
Unbiasable Verifiable Random Functions

Emanuele Giunta1,2,3 , Alistair Stewart1

1 Web3 Foundation, Switzerland.
alistair@web3.foundation

2 IMDEA Software Institute, Spain.
emanuele.giunta@imdea.org

3 Universidad Politecnica de Madrid, Spain.

Abstract. Verifiable Random Functions (VRFs) play a pivotal role in
Proof of Stake (PoS) blockchain due to their applications in secret leader
election protocols. However, the original definition by Micali, Rabin and
Vadhan is by itself insufficient for such applications. The primary con-
cern is that adversaries may craft VRF key pairs with skewed output
distribution, allowing them to unfairly increase their winning chances.
To address this issue David, Gaži, Kiayias and Russel (2017/573) pro-
posed a stronger definition in the universal composability framework,
while Esgin et al. (FC ’21) put forward a weaker game-based one. Their
proposed notions come with some limitations though. The former ap-
pears to be too strong, being seemingly impossible to instantiate with-
out a programmable random oracle. The latter instead is not sufficient
to prove security for VRF-based secret leader election schemes.
In this work we close the above gap by proposing a new security prop-
erty for VRF we call unbiasability. On the one hand, our notion suffices
to imply fairness in VRF-based leader elections protocols. On the other
hand, we provide an efficient compiler in the plain model (with no CRS)
transforming any VRF into an unbiasable one under standard assump-
tions. Moreover, we show folklore VRF constructions in the ROM to
achieve our notion without the need to program the random oracle. As a
minor contribution, we also provide a generic and efficient construction
of certified 1 to 1 VRFs from any VRF.

 mailto:emanuele@web3.foundation, mailto:alistair@web3.foundation
 mailto:emanuele.giunta@imdea.org

Table of Contents

1 Introduction 3

2 Preliminaries 8
2.1 Notation . 8
2.2 Preprocessing Adversaries . 8
2.3 Discrete Logarithm Problem and DDH . 9
2.4 Pseudo Random Functions . 10
2.5 Verifiable Random Functions . 11

3 Unbiasability 13
3.1 Definition . 13
3.2 Properties . 14

4 Unbiasable VRF in the ROM 16
4.1 From any VUF. 16
4.2 From weakly unbiasable VUF . 18

5 Constructions in the Standard Model 19
5.1 1st Preliminary Construction: Padded VRF 19
5.2 Verifiable Random Bijection . 20
5.3 2nd Preliminary Construction: 2-Feistel Rounds 21
5.4 VRB Compiler . 22
5.5 Unbiasable VRF Compiler . 22

6 Conclusions 25

A Examples 28
A.1 Separating weak unbiasability from unbiasability 28
A.2 When weak unbiasability implies unbiasability 30

B Postponed Proof 30
B.1 VRF from special VUF in the ROM . 30
B.2 Padded VRF Construction . 33
B.3 Unbiasability of VRB . 34
B.4 2-Feistel Rounds Construction . 34
B.5 VRB Compiler . 40
B.6 Unbiasable VRF Compiler . 42

1 Introduction

Verifiable Random Functions (VRF), introduced in [MRV99], are the natural
extension of pseudorandom functions to the public key setting. A secret key sk
is required to perform evaluations. Any users can then verify the result given
the public verification key vk and an opening proof. Since their introduction
VRFs have found many applications including e-lotteries [MR02, LBM20], secure
DNS [GNP+14, PWH+17], and Proof of Stake blockchain [CM16, KRDO17,
DGKR17, BASV23b] for secret leader elections.

The VRF definition in [MRV99] however only applies to honestly generated
keys and offers very limited guarantees against adversarially generated ones.
This crucially affects VRF-based leader election protocols. In that context, the
winner of an election is defined as the user with the lowest VRF output on a
random public input. Therefore, being able to choose a key pair with biased
outputs directly translates into unfairly higher winning chances.

This issue was first acknowledged in [DGKR17] where a stronger VRF defi-
nition was given in the Universal Composability framework [Can01]. One of the
requirements in their notion is that the VRF output for any key pair must match
the truly random values returned by an ideal functionality. Although this en-
tirely prevents adversaries from skewing the output distribution, their approach
comes with some controversial aspects.

First of all, their notion appears to be impossible to instantiate without ac-
cess to an explicitly programmable random oracle [CDG+18]. This stems from
the fact that in the security proof the simulator must program the VRF out-
put, even with maliciously generated keys, to match the truly random output
given by the ideal functionality. Note that on the contrary, VRFs are known
to exist in the plain model. Secondly, due to the very high level of technical
details in the original definitions of UC-VRF, it is not clear what are the ex-
act security guarantees it implies, besides being sufficient for PoS-blockchain
applications. The high level of complexity is further highlighted by subsequent
revisions [BGK+18, BGQR22] proposing fixes to overlooked corner cases.

An alternative game-based definition was later proposed in [EKS+21]. Al-
though their notion can be achieved in the plain model, it appears to be in-
sufficient for applications for two main reasons. First of all, it does not keep
adversaries from biasing some bits of the output, as we show later. Secondly, it
does not prevent adversaries to maliciously create several VRF keys returning
correlated outputs, also leading to attacks in VRF-based election protocols.

Given the current state of the art, we ask whether it is possible to provide a
simple security notion that simultaneously can be obtained in the plain model
and suffices to imply security in current applications.

Our Results. In this work we close the aforementioned foundational gap by
proposing a game-based security property we call unbiasability. Informally, we
say VRF is unbiasable if no adversary can find a set of VRF keys whose out-
puts on random inputs significantly bias an adversarially chosen predicate p. To
provide evidence that our notion does indeed fill the above gap we

1. Prove it to imply desirable properties. In particular we show that assuming
an adversary to always return correct VRF evaluations, unbiasability implies
the output distribution to be computationally close to uniform on random
inputs. Our notion also implies the weaker one proposed in [EKS+21].

2. Prove that folklore constructions in the ROM from a verifiable unpredictable
function (VUF) satisfy our notion. This notably includes ECVRF [PWH+17]
currently part of the standardization effort in [GRPV23].

3. Provide two compilers transforming any VRF into an unbiasable VRF in the
plain model. Our most efficient construction only requires one VRF evalu-
ation and is proven secure assuming DDH and a PRF’s pseudorandomness
hold against adversaries with exponential-time preprocessing4.

4. Observe it to immediately imply fairness in VRF-based leader election for
PoS-blockchain application. In other words, no adversary can win any ran-
dom election with probability significantly higher than prescribed.

As a minor contribution of independent interest we also construct generically
a certified 1 to 1 VRF, which we call Verifiable Random Bijection (VRB), from
any VRF. This is efficient, requiring only two VRF evaluations, and security just
relies on the VRF security and hardness of the discrete logarithm problem.

Technical Overview. We now provide a more detailed overview of our defi-
nition, starting from the weaker notion introduced in [EKS+21], and later sum-
marize the constructions we provide and study.

Defining unbiasability. Our starting point to define a strong unbiasability prop-
erty is the definition provided in [EKS+21] (Section 2.1). There, an adversary is
asked initially to generate a verification key vk and guess the final VRF output
y∗. Later, on input a random value x, the adversary is asked to provide a tuple
(y, π). If π is a valid proof for y and y = y∗ it wins the game. According to
their notion a VRF is unbiasable if any adversary cannot win with probability
significantly higher than randomly guessing y.

Although we see this definition as a step in the right direction, it comes with
two limitations. First of all, even if the adversary is unable to guess correctly
the output consistently, it may still be able to bias some bits. Secondly, this
definition fails to exclude VRFs in which several keys can be crafted to return
correlated outputs, although individual values are hard to bias. Such weakness
could be exploited in VRF-based leader election by several corrupted users to
ensure at least one VRF value is always small enough, allowing them to win
VRF-based elections unfairly more than honest users.

To circumvent such limitations, we modify their game as follows: first the
adversary chooses several verification keys vk1, . . . , vkn and a predicate p with

4 More precisely we will only assume the preprocessing to be capable of solving the
discrete logarithm problem, something that can be also achieved in quantum prob-
abilistic polynomial time [Sho94].

certain properties (which we clarify later). Next, on random inputs x1, . . . , xm,
the adversary returns a vector y containing the evaluation of each VRF of its
choice on all provided inputs, along with evaluation proofs. Those values in y
whose proof is incorrect are overwritten with ⊥. Finally the adversary wins if
p(y) is true significantly more often than p(z) for a uniformly sampled z.

If we were to allow all predicates p, our game would have a trivial attack:
simply choosing p to be 1 if and only if the given vector contains at least one
erased value ⊥ and then, once asked to evaluate the VRF, producing incorrect
opening proofs. Note that we sample entries of z from the output space, meaning
they will never be equal to ⊥. This attack however appears to be orthogonal to
the attempt of biasing the output, and rather comes from the fact adversaries
can always decide not to evaluate their VRF. We therefore factor this classes of
attacks out of our definition by only considering predicates in which erasing any
entry of a vector y can never turn the output from false to true. We call those
predicates monotone. Restricting p to be monotone essentially means that an
adversary cannot gain any advantage from producing incorrect evaluations.

Constructions in the ROM. In the random oracle model we study two folklore
transformation of any VUF into a VRF. The first one is defined by hashing the
VUF output salted with the input and the VUF verification key. In other words
an evaluation on x is defined as H(vk, x, y) where vk is the VUF verification key
and y, π the VUF output on input x. We show this to be unbiasable information
theoretically when H is a Random Oracle.

In order to capture also ECVRF [PWH+17], we extend our analysis to a
weaker VUF to VRF transformation in which the output is simply defined as
H(y) with y being the VUF output. We observe that in general the resulting VRF
may not be unbiasable due to corner cases in which for instance, there may be
a weak verification key defining a constant function or two distinct keys defin-
ing identical functions. Nevertheless we still prove security under mild collision-
resistance assumptions, which are satisfied by the VUF underlying ECVRF.

Constructions in the plain model. Next we provide two compilers transforming
any VRF into an unbiasable VRF without relying on a CRS nor the ROM. We
opt for a modular approach and describe our transformation in two steps: First
we transform any VRF into one achieving a weaker notion of pseudorandom-
ness and unbiasability, where the latter holds information theoretically. More in
details the above properties are weakened as follows:

– Pseudorandomness: Inputs are of the form (x0, x1) and security holds if the
VRF is never evaluated on different points with the same first entry.

– Unbiasability : For each verification key vki, the challenger asks for evalua-
tions on a set of freshly sampled points xi,1, . . . , xi,m, as opposed to asking
evaluations for all keys on the same set of points.

We then provide a second compiler turning any VRF with the above properties
into fully fledged unbiasable VRF.

Padded VRF. Focusing on VRFs which only satisfy our weaker properties greatly
simplifies our problem. This is exemplified by our first construction, the padded
VRF : given a VRF Fsk(·) it is defined as

F sk(u, v) = Fsk(u)⊕ v.

Pseudorandomness holds as long as no adversary can query the same u twice.
Moreover, on uniformly random inputs (u, v) the output will also be random
thanks to v, no matter how skewed the distribution of Fsk(u) ends up being,
which we use to show unbiasability. Note that if the VRF returns values in a
group (G,+), the xor operator can be replaced with the group addition up to
assuming v ∈ G.

2 Round Feistel. Another approach to achieve this weaker notion of unbiasability
unconditionally is to guarantee the resulting VRF is 1 to 1. We call such VRF
a Verifiable Random Bijection and show that they satisfy unbiasability (with
independently sampled points for each key) information theoretically, because
bijections preserve the input distribution. In order to realize VRF with this
property we observe that 2 Feistel Round [LR88] suffices. The construction is
schematized in Figure 1 assuming the VRF has output values in a group (G,+).

z1

w1

F1

+

z2

w2

F2

+ z3

w3

Fig. 1. 2-Feistel Rounds with Fi(·) = VRF.Eval(ski, ·) and output space a group (G,+).

The reason why two rounds are sufficient as opposed to three or more is that
at this stage we only target the weaker pseudorandomness notion, where the
VRF is never evaluated on different points with the same first entry z1.

VRB Compiler. As warm up toward our final compiler, we start with a simpler
problem: how can we improve the 2-Feistel Round construction to achieve pseu-
dorandomness? Our approach to this problem is to compose the 2-Feistel Round
scheme with a (publicly computable) function ϕh, i.e. obtaining Fsk ◦ϕh(x), and
then study what properties should ϕ satisfy.

First of all, we need the composed function to remain 1 to 1 for any key
choice. Thus ϕh has to be a certified bijection5. For pseudorandomness instead,
recall that Fsk achieves it as long as it is never evaluated on two different inputs
with the same first component. A way to enforce this is assuming ϕh to be
collision resistant in the first component.

5 In other words, deciding whether ϕh is a bijection can be done in polynomial time

The last step is finding a map satisfying the above properties. Our solution
is based on a group G of prime order q where the discrete logarithm problem
(DLP) is hard.

h = [a1, a2] ∈ G2 ϕh : F2
q → G2 : ϕh(x1, x2) =

[
a1 a2
1 0

]
·
(
x1

x2

)
where we denote [a] = a · G, with G being the group generator. Because ϕh in
the first component is a Pedersen commitment to x = (x1, x2), it is collision
resistant if a1, a2 are sampled uniformly and the DLP is hard. Conversely, even
when ϕh is created adversarially, it suffice to check a2 ̸= 0 to verify that ϕh

defines a 1 to 1 map.

Final Compiler. Our final problem is to compile any VRF Fsk with the weaker
pseudorandomness and unbiasability properties defined above to a fully fledged
unbiasable VRF.

As before, pseudorandomness can be achieved composing Fsk ◦ ϕh with a
slightly more generalized ϕh defined as

h = ([a] ,b) ϕh : Fµ
q → G2 : ϕh(v) =

([
a⊤v

]
,
[
b⊤v

])
.

which can be publicly checked to be surjective and, for uniformly sampled a, is
collision resistant in the first component if DLP is hard. The technical challenge
is enhancing unbiasability. Our (stronger) definition requires the output to be
unbiasable even when multiple verification keys are evaluated on the same (ran-
dom) input. However Fsk is guaranteed to be unbiasable only when we evaluate
different verification keys on independently sampled points.

To eventually reduce security to this weaker property we need a mechanism
to expand a random input x into several (random-looking) ones x1, . . . , xm to
later evaluate the VRF with key vki on input xi. A first attempt to do so is
through a PRF f : we interpret the input as a PRF key k and evaluate each
VRF on fk(vk). However the map k 7→ fk(vk) may not be collision resistant and
finding collisions would allow breaking pseudorandomness. Conversely, the map
k 7→ (k, fk(vk)) is injective, but since Fsk ◦ϕh would also receive the PRF key as
input in this case, we cannot argue that fk(vk) is pseudorandom anymore.

Our final solution is to provide fk(vk) along with a perfectly binding com-
mitment to k (in our case, ElGamal). More specifically we will interpret a VRF
input x as a tuple (r, k, pp, ρ) and define

Encode(r, k, pp, ρ, vk) = (r, fk(vk), pp,Compp(k; ρ))

which, using ElGamal, is injective and does not leak any knowledge about k.
The elements r are included for technical reasons, namely because in the proof
of unbiasability we need ϕh to be a chameleon hash function [KR98] in the first
output component. We finally show Fsk ◦ϕh ◦Encode to be an unbiasable VRF.

Related Work. The study of VRF, initiated by Goldreich, Goldwasser and
Micali [GGM86], is an active area of research in cryptography. Several construc-
tions have been proposed over the years based on (the list is not exhaustive)
generic VUF [MRV99], identity-based KEM [ACF09], pairing groups [HW10,
BMR10, HJ16, Koh19], lattices [EKS+21, ESLR22] and isogenies [Lai23].

