
Parameter-Hiding Order-Revealing Encryption
without Pairings

Cong Peng1[0000−0002−9958−3255], Rongmao Chen2B[0000−0002−5113−387X],
Yi Wang2[0000−0002−7456−2677], Debiao He1B[0000−0002−2446−7436], and

Xinyi Huang3[0000−0003−0070−1707]

1 Key Laboratory of Aerospace Information Security and Trusted Computing,
Ministry of Education, School of Cyber Science and Engineering, Wuhan University,

Wuhan, China
cpeng@whu.edu.cn, hedebiao@163.com

2 School of Computer, National University of Defense Technology, Changsha, China
{chromao, wangyi14}@nudt.edu.cn

3 The Hong Kong University of Science and Technology (Guangzhou), Guangzhou,
China

xinyi@ust.hk

Abstract. Order-Revealing Encryption (ORE) provides a practical so-
lution for conducting range queries over encrypted data. Achieving a de-
sirable privacy-efficiency tradeoff in designing ORE schemes has posed a
significant challenge. At Asiacrypt 2018, Cash et al. proposed Parameter-
hiding ORE (pORE), which specifically targets scenarios where the data
distribution shape is known, but the underlying parameters (such as
mean and variance) need to be protected. However, existing pORE con-
structions rely on impractical bilinear maps, limiting their real-world ap-
plicability. In this work, we propose an alternative and efficient method
for constructing pORE using identification schemes. By leveraging the
map-invariance property of identification schemes, we eliminate the need
for pairing computations during ciphertext comparison. Specifically, we
instantiate our framework with the pairing-free Schnorr identification
scheme and demonstrate that our proposed pORE scheme reduces ci-
phertext size by approximately 31.25% and improves encryption and
comparison efficiency by over two times compared to the current state-
of-the-art pORE construction. Our work provides a more efficient alter-
native to existing pORE constructions and could be viewed as a step
towards making pORE a viable choice for practical applications.

Keywords: Order-revealing encryption · Property-preserving hash · Iden-
tification scheme · Range query

1 Introduction

In recent years, there has been a growing interest in developing cryptographic
tools that offer both security and efficiency in supporting computations on en-
crypted data. This is particularly relevant in light of the increasing need for

2 C. Peng et al.

encrypted databases. Order-Revealing Encryption (ORE) [6, 8] is a special en-
cryption scheme 4 where the ciphertexts reveal the order of the underlying plain-
texts. This feature is highly valuable in practice as it allows clients to delegate
range queries on encrypted data to (potentially) untrusted servers while ensuring
data privacy and confidentiality. In fact, ORE has been utilized in proposals of
specific outsourced database systems, including CryptDB [35], Cipherbase [2],
and TrustedDB [3]. The practical applications of ORE extend beyond databases
and into various other areas, including secure computation, privacy-preserving
machine learning, and more. As such, ORE has become an increasingly impor-
tant tool and has spurred further research.

In an ORE scheme, the order of plaintext is revealed via a comparison al-
gorithm, denoted by Cmp. Specifically, for two ciphertexts ci and cj (w.r.t. the
messages mi and mj), the comparison result Cmp(ci, cj) equals to the predicate
function O(mi,mj) defined as:

O(mi,mj) =


1, if mi > mj

−1, if mi < mj

0, otherwise.
(1)

On the Leakage of ORE. Ideally, the "best-possible" security for ORE should
reveal nothing about the plaintext but only their order. Such ideal leakage profile,
denoted by L0, is defined as follows,

L0(m1, · · · ,mq) := (∀1 ≤ i, j ≤ q,1(mi < mj)). (2)

To show such an ideal ORE is achievable in principle, Boneh et al. [8] pro-
posed a construction based on multilinear maps. Unfortunately, current mul-
tilinear maps are quite inefficient, and thus such ORE is too impractical for
real-world application. Hence, since then there have been various efforts to relax
the security requirements of ORE to develop efficient schemes. Below we will
introduce several notable constructions that are closely related to our work.

Chenette et al. [12] proposed a much more efficient ORE (CLWW ORE) but
with more information leakage than ideal ones. Precisely, in their construction,
the most significant differing bit msdb(mi,mj) of plaintexts would be addition-
ally revealed. Their leakage profile, called CLWW leakage, is defined as

L2(m1, · · · ,mq) := (∀1 ≤ i, j ≤ q,1(mi < mj),msdb(mi,mj)). (3)

More details about the CLWW ORE will be provided in Section 1.2. Lewi and
Wu [30] presented an improved version of the above CLWW ORE which leaks
strictly less. They constructed a practical, small-domain ORE scheme with best-
possible security and extended it to large-domain ORE by block-wise encryption,
which leaks the position of the first different block, and thus allows a practitioner
to set performance-security tradeoff by tuning the block size.

