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Abstract. Soft Analytical Side Channel Attacks (SASCA) are a powerful family
of Side Channel Attacks (SCA) that allow to recover secret values with only a
small number of traces. Their effectiveness lies in the Belief Propagation (BP)
algorithm, which enables efficient computation of the marginal distributions of
intermediate values. Post-quantum schemes such as Kyber, and more recently,
Hamming Quasi-Cyclic (HQC), have been targets of SASCA. Previous SASCA on
HQC focused on Reed-Solomon (RS) codes and successfully retrieved the shared
key with a high success rate for high noise levels using a single trace. In this
work, we present new SASCA on HQC where both the shared key and the secret
key are targeted. Unlike the previous SASCA, we take a closer look at the Reed-
Muller (RM) code. The advantage of this choice, is that the RM decoder is applied
before the RS decoder. This is what makes it possible to attack the two keys. We
build a factor graph of the Fast Hadamard Transform (FHT) function from the
HQC reference implementation of April 2023. The information recovered from BP
allows us to retrieve the shared key with a single trace. In addition to the previous
SASCA targeting HQC, we also manage to recover the secret key with two chosen
ciphertext attacks. One of them require a single trace and is successful until high
noise levels.

Keywords: Soft Analytical Side Channel Attacks (SASCA) · Belief Propagation
(BP) · Hamming Quasi-Cyclic (HQC) · Reed-Muller (RM) Codes · Post-Quantum
Cryptography (PQC) · Single Trace Attacks · Chosen Ciphertexts Attacks (CCA)

Introduction

Hamming Quasi-Cyclic (HQC) [19] is a code-based Key Encapsulation Mechanism (KEM),
and a candidate for the National Institute of Standards and Technology (NIST)’s contest
for the standardisation of post-quantum cryptosystems. After three rounds, the NIST
selected the KEM CRYSTALS-Kyber [6] as well as the signature schemes CRYSTALS-
Dilithium [7], FALCON [24] and SPHINCS+ [5]. The first three are lattice-based, and
SPHINCS+ is hash-based. A fourth round is currently taking place between the three
code-based KEM Classic McEliece [2], BIKE [3] and HQC. During the course of the con-
test, the security of the candidates have been tested against Side-Channel Attacks (SCA),



2 Bäısse et al.

and post-quantum schemes were found to be vulnerable to this kind of attacks. Indeed,
as SCA rely on a physical access to the device on which the scheme is implemented, the
security of the implementation holds more importance than the hardness of the problem
the scheme is based on. Protection against SCA is one of the metric used to evaluate
candidates in the NIST’s process [1].

Concerning HQC, a first version of the cryptosystem that uses BCH codes has been
targeted by two Timing Attacks (TA) in 2019 [31] and 2020 [21], as well as a chosen
ciphertext attack [29] in 2020. During the third round of the NIST contest, authors of
HQC made the previous attacks out-of-date with a new version of the cryptosystem based
on concatenated Reed-Muller (RM) and Reed-Solomon (RS) codes.

A message recovery attack with a single electromagnetic trace by Goy et al. [9], ex-
ploited the error free RS codeword decoding due to the small Decryption Failure Rate.
However, the attack needed more than 296 algebraic operations to recover the shared key
from the side channel information, which is not realistic in practice.

In 2022, the RM decoder has been targeted by two chosen ciphertext attacks where
the support of the secret key y is recovered by the use of an oracle. In the attack of
Schamberger et al. [28], the oracle determined if the decoded word is the all-zero codeword
or not, while in the attack of Goy et al. [8], the oracle gave the number of errors corrected
by the RM decoder.

Soft Analytical Side Channel Attacks (SASCA) were first proposed in 2014 by Veyrat-
Charvillon et al. on the cryptosystem AES [30]. The idea is to combine the side-channel
information of the intermediate variables with the Belief Propagation (BP) algorithm
[16], in order to find the full key. The result is a powerful, noise-resistant generic attack
with low timing and memory complexities. With SASCA, authors were able to attack
the AES Furious implementation with a single trace for small noises, and with less traces
than a standard template attack for larger noises.

In 2020, Kannwischer et al. tried SASCA for different kind of scenarios [15], on the
Keccak hash function that often deals with ephemeral secrets. Their results show that
single trace attacks are a serious threat against Keccak.

Related Work The lattice-based cryptosystem Kyber [6], standardised by NIST, has
also been a target of SASCA with five attacks [25,22,12,13,4]. All of them focused on
the Number Theoretic Transform (NTT) or its inverse, used in the scheme to perform
polynomial multiplications efficiently.

These operations have a structure that makes heavy use of load and store operations,
which are known to produce a high amount of side-channel leakage. There are composed
of layers where an operation called a butterfly, is performed on two coefficients of a
polynomial to compute two coefficients of a new one.