VRF satisfying extra properties have also been introduced and studied. Most
notably simulatable VRFs [CL07] where opening proofs can be simulated given
a trapdoor key. Constrained VRFs [Fuc14], which allow leaking a constrained se-
cret key to perform evaluation only over a given subset. Ring VRFs [BASV23a],
which allow evaluating a VRF anonymously among a ring of users. As the original
definition however, they do not imply any form of security for maliciously cho-
sen keys. More related to our work, the notion of UC-VRF [DGKR17, BGK+18,
BGQR22] and "unbiasability" in [EKS+21], both address security under mali-
ciously chosen keys, albeit with the aforementioned limitations. Orthogonally,
distributed VRF [GLOW21] prevent maliciously generated keys by producing
and storing them in a distributed fashion. However, while useful for random
beacons [CD17, CD20], distributed VRFs do not appear suited for applications
such as leader election, where parties may dynamically join and leave, and need
to evaluate the VRF frequently and privately.

Finally, the issue of adversaries generating biased VRF keys was also noted
in [BGRV09] while instantiating the hidden-bit model [FLS90] from weak-VRF.
The issue was however addressed as in [BY96] for the specific application, with-
out providing a general security notion.

2 Preliminaries

2.1 Notation

λ denotes the security parameter. A function ε(λ) is negligible if it approaches
0 faster than the inverse of any polynomial in λ. [n] = {1, . . . , n}. Whenever
unspecified, we assume all Turing machines (including security games) in this
paper to take as first input 1λ. Given a set X, x ←$ X means x is sampled
uniformly in X. We denote a random variable x uniformly distributed in X with
x ∼ U(X). ∆(x, y) is the statistical distance between x and y. For a Probabilistic
Turing Machine A we write y ←$ A(x) to denote that y is the output of A on
input x. Fq is the field of integers modulo q with q a prime number. Given
a,b ∈ Fn

q , then a⊤b is their inner product. We write groups (G,+) in additive
notation and, in a prime order group with a canonical generator G we denote
[a] = a ·G.

2.2 Preprocessing Adversaries

Many computationally hard problems are often defined in terms of interactive
games, where the adversary is asked to solve a given problem efficiently. These
however typically fail to capture real adversaries which may have performed an

inefficient preprocessing before approaching the problem. A way to model such
attacks is through non-uniform adversaries, which initially receive a polynomi-
ally bounded advice that is a function of the security parameter only6. In this
section, in order to later state more fine-grained computational assumptions, we
give an explicit definition for preprocessing adversary. In particular the follow-
ing notion allow us to specify the computational class C of the preprocessing
algorithm.

Definition 1. Given a computational class C, we say an algorithm A to be PPT
with C preprocessing if there exists (A0,A1) with A0 in C returning a polynomi-
ally bounded output and A1 PPT, such that

A(1λ, input) = A1(1
λ, input,A0(1

λ)).

2.3 Discrete Logarithm Problem and DDH

Given a prime order group (G,+) with generator G, the discrete logarithm as-
sumption state that any PPT adversary, given xG with x ∼ U(Fq) can retrieve
x only with negligible probability. The Decisional Diffie-Hellman assumption
instead, state that (G, xG, yG, xyG) is computationally indistinguishable from
(G, xG, yG, zG) with x, y, z ∼ U(Fq) for any PPT adversary.

In our constructions we will sometime base security on mildly stronger as-
sumption, requiring that both DLP and DDH are hard even if some preprocessing
occurred. More concretely, we will assume this preprocessing to occur in PPT
time but with oracle access to a Discrete Logarithm solver. More formally, to
make use of the Definition 1, let us call PPTDL the class of PPT algorithms ADL

where for all H ∈ G, DL(H) = x with H = xG.

Definition 2. Given a group G with generator G we say that DLPrep-DLP is
hard if for any PPT adversary with PPTDL-preprocessing, given x ∼ U(Fq) there
exists a negligible ε(λ) such that

Adv(A) := Pr
[
A(1λ, G, xG)→ x

]
≤ ε(λ).

Definition 3. Given a group G with generator g we say that DLPrep-DDH is
hard if for any PPT adversary with PPTDL-preprocessing, given x, y, z ∼ U(Fq)
there exists a negligible ε(λ) such that

Adv(A) :=
∣∣Pr [A(1λ, xG, yG, xyG)→ 1

]
− Pr

[
A(1λ, xG, yG, zG)→ 1

]∣∣ ≤ ε(λ).

To justify the plausibility of these assumptions we refer to [CK18] where
the security of the DLP and DDH is studied in the Generic Group Model with
preprocessing. Their results imply that with any polynomially bounded length
advice (potentially computed in unbounded time), the DLP only loses log(λ) bit
of security with respect to the non-preprocessing DLP. DDH with unbounded
6 This means that the advice may not even be computable by Turing Machines

preprocessing time instead suffers a quadratic loss, or in other words, loses half
of its security bits.

We remark that problems proved hard in the GGM are plausibly as hard
in groups where generic attacks are also the best known so far. Furthermore,
we stress that our assumptions are significantly milder as we only assume the
preprocessing capable of breaking DLP (as opposed to being computationally un-
bounded). Finally, note that in the algebraic group model [FKL18], DLPrep-DLP
and DLPrep-DDH reduces both respectively to DLP and DDH without any secu-
rity loss, as the preprocessing already knows the discrete logarithm of queried
group elements.

Certified Groups. As a technical detail we note that all our constructions require
the group to be certified [HJ16]. This means that even when the group param-
eters are chosen adversarially, it is possible to verify it has the claimed prime
order, and membership test and group additions are guaranteed to be efficient.

2.4 Pseudo Random Functions

We recall the definition of pseudo random function (PRF) [GGM86], that is a
couple of algorithm (PRF.Gen, f), along with a key space K an input space X
and an output space Y such that

– k ←$ PRF.Gen(1λ) generates a secret key k ∈ K
– f : K ×X → Y is a keyed function family.

The main security property of PRFs is pseudorandomness, defined as follows:

Definition 4. A couple of PPT algorithms (PRF.Gen, f) is called a Pseudo Ran-
dom Function if, for any PPT adversary there exists a negligible function ε such
that

Adv(A) :=

∣∣∣∣Pr [Expprf(A) = 1
]
− 1

2

∣∣∣∣ ≤ ε(λ).

Expprf(A)

1 : b←$ {0, 1}
2 : Sample k ←$ PRF.Gen(1λ)

3 : Sample f∗ ←$ {g : g : X → Y}
4 : Run b′ ← AOprf (1λ)

5 : Return b == b′

Oprf(x)

1 : If b = 1:
2 : Return fk(x)

3 : Else:
4 : Return f∗(x)

Fig. 2. The pseudorandomness game with adversary A and PRF (PRF.Gen, f).

2.5 Verifiable Random Functions

Here we recall the definition of VRF, originally introduced in [MRV99], following
the terminology of [Lys02, HJ16].

Definition 5. A Verifiable Random Function is a triplet of PPT algorithms
(VRF.Gen,VRF.Eval,VRF.Vfy) satisfying:

1. Correctness. For any (vk, sk) in the image of VRF.Gen(1λ) and any x ∈ X

(y, π)← VRF.Eval(sk, x) ⇒ VRF.Vfy(vk, x, y, π)→ 1.

2. Unique Provability. For any vk (not necessarily in the range of VRF.Gen),
any input x ∈ X pair of outputs y0, y1 ∈ Y and pair of proofs π0, π1 it holds
that

VRF.Vfy(vk, x, y0, π0)→ 1, VRF.Vfy(vk, x, y1, π1)→ 1 ⇒ y0 = y1.

3. Pseudorandomness. For any PPT adversary A executed in experiment 3
there exists a negligible function ε such that

Adv(A) =

∣∣∣∣Pr [Exprnd(A)→ 1
]
− 1

2

∣∣∣∣ ≤ ε(λ).

Exprnd(A)

1 : Sample b←$ {0, 1}
2 : vk, sk←$ VRF.Gen(1λ) and set x∗ =⊥
3 : x∗ ← AOeval(vk)

4 : If x∗ was previously queried:
5 : Return 0

6 : y0 ←$ Y
7 : (y1, π)← VRF.Eval(sk, x∗)

8 : AOeval(vk, yb)→ b′

9 : Return b == b′

Oeval(x)

1 : If x ̸= x∗:
2 : (y, π)← VRF.Eval(sk, x)

3 : Return (y, π)

4 : Else: Return ⊥

Fig. 3. The pseudorandomness security game with adversary A.

Restricted Pseudorandomness. Relaxations of the pseudorandomness properties
have been proposed over the years, for instance in [BGRV09] where weak pseu-
dorandomness is defined by sampling the points for evaluation queries and for
the challenge uniformly in the function’s domain. In this work we will consider
a notion we call restricted pseudorandomness where each message is interpreted
as a tuple (x0, x1) and two messages (x0, x1), (x̄0, x̄1) are considered to be the
same by the challenger if x0 = x̄0.

Definition 6. A triplet (VRF.Gen,VRF.Eval,VRF.Vfy) with message space X =
X0×X1 satisfies restricted pseudorandomness with respect to X0 if for any PPT
adversary A there exists a negligible function ε such that

Adv(A) :=

∣∣∣∣Pr [Expres-rndX0
(A) = 1

]
− 1

2

∣∣∣∣ ≤ ε(λ).

Expres-rndX0
(A)

1 : Sample b←$ {0, 1}
2 : vk, sk←$ VRF.Gen(1λ) and set x∗

0 =⊥
3 : (x∗

0, x
∗
1)← AOeval(vk)

4 : If (x∗
0, ·) was previously queried:

5 : Return 0

6 : y0 ←$ Y
7 : (y1, π)← VRF.Eval(sk, x∗

0, x
∗
1)

8 : AOeval(vk, yb)→ b′

9 : Return b == b′

Oeval(x0, x1)

1 : If x0 ̸= x∗
0:

2 : (y, π)← VRF.Eval(sk, x0, x1)

3 : Return (y, π)

4 : Else: Return ⊥

Fig. 4. The restricted pseudorandomness game with adversary A.

Verifiable Unpredictable Functions. Another relaxation of the pseudorandom-
ness property was defined in [MRV99] where Verifiable Unpredictable Functions
(VUF) where introduced. A VUF is a tuple of algorithms (VUF.Gen,VUF.Eval,
VUF.Vfy) satisfying correctness and unique provability as per Definition 5, but
instead of pseudorandomness they are only required to satisfy unpredictability,
i.e. for any PPT adversary A, there exists a negligible ε(λ) such that

Adv(A) := Pr [Expunp(A) = 1] ≤ ε(λ).

With Expunp(A) being as defined in Figure 5.

Expunp(A)

1 : vk, sk←$ VUF.Gen(1λ)

2 : (x∗, y∗, π∗)← AVUF.Eval(sk,·)(vk)

3 : If x∗ was previously queried: Return 0

4 : (y, π)← VUF.Eval(sk, x∗)

5 : Return (y∗, π∗) == (y, π)

Fig. 5. The unpredictability experiment with adversary A.

3 Unbiasability

3.1 Definition

We define our notion of unbiasability through an experiment. Let us begin with
an informal overview. Initially an adversary is asked to produce a list of distinct
verification keys vk1, . . . , vkn along with a predicate p. Next, the challenger sam-
ple uniformly some inputs x1, . . . , xm. The adversary then evaluates its VRFs on
these points and return them along with their proofs. The challenger finally "fil-
ters" the values with an incorrect proof, replaces them with ⊥, and returns this
vector y. The adversary’s goal is to eventually make the probability of p(y) = 1
significantly greater than that of p(z) = 1 with z ∼ U(Fq) in the output space.

For technical reasons however we cannot allow p to be any predicate. One
motivation is that adversaries can always "bias" the output by selectively re-
vealing only certain outputs and not all of them. In order to factor out this class
of trivial attacks from our definition, we introduce a class of predicates we call
monotone.

Definition 7. Over (Y ∪ {⊥})n we define a partial order

(y1, . . . , yn) ≤ (z1, . . . , zn) ⇔ ∀i (yi = zi ∨ yi =⊥).

A (probabilistic) predicate p : (Y ∪ {⊥})n × {0, 1}r → {0, 1} is monotone if, for
a uniformly sampled random tape ρ ∼ U({0, 1}r)

y ≤ z ⇒ Pr [p(y; ρ) = 1] ≤ Pr [p(z; ρ) = 1] .

As usually done for probabilistic Turing machines, we will not explicitly write
the random tape ρ, and assume that evaluating p(x) really means sampling
ρ←$ {0, 1}r and then computing p(x; ρ).

Definition 8. A VRF is unbiasable if for any polynomially bounded integers
n,m and PPT adversary A, there exists a negligible function ε such that

Adv(A) := Pr
[
Expbias0,n,m(A) = 1

]
− Pr

[
Expbias1,n,m(A) = 1

]
≤ ε(λ)

where the experiment Expbiasb,n,m is defined in Figure 6.

Note that our notion of unbiasability requires the adversary to evaluate the
VRFs linked to the chosen verification keys on the same set of points. A relax-
ation of this notion, which we call unbiasability on independent points, instead
ask the adversary to evaluate each VRF on an independently sampled set of
points. More formally

Definition 9. A VRF is unbiasable on independent points if for all polynomi-
ally bounded integers n,m ∈ N and PPT adversary A, there exists a negligible
function ε such that

Adv(A) := Pr
[
Expip−bias

0,n,m (A)) = 1
]
− Pr

[
Expip−bias

1,n,m (A)) = 1
]
≤ ε(λ)

where the experiment Expip−bias
b,n,m is defined in Figure 7.

Expbiasb,n,m(A)

1 : (vk1, . . . , vkn, p)← A such that:
2 : vk1, . . . , vkn are all distinct

3 : p is a PPT computable monotone predicate
4 : (x1, . . . , xm)←$ X
5 : ((y1,1, π1,1), . . . , (yn,m, πn,m))← A(x1, . . . , xm)

6 : For all i ∈ [n], j ∈ [m]:
7 : If VRF.Vfy(vki, xj , yi,j , πi,j)→ 0: Set yi,j ←⊥
8 : Sample (z1,1, . . . , zn,m)←$ Yn,m

9 : If b = 0: Return p(y1,1, . . . , yn,m)

10 : If b = 1: Return p(z1,1, . . . , zn,m)

Fig. 6. The unbiasability experiment parametrized by b ∈ {0, 1}.

Expip−bias
b,n,m (A)

1 : (vk1, . . . , vkn, p)← A such that:
2 : vk1, . . . , vkn are all distinct

3 : p is a PPT computable monotone predicate
4 : (x1,1, . . . , xn,m)←$ X
5 : ((y1,1, π1,1), . . . , (yn,m, πn,m))← A(x1,1, . . . , xn,m)

6 : For all i ∈ [n] and j ∈ [m]:
7 : If VRF.Vfy(vki, xi,j , yi,j , πi,j)→ 0: Set yi,j ←⊥
8 : Sample (z1,1, . . . , zn,m)←$ Yn,m

9 : If b = 0: Return p(y1,1, . . . , yn,m)

10 : If b = 1: Return p(z1,1, . . . , zn,m)

Fig. 7. The unbiasability experiment with independently sampled points for each vk.

3.2 Properties

Having provided our unbiasability definition, we now show it to imply some
desirable properties.

Pseudorandom Output. Informally if a VRF is unbiasable then its evaluations on
random points also looks random (even with adversarially generated keys). This
roughly follows as any PPT distinguisher D trying to distinguish the VRF output
from uniformly random values, can be converted into a probabilistic monotone
predicate pD such that

pD(y1, . . . , ym) =

{
0 If yi =⊥
D(y1, . . . , ym) Otherwise

.