Unfortunately, a series of work [9, 14, 19, 32] have demonstrated that even
hypothetical ideal ORE schemes are insecure for various use cases. This holds
4 It was called efficiently-orderable encryption in [6].

Parameter-Hiding Order-Revealing Encryption without Pairings 3

true even when the scheme only reveals the order of the plaintexts and nothing
more. The inherent issue lies in the fact that the mere knowledge of the order of
plaintexts can disclose a significant amount of information about the underlying
data. For instance, in cases where the data is uniformly selected from the entire
domain, even an ideal ORE scheme will inadvertently leak the most significant
bits. In fact, the aforementioned attacks reveal that when the adversary pos-
sesses a strong estimate of the prior distribution from which the data is drawn,
achieving meaningful security is impossible.
Parameter-Hiding ORE. Given the aforementioned attacks against ORE,
Cash et al. [10] turned to consider specific scenarios (more details are referred
to Appendix A) where the adversary lacks a strong estimate of the prior distri-
bution of the data. For such a case, Cash et al. proposed a new notion, called
parameter-hiding ORE (pORE), aiming at protecting some information about
the underlying data distribution. In particular, Cash et al. [10] mainly consider a
ORE scheme with so-called smoothed CLWW leakage which is defined as follows:

L1(m1, · · · ,mq) :=(∀1 ≤ i, j, k ≤ q,1(mi < mj),

1(msdb(mi,mj) = msdb(mi,mk))),
(4)

and show how to convert it into parameter-hiding ORE by composing with a
linear function: for any plaintext m, it is computed as αm + β before being
encrypted, where α, β are the same across all plaintexts and are sampled as part
of the secret key.

Cash et al. [10] proposed a pORE construction using a new primitive called
Property-Preserving Hash (PPH). PPH enables the comparison key holder to
detect whether the preimage of two hash values satisfies a given predicate P,
such as P(x, y) = 1 if x = y + 1. A concrete pairing-based instance of PPH
was proposed by Cash et al. [10] to construct the pORE scheme. In particular,
Cash et al.’s ORE scheme requires O(4n2) pairings for each comparison between
n bits message. To reduce the computational overhead, Cash et al. fixed the
random permutation to achieve O(n) comparison overhead, but with a slightly
more leakage L′

1 (still smoothed CLWW leakage):

L′
1(m1, · · · ,mq) :=(∀1 ≤ i, j, k, l ≤ q,1(mi < mj),

1(msdb(mi,mj) = msdb(mk,ml))).
(5)

Compared to L1, L′
1 reveals extra information, i.e. whether msdb(mi,mj)

equals to msdb(mk,ml)) even when i ̸= k. For example, two sets {0, 4, 5, 10, 11}
and {1, 2, 3, 5, 6} are distinguishable with L′

1 leakage since msdb(4, 5) = msdb(10, 11)
and msdb(2, 3) ̸= msdb(5, 6). But, two sets {0, 4, 5, 10, 11} and {1, 2, 3, 4, 5} are
also indistinguishable with L1 leakage.
Motivating Question. As highlighted by Bogatov et al. [4], Cash et al.’s ORE
scheme suffers from two limitations that render it impractical. One of these
limitations is the use of bilinear maps, which incurs significant computational
costs—orders of magnitude higher than other efficient ORE schemes. Motivated
by this observation and the specific leakage properties of pORE, our objective is
to explore the feasibility of enhancing the efficiency of Cash et al.’s construction

4 C. Peng et al.

while preserving the same level of leakage. Specifically, we aim to address the
following question:

Is it possible to design a parameter-hiding order-revealing encryption scheme
without pairings?

1.1 Our Contributions

In this work, we provide an affirmative answer to the above question by designing
a new pairing-free PPH scheme to improve the efficiency of the state-of-the-art
pORE construction [10].

Our main contributions can be summarized as follows.

– We formally define a special type of identification schemes which is of addi-
tional property called map-invariance, due to which we manage to design a
generic construction of PPH schemes. We then formally prove that our PPH
construction is restricted-chosen-input secure with respect to the predicate
P where P(x, y) = ±1 if and only if x = y ± 1.

– We then provide a generic construction of ORE with smoothed CLWW leak-
age L1 from identification protocols, and prove that the proposed scheme
is L1-non-adaptive-simulation secure with respect to the predicate O(x, y),
which is defined as O(x, y) = ±1 if and only if x > y or x < y. Instanced with
Schnorr identification, we presented an ORE scheme, which can be converted
to parameter-hiding ORE via Cash et al.’s framework [10].

– We implement our instanced ORE schemes and perform a comprehensive
comparison with existing construction (see Table 1). The results demon-
strate that our scheme outperforms the current parameter-hiding ORE [10]
at the same security level, in which the ciphertext length reduced more than
31.25%, the encryption efficiency increased by nearly 2.6 times and the com-
parison efficiency increased by more than 3 times.

