s is large enough.

Lemma 2.4 (Weakening of [6, Lemma 2.3]). There is a probabilistic poly-
nomial time algorithm DiscreteGaussian (B, s) that takes as input a basis B
of an n-dimensional lattice and a parameter s ≥

√
log(2n+ 4)/π · maxi ||bi||

(where bi are the columns of B) and returns a sample from DL,s.

Note that the lower bound on s, in our statement above, is slightly larger than
the one provided in [6, Lemma 2.3] (it involves the euclidean norm of the column
vectors of B, instead of the Gram-Schmidt orthogonalization of B), but this will
be sufficient for our purposes in this article.

Lemma 2.5 ([16, Lemma A.5]). For any rank-n lattice L with basis B =
(bi)1≤i≤n, if s ≥

√
n ·maxi ∥bi∥, then for any ε ∈ (0, 1] it holds that

Pr v∼DL,s
(
||v|| > s

√
4n+ log(1/ε)

)
≤ ε.
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2.2 Number fields

A number fieldK is a finite extension of the field of rational numbers Q. Any such
K is isomorphic to Q[X]/(P ) for an irreducible monic polynomial P ∈ Q[X]. The
degree of P is exactly the degree of the extension. Furthermore, any extension K
of degree d comes naturally with d embeddings K → C, sending the class of X to
a complex root of P . An embedding σ : K → C such that σ(K) ⊂ R is called a
real embedding. An embedding σ which is not real is called complex. In this case,
it can be composed with complex conjugation and gives another distinct complex
embedding σ. We denote by d1 the number of real embeddings and d2 the number
of complex embeddings up to complex conjugation, so that d = d1 + 2d2. We
order the embeddings σ1, · · · , σd such that σi is a real embedding for 1 ≤ i ≤ d1
and σi+d2 = σi for d1 < i ≤ d1 + d2. When d1 = d (resp. 2d2 = d), we say that
the extension K|Q is totally real (resp. totally imaginary).

The space KR. The R-algebra KR := K ⊗Q R is a real vector space of dimen-
sion d. If K ∼ Q[X]/(P ), then we have an identification KR ∼ R[X]/(P ). The
embeddings of K can be uniquely extended to KR, which leads to the so-called
canonical embedding σ(x) = (σ1(x), . . . , σd(x)) ∈ Cd. This map defines a ring
homomorphism from KR to σ(KR), which is the d-dimensional real vector space

σ(KR) :=
{
z = (zi)i ∈ Cd | z1, . . . , zd1 ∈ R, zd1+i = zd1+d2+i, 1 ≤ i ≤ d2

}
.

To any z ∈ KR we associate its complex conjugate z̄ := σ−1(σ(z)) ∈ KR,
where σ(z) consists in taking the complex conjugation of σ(z) ∈ Cd coordinate-
wise. We let K+

R (resp. K++
R ) be the subset of KR corresponding to elements

with all non-negative (resp. positive) embeddings (in particular, the complex
embeddings are all real numbers). The norm map defined over KR is NK(z) =∏
i σi(z), and extends the well-known notion of algebraic norm for elements of

K. Similarly, the trace map is TrK(z) =
∑
i σi(z). When there is no ambiguity,

we drop the subscript. If z ∈ K (resp. OK), then N (z),Tr(z) ∈ Q (resp. Z).
Another important notion of size for KR is the corresponding “T2-norm” ∥z∥2 :=
∥σ(z)∥2 = Tr(zz) ∈ R+.

We extend the canonical embedding to vectors of Kk
R and matrices in Kk×k′

R
by applying it coordinate-wise. We say that r vectors b1, · · · , br in Kk

R are
(KR-)linearly independent if there exists no non-zero r-tuple x = (x1, · · · , xr) ∈
Kr

R \ {0} such that
∑
i xibi = 0. Note that, since KR is not a field, this notion

can be interesting even for r = 1 vector: a vector b ∈ Kk
R is linearly indepen-

dent if and only if σi(b) ̸= 0 for all embeddings σi. For a matrix B ∈ Kk×k′
R ,

we let B∗ = BT ; this covers vectors (k or k′ is 1). We let Uk(KR) denote the
group of unitary matrices of KR, that is the matrices B ∈ GLk(KR) such that
B∗ ·B = Ik. Thanks to the injectivity of the canonical embedding, it holds that
B is in Uk(KR) if and only if σi(B) ∈ Uk(C) for all embeddings σi. For v = (vi)i
and w = (wi)i ∈ Kk

R (for some k ≥ 1), we define

⟨v,w⟩KR := v∗w =
∑
i

vi · wi ∈ KR.
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This extends the T2-norm toKk
R as ∥v∥2 := Tr ⟨v,v⟩KR =

∑
iTr(vivi) = ∥σ(v)∥2.

Ring of integers. We denote by OK the ring of integers of a number field K.
The ring OK is a free Z-module of rank d. The discriminant of K is defined by
(det(σi(ej))i,j)

2 ∈ Z, where (ei)1≤i≤d is any Z-basis of OK (this does not depend
on the choice of the basis). Its absolute value is denoted ∆K . There exists some
absolute constant c such that ∆K ≥ cd for all number fields K. In particular,
we always have d = poly(log∆K).

A special case that will be of interest for us in Section 4.3 is when K is
totally real and L = K[X]/(X2 + 1). In this case, we have ∆L | 4d∆2

K . This can
be obtained using the formula ∆L = NK(∆L|K) ·∆[L:K]

K and the fact that ∆L|K
divides disc(X2+1) ·OK = 4 ·OK (see [31, III, §4, Proposition 8] and [31, III, §2,
Corollary to Proposition 5] with lattices X = OL and X ′ = OK [i]). In particular
for these extensions we always have log∆L = poly(log∆K). Moreover, we also
know how to compute OL efficiently from OK , as stated in the following lemma.

Lemma 2.6 (Specialization of [9, Theorem 1.2]). Let K be a totally real
number field and L := K[X]/(X2+1). There exists a polynomial time algorithm
A that, given as input a Z-basis BK of OK , computes a Z-basis BL of OL.

Proof. We apply Buchmann-Lenstra algorithm to the orderO = OK [X]/(X2+1)
of L, with basis B = B0 ∪X ·B0. One can prove that in our situation, the index
[OL : O] is a power of two so it is enough to make it 2-maximal, i.e., we can take
m = 2 in input of the algorithm. ⊓⊔

Residue. We write ρK the residue of the zeta function of K at s = 1. This
is a positive number, which is always ≤ O(log∆K)d [24, Theorem 1]. In some
number fields, such as when K is a cyclotomic fields, we have better bounds,
and we know that ρK = poly(d) [5, Theorem A.5]. Unfortunately, we are not
aware of a proven polynomial bound for the maximal totally real subfield of a
cyclotomic field (for these fields, the best bound we found was ρK = O(1.31d)
[34, Lemma 11.5]). However, in practice, in all our experiments with maximal
totally real subfield of a cyclotomic field, we observed that the residue ρK was
quite small.

Ideals. An integral ideal a is an additive subgroup of OK such that x · a ⊂ a
for all x ∈ OK . Equivalently, it is an OK-module contained in OK .9 An ideal
generated by a single element a is called principal, and is denoted by aOK . A
fractional ideal I of K is any additive subgroup of K of the form x · a where
x ∈ K \ {0} and a ⊂ OK is an integral ideal. We use fraktur lower-case letters
for integral ideals (e.g., a, b) and upper-case letters for fractional ideals (e.g., I,
J). The product of two fractional ideals I and J is the smallest ideal containing
all products xy for x ∈ I and y ∈ J , denoted by IJ . This operation turns the
set of non-zero fractional ideals into a multiplicative group. Given two fractional
9 Note that OK is a Dedekind ring. In particular, it is Noetherian, so all ideals are

finitely generated as OK-module.
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ideals I and J , we have that I ⊆ J if and only if there exists an integral ideal
a such that I = J · a. When this is the case, we say that J divides I, and we
may write J |I. An integral ideal p is prime when p ̸= {0} and ab ∈ p implies
a ∈ p or b ∈ p — such ideals are maximal in OK . We have unique factorization
of integral ideals into prime ideals (up to permutation of the factors).

The algebraic norm of an integral ideal is N (a) = |OK/a|. It is multiplicative,
extends to fractional ideals as N (I) = N (dI)/N (d) for any d such that dI is
integral. If I = aOK is principal, then N (I) = |N (a)|.

Modules. In this article, an (OK-)module M will refer to a subset of Kℓ
R of the

form b1I1 + · · · + brIr, where the Ii are non-zero fractional ideals of K and
(b1, . . . , br) are KR-linearly independent vectors of Kℓ

R, for some ℓ > 0. The
integer r is called the rank of the module. When r = ℓ, we say that the module
has full rank. When M ⊂ (OK)ℓ (resp. M ⊂ Kℓ), we say M is an integer module
(resp. a rational module). We say that B = (B, {Ii}1≤i≤r) is a pseudo-basis for
M , where B ∈ Kℓ×r

R is the matrix whose columns are the b′is. Two pseudo-
bases B = (B, {Ii}1≤i≤r) and B′ = (B′, {Ji}1≤i≤r) represent the same module
if and only if there exists U = (ui,j)1≤i,j≤r ∈ GLr(K) such that B′ = BU and
ui,j ∈ IiJ

−1
j , vi,j ∈ JiI

−1
j , where V = (vi,j)1≤i,j≤l = U−1.10 Given a module

M and a non-zero fractional ideal J , we define J ·M to be the smallest module
containing all α ·v for α ∈ J and v ∈M . If B = (B, {Ii}1≤i≤r) is a pseudo-basis
of M , then B′ = (B, {J · Ii}1≤i≤r) is a pseudo-basis of J ·M .

If M ⊂ Kℓ
R is a module of rank r, then the set σ(M) := {σ(v) |v ∈ M} is

a module lattice, that is, a lattice of rank dr in the real space σ(KR)
ℓ equipped

with the (extended) T2-norm. Since we always use the canonical embedding to
view modules as lattices in this work, we will simplify notations and write λi(M)
and det(M) instead of λi(σ(M)) and det(σ(M)).

A special case of module lattices is when M = I is a non-zero fractional ideal
of K. In this case, we know that det(I) =

√
∆K · N (I) (see e.g., [29, Chapter I.

Proposition 5.2]). We also know that the successive minima of σ(I) cannot be
very unbalanced. More precisely, we have

λd(I) ≤ ∆1/d
K · λ1(I) ≤

√
d ·∆3/(2d)

K · N (I)1/d. (2)

The second inequality follows from Minkowski’s first theorem, and the equality
det(I) = ∆

1/2
K · N (I). This first inequality can be obtained by choosing x ∈ I

reaching λ1(I) (i.e., such that ∥σ(x)∥ = λ1(I)) and {α1, . . . , αd} linearly inde-
pendent elements of OK reaching the successive minima in infinity norm (i.e.,
such that ||σ(αi)||∞ = λ

(∞)
i (OK)). Then {α1x, . . . , αdx} are Z-linearly indepen-

dent elements of I thus λd(I) ≤ maxi ||σ(αix)|| ≤ ||σ(x)|| ·λ∞d (OK). The desired
upper bound is then obtained by the fact that λ(∞)

d (OK) ≤ ∆1/d
K (see [3] for the

asymptotic result and [5, Theorem A.4] for the upper bound with an explicit
constant).

10 When M ⊂ Kl is a rational module, these are the conditions for U to be a pseudo-
base change matrix, see [10].
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In the general case, the volume of a module M of rank r with pseudo-basis
(B, (Ii)i) is det(M)2 = ∆r

K · det(B∗B) ·
∏r
i=1N (Ii)

2.

CM extensions. A CM (complex multiplication) extension is any quadratic ex-
tension L|K of number fields such that K is totally real and L is totally imagi-
nary. In the rest of this article, we will always use the convention that the degree
of K is d, and the degree of L is 2d. A typical example to keep in mind is when
L is a cyclotomic field and K is its maximal totally real subfield.

Any CM extension L|K is Galois, and so L has two field automorphisms
fixing K point-wise, namely the identity and another automorphism which we
will call τ . The automorphism τ somehow plays the role of a complex conjugation
on L, as can be seen in the following lemma.

Lemma 2.7. Let L|K be a CM extension of number fields and σi be an embed-
ding of L in C. Then σi(τ(x)) = σi(x) for all x ∈ L.

Proof. First, observe that the composition map σi ◦ τ is an embedding of L.
Moreover, since τ is the identity on K, then it must be that σi ◦ τ = σi on K,
which restricts it to be either σi or σi. Finally, τ is not the identity on L, and σi
is injective, hence we cannot have σi ◦ τ = σi and we conclude that σi ◦ τ = σi
as desired. ⊓⊔

For an element x ∈ L, the relative norm of x is defined as NL|K(x) := x·τ(x),
which is an element of K (since it is fixed by τ). We also define similarly the
relative norm of a fractional ideal I of L: NL|K(I) := I · τ(I)∩K, where τ(I) :=
{τ(x) |x ∈ I} is also a fractional ideal of L. Finally, if I = xOL is a principal
ideal, then it holds that NL|K(I) = NL|K(x) · OK .

Splitting of prime ideals in CM extensions. Let p be a prime ideal in OK . Then,
pOL is an integral ideal of OL and one of the three situations holds for its
factorization into prime ideals (see e.g., [29, Chap 2. Proposition 8.2])

pOL =

q with q prime and NL|K(q) = p2 (inert case),
q1q2 with q1 ̸= q2 prime and NL|K(qi) = p (split case),
q2 with q prime and NL|K(q) = p (ramified case).

(3)

This implies in particular the following result.

Lemma 2.8. Let q be a prime ideal of OL and p be a prime ideal of OK . If p
divides NL|K(q), then q divides pOL.

Proof. Since q is prime, then a = q ∩ OK is a prime ideal of OK . Moreover,
aOL ⊆ q, i.e., q divides aOL. Equation (3) gives us all the possibilities for the
factorization of aOL into prime ideals, from which we conclude that NL|K(q) = a
or NL|K(q) = a2. This implies that p = a, and concludes the proof. ⊓⊔
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2.3 Algorithmic considerations

This section collects various computational results. In this article, we assume
a model of computation where computers have access to infinite precision real
numbers. Most of the time, we will work with elements of K which we can
represent with rational numbers, and for which we define a notion of size. When
we need to work with complex numbers, we assume that we have enough precision
so that all computations are correct.