The first attack was proposed in 2017 by Primas et al. [25] and used a single trace at-
tack. Authors performed simulations with a Hamming weight leakage model and obtained
a success rate superior to 0.9, up to a σ of 0.4 for both the masked and unmasked cases. In
2019, Pessl et al. [22] improved the former attack by reducing number of templates from
one million to 213 Hamming weight templates. They also used some strategies to help the
convergence of the BP algorithm such as scheduling, damping and reducing cycles. On the
simulated case, their success rate is good up to a σ of 1.5 for the unmasked case and 0.3 for
the masked one. In 2021, Hamburg et al. applied a k-trace SASCA (k ∈ {2, 3, 4}) using a
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chosen ciphertext strategy [12], in order to have a sparse input linked to the secret. They
obtained a good success rate up to σ ⩽ 1, 2 for k traces and up to σ ⩽ 0.5−0.7 for a single
trace. Countermeasures against single trace attacks on the NTT have been propound in
2020 by Ravi et al. [27], including Fine Shuffling and Coarse Shuffling. In 2023, these two
shuffling countermeasures have been tested by Hermelink et al. [13] against the attack
of Hamburg et al. of 2021 [12]. While they were found to be efficient, some tools have
been introduced to weaken them. Assael et al. attacked an optimized implementation of
the Kyber for ARM Cortex M4 in 2023 [4]. They introduced message pruning, a new
technique to improve the run-time of BP. Their attack has a high success rate until a σ
of 1.2.

In 2023, Goy et al. led the first SASCA on HQC [10], targeting the shared key manip-
ulated by the Reed Solomon (RS) code. Their simulated attack with a Hamming weight
leakage model is able to reach a high success rate up to a σ of 2 or 3, depending on the
security level . Against a masking countermeasure, the success rate is still good under a
σ of 1, which does not provide security. They also adapted the shuffling countermeasures
used to protect Kyber in [27] and showed that they were not efficient. They introduced
full shuffling that mixed the previously tested countermeasures, and proved that the
added combinatorial complexity is enough to prevent the attack. Finally, they attacked
the decapsulation of HQC by combining the intermediate variables’ information of the
RS decoder and the RS encoder in a same instance of BP. This strategy allowed them to
increase the noise level up to which the attack works.

Our Contributions In this paper, we present two physical side-channel attacks against
HQC based on Belief Propagation. These attacks target the HQC decoder, specifically
focusing on the Fast Hadamard Transform (FHT) involved in the Reed-Muller decoding
algorithm. Since the FHT structure is similar to the NTT, our work is inspired by the
attacks on the NTT using SASCA. We provide a factor graph of this operation and
devise two distinct attacks by exploiting leaks in each of the intermediate operations of
the FHT. The attacks are performed on simulations produced with a Hamming weight
leakage model.

– We demonstrate that during a normal execution of HQC, the leaks observed from
the computation of the Fast Hadamard Transform (FHT) are sufficient to recover the
HQC shared key. This attack can benefit from the re-decoding technique, introduced
by Goy et al. [9,10], to correct errors that appear during the attack, thereby improving
the accuracy of the attack.

– We present two chosen-ciphertext attacks that allow the recovery of the HQC secret
key by exploiting the same leaks as in the previous attack.
• By using the Information Set Decoding (ISD) algorithm, we are able to conduct
a successful attack on the secret key with one chosen ciphertext, and thus, with
a single trace attack.

• Without ISD, we show that, depending on HQC security level, 3 or 5 judiciously
chosen ciphertexts are enough to recover the HQC secret key.

We simulate these three attacks assuming an Hamming weight leakage model and we
show that we are able to recover HQC secrets values even with high noise levels. Finally,
we propose countermeasures.
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1 Background

1.1 Hamming Quasi-Cyclic

General scheme Hamming Quasi-Cyclic (HQC) [19] is a code-based Key Encapsulation
Mechanism (KEM) that allows to share a session key in order to communicate with sym-
metric cryptography. Its security is assured by a reduction of the quasi-cyclic syndrome
decoding problem, established by a quasi-cyclic code of parameters [2n, n]. The scheme
uses a linear code C of parameters [n, k] of generator matrix G ∈ Fk×n

2 , which decoding
algorithm is publicly known. The KEM version of HQC (HQC-KEM) has been built by
applying the transformation of Hofheinz-Hövelmanns-Kiltz (HHK) [14] on the Public Key
Encryption version of HQC (HQC-PKE).

HQC-PKE has been proven to have an IND-CPA security, and the application of
the HHK transformation allows HQC-KEM to reach an IND-CCA2 security. HQC-KEM
embodies the following algorithms of Key Generation, Encryption and Decryption of
HQC-PKE, where R denotes the polynomial ring IF2[X]/(Xn − 1), and Rω = {x ∈
R ; HW(x ) = ω}.

Algorithm 1 KeyGen

Input: parameters

h
$←R

(x , y)
$←R2

ω

sk ← (x , y)
s ← x + hy
pk ← (h , s)
return (sk, pk)

Algorithm 2 Encrypt

Input: pk, m

e
$←Rωe

(r1, r2)
$←R2

ωr

u ← r1 + hr2

v ← mG+ sr2 + e
c ← (u , v)
return c

Algorithm 3 Decrypt

Input: sk, c
return C.Decode(v − uy)

In HQC-KEM, the encryption function is de-randomised thanks to a seed depending
on the message (a hashed message). This allows to re-encrypt the message after the
decryption in order to verify if the received ciphertext is equal to the newly computed
one. The session key, that corresponds to a hash of the concatenation of the message and
the ciphertext, can be shared only if the equality is verified. The KEM is produced by
Algorithm 4 and Algorithm 5, where G,H and K are hash functions.