As also mentioned by Lewi and Wu [30], the leakage inherent in any ORE
scheme renders the primitive not always suitable for applications requiring a
high level of security. Nevertheless, since it is up to a practitioner to trade off
security and performance constraints, we hope our more efficient realization of
the pORE scheme could help practitioners make well-informed decisions regard-
ing its suitability for specific applications, especially when the data distribution
shape is public, but the underlying parameters (such as mean and variance) need
to be protected.

1.2 Technique Overview

First, we provide an overview of our design idea for PPH. To better illustrate
how our idea works, we start with recalling Chenette et al.’s construction [12],
followed by Cash et al.’s scheme to explain how PPH could be used to reduce the
leakage. Thereafter, we illustrate our design idea of pairing-free PPH schemes.

Parameter-Hiding Order-Revealing Encryption without Pairings 5

ORE Scheme Ciphertext size Encryption cost Comparison Cost Leakage

Cash et al.’s ORE [10] 2n|G1| + 2n|G2| 2nPM1 + 2nPM2 + 3nPRF 4n2BP L1

Cash et al.’s ORE∗ [10] 2n|G1| + 2n|G2| 2nPM1 + 2nPM2 + 3nPRF 4nBP L′
1

Our Sch-ORE 4n|G1| + 3n|Zp| 6nPM1 + 5nPRF 8n2PM1 + 2nPRF L1

Our Sch-ORE∗ 4n|G1| + 3n|Zp| 6nPM1 + 5nPRF 8nPM1 + 2nPRF L′
1

Table 1. Comparison with existing ORE schemes with smoothed CLWW leakage. λ
is the security parameter, n is the bit-length of the plaintext; |G1| and |G2| is the
size of elements in groups G1 and G2, respectively; PM1, PM2 and BP is the group
exponentiation in G1 and G2 and the bilinear pairing operation, respectively; PRF is
the pseudorandom function operation. ORE∗ refers to the ORE scheme with fixed
permutation.

CLWW ORE [12]. In CLWW ORE scheme [12], the encryption process in-
volves splitting a n-bits plaintext m into n values by concatenating each bit of m
with all more significant bits, and the resulting value is then processed through
a keyed pseudorandom function F with the secret key k. The output of the PRF
is numerically added to the next less significant bit. More precisely, the resulting
ciphertext c consists of {u1, · · · , un}:

ui = E(k,m, i) = F (k, i||m[:i−1]||0n−i+1) +m[i] mod M,∀ i ∈ [n]

where m[i] denotes the i-th bit of m, m[:i] denotes the first i-bits of m and 0i de-
notes the i-length zero bit-string 5. To compare two ciphertexts, the comparator
needs to find the smallest index i at which the two sequences occur different val-
ues. Denote the ciphertext w.r.t. m′ as c′ = {u′

1, · · · , u′
n}. Then, the comparator

judges m > m′ if ui = u′
i + 1 mod M (or m < m′ if ui = u′

i − 1 mod M). If
not found, it means m = m′. Obviously, the first index i for which ui = u′

i ± 1
leaks the information msdb(m,m′).
Reducing CLWW ORE Leakage via PPH. The scheme by Cash et al.
[10] improves the leakage of the above CLWW ORE. Their scheme builds upon
the CLWW construction, but incorporates a permutation step for the list of
PRF outputs, as finding a pair that differs by one is sufficient. However, solely
permuting the outputs is not adequate for reducing leakage, as an adversary can
still deduce the number of common elements between two ciphertexts.

To the end, Cash et al. [10] introduced a new primitive, called property-
preserving hash (PPH) to “hash" the elements of the CLWW ORE ciphertexts
before outputting them. The most essential property of PPH is the randomized
output which means that the same element hashed twice will result in different
hashes, due to which the adversary is unable to determine the number of common
elements between two ciphertexts, thereby preventing the identification of the
location of the differing bit.
5 In Chenette et al.’s work, they took M to be the minimum value, i.e. M = 3, making

the ciphertext size only ⌈n · log2 3⌉ bits.