Representation of ideals and modules. We assume in this article that we are
always given an LLL reduced basis α1, . . . , αd of OK , i.e., such that (σ(αi))i
is an LLL-reduced basis of OK . Elements in K (resp. KR) are represented by
their coordinates in the basis (α1, . . . , αd), which is a vector in Qd (resp Rd).
For x ∈ K represented by the vector (x1, . . . , xd) ∈ Qd, we define size(x) :=∑
i size(xi), where the size of a rational number a/b with a and b coprime is

⌈log2 |a|⌉+⌈log2 |b|⌉. Since (αi)i is LLL-reduced for the canonical embedding, [17,
Lemma 2] states that if x =

∑
i xiαi ∈ K, then maxi |xi| ≤ 23d/2 · ∥σ(x)∥. This

implies in particular that for any integral x ∈ OK , size(x) = poly(d, ∥σ(x)∥).
Inversely, we have ∥σ(x)∥ ≤

∑
i |xi| · ∥σ(αi)∥ ≤ d3/2 · 2d ·∆

1/d
K ·maxi |xi| (where

we used the fact that λd(OK) ≤
√
d ·∆1/d

K ). This implies that for any rational
x ∈ K, we have ∥σ(x)∥ ≤ poly(log∆K , size(x)).

A fractional ideal I is represented by a Z-basis (y1, . . . , yd) of the ideal, such
that (σ(yi))i is an LLL-reduced basis of σ(I). In particular, we have

∥σ(yi)∥ ≤ 2d · λd(I) ≤
√
d · 2d ·∆3/(2d)

K · N (I)1/d, (4)

where we used Inequality (2). We define size(I) :=
∑
i size(yi). If a is an integral

ideal, then (4) shows that size(a) = poly(log∆K , logN (a)). By default, in the
rest of this article, whenever an algorithm takes as input, manipulates, or returns
an ideal, we implicitly assume that the ideal is represented as described above.

For vectors and matrices with coefficients in K, we define their size as the
sum of the size of their coordinates. Modules in Kℓ are represented by a pseudo-
basis B = (B, (Ii)), where B is a matrix with coefficients in K and the Ii’s
are fractional ideals, represented by LLL-reduced bases as discussed above. We
define size(B) := size(B) +

∑
i size(Ii).

Basic algorithms for number fields. If x, y ∈ K, then size(x · y) ≤ poly(size(x),
size(y), log(∆K)), where we used the relations between size(x) and ∥σ(x)∥ men-
tioned above, and the fact that ∥σ(x · y)∥ ≤ ∥σ(x)∥ · ∥σ(y)∥. Such a product can
be computed in time poly(size(x), size(y), log(∆K)).

With the representation of ideals as described above, one can multiply two
ideals I and J in time poly(size(I), size(J), log∆K). Indeed, if (xi)i is an LLL
reduced basis of I and (yi)i is an LLL reduced basis of J , then (xi · yi)i,j is a
generating set of I · J , and one can run the LLL algorithm on this generating
set to extract an LLL-reduced basis from it.
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Lemma 2.9. Let B = (B, {Ii}i) be a pseudo-basis of a rank r module M in Kℓ.
Then one can compute in polynomial time a basis C ∈ Cdℓ×dr of σ(M) such that
the column vectors ci of C satisfy

∥ci∥ ≤
√
d · 2d ·∆3/(2d)

K · max
1≤j≤r

(
∥σ(bj)∥ · N (Ij)

1/d
)
,

where bj is the j-th column of B.

Proof. Let (α(j)
i )i be the LLL reduced basis representing the ideal Ij for all 1 ≤

j ≤ r and bi be the columns of the matrix B. The basis C of σ(M) is composed
of the vectors cd(j−1)+i := σ(αji · bj), for 1 ≤ j ≤ r and 1 ≤ i ≤ d. These vectors
can be computed in polynomial time from B and the α(j)

i ’s. The upper bound
on their size follows from the upper bound ∥σ(α(j)

i )∥ ≤
√
d ·2d ·∆3/(2d)

K ·N (Ij)
1/d

(see Equation (4)). ⊓⊔

The computation of roots of unity is handled by the following lemma.

Lemma 2.10 (Factoring polynomials over a number field [1]). There
is a polynomial time algorithm that given a number field K and a polynomial
P ∈ K[X], factorizes P in K.

Corollary 2.11 (Computing roots of unity in a number field). Let K be
a degree d number field. Then, K has at most 2d2 roots of unity and there is a
polynomial time algorithm that given a basis of OK , computes the roots of unity
in K.

Proof. Let K be a number field of degree K. By Dirichlet’s unit theorem, we
know that the group UK of roots of unity in K is finite and cyclic. Let ζ be a
generator of this group, and m be its order. Since K contains Q(ζ), and Q(ζ) has
degree φ(m), it should be that φ(m) ≤ d. Also, we remark that for all n ≥ 2,
it holds that φ(n) ≥

√
n/2 (this is obtained by observing that p − 1 ≥ √p

for all prime p ≥ 3 and p − 1 ≥ √p/
√
2 for p = 2, and using the fact that

φ(
∏
i p
ei
i ) =

∏
i(pi − 1)pei−1

i ). Hence, the number m of roots of unity in K
satisfies m ≤ 2φ(m)2 ≤ 2d2. Then to compute UK , it is enough to factor the
polynomials Xk − 1 over K, for 1 ≤ k ≤ 2d2. This can be done in polynomial
time using the algorithm from Lemma 2.10.

We note that the knowledge of a basis of OK is used here because we said
that elements of K are represented as rational linear combination of a given basis
of OK . If one chooses a different representation for elements of K (for example,
polynomials in Q[X]/P (X) with P a defining polynomial of K), the knowledge
of this basis of OK might not be needed. ⊓⊔

Factoring ideals. Given a prime integer p ∈ Z, we can compute all prime ideals
of OK above p. This can be done using Buchmann-Lenstra’s algorithm [8], whose
detailed analysis can be found in Cohen’s book [11, Section 6.2.5].
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Lemma 2.12 ([11, Section 6.2.5]). There exists a polynomial time algorithm
that takes as input any prime integer p ∈ Z and a basis of the ring of integers OK
of a number field K, and computes all the prime ideals of OK dividing p · OK .

As a corollary of this lemma, we have the following two algorithms, to test
primality of ideals, and factor them.

Corollary 2.13. There is a polynomial time algorithm PrimalityTest(a) that
takes as input any integral ideal a and decides whether a is a prime ideal or not.

There is a polynomial time algorithm FactorIdeal(a) that takes as input an
integral ideal a and the factorization of N (a) ∈ Z, and returns the factorisation
of a into prime ideals.

Proof. To verify whether a is a prime ideal or not, we first compute its algebraic
norm N (a) and check if it a prime power. This can be done by computing roots
N (a)1/e (for 1 ≤ e ≤ log |N (a)|) with good enough precision and see if the result
is a prime integer. If we do have N (a) = pe for some prime p and e ≥ 1, then
using the previous lemma we compute the prime ideals p ·OK . For each of them,
we test for equality with a.

To factorize an integral ideal a, the first step is to factor its algebraic norm
N (a) =

∏
1≤i≤r p

ei
i , which is done in time Tfactor(N (a)). For each prime factor pi

we compute the splitting of pi ·OK with the preceding lemma. There are at most
d = [K : Q] prime ideals above each pi and for each of them, say pi,j (a prime
ideal of OK above pi) we test if pi,j divides a. If it does, we check if powers pei,j of
this prime factor still divide a (see that the largest e such pei,j |a is smaller than ei).
All together, the number of divisions is at most r ·d·maxi{ei} = poly(log |N (a)|).

⊓⊔

Let us write Tfactor(N) is the time needed to factor an integer N ∈ Z>0.
Then Algorithm FactorIdeal can be used to factor an integral ideal a in time
poly(size(a)) + Tfactor(N (a)).

Norm equations in CM fields. Let us first consider a simple case of norm equa-
tion, which will be useful later on.

Lemma 2.14. Let L|K be a CM extension of number fields with K of degree d.
The units u ∈ O×

L that satisfy NL|K(u) = 1 are exactly the roots of unity in L.

Proof. Let u ∈ O×
L be a unit such that NL|K(u) = uτ(u) = 1. Because u is

an algebraic integer, its minimal polynomial µu over Q has coefficients in Z. By
Lemma 2.7, we have |σi(u)|2 = σi(u ·τ(u)) = 1 for all 2d complex embeddings σi
of L. Since the σi(u)’s are exactly the complex roots of µu (appearing possibly
multiply times), this implies that all the roots of µu over C have modulus 1. A
theorem of Kronecker11 implies u and its conjugates are roots of unity. ⊓⊔
11 Let P ∈ Z[X] be a monic polynomial such that P (0) ̸= 0. If all the complex roots of

P have modulus less or equal to 1, then these are roots of unity.
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The Gentry-Szydlo algorithm [19] was originally presented in a cyclotomic
field K and allows one to recover in polynomial-time an element x ∈ K, given
as input a basis of the ideal xOK and the element xx̄.12 A generalization of
this algorithm to CM-fields (and more generally CM-orders) was proposed by
Lenstra and Silverberg in [23].

Theorem 2.15 (Specialization of [23, Theorem 1.3]). There exists a deter-
ministic polynomial time algorithm GentrySzydlo such that the following holds.
Let L|K be a CM extension of number fields, w ∈ L and I be a fractional
ideal of L. Given as input a basis of OL, the ideal I and the element w, algo-
rithm GentrySzydlo decides whether there exists v ∈ OL such that I = v · OL
and vv̄ = w, and if so computes such an element v.

We note that Theorem 1.3 from [23] is stated for an arbitrary CM order A.
We specialized the statement to A = OL, which is a CM order (see Example 3.7
(i) from [23]). With this specialization, the Q-algebra AQ (using the notations
from [23]) is the field L, and the set (A+

Q )≫0 is the set L ∩ L++
R . In the original

statement from [23], the element w is taken in this set (A+
Q )≫0. We note that

in our case, if w ∈ L does not have all its embeddings real and positive, then
we know that there is no solution to the equation vv̄ = w, and so this case is
easily discarded. For this reason, we did not restrict the statement to specific
elements w. Similarly, we did not impose in the statement that the ideal I satisfies
IĪ = wOL, because this condition can be tested in polynomial time, and the two
equations I = v · OL and vv̄ = w can be satisfied only if IĪ = (vv̄)OL = wOL.

With this theorem, we obtain the following algorithm (Algorithm 2.1), which
solves norm equations in CM extensions. This is a generalization to any CM field
extensions of an algorithm by Howgrave-Graham and Szydlo [21] which solves
relative norm equations in some cyclotomic number fields (over their totally real
subfields). A result similar to Theorem 2.16 below and its proof are provided
in [22, Theorem 14]. Since the latter article does not seem to be published, we
provide a proof for completeness below.

Theorem 2.16. Let L|K be a CM extension of number fields and q ∈ OK .
Given as input a basis of OK , a basis of OL, the element q ∈ OK , and the
factorization of |NK(q)| over Z, Algorithm 2.1 (NormEquation) computes the
list of all elements z ∈ OL such that NL|K(z) = q. Moreover, the algorithm runs
in time poly(log∆L, log |NK(q)|) · (1 + log |NK(q)|)r, where r is the number of
distinct prime factors of the ideal q · OK .

Note that the size of the output of the algorithm, and so in particular the
number of solutions to the equation NL|K(z) = q, is bounded by the running
time of the algorithm.

Proof. Correctness. Let us first show that the set I from Step 4 contains all
integral ideals ofOL with relative norm q·OK . To do so, consider an integral ideal
12 The element x is recovered up to a root of unity.
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Algorithm 2.1 Solve relative norm equations (NormEquation)
Input: A basis of OK and OL, an element q ∈ OK , the prime factorization of |NK(q)|.
Output: All elements z ∈ OL such that NL|K(z) = q.
1: Compute the roots of unity UL in L, using Corollary 2.11.
2: Factor q · OK =

∏r
i=1 p

αi
i , using Corollary 2.13.

3: I0 ← {q ⊂ OL prime ideal | ∃ i ∈ {1, . . . , r}, q | piOL}
4: I← {a = q1 . . . qs | s > 0, qi ∈ I0, NL|K(a) = q · OK}
5: S ← {}
6: for a ∈ I do
7: za ← GentrySzydlo(OL, a, q) (see Theorem 2.15)
8: if GentrySzydlo did not fail then
9: S ← S ∪ {ζ · za | ζ ∈ UL}

10: end if
11: end for
12: return S

b ⊂ OL with relative norm q ·OK and write down its factorization b =
∏s
j=1 q

βj
j

in OL. Since the relative norm is multiplicative, we have
∏s
j=1NL|K(qj)

βj =

q · OK =
∏r
i=1 p

αi
i (using the notations from Step 1). By uniqueness of the

factorization into prime ideals, we deduce that for any j ∈ {1, . . . , s}, there
exists ij ∈ {1, . . . , r} such that pij divides NL|K(qj). By Lemma 2.8, this implies
that qj | pij . This means that b has all its prime factors in I0, and so b is in I
(by definition of I), as desired. In particular, for any z ∈ OL such that zz̄ = q,
the corresponding principal ideal zOL is in I.

In Step 7, the Gentry-Szydlo algorithm outputs, when it exists, a generator
of a with relative norm q for an ideal a ∈ I (it always succeeds when a solution
exists). Let us fix a principal ideal a that has a generator za of relative norm q.
Let z′a be another generator with the same relative norm, so there is a unit u
such that za = uz′a. But then we have NL|K(u) = q/q = 1. By Lemma 2.14,
we conclude that u ∈ UL is a root of unity. Conversely, for any root of unity
ζ ∈ UL, one can check that za · ζ is a generator of a with relative norm q. We
then conclude that the generators of a whose relative norm is q are exactly the
elements {ζ · za | ζ ∈ UL}. This concludes the correctness of the algorithm.

Complexity. The roots of unity UL can be computed in polynomial time thanks
to Corollary 2.11. Recall that the factorization of NK(q) is known. For Step 2
of the Algorithm, one can use FactorIdeal from Corollary 2.13 to factor the
ideal qOK in polynomial time, thanks to the knowledge of the factorization
of NK(q). In Step 3, computing all the prime ideals dividing piOL for a fixed
prime ideal pi can be done in time polynomial in logN (pi) and log∆L thanks
to Lemma 2.12. Note that each prime factor pi of qOK has its algebraic norm
bounded by |NK(q)|. Moreover, there are at most log2 |NK(q)| distinct prime
ideals pi dividing qOK . Hence, in Step 3, the set I0 can be computed in time
poly(log∆L, log |NK(q)|).