Algorithm 4 Encapsulate

Input: pk

m
$← Fk

2

θ ← G(m)
c← Encrypt(pk,m , θ)
K ← K(m , c) ▷ shared key
d ← H(m)
return (c,d)

Algorithm 5 Decapsulate

Input: sk, c,d
m ← Decrypt(sk, c)
θ′ ← G(m ′)
c′ ← Encrypt(pk,m

′, θ′)
if c ̸= c′ or d ̸= H(m ′) then

return ⊥
else

return K(m , c)
end if

The code C used in HQC is a concatenated code with a duplicated Reed-Muller (RM)
code over F2 as an internal code, and a shortened Reed-Solomon (RS) code over F28 as
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an external code. Let us denote by [n1, k1] the parameters of the shortened RS code,
and by [n2, k2] the parameters of the duplicated RM code. Given the construction of a
concatenated code, the code C would have parameters [n1n2, k1k2]. However, in order
to thwart structural attacks, the parameters of C are [n, k1k2] where n is the smallest
primitive prime superior to n1n2.

Security Level mul k1 k2 n1 n2 n1n2 n l ω ωe = ωr

HQC-128 3 16 8 46 384 17664 17669 5 66 75

HQC-192 5 24 8 56 640 35840 35851 11 100 114

HQC-256 5 32 8 90 640 57600 57637 37 131 149

Table 1. HQC parameters from [19]

Reed-Muller codes The duplicated RM code of HQC uses a RM(1, 7) code of pa-
rameters [128, 8, 64]. The encoding is first performed in the same way as for a classical
RM(1, 7) code. Then, the codeword is duplicated a given number of times, defined by
the multiplicity parameter mul of HQC. HQC-128 has a multiplicity of 3, which changes
the parameters of the code to [384, 8, 192]. In HQC-192 and HQC-256, the multiplicity
is equal to 5 and the duplicated RM code has parameters [640, 8, 320]. The duplicated
RM code is applied independently to blocks of length k2 during the encoding step, and of
length n2 during the decoding step. The decoding algorithm of the duplicated RM code
is done in three steps (see Figure 1 )

The main step performed during the RM decoding is the Fast Hadamard Transform
(FHT). This decoding method can be used for RM(1,m) codes, as they can be seen as
Hadamard codes, which has been proved by MacWilliams and Sloane in [18]. In the case
of HQC, the FHT takes as input a RM codeword of length 128 called expanded codeword
and return a transformed codeword of the same length. In the reference implementation
[19] of April 2023, the FHT is implemented following Algorithm 6.

Algorithm 6 Fast Hadamard Transform from [19]

1 void hadamard (expandedCodeword *src , expandedCodeword *dst) {
2 expandedCodeword *p1 = src;
3 expandedCodeword *p2 = dst;
4 for (int32_t pass = 0; pass < 7; pass ++) {
5 for (int32_t i = 0; i < 64; i++) {
6 (*p2)[i] = (*p1)[2 * i] + (*p1)[2 * i + 1];
7 (*p2)[i + 64] = (*p1)[2 * i] - (*p1)[2 * i + 1];
8 }
9 expandedCodeword *p3 = p1; // swap p1 , p2 for next round

10 p1 = p2;
11 p2 = p3;
12 }
13 }
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Decoding v − uy In HQC, the vector z = v − uy to be decoded is not a regular RM
codeword but a concatenation of n1 duplicated RM codewords of length n2. The first
steps of the algorithm is then to isolate the n1 chunks and remove their multiplicity, just
before applying the FHT.

The value z = v−uy of length n is divided into n1 chunks of length n2. The remaining
l = n − n1n2 bits are truncated, and are not used for the RM decoding process. Each
of these n1 chunks is manipulated independently by a RM decoder. We focus on the
description of one of these decoders, summarized in Figure 1.

The first step of the decoder is to apply the expand and sum function This al-
gorithm takes as input a chunk of length n2 = 128 × multiplicity , namely z i =(
z
(1)
i | z (2)

i | · · · | z (mul)
i

)
and returns as output ż i =

mul∑
k=1

z
(k)
i , the sum of each bloc (this

operation is the natural sum over N). The expand and sum algorithm then returns a
vector ż i of length 128 whose each value leaves in [0, mul]. This vector is the input of the
FHT, which outputs a vector w i ∈ [−64 · mul, 128 · mul]128. After a slight correction on
the first coordinate of this vector, the find peaks algorithm is applied. Find peaks aims
at locating the maximum coordinates of the vector under absolute value. The location of
the maximum value as well as its sign, are encoded into 8 bits of information denoted as
ci, which is the final output of the RM decoder.

+ FHT

Expand
and Sum

Find PeaksFind PeaksFHT+

Fig. 1. Structure of the HQC expanded Reed-Muller decoder for one chunk z i.

Reed-Solomon decoding After the RM decoding step, the n1 outputs (c1, · · · , cn1
)

represent an erroneous Reed-Solomon codeword that is decoded by the RS decoder. In
this paper, we do not describe the RS decoding process, as we do not target this operation
during our attack. However, the RS decoder can be useful to take advantage of the re-
decoding strategy, introduced by Goy et al. [9,10]. This strategy aims at correcting the
errors made during the attacks exploiting the knowledge of the codeword structure. The
method benefits from the low Decryption Failure Rate (DFR) of the duplicated RM
decoder of HQC (see Table 2), ensuring that the message as a high probability of being
decoded before the RS decoder is applied. For the HQC parameters, we give the error
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correction capabilities of the classical decoder and the Guruswami-Sudan list decoder [11]
in Table 2.