6 C. Peng et al.

Pairing-Based PPH [10]. The main difficulty of constructing PPH lies in the fact
that how to randomize the hash output while still preserve the main property
of the input. In [10], Cash et al. proposed a concrete construction of PPH based
on bilinear pairings. Precisely, for each input ui, the hash output consists of the
following elements (

gr01 , g
r0·H(s,ui)
1 , gr12 , g

r1·H(s,ui+1)
2

)
where e : G1 × G2 → GT is a bilinear pairing, g1 ∈ G1 and g2 ∈ G2 are
the generators of the prime order q. One could note that due to two freshly
chosen randomness r0, r1 ∈ Z∗

q , both ui and ui + 1 are hidden in the uniformly
distributed hash outputs. As shown in Figure 1, for another input u′

j which has
the hash output: (

g
r′0
1 , g

r′0·H(s,u′
j)

1 , g
r′1
2 , g

r′1·H(s,u′
j+1)

2

)
,

the comparison algorithm computes

e
(
g
r0·H(s,ui)
1 , g

r′1
2

)
?
= e

(
gr01 , g

r′1·H(s,u′
j+1)

2

)
to test whether ui = u′

j + 1. A similar computation could be performed to test
whether ui = u′

j − 1 or not.
Our Efficient PPH from Schnorr Identification. In this work, we provide
a new approach to construct PPH. In the following description, we consider the
predicate P defined as follows:

P(x, y) =


1, if x = y + 1

−1, if x = y − 1

0, otherwise.
(6)

For a more intuitive understanding, here we illustrate our main idea by introduc-
ing the concrete PPH based on Schnorr identification. Figure 1 depicts our core
idea via a rough comparison with Cash et al.’s pairing-based PPH construction.
Schnorr Identification. The Schnorr scheme is simply described as: Given an
cyclic group G = ⟨g⟩ of the prime order p, the secret key is sk := x ←$ Z∗

p and
the public key is pk := (g, y = gx) ∈ G2. The prover generates the commitment
cmt := w = gr0 with a random integer r0 ∈ Z∗

p and the response rsp := z =
r0 − ξ · x where ξ ∈ Z∗

p is the verifier’s challenge. The verifier checks whether
w = gz · yξ holds to decide acceptance or rejection.
A New PPH without Pairings. In our PPH, the encryptor (who computes PPH
in the underlying ORE) generates two key-pairs (x0, y0 := gx0) and (x1, y1 :=
gx1), hides ui into the identification response z0 := H(s, ui) · r0 − x0 · ξ and
z1 := H(s, ui+1)·r1−x1 ·ξ with the same challenge ξ ←$ Z∗

p and two randomness
r0, r1 ←$ Z∗

p respectively. Then, the encryptor computes the output of the PPH:

hi := {gr1 , yr10 , z0, ξ, g
r0 , yr01 , z1},w.r.t. ui. (7)

Parameter-Hiding Order-Revealing Encryption without Pairings 7

whether

whether

a bilinear pairing operation

Cash et al.'s Pairing-Based PPH

defined as

Our Pairing-Free PPH

Fig. 1. Visual description of two PPHs.

For comparison with h′
j := {gr′1 , yr

′
1

0 , z′0, ξ
′, gr

′
0 , y

r′0
1 , z′1} w.r.t. u′

j , one can
utilize the commitment recovery algorithm to check the predicate P(ui, u

′
j) as

follows:
(gr

′
1)z0 · (yr

′
1

0)ξ
?
= (gr0)z

′
1 · (yr01)ξ

′
,

to test whether ui = u′
j + 1, equivalent to check gr0·r

′
1·H(s,ui) ?

= gr0·r
′
1·H(s,u′

j+1).
A similar computation could be performed to test whether ui = u′

j − 1 or not.
In fact, the value ui is hidden in two responses z0 and z1 with independent

random integers r0 and r1. Based on the security of Schnorr identification, it is
known that r0, r1, x0, x1 would not be revealed. Thus, the security of PPH holds.
Based on the binding property of commitments, one could determine that two
equal commitment values are related to the same message.
Generalization from Specific Identifications. Inspired by the above concrete PPH
construction, we formalize a new property named map-invariance for identi-
fication protocols, and show how to generically construct PPH from specific
identification with map-invariance. Thereafter, we show that our generic PPH
construction achieves restricted-chosen-input security which is crucial for ORE
schemes with smoothed CLWW leakage that could be extended to parameter-
hiding ORE schemes with Cash et al.’s approach [10, Section 4].

1.3 Related Work

In this section, we survey some literature on order-revealing and order-preserving
encryption, as well as the existing work on secure range query protocols.
Order-Preserving Encryption. Prior to ORE, Agrawal et al. [1] first in-
troduced the notion of order-preserving encryption (OPE), which can encrypt
numeric data and order ciphertexts with the numerical comparison operator.