Recall that, above each prime ideal p of OK are at most two prime ideals
of OL. More precisely, for each pi appearing in the prime decomposition of

15



q · OK , either piOL is inert (and thus stays prime), splits into qi and τ(qi) or
ramifies as q2i . The respective relative norm ideals are then NL|K(piOL) = pi

2,
NL|K(qi) = NL|K(τ(qi)) = pi or NL|K(qi) = pi. To build the set I from the set
of prime ideals qi,j , we proceed as follows. Let pi be a prime factor of q · OK .
Any ideal a ∈ I is divisible by a prime ideal above pi (recall the correctness part
of the proof). From the condition on the norm of a and the computation of the
NL|K(qi,j), we can enumerate all the possibilities for the prime factors of a.

Keeping the notation of the algorithm, if piOL is inert, then αi is an even
number and a must be divisible by q

αi/2
i,0 . If piOL ramifies as q2i , then a must be

divisible by qαii . Lastly, if piOL splits as qi and τ(qi), then there exists 0 ≤ a ≤ αi
such that qai τ(qi)

αi−a divides a. This number is bounded by (log2 |NK(q)| + 1)
so we get at most (log2 |NK(q)|+ 1)r different ways to choose the prime factors
of a. This is a bound for the cardinal of I, and one can construct the set I (by
following the procedure described above) in time poly(log∆L, log |NK(q)|) · |I|.

The last part of the algorithm consists in repeating |I| times Steps 7 to 10.
These steps can be performed in time poly(log∆L, log |NK(q)|) (using Theo-
rem 2.15). The upper bound on the size of I gives us the desired upper bound
on the running time, which concludes the proof. ⊓⊔

3 Definition of Module-LIP

In this section, we extend the definition of the module-LIP problem from [14], to
any number fields and any modules. We also provide some tools which are the
analogue in the module settings of standard results in the unstructured case (such
as Cholesky decomposition). We believe that these basic tools may be useful for
further study of the module-LIP problem. Finally, at the end of the section,
we compare our new definition of module-LIP with the one from [14], and we
explain why breaking the module-LIP problem that we define in Definition 3.11
allows to break the Hawk scheme.

3.1 Pseudo-Gram matrices

By applying the canonical embedding coordinate-wise to vectors and matrices,
many well-known matrix decompositions and operations also extends mutatis
mutandis to matrices over KR — another expression of the algebraic structure.
This happens since field embeddings preserves linear (and even polynomial) com-
binations, and we will follow this intuition in this section.

Definition 3.1. A matrix G ∈ Mℓ(KR) is said to be Hermitian definite pos-
itive13 if it satisfies G∗ = G and x∗Gx ∈ K++

R for any linearly independent
vector x ∈ Kℓ

R (i.e., such that σi(x) ̸= 0 for all embeddings σi, see prelimi-
naries). The set of Hermitian definite positive forms is denoted H>0

ℓ (KR), and
H>0
ℓ (K) when restricted to matrices with entry in K.

13 In prior literature, this is sometimes called Humbert forms.
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Basic properties. Below we give some standard results on Hermitian definite
positive matrices in KR. The key ingredient is to observe that a matrix G is in
H>0
ℓ (KR) if and only if for all embeddings σi, the complex matrix σi(G) is in
H>0
ℓ (C) = {A ∈ Mℓ(C) |A∗ = A, x∗Ax > 0, ∀x ∈ Cℓ \ {0}}. One can then

apply the known results over complex Hermitian definite positive matrices and
lift them to H>0

ℓ (KR).

Lemma 3.2. A matrix G ∈ Mℓ(KR) is in H>0
ℓ (KR) if and only if σi(G) ∈

H>0
ℓ (C) for all embeddings σi of K.

Proof. Let G ∈ Mℓ(KR). First of all, observe that from the definition of the
complex conjugation overKR, we have that G∗ = G if and only if σi(G)∗ = σi(G)
for all embeddings, i.e., σi(G) is Hermitian (or symmetric if σi is real).

Recall also that σ induces a bijection from KR to the set {z = (zi)i ∈
Cd | z1, . . . , zd1 ∈ R, zd1+i = zd1+d2+i, 1 ≤ i ≤ d2}. Hence, it holds that x∗Gx ∈
K++

R for all linearly independent vector x ∈ Kℓ
R if and only if y∗

i σi(G)yi > 0
for all yi ∈ Rℓ \ {0} (1 ≤ i ≤ d1) and yi ∈ Cℓ \ {0} (d1 < i ≤ d1 + d2).
In other words, G ∈ H>0

ℓ (KR) if and only if σi(G) ∈ S>0
ℓ (R) for 1 ≤ i ≤ d1

and σi(G) ∈ H>0
ℓ (C) for all d1 < i ≤ d1 + d2. We conclude using the fact that

S>0
ℓ (R) = H>0

ℓ (C) ∩Mℓ(R). ⊓⊔

Proposition 3.3. Let B ∈ GLℓ(KR), then B∗B ∈ H>0
ℓ (KR).

Proof. Note that since B ∈ GLℓ(KR), then σi(B) ∈ GLℓ(C) for all complex
embedding σi. Then, σi(B∗ · B) = σi(B)∗ · σi(B) ∈ H>0

ℓ (C) and we conclude
using Lemma 3.2. ⊓⊔

Proposition 3.4 (Cholesky factorization). Let G ∈ H>0
ℓ (KR), then there

exists a unique lower triangular matrix L ∈ GLℓ(KR) with diagonal coefficients
in K++

R such that G = LL∗. Moreover, this matrix L can be computed from G
in polynomial time.

Proof. By Cholesky factorization over H>0
ℓ (C), we know that for every i ∈

{1, . . . , d1 + d2} there exists a unique lower triangular matrices Li in Mℓ(C)
with real positive diagonal coefficients such that σi(G) = Li · L∗

i (we even
have Li ∈ Mℓ(R) for 1 ≤ i ≤ d1). By bijectivity of the canonical embedding,
there exists then a unique matrix L ∈ Mℓ(KR) such that σi(L) = Li for all
1 ≤ i ≤ d1 + d2, and this matrix has its diagonal coefficients in K++

R since all
the Li have real positive diagonal coefficients. This proves the existence of L.
Unicity is obtained by observing that if L is as in the theorem statement, then
σi(L)·σi(L)∗ is a Cholesky decomposition of σi(G), and so σi(L) = Li by unicity
of Cholesky decomposition over H>0

ℓ (C).
To compute the matrix L, a possibility is to compute σi(G) for all 1 ≤ i ≤

d1+d2, then compute the Cholesky decomposition of σi(G) ∈ H>0
ℓ (C) to obtain

Li, and finally reconstruct L ∈ Mℓ(KR) such that σi(L) = Li. Computing σ
can be done by evaluating polynomials, and computing σ−1 (to recover L from
the Li’s) can be done by polynomial interpolation. Both steps can be done in
polynomial time. Cholesky decomposition over H>0

ℓ (C) can also be performed
in polynomial time, hence the full procedure is polynomial. ⊓⊔
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Proposition 3.5. Let B and C ∈ GLℓ(KR) be such that B∗B = C∗C. Then
there exists O ∈ Uℓ(KR) such that B = O · C.

Proof. The equality B∗B = C∗C can be rearranged as (BC−1)∗ · (BC−1) = Iℓ
(note that C is invertible), which exactly means that BC−1 ∈ Uℓ(KR). ⊓⊔

Pseudo-Gram matrices. We define an analog of quadratic forms and Gram ma-
trices for module lattices, namely the pseudo-Gram matrices.

Definition 3.6. Let B = (B, (Ii)i) be a pseudo-basis of a rank-ℓ module M in
Kk

R. The pseudo-Gram matrix associated to B is G := (G, (Ii)i), where G =
B∗B ∈ H>0

ℓ (KR).

Using the Cholesky decomposition that we reviewed above, one can see that
for any Hermitian positive definite matrix G ∈ H>0

ℓ (KR) and any non-zero
fractional ideals I1, . . . , Iℓ, there always exists a pseudo-basis B = (B, (Ii)i)
whose pseudo-Gram matrix is G = (G, (Ii)i). Note however that Cholesky only
guarantees the existence of such pseudo-basis inKR (the matrix B is inMℓ(KR)).
Even when G ∈ Mℓ(K), there may not exist a pseudo-basis in K (with B ∈
Mℓ(K)) whose pseudo-Gram matrix is G.

Definition 3.7. Let G = (G, (Ii)1≤i≤ℓ) and G′ = (G′, (Ji)1≤i≤ℓ) be two pseudo-
Gram matrices (with G and G′ in H>0

ℓ (KR)). They are said congruent if there
exists U = (ui,j)1≤i,j≤ℓ ∈ GLℓ(K) such that G′ = U∗GU and ui,j ∈ IiJ−1

j , vi,j ∈
JiI

−1
j , where V = (vi,j)1≤i,j≤ℓ := U−1. Such U is called a congruence matrix

between G and G′. This defines an equivalence relation ∼ on the set of pseudo-
Gram matrices.14 The class of G is denoted by [G].

Sampling (implicit) Gaussian vectors. As in the case of standard (non-structured)
lattices, it is possible to sample vectors from a discrete Gaussian distribution in
an implicit module M given as input a pseudo-Gram matrix G of this module.

Lemma 3.8. There is a probabilistic polynomial time algorithm GaussianGram
such that the following holds. Let B = (B, (Ii)1≤i≤ℓ) be a pseudo-basis of a rank-
ℓ module M in Kℓ

R, and G = (G, (Ii)1≤i≤ℓ) be the pseudo-Gram matrix of B.
Let s > 0 be a real number satisfying

s ≥
√
d · log(2dℓ+ 4)

π
· 2d ·∆3/(2d)

K · max
1≤j≤r

(
∥σ(gj,j)1/2∥ · N (Ij)

1/d
)
,

where G = (gi,j)1≤i,j≤ℓ and the square-root is applied coordinate-wise to σ(gj,j) ∈
Cd. On input G and s, GaussianGram(G, s) outputs z ∈ I1 × · · · × Iℓ such that
v := B · z follows a discrete Gaussian distribution of parameter s in M (i.e.,
σ(v) ∼ Dσ(M),s).
14 For the transitivity ; let G = (G, (Ii)1≤i≤ℓ), G′ = (G′, (Ji)1≤i≤ℓ), G′′ =

(G′′, (Li)1≤i≤ℓ) and U (resp. U ′) a congruence matrix between G and G′ (resp.
between G′ and G′′), then U ′′ := U · U ′ satisfies G′′ = U ′′∗ ·G · U ′′ and has coeffi-
cients U ′′

i,j =
∑ℓ

k=1 ui,k · u′
k,j . All terms of the sum are in IiJ

−1
j by definition. The

same observation for (U ′′)−1 finally gives G ∼ G′′.
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Proof. The algorithm GaussianGram first computes a pseudo-basis C = (C, (Ii)i)
such that C∗C = G, using Cholesky decomposition. According to Proposi-
tion 3.4, this can be done in polynomial time. The pseudo-basis C generates
a rank-ℓ module M ′ ⊂ Kℓ

R, and from Proposition 3.5, since C and B have the
same pseudo-Gram matrix G, we know that there exists O ∈ Uℓ(KR) such that
C = O ·B.

From C, the algorithm then computes a basis D ∈ Cdℓ×dℓ of the lattice
σ(M ′). This can be done in polynomial time from Lemma 2.9, and the same
lemma also tells us that the column vectors di of D have Euclidean norm upper
bounded by

∥di∥ ≤
√
d · 2d ·∆3/(2d)

K · max
1≤j≤r

(
∥σ(cj)∥ · N (Ij)

1/d
)
,

where cj are the column vectors of C. Observe that, since G = C∗C, then
gi,j = ⟨ci, cj⟩KR (where G = (gi,j)1≤i,j≤ℓ). Hence, the quantity maxj ∥σ(bj)∥ in
the bound above can be replaced by maxj ∥σ(gj,j)1/2∥, where the square-root is
applied coordinate-wise to σ(gj,j) ∈ Cd.

Finally, the algorithm uses the basis D to sample x ∈ σ(M ′), following the
discrete Gaussian distribution Dσ(M ′),s. This is doable in polynomial time, using
Lemma 2.4 and the fact that s ≥

√
log(2dℓ+ 4)/π ·maxi ||di||.

The algorithm then reconstructs w ∈M ′ such that σ(w) = x. This can again
be done in polynomial time. The vector w ∈ M ′ is distributed according to a
discrete Gaussian distribution over M ′ of parameter s. Let z be the coordinates
of w in the pseudo-basis C. Since w is in M ′, then z must be in I1 × · · · × Iℓ.
This vector z is then output by the algorithm.

We have seen so far that the algorithm runs in polynomial time, and outputs
a vector z ∈ I1 × · · · × Iℓ such that w = C · z follows a discrete Gaussian
distribution in M ′ of parameter s. To conclude, remember that B = O · C and
that O ∈ Uℓ(KR) preserves the euclidean norm (i.e., for any y ∈ Kℓ

R, we have
∥σ(y)∥ = ∥σ(O · y)∥). Hence the vector v = B · z = O · w follows a Gaussian
distribution of parameter s in M . ⊓⊔

3.2 Module-LIP

We are now ready to define the module-LIP problem for any number field K and
any module M . Using the formalism of pseudo-bases and pseudo-Gram matrices,
the situations for module lattices and non-structured lattices become quite sim-
ilar. Consequently, the definitions in this subsection will be very reminiscent of
the ones from preliminaries. We start by introducing the notion of isomorphism
for module lattices.

Definition 3.9. Let M,M ′ ⊂ Kℓ
R be two modules of rank ℓ. We say that M, M ′

are isomorphic as module lattices if there exists a unitary transformation O ∈
Uℓ(KR) such that M ′ = O ·M.
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Note that if M and M ′ are isomorphic as module lattices, then the lattices σ(M)
and σ(M ′) are isomorphic for the standard (non-structured) definition of lattice
isomorphism. In the case of module lattice isomorphism, we restrict ourselves
to specific lattices (the ones of the form σ(M) for M a module) and specific
orthogonal transformations (they should be K-linear on the modules).

Isomorphism of module lattices can be restated in terms of pseudo-bases or
pseudo-Gram matrices.

Lemma 3.10. Let M,M ′ ⊂ Kℓ
R be two modules of rank ℓ with respective pseudo-

bases B = (B, (Ii)1≤i≤ℓ) and B′ = (B′, (Ji)1≤i≤ℓ). Let G (resp. G′) be the
pseudo-Gram matrix associated to B (resp B′). Then, the three following asser-
tions are equivalent

(1) M and M ′ are isomorphic as module lattices;
(2) there exists O ∈ Uℓ(KR) and U ∈ GLℓ(K) with ui,j ∈ IiJ−1

j and vi,j ∈ JiI−1
j

(where U = (ui,j)1≤i,j≤ℓ and U−1 = (vi,j)1≤i,j≤ℓ) such that B′ = OBU ;
(3) G and G′ are congruent (see Definition 3.7).