Security level HQC parameters List decoder RM observed

λ k1 n1 t τGS DFR

HQC-128 16 46 15 19 2−10.96

HQC-192 24 56 16 19 2−14.39

HQC-256 32 90 29 36 2−11.48

Table 2. Reed-Solomon error correction capability of the RS decoder for each HQC set of
parameters, given for a classical decoder and the Guruswami-Sudan list decoder, as well as the
duplicated RM decoder observed DFR.

1.2 Soft Analytical Side Channel Attacks

Belief Propagation (BP) is an efficient message-passing algorithm commonly used in the
fields of artifical intelligence or information theory, to compute inferences or marginal
probabilities on a graphical model. Some examples of application are Bayesian Networks,
Markov random fields, and the decoding of Low Density Parity Check codes.

During a SCA, an attacker generally aims at obtaining a probability distribution of
intermediate values of a cryptographic function. Soft Analytical Side Channel Attacks
(SASCA) go further by connecting the gathered side-channel information in a graphi-
cal model linking the intermediate values according to the performed mathematical op-
erations. By appliying BP on this model, the attacker is able to effectively compute
the marginal distributions of the intermediate variables, which will lead to finding the
marginal distribution of the secret.

Building the factor graph The graphical model that links the intermediate values
accordingly to the computation steps of the algorithm is called a factor graph. It is a
bipartite graph with variable nodes and factor nodes.

A variable node represents an intermediate value. A factor node can embody an opera-
tion of the algorithm. The goal is to check the consistency of the operation for the possible
values of the intermediate variables taking part in the operation. The nodes of those in-
termediate variables are linked by an edge to the factor node. There are also observational
factor nodes, that hold the probability distribution of a variable found by a template at-
tack. In that case, an edge exists between the variable node and the observational factor
node.

Applying the Belief Propagation algorithm The Belief Propagation (BP) algorithm
[16] aims at computing the marginals of every intermediate variable of the attacked func-
tion. Thanks to a message-passing principle, the information in the nodes of the factor
graph is propagated and updated during each iteration of BP.
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The following formulas as well as a clear description of BP can be found in the chapter
26 of [17]. Let x = {xn, 1 ⩽ n ⩽ N} be a set of N variables. Let {fm, 1 ⩽ m ⩽ M} be
a set of M factors, where each fm take as argument a subset xm of x. N (m) refers to
the set of indexes of the neighboring variables of the factor fm. M(n) denotes the set of
indexes of the neighboring factors of the variable xn.

Two types of message are passed accordingly to the edges of the factor graph.
A message from the variable xn to the factor fm is defined by:

qn→m(xn) =
∏

m′∈M(n)\{m}

rm′→n(xn) (1)

The second type of message is sent by a factor fm to a variable xn and is given by:

rm→n(xn) =
∑

xm\{xn}

fm(xm)
∏

n′∈N (m)\{n}

qn′→m(xn′)

 (2)

The marginal distribution of the variable xn is computed by multiplying all the in-
coming messages at the node and normalizing.

If BP is applied on a tree-like factor graph, it is proven that convergence is reached
and that the found marginals are exact.

Loopy BP Crytptographic operations are often modelled by cyclic factor graphs. In
that case, we use an iterative algorithm called loopy BP. The marginals are not necessary
correct and the convergence may never happen. In [10], Goy et al. proposed two ways of
stopping the loopy BP. First, they define a maximum number of iterations in case the
convergence is not reached. Second, they specify a threshold on the maximal statistical
change of the variables’ distributions to detect convergence. The results of the loopy BP
often happened to be good enough for most applications, including the computation of
marginal distributions for side channel attacks.

2 Attacking HQC with SASCA

In this section, we detail the generic BP attack strategy employed against HQC. Our
approach leads to build attacks on both the shared key and the secret key, with certain
elements being common across all attack scenarios.

2.1 Attacker model

In each attack scenario presented in this work, it is assumed that the attacker has access to
and full control over a duplicate of the target device. This enables the attacker to execute
the profiling phase of a template attack. It is postulated that the attacker is capable of
isolating the measurements of the FHT layers as well as those of the butterflies. Although
this particular step was not explicitly addressed in our paper, we consider that it is feasible
due to the repetition of building blocks in the targeted function. In practice, isolating and
ordering operations can be achieved using various techniques, including pattern matching
strategies.
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In our paper, we suggest that an attacker has the capability to craft templates for
each intermediate value of the FHT. Our attack strategy is based on simulated traces,
following an Hamming weight leakage model. Numerous preceding studies [10,33] indicate
that translating the results of a simulated attack into a practical attack on a smaller target,
such as the STM32F407, is not a major challenge. The observed SNR in such targets is
low enough to make the attack feasible in real-world scenarios. Nonetheless, executing a
practical attack requires both time and abilites to overcome engineering obstacles, which is
not a straightforward step. However, given that the attack is comprehensively described
and understood theoretically, and the necessary tools for exploiting leaks, like BP on
factor graphs, are available, the attack proves to be effective.