8 C. Peng et al.

Subsequently, Boldyreva et al. [5] formalized the ideal security definition for
OPE, which states that ciphertexts should only reveal the order of plaintexts
without any other information leakages, similar to the ideal security definition
for ORE. However, Boldyreva et al. [5] showed that this "best-possible" security
cannot be achieved in stateless and immutable OPE schemes. They also showed
that any OPE scheme with ideal security will make the ciphertext length grow
exponentially with the plaintext length. Since then, a number of OPE schemes
have been proposed such as [6,23,24,34,36]. To achieve the ideal security, Popa et
al. [34] proposed a mutable OPE scheme that constructs a stateful binary tree on
plaintexts and an interactive protocol for path-based ciphertext updates. Unfor-
tunately, due to the constraint on the ciphertext space, most OPE constructions
are vulnerable to various inference attacks, as demonstrated by Naveed et al. [32],
where attackers can recover partial bits of plaintexts.
Secure Range Query Protocols. From OPE/ORE schemes, the general idea
is to modify all comparison operators to the ORE comparison algorithm in some
data structures optimized for range queries, e.g., the B+ tree working on top
of an ORE scheme [4]. In ORE/OPE-based applications, one mostly considers
the snapshot attacker [19,32], who can observe all the database contents at one
time instant. This makes designers more inclined to focus on leakage from fixed
datasets and minimize the information available to adversaries through recon-
struction. Undisputedly, leakage from adaptive queries can lead to additional pri-
vacy issues for clients and servers. In this scenario, the adversarial model mainly
discusses leakage-abuse attacks based on different datasets, such as those based
on access-pattern leakage [18, 22, 29], search-pattern leakage [27, 31], volumetric
leakage [17, 22]. Approaches that help protect against such an attacker include
searchable symmetric encryption (SSE) [13, 15], Oblivious RAM [11], response-
hiding constructions [21, 28]. These schemes are more secure than OPE/ORE
schemes, although they still leak some information, and in general, are more
expensive to compute. As shown in Bogatov et al.’s comparative evaluation [4]
of ORE and other secure range-query protocols, the ORE-based approach is
provably I/O optimal and can potentially be extended by using another data
structure with ORE.

2 Preliminaries

Let λ ∈ N be the security parameter and write negl(λ) to denote a negligible
function w.r.t. λ and poly(λ) to denote a polynomial function w.r.t. λ. Let [n]
denote the set of integers {1, 2, · · · , n} for n ∈ N. For a bit string b = b1b2 · · · bn,
let b[:i] = b1b2 · · · bi denote the first i bits of b in the bit string representing and
0i denote a i-length zero string in the bit string representing. For two bit strings
b and b′, we write msdb(b, b′) to denote the most significant different bit of them.
For a given set U , we let u←$ U denote the uniform sampling from U . For any
bit strings x, y ∈ {0, 1}∗, we write x||y to denote the concatenation of x and y.
If P is a predicate on x, 1(P(x)) means the indicator function for P, that is
1(P(x)) = 1 if and only if P(x) = 1.

Parameter-Hiding Order-Revealing Encryption without Pairings 9

2.1 Keyed Hash Function

Let F : K×X → Y be a keyed hash function family [20]. Here K is the key space
of F , X is the domain of F and Y is the range of F .

Definition 1 (Collision Resistance). Given a fixed security parameter λ, a
keyed hash function family F : K×X → Y is collision resistant if for any efficient
adversary A, its advantage

AdvCOL
F,A(λ) := Pr [(x, x′)← A : F (k, x) = F (k, x′) ∧ x ̸= x′]

is negligible.

Definition 2 (Pseudorandom [16]). Given a fixed security parameter λ, a
keyed hash function family F : K × X → Y is pseudorandom if for any efficient
adversary A, its advantage

AdvPRFF,A(λ) :=
∣∣Pr [k ←$ K : AF (k,·)(λ) = 1

]
−

Pr
[
f ←$ Funs(X ,Y) : Af(·)(λ) = 1

]∣∣
is negligible, where Funs(X ,Y) is the set of all functions from X to Y.

Definition 3 (Entropy Smoothing). Given a fixed security parameter λ, a
keyed hash function family F : K × X → Y is entropy smoothing if for any
efficient adversary A, its advantage

AdvESF,A(λ) := |Pr [k ←$ K, δ ←$ X : A(λ, k, F (k, δ)) = 1]−
Pr [k ←$ K, h←$ Y : A(λ, k, h) = 1]|

is negligible.

2.2 Property-Preserving Hash

In this section, we recall the syntax and security of a basic tool, called Property-
Preserving Hash (PPH) [10], which is essentially the simplified variant of property-
preserving encryption schemes [33]. In the PPH scheme, a hash key hk is a nec-
essary input to calculate the hash value. The difference is that a test key tk can
be used to determine whether two different hash values {h, h′} with respect to
two distinct messages {x, y} satisfy an associated property P.

Definition 4 (Property-Preserving Hash). A property-preserving hash scheme
is a tuple of polynomial-time algorithms Γ = (PPH.KeyGen, PPH.Hash, PPH.Test)
defined as follows:

- (par,hk, tk)← PPH.KeyGen(1λ): The key generation algorithm is a random-
ized algorithm that takes as input a security parameter λ and outputs the
system parameters par, the hash key hk and the test key tk. These implic-
itly define the input domain DSet and the output range HSet of the hash
algorithm.