If D were to succeed with significant probability then the algorithm which com-
puted vk1, . . . , vkn can be used to bias pD. More in detail, in order to make a
meaningful statement about the "VRF output" even when the verification key is
maliciously chosen, we will restrict the class of adversaries to those who always
returns valid output and proofs on random inputs. For this class of adversaries
we can state the following Proposition:

Proposition 1. Let A be a PPT machine A initially computing vk1, . . . , vkn
and then on input x1, . . . , xm ∼ U(Xm) always returning y1,1, . . . , yn,m along
with valid proofs π1,1, . . . , πn,m, i.e. such that VRF.Vfy(vki, xj , yi,j , πi,j)→ 1.

If the VRF satisfies unbiasability, sampling z ∼ U(Yn,m), then for any PPT
distinguisher D there exists a negligible ε such that

Adv(D) := |Pr [D(y)→ 1]− Pr [D(z)→ 1]| ≤ ε(λ).

Weak Unbiasability. In [EKS+21] another notion of unbiasability was proposed.
Their definition informally says that any adversary generating one key vk cannot
guess the VRF value on a random point significantly better than randomly
guessing. More formally, given a PPT adversary A their experiment is defined as
in Figure 8. They then say that a VRF satisfies their security definition if there
exists a negligible function ε such that

Adv(A) = Pr
[
Expw−bias(A) = 1

]
≤ 1

|Y|
+ ε(λ).

Our notion immediately implies this one up to observing that the adversary is

Expw−bias(A)

1 : (vk, y∗)←$ A(1λ)
2 : x←$ X
3 : (π, y)←$ A(x)
4 : β ← VRF.Vfy(vk, x, y, π)

5 : Return 1 iff β = 1 and y = y∗

Fig. 8. The weak-unbiasability experiment [EKS+21].

attempting to bias the predicate py∗(y) that is 0 if y∗ ̸= y (which also includes
the case y =⊥) and 1 otherwise. Note also that |Y|−1 is precisely the probability
that py∗(z) = 1 for a randomly chosen z. We thus rename their notion as "weak-
unbiasability" and formally state that

Proposition 2. Every unbiasable VRF if also weakly unbiasable.

In the Appendix, Section A.1 we further justify the name “weak-unbiasability”
by providing examples of weakly unbiasable VRF that are not unbiasable.

Fairness in VRF-based leader election. The goal of secret leader election (SLE)
protocols is to anonymously identify one user among many. VRF-based con-
struction [CM16, KRDO17, DGKR17] generally follows the following blueprint:
Initially each user Pi publishes a VRF key vki. Later a random input is sampled
and the user with the lowest VRF output is the winner.

Among the properties such protocol should satisfy, fairness requires that no
group of corrupted parties can win with probability higher than expected. More
formally, a group C of t out of n corrupted parties should only contain a winner
with probability t/n+ε. Assuming the VRF to be unbiasable, we can then prove
VRF-based leader elections to be fair. Indeed, any adversary corrupting C parties
and winning with high probability is also successfully biasing the predicate

p(y1, . . . , yn) :

{
0 If yi =⊥, i /∈ C

mini∈C{yi} ≤ mini/∈C{yi} Otherwise

where ⊥ is treated as +∞ in the min operations above. Note p is monotone as
replacing any yi with ⊥ for i /∈ C makes the predicate false, and doing the same
for i ∈ C does not decrease the left hand side of the inequality.

4 Unbiasable VRF in the ROM

4.1 From any VUF

In this section we analyze a folklore compiler that transforms any VUF into
a VRF in the ROM, and show the resulting construction to be unbiasable as
per Definition 8. The idea is simply to apply the RO on the VUF output, the
verification key vk and the VUF input x. A full description is provided in Figure 9

Notice that in order to obtain unbiasability hashing both vk and x along with
the VUF output is necessary: If we were to remove x, it may be the case that
for some maliciously generated verification key vk∗, the underlying function is
constant. This would not contradict unpredictability as vk∗ is only chosen with
negligible probability. However, for several random inputs the RO applied to the
VUF output and verification key would always yield the same value, implying
that the resulting construction is not unbiasable.

If we were to remove vk we face similar issues: for some VUF there may
exists two distinct verification keys vk∗1, vk

∗
2 such that the underlying functions

are identical. Again this does not contradict unpredictability, but the resulting
construction would now give the same output when evaluated for vk∗1 and vk∗2
on the same inputs, which contradicts unbiasability.

Theorem 1. If |X | = Ω(2λ), with X being the VUF input space, the construc-
tion described in Figure 9 is an Unbiasable VRF in the ROM.

Proof of Theorem 1. Correctness, unique provability and pseudorandomness im-
mediately follows from VUF properties and the usage of the ROM. We thus only
focus on unbiasability.

VRF.Gen(1λ)

1 : Return (vk, sk)←$ VUF.Gen(1λ)

VRF.Eval(sk, x)

1 : (y∗, π∗)← VUF.Eval(sk, x)

2 : y ← H(vk, x, y∗)

3 : π ← (π∗, y∗)

4 : Return (y, π)

VRF.Vfy(vk, x, y, π)

1 : Parse π = (π∗, y∗)

2 : Return 1 if and only if:
3 : H(vk, x, y∗) = y

4 : VUF.Vfy(vk, x, y∗, π∗) = 1

Fig. 9. Unbiasable VRF based on a VUF using a Random Oracle H.

Unbiasability. Let A be an adversary playing the game in Figure 6. We will
call Q the set of ROM queries it performs before returning (vk1, . . . , vkn, p) and
define the two events

Seen := ∃i ∈ [n], j ∈ [m], y ∈ {0, 1}∗ : (vki, xj , y) ∈ Q

Coll := ∃j, j′ ∈ [m] : xj = xj′

where Seen means a query with prefix (vki, xj) was made and Coll means no
collision occurs among the elements x1, . . . , xm. These two events occur with
negligible probability

Pr [Seen] ≤ m|Q|
|X |

, Pr [Coll] ≤ m2

|X |
.

Let now y∗ be the "filtered" output of A in the unbiasability experiment, so
that values with invalid proofs are replaced with ⊥. For all i and j we define yi,j
to be y∗i,j if this value is not ⊥ and otherwise sample yi,j ∼ U(Y). According to
Definition 7

y∗ ≤ y ⇒ Pr [p(y∗) = 1] ≤ Pr [p(y) = 1]

with p being the monotone predicate chosen by A. To conclude we observe than
when conditioning on ¬Seen,¬Coll, all the elements y∗i,j ̸=⊥ are evaluations of
the random oracle on different7 and not yet queried points, thus are uniformly
random. Hence, setting z ∼ U(Yn,m)

∆(y, z) ≤ ∆(y|¬Seen,¬Coll , z|¬Seen,¬Coll) + Pr [Seen ∨ Coll]

≤ Pr [Seen] + Pr [Coll]

≤ m|Q|+m2

|X |
.

7 Because vki ̸= vkj by construction and xi ̸= xj by ¬Coll.

where the second inequality follows as y is uniform upon conditioning on ¬Seen,
¬Coll. We can then bound the advantage of A as

Adv(A) = Pr [p(y∗) = 1]− Pr [p(z) = 1] ≤

≤ Pr [p(y) = 1]− Pr [p(z) = 1] ≤ ∆(y, z) ≤ m|Q|+m2

|X |
.

4.2 From weakly unbiasable VUF

Although the compiler presented in Section 4.1 shows that any VUF can be
converted into an unbiasable VRF in the random oracle model, not all schemes
used in practice follow that blueprint. This most notably include the case of
ECVRF [PWH+17] currently included in the standardization effort put forward
in [GRPV23].

In order to capture ECVRF we propose a slightly different compiler, which
does not include the verification key vk and input x in the RO query for evalu-
ations. This, as discussed before, may lead to insecure constructions in general.
Therefore to prove security we will need the VUF to satisfy two extra properties,
both achieved by the VUF used in ECVRF. First of all, we need that no adver-
sary can guess the VUF output on a random input, even when it get to chose
the VUF keys. In order words, we need the VUF to be weakly unbiasable (see
Section 3.2). Moreover, we further need that for any given key vk, two distinct
random inputs x1, x2 and their respective outputs y1, y2, then Pr [y1 = y2] is neg-
ligible. This second property is required to exclude VUFs with two keys defining
(almost) the same function. Assuming these properties we can then prove our
weaker compiler, presented in Figure 10, to be a secure unbiasable VRF.

VRF.Gen(1λ)

1 : Return (vk, sk)←$ VUF.Gen(1λ)

VRF.Eval(sk, x)

1 : (y∗, π∗)← VUF.Eval(sk, x)

2 : y ← H(y∗)

3 : π ← (π∗, y∗)

4 : Return (y, π)

VRF.Vfy(vk, x, y, π)

1 : Parse π = (π∗, y∗)

2 : Return 1 if and only if:
3 : H(y∗) = y

4 : VUF.Vfy(vk, x, y∗, π∗) = 1

Fig. 10. Unbiasable VRF based on a special VUF. Differences from the construction
in Figure 9 are highlighted.

Theorem 2. Let (VUF.Gen,VUF.Eval,VUF.Vfy) be a weakly unbiasable (see Sec-
tion 3.2) VUF so that there exists a negligible function ε such that for all vk,
x1, x2 ∼ U(X) and y1, y2 for which there exists π1, π2 with

VUF.Vfy(vk1, x, y1, π1) = 1, VUF.Vfy(vk2, x, y2, π2) = 1

then Pr [y1 = y2] ≤ ε(λ).
Then the construction presented in Figure 10 is an Unbiasable VRF in the

random oracle model.

A proof of this Theorem appears in the Appendix, Section B.1.

5 Constructions in the Standard Model

In this section we will first provide two unbiasable VRFs in the standard model
achieving weaker notions of both pseudorandomness and unbiasability. More
specifically both constructions achieve

1. Restricted pseudorandomness on the first component of their input space
(see Definition 6).

2. Unbiasability on independent points (Definition 9) holding unconditionally,
i.e. against computationally unbounded adversaries.

We target these properties as at the end of this Section we provide a compiler
transforming any such VRF into a fully-fledged unbiasable VRF in the standard
model.

5.1 1st Preliminary Construction: Padded VRF

Our first construction critically shows how targeting only restricted pseudoran-
domness and unbiasability with independent points simplifies the problem. The
construction is based on two observations:

First, any (publicly computable) permutation is unbiasable with indepen-
dent points (although not a VRF), as it preserves the input distribution. The
easiest example is the identity function. The second idea is that, given a VRF
Fsk(·) = VRF.Eval(sk, ·) and a publicly computable unbiasable function f(·), we
can combine the two, returning on input x = (u, v) the output Fsk(u) ⊕ f(v).
This informally remains unbiasable because f(v) preserves the entropy in v, and
Fsk(u) is independent from v. Moreover, this achieves restricted pseudorandom-
ness on the first component because the adversary is not allowed to evaluate the
VRF on two different points x, x̄ with the same first component u, ū.

The resulting construction, given for f = id and (VRF∗.Gen,VRF∗.Eval,
VRF∗.Vfy) a VRF, is described in Figure 11, and we will refer to it as the padded
VRF construction. There we assume that the VRF output space Y∗ is a group
(G,+). This generalizes the case Y∗ = {0, 1}µ which is a group with the bit-wise
xor. Our compiler in Sections 5.5 however will only work for the special case in
which the VRF’s input space is a prime order group.

VRB.Gen(1λ)

1 : Return (vk, sk)←$ VRF∗.Gen(1λ)

VRB.Eval(sk, x)

1 : Parse x = (u, v)

2 : (w, π)← VRF∗.Eval(sk, u)

3 : y ← w + v

4 : Return y

VRB.Vfy(vk, x, y, π)

1 : Parse x = (u, v)

2 : w ← y − v

3 : Return 1 if and only if:
4 : VRF.Vfy(vk, w, u, π)→ 1

Fig. 11. Padded VRF construction from a VRF (VRF∗.Gen,VRF∗.Eval,VRF∗.Vfy) with
output space a group (G,+).

Theorem 3. If (VRF∗.Gen,VRF∗.Eval,VRF∗.Vfy) is a secure VRF, then the con-
struction in Figure 11 is a VRF with restricted pseudorandomness. Moreover it
satisfies unbiasability on independent points against computationally unbounded
adversaries.

A proof of this Theorem appears in the Appendix, Section B.2.

5.2 Verifiable Random Bijection

Our second approach to construct a VRF satisfying unbiasability on independent
points is to guarantee that for each key, including maliciously generated ones,
the resulting VRF is 1 to 1. In this section we formally defined this class of VRF,
which we call Verifiable Random Bijection (VRB). For the sake of generality, we
do not require each function to be always 1 to 1, which would exclude VRFs
admitting "bad" keys that cannot be evaluated over the full domain. Instead,
we more generally ask the function to have input and output space of the same
cardinality and to always be injective. Formally

Definition 10. A Verifiable Random Bijection is a VRF (VRB.Gen,VRB.Eval,
VRB.Vfy) whose input space X and output space Y have the same cardinality
|X | = |Y| and furthermore satisfies

4. Injectivity. For any vk (not necessarily in the range of VRF.Gen), any out-
put y ∈ Y, pair of inputs x0, x1 ∈ X and proofs π0, π1 if holds that

VRF.Vfy(vk, x0, y, π0)→ 1, VRF.Vfy(vk, x1, y, π1)→ 1 ⇒ x0 = x1.

In the Appendix, Section B.3 we provide a proof of the following theorem,
stating that for any VRF (not even necessarily pseudorandom), injectivity suf-
fices to achieve unconditionally unbiasability on independent points.

Theorem 4. Any tuple (VRF.Gen,VRF.Eval,VRF.Vfy) with |X | = |Y| satisfying
correctness, unique provability and injectivity, then further satisfies unbiasability
on independent points against computationally unbounded adversaries.

5.3 2nd Preliminary Construction: 2-Feistel Rounds

In this section we observe that 2 Feistel rounds [LR88] suffice to transform any
VRF into a VRB, at the cost of only achieving restricted pseudorandomness.
Such weaker security notion is the reason why we do not need 3 or more rounds.
Indeed, using notation from Figure 1, known attacks to break 2 Feistel rounds
require to perform queries with the same component z1 but different w1. This is
disallowed when considering pseudorandomness restricted to the first component,
where two queries with the same first entry are considered the same by the
evaluation oracle.

Note that to instantiate this construction we do need the VRF’s input space
X to be a group G with some operation + and that the output space is also G.
The first condition is achieved assuming G ⊆ X and then restricting the input
space. The second one instead can be achieved by amplifying the VRF output
length and then applying a universal hash to the group (in prime order groups,
this hash can simply be the exponentiation by a generator). A full description
of the scheme is presented in Figure 12

VRB.Gen(1λ)

1 : vk1, sk1 ←$ VRF.Gen(1λ), vk2, sk2 ←$ VRF.Gen(1λ)

2 : vk← (vk1, vk2), sk← (sk1, sk2)

3 : Return (vk, sk)

VRB.Eval(sk, x)

1 : Parse x = (z1, w1)

2 : (u1, π1)← VRF.Eval(sk1, z1)

3 : (z2, w2)← (z1, w1 + u1)

4 : (u2, π2)← VRF.Eval(sk2, w2)

5 : (z3, w3)← (z2 + u2, w2)

6 : y ← (z3, w3)

7 : π ← (u1, u2, π1, π2)

8 : Return y ← (z3, w3)

VRF.Vfy(vk, x, y, π)

1 : Parse x = (z1, w1)

2 : Parse π = (u1, u2, π1, π2)

3 : (z2, w2)← (z1, w1 + u1)

4 : (z3, w3)← (z2 + u2, w2)

5 : Return 1 if and only if:
6 : VRF.Vfy(vk1, z1, u1, π1)→ 1

7 : VRF.Vfy(vk2, w2, u2, π2)→ 1

8 : (z3, w3) = y

Fig. 12. 2-Feistel round construction

Theorem 5. If (VRF.Gen,VRF.Eval,VRF.Vfy) is a secure VRF with input space
G, then the construction in Figure 12 is a VRB with message space G×G and
restricted pseudorandomness on the first component.