2.2 Representing the FHT with a factor graph

Following Algorithm 6, the FHT is structured in 7 layers. Each takes a vector x of 128
integers as input and applies the following operation to compute a new vector y of 128
integers:

∀ 0 ⩽ i ⩽ 63,

{
yi = x2i + x2i+1

yi+64 = x2i − x2i+1
(3)

We call the realization of this operation for one value of i a butterfly. The construction
of the FHT factor graph is straightforward and consists of 7 layers of 64 butterflies factor
graphs. By directly turning a butterfly into a factor graph, we obtain the factor graph
of Figure 2 , where fa and fb respectively contain the probability distribution of the
variables a and b, and:

f+ =

{
1 if a+ b = c
0 otherwise

f− =

{
1 if a− b = d
0 otherwise

This butterfly forms numerous and short cycles in the complete FHT factor graph. We
choose to apply the clustering strategy [22,12] to eliminate the loops inside each butterfly.
In our case, the factor nodes f+ and f− are combined in a single factor node fbf such as:

fbf =

{
1 if a+ b = c and a− b = d
0 otherwise

(4)

It results in the butterfly of Figure 3. Even if the graph still contains loops due to the
FHT structure, these loops are longer, which will leads to increased performance [22].

2.3 Leakage simulations

To realize our simulations, we rely on the Hamming weight leakage model defining the
measurement tr(s) of an intermediate variable s by

tr(s) = α HW(s) +N (β, σ2).
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a

b

c

d

f+

f−

fa

fb

Fig. 2. Direct butterfly FG

a

b

fbf

d

c

fa

fb

Fig. 3. Chosen butterfly FG

Following this leakage model, we simulate the value r of a linear classifier prediction
when the value s is manipulated with the following equation

P (r | s) = P (X = r)

where X ∼ N (HW(s), σ2).

2.4 Targeting the Fast Hadamard Transform

By recovering the intermediate values of the FHT, an adversary can lead two distinct
attacks: one to retrieve the shared session key, and another to retrieve the secret key y .
The FHT of HQC is thus a highly interesting target for SASCA. In the two following
sections, we show how an attacker can retrieve these two secrets thanks to SASCA.

3 Recovering the shared key

3.1 Attacker model

We suppose that the attacker follows the model described in Subsection 2.1. In addition,
we consider that an attacker is unable to enhance the Signal-to-Noise Ratio (SNR) using
techniques that involve side-channel measurements from multiple instances of HQC de-
capsulation. Furthermore, since our attack aims at recovering the shared key, which is an
ephemeral secret, we only consider a single trace attack scenario. Moreover, the shared key
information is contained into the ciphertext value: this implies that we cannot perform a
chosen ciphertext attack. The behavior of the targeted FHT is therefore exactly what we
observe in a random instance of HQC. We are able to compute the prior knowledge on
each intermediate value knowing the probability distribution of the FHT input.

We then build the attack based on the FHT, which allows us to recover the output of
the FHT. After applying the remaining RM operations, we are able to recover the shared
secret key.
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3.2 Prior Knowledge

When the probability distribution of the input vector is known, the structure of the FHT
enables to compute analytically the probability distribution of the intermediate values.
This information can be integrated into the factor graph as priors inside observational
factor nodes.

The value distribution of the input vector The duplicated RM decoder takes v−uy
as input. It is a codeword of C with an error e’. Indeed, v − uy is equal to mG+ xr2 +
yr1 + e that we rewrite mG + e ′ with e ′ = xr2 + yr1 + e . The input of the FHT can
be denoted as ż = expand and sum(mG + e ′). Let G’ be the generator matrix of the
“demultiplied” code by the expand and sum function and mul the multiplicity parameter,
a coordinate ż i of ż can be written as follows:

∀ 0 ⩽ i < 128, ż i = ((mG′)i ⊕ e ′
1) + . . .+ ((mG′)i ⊕ e ′

mul) (5)

The coordinates of ż leave in [[0, mul]]. Let’s compute the probabilty distribution of ż i,
namely P (ż i = k) for any k. Either (mG′)i = 0 with k errors, either (mG′)i = 1 with
mul− k errors. Given that (mG′) is a codeword, 0 and 1 are evenly distributed. Seen as
randomized Bernouilli experiments, we can compute the probability of having k errors
by:

pk =

(
mul

k

)
· pke′ · (1− pe′)

mul−k (6)

where pe′ refers to P (e′ℓ = 1) the probability that a random bit of e’ is 1. This
probability is well studied in HQC specification [19]. It follows that:

P (ż i = k) =
1

2
pk +

1

2
pmul−k (7)

Distribution of intermediate values To compute the distribution of the intermediate
values, we use the structure of the FHT. An intermediate vector of the FHT can be
divided into blocks as follows. For a layer ℓ, we suppose the input vector of the layer is
divided in blocks. Applying the butterflies on a block produces two blocks of the output
vector of ℓ, one containing the addition results of the butterflies, the other one containing
the subtraction results. Considering the whole input vector of the FHT as one block, each
output vector of the layer ℓ is divided in 2ℓ blocks of size 27−ℓ.

The distributions of the intermediate values are found by computing the distribution
in each block in each vector, from the FHT input to the output. We called the input block,
the block that determined the block we are interested in. The value distributions of the
input block have already been calculated. Let K = {k1, . . . , kN} be the set of possible
values of the block variables. Let Fi be the set of possible operands that gives the value
ki. The probability that a variable y of the block is equal to ki is given by:

P (y = ki) =
∑

(a,b)∈Fi

P (x = a)× P (x = b) (8)

Our calculations showed that the values are normally distributed.