Proof. We prove that (1) ⇒ (2) ⇒ (3) ⇒ (1). Assume that M and M ′ are
isomorphic as module lattices. By definition, there exists O ∈ Uℓ(KR) such that
M ′ = O ·M . A pseudo-basis of OM is given by (OB, (Ii)i). Since B′ is also
a pseudo-basis of O · M , there must exist a matrix U ∈ GLℓ(K) such that
ui,j ∈ IiJ−1

j and vi,j ∈ JiI−1
j and B′ = (OB)U , as desired.

Let us now assume that B′ = OBU . Then G′ = U∗GU and this means that
G and G′ are congruent.

Finally, let us assume that G and G′ are congruent. By definition, there
exists U ∈ GLℓ(K) (with ui,j ∈ IiJ−1

j and vi,j ∈ JiI−1
j ) such that G′ = U∗GU .

Let us consider C = (BU, (Ji)i). Thanks to the condition on U , we know that
C and B are both pseudo-bases of the same module M . Moreover, the pseudo-
Gram matrix of C is exactly G′. Using Proposition 3.5, we conclude that there
exists O ∈ Uℓ(KR) such that B′ = OBU , i.e., M ′ = O ·M . ⊓⊔

Let us now define the module Lattice Isomorphism Problem (module-LIP), in
its worst-case variant. As in the unstructured case, we could define two variants,
one using the formalism of pseudo-bases and another one using the formalism of
pseudo-Gram matrices. Instead, we decided to introduce only one variant, which
uses both pseudo-bases and pseudo-Gram matrices. More precisely, we define a
collection of problems parametrized by the field K and a pseudo-basis B of a
module M , and whose input is a pseudo-Gram matrix G′ (of a different pseudo-
basis B′ of M). This variant is tailored to fit our attack in the next section, but
we also believe that it makes sense for itself. Indeed, so far, the instantiations of
LIP and module-LIP in cryptography have been parameterized by very specific
(module) lattices, for which a good (pseudo-)basis was known (e.g., in Hawk, the
module lattice is O2

K).15 On the other hand, the algorithm then usually manip-
15 By good, we mean here a (pseudo)-basis with rational coefficients. This will be

needed for our attack, and we do not know how to recover it efficiently from the
(pseudo-)Gram matrix since Cholesky decomposition only provides a basis with co-
efficients in R (or KR).

20



ulates only (pseudo-)Gram matrices, and so an attacker would get as input such
a (pseudo-)Gram matrix and not a (pseudo-)basis of an isomorphic (module)
lattice.

Definition 3.11 (wc-smodLIPB
K). For B a pseudo-basis of a module-lattice

M ⊂ Kℓ
R with associated pseudo-Gram matrix G, the worst-case search module-

Lattice Isomorphism Problem with parameter K and B denoted by wc-smodLIPB
K

is, given as input any pseudo-Gram matrix G′ ∼ G (see Definition 3.7), to find
a congruence matrix between G and G′.

When we say that the problem is parameterized by K and B, we mean that
this is a collection of algorithmic problems, one for each choice of (K,B).16 In
particular, the number field K and pseudo-basis B are known to an adversary.

A definition of module-LIP was also provided in [14, Definition 7], which
differs slightly from ours. There are three main differences between the two
definitions: [14, Definition 7] defines module-LIP for free modules M (with B =
(B, (OK)1≤i≤2) a basis of the module), over a CM number field, and restricts G′

to be the Gram-matrix of a basis B′ = (B′, (OK)1≤i≤2) of M , and such that the
determinant of B′ is the same as the one of B. On the other hand, Definition 3.11
above holds for any module M (and any pseudo-basis B), any number field, and
the input G′ of the problem is the Gram-matrix of any pseudo-basis B′ of M .
Note that even if one takes K a CM field, and B a basis of a free module M ,
then our problem wc-smodLIPB

K from Definition 3.11 is still not exactly the same
as the problem defined in [14, Definition 7]. Indeed, in our definition, the input
of the problem can be any Gram-matrix G′ congruent to G, whereas in [14,
Definition 7] the input is restricted to specific congruent Gram-matrices G′.

Hawk and module-LIP. In the case of Hawk [14], the authors consider a power-of-
two cyclotomic field K and the free rank-2 module-lattice M = O2

K . The secret
key consists in a short basis U of M and the public key is the Gram matrix
G′ = U∗U ∈ H>0

2 (K).17 With the formalism we introduced in the previous
paragraph, U is a congruence matrix between I2 = (I∗2 I2, (OK)1≤i≤2) and G′ =
(G′, (OK)1≤i≤2). We now recall how (uncompressed) Hawk proceeds (Section
3.1, [14]).

Given a message m to sign, first hash m together with a salt r to a point
h ∈ {0, 1}2d, which is interpreted as an element of O2

K thanks to the following bi-
jective map, called coefficient embeddingK → Qd; (

∑
i aiX

i) 7→ (a0, . . . , ad−1)
T .

Then, a vector x ∈ O2
K + 1

2U ·h close to 0 is sampled using Gaussian samples in
Z and 1

2Z (the identification between O2
K and Z2d being possible via coefficient

16 The same terminology is used for, e.g., the LWE problem. We usually say that n,m, q
are parameters of the problem, which means that for each choice of (n,m, q), we have
a different algorithmic problem.

17 Here M is a free module so it has a basis (equivalently, the coefficient ideals are equal
to OK) so the authors use bases (resp. Gram-matrices) instead of pseudo-bases (resp.
pseudo-Gram matrices).
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embedding). Finally, the signer computes s := 1
2h−U

−1 ·x. The (uncompressed)
signature consists of the pair sig = (r, s).

A verifier receiving sig computes the hash h and checks if || 12h − s||G′ is
smaller than a fixed security parameter (here, ∥z∥G′ := ∥z∗G′z∥ for any z ∈
K2). It also checks that s ∈ O2

K . If both tests succeed, it accepts the signature.
Using the fact that || 12h− s||G′ = ∥U · ( 12h− s)|| = ∥x∥, one can check that the
first verification test must be satisfied when the signature is honestly generated.
For the second one, writing x = y + 1

2U · h with y ∈ O2
K , one can see that

s = U−1y. The fact that s ∈ O2
K follows from the fact that U ∈ GL2(OK)

(since U is a basis of O2
K).

Lemma 3.12. With the notations of the previous paragraph, finding any con-
gruence matrix V between I2 and the public key G′ allows to forge signatures
in Hawk. In other words, if one can solve the wc-smodLIPI2

K problem, then one
can forge signatures in Hawk, given only the public key.

Proof. By definition, a congruence matrix V between G and G′ satisfies V ∈
GL2(OK) and G′ = V ∗V . We show that any such matrix can be used to produce
valid signatures : let (r, s) be a signature produced by Hawk with input basis
V . Then x = y + 1

2V · h is small, with y ∈ O2
K , and s = 1

2h − V
−1x = V −1y.

Since V ∈ GL2(OK), the vector s is in O2
K as desired. Moreover, ∥ 12h− s∥G′ =

∥V · ( 12h − s)∥ = ∥x∥, since G′ = V ∗V , which means that the latter norm is
small the pair (r, s) is then accepted by the verifier. ⊓⊔

The previous lemma underlines that, to forge signatures in Hawk it is enough
to recover any congruence matrix V and not specifically the secret key U . There-
fore, the problem of signature forgery in Hawk reduces to solving wc-smodLIPI2

K ,
as defined in Definition 3.11.

4 An algorithm for module-LIP in rank 2 over totally
real fields

We now present our main algorithm, which solves wc-smodLIPB
K for totally real

fields K and when the module generated by the pseudo-basis B lives in K2

(see Algorithm 4.2 when the module is in O2
K and Algorithm 4.3 for the general

case). At a high level, it is based on the observation that, when the module is
in O2

K , a diagonal element q in the pseudo-Gram matrix G = B∗B = BTB
can be written as q = x2 + y2 with x, y ∈ OK , that is, a sum of two squares.
Already when K = Q, a common way to find such sums is to go through a
quadratic imaginary extension L := K(i), where i is a root of X2 + 1 over K.
Indeed, all solutions to a 2-square decompositions are also solutions of a relative
norm equation q = NL|K(a) = a∗a, which we can solve algorithmically thanks
to Lenstra-Silverberg’s algorithm. Our algorithm will thus use the procedure
NormEquation (from preliminaries) to solve the latter, then restrict to solutions
of the former in another algorithm named TwoSquares. From these solutions, we
will be able to build the set of all congruence matrices to solve wc-smodLIPB

K ,
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when the module generated by B is in O2
K . For rational modules in K2, we then

simply multiply by a common denominator, to reduce to the situation where the
module is in O2

K .
An apparently unavoidable component of NormEquation is the factorization

of the ideal q · OK , so there is no hope to obtain a classical polynomial-time
algorithm this way. Therefore, we use a re-randomization procedure to generate
random vectors z = (z1, z2) until z∗Gz generates a prime ideal (for the rest
of this paragraph, we say that z is a “good vector” when this is the case). Pri-
mality testing can be done in polynomial time for ideals as well, and if we let
B · (z1, z2)T = (x, y)T , then z∗Gz = x2 + y2 is again a sum of two squares. This
allows us to avoid the potentially costly factorization. With two linearly inde-
pendent good vectors, we can then use a two-square decomposition algorithm
together with some linear algebra to solve the module-LIP instance. Estimating
the probability of finding a good vector relies on a heuristic assumption, sup-
ported by standard (but non-trivial) number-theoretic arguments: the discussion
and justifications are the topic of Section 4.2.

4.1 Gram ideal

In order to describe our results in this section for all modules of rank 2 in K2, we
introduce the Gram ideal and the relative Gram ideal of a module M ⊂ Kℓ of
rank ℓ. From now on, we will consider the arithmetic properties of the coefficients
of vectors in M , and hence restrict ourselves to modules in Kℓ (as opposed to
Kℓ

R which we considered so far).

Definition 4.1. Let K be a totally real number field and M ⊂ Kℓ be a module of
rank ℓ. Let B = ((Bi,j)i,j , (Ji)i) be a pseudo-basis of M and G = ((Gi,j)i,j , (Ji)i)
be the associated pseudo-Gram matrix. We define the following fractional ideals

G(M) :=
∑

1≤i≤l

Gi,i · J2
i +

∑
1≤i<j≤l

2 ·Gi,j · Ji · Jj

C(M) :=
∑

1≤i,j≤l

Bi,j · Jj ; RG(M) := G(M)/C(M)2.

We call G(M) the Gram ideal and RG(M) the relative Gram ideal of M .

The first two ideals correspond respectively to the ideal generated by the
(squared) norm of vectors of M , and the ideal generated by the coordinates of
the vectors of M . We show below that these ideals indeed depend only on the
module lattice M and not on the pseudo-basis B.

Lemma 4.2. Let K be totally real and M ⊂ Kℓ be a module of rank ℓ. Let
B be a pseudo-basis of M with associated pseudo-Gram matrix G. Then G(M)
is the smallest ideal (for inclusion) containing the set {⟨v,v⟩KR |v ∈ M}, and
C(M) is the smallest ideal containing the set {vj |v = (vi)i ∈M, 1 ≤ j ≤ ℓ}. In
particular, they do not depend on the choice of the pseudo-basis B of M .
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Proof. Any module vector can be uniquely written as v =
∑l
i=1 xi · bi, where

bi is the i-th vector column of B, and xi ∈ Ji (with B = (B, (Ji)i)). Then,
⟨v,v⟩KR =

∑
1≤i≤ℓ x

2
iGi,i + 2

∑
1≤i<j≤ℓ xixjGi,j ∈ G(M), where G = (Gi,j)i,j .

Note that here, we used the fact that K is totally real, and so vi = vi for all i’s.
Conversely, any (fractional) ideal I containing the square euclidean norm of the
vectors of M must contain ⟨xbi, xbi⟩KR = x2 ·Gi,i for all x ∈ Ji and all 1 ≤ i ≤ ℓ.
Since the ideal generated by {x2 |x ∈ Ji} is precisely J2

i , we conclude that
Gi,i ·J2

i is included in I.18 Using the polarization formula and since I is stable by
addition, we see that it contains ||xibi+xjbj ||2−||xibi||2−||xjbj ||2 = 2Gi,j ·xi·xj ,
for all 1 ≤ i < j ≤ l and all xi ∈ Ji and x2 ∈ J2. Hence, I contains 2Gi,jJi · Jj
for all i and j’s. The assertion on C(M) follows from its definition. ⊓⊔

Corollary 4.3. The relative Gram ideal RG(M) is integral, and do not depend
on the choice of the pseudo-basis B of M .

Proof. The fact that RG(M) does not depend on the choice of B follows from
its definition, and the fact that neither G(M) nor C(M) depend on B. To see
that the ideal is integral, we show that G(M) ⊆ C(M)2 (which implies that
G(M)/C(M)2 ⊆ OK). Let v = (vi)i ∈ M . From Lemma 4.2, we know that
⟨v,v⟩KR =

∑
i v

2
i ∈ C(M)2. Since G(M) is generated by the ⟨v,v⟩KR for v ∈M

(see again Lemma 4.2), we conclude that G(M) ⊆ C(M)2 as desired. ⊓⊔

The Gram ideal and relative Gram ideal of a module M can be computed in
polynomial time from any pseudo-basis B of M (directly from Definition 4.1).
A simple but important case is when M = OℓK , e.g, in Hawk. In this case, we
have G(M) = C(M) = RG(M) = OK . In the following we prove that the relative
Gram ideal is invariant when scaling the module (by a scalar, or even a fractional
ideal).

Lemma 4.4. Let K be totally real, M ⊂ Kℓ be a module of rank ℓ, and J be a
fractional ideal. Then,

(1) G(J ·M) = J2 · G(M).
(2) C(J ·M) = J · C(M).
(3) RG(J ·M) = RG(M).
(4) C(M)−1 ·M ⊂ OℓK is an integer module lattice not contained in pℓ for any

prime ideal p.

We will later use Lemma 4.4 to scale our input module M , in order to make
it integer, but as small as possible (with respect to its determinant) among all
the scaled variants of M included in OℓK .

18 To prove that the ideal generated by {x2 |x ∈ Ji} is equal to J2
i , let a, b ∈ Ji be such

that Ji = aOK + bOK . Then aOK = Ji · a and bOK = Ji · b with a and b integral
coprime ideals. The ideal containing all squares x2 for x ∈ Ji must in particular
contain (a2 + b2) · OK = J2

i · (a2 + b2) = J2
i . The other inclusion is immediate.
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Proof. (1) − (3) Let B = (B, (Ii)1≤i≤ℓ) be a pseudo-basis of M with pseudo-
Gram matrix G. Recall from preliminaries that J ·M has pseudo-basis (B, (J ·
Ii)1≤i≤ℓ) so the Gram ideal associated is by definition

G(J ·M) =
∑

1≤i≤ℓ

Gi,i · (J · Ii)2 + 2
∑

1≤i<j≤ℓ

Gi,j · (J · Ii) · (J · Ij)

= J2 · G(M).