The Theorem is again proven in the Appendix, Section B.4.

5.4 VRB Compiler

Before presenting in the next section a general compiler lifting our preliminary
constructions to fully fledged unbiasable VRF, we discuss how to modify the
2-Feistel Round construction (or more generally, any VRB with constrained
pseudorandomness) in order to obtain a VRB satisfying the regular pseudo-
randomness property. We see this as a useful stepping stone to introduce in a
simpler setting some of the techniques used later on. Furthermore, security of
this construction will eventually depend on simpler assumptions. Namely the
underlying VRF security and the hardness of standard DLP.

The main issue of the construction in Section 5.3 is that pseudorandomness
fails when an adversary evaluates the VRF in two different points sharing the
same first component. A trivial fix could be to compose the 2-Feistel rounds
with an hash functions, so that on input x ∈ G, we evaluate that VRF on
(h(x), x). This however introduces collisions which, although hard to compute,
would break injectivity.

Our solution is to rely on a Pedersen hash: given x ∈ F2
q and [a] a hash key,

the hash of x is the inner product
[
a⊤x

]
. With this tool we can build a map

from F2
q → G2 keyed on [a] such that

x 7→
([
a⊤x

]
,
[
e⊤1 x

])
.

were e1 = (1, 0). This map is collision resistant on the first component when a is
sampled by an honest user, which we needed for pseudorandomness. Moreover,
even when a is sampled maliciously, it is possible to verify whether this map is a
bijection or not by checking [a2] ̸= 0. Indeed in this case the matrix A = (a, e1)

⊤

has non-zero determinant and thus it is bijection. Our solution, consisting of the
composition of this map and the construction of Section 5.3, is schematized in
Figure 13 and formally described in Figure 14.

x

[
a⊤x

]
[
e⊤
1 x

]
z1

w1

F1

+

z2

w2

F2

+ z3

w3

Fig. 13. 2-Feistel rounds with Petersen hash, where Fi(·) = VRF.Eval(ski, ·) and a, e1,x
are vectors in F2

q with e1 = (1, 0).

Theorem 6. If (VRB∗.Gen,VRB∗.Eval,VRB∗.Vfy) is a VRB with domain G2

satisfying restricted pseudorandomness with respect to the first component, and
DLP is hard, then the construction in Figure 14 is a secure VRB.

5.5 Unbiasable VRF Compiler

We finally provide our compiler lifting any VRF satisfying restricted pseudo-
randomness and unbiasability on independent points to fully fledged unbiasable

VRB.Gen(1λ)

1 : Sample vk∗, sk∗ ←$ VRB∗.Gen(1λ)

2 : Sample a←$ F2
q with a2 ̸= 0

3 : vk← (vk∗, [a]), sk← sk∗

4 : Return (vk, sk)

VRB.Eval(sk,x)

1 : // x ∈ F2
q

2 : z ←
[
a⊤x

]
3 : w ←

[
e⊤
1 x

]
4 : (y, π)← VRB∗.Eval(sk∗, (z, w))

5 : Return (y, π)

VRB.Vfy(vk, x, y, π)

1 : z ←
[
a⊤x

]
2 : w ←

[
e⊤
1 x

]
3 : Return 1 if and only if:
4 : VRB∗.Vfy(vk∗, (z, w), y, π)

5 : [a2] ̸= 0.

Fig. 14. Compiler returning a secure VRB from one with restricted pseudorandomness.

VRF. Combining this with the constructions in Section 5.1 and 5.3 yields two
compilers from VRF to unbiasable VRF. Note the resulting constructions are in
the standard model, meaning without random oracles and setup assumptions,
i.e. no CRS.

In order to enhance pseudorandomness we use the same technique of Sec-
tion 5.4: Interpreting the input as a vector x ∈ Fµ

q , we compute the first com-
ponent as a Petersen Hash

[
a⊤x

]
and the second one as a linear function b⊤x,

with [a] and b being part of the public key.
We now discuss how to obtain unbiasability. The challenge is that in Defi-

nition 8 we require the adversary to evaluate all of the VRFs on the same set
of inputs, whereas the underlying VRF we start with is only unbiasable if each
VRF is evaluated on independently sampled ones. Our idea is to derive those
independently sampled sets, one for each key vk chosen by the adversary, from a
common one using a PRF. In the introduction we discussed as non-working ex-
amples interpreting the input as a PRF key k and evaluating the VRF of fk(vk)
or (k, fk(vk)). These however either break pseudorandomness if k 7→ fk(vk) is
not injective, or prevent us from using the PRF pseudorandomness in the proof.
To fix notation, let Encode be the procedure performing such expansion (i.e.
returning a vector v with entries in Fq which we pass as input to the Petersen
Hash). Our solution improves on the trivial ones by relying on a perfectly binding
commitment scheme Com:

– The input x is assumed to be of the form (r, k, pp, ρ) with r ∈ Fq and pp the
public parameter of a perfectly binding commitment scheme.

– Encode(r, k, pp, ρ) = (r, fk(vk), pp,Compp(k; ρ)) where r ∈ F2
q is used to turn

the Pedersen hash into a chameleon hash, fk(vk) ∈ F2
q randomizes the Pe-

tersen hash output independently for each vk.

Note that one key requirement of Encode is to be injective to preserve pseu-
dorandomness. Hence the above solution only works if the map (k, pp, ρ) 7→
Compp(k; ρ) is injective. Furthermore the commitment scheme must admit uni-
formly random public parameters. This unfortunately excludes a large class of
constructions (e.g. lattice based). However all the above properties are true for
ElGamal commitments, where, given a public group element [α] a commitment
to k is defined as [β] , [αβ + k].

We eventually provide a full description of our solution for this specific choice
of commitment scheme: first we let repr : G → Fη

q be an efficiently computable
and injective map. If G ⊆ {0, 1}ℓ it exists with η ≤ ℓ/⌊log2 q⌋ by encoding
⌊log2 q⌋ bits per field element. Given such representation map, we define Encode :
F4
q ×K → F4+3η

q , with K being the set of possible verification keys vk, as

Encode(r1, r2, α, β, k, vk) := (r1, r2, fk(vk), repr([α]), repr([β]), repr([αβ + k])) .

Having defined the encoding procedure we can finally describe our compiler, tak-
ing as input a VRF (VRF∗.Gen, ,VRF∗.Eval,VRF∗.Vfy), described in Figure 15.
A proof of Theorem 7 is presented in the Appendix, Section B.6.

VRF.Gen(1λ)

1 : Sample (vk∗, sk∗)←$ VRF∗.Gen(1λ)

2 : Sample a←$ F4+3η
q with a2, a4 ̸= 0

3 : Set vk← (vk∗, [a]) and sk∗ ← sk

4 : Return (vk, sk)

VRF.Eval(sk, x)

1 : // x ∈ F5
q

2 : v← Encode(x, vk)

3 : z ←
[
a⊤v

]
4 : w ←

[
e⊤v

]
// e = e1 + e3

5 : (y, π)←$ VRF∗.Eval(sk∗, (z, w))

6 : Return (y, π)

VRF.Vfy(vk, x, y, π)

1 : v← Encode(x, vk)

2 : z ←
[
a⊤v

]
3 : w ←

[
e⊤v

]
// e = e1 + e3

4 : Return 1 if and only if:
5 : [a2] ̸= 0, [a4] ̸= 0

6 : VRF∗.Vfy(vk∗, (z, w), y, π)→ 1

Fig. 15. Compiler returning an unbiasable VRF.

Theorem 7. Let (VRF∗.Gen,VRF∗.Eval,VRF∗.Vfy) be a VRF with domain G×
G, restricted pseudorandomness on the first component, and unconditional uni-
basability on inpendent points (i.e. holding against unbounded adversaries). If
DLPrep-DDH is hard in G and f is a PRF secure against PPT adversaries with
preprocessing in PPTDL (see Section 2.3), then the construction described in Fig-
ure 15 is an Unbiasable VRF.

6 Conclusions

In conclusion we initiated the study of unbiasable verifiable random functions
and proved them to be useful for applications and realizable in the plain model.
Regarding future research directions, we list some problems we leave open whose
solution would improve our understanding of these objects.

First of all, it is unclear to us under what hypothesis it is possible into com-
pile any VRF to an unbiasable one. For instance, having a simpler construction
based only on symmetric key primitives would narrow down the efficiency gap
between plain model and ROM constructions. A simpler problem would be to
understand whether unbiasability can be based only on plausibly post-quantum
hypothesis. We further leave open understanding whether preprocessing is nec-
essary to achieve unbiasability in the plain model. This was the case in our proof
as the reduction uses the adversary as a black-box oracle to evaluate the VRF,
and eventually needs to evaluate such VRF on a partially unknown point. This
means it must violate the pseudorandomness property, and super polynomial
preprocessing is the extra edge to do so. We hence believe that overcoming such
limitations would also likely lead to novel proof techniques.

Acknowledgments

The authors would like to thanks Handan Kılınç Alper for the helpful discussions
regarding the UC-Security of VRF. This work has been partially supported by
PRODIGY Project (TED2021-132464B-I00) funded by MCIN/AEI/10.13039/
501100011033/ and the European Union NextGenerationEU/PRTR.

References

ACF09. Michel Abdalla, Dario Catalano, and Dario Fiore. Verifiable random func-
tions from identity-based key encapsulation. In Antoine Joux, editor, EU-
ROCRYPT 2009, volume 5479 of LNCS, pages 554–571. Springer, Heidel-
berg, April 2009.

BASV23a. Jeffrey Burdges, Handan Kılınç Alper, Alistair Stewart, and Sergey Vasi-
lyev. Ethical identity, ring VRFs, and zero-knowledge continuations. Cryp-
tology ePrint Archive, Report 2023/002, 2023. https://eprint.iacr.org/
2023/002.

https://eprint.iacr.org/2023/002
https://eprint.iacr.org/2023/002

BASV23b. Jeffrey Burdges, Handan Kılınç Alper, Alistair Stewart, and Sergey Vasi-
lyev. Sassafras and semi-anonymous single leader election. Cryptology
ePrint Archive, Report 2023/031, 2023. https://eprint.iacr.org/2023/
031.

BGK+18. Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and
Vassilis Zikas. Ouroboros genesis: Composable proof-of-stake blockchains
with dynamic availability. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 913–930.
ACM Press, October 2018.

BGQR22. Christian Badertscher, Peter Gazi, Iñigo Querejeta-Azurmendi, and
Alexander Russell. A composable security treatment of ECVRF and batch
verifications. In Vijayalakshmi Atluri, Roberto Di Pietro, Christian Dams-
gaard Jensen, and Weizhi Meng, editors, ESORICS 2022, Part III, volume
13556 of LNCS, pages 22–41. Springer, Heidelberg, September 2022.

BGRV09. Zvika Brakerski, Shafi Goldwasser, Guy N. Rothblum, and Vinod Vaikun-
tanathan. Weak verifiable random functions. In Omer Reingold, editor,
TCC 2009, volume 5444 of LNCS, pages 558–576. Springer, Heidelberg,
March 2009.

BMR10. Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. Alge-
braic pseudorandom functions with improved efficiency from the augmented
cascade. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov,
editors, ACM CCS 2010, pages 131–140. ACM Press, October 2010.

BY96. Mihir Bellare and Moti Yung. Certifying permutations: Noninteractive
zero-knowledge based on any trapdoor permutation. Journal of Cryptology,
9(3):149–166, June 1996.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

CD17. Ignacio Cascudo and Bernardo David. SCRAPE: Scalable randomness at-
tested by public entities. In Dieter Gollmann, Atsuko Miyaji, and Hi-
roaki Kikuchi, editors, ACNS 17, volume 10355 of LNCS, pages 537–556.
Springer, Heidelberg, July 2017.

CD20. Ignacio Cascudo and Bernardo David. ALBATROSS: Publicly AttestabLe
BATched Randomness based On Secret Sharing. In Shiho Moriai and Huax-
iong Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS,
pages 311–341. Springer, Heidelberg, December 2020.

CDG+18. Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and
Gregory Neven. The wonderful world of global random oracles. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I,
volume 10820 of LNCS, pages 280–312. Springer, Heidelberg, April / May
2018.

CK18. Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm prob-
lem with preprocessing. In Jesper Buus Nielsen and Vincent Rijmen, edi-
tors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 415–447.
Springer, Heidelberg, April / May 2018.

CL07. Melissa Chase and Anna Lysyanskaya. Simulatable VRFs with applications
to multi-theorem NIZK. In Alfred Menezes, editor, CRYPTO 2007, volume
4622 of LNCS, pages 303–322. Springer, Heidelberg, August 2007.

CM16. Jing Chen and Silvio Micali. Algorand. arXiv preprint arXiv:1607.01341,
2016.

https://eprint.iacr.org/2023/031
https://eprint.iacr.org/2023/031

DGKR17. Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake
protocol. Cryptology ePrint Archive, Report 2017/573, 2017. https:
//eprint.iacr.org/2017/573.

EKS+21. Muhammed F. Esgin, Veronika Kuchta, Amin Sakzad, Ron Steinfeld, Zhen-
fei Zhang, Shifeng Sun, and Shumo Chu. Practical post-quantum few-time
verifiable random function with applications to algorand. In Nikita Borisov
and Claudia Díaz, editors, FC 2021, Part II, volume 12675 of LNCS, pages
560–578. Springer, Heidelberg, March 2021.

ESLR22. Muhammed F. Esgin, Ron Steinfeld, Dongxi Liu, and Sushmita Ruj. Ef-
ficient hybrid exact/relaxed lattice proofs and applications to rounding
and VRFs. Cryptology ePrint Archive, Report 2022/141, 2022. https:
//eprint.iacr.org/2022/141.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, August 2018.

FLS90. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero
knowledge proofs based on a single random string (extended abstract). In
31st FOCS, pages 308–317. IEEE Computer Society Press, October 1990.

Fuc14. Georg Fuchsbauer. Constrained verifiable random functions. In Michel
Abdalla and Roberto De Prisco, editors, SCN 14, volume 8642 of LNCS,
pages 95–114. Springer, Heidelberg, September 2014.

GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM (JACM), 33(4):792–807, 1986.

GLOW21. David Galindo, Jia Liu, Mihair Ordean, and Jin-Mann Wong. Fully dis-
tributed verifiable random functions and their application to decentralised
random beacons. pages 88–102, 2021.

GNP+14. Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos, Leonid Reyzin,
Sachin Vasant, and Asaf Ziv. NSEC5: Provably preventing DNSSEC
zone enumeration. Cryptology ePrint Archive, Report 2014/582, 2014.
https://eprint.iacr.org/2014/582.

GRPV23. Sharon Goldberg, Leonid Reyzin, Dimitrios Papadopoulos, and Jan Včelák.
Verifiable Random Functions (VRFs). RFC 9381, August 2023.

HJ16. Dennis Hofheinz and Tibor Jager. Verifiable random functions from stan-
dard assumptions. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-
A, Part I, volume 9562 of LNCS, pages 336–362. Springer, Heidelberg,
January 2016.