12 Bäısse et al.

3.3 Using the list decoding algorithm for RS codes

The message m is the only information the adversary needs to compute the shared key.
This message is the output of the decoder of the code C. As a reminder, the decoder starts
by decoding the duplicated RM code and applies the shortened RS decoder. This structure
allows us to use the re-decoding strategy of Goy et al. with the Guruswami-Sudan list
decoder [11] (see Section 1.1).

3.4 Simulation results

To evaluate the performance of our attack, we ran the BP algorithm on simulated leakage,
as stated in Subsection 2.3. We used a multithreaded implementation of the BP algorithm
written in Rust. For each value of σ, we performed 50 simulations of a random input of
the FHT algorithm, with up to 500 iterations to reach convergence, stopping as soon as
the distributions of the intermediates variables stopped changing.

For each noise level, we considered each simulation as successful if the algorithm
converged on the right value for the message coefficient that would be decoded by the
find peaks function. From this criteria, we estimated the probability to recover the right
value for one coefficient of the message (see dashed curves in Figure 4), and subsequently
the probability to recover enough coefficients for the list decoder to be able to correct the
message in order to obtain the shared secret key (see curves in Figure 4 ). We remind
that the attack has to be performed on n1 FHT to recover the shared key.

Figure 4 presents the success rate of the attack for the three HQC security levels.
These simulations were built with noise level between 0 and 6 with a step of 0.05.

Fig. 4. Success rate of the shared key recovery attack for all HQC security levels. Non dashed
curves represents the success rate of the attack. Dashed curves represents the success rate of
decoding a message byte with find peaks. Dashed lines represents the proportion of messages
bytes that need to be recovered for a successful decoding.

We observe that the biggest drop in noise-resistance occurs between HQC-128 and
HQC-192. This phenomenon is due to an increasing of the support size of the FHT
intermediate values combined with a lower error correction capability of the corresponding
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list decoder. We can deduce from the simulation that our attack is able to perfectly recover
the shared secret key for σ up to 3 for HQC-128, and up to 2 for the two higher security
levels.

4 Recovering the secret key : two chosen ciphertext attacks

4.1 Attacker model

In this section, the purpose of the attacker is to recover the secret key y . We assume
that the target device performed the HQC decapsulation with a static secret key. By
retrieving y , the attacker is then able to decapsulate all messages encapsulated with the
corresponding public key. We consider that the model described in Subsection 2.1 still
stands in this case. In addition, we suppose that the attacker can send any ciphertext to
the decapsulation. We are thus in a chosen ciphertext attack scenario.

Description of the chosen ciphertext attacks As identified in previous chosen ci-
phertexts attack [29,8], choosing the ciphertext to be (u , v) = (1, v) leads at decoding
z = v − y . Since, this operation is performed in characteristic two, we can rewrite
z = v ⊕ y . They showed how to select v in order to recover the value of the secret
key y . These previous attack [29,8] were able to recover the secret key with respectively
around 50000 and 20000 traces. In this section, we show that we are able to build chosen
ciphertexts attacks requiring either mul chosen ciphertexts, either a single one and a call
to an ISD algorithm.

4.2 Recovering y with mul chosen ciphertexts

In this section, we show that the expand and sum function can be reversed by selecting
mul ciphertexts. For a given chunk, the idea is to select mul ciphertexts (v1, · · · , vmul)
such that:

(v j)
(k)
i =

{
{1}128 if j = k
{0}128 otherwise

(9)

Therefore, with the j-th selected ciphertext, the input for the the i-th chunk of the
RM decoder is z j = y ⊕ v j . After applying the expand and sum function, its output żj
can be written as:

ż j =

mul∑
k=1

y
(k)
i ⊕ (v j)

(k)
i = y

(j)
i +

mul∑
k=1,k ̸=j

y
(k)
i (10)

where x is the binary complement of x, i.e. for x ∈ Fn
2 , x⊕ x = {1}n.

We are able to implement this strategy directly with a factor graph, which outputs
the secret key y without any further computation. In Figure 5, we represent the graph to
perform such an attack. The graph for the multiplicity mul = 5 is the same as this one,
considering 2 additional blocs.

We can prove that a number of mul chosen ciphertexts is enough to recover y . Let

us denote by y
(ℓ)
i the vector of mul coordinates (y i×n2+l+k×128)0⩽k<mul for fixed i and
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Fig. 5. Graph for the BP propagation for the chosen ciphertext attack strategy

ℓ, with (i, ℓ) ∈ {0, · · · , n1 − 1} × {0, · · · , 127}. Likewise, (vj)
(ℓ)
i refers to the vector

((v j)i×n2+l+k×128)0⩽k<mul. The coordinate ℓ. of the i-th FHT is given by:

mul−1∑
k=0

(yi)
(ℓ)
k ⊕ ((vj)i)

(ℓ)
k

Our attack with mul ciphertexts v j leads us to retrieving mul FHT inputs. We can

show that each y
(ℓ)
i can be associated with a unique set of mul coordinates of the FHT

inputs. We built the Table 3 of the coordinates of the mul FHT inputs linked to y
(ℓ)
i and

(vj)
(ℓ)
i .