10 C. Peng et al.

- h← PPH.Hash(hk, u): The hash evaluation algorithm is a randomized algo-
rithm that takes as input a hash key hk and a message u ∈ DSet, and outputs
a hash value h ∈ HSet.

- b← PPH.Test(tk, h, h′): The hash test algorithm is a deterministic algorithm
that takes as input a test key tk and two hash values (h, h′) ∈ HSet2 and
outputs a bit b ∈ {0, 1}.

Correctness of PPH Schemes. For a predicate P, the PPH scheme Γ is
computationally correct if the following advantage

AdvCOR
Γ,P,A(λ) := Pr

Test(tk, h, h′)
̸= P(x, y)

∣∣∣∣∣∣∣
(par,hk, tk)← KeyGen(1λ),

x, y ← AHash(hk,·)(tk),
h← Hash(hk, x),
h′ ← Hash(hk, y),


is negligible for any efficient PPT adversary A which can query the Hash oracle
with any inputs in DSet.
Security of PPH Schemes. For a predicate P, the PPH scheme Γ is restricted-
chosen-input secure if the following advantage

AdvPPHΓ,P,A(λ) := 2 Pr

 b = b′

∣∣∣∣∣∣∣∣∣
(par,hk, tk)← KeyGen(1λ),
x∗ ← A(tk),
h0 ← Hash(hk, x∗),
h1 ←$ HSet, b←$ {0, 1},
b′ ← AHash(hk,·)(tk, x∗, hb),

− 1

is negligible for any efficient PPT adversary A which can query the Hash oracle
with restricted inputs x ∈ DSet satisfying P(x, x∗) = 0.

2.3 Parameter-Hiding ORE

In this part, we review the syntax and security of parameter-hiding ORE (pORE)
schemes formalized by Cash et al. [10].

Definition 5 (Parameter-Hiding ORE). For a predicate O defined over a
well-ordered domain D, a parameter-hiding ORE scheme is a tuple of polynomial-
time algorithms Π = (ORE.KGen, ORE.Enc, ORE.Cmp) defined as follows:

- (par,msk, ck)← ORE.KGen(1λ): The key generation algorithm is a random-
ized algorithm that takes as input a security parameter λ and outputs the
system parameters par, the master secret key msk and the comparison key
ck. We remark par is an implicit input of following algorithms.

- c← ORE.Enc(msk,m): The encryption algorithm is a randomized algorithm
that takes as input the master secret key msk and a message m ∈ D, and
outputs a ciphertext c.

- b ← ORE.Cmp(ck, c, c′): The comparison algorithm is a deterministic algo-
rithm that takes as input the comparison key ck and two ciphertexts c (w.r.t.
the plaintext m) and c′ (w.r.t. the plaintext m′), and outputs a flag b.

Parameter-Hiding Order-Revealing Encryption without Pairings 11

Correctness of ORE schemes. For a predicate O, the ORE scheme Π is
computationally correct if the following advantage

AdvCOR
Π,O,A(λ) := Pr

Cmp(ck, c, c′)

̸= O(m,m′)

∣∣∣∣∣∣
(par,msk, ck)← KGen(1λ)

c← Enc(msk,m)

c′ ← Enc(msk,m′)


is negligible for any efficient adversary A.
Security of ORE schemes. The ORE scheme is non-adaptive simulation-based
secure with the leakage function L(·), if there exists a polynomial-size simulator
S to construct a non-adaptive experiment SimORE

A,L,S(λ) which is computationally
indistinguishable from the real non-adaptive experiment RealORE

A (λ) for any PPT
adversary A. Experiments are described in Fig. 2.

RealORE
A (λ):

1: (par,msk, ck)← ORE.KGen(1λ);
2: (m1, · · · ,mq)← A;
3: for 1 ≤ i ≤ q do
4: ci ← ORE.Enc(msk,mi);
5: return (c1, · · · , cq);

SimORE
A,L,S(λ):

1: stS ← S(λ);
2: (m1, · · · ,mq)← A;
3: (c1, · · · , cq)← S(stS ,L(m1, · · · ,mq));
4: return (c1, · · · , cq);

Fig. 2. Experiments RealORE
A (λ) and SimORE

A,L,S(λ).

3 Identification Schemes With Map-Invariance

In this section, we recall the definition of canonical identification schemes de-
scribed in [26]. Then, we formalize a type of identification protocols with map-
invariance property and give an instance from Schnorr Identification.

3.1 Formal Definitions

Definition 6 (Canonical Identification Scheme). A canonical identifica-
tion scheme ID is defined as a tuple of algorithms ID := (Setup, IGen,P,V) with
system parameter space SP, public key space PK, commitment space W, ran-
domness space R, challenge space CH and response space Z.