HW10. Susan Hohenberger and Brent Waters. Constructing verifiable random
functions with large input spaces. In Henri Gilbert, editor, EURO-
CRYPT 2010, volume 6110 of LNCS, pages 656–672. Springer, Heidelberg,
May / June 2010.

Koh19. Lisa Kohl. Hunting and gathering - verifiable random functions from stan-
dard assumptions with short proofs. In Dongdai Lin and Kazue Sako, edi-
tors, PKC 2019, Part II, volume 11443 of LNCS, pages 408–437. Springer,
Heidelberg, April 2019.

KR98. Hugo Krawczyk and Tal Rabin. Chameleon hashing and signatures. Cryp-
tology ePrint Archive, Report 1998/010, 1998. https://eprint.iacr.org/
1998/010.

https://eprint.iacr.org/2017/573
https://eprint.iacr.org/2017/573
https://eprint.iacr.org/2022/141
https://eprint.iacr.org/2022/141
https://eprint.iacr.org/2014/582
https://eprint.iacr.org/1998/010
https://eprint.iacr.org/1998/010

KRDO17. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain pro-
tocol. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 357–388. Springer, Heidelberg, Au-
gust 2017.

Lai23. Yi-Fu Lai. CAPYBARA and TSUBAKI: Verifiable random functions from
group actions and isogenies. Cryptology ePrint Archive, Report 2023/182,
2023. https://eprint.iacr.org/2023/182.

LBM20. Bei Liang, Gustavo Banegas, and Aikaterini Mitrokotsa. Statically aggre-
gate verifiable random functions and application to e-lottery. Cryptography,
4(4):37, 2020.

LR88. Michael Luby and Charles Rackoff. How to construct pseudorandom per-
mutations from pseudorandom functions. SIAM Journal on Computing,
17(2):373–386, 1988.

Lys02. Anna Lysyanskaya. Unique signatures and verifiable random functions from
the DH-DDH separation. In Moti Yung, editor, CRYPTO 2002, volume
2442 of LNCS, pages 597–612. Springer, Heidelberg, August 2002.

MR02. Silvio Micali and Ronald L. Rivest. Micropayments revisited. In Bart Pre-
neel, editor, CT-RSA 2002, volume 2271 of LNCS, pages 149–163. Springer,
Heidelberg, February 2002.

MRV99. Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random
functions. In 40th FOCS, pages 120–130. IEEE Computer Society Press,
October 1999.

PWH+17. Dimitrios Papadopoulos, Duane Wessels, Shumon Huque, Moni Naor, Jan
Včelák, Leonid Reyzin, and Sharon Goldberg. Making NSEC5 practical
for DNSSEC. Cryptology ePrint Archive, Report 2017/099, 2017. https:
//eprint.iacr.org/2017/099.

Sho94. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society
Press, November 1994.

A Examples

A.1 Separating weak unbiasability from unbiasability

In this section we show that weak-unbiasability (see Section 3.2) does not imply
unbiasability, even when the latter notion is restricted to the special case n = 1
and m = 1, that is, the adversary can only chose one verification key and has to
evaluate the VRF on only one point.

Weak Unbiasability ⇏ Unbiasability. Let (VRF.Gen,VRF.Eval,VRF.Eval) be
a weakly-unbiasable VRF. Then we can produce a new VRF with a pair of
weak keys. Let vk in the range VRF.Gen and vk∗ a bit-string not in the range of
VRF.Gen. Then we can modify th verification algorithm to treat vk∗ as vk. I.e. for
any x, y, π input, output and proof, VRF.Vfy(vk∗, x, y, π) := VRF.Vfy(vk, x, y, π).

This VRF clearly remains a secure VRF, with pseudorandomness being un-
affected as vk∗ is never sampled. Moreover the new scheme is weakly-unbiasable
since if there exists an adversary winning the weak-unbiasability which initially

https://eprint.iacr.org/2023/182
https://eprint.iacr.org/2017/099
https://eprint.iacr.org/2017/099

chooses vk∗, we can compile it into one initially selecting vk and then returning
the same output and proof. However the scheme is not unbiasable as an adver-
sary A can choose initially vk, vk∗ and the predicate p(y1, y2) : y1 = y2, with p
being 0 if any of its entries is ⊥. On input x it then evaluates the VRF on x
for both keys and return the correct evaluations y1, y2 and proof π1, π2. By con-
struction y1 = y2, meaning that p(y1, y2) = 1 with probability 1 whereas with
random inputs z1, z2 this is the case with probability |Y|−1. We then conclude
A wins with significant advantage 1− |Y|−1 ≥ 1/2.

Weak Unbiasability ⇏ Unbiasability with n = m = 1. Informally the idea is to
observe that two "parallel executions" of a weakly-unbiasable VRF preserve its
security properties. More precisely, given a weakly unbiasable VRF (VRF∗.Gen,
VRF∗.Eval,VRF∗.Vfy), we define a new scheme in Figure 16.

VRF.Gen(1λ)

1 : Sample vk1, sk1 ←$ VRF∗.Gen(1λ) and vk2, sk2 ←$ VRF∗.Gen(1λ)

2 : Set vk← (vk1, vk2) and sk← (sk1, sk2)

3 : Return (vk, sk)

VRF.Eval(sk, x)

1 : (y1, π1)← VRF∗.Eval(sk1, x)

2 : (y2, π2)← VRF∗.Eval(sk2, x)

3 : y ← (y1, y2)

4 : π ← (π1, π2)

5 : Return (y, π)

VRF.Vfy(vk, x, y, π)

1 : Parse y = (y1, y2)

2 : Parse π = (π1, π2)

3 : Return 1 iff:
4 : VRF∗.Vfy(vk1, x, y1, π1)→ 1

5 : VRF∗.Vfy(vk2, x, y2, π2)→ 1

Fig. 16. Example of weakly-unbiasable but not unbiasable VRF (for n = 1, m = 1).

The new VRF clearly satisfies correctness and unique provability. Pseudoran-
domness can be proven through a standard hybrid game. Finally, if the output
space the original VRF has exponential size in the security parameter, we can
show this to be still weakly unbiasable. Indeed, given an adversary A against this
property we can describe one B breaking weak-unbiasability for the underlying
VRF: If A initially chooses (vk1, vk2) and outputs (y∗1 , y

∗
2), then B returns vk1

and y∗1 . On input x it forwards the value to A, which will compute (y1, y2) and
(π1, π2). B thus returns y1, π1 and halts. Since Pr [y1 = y∗1 , y2 = y∗2] is smaller
than Pr [y1 = y∗1], we conclude that

Adv(A) ≤ Adv(B)− 1

|Y|
+

1

|Y2|
.

However this VRF is not unbiasable for n = 1,m = 1. Indeed, choosing
vk = (vk1, vk1), that is a single key, implies that the predicate p(y1||y2) : y1 = y2
is satisfied by the VRF’s output y = y1||y2 on any point x. However with a
random value z this occurs only with negligible probability.

A.2 When weak unbiasability implies unbiasability

We study in this section under which conditions weak unbiasability implies our
stronger notion. From Section A.1 we know that for n = m = 1, i.e. when our
game is executed with only one VRF key and one input, and the output space has
super-polynomial size, this is not the case. We now show however that the two
notions are equivalent when n = m = 1 and the output space is polynomially
bounded. For the sake of notation, we say (only in this section) that a VRF is
(n,m)-unbiasable if for any ppt adversary

Adv(A) = Pr
[
Expunb0,n,m(A) = 1

]
− Pr

[
Expunb1,n,m(A) = 1

]
with the experiment being as defined in Section 6.

Proposition 3. Let (VRF.Gen,VRF.Eval,VRF.Vfy) be a VRF with weak unbi-
asability and polynomially bounded output space, i.e. |Y| ≤ poly(λ). Then said
VRF is also (1, 1)-unbiasable.

Proof. Let A be an adversary for (1, 1)-unbiasability. Then we describe an ad-
versary B for weak unbiasability. Initially B executes A and collets its output vk
and p, with p being a monotone predicate. B then computes the set S of element
y ∈ Y such that p(y) = 1, which can be efficiently done as p is PPT and Y has
polynomially bounded size. Given S, it uniformly sampled v ←$ S and returns
(vk, v) to its challenger. Upon receiving x, it forwards x to A which eventually
returns (y, π). B thus conclude returning (y, π).

B Postponed Proof

B.1 VRF from special VUF in the ROM

Proof of Theorem 2. Correctness, Unique Provability and Pseudorandomness of
this transform are easily proved and well known to hold in the ROM. We there-
fore only focus on unbiasability.

Unbiasability. Let A be a PPT adversary executed in the unbiasability experi-
ment. We will call Q the set of RO queries it performed before returning the keys
vk1, . . . , vkn and predicate p. Furthermore let y = (y1,1, . . . , yn,m) be the output
of A filtered by Expbiasb,n,m, i.e. where values with incorrect proofs are replaced
with ⊥. We will call y∗i,j the VUF that appears in the proof πi,j for yi,j . In other
words, if yi,j ̸=⊥ then π = (y∗i,j , π

∗
i,j) and

VUF.Vfy(vki, xj , y
∗
i,j , π

∗
i,j)→ 1 H(y∗i,j) = yi,j .

To proceed we define the event Seen, occurring when some of the non-erased
values y∗i,j appears in Q. Coll instead is the event of two non-erased values y∗i,j ,
y∗h,k colliding. Formally

Seeni,j : y∗i,j ∈ Q, y∗i,j ̸=⊥ Colli,j,h,k : ⊥̸= y∗i,j = y∗h,k ̸=⊥, (i, j) ̸= (h, k)

Seen : ∃i, j : Seeni,j Coll : ∃i, j, h, k : Colli,j,h,k.

Next we claim that both Seen and Coll only occurs with negligible probability.

Claim 1 There exists a negligible ε1 such that Pr [Seen] ≤ ε1(λ).

Claim 2 There exists a negligible ε2 such that Pr [Coll] ≤ ε2(λ).

Given the above claims, we conclude as in the proof of Theorem 1. We let
z be such that zi,j = yi,j if yi,j ̸=⊥ and otherwise set zi,j ∼ U(Y). By the
monotonicity of p, and using the partial order introduced in Definition 7

y ≤ z ⇒ Pr [p(y) = 1] ≤ Pr [p(z) = 1] .

Finally, conditioning on ¬Seen and ¬Coll, all entries of z are uniformly sampled,
as the value y∗i,j was never queries by the adversary when generating vk, and
independent as all non-erased values y∗i,j are distinct. Letting u be the uniform
distribution, we then can bound its statistical distance from z as

∆(z,u) ≤ Pr [Seen] + Pr [Coll] +∆(z|¬Seen,¬Coll,u|¬Seen,¬Coll) ≤ ε1 + ε2.

We can then conclude that

Pr [p(y) = 1] ≤ Pr [p(z) = 1] ≤ Pr [p(u) = 1]− Pr [Seen]− Pr [Coll]

⇒ Adv(A) ≤ ε1(λ) + ε2(λ).

Proof of Claim 1. We describe an adversary B breaking the weak unbiasability
of the underlying VUF.

Initially B executes A, forwarding its queries Q to the RO until it returns
vk1, . . . , vkn and a predicate p. It then sample a random entry v∗ = Q[k∗], with
k∗ ∈ [|Q|], two indices i∗, j∗ and return to its challenger (vki∗ , v

∗). Next, upon
receiving a random input x, it samples x1, . . . , xm uniformly from the VUF
input space and set xj∗ = x. It then run A on input (x1, . . . , xm), collecting its
output y, π. Finally, it parse πi∗,j∗ = (y∗i∗,j∗ , π

∗
i∗,j∗) and return this couple to its

challenger.
Note first of all that B perfectly simulates Expbiasb,n,m and that A has no in-

formation on v∗ and i∗, j∗ since x is uniformly sampled too. Finally, if Seeni∗,j∗
occurs, B wins with probability greater than |Q|−1, since at least one of the

entries in Q equals y∗i∗,j∗ . We then conclude that

Adv(B) ≥ 1

|Q|
· Pr [Seeni∗,j∗]

≥ 1

|Q|
·
∑n

i=1

∑m

j=1
Pr [i = i∗, j = j∗] Pr [Seeni,j]

≥ 1

|Q|nm
·
∑n

i=1

∑m

j=1
Pr [Seeni,j]

≥ 1

|Q|nm
· Pr [Seen]

and in particular Pr [Seen] ≤ |Q|nm · Adv(B) that is negligible.

Proof of Claim 2. We split the event Coll into the disjunction of two events Coll0

and Coll1 defined as

Coll0 : ∃i, j, k, h : (Colli,j,k,h, j ̸= h) Coll1 : ∃i, j, k : Colli,j,k,j

In other words, Coll0 happens when the collision occurs for different inputs xj , xh,
whereas Coll1 only when the collision occurs for the same xj .

The bound on Coll1 comes directly from our second hypothesis on the VUF:
namely that for any two keys vki, vkk and a point xj the probability of y∗i,j = y∗k,j
is smaller than ε. Using a union bound

Pr
[
Coll1

]
≤

∑
i,j,k

Pr [Colli,j,k,j] ≤ n2m · ε(λ).

Regarding Coll0, we provide an adversary B breaking the weak unbiasability of
the underlying VUF if Coll0 is not negligible.

Initially B executes A to get vk1, . . . , vkn and the predicate p, which is dis-
carded. Then it randomly chooses i′, k′ ←$ [n] and j′, h′ ←$ [m] with j′ ̸= h′,
and samples a point xh′ . At this point B wishes to return as a guess for the
output of vki′ on a random input, the value y∗k′,h′ obtained evaluating the VRF
with key vkk′ on input xh′ . However, B does not have access to the VRF se-
cret key. So, to achieve this goal it first continues the execution of A giving it
x1, . . . , xm randomly sampled, and extract in this way the value y∗k′,h′ . It then
return to its challenger vki′ and y∗k′,h′ and waits for it to respond with a point
x. Now, in order to extract the VUF output on x, B sampled again random
point x1, . . . , xm up to setting xj′ = x and xh′ = x. Finally, it rewinds A to the
state in which it was before receiving the input points, and re-executes it with
x1, . . . , xm, getting the value y∗i′,j′ , π

∗
i′,j′ . At this point, if y∗k′,h′ obtained in the

first execution has an incorrect proof, but the one obtained in the second one
does not, it abort. Otherwise it returns (y∗i′,j′ , π

∗
i′,j′).

Let Abort be the event that B aborts. We immediately observe that this event
occurs with probability smaller than 1/2. Indeed, letting p denote the probability
that y∗k′,h′ has an incorrect proof when A receives uniformly sampled points
x̄1, . . . , x̄m conditioned on x̄h′ = xh′ , then

Pr [Aboort] = p(p− 1) ≤ 1

2
.

Finally, conditioning on ¬Abort, we observe that Colli′,j′,k′,h′ implies that B
correctly guesses its output. This is the case as y∗k′,h′ is returned with a correct
proof in the second execution of A which implies, having conditioned on ¬Abort
than the same occurs in the first execution. From the VUF unique provability,
these values must then be the same, and in particular, y∗k′,h′ = y∗i′,j′ . We therefore
conclude that

Adv(B) ≥ Pr [¬Abort] · Pr [Colli′,j′,k′,h′] ≥ 1

2
· 1

n2m2
· Pr

[
Coll1

]
.

This concludes the proof of this claim as

Pr [Coll] ≤ n2mε(λ) + 2n2m2 · Adv(B).

B.2 Padded VRF Construction

Proof of Theorem 3. Completeness and Unique Provability follows immediately
from the underlying VRF. We thus focus on restricted pseudorandomness and
unconditional unbiasability on independent points, i.e. against computationally
unbounded adversaries.