Similarly, C(J ·M) = J · C(M) thus RG(J ·M) = RG(M) holds.
(4) M ′ = C(M)−1 ·M is such that C(M ′) = OK (using (2)) so any lattice vector
v ∈ M ′ has its coordinates in OK thus M ′ ⊂ (OK)ℓ. If M ′ were contained in
some pℓ then the ideal spanned by the coordinates of M ′ would be contained in p,
i.e, we would have OK = C(M ′) ⊆ p (using Lemma 4.2), which is impossible. ⊓⊔

4.2 The assumption

In this section, we formalize the assumption that will be used by our algorithm
in Section 4.3. This assumption essentially states that, when sampling a random
vector u in an integer rank-2 module M ⊆ O2

K , the probability that the ideal
⟨u,u⟩KR · OK is prime is not too small. Of course, we need to exclude the cases
where this assumption is obviously false, for instance if M = 2O2

K , then ⟨u,u⟩KR

will always be divisible by 4. More generally, we need to exclude the cases where
the Gram ideal G(M) is not OK . We provide in Appendix B both theoretical
and experimental justifications in favor of our assumption.

Assumption 1. There exists some absolute polynomial P (with non-negative
coefficients) such that the following holds. Let K be a totally real number field
of degree d, M ⊆ O2

K be a module of rank 2, and s > 0 be a real number
such that s ≥ η1/2(M). Let I = G(M) be the Gram ideal of the module M . Let
(z1, z2)

T ← DM,s and q = z21 + z22 . Then

Pr(q · I−1 is prime ) ≥ 1

ρK · log(s/N (I)1/d) · P (d)
,

where ρK is the residue of the Dedekind zeta function of K at 1.

Note that the ideal q · I−1 in our assumption is always an integral ideal.
Indeed, thanks to Lemma 4.2, we know that the ideal I contains all square
norms of vectors of M , hence it contains in particular ⟨z, z⟩KR = q (where
z = (z1, z2)

T ), which implies qI−1 ⊆ II−1 = OK .

4.3 The algorithm

Before describing the algorithm for module-LIP, let us start with an algorithm,
called TwoSquares, which solves sum of two squares equations in OK for a totally
real number field K (i.e., equations of the form x2+y2 = q where q ∈ OK is given
and x, y ∈ OK are the unknown). Algorithm TwoSquares works by reformulating
this as a relative norm equation in some well chosen CM extension L of K, and
then applying Algorithm NormEquation from preliminaries (Algorithm 2.1).
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Algorithm 4.1 Finding sums of two squares in totally real fields (TwoSquares)
Input: A basis BK of OK , an element q ∈ OK , the factorization of |NK(q)|.
Output: All elements (x, y) ∈ O2

K such that q = x2 + y2.
1: Define L← K[X]/(X2 + 1).
2: Compute BL ← a basis of OL, using Lemma 2.6.
3: S ← NormEquation(BK , BL, q, the factorization of |NK(q)|).
4: Cast elements of S from L into K2 (via the map a+ bX ∈ L 7→ (a, b) ∈ K2)
5: return S ∩ O2

K

Lemma 4.5. Let K be a totally real number field and q ∈ OK . Given as input a
basis of OK , the element q ∈ OK and the factorization of |NK(q)|, Algorithm 4.1
(TwoSquares) computes all (x, y) ∈ O2

K such that q = x2 + y2. Moreover, the
algorithm runs in time poly

(
log∆K , (log |NK(q)|)r

)
, where r is the number of

distinct prime factors of the ideal q · OK .

Proof. Correctness. The field L = K[X]/(X2+1) is a totally imaginary quadratic
extension of K, and so L|K is a CM extension as desired. Moreover, the non-
trivial automorphism τ of L fixing K is the map sending X to −X. Hence, for
any element z = a + bX ∈ L, we have that NL|K(z) = z · τ(z) = a2 + b2.
To any solution (x, y) of the sum of two squares equation x2 + y2 = q, we
can then associate a solution z = x+ y ·X ∈ OL to the relative norm equation
NL|K(z) = q. By correctness of the NormEquation algorithm (see Theorem 2.16),
the set S contains all solutions to this relative norm equation. Note that not all
of them provide a solution to the sum of two squares equations, since some z =
x+y ·X ∈ S may have x or y not belonging to OK (the set {a+ bX | a, b ∈ OK}
is included in OL, but the inclusion may be strict). This is why we intersect the
set S with the set {a+ bX | a, b ∈ OK}.

Complexity. A basis of OL can be computed in polynomial time from a basis of
OK , using Lemma 2.6, which proves that Step 2 can be run in polynomial time.
For Step 3, we know from Theorem 2.16 that it can be run in time poly(log∆L,
(log |NK(q)|)) · (1 + log |NK(q)|)r = poly

(
log∆L, (log |NK(q)|)r

)
. Recall from

the preliminaries that log∆L = poly(log∆K), hence the previous quantity is
also poly

(
log∆K , (log |NK(q)|)r

)
. Finally, testing whether an element x+ y ·X

in S satisfies (x, y) ∈ O2
K can be done in polynomial time using the basis BK . ⊓⊔

We now describe our main algorithm, which solves wc-smodLIPB
K when K is

a totally real number field and B is a pseudo-basis of a rank-2 module inO2
K . The

general case follows as a by-product in Algorithm 4.3, thanks to the coordinate
ideal C(M). Once a preliminary factorization of G(M) is done, the algorithm
tries to find two “nice” vectors for the input instance G′ = (G′, (I ′1, I

′
2)). By nice,

we mean that we sample random vectors until we obtain somewhat short and
linearly independent v,v′, such that both q = v∗G′v and q′ = v′∗G′v generate
a prime multiple of G(M) (recall that q, q′ ∈ G(M), so the ideals they generate
have to be a multiple of G(M)). As mentioned in the beginning of this section,
we will call the TwoSquares algorithm for q, q′, which requires to know the
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factorization of NK(q) and NK(q′). Computing these factorizations can be done
efficiently once we know the factorization of N (G(M)), since we ensured that
q/G(M) and q′/G(M) are prime ideals. Pairing these two-square decompositions
gives as many linear equations as there are entries in B: some of them must lead
to congruence matrices (others may be non-integral). We actually prove that we
find them all this way.

Algorithm 4.2 Finding all congruence matrices for integer rank-2 modules.
Input: A basis BK of OK , a pseudo-basis B = (B, (I1, I2)) of M ⊆ O2

K with pseudo-
Gram matrix G, and G′ = (G′, (I ′1, I

′
2)) ∼ G an instance of wc-smodLIPB

K .
Output: All congruence matrices between G and G′.

1: I ← G(M); α = ρK · P (d) (with P (d) from Assumption 1)
2: Factor N (I) =

∏
j q

fj
j .

Generating two “nice” instances of TwoSquares
3: q ← 0; (u, v)← (0, 0); s← 4d ·∆3/(2d)

K ·max1≤j≤2(∥σ(g′j,j)1/2∥ · N (I ′j)
1/d)

(where G′ = (g′i,j)1≤i,j≤2)
4: while

√
||σ(q)||1 > s ·

√
8d+ log(4α log(s)) or q · I−1 is not a prime ideal do

5: I ′1 × I ′2 ∋ (u, v)T ← GaussianGram(G′, s).
6: q ← (u, v) ·G′ · (u, v)T .
7: end while
8: q′ ← 0; (u′, v′)← (0, 0); s′ = 144 · d ·∆1/d

K ·max(α2, 1) · s4.
9: while (u′, v′) ∈ SpanK((u, v)) or

√
||σ(q)||1 > s′ ·

√
8d+ log(4α log(s′)) or q′I−1

is not a prime ideal do
10: I ′1 × I ′2 ∋ (u′, v′)T ← GaussianGram(G′, s′).
11: q′ ← (u′, v′) ·G′ · (u′, v′)T .
12: end while

Solving the two instances of TwoSquares
13: Factor N (qI−1) = pe and N (q′I−1) = (p′)f

14: S1 ← TwoSquares(BK , q, pe ·
∏

j q
fj
j ); S2 ← TwoSquares(BK , q′, (p′)f ·

∏
j q

fj
j )

Recovering the congruence matrices from the solutions to TwoSquares
15: S ← ∅.
16: for ((t1, t2), (t

′
1, t

′
2)) ∈ S1 × S2 do

17: D ←
(
t1 t′1
t2 t′2

)
·
(
u u′

v v′

)−1

18: V ← B−1 ·D
19: if V is a congruence matrix between G and G′ then
20: S ← S ∪ {V }.
21: end if
22: end for
23: return S.

Theorem 4.6 (Assumption 1). Let K be a totally real number field and
M ⊂ O2

K an integer module lattice of rank 2 with pseudo-basis B = (B, I1, I2)
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and associated pseudo-Gram matrix G. Algorithm 4.2 takes as input a basis of
OK , the pseudo-matrix B and G′ = (G′, I ′1, I

′
2) an instance of wc-smodLIPB

K

and finds all congruence matrices between G and G′. Under Assumption 1, the
algorithm runs in expected polynomial time in the size of its input and in(

poly(ρK , log∆K , size(G
′))

)r
+ Tfactor(N (G(M))),

where ρK is the residue of the Dedekind zeta function of K at 1, and r is the
number of distinct prime ideals dividing the Gram ideal G(M).

At Step 13, we actually do not need to factorize again, since standard primal-
ity tests will give us both the prime and its valuation. Note that Algorithm 4.2
solves wc-smodLIPB

K on input G′, but it does even more than this, since it finds
all congruence matrices between G and G′, when wc-smodLIPB

K only asks to
find one such congruence matrix.

Proof. Correctness. First, note that thanks to the if condition in Steps 19 of the
algorithm, all matrices V that are output by our algorithm are indeed congruence
matrices between G and G′.

Conversely, let us fix U ∈ GL2(KR) a congruence matrix between G and G′

and show that U ∈ S at the end of the algorithm. Let C = B · U . By definition
of congruence matrices, we know that C = (C, I ′1, I

′
2) is another pseudo-basis of

the module M . Moreover, we also know that U∗GU = G′ = C∗C. This means
that G′ is the pseudo-Gram matrix of the pseudo-basis C of M .

Let us define z = (z1, z2)
T := C · (u, v)T (where u and v are as in the

algorithm, after exiting the while loop in Step 7). Since s satisfies the constraints
from Lemma 3.8 (see the discussion below for the choice of s), the algorithm
GaussianGram is correct, and so we have u ∈ I ′1 and v ∈ I ′2. This implies that
z ∈ M . Moreover, we have that q := (u, v) ·G′ · (u, v)T = z∗z = z21 + z22 . Since
M ⊂ O2

K , the pair (z1, z2) thus gives a sum of two squares for q. By Lemma 4.5,
TwoSquares finds them all so the pair (z1, z2) must belong to the set S1 computed
in Step 14. A similar argument works for z′ = (z′1, z

′
2)
T = C · (u′, v′)T and S2.

From this, we know that during the for loop of Step 16, there must be one
iteration where (t1, t2) = (z1, z2) and (t′1, t

′
2) = (z′1, z

′
2). When this is the case,

then the matrix D computed in Step 17 must be equal to C. Note that this
computation makes sense since (u, v) and (u′, v′) are linearly independent. This
finally implies that the corresponding matrix V from Step 18 is equal to U , and
so U ∈ S at the end of the algorithm. Overall, this proves that, if the algorithm
terminates, then S contains all the congruence matrices between G and G′.

Complexity. We have seen that the Gram ideal G(M) can be computed in poly-
nomial time from the knowledge of G′. At Step 2, the norm of the Gram ideal
is factored, which takes time Tfactor(N (G(M))) (note that since M ⊆ O2

K , its
Gram ideal G(M) is integral, and so N (G(M)) ∈ Z).

We discuss the choice of the parameters s and s′ for the sampling algorithm.
To work under our Assumption 1, they must be chosen above the smoothing
parameter η1/2(σ(M)) of the module lattice σ(M). Equation (1) tells us that it
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is enough to take s larger than
√
log(12d)/π · λ2d(σ(M)). Now, we know from

Lemma 2.9 that there exists a basis of σ(M) whose vectors are all smaller than√
d · 2d ·∆3/(2d)

K ·max1≤j≤2

(
∥σ(g′j,j)1/2∥ · N (I ′j)

1/d
)
, so this must be an upper

bound on λ2d(σ(M)). Since 2d ≥
√
d log(12d)/π for all d ≥ 1, we conclude that

s′ ≥ s ≥ η1/2(σ(M)) as needed to apply Assumption 1 and Lemma 3.8.

As a consequence, Lemma 3.8 ensures that steps 5 and 10 run in polynomial
time. Moreover, by correctness of the GaussianGram algorithm, we know that
σ(z) ∼ Dσ(M),s and σ(z′) ∼ Dσ(M),s′ , where z = C · (u, v)T and z′ = C · (u′, v′),
as before.

Now we estimate the number of trials before satisfying the conditions on
Step 4. By Lemma 2.5 applied to ε = (4α log s)−1, we have ||σ(z)|| > s ·√
8d+ log(4α log(s)) with probability at most ε. Recall that q = z21 + z22 , so

we have that ∥σ(q)∥1 = ∥σ(z)∥2. This implies that the first condition in the
while loop is satisfied with probability ≥ 1− ε. For the second condition in the
while loop, we have seen that Assumption 1 applies, so qI−1 is prime with prob-
ability at least (α log(s/N (I)1/d))−1 ≥ (α log s)−1 (recall that α = ρK · P (d)
and that M ⊆ O2

K so that N (I) := N (G(M)) ≥ 1).

Overall, the probability to exit the first while loop in Step 4 is larger than
(α log s)−1 − ε ≥ (2α log s)−1, using the definition of ε.19 The expected number
of iterations of the while loop is then ≤ 2α log s = poly(log∆K , ρK , size(G

′)).

To conclude on this first while loop, note that all the operations performed
during one iteration of the while loop (including the two tests in Step 4) can be
performed in time poly(log∆K , ρK , size(G

′)) (for the test that qI−1 is prime,
we use Corollary 2.13, and we apply it only when the first test passes, which
ensures that N (qI−1) ≤ NK(q) ≤ ∥σ(q)∥d1 is not too big).