12 C. Peng et al.

– par ← Setup(1λ): Taking security parameter λ as input, it outputs system
parameters par ∈ SP.

– (sk, pk) ← IGen(par): Taking system parameters par as input, it outputs a
secret and public key pair (sk, pk).

– The prover algorithm P = (Com,Rsp) consists of two algorithms:
• (cmt, st) ← Com(par, sk; rnd): Taking system parameters par and secret

key sk as inputs, it outputs commitment cmt ∈ W and state st. Here we
explicitly write the randomness rnd ∈ R in the input.

• rsp ← Rsp(par, sk, st, ch): Taking system parameters par, secret key sk,
state st and challenge ch ∈ CH as inputs, it outputs a response rsp.

– b ← V(par, pk, tr): Taking system parameters par, the public key pk and the
transcript tr = (cmt, ch, rsp) as inputs, and outputs a bit b ∈ {0, 1}. If the
verifier accepts, b = 1; Otherwise, b = 0.

The identification works as follows: The prover first publishes its public key
pk and sends a commitment cmt to the verifier. Then, the verifier randomly
chooses a challenge ch from the challenge space CH and sends it to the prover.
After receiving the challenge, the prover computes a response rsp and sends it to
the verifier. Finally, the verifier makes a decision (acceptance or rejection) based
on the public key and the conversation transcript.

Below, we discuss some properties of commitments in special identification
schemes, which are crucial to our efficient PPH constructions.

Definition 7 (Commitment-Independency). An identification scheme ID
is commitment-independent if for par← Setup(1λ), (sk, pk)← IGen(par), (cmt, st)
← Com(par, sk; rnd) and any rnd, rnd′ ∈ R, following conditions holds:

– the value of (cmt, st) is uniquely determined by system parameter par and
randomness rnd, and independent of the secret key sk and the public key pk;

– Com1(par, sk; rnd) = Com1(par, sk; rnd
′) if and only if rnd = rnd′, where al-

gorithm Com1 only returns the first element of the output of algorithm Com
(i.e., cmt).

Definition 8 (Commitment-Recoverability [25]). An identification scheme
ID is commitment-recoverable if for par ← Setup(1λ), (sk, pk) ← IGen(par), any
ch ∈ CH, and any rsp ∈ Z, there exists a unique commitment cmt ∈ W such
that V(par, pk, cmt, ch, rsp) = 1. And, the unique commitment cmt can be publicly
computed by a commitment recovery algorithm Rec, i.e.,

cmt = Rec(par, pk, ch, rsp).

Definition 9 (Commitment-Augmentability [7]). An identification scheme
ID is augmentable if for par ← Setup(1λ), (sk, pk) ← IGen(par) and (cmt, st) ←
Com(par, sk; rnd), there exists an append algorithm Apd that takes as input cmt
and randomness rnd′ ∈ R and outputs cmt′ satisfying

cmt′ ← Com1(par, sk; rnd · rnd′),

where · is the operation defined over R.

Parameter-Hiding Order-Revealing Encryption without Pairings 13

Definition 10 (Response-Indistinguishability). An identification scheme
ID is response-indistinguishable if for any PPT adversary A, the advantage of A
winning the game INDRSP

ID,A(λ), defined as AdvRSPID,A(λ) = 2Pr
[
INDRSP

ID,A(λ) = 1
]
−1,

is negligible.

Game INDRSP
ID,A(λ) :

1: par← Setup(1λ); (sk, pk)← IGen(par); rnd←$ R;
2: (cmt, st)← Com(par, sk; rnd); ch←$ CH;
3: rsp0 ← Rsp(par, sk, st, ch); rsp1 ←$ Z;
4: b←$ {0, 1}; b′ ← A(par, sk, ch, rspb)
5: return b

?
= b′

Fig. 3. Game INDRSP
ID,A(λ) for indistinguishability on response.

If the commitment-independency property holds, the commit algorithm can
be denoted as (cmt, st)← Com(par; rnd). If the commitment-recoverability prop-
erty holds, the verifier algorithm V checks whether cmt equals to Rec(par, pk, ch, rsp).

We now define a new property, called map-invariance, meaning that the verifi-
cation equation cmt = Rec(par, pk, ch, rsp) holds even after permuting the public
key and the commitment using the same randomness.

Definition 11 (Map-Invariance). An identification scheme ID is of map-
invariance if following conditions hold:

– The identification scheme ID is correct, commitment-independent, commitment-
recoverable, commitment-augmentable and response-indistinguishable.