Pseudorandomness. Given an adversary A breaking restricted pseudorandom-
ness we construct B attacking the pseudorandomness of the underlying VRF.

On input vk, B executes A(vk). Whenever A queries an evaluation on x =
(u, v), B compute w ← VRF.Eval(u) and returns y = w + v. When A sends a
challenge point x∗(u∗, v∗), then B returns u∗ to its challenger and waits for a
reply w∗. Eventually it replies to A with y∗ ← w∗+v∗. If at any point A queried
x = (u, v) with u = u∗, abort the simulation and return 0. When A halts and
returns a bit, B outputs the same bit.

Due to our definition of restricted pseudorandomness, A never queries x with
a first component equal to u∗. Thus the evaluation queries B sends to VRF.Eval
are all different than u∗ and thus they all receive a correct reply. In particular
B perfectly replies to A’s evaluation queries. Next, we call b the challenge bit
chosen by B’s challenger. When b = 1, w∗ = VRF∗.Eval(sk, u∗) and in particular,
y∗ is computed with the real VRF algorithm VRF.Eval(sk, (u, v)). Conversely,
if b = 0, w∗ ∼ U(G) with G = Y∗ being the output space of the inner VRF.
Since w∗ is independent from v∗, we have that y∗ = w∗ + v∗ ∼ U(G). We can
then conclude that Adv(B) = Adv(A) where the former is negligible assuming
the inner VRF is pseudorandom.

Unbiasability on Independent Points. We show the argument information-
theoretically. For any vk let Fvk : X ∗ → Y∗ ∪ {⊥} be a function such that

Fvk(x) =

{
⊥ If ∄y, π : VRF∗.Vfy(vk, x, y, π)→ 1

y If ∃π : VRF∗.Vfy(vk, x, y, π)→ 1

This is a function due to unique provability of the inner VRF. Next define Gvk(x)
so that if Fvk(x) ̸=⊥, then Gvk(x) = Fvk(x), and otherwise Gvk(x) = 0. Finally,
to emulate the construction in Figure 11, we let Hvk(u, v) = Gvk(u) + v.

We now prove the property. Let A be an unbounded adversary against unbi-
asability on independent points, vk1, . . . , vkn the verification keys initially pro-
duced and p the monotone predicate it chooses. We call xi,j = (ui,j , vi,j) the
points sampled by the challenger and y the filtered output of A computed at the
end of the experiment in Figure 7. For all i, j if yi,j ̸=⊥ it means that A produces
a proof πi,j for yi,j valid for vki. In particular πi,j is by construction a proof for
the inner VRF with verification key vki, input ui,j and output wi,j = yi,j − vi,j .
Thus by our definitions

wi,j = Fvki(ui,j) = Gvki(ui,j) ⇒
⇒ yi,j = wi,j + vi,j = Gvki(ui,j) + vi,j = Hvki(ui,j , vi,j).

Hence yi,j ≤ Hvki(xi,j) according to the partial order in Definition 7.
Finally we observe that the evaluations of H follow the uniform distribu-

tion. Indeed the elements vi,j are then uniformly random, meaning that also
Gvki(ui,j) + vi,j are, as ui,j and vi,j are independent. Calling h the vector of
values Hvki(xi,j) for i ∈ [n] and j ∈ [m] we conclude that

y ≤ h ⇒ Pr [p(y) = 1] ≤ Pr [p(h) = 1] ⇒ Adv(A) ≤ 0.

B.3 Unbiasability of VRB

Proof of Theorem 4. For any vk let Fvk be a function mapping x to y if a valid
proof π for y exists, i.e. such that VRF.Vfy(vk, x, y, π)→ 1, or else mapping x to
⊥ if no such y exists. Due to unique provability and injectivity this is an injective
functions restricted in the set Svk = {x ∈ X : Fvk(x) ̸=⊥}. As |X | = |Y| we can
extend each Fvk to a bijection Gvk : X → Y which agrees on Fvk over Svk.

We now prove the Theorem. For any A computationally unbounded and
monotone predicate p of its choice let vk1, . . . , vkn be the verification keys it ini-
tially returns, x1,1, . . . , xn,m the points chosen by the challenger and y1,1, . . . , yn,m
be the filtered output computed by Expip−bias

b,n,m (A). By the way the experiment is
defined, yi,j ̸=⊥ only if A provides a valid proof for this values, which implies
yi,j = Fvki(xi,j) = Gvki(xi,j). Hence

(y1,1, . . . , yn,m) ≤ (Gvk1(x1,1), . . . , Gvkn(xn,m)) := (z1,1, . . . , zn,m).

We finally observe that z ∼ U(Yn,m) because Gvki are all permutations and
xi,1, . . . , xi,m ∼ U(Xn,m). In conclusion, using the monotonicity of p

y ≤ z ⇒ Pr [p(y) = 1] ≤ Pr [p(z) = 1] ⇒ Adv(A) ≤ 0

B.4 2-Feistel Rounds Construction

Proof of Theorem 5. Correctness follows immediately from the VRF’s correct-
ness. We then proceed to prove unique provability, injectivity and restricted
pseudorandomness.

Unique Provability. Let π, π̄ be two valid proofs respectively for y and ȳ on
input x and verification key vk. We call (ui, zi, wi) and (ūi, z̄i, w̄i) the intermedi-
ate values computed while verifying π, π̄ respectively as described in Figure 12.
As the input is the same in both schemes z1 = z̄1 and w1 = w̄1. By unique
provability of the underlying VRF, z1 = z̄1 implies u1 = ū1. By construction
we then have z2 = z̄2 and w2 = w̄2. Again using the unique provability of
the underlying scheme, w2 = w̄2 implies u2 = ū2 and in particular z3 = z̄3
and w3 = w̄3. Finally, the last check in the verification procedure ensures that
y = (z3, w3) = (z̄3, w̄3) = ȳ concluding the proof.

Injectivity. Let π, π̄ be two valid proofs for y on input x, x̄ respectively and
verification key vk. As before let (ui, zi, wi) and (ūi, z̄i, w̄i) the intermediate
values computed in the verification procedure as described in Figure 12. Then,
by the check in line 8, as y is the same in both verifications, z3 = z̄3 and
w3 = w̄3. By construction this further implies w2 = w̄2 which in turns, by
unique probability, that u2 = ū2, and in particular z2 = z̄2. Applying the same
argument for the first Feistel round we get z1 = z̄1 and w1 = w̄1 which implies
that x = x̄.

Restricted Pseudorandomness. We prove restricted pseudorandomness on the
first component through a sequence of hybrid games

G1: The restricted pseudorandomness game with challenger’s bit b = 1.
G2: As G1 but on challenge input x∗, reply with y∗ ← VRB.Eval2(sk, x

∗) de-
scribed in Figure 17.

G3: As G2 but if at any point, an evaluation query produces w2 = w∗
2 , return 0.

G4: As G3 but on challenge input x∗, reply with y∗ ← VRB.Eval4(sk, x
∗) de-

scribed in Figure 17.
G5: As G4 but no abort occurs if w2 = w∗

2 .
G6: The restricted pseudorandomness game with challenger’s bit b = 0.

At a high level we will reduce G1 ≈ G2 the pseudorandomness of the VRF
with the first key, G2 ≈ G3 by reducing the bad event w2 = w∗

2 to the VRF’s
pseudorandomness with the first key. G3 ≈ G4 follow by pseudorandomness of
the VRF in the second key and G4 ≈ G5 is proved as G2 ≈ G3, while G5 ≡ G6 is
proven information theoretically.

Proof of G1 ≈ G2. Given a distinguisher D, we describe an adversary B breaking
the pseudorandomness of the VRF scheme. On input vk∗, B sets vk1 = vk∗,
generates the second key vk2, sk2 ←$ VRF.Gen(1λ). Then it sets z∗1 =⊥ and
run D(vk) with vk = (vk1, vk2). When D queries an evaluation in x = (z1, w1),
B first checks that z1 ̸= z∗1 . If this is the case computes (y, π) as prescribed,
replacing the VRF evaluation in line 2 with an oracle query u1 ← Oeval(z1).
Analogously, when D return a challenge point x∗ = (z∗1 , w

∗
1), first check that z∗1

was never queried before. If this is the case compute the challenge response y∗ as

VRB.Eval2(sk, x)

1 : Parse x = (z1, w1)

2 : Sample u1 ←$ G
3 : (z2, w2)← (z1, w1 + u1)

4 : (u2, π2)← VRF.Eval(sk2, w2)

5 : (z3, w3)← (z2 + u2, w2)

6 : y ← (z3, w3)

7 : Return (y,⊥)

VRB.Eval4(sk, x)

1 : Parse x = (z1, w1)

2 : Sample u1 ←$ G
3 : (z2, w2)← (z1, w1 + u1)

4 : Sample u2 ←$ G
5 : (z3, w3)← (z2 + u2, w2)

6 : y ← (z3, w3)

7 : Return (y,⊥)

Fig. 17. Hybrid VRB.Eval for G2, G4. Changes are highlighted.

prescribed replacing again the VRF evaluation in line 2 by returning a challenge
point z∗1 and using the challenger’s reply u∗

1. Finally, when D returns a bit b′,
return the same bit.

We begin showing that B correctly replies to each query: Indeed if D returns
a challenge x∗ whose first component matches a previously queried x, the game
fails, and if any subsequent queries (z1, w1) is such that z1 = z∗1 , B returns ⊥.
Conversely, if z1 ̸= z∗1 then B query to the oracle will return the (u1, π1) =
VRF.Eval(sk∗, z1), meaning that B eventually returns a correct evaluation to D.

Finally, calling b the bit chosen by B’s challenger, if b = 1, then the chal-
lenge response y∗ is computed as in G1 with the correct evaluation algorithm.
Conversely if b = 0, y∗ is computed as in G2. We thus conclude that Adv(B) =
Adv(D).

Proof of G2 ≈ G3. Given an adversary A executed in G2 we denote z
(i)
1 , w

(i)
1 , . . .

the intermediate values computed during the i-th evaluation query. Then let us
define the event Colli : w

(i)
2 = w∗

2 . Let t be a polynomial upper bound on the
number of queries performed by A. Our goal will be to prove that there exists a
negligible function bounding the probability of all these events for i ∈ {1, . . . , t}.
To this aim we define Ci which uses A to break the inner VRF pseudorandomness
if Colli occurs with significant probability. Informally Ci uses the verification keys
it receive from its challenger as vk1 and generates vk2, sk2. Queries until the i-
th are generate with Oeval and the challenge’s response y is computes sampling
u1 ←$ G as prescribed in G2. Finally, for the i-th query, it computes u(i)

1 sending
z
(i)
1 as a challenge point. If this value cases w

(i)
2 to collide with w∗

2 , it guesses
u
(i)
1 was not random. A full description of B is provided in Figure 18

To analyze Ci we call Beforei the event in which the i-th query from A in G2

occurs before sending the challenge point, and Afteri its complement. We further
call b the challenge bit chosen by Ci’s challenger. As Ci perfectly simulates G2

Reduction COeval
i (vk∗)

1 : // Public parameters generation

2 : Sample i←$ {1, . . . , t} and generate vk2, sk2 ←$ VRF.Gen(1λ)

3 : Set vk← (vk∗, vk2), z
∗
1 ←⊥ and run A(vk)

4 : // Answering the first i − 1 evaluation queries

5 : When A queries the j-th time x = (z1, w1) with j < i and z1 ̸= z∗1 :
6 : (u1, π1)← Oeval(z1)

7 : (z2, w2)← (z1, w1 + u1)

8 : (u2, π2)← VRF.Eval(sk2, w2)

9 : (z3, w3)← (z2 + u2, w2)

10 : Set y ← (z3, w3) and π ← (u1, u2, π1, π2)

11 : Send A ← (y, π)

12 : // Answering challenge request

13 : When A sends its challenge input x∗ = (z∗1 , w
∗
1) with z∗1 not yet queried:

14 : Sample u∗
1 ←$ G

15 : (z∗2 , w
∗
2)← (z∗1 , w

∗
1 + u∗

1)

16 : (u∗
2, π

∗
2)← VRF.Eval(sk2, w

∗
2)

17 : (z∗3 , w
∗
3)← (z∗2 + u∗

2, w
∗
2) and set y ← (z∗3 , w

∗
3)

18 : Send A ← y

19 : // Answering the i-th evaluation query

20 : When A queries the i-th time x(i) = (z
(i)
1 , w

(i)
1) with z

(i)
1 ̸= z∗1 :

21 : If x∗ was not queried yet: Return 0

22 : Send the challenge z
(i)
1 and wait for the reply u

(i)
1

23 : w
(i)
2 ← w

(i)
1 + u

(i)
1

24 : If w
(i)
2 = w∗

2 : Return 1

25 : Else: Return 0

Fig. 18. Ci breaking VRF pseudorandomness if A finds a collision w
(i)
2 = w∗

2 .

until the i-th query is performed, we have that

Adv(Ci) = |Pr [Ci → 1 | b = 1]− Pr [Ci → 1 | b = 0]|
≥ Pr [Ci → 1 | b = 1]− Pr [Ci → 1 | b = 0]

≥ Pr [Colli ∧ Afteri]−
1

|G|

where the final inequality follows as, when b = 0, then u
(i)
1 is uniformly random

and independent from w
(i)
1 , w∗

2 . Thus a collision in that case occurs only if
u
(i)
1 = w∗

2 − w
(1)
1 which happens with probability |G|−1. By the security of the

VRF, there exists a negligible εi such that Adv(Ci) = εi. We can then derive a
bound on the probability of Colli:

Pr [Colli] = Pr [Colli ∧ Afteri]+Pr [Colli ∧ Beforei] ≤ εi+
1

|G|
+

1

|G|
= εi+

2

|G|

where the inequality also follows as Pr [Colli |Beforei] ≤ |G|−1, which is true be-
cause if x(i) is queried before x∗, then u∗

1 is sampled uniformly and independently
from w∗

1 and w
(i)
2 . As a collision only occurs if u∗

1 = w
(i)
2 −w∗

1 , this only happens
with probability |G|−1.

Finally we need to argue that the disjunction of all these events has negligible
probability of occurring. To this aim, we observe that the the maximum running
time of all Ci a polynomial factor away from the runtime of A (roughly coming
from evaluating the queries). Thus we can define an adversary C(vk∗) sampling a
random i←$ {1, . . . , t} and the executing Ci(vk∗). This adversary has advantage

ε(λ) ≥ Adv(C) =
∑t

i=1

1

t
· Adv(Ci) =

1

t
·
∑t

i=1
εi(λ) ⇒

⇒
∑t

i=1
εi(λ) ≤ tε(λ).

for a negligible ε. We finally conclude that with a union bound that calling
Coll = Coll1 ∧ . . .∧Collt, the probability Pr [Coll] ≤ ε(λ)+2t|G|−1. As G2,G3 are
identical conditioning on ¬Coll, the proof is complete.

Proof of G3 ≈ G4. The proof is similar to the one for G1 ≈ G2 with the ex-
ception that now the VRF instantiated by the challenger is used for the second
key. More precisely, let D be a distinguisher for G3,G4. We build B breaking
pseudorandomness for the underlying VRF. Initially B(vk∗) set vk2 ← vk∗ and
samples vk1, sk1 ←$ VRF.Gen(1λ). Then it sets z∗1 =⊥, vk← (vk1, vk2) and runs
D(vk). Evaluation queries are computed as in the original scheme, computing the
second VRF evaluation in line 4 with the evaluation oracle Oeval(w2). Similarly,
the challenge’s response is evaluated as in G3, with u∗

1 ∼ U(G), but with u∗
2

is computed as the response to the challenge point w∗
2 . Finally, if at any point

w∗
2 is equal to w2 during an evaluation query, B aborts the computation. A full

description of B is provided in Figure 19.