The reasoning for the second while loop is similar, except that we now also
want that (u′, v′) be non-colinear with (u, v). This is equivalent to asking that z′

is not colinear to z. In other words, we want z′ to avoid the rank-1 submodule
N :=M ∩SpanK(z). Again, Lemma 3.8 tells us that z′ ∼ DM,s′ , hence we want
to upper bound

Pr y∼DM,s′ (y ∈ N) =
ρs′(N)

ρs′(M)
.

To estimate ρs′(N) and ρs′(M) we would like to apply Lemma 2.3 (with ε = 1/2).
We have already seen that s ≥ η1/2(M) and by definition s′ ≥ s, so this handles
the denominator. Since N has rank 1, observe that λd(N) ≤ λ(∞)

d (OK) ·λ1(N) ≤
∆

1/d
K · ∥z∥. Using the upper bound on ∥z∥ =

√
∥q∥1 and Equation (1), one can

check that s′ ≥ η1/2(N) as desired. We can then apply Lemma 2.3 and use the

19 Here we also use the general fact that for two events A and B, we can upper bound
Pr(A ∩B) = Pr(A) - Pr(A ∩ ¬B) ≥ Pr(A)−Pr(¬B).
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fact that det(N) ≥ 1 since N ⊂ O2
K to obtain

Pr y∼DM,s′ (y ∈ N) ≤ 3/2 · det(M)

(s′)2d
· 2 · (s′)d

det(N)
≤ 3 det(M)

(s′)d

≤ (s′)d/2

4α · (s′)d
≤ 1

4α · (
√
s′)d

≤ 1

4α log(s′)
,

where the last inequality follows from the fact that s′ ≥ 1 (so that (
√
s′)d ≥

log(s′)) and on the second line we used the fact that
√
s′ ≥ (12α det(M))1/d by

choice of s′. Indeed, replacing s′ by its value, the latter inequality is equivalent
to having 12 ·

√
d ·∆1/2d

K ·max(α, 1) · s2 ≥ (12α det(M))1/d which is implied by
s2 ≥ (det(M))1/d. We know that det(M) ≤ λ2d(M)2d (this holds in any lattice),
so it is sufficient to prove that s ≥ λ2d(M), which we have already proved
since this was required for the Gaussian sampling algorithm GaussianGram (see
Lemma 3.8).

Similarly to the first while loop, we have that, under Assumption 1, the
probability that q′I−1 is prime is ≥ (α log(s′))−1. The probability that

√
∥q∥1 =

∥z′∥ is larger than the bound in the condition is ≤ (4α log(s′))−1 (the argument
is again similar to the first loop). Combining everything, the probability to exit
the second while loop is at least

1

α log(s′)
− 1

4α log(s′)
− 1

4α log(s′)
=

1

2α log(s′)
.

We conclude that the expected number of iterations of the second while loop
is poly(log∆K , ρK , size(G

′)). Similarly to the first while loop, all the opera-
tions performed during one execution of the while loop can be done in time
poly(log∆K , ρK , size(G

′)).
Step 13 can be done in polynomial time since N (qI−1) and N (q′I−1) are

prime powers. The two calls to the TwoSquares algorithm in Step 14 can be per-
formed in time poly

(
log∆K , (log |NK(q)|)r+1

)
= poly(log∆K , ρK , size(G

′))r.
Here we used the fact that qOK and q′OK have at most r + 1 distinct prime
factors since I = G(M) has r distinct prime factors and qI−1 and q′I−1 are
prime ideals. We also used the the fact that log |NK(q)| and log |NK(q′)| are
poly(log∆K , ρK , size(G

′)), thanks to the conditions on ∥σ(q)∥1 and ∥σ(q′)∥1 in
the while loops.

Finally, let us consider the final for loop from Step 16. Each step in this
loop can be done in polynomial time. For the number of iterations of the loop,
the proof of Theorem 2.16 gives |S1| ≤ d2(log(|NK(q)|) + 1)r+1 and the same
holds for |S2|. Hence, the number of iterations of the loop is upper bounded by
poly(log∆K , ρK , size(G

′))r. This concludes the analysis of the running time of
the algorithm. ⊓⊔

Before extending the previous result to modules in K2, we focus a little bit
on the particular case when M = O2

K and K is the maximal totally real subfield
of a cyclotomic field L = Q(ζm). In this case, the Gram ideal is simply OK ,
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leading to a polynomial complexity in d (the degree of K), the residue ρK and
the size of the input.

Corollary 4.7 (Assumption 1). Let K be the maximal totally real subfield of
a cyclotomic field, and define I2 = (I2, (OK)1≤i≤2) (this is a pseudo-basis of the
rank-2 module O2

K). Under Assumption 1, there exists a probabilistic algorithm
solving wc-smodLIPI2

K in expected polynomial time in the degree d of K, the
residue ρK , and in the size of the input.

Proof. Since M = O2
K , the Gram ideal is trivial thus with the notation of Theo-

rem 4.6, r = 1, and Algorithm 4.2 solves wc-smodLIPI2
K in expected polynomial

time in ρK , log∆K and the size of the inputs. Also, notice that the discriminant
of K can be computed ([35, Proposition 3.1]) and verifies log∆K = poly(d). ⊓⊔

Algorithm 4.3 Finding all congruence matrices for rank-2 modules.
Input: A basis of O2

K , a pseudo-basis B = (B, (I1, I2)) of M ⊂ K2, with pseudo-Gram
matrix G, and G′ = (G, (I ′1, I

′
2)) ∼ G an instance of wc-smodLIPB

K .
Output: All congruence matrices between G and G′.
1: J ← C(M)−1

2: BJ ← (B, {J · Ii}i=1,2) ; GJ ← (G, {J · Ii}i=1,2) ; G′
J ← (G′, {J · I ′i}i=1,2)

3: S ← Run Algorithm 4.2 with BJ ,GJ and G′
J

4: return S.

Corollary 4.8 (Assumption 1). Let K be a totally real number field and M ⊂
K2 a module lattice of rank 2 with pseudo-basis B = (B, I1, I2) and associated
pseudo-Gram matrix G. There exists a probabilistic algorithm (Algorithm 4.3)
that takes as input a basis of OK , the pseudo-basis B, and G′ = (G′, I ′1, I

′
2) an

instance of wc-smodLIPB
K and finds all congruence matrices between G and G′.

Under Assumption 1, the algorithm runs in expected time polynomial in its input
size and in (

poly(ρK , log∆K , size(G
′))

)r
+ Tfactor(N (RG(M))),

where r is the number of distinct prime ideals dividing the relative Gram ideal
RG(M).

Proof. Correctness. By Lemma 4.4 (4), M ′ = C(M)−1 ·M is an integer mod-
ule lattice not contained in p2 for any prime ideal p ⊂ OK . Using (3) we get
RG(M) = RG(M ′) = G(M ′) (since C(M ′) = OK). The last thing to observe
is that scaling the module doesn’t change the set of solutions to modLIP. This
is because a congruence matrix U between GJ := (G, J · I1, J · I2) and G′

J :=
(G′, J · I ′1, J · I ′2) satisfies G′ = U∗GU and ui,j ∈ (J · Ii) · (J · I ′j)−1 = Ii(I

′
j)

−1,
so it is also a congruence matrix between G and G′.
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Complexity. The relative Gram ideal can be computed in polynomial time in
the size of B and G′

J has size poly(size(G′), size(J)) = poly(size(G′)), thus the
complexity follows from Theorem 4.6. ⊓⊔

5 Implementation of the algorithm

We have implemented a proof-of-concept of our algorithm mixing Sagemath and
PARI/GP, for the totally real (maximal) subfield K of cyclotomic fields L =
Q(ζm). The current version of the code only works for fields with conductor
m = 4k: this ensures that L contains a primitive 4-th root of unity (equivalently
L = K[X]/(X2 + 1)), which simplifies the code and covers the cryptographic
relevant case where m = 2t. This also allows us to use our implementation of
the Gentry-Szydlo algorithm as in this case, K[X]/(X2+1) = L is a cyclotomic
field. For other conductors or more general CM-extensions, a previous version
of the code worked on toy-sized examples as a proof-of-concept, but we did not
push more in this direction.

Our approach follows the structure of Algorithm 4.2. We give more details
in Appendix C, and refer to our code in our public repository. Nonetheless, we
briefly report some experimental results and observations. In our experiments,
we selected instances (Q,B), with B a basis of O2

K and Q = BT · B, where B
had a quite short column (to emulate the situation in Hawk) but usually the
second column would be much bigger. Our values of choice for m included the
power-of-two case but also various other of the form 4k (see Table 1) below).
In the table, we also display the quantity 2d, which is the dimension over Z of
the module lattices involved in the problem (recall that they are rank-2 modules
over K, and that d = deg(K)). For a larger experiment, using PARI/GP 2.16
and its LLL relying on the “Flatter” algorithm [30], we could also solve the
congruence problem for m = 512 (lattices of dimension 2d = 256) in about 29
hours, essentially all spent in the two call to Gentry-Szydlo algorithm.

(m, 2d) (64, 32) (128, 64) (256, 128)

Time 2 25 850

(m, 2d) (124, 60) (204, 64) (228, 72) (276, 88) (260, 96) (232, 112) (340, 128) (296, 144)

Time (s) 33 53 74 195 434 652 2980 4205

Table 1. Times in seconds for attacks over various maximal totally real subfields K of
cyclotomic fields with conductors m = 4k, averaged over 5 instances. The degree d of K
is φ(m)/2, and the lattices involved have dimension 2d. The upper table are powers-
of-two. Experiments performed on a MacBook Pro (Apple M2), with Sagemath 10.2
and Pari/GP 2.15.5.
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A Worst-case to average-case reduction for module-LIP

In [14] is given an average-case version of a module-LIP problem in which the
instances of the problem are sampled following a certain distribution. This is
used to generate secret keys (i.e. congruence matrices) and the security of the
signature scheme Hawk thus lies on the average-case version of this problem
(see [14, Algorithm 1 and Algorithm 6]). To ensure security, a worst-case to
average-case reduction is proved ([14, Lemma 5]).

This appendix contains somehow a generalization of the result mentioned
above.20 To do so, we provide a polynomial time algorithm (Algorithm A.1)
which, given as inputs a pseudo-matrix B (with associated pseudo-Gram matrix
G) and a parameter s > 0, samples congruent forms G′ ∼ G, together with a
congruence matrix between them. An average-case version of module-LIP follows
naturally and we prove a worst-case to average-case reduction. That means that
solving module-LIP with an instance generated from this distribution is as hard
as solving module-LIP for any instance, up to some polynomial-time operations.

Sampling module vectors. From G we can define a distribution DG,s (with pa-
rameter s > 0) on I1 × · · · × Iℓ as usual (Definition A.1). Fixing Z-bases of the
coefficient ideals, we can use Minkowski embedding to associate a positive defi-
nite quadratic form ψ(G) ∈ S>0

dℓ (R) (Definition A.2). In this paragraph we prove
that DG,s and the distribution on I1× · · ·× Iℓ obtained by sampling the coordi-
nates (in Zdℓ) with DiscreteGaussian(ψ(G), s) coincide (Lemma A.4). This is
a more detailed proof of the fact that the outputs to GaussianGram introduced
in Lemma 3.8 follow a Gaussian distribution.

Definition A.1. The distribution DG,s on I1× · · ·× Iℓ with parameter s > 0 is
defined by

P(X = x)
X∼DI1×···×Iℓ,s

:=
exp(−π||x||2G/s2)∑

y∈I1×···×Iℓ

exp(−π||y||2G/s2)
,

where x ∈ I1 × · · · × Iℓ and ||y||2G := Tr
(
y∗Gy

)
≥ 0, for any y ∈ I1 × · · · × Iℓ.

Definition A.2. For any g ∈ K and ordered set α = {α1, . . . , αd} ⊂ K we put

ψα(g) :=
(
Tr

(
αi · g · αj

))
1≤i,j≤d

∈Md(R).

20 Module-LIP as defined in [14] asks for a congruence matrix with determinant one,
this is not a condition we kept in our definition of module-LIP. Also, the distribution
used in [14] for key generation is different from the one we will present so the average-
case problems are not the same.
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Now writing G = (gi,j)1≤i,j≤ℓ and given Z-bases α(j) = {α(j)
1 , . . . , α

(j)
d } of Ij for

every j ∈ {1, . . . , ℓ}, we define

ψ(G) :=


ψα(1)(g1,1) · · · ψα(ℓ)(g1,ℓ)

... · · ·
...

ψα(1)(gℓ,1) · · · ψα(ℓ)(gℓ,ℓ)

 ∈ Sdℓ(R).

Note that this depends on the choice of a Z-basis for each coefficient ideals. When
the notation ψ(G) is used, we mean that LLL-reduced Z-bases of the coefficient
ideals are fixed. Now we prove that this is indeed the matrix of a positive definite
quadratic form. For a matrix B = (b1| . . . |bℓ) ∈ Mℓ(KR) and ideals I1, . . . , Iℓ
with respective Z-bases α(1), . . . , α(ℓ), we define B̃ ∈Mdℓ(R) whose columns are
given by b̃j(d−1)+i = σ(α

(j)
i · bj) ∈ Rdℓ, for 1 ≤ j ≤ ℓ and 1 ≤ i ≤ d.

Lemma A.3. Given B = (b1| . . . |bℓ) ∈ GLℓ(KR) such that G = B∗ ·B, we have

ψ(G) = B̃T · B̃,

In particular ψ(G) is symmetric, positive and definite.

Proof. Let us write G = (gi,j)1≤i,j≤ℓ and let 1 ≤ s, t ≤ dℓ. There are unique
1 ≤ is, it ≤ d and 1 ≤ js, jt ≤ ℓ such that s = js(d−1)+ is and t = jt(d−1)+ it.
Then the coefficient (s, t) on the right hand side is

⟨b̃s, b̃t⟩Cdℓ = ⟨σ(α
(js)
is
· bjs), σ(α

(jt)
it
· bjt)⟩Cdℓ

= Tr(α
(js)
is
· b∗js · bjt · α

(jt)
it

)

= Tr(α
(js)
is
· gjs,jt · α

(jt)
it

),

which is by definition the coefficient (s, t) of ψ(G).

Lemma A.4. Let α(j) = {α(j)
1 , . . . , α

(j)
d } be a Z-basis of Ij and x := (x1, . . . , xl) ∈

I1×· · ·×Iℓ. For every 1 ≤ j ≤ ℓ we put (z(j)i )i the coefficients of xj in the Z-basis
of Ij i.e., xj =

∑d
i=1 z

(j)
i α

(j)
i and z = (z

(j)
i )i,j ∈ Zdl. Then for any s > 0,

P(X = x)
X∼DI1×···×Iℓ,s

= P(Z = z)
Z∼Dψ(G),s

.