(vj)
(ℓ)
i

y
(ℓ)
i 000 001 010 011 100 101 110 111

100 1 2 2 3 0 1 1 2

010 1 2 0 1 2 3 1 2

001 1 0 2 1 2 1 3 2

Table 3. Coordinates of the FHT input according to y
(ℓ)
i and (vj)

(ℓ)
i for HQC-128

Each column of the table is unique, which proves that each y
(ℓ)
i can be recovered by

an attack using 3 chosen ciphertexts. By combining all y
(ℓ)
i , we retrieve y . A similar table
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with 5 chosen ciphertexts can be built for HQC-192 and HQC-256, showing that mul = 5
ciphertexts are sufficient.

We realized the attack with the graph presented in Figure 5. We fed the graph with
simulated leakage from intermediates variables as described in Subsection 2.3. For all
noise levels, we ran 100 simulations of mul FHT inputs produced with the probability
distribution induced by our created ciphertexts. The BP algorithm was stopped when
the distributions of the intermediate values no longer changed or when 100 iterations had
been performed. We saw a simulation as a success only if all the intermediate values of the

blocks y
(1)
i , · · · ,y (mul)

i were recovered. If sσ refers to the success rate of the 100 performed
simulations for a value of σ, the success rate of the full key is given by sn1

σ . We noticed
that if the simulated FHT input contains a coordinate ⩾ 3, the simulation often fail. The
theoretical probability of these values seems to be small enough for the BP algorithm
to almost never consider them to be the most probable, although they happened a non
negligible number of times in our simulations. We then tried add tolerance via the priors
probabilities we put in the factor graph, while keeping the FHT inputs produced with
the real probability distribution associated to our chosen ciphertexts. To achieve that,
we multiplied by 20 the theoretical probability that a coordinate of y is 1. The prior
probabilities of the FHT intermediate values were recomputed accordingly. Its results
that our attack has a success rate of 1 until a σ of 1.5 for HQC-128 and a σ of 0.5 for
HQC-192 and HQC-256.

4.3 Recovering y with a single chosen ciphertext

We can go further by choosing (u , v) = (1, 0) which leads at decoding the secret key
z = y In this case, the expand and sum function is applied to the n2 chunks of y ,

y i = (y
(1)
i | · · · |y(mul)

i ) and the input of the i-th FHT corresponds to ẏ i =
∑mul

k=1 y
(k)
i .

Decoding y , which is a sparse vector with a low Hamming weight, leads to a different
prior knowledge about the distribution of intermediate values inside the FHT.

Depending on the security level, we have that p0 = 0.988, 0.986 or 0.987. We observe
that, in this scenario, the FHT manipulates almost only zeros. We perform the attack 100
times for each noise level between 0 and 10 with a step of 0.1, with a bound to a hundred
maximal iterations for the loopy BP. Results are displayed within Figure 6 for HQC-128,
we obtain similar results for the next security levels.

Figure 6 shows that we are able to recover the exact value of ẏ =
(
ẏ1, ẏ2, · · · , ẏn2

)
with a good accuracy up to σ = 10. But, we also observe that the success rate of the
attack drops dramatically for some experiments. We have observed that this phenomenon
occurs when at least one 2 is manipulated as an input to the FHT. As highlighted in
Subsection 4.2, our BP has difficulties predicting values with a very small prior probability.
BP then tends to consider these values as 0s, which is the most probable observation in
this case. That’s why in the figure, we display in the background, the proportion of each
FHT input value.

A secret key that leads to manipulates only 0s or 1s as input of the FHT, that we are
able to recover with our attack, will be called a weak key. We emphasize that the attack
still works because the subset of weak keys is actually very dense in the total key space,
and we can give the probability of randomly sampling on of them, given by the following
formula:
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Fig. 6. Success rate of the chosen ciphertext secret key recovery attack for HQC-128.

max(ω,l)∑
i=0

(
l
i

)
·
(
n1n2/mul

ω−i

)
· (mul)ω−i(

n
ω

) (11)

which gives 78, 35%, 57, 40% and 55.25% of weak keys for each HQC security level.

Recovering y from the FHT input After recovering the input of the FHT, it remains
to propagate this knowledge about ẏ to y , which requires to reverse the expand and sum
function.

Indeed, each 1 in ẏ may come from mul different positions in y. Furthermore, some
of the support of y may be within the l truncated unused truncated bits of y . Therefore,
we know for sure that the support of y is contained into a set of size at most r =
max (ω · mul, (ω − 1) · mul+ l, · · · , (ω − l) · mul+ l) which is equal to (ω − 1) · mul+ l for
any security level of HQC. Without any further information, we can directly exploit this
information using an ISD algorithm.

We recall that HQC relies on the hardness of solving an (s = He⊺, H) instance of the
quasi-cyclic syndrome decoding problem, where e = (x |y) with x and y two vectors
of length n of small Hamming weights HW(x ) = HW(y) = ω, and H = (1|h), where h is
a random vector of length n, used to generate a quasi-cyclic parity check matrix of size
n× 2n (parameters of HQC can be found in Table 1).