Reduction BOeval(vk∗)

1 : // Public parameters generation

2 : Sample vk1, sk1 ←$ VRF.Gen(1λ), set vk← (vk1, vk
∗) and z∗1 ←⊥

3 : Run D(vk)
4 : // Answering evaluation queries

5 : When D queries an evaluation in x = (z1, w1) with z1 ̸= z∗1 :
6 : (u1, π1)← VRF.Eval(sk1, z1)

7 : (z2, w2)← (z1, w1 + u1)

8 : (u2, π2)← Oeval(w2)

9 : (z3, w3)← (z2 + u2, w2)

10 : Set y ← (z3, w3) and π ← (u1, u2, π1, π2)

11 : Send D ← (y, π)

12 : // Answering challenge request

13 : When D sends its challenge input x∗:
14 : (z∗1 , w

∗
1)← [Ax∗]

15 : Sample u∗
1 ←$ G

16 : (z∗2 , w
∗
2)← (z∗1 , w

∗
2 + u∗

2)

17 : Send the challenge w∗
2 and wait for the reply u∗

2

18 : (z∗3 , w
∗
3)← (z∗2 + u∗

2, w
∗
2) and call y ← (z∗3 , w

∗
3)

19 : Send D ← y

20 : // Final Output

21 : When D → b′: Return b′

Fig. 19. B reducing the indistinguishability of G3,G4 to the VRF pseudorandomness

Note that if any points w2 = w∗
2 , then at least one query of B is rejected by

the challenger, and we implicitly assumes it to halt the simulation and return 0
in that case. Next we observe that as long as w2 ̸= w∗

2 for all w2 obtained in the
execution, then B responds correctly to all evaluation queries as VRF.Eval(w2) =
VRF.Eval(sk∗, w2).

Next, call b the challenge bit tossed by B’s challenger. If b = 1 then B perfectly
simulates G3 as to compute the response, u∗

2 given by the challenger is the output
of VRF.Eval(sk∗, w∗

2). Conversely if b = 0 then B simulates G4 perfectly as u∗
2 is

uniformly sampled. Thus Adv(B) = Adv(D) which concludes the proof.

Proof of G4 ≈ G5. The proof is identical to G2 ≈ G3 with the exception that u∗
2

is now sampled randomly, which does not affect the argument.

Proof of G5 ≡ G6. We show this observing that in G5 when the adversary return
the challenge point x∗ = (z∗1 , z

∗
2), the challenger computes y as

y = (z3, w3) = (z2 + u2, w2) = (z1 + u2, w1 + u1)

for uniformly sampled u2, u1 ∼ U(G). The output is thus uniformly distributed
as in G6. This concludes the proof of restricted pseudorandomness.

B.5 VRB Compiler

Proof of Theorem 6. Completeness and unique provability follows trivially from
the underlying VRB, whose only limitation is a weaker pseudorandomness no-
tion.

Injectivity. Let π, π̄ be two proof for inputs x, x̄, output y on verification key
vk = (vk∗, [a]). Let us further denote z, w and z̄, w̄ the intermediate values
computed by VRB.Vfy as described in Figure 14. By injectivity of the underlying
weaker VRB, as y is the same in both proofs, z = z̄ and w = w̄. To conclude,
because of the check on line 5, [a2] ̸= 0, which implies a2 ̸= 0. As a consequence
the matrix A = (a, e1)

⊤ is invertible (its determinant equals a2) and in particular

(z, w) = (z̄, w̄) ⇒ Ax = Ax̄ ⇒ x = x̄.

Thus the outer VRB is injective.

Pseudorandomness. We proceed in two steps. First we show that for any ad-
versary executed in the pseudorandomness experiment, querying two different
inputs x, x̄ which yields the same z = z̄ can be reduced to break discrete log-
arithm. Next, using the fact that with high probability collisions in the first
component do not occur, we reduce pseudorandomness to the restricted pseudo-
randomness of the inner VRB.

More formally, given a PPT adversary A against the pseudorandomness of
the outer VRB, we will let Coll be the event

Coll : x ̸= x∗ ∧
[
a⊤x

]
=

[
a⊤x∗] for some queried x

where x∗ is the point A returns to the challenger.

Claim 3 If the DLP is hard, then Pr [Coll] is negligible.

Assuming the claim, we can then describe a reduction C to the restricted pseu-
dorandomness for the inner VRB. A full description of C appears in Figure 20.

We being observing that, assuming ¬Coll, C correctly replies all the eval-
uation queries as z ̸= z∗ implies that the oracle VRF.Eval replies with y =
VRB∗.Eval(sk∗, (z, w)). Next, again assuming ¬Coll, when C send (z∗, w∗) to the
challenger, its game is not aborted as no previous queries as first component
equal to z∗.

Finally, let us call b the bit chosen by C’s challenger. If b = 1 then y∗ =
VRB∗.Eval(sk∗, (z∗, w∗)) and in particular C perfectly simulates the pseudoran-
domness game for A with challenge bit 1. Analogously, when b = 1 then y∗ ∼

Reduction C(vk∗)

1 : // Public parameters generation

2 : Sample [a] ←$ G2 with a2 ̸= 0 and set vk← (vk∗, [a])

3 : Initialize x∗ ←⊥ and run A(vk)
4 : // Answering evaluation queries

5 : When A queries an evaluation in x ̸= x∗:

6 : z ←
[
a⊤x

]
, w ←

[
e⊤
1 x

]
, (y, π)← Oeval((z, w))

7 : Send A ← (y, π)

8 : // Answering challenge request

9 : When A send challenge input x∗:
10 : If x∗ was previously queried: Return ⊥
11 : z∗ ←

[
a⊤x∗] , w ← [

e⊤
1 x

∗]
12 : Send (z∗, w∗) to the challenger and wait for y∗

13 : Send A ← y∗

14 : // Final Output

15 : When A → b′: Return b′

Fig. 20. C using A to break restricted pseudorandomness for the inner VRB.

U(Y) and in particular perfectly simulates the pseudorandomness game for A
with challenge bit 0. In conclusion

Adv(C) = |Pr [C → 1 | b = 0]− Pr [C → 1 | b = 1]|
≥ Pr [¬Coll] · |Pr [C → 1 | ¬Coll, b = 0]− Pr [C → 1 | ¬Coll, b = 1]|
= Pr [¬Coll] · |Pr [A → 1 | ¬Coll, b = 0]− Pr [A → 1 | ¬Coll, b = 1]|
≥ Adv(A)− |Pr [A → 1, Coll | b = 0]− Pr [A → 1, Coll | b = 1]|
≥ Adv(A)− Pr [Coll] .

Proof of Claim 3 We prove this describing B which uses A to find a linear
relation among two random group elements H,K, a problem equivalent to DLP.
A full description of B appears in Figure 21.

We immediately observe that B perfectly simulates A’s challenger as it can
sample the inner VRB’s keys vk∗, sk∗ and all the computation in [a] can be
performed without knowing a. Moreover, [a2] = K ̸= 0, or else A immediately
finds a correct non-trivial linear relation among H and K.

Finally, if Coll occurs then either B wins because K = 0, or the condition in
line 19 is satisfied and B returns x−x∗ ̸= 0. These is a non trivial linear relation
among H,K since

z = z∗ ⇒
[
a⊤x

]
=

[
a⊤x∗] ⇒ [

a⊤(x− x∗)
]
= 0.

Reduction B(H,K)

1 : // Public parameters generation

2 : Sample vk∗, sk∗ ←$ VRB∗.Gen(1λ)

3 : If K = 0: Return (0, 1) // 0 · H + 1 · K = 0

4 : Set [a] ← (H,K) and vk← (vk∗, [a])

5 : Initialize x∗ ←⊥ and run A(vk)
6 : // Answering evaluation queries

7 : When A queries an evaluation in x ̸= x∗:
8 : z ←

[
a⊤x

]
, w ←

[
e⊤
1 x

]
, (y, π)← VRB∗.Eval(sk∗, (z, w))

9 : Send A ← (y, π)

10 : // Answering challenge request

11 : When A send challenge input x∗:
12 : If x∗ was previously queried: Return ⊥
13 : Sample b←$ {0, 1} // simulate challenger’s bit

14 : z∗ ←
[
a⊤x∗] , w∗ ←

[
e⊤
1 x

∗] , (y∗
1 , π

∗
1)← VRB∗.Eval(sk∗, (z∗, w∗))

15 : y∗
0 ←$ Y

16 : Send A ← y∗
b

17 : // Final Output

18 : When A halts:
19 : If A queried x ̸= x∗ such that z = z∗: Return x− x∗

20 : Else: Return ⊥

Fig. 21. B breaking discrete logarithm if Coll occurs.

Conversely, if ¬Coll, then B return ⊥. Therefore Pr [Coll] ≤ Adv(B) that is neg-
ligible.

B.6 Unbiasable VRF Compiler

Proof of Theorem 7. We recall for our definition of Encode:

Encode(r, s, α, β, k, vk) = (r, s, fk(vk), repr([α]), repr([β]), repr([αβ + k])).

To simply notation we identify in the proof G with repr(G) and refrain from
explicitly using repr in the encoding function. As in previous proof, the VRF
used by our compiler will be referred to as the inner VRF, whereas the compiler
output is denoted as the outer VRF. Correctness and Unique Provability imme-
diately follow from the underlying VRF. We thus focus on pseudorandomness
and unbiasability, the latter being the most challenging to show.

Pseudorandomness. LetA a PPT adversary breaking pseudorandomness. Before
providing a reduction, we show that, if the DLP is hard in G, then it is hard for

A to query two point x, x∗ (with x∗ being the challenge point) whose encoding
v, v∗ are such that

[
a⊤v

]
=

[
a⊤v∗]. We will define Coll such event.

Claim 4 If the DLP problem is hard in G, then Pr [Coll] is negligible.

Given the claim we can provide a reduction to the inner VRF’s restricted
pseudorandomness with respect to the first component. To do we describe a
PPT adversary B. On input vk∗, B samples [a] ←$ G4+3η with [a2] ̸= 0, sets
vk ← (vk∗, [a]) and executes A on input vk. When A queries an evaluation on
x, B compute v the encoding of x, vk, the two inner products z ←

[
a⊤v

]
and

w ←
[
e⊤v

]
and queries its own VRF oracle on Oeval((z, w)). It then forwards the

oracle reply (y, π) to A. When A returns a challenge point x∗, B computes again
its encoding v∗, the two inner products z∗ =

[
a⊤v∗], w∗ =

[
e⊤v∗] and sends

(z∗, w∗) to its challenger, eventually forwarding its response y∗ to A. Finally,
when A returns a bit, B outputs the same bit.

We begin observing that if ¬Coll, then B perfectly simulates A’s challenger,
as all queries x ̸= x∗ it makes eventually yield z ̸= z∗, which can be answered
by Oeval used by B. Proceeding as in the proof of Theorem 6 we can finally show
that

Adv(B) ≥ Adv(A)− Pr [Coll] .

Unbiasability. In order to prove unbiasability, we first define an intermediate
game. Here an adversary B has to bias the VRF described in Figure 15, but
instead of receiving inputs x it receives its encoding v = Encode(x, vk). A full
description of the Experiment appears in Figure 22. As with the regular unbi-
asability game the advantage of B is defined as

Adv(B) := Pr
[
Expenc−bias

0,m,n (B) = 1
]
− Pr

[
Expenc−bias

1,m,n (B) = 1
]
.

To prove the Theorem we first show that if the intermediate experiment is
hard to bias for PPT adversaries with PPTDL preprocessing, then our VRF con-
struction is unbiasable. Then, to prove hardness of the intermediate experiment,
we transform it through a sequence of 2m hybrids G0

1,G
1
1,G

2
1,G

3
1,G

0
2, . . . ,G

3
m such

that

G0
1: The Intermediate Unbiasability game as in Figure 22.

G1
ℓ : As G0

ℓ but samples γ ∼ U(Fq) and sets vi,ℓ ← HybEncode1(xℓ, vki, γ) for all
i ∈ [n].

G2
ℓ : As G1

ℓ but vi,ℓ is computed as HybEncode2(xℓ, vki) for all i ∈ [n].
G3
ℓ : As G2

ℓ but vi,ℓ is computed as HybEncode3(xℓ, vki) for all i ∈ [n].
G0
ℓ : Identical to G3

ℓ−1.

Finally, we show that any PPT adversary with PPTDL preprocessing B executed
in game G3

m can be turned into an unbounded adversary C breaking unbiasability
on independent points for the inner VRF, which completes the proof.

Expenc−bias
n,m (B)

1 : (vk1, . . . , vkn, p)← B different keys, p monotone
2 : x1, . . . , xm ←$ X
3 : For all i ∈ [n], j ∈ [m]: vi,j ← Encode(xj , vki)

4 : ((y1,1, π1,1), . . . , (yn,m, πn,m))← B(v1,1, . . . ,vn,m)

5 : For all i ∈ [n], j ∈ [m]:
6 : If VRF.Vfy(vki, xj , yi,j , πi,j) = 0: Set yi,j ←⊥
7 : Sample z1,1, . . . , zn,m ←$ Yn,m

8 : If b = 0: Return p(y1,1, . . . , yn,m)

9 : If b = 1: Return p(z1,1, . . . , zn,m)

HybEncode1(x, vk, γ)

1 : Parse x = (r, s, α, β, k)

2 : Return (r, s, fk(vk), repr([α]), repr([β]), repr([γ]))

HybEncode2(x, vk)

1 : Parse x = (r, s, α, β, k)

2 : Return (r, s, fk(vk), repr([α]), repr([β]), repr([αβ]))

HybEncode3(x, vk)

1 : Parse x = (r, s, α, β, k)

2 : Sample t←$ F2
q

3 : Return (r, s, t , repr([α]), repr([β]), repr([αβ]))

Fig. 22. Intermediate Unbiasability and Hybrid Encoding. Differences are highlighted.

Intermediate Game ⇒ Unbiasability. Assume the game in Figure 22 to be
hard against PPT adversaries with PPTDL preprocessing. Given A PPT play-
ing against the unbiasability experiment we show that for any constant c > 0,
asymptotically Adv(A) ≤ λ−c.

To do so we describe B depending on a parameter ϑ = poly(λ) we specify
later. Initially B executes A(1λ) to get vk1, . . . , vkn. Parsing each key vki =
(vk∗i , [ai]) it uses the DL oracle, accessible only during the preprocessing phase,
to extract ai. This ends the preprocessing phase.

On input vi,j it evaluates zi,j ←
[
a⊤i vi,j

]
and wi,j ←

[
e⊤1 vi,j

]
and tries to

evaluate the inner VRF with verification key vk∗. This would be trivial if it could
somehow extract sk∗, however under our assumptions this does not appear to be
possible. Instead B exploits the fact that, due to the redundant random elements
r, s in the encoding of x, the Petersen hash is in fact a Chameleon Hash [KR98].
This means that for any α, β, k it can find r, s such the corresponding x has
encoding v with

[
a⊤i v

]
= zi,j and

[
a⊤i v

]
= wi,j . The strategy is then to sample

ϑ-times these inputs colliding with vi,j and run A on them. If A provides a valid

evaluation of the outer VRF during any of these re-executions, B can extract
a value and a proof for the inner VRF on input (zi,j , wi,j). Conversely, for ϑ
large enough, we conclude that A opens a random input whose encoding’s hash
collides with vi,j only with probability 1/poly(λ). In this case we let B give up
and set yi,j ←⊥. Finally, as B obtains all the values yi,j and proofs πi,j , it returns
them. A full description of B appears in Figure 23.

Reduction B:

1 : Run A(1λ)→ ((vk∗i , [ai])
n
i=1, p) and store its state st

2 : Use the DL oracle to compute ai // n(4 + 3η) queries

3 : Parse ai = (ai,1, ai,2, āi) ∈ Fq × Fq × F2+3η
q

4 : Initialize an empty table T

5 : Send (vk∗1, . . . , vk
∗
n, p) and wait for inputs vi,j

6 : For all i ∈ [n], j ∈ [m] with ai,2 ̸= 0:
7 : Compute zi,j ←

[
a⊤
i vj

]
and wi,j ←

[
e⊤vj

]
8 : For ν ∈ {1, . . . , ϑ}: // Try ϑ times to extract yi,j

9 : Rewind A to state st.
10 : Sample points x1, . . . , xm ←$ X
11 : Sample k, α, β ←$ F3

q

12 : Set u← (fk(vki), [α] , [β] , [αβ + k]) // u ∈ F2+3η
q

13 : // Chose s, r causing a collision with vi,j . u1 is the 1st entry of u.

14 : r ← e⊤vi,j − u1 and s← a−1
i,2 ·

(
a⊤
i v

⊤
i,j − a1r − ā⊤

i u
)

15 : xj ← (r, s, k, α, β)

16 : Run A(x1, . . . , xm)→ (y, π)

17 : If VRF∗.Vfy(vk∗, (zi,j , wi,j), yi,j , πi,j)→ 1:
18 : Store T [i, j]← (yi,j , πi,j)

19 : End
20 : Return (T [1, 1], . . . , T [n,m])

Fig. 23. B in PPTDL breaking the game in Figure 22 given A.

We now analyze B. First let us introduce some notation.

x̃j : The initial points chosen by the challenger, so that vi,j = Encode(x̃j , vki).
Validi,j(x) : The event A(x)→ (y, π) with 1← VRF.Vfy(vki, xj , yi,j , πi,j).
Faili,j : The event T [i, j] =⊥ ∧ Validi,j(x̃).
Fail : The event ∃i, j : Faili,j .

With this notation we state a sequence of claims

Claim 5 The values r, s computed in line 14, calling v∗ = Encode(r, s, k, α, β),
satisfy [

a⊤i v
∗] = zi,j :=

[
a⊤i vi,j

] [
e⊤v∗] = wi,j :=

[
e⊤vi,j

]
.

Moreover xj = (r, s, k, α, β) ∼ U(F5
q).

Claim 6 The check in line 17 passes iff VRF.Vfy(vki, xj , yi,j , πi,j)→ 1.

Claim 7 If ¬Fail, calling ỹ the output of A in the unbiasability experiment with
challenger points x̃1, . . . , x̃n and T [i, j] = (ti,j , πi,j) then ỹi,j ≤ ti,j.

Claim 8 Pr [Faili,j] ≤ 1/ϑ and in particular Pr [Fail] ≤ nm/ϑ.

Given these claims we show a relation between the advantage of A and B.
Indeed, with ϑ = mn · λc, Fail occurs with probability smaller than λ−c. Thus,
given z ∼ U(Yn,m)

Adv(B) = Pr
[
Expenc−bias

0,n,m (B) = 1
]
− Pr [p(z) = 1]

≥ Pr [¬Fail] · Pr
[
Expenc−bias

0,n,m (B) = 1
∣∣∣¬Fail]− Pr [p(z) = 1]

≥
(
1− 1

λc

)
· Pr

[
Expbias0,n,m(A) = 1

]
− Pr [p(z) = 1]

≥
(
1− 1

λc

)
·
(
Pr

[
Expbias0,n,m(A) = 1

]
− Pr [p(z) = 1]

)
− 1

λc

=

(
1− 1

λc

)
· Adv(A)− 1

λc

≥ 1

2
· Adv(A)− 1

λc

where the second inequality follows from Claim 8, Claim 7 and the monotonic-
ity of p, while the forth is asymptotically true. We then conclude that, as we
assumed the intermediate game to be hard, there exists a negligible function
εc(λ) bounding the advantage of B. For sufficiently large λ, εc(λ) ≤ λ−c, which
asymptotically implies

Adv(A) ≤ 4 · λ−c

concluding the proof.

Proof of G0
ℓ ≈ G1

ℓ . For any distinguisher D with preprocessing PPTDL we provide
an adversary R1 in the same class breaking DLPrep-DDH.

The reduction begin executing D and using its preprocessing DL oracle to
answer DL queries from D. Once the preprocessing phase ends, let H,U, V be
the input DDH tuple, so that H = [α], U = [β] and V is either [αβ] or V = [γ]
Next R1 waits for D to return vk1, . . . vkm. Then it samples x1, . . . xj−1, xj+1, xm

from F5
q and computes

– If j < ℓ: vi,j ←$ HybEncode3(xj , vki)

– If j > ℓ: vi,j ← Encode(xi, vki)

Finally, to compute vi,ℓ it samples r, s, k ←$ Fq and sets

vi,ℓ ← (r, s, fk(vki), H, U, V + [k]) .

Finally, waits for D to output a bit and returns the same bit.
By construction, R1 correctly simulates the initial DL queries, an the encod-

ing vi,j with j ̸= ℓ. Finally, if receives as input a DDH tuple [α], [β], [αβ], then
vi,ℓ is computed as

vi,ℓ = (r, s, fk(vki), repr([α]), repr([β]), repr([αβ + k]))

that is, as defined in G0
ℓ . Conversely, if R1 receives a random tuple [α] , [β] , [γ],

then
vi,ℓ = (r, s, fk(vki), [α] , [β] , [γ + k]).

Since γ ∼ U(Fq) and k is the same for all i ∈ [n], this distribution is identical
to the one in G1

ℓ , observed through the map γ 7→ γ + k. In conclusion Adv(D) =
Adv(R1) which is negligible assuming DLPrep-DDH.

Proof of G1
ℓ ≈ G2

ℓ . As in the previous proof, given a distinguisher D with
preprocessing in PPTDL, we define a reduction R2 in the same computational
class to DLPrep-DDH.
R2 begins by running D and answering DL queries with its DL oracle in the

preprocessing phase. As the end of the preprocessing phase it gets H,U, V either
a DDH tuple or a random one. R2 continues by running D to get vk1, . . . , vkm.
In order to computes the inputs encoding vi,j it samples x1, . . . , xm ←$ X
(although xℓ will not be used) and sets

– If j < ℓ: vi,j ← HybEncode3(xj , vki) for all i ∈ [n].
– If j > ℓ: vi,j ← Encode(xj , vki) for all i ∈ [n].

Finally, it samples r, s, k and sets for all i ∈ [n]

vi,ℓ ← (r, s, fk(vki), H, U, V) .

Eventually, when D outputs a bit, R2 does the same.
As observed in the previous proof, vi,j with j ̸= ℓ follows the right distribu-

tion. We thus only focus on vi,ℓ. If R2 receives a DDH tuple, then (H,V, U) =
([α] , [β] , [αβ]) meaning that

vi,ℓ = (r, s, fk(vki), [α] , [β] , [αβ])

which is as defined in G2
ℓ . Conversely, if H,U, V there exists γ ∼ U(Fq) and

independent from r, s, k, α, β, which H = [α] and U = [β] such that V = [γ]. In
particular it is immediate to observe that vi,ℓ are computed as prescribed in G1

ℓ .
Therefore Adv(D) ≤ Adv(R2) which is negligible assuming DLPrep-DDH to be
hard.

Proof of G2
ℓ ≈ G3

ℓ . Given a distinguisher D with PPTDL preprocessing we provide
a reduction R3 in the same computational class to the pseudorandomness of the
PRF f .

Initially R3 runs D forwarding DL queries to its own DL oracle during the
preprocessing phase. Once the preprocessing is over, it receives access to Oprf to
evaluate the PRF, and runsD to get vk1, . . . , vkn. Next, it samples x1, . . . , xm ←$

X (although xℓ will not be used) and computes vi,j as

– If j < ℓ: vi,j ←$ HybEncode3(xj , vki) for all i ∈ [n].

– If j > ℓ: vi,j ← Encode(xi, vki) for all i ∈ [n].

Finally, to compute vi,ℓ it samples r, s, α, β from Fq and sets

vi,ℓ ≥
(
r, s,Oprf(vki), [α] , [β] , [αβ] .

)
Eventually, when D returns a bit, it outputs the same bit.

As previously we only focus on the distribution of vi,ℓ in the two experiments.
When R3 interact with a real PRF, let k be the uniformly random key used.
Then Oprf(vki) = fk(vki), meaning that vi,ℓ is computed as in G2

ℓ . Conversely,
if R3 has oracle access to a real random function, since by construction all keys
returned by D must be different, the values si = Oprf(vki) are all uniformly
distributed and independent. Thus vi,ℓ for i ∈ [n] are computed as prescribed
in G3

ℓ . We thus conclude that Adv(D) = Adv(R3) that is negligible if the PRF is
secure against PPTDL adversaries.

G3
m is hard unconditionally. We finally show that given an adversary B with

PPTDL preprocessing for G3
m we can describe an unbounded C for the unbiasabil-

ity on independent points of the inner VRF.
Initially C executes B and replies to its discrete logarithm queries by actually

computing it. Once the preprocessing phase is over, it waits for B to output
its list of verification keys vk1, . . . , vkn and predicate. It then parse each key as
vki = (vk∗i , [ai]), compute ai and sends to its challenger vk∗1, . . . , vk

∗
n, which are

keys for the inner VRF, along with p. When the challenger replies with (zi,j , wi,j)
group elements it computes in exponential time their discrete logarithm ζi,j , ωi,j ,
i.e. such that zi,j = [ζi,j] and wi,j = [ωi,j]. At this point C computes vi,j such
that

[
a⊤i vi,j

]
= zi,j and

[
e⊤vi,j

]
= wi,j (we later explain how). Given these

vectors, it sends them to B which eventually replies with (yi,j , πi,j). C then
returns these values and proofs (yi,j , πi,j) and halts.

Assuming vi,j were correctly sampled, C simulates perfectly G3
m. Moreover,

yi,j , πi,j is accepted only if VRF∗.Eval(vk∗i , (zi,j , wi,j), yi,j , πi,j)→ 1. Calling then
ỹ the filtered output of B in G3

m and ŷ the filtered output of C in Expip−bias
b,n,m ,

then according to the partial order introduced in Definition 7, ỹ ≤ ŷ. Thus by
monotonicity of p

Pr [p(ỹ) = 1] ≤ Pr [p(ŷ) = 1] ⇒ Adv(B) ≤ Adv(C).

Finally we have to show how the vectors vi,j are computed. Unfortunately we
cannot find these preimages as in previous proofs using the first two component
of vi,j as these have to be equal for all i ∈ [n]. Instead we use the fact that third
and fourth components t ∈ F2

q are uniformly random and independent in each
vector. To see how we call vi,j = (ri, si, ti,j ,ui). The equation that needs to be
satisfied is(

ζi,j
ωi,j

)
=

(
ai,1 ai,2
1 0

)
·
(
rj
sj

)
+

(
ai,3 ai,4
1 0

)
· ti,j +

(
ai,5 . . . ai,4+4η

0 . . . 0

)
· uj .

If vki satisfies ai,4 ̸= 0 (if it does not, no proof would be accepted for vki),
the second square matrix is invertible and in particular there always exists one
ti,j satisfying the above, given rj , sj ,uj sampled according to G3

m. Moreover, as
ζi,j , ωi,j ∼ U(F2

q) then also ti,j ∼ U(F2
q).

Proof of Claim 5. By definition of r, s as per line 14 and by the definition of
encoding v∗ = (r, s,u) we have that

r = e⊤vi,j − u1 ⇒ e⊤v∗ = r + u1 = e⊤vi,j

s = a−1
i,2

(
a⊤i vi,j − ai,1r − ā⊤i u

)
⇒ a⊤i v

∗ = ai,1r + ai,2s+ ā⊤i u = a⊤i vi,j .

where the second equality follows as e = e1+e3, and in particular e⊤3 v∗ returns
the first entry of u. Regarding the distribution of xj instead, observe that k, α, β
already follows the right distribution. Moreover e⊤1 vi,j is the first component of
x̃j , the input used to compute vi,j . Thus this value is uniform and independent
from k, α, β and so is r. Finally, as ai,2 ̸= 0 (or else the loop starting at line 8 is
never executed), we have that a⊤i vi,j is uniformly random even conditioning on
r = r0, as this inner product is the sum of ai,2s̃ and another term independent
of s̃, with s̃ being the second component of x̃. Thus, conditioning on r, k, α, β,
the variable s is still uniform over Fq, as a−1

i,2 · a⊤i vi,j is.

Proof of Claim 6. By Claim 5, zi,j , wi,j are respectively equal to
[
a⊤i v

∗] and[
e⊤v∗] with v∗ the encoding of xj . Thus, if VRF.Vfy(vki, xj , yi,j , πi,j) = 1, then

this implies that the check in line 17 passes. Conversely if the check passes, as the
inner loop is executed only if ai,2 ̸= 0, then also VRF.Vfy(vki, xj , yi,j , πi,j) = 1.

Proof of Claim 7. If T [i, j] =⊥, then ¬Fail implies that A executed with input
x̃1, . . . , x̃m does not return a valid proof for ỹi,j . Thus ỹi,j = ⊥ ≤ ti,j regardless
of the value of ti,j . Conversely, if T [i, j] = (ti,j , πi,j), this is the output of the
inner VRF on input (zi,j , wi,j) by construction. Since Encode(x̃j , vki) = vi,j by
the way we defined zi,j , wi,j , we have that ti,j is the unique output of the outer
VRF. Thus either ỹi,j =⊥, which implies ỹi,j ≤ ti,j , or ỹi,j = ti,j , which again
yields ỹi,j ≤ ti,j .

Proof of Claim 8. Let P be the probability that on random inputs x1, . . . , xm,
with xj being such that

v∗ := Encode(xj , vki) ⇒ zi,j =
[
a⊤i v

∗] , wi,j =
[
e⊤v∗] .

then A returns a valid proof for yi,j . Then Faili,j occurs if and only ϑ repetitions
of this experiment fails, and only the last one succeeds. As, given the above
conditions, all executions are statistically independent, we have that Pr [Faili,j] =
(1−P)ϑP . For 0 ≤ P ≤ 1 the right hand side has maximum in 1/(1+ϑ), which
implies that

Pr [Faili,j] ≤ (1− P)ϑP ≤
(
1− 1

ϑ+ 1

)ϑ

· 1

ϑ+ 1
≤ 1

ϑ+ 1
≤ 1

ϑ

where the third inequality follows as the first factor is smaller than 1.

	Introduction
	Preliminaries
	Notation
	Preprocessing Adversaries
	Discrete Logarithm Problem and DDH
	Pseudo Random Functions
	Verifiable Random Functions

	Unbiasability
	Definition
	Properties

	Unbiasable VRF in the ROM
	From any VUF
	From weakly unbiasable VUF

	Constructions in the Standard Model
	1st Preliminary Construction: Padded VRF
	Verifiable Random Bijection
	2nd Preliminary Construction: 2-Feistel Rounds
	VRB Compiler
	Unbiasable VRF Compiler

	Conclusions
	Examples
	Separating weak unbiasability from unbiasability
	When weak unbiasability implies unbiasability

	Postponed Proof
	VRF from special VUF in the ROM
	Padded VRF Construction
	Unbiasability of VRB
	2-Feistel Rounds Construction
	VRB Compiler
	Unbiasable VRF Compiler