Proof. Let s > 0. It is enough to prove that

exp(−π||x||2G/s2) = ρψ(G),s(z) = exp(−π(zTψ(G)z)/s2).
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Let B = (b1| . . . |bℓ) ∈ GLℓ(KR) such that G = B∗B, then by the previous
lemma zTψ(G)z = (B̃z)T · (B̃z) and by definition of B̃,

B̃ · z =
d∑
j=1

ℓ∑
i=1

b̃j(d−1)+i · z
(j)
i

= σ
( ℓ∑
j=1

bj

d∑
i=1

α
(j)
i · z

(j)
i

)

= σ
( ℓ∑
j=1

bj · xj
)

= σ(B · x).

Therefore we obtain as expected,

zTψ(G)z = ⟨B̃z, B̃z⟩Cdℓ
= Tr((Bx)∗(Bx))

= Tr(x∗Gx)

= ||x||2G.

Sampling congruent forms. Let us fix a pseudo-Gram matrix G associated to
the pseudo-basis B of a module lattice M . Using the algorithm GaussianGram
of Lemma 3.8 with input G and parameter s > 0 we can sample in the product
I1 × · · · × Iℓ (recall that the coefficient ideals are represented by fixed Z-bases).
Following the idea developed in [17, Fig. 2] we sample enough vectors (enough to
get a rank ℓ matrix) and apply the CHNF algorithm to extract another pseudo-
basis of M together with the pseudo-bases change U . Then from G and U we
can build a congruent pseudo-Gram matrix G′ ∼ G.

Lemma A.5. For any pseudo-matrix B = (B, (Ij)1≤j≤ℓ) with B ∈ GLℓ(K) and
associated pseudo-Gram matrix G = ((gi,j)1≤i,j≤ℓ, (Ij)1≤j≤ℓ)), and parameter

s ≥
√
d · log(2dℓ+ 4)

π
· 2d ·∆3/(2d)

K · max
1≤j≤ℓ

(
∥σ(gj,j)1/2∥ · N (Ij)

1/d
)
,

Algorithm A.1 returns a pseudo-Gram matrix G′ = (G′, (Jj)1≤j≤ℓ) congruent to
G := (B∗B, (Ij)1≤j≤l) together with a congruence matrix U between G and G′.
Is it a probabilistic algorithm which runs in expected time poly(d, ℓ, log s).

Moreover, the result depends only on the equivalence class of the input, in the
sense that for any congruent pseudo-Gram matrix H = (W ∗GW, (Hi)1≤i≤ℓ),
running steps 9-11 with H and W−1Y instead of G and Y gives the same
output. This defines a Gaussian distribution on [G] with parameter s, denoted
Ds([G]).
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Algorithm A.1 Sample congruent pseudo-Gram matrix.
Input: A pseudo-Gram matrix G = (G, (Ii)1≤i≤ℓ) coming from a known pseudo-basis

of M , and a parameter s ≥
√

d·log(2dℓ+4)
π

· 2d · ∆3/(2d)
K · max1≤j≤ℓ

(
∥σ(gj,j)1/2∥ ·

N (Ij)
1/d

)
.

Output: A pseudo-Gram matrix G′ = (G′, (Ji)1≤i≤ℓ) equivalent to G together with
a congruence matrix U between G and G′.

1: C ← 1− (1 + e−π)−1 and m← ⌈ 2ℓ
C
⌉

2: for 1 ≤ i ≤ m do
3: I1 × · · · × Iℓ ∋ yi ← GaussianGram(G, s)
4: end for
5: Y ← (y1 | . . . | ym) ∈Mℓ×m(K)
6: if Y has rank < ℓ then
7: Restart
8: end if
9: (H, (J−1

i )1≤i≤ℓ, U0)← CHNF(Y T , (I−1
i )1≤i≤ℓ), [10, Algorithm 1.4.7].

10: U ← U−T
0

11: return G′ = (U∗GU, (Ji)1≤i≤ℓ), U)

Proof. Correctness. At step 9, properties of the CHNF give Y TU0 = H and
u0i,j ∈ I

−1
i Jj (where U0 = (u0i,j)1≤i,j≤ℓ), v0i,j ∈ J

−1
i Ij (where U−1

0 = (v0i,j)1≤i,j≤ℓ).
Thus at step 10, the matrix U = U−T

0 has coefficient (i, j) in IiJ
−1
j and it is

a congruence matrix between G and G′ (with notations of step 11). Thus the
algorithm ensures a pseudo-Gram matrix G′ ∼ G together with the congruence
matrix.

Complexity. Sampling from GaussianGram (thanks to Lemma 3.8) and the
CHNF Algorithm [10, Algorithm 1.4.7] run in polynomial time in d, ℓ and
log s. We need to estimate the probability of failure at step 6. Let T be the
random variable counting the number of iteration before founding a set of full
rank vectors. By Lemma 5.1 of [20] (and because s ≥ max1≤j≤ℓ ∥σ(gj,j)1/2∥ ≥
λdℓ(σ(M)) ), for any i ∈ {1, . . . , dℓ − 1} and set of vectors {y1, . . . , yi} sampled
from GaussianGram(G, s), the probability that y ← GaussianGram(G, s) does
not belong to the span of y1, . . . , yi is greater than C := 1 − (1 + e−π)−1. Let
m = ⌈ 2ℓC ⌉ and X1, . . . , Xm be Bernoulli variables with success parameter C, and
Sm = X1 + · · · +Xm. Then, the probability pfail of not finding ℓ linearly inde-
pendent vectors within m sampled vectors is upper bounded by the probability
P(Sm ≤ ℓ−1), where Sm follows a binomial distribution with parameters m and
C i.e.,

pfail ≤ P(Sm ≤ ℓ− 1).
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Using Hoeffding’s inequality,

pfail ≤ P
(Sm
m
− C ≤ ℓ− 1

m
− C

)
≤ exp

(
− 2m

(
C − ℓ− 1

m

)2)
≤ exp(−mC)
≤ exp(−2ℓ)
≤ e−2.

Therefore,

E[T ] ≤ 1

1− pfail
< 2.

Independance from G. Finally we prove that the result depends only on the
equivalence class of G. Let (W ∗GW, (I ′i)1≤i≤ℓ) be equivalent to G, where W =

(wi,j)1≤i,j≤ℓ ∈ GLℓ(K). Denote by (H ′, (J ′−1
i )1≤i≤ℓ, U

′
0) the CHNF Algorithm

of [10] applied to the pseudo-matrix (Y TW−T , (I ′i
−1

)1≤i≤ℓ) and U ′ = U ′
0
−T
. By

unicity of the CHNF (there is a unique pseudo-matrix in CHNF in the orbit of
G for the multiplication equivalence relation), we obtain

(U ′)−1W−1Y = U ′
0
T
W−1Y = (Y TW−TU ′

0)
T = H ′ = H = (Y TU0)

T = U−1Y,

so (U ′)−1W−1 = U−1 and U ′ =W−1U . Then,

(U ′)∗W ∗GWU ′ = U∗W−∗W ∗GWW−1U = U∗GU.

Also, the unicity of the CHNF implies J ′
i = Ji for all 1 ≤ i ≤ ℓ so the pseudo-

Gram matrix returned is the same and this concludes the proof. ⊓⊔

Average-case problem. Now that we have an efficient algorithm to generate in-
stances of module-LIP, it leads us to an average-case version of the problem.

Definition A.6 (ac-smodLIPB,s
K ). For B a pseudo-basis of a module lat-

tice M ⊂ Kℓ with associated pseudo-Gram matrix G, the average-case search
module-Lattice Isomorphism Problem with parameter K, B and s denoted by
ac-smodLIPB,s

K is, given as input any pseudo-Gram matrix G′ ∼ G sampled
from Algorithm A.1 with parameters G and s > 0, to find a congruence matrix
between G and G′.

The following results states that an oracle solving ac-smodLIPB,s
K also solves

wc-smodLIPB
K , up to a call to Algorithm A.1.

Proposition A.7 (ac-smodLIPB,s
K ≥ wc-smodLIPB

K). Given an oracle that
solves ac-smodLIPB,s

K in time τ with probability p > 0, one can solve wc-smodLIPB
K

in time τ + poly(d, ℓ, log s) and probability p, where

s ≥
√
d · log(2dℓ+ 4)

π
· 2d ·∆3/(2d)

K · max
1≤j≤ℓ

(
∥σ(gj,j)1/2∥ · N (Ij)

1/d
)
.
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Proof. Let G′ = (G′, (Ji)i) be any pseudo-Gram matrix equivalent to G. First,
we sample G′′ = (G′, (Hi)i) equivalent to G together with U ′′ = (u′′i,j) such
that G′′ = U ′′∗GU ′′ and u′′i,j ∈ IiH

−1
j . This is done in time poly(d, ℓ, log s).

Now we can apply our oracle to solve an average-case LIP instance ; we find
U ′ = (u′i,j) with inverse V ′ = (v′i,j) such that G′′ = U ′∗G′U ′ and u′i,j ∈ JiH

−1
j ,

v′i,j ∈ HiJ
−1
j . Let U = U ′′U ′−1 =: (ui,j) ∈ GLℓ(K), then G′ = U∗GU and

∀ (i, j) ∈ {1, . . . , ℓ}2, ui,j =
ℓ∑

k=1

u′′i,k · v′k,j︸ ︷︷ ︸
∈ (IiH

−1
k )(HkJ

−1
j )

∈ IiJ−1
j ,

so U is a solution to the worst-case problem i.e. a congruence matrix between
G and G′. ⊓⊔

B Justifications for Assumption 1

In this appendix, we provide theoretical and experimental evidences in favor of
Assumption 1.

Theoretical justification. First, recall that by Lemma 4.2, the ideal I is generated
by the elements of the form z21 + z22 for (z1, z2)

T ∈ M . Hence, there exists no
prime ideal p such that p divides (z21+z22)I−1 for all (z1, z2)T in M . This does not
mean that all integral ideals a are realisable as (z21 + z22)I

−1, but at least, these
ideals should be co-prime when (z1, z2)

T ranges over M . In terms of support,
there is then some hope that some prime ideals can be realisable as (z21+z22)I−1.
Note also that we chose s ≥ η1/2(M) to ensure that the Gaussian distribution
does not always fall in a sublattice of σ(M) of smaller dimension.

With these precautions taken, we assume that the ideal qI−1 behaves like a
“random” ideal of OK , with the condition that its class in the class-group should
be the same as the one of I−1. We now argue that if one picks a random integral
ideal a in a fixed class of the class group, then the probability that a is prime
is roughly (ρK · logN (a))−1. While founded on non-trivial results in number
theory, the next arguments are somewhat standard.

Let C be a fixed class of the class group. We will write iC(X) the number
of integral ideals in the class C of norm bounded by X and pC(X) the number
of prime ideals in the class C of norm bounded by X. The next results give
asymptotic bounds (when K is fixed and X tends to infinity) on the quantities
iC(X) and pC(X), from which we will derive the (asymptotic) density of prime
ideals in a given class C.

First, it is known that pC(X) ∼ X/(hK · logX) when X tends to infinity
(and K is fixed). A reference for this claim can be found in [28, Se. 7.2, Cor. 4],
when instantiated with I = OK .21

21 In this case, the quantities H∗
I (K) and h∗

I(K) from the statement are simply the
class group Cl(K) and the class number hK of K (the notations H∗

I (K) and h∗
I(K)

are defined in Section 3.2 of [28]).
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For the quantity iC(X), Theorems 39 and 40 from [25] and the class number
formula provide the estimates iC(X) ∼ ρK · X/hK . Combining these two esti-
mates, we obtain that the probability that a uniform ideal of norm ≤ X in a
given class C is a prime ideal is asymptotically equivalent to (ρK · logX)−1.

All these computations give us an expected behaviour, when the bound X
tends to infinity and K is fixed. In our case, we would like to consider ideals of
potentially small algebraic norms, and we are not even sure that our distribution
produces ideals uniformly distributed in a given class below a bound X. Hence,
our main assumption is to suppose that even though we do not satisfy all the
requirements needed, the previous asymptotic bound still holds somehow in our
case (up to a potential polynomial loss). In other words, we assume that the
probability that qI−1 is prime is roughly (ρK · logN (qI−1) · poly(d))−1.

Finally, we upper bound the quantityN (q) by ∥σ(q)∥d ≤ (s
√
d)d, which holds

except with negligible probability using Gaussian tails bounds (see Lemma 2.5).
Note also that the quantity appearing in the assumption is log(s/N (I)1/d) and
not log(sd/N (I)), because we moved the factor d in the polynomial P (d).

Experimental justification. We verified experimentally our assumption on num-
ber fields K that are the maximal real subfields of cyclotomic fields. The code for
the experiments is available in our public repository (in the folder experiments_
for_assumption). With these experiments, we tried to assess two claims:

– that the ideal qI−1 is prime with probability roughly (ρK · logN (qI−1))−1,
– and that the quantity

(
ρK · log(s/N (I)1/d) · Pr(q · I−1 is prime )

)−1 grows
at most polynomially with d (it is supposed to be upper bounded by the
polynomial P (d) if our assumption holds).

In order to test these two claims, we performed multiple tests with different
number fields, different modules for a given number field, and many random q for
each module. More formally, we tested all K that are the maximal real subfield
of a cyclotomic field of conductor ≤ 160 (those have degree d at most 78). We
then tested some more maximal real subfields of cyclotomic fields (but not all
of them), up to degrees d = 125.

In each of these number fields K, if the degree d of K was ≤ 45, we generated
10 random free modules M of rank 2 (even 20 modules if d ≤ 21). We did not
impose any restriction on the Gram ideal G(M) of the module. Most of them
were equal to OK , but some of them were non-trivial. When d was larger than
45, we did not consider 10 random modules, but only 1 module per field, namely
the module O2

K . We also added this specific module to the 10 and 20 modules
already generated for the small dimensional number fields.

For each number field and each module M generated, we then sampled be-
tween 1000 and 5000 Gaussian vectors (z1, z2)T ∈M and computed the empirical
probability Pempirical that qI−1 be a prime ideal (K and M are fixed here, and
the empirical probability if computed only over the random choice of q). We
also computed the expected probability Pexpected to find a prime ideal. To do so,
for each random q generated, we computed 1/(ρK logN (q/I)), and we took the
average of this quantity over all q’s (for a fixed module).
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In Figure 1, we plotted the ratios Pempirical/Pexpected for all number fields,
and all modules, as a function of the degree d of K. The red crosses represent
the modules O2

K and the blue dots are the random modules (only for small
degrees). One can check that this ratio is always between [0.4, 2.2], hence, the
quantity Pexpected seems to approximate relatively well the empirical probability
Pempirical. One can also check on the small dimensional fields that the module
O2
K does not seem to have a behaviour significantly different from the random

modules. The slightly larger deviation observed in the blue dots for number fields
of degree between 21 and 45 might be explained by the fact that those empirical
probabilities were obtained using only 1000 random q, whereas the blue dots for
d ≤ 21 and the red crosses use at least 2000 random q’s.