To study the complexity of solving this instance using the knowledge on y recovered
with our side-channel attack, we will use the Prange algorithm [23]. Its goal is to build an
information set S of size n, which contains the error support. If we sample an information
set randomly, then the probability that all the 2ω non null coordinates from x and y
belong to this set can be approximated by:

p =

(
n
2ω

)(
2n
2ω

) . (12)

The complexity of the algorithm is W ≈ 1
pn

2.8, where n2.8 is the cost of inverting a
random n× n matrix over F2.
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However, we can improve this strategy using the fact that we know for sure that the
support of y belong to a set of size at most r = (ω − 1) · mul + l. We will thus select
these r columns in our information set, and then sample the n − r remaining ones at
random in the columns corresponding to x . The probability of success of an iteration of
the algorithm becomes:

p =

(
n−r
ω

)(
n
ω

) (13)

This value can be computed for each security level of HQC, giving p = 0.47, 0.24 and
0.20 for HQC 128, 192 and 256 respectively. It follows that on average, 2 ISD iterations
are needed to recover the secret key in HQC-128, and 5 iterations are needed for the other
security parameters.

This chosen ciphertext strategy allows to recover the value of the secret key with the
analysis of a single trace. This attack can then be applied even against ephemeral keys
protocols.

5 Countermeasures

5.1 Codeword Masking

Codeword masking [20] is a technique that can be used to protect the decoder of HQC
againt SCA [9]. The strategy takes advantage of the linearity of the code C. Without
countermeasure, the message m is encoded to c and the decoder is applied on c+e. When
codeword masking is performed, a message mask m′ is sampled randomly and encoded to
produce the mask c′. The sensitive data c is masked by feeding the decoder with c+c′+e.
Because of the linearity of the code C, the decoder will decode c+c′+e to m+m′. Finally,
the message is recovered by subtracting m′ to the result of the decoder.

This countermeasure provides security against the attacks described in this work. Our
attacks on the secret key are based on a chosen ciphertext strategy, which will be of no
use since the decoder input is masked by c′. As for our attack on the shared key, it will
lead us to recover m+m′ instead of m.

In [10], Goy et al. proposed a strategy in two steps to attack such a masked imple-
mentation, consisting of attacking both the encoder and the decoder of the RS code. The
technique may be adaptable in our case, but would require a further study of the RM
encoder.

5.2 Shuffling

The NTT from Kyber [6] has been the target of SASCA in [25,22,12,13,4]. Ravi et al.
established two shuffling countermeasures in [27], coarse shuffling and fine shuffling, to
protect the NTT from SASCA. Fine shuffling consists in randomising the order of compu-
tation of the two inputs and the two outputs of a butterfly. For each butterfly, one of the
four possible combinations is randomly chosen. In the coarse shuffling countermeasure,
the butterflies are shuffled within each layer independently. Both countermeasures can be
applied similarly on the FHT.
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Goy et al. adapted those two countermeasures against their attack on the RS decoder
of HQC [10], and found them to be inefficient. However, the structure of the targeted part
of the decoder makes the leaks interchangeable, which is not the case for the FHT.

In fact, the FHT is more similar to the NTT. In [13], Hermelink et al. analysed both
countermeasures against SASCA on the NTT implementation of [12]. They showed that
they provide protection against a classical SASCA. Nonetheless, some strategies have
been proposed to weaken them. Their work serves as a warning against a false sense of
security regarding shuffling countermeasures on the NTT, indicating that they may not
always provide complete protection in the future. We believe that due to the resemblance
between the FHT and the NTT, the FHT is likely protected by these countermeasures.

5.3 Sanity Check

A way to thwart our chosen ciphertext attacks on the secret key is to perform sanity
check on the ciphertext (u , v). The principle of the countermeasure is to detect and
reject malicious ciphertexts before applying the decapsulation [32,26]. Both our attacks
on the secret key are stopped if the ciphertexts of the form (u , v) = (1, ·) are discarded.

u and v are ciphertexts of a PKE scheme, they can be seen as random values in Fn
2 .

Ciphertexts of the form (u , v) = (1, ·) represent at most 1
2n of all the ciphertexts, which

is a subset of negligible size.

Conclusion

In this paper, we introduced new SASCA that can recover both the shared key and the
secret key of HQC. We realized all our attacks on a simulated case with a Hamming weigh
leakage model. The focus was on the FHT in the RM decoder.

The recovering of the FHT outputs by SASCA enabled us to retrieve the session key
with a single trace up to a σ of 2 or 3, depending on the security level.

The advantage of our work over the first SASCA on HQC by Goy et al. [10], is that
we also manage to recover the secret key. We achieved that by retrieving the FHT inputs
and using a chosen ciphertext strategy. Our strongest result shows that we are able of
recovering the secret key of HQC in a single attack trace, even up to very high noise
levels. In practice, this attack poses a threat to the security of HQC because it targets
instances with secret ephemeral keys as well, which no longer guarantees security against
SCA.

We have identified several ways to protect the scheme against this new threat. The
most promising countermeasure is the sanity check strategy, which prevents an attacker
from using powerful chosen ciphertexts that easily give information about the secret
key. Shuffling strategies adapted from the Kyber NTT, also help to reduce the strength
of the attack by preventing the optimal exploitation of physical measurements. Finally,
codeword masking provides security against the chosen ciphertext attacks and the shared
key attack described in this work.

Further work The next step could be to study the impact of this type of attack by
exploiting all the leaks that can be observed during the decapsulation of HQC. By ex-
ploiting leaks from RS and RM decoders, but also from intermediate operations, such
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as expand and sum or find peaks. A complete graph of the decapsulation represents a
computational challenge, most of all in multiple traces scenarios, but would allows for a
very powerful error correction environment. Moreover, exploiting all possible side-channel
information represents an additional strength for the attack, as the noise resistance will
be increased.
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