– There exist two mapping algorithms ParMap that takes as input par and rnd′

and outputs rpar, and PkMap that takes as input pk and rnd′ and outputs
rpk, such that

Pr


Apd(cmt, rnd′) ̸= Rec(rpar, rpk, ch, rsp)

∣∣∣∣∣∣∣∣∣∣∣∣∣

par← Setup(1λ),
(sk, pk)← IGen(par),
rnd, rnd′ ←$ R, ch←$ CH,
(cmt, st)← Com(par; rnd),
rsp← Rsp(par, sk, st, ch),
rpar← ParMap(par, rnd′),
rpk← PkMap(pk, rnd′)


is negligible, and for par ← Setup(1λ), (sk, pk) ← IGen(par) and rnd′ ←$ R,
following two distributions are computationally indistinguishable.{

(par, pk, rpar0, rpk0)

∣∣∣∣ rpar0 ← ParMap(par, rnd′)
rpk0 ← PkMap(pk, rnd′)

}
,{

(par, pk, rpar1, rpk1)

∣∣∣∣ rpar1 ←$ SP
rpk1 ←$ PK

}
.

14 C. Peng et al.

3.2 An Instance from Schnorr Identification

Let G = ⟨g⟩ be a cyclic group with the generator g of the prime order p. For
the IGen execution, it randomly selects an integer sk := x←$ Z∗

p and computes
the public key pk := y = gx ∈ G. The prover generates a commitment cmt :=
w = gr ∈ G with a random integer rnd := r ←$ Z∗

p. Then, the verifier picks up a
random challenge ch := e←$ Zp. The prover computes the response rsp := z =
r − e · x mod p. The verifier checks whether w = gz · ye holds. The algorithms
Com,Rsp,Rec are defined as follows:

Schnorr Identification:
1: par := g ←$ G, sk := x←$ Z∗

p, pk := y = gx ∈ G;
2: (cmt, st) := (w = gr, r)← Com(par; rnd)
3: ch := e←$ Zp

4: rsp := z ← Rsp(par, sk, st, ch) = r − e · x mod p
5: cmt′ := w′ ← Rec(par, pk, ch, rsp) = gz · ye ∈ G

Theorem 1. The Schnorr identification is of map-invariance under the deci-
sional Diffie-Hellman (DDH) assumption.

Proof. One can note that the commitment w is independent of the secret key x
and gr = gr

′
if and only if r = r′ for any r, r′ ∈ Z∗

p. The commitment space is
the group G of prime order p and the challenge space is Zp. So, only one group
element can be recovered by Rec with the input instance (g, y, e, z) and equals
to the prover’s commitment w.

With a new randomness rnd′ := r′, the maps Apd, ParMap and PkMap are
defined as follows:

w′ := wr′ ← Apd(w, r′),

rpar = gr
′
← ParMap(g, r′),

rpk = yr
′
← PkMap(y, r′).

(8)

Obviously, the output of algorithm Apd can be derived from Com(par; rnd ·
rnd′). We claim that Apd(cmt, rnd′) = Rec(rpar, rpk, ch, rsp) holds with over-
whelming probability, as Apd(cmt, rnd′) = gr·r

′
and Rec(rpar, rpk, ch, rsp) =

gr
′·zyr

′·e = gr·r
′
.

Since r is uniformly distributed in Z∗
p, the response rsp0 := z0 = r − e · x is

also uniformly distributed in Z∗
p. While rsp1 := z1 ←$ Z∗

p is uniformly sampled
from Z∗

p, no adversary can distinguish z0 and z1 with non-negligible advantage.
Finally, if a PPT adversaryA can distinguish (par, pk, rpar0, rpk0) and (par, pk,

rpar1, rpk1) with the probability ϵ, we can build an adversary B to break the DDH
problem as follows: Let (g, ga, gb, Z) be a DDH instance, B simulates two tuples
as

par = g, pk = ga, rpar0 = gb·v0 , rpk0 = Zv0 , rpar1 = gb·v1 , rpk1 = h

where v0, v1 are randomly sampled from Z∗
p and h is randomly sampled from

G. If Z = gab, the simulation (rpar0, rpk0) is indistinguishable from (rpar1, rpk1),

Parameter-Hiding Order-Revealing Encryption without Pairings 15

and thus the adversary A has probability 1
2 + ϵ

2 of guessing the correct tuple. If
Z ̸= gab, the adversary only has probability 1

2 of guessing the correct tuple. So,
the advantage of solving the DDH problem is ϵ

2 .

4 PPH from Schnorr Identification

In this section, we show how to construct a PPH scheme from identification
schemes with map-invariance.

4.1 Generic PPH Construction

Let identification scheme ID := (Setup, IGen,Com,Rsp,Rec, Apd, ParMap,PkMap)
with system parameter space SP, public key space PK, commitment space W,
randomness space R, challenge space CH and response space Z. Below, we de-
scribe the generic PPH construction Γ = (PPH