Fig. 1. Ratios Pempirical/Pexpected as a function of d for various fields K and various
modules M . The red crosses correspond to M = O2

K and the blue dots correspond to
a random free module M

In Figure 2, we plotted the quantity Q := (Pempirical · ρK · log(s̃))−1 as a
function of d. Here, s̃ = max(e, s/N (I)1/d), where the max is here to ensure
that log s̃ ≥ 1 is not too small (this can happen in small dimensional examples
and caused some weird results, which disappear when the dimension increases).
Recall that this quantity is supposed to be upper bounded by P (d) for some
polynomial P (if our assumption holds). The result on the figure seem consistent
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with this assumption (the polynomial P (d) even seems linear in d). Once again,
there is one blue point per random module and one red cross per O2

K module.
Overall, our experimental results seem consistent with Assumption 1.

Fig. 2. The quantity Q as a function of d for various fields K and various modules M .
The red crosses correspond to M = O2

K and the blue dots correspond to a random free
module M

C Details about the implementation

This section contains more technical details about our implementation of the
attack, and some explanation for the choices we made there. Our code is available
in our public repository (in the folder attack), and a high-level description of
the implementation (with timings) is provided in Section 5.

On the Gentry-Szydlo’s algorithm. The Gentry-Szydlo algorithm (in its
initial form, over cyclotomic fields [19]) is a relatively complicated to implement
algorithm. The main idea of the algorithm is to notice that if P is a prime
number that splits completely in the cyclotomic field L, then OL/(POL) ∼=
(FP )deg(L), and so, by Fermat’s theorem, any x ∈ OL coprime to P satisfies
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xP−1 = 1 mod P . Assume now that J is a principal ideal generated by some
element g ∈ OL, then JP−1 is still principal, generated by gP−1. If one is able
to recover a small multiple a · gP−1 of this generator, then reducing it modulo P
reveals a mod P . Now, if P is large enough compared to a, this allows to recover
a exactly, and then recover gP−1 from a·gP−1. Finally, computing a root of gP−1

in L enables to recover g (up to roots of unity). This high-level description of the
algorithm does not actually work, since it would require P to be exponentially
large, causing the size of the elements to explode. A nice explanation of how to
handle this issue can be found in [18, Section 7.3].

The Gentry-Szydlo algorithm is not natively implemented in Sagemath. We
found a previous implementation of the algorithm in Pari/GP, done by de Vil-
marest and Kirchner22 and used in the article [4]. Unfortunately, we failed to
use this implementation of the Gentry-Szydlo algorithm for our attack. More
precisely, we managed to use the implementation of de Vilmarest and Kirchner
on some instances, but the algorithm failed on some other instances without us
understanding why (we guess that this was due to a bad choice of parameters
at the beginning of the algorithm).

We decided to re-implement the Gentry-Szydlo algorithm in Sagemath for
our attack. We did not target efficiency, but mainly stability of the algorithm.
We followed the description of the algorithm provided in [18, Section 7.3], and
used built-in Sage functions for manipulating ideals and number fields. The main
bottleneck of the algorithm in large dimension are the (multiple) calls to an LLL
algorithm in ideal lattices. We run the LLL algorithm on the Gram matrix of
the ideals, and do so by calling Sage’s function LLL_Gram, which itself calls the
qflllgram function of Pari/GP. This function has recently been improved in
Pari/GP, using the “Flatter” framework [30], but this optimization is not yet
available when Pari/GP is called through Sage. In order to improve the running
time of the Gentry-Szydlo algorithm, we enabled the user to specify a path to
a recent installation of Pari/GP (with a fast qflllgram implementation), and
use it instead of Sage’s default LLL_Gram function. With this optimization, the
cost of LLL is still dominating the running time of the algorithm, but it can be
decreased by a factor 2 is large dimensions (≳ 200).

On the NormEquation algorithm. We now explain NormEquation for our
relevant fields, that is, L = Q(ζm) is a cyclotomic field with m = 4k, and K is
its maximal totally real subfield. If τ is the non-trivial automorphism of L|K,
we write τ(a) = a∗. Note that if a is a solution of q = a∗a, then ρ · a is also
a solution for all roots of unity ρ ∈ L. On input an arbitrary principal ideal
qOK , we factor it as a product of prime ideals in OK , which are then separated
in inerts, ramified and splits parts in OL. The separation can be done e.g. by
checking how the polynomial X2 + 1 factors in finite fields. For simplicity, we

22 available at https://alexgelin.fr/doc/GenRec.tar.gz.
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will consider unramified primes in this section, so that

qOK =
∏
inert

pe ·
∏
split

qf .

If q = a∗a, we observe that primes above the inerts dividing qOK must have an
even valuation since they must appear both as divisors of aOL and a∗OL. We
can early-abort if this is not the case since there would be no solution. Now let
us write

qOL = I2 ·
∏

Q∩OK split

(QQ∗)f ,

where I =
∏

P∩OK inert P
e is the product of all primes above the inerts of

pOK . We then need to find principal ideals among all possible products I ·∏
Q∩OK split Q

α · (Q∗)f−α as their generators are candidates for solutions of the
equation q = a∗a. Having computed all the products, we have in fact Z-bases for
all the ideals to be tested, as well as the relative norm q of its potential generators:
this is where using Gentry-Szydlo algorithm makes this step polynomial time.
As mentioned above, we provide an implementation of this algorithm on our
repository that works well for small dimensions (ϕ(m) ≤ 100) and reasonably
well up to m ≤ 300.

On the TwoSquares algorithm. We now assume that NormEquation finds all
solutions for the equation q = a∗a. The TwoSquares algorithm takes in input
the set of all solutions to a relative norm equation q = a∗a from L = K(i) to
K, and find those corresponding to a = u+ iv with u, v ∈ OK . The next lemma
characterizes these particular solutions. Recall that TrL|K(x) = x + x∗ is the
relative trace map, and that it sends OL into OK .

Lemma C.1. We have OK + iOK = {x ∈ OL : TrL|K(x) ∈ 2OK}.

Proof. On the one hand, if x = a+ ib with a, b ∈ K, then TrL|K(x) = 2a. On the
other hand, we have the identity 2x = TrL|K(x)+ iTrL|K(−ix). Then if x ∈ OL
is such that TrL|K(x) ∈ 2OK , then TrL|K(−ix) ∈ 2OL ∩ iOK , which gives the
result. ⊓⊔

Then, let b be any solution of the relative norm equation. Using the above lemma,
when the relative trace is in 2OK we directly compute u = (1/2) ·TrL|K(b), v =
(1/2) ·TrL|K(−ib) ∈ OK such that (u+ iv)(u− iv) = u2+v2 = q. We implement
this with a simple parity check of the coefficients for a given basis of OK , and
this allows to filter out sums-of-two-squares. In e.g. sagemath where the ring OK
can be instantiated, this can also be done in a black-box by testing membership.

On the CongruenceSolver algorithm. To test our complete attack, we provide
an algorithm to generate bases of O2

K and their associated quadratic form Q of
determinant 1. The idea behind the algorithm is a basis completion algorithm:
take any vector u ∈ O2

K , find a v ∈ O2
K such that det(u, v) = 1. One can also
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check [10, Alg. 1.3.16] for the basis completion step, which we have borrowed in
our implementation. We also do not aim for efficiency, and thus do not try to
exploit any tower structure of the totally real subfield. However, if we stop at
finding a v as described in the given reference, it will likely have large coefficients
and so we also do a step of algebraic “size-reduction” using a basis of OK to
express our elements. For the NTRU enthousiasts out there, this is a similar
procedure as in Hawk [14] and other NTRU key-generation algorithms, except
that the ambient field is different so the operations are less efficient. In particular,
there are less standard choices for the basis that is used to represent OK . Let
K = Q(θ), so that 1, θ, . . . , θd−1 is a Z-basis of OK . Experimentally, we observed
that although easy to use, this tended to not be the best basis from a geometric
point of view; in other words, the coefficients tended to be much larger with this
basis than the other one we describe below.

Lemma C.2. Let τ0 = 1, τ1 = θ and for 2 ≤ i ≤ d − 1, τi = ζim + ζ−im . Then
(τi)0≤i≤d−1 is a Z-basis of OK .

Proof. This is observed by expanding each θi, and noting that τi ∈ K. Let us
write ζ = ζm to lighten the notation For an even exponent, we readily compute

θ2i = ζ2i + ζ−2i +

2i−1∑
j=1

(
2i

j

)
ζ2i−jζ−j

= τ2i +

i−1∑
j=1

(
2i

j

)(
ζ2(i−j) + ζ−2(i−j))+ (

2i

i

)

= τ2i +

i∑
j=1

(
2i

j

)
τ2(i−j),

and a similar expression is derived analogously for the odd case. This shows that
the matrix to express the θi’s from the τi’s is triangular with 1 on the diagonal,
and has integer entries. In other words, it is unimodular and thus (τi)i is a basis
of OK . ⊓⊔

To see that the geometry is better, one can look at the matrixG = [TrK|Q(τiτj)]i,j ,
and notice that it is indeed quite sparser and has much smaller entries as when
the degree of K grows. This comes from the vanishing of many sums of roots
of unity. For the best case where m is a power of two, we can even show that
G is diagonal with small entries. For completeness we gather this in the lemma
below.

Lemma C.3. If m = 2ℓ, we have G = Diag(d, 2d, . . . 2d) ∈ Zd×d.

As a direct application, we find that 2∆K =
√
∆L for these conductors.

Proof. The upper left coefficient is seen as TrK|Q(1) = d. Let ϵij = τiτj for
0 ≤ i, j ≤ d− 1. We have that ϵij = ζi+j + ζ−(i+j) + ζi−j + ζ−(i−j). The chain
rule for relative traces is TrL|Q = TrK|Q ◦TrL|K , from which we see TrK|Q(ϵij) =
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TrL|Q(ζ
i+j) + TrL|Q(ζ

i−j). By symmetry of G we can restrict to j ≤ i. When
i = j we have ζi−j = 1 and then TrL|Q(1) = 2d. Recall that the Galois group
acts on ζ by exponentiation to an integer in (Z/mZ)×, which in this case means
exponentiation to an odd power. For the other term, for all k not multiple of d,
we thus have

TrL|Q(ζ
k) =

d−1∑
i=0

ζk(2i+1) = ζk
d−1∑
i=0

ζ2i = ζk · ζ
m − 1

ζ − 1
= 0,

first by definition of the absolute trace, then using the geometric sum and the
fact that ζ is a primitive m-th root of 1. This gives the result. ⊓⊔

For these conductors, the Gram matrix of the power basis is much worse. To
compare, the bottom right coefficient in the Gram matrix of the power basis,
for example, can be calculated from the lemma and properties of the trace to be(
2(d−1)
d−1

)
·d. The general case is more tedious as one needs to take into account the

possible values of the trace at exponents that are not coprime to the conductor.

On the FindPrimeNorm algorithm. Moving onto the attack, we need to find
sums-of-two squares that are also prime in K from the knowledge of Q. We
implemented an implicit Gaussian sampler to do so, outputting vectors z =
(u, v) ∈ O2

K while keeping the coefficients of the found q = x2 + y2 = ztQz as
small as possible. Indeed, in previous versions our more naive approach resulted
in substantially larger q’s, which incurred a non-negligible cost on computations.
To check for primality of the ideal qOK , our first approach was a to rely on a
(probabilistic) prime-power testing implemented in sage, giving us (p, e) such
that N(q) = pe. Then we would factor the defining polynomial of K over Fp to
find the possible two-element representation of qOK among the factors. Experi-
mentally, it was almost always the case that e = 1, or equivalently, that p totally
splits in K. Therefore in our current version we directly aim at finding a element
q of prime norm, which also makes the next step cheaper. This is of course a
trade-off on the amount of repetitions, but experimentally, the benefit on the
following computations was significant and we therefore kept this alternative
strategy in our published code.

Finalizing the attack. Once a prime q is found in K, we need to find its
factors in L, and we want to avoid to re-factor (or deduce the primality of)
the absolute norm by using black-box functions. As L|K is quadratic we know
that either qOK splits totally, is inert, or ramifies. By construction, we have
q = x2 + y2 = (x+ iy)(x− iy) so in fact, q must always split.

This is similar to the situation over Z, where primes that are sums of two
squares must satisfy p ≡ 1 [4], which equivalently means that they split in the
ring Z[i]. Moreover, the two factors must be conjugate by the involution, so if we
know the generator g for one, we have the other. This means that we only need
to do one call to the Gentry-Szydlo algorithm by prime that we find at this step,
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making it a total of two to get to the last phase. We still need to feed input to
Gentry-Szydlo. We can use the polynomial X2 − θX + 1 defining the extension
L|K; as we know it will have two factors modulo p, we just need to compute a
square root of ∆L|K = θ2 − 4 modulo p to then deduce the linear factors. Note
that p could be large if we did not control its size previously.

In the end we obtain two linearly independent vectors z1 = (u1, v1) and
z2 = (u2, v2) which are also sums of two squares in O2

K , and for which we
have all the possible sums. Following Step 17 to 20 in our algorithm, we then
build all possible matrices corresponding to pairs of solutions, then check if they
indeed give a congruence matrix (this amounts to check if the entries have a
denominator). As we know already the determinant of the potential congruence
matrices, we can filter out the matrices that would not fit and only do linear
algebra with the ones we need. Additionally, we know that the group of OK-
isometries acts on the set of solutions. This group has 4 elements (identity,
negation, permutation of the two basis vectors and the composition of these
two), which is also what we expect as a number of final solutions. Once one is
found, we could obtain the other by using this action. In our published code, we
did not implement this idea, and merely enumerated all (filtered) matrices until
exhaustion. Overall, we could successfully recover the congruence class of Hawk-
type Gram matrices23 for different conductors in about 1100s for conductors as
large as 256 (or a bit larger, when not a power of 2). Up to conductors about
50, the algorithm performs well and the attack takes mere seconds. For m from
50 to about 200, the attack is slower, with the two Gentry-Szydlo steps clearly
dominating the running time. Notably, the attack never fails in the sense that
we always find back the basis B such that BTB = Q.

23 Hermitian forms corresponding to a (secret) basis of the free module O2
K .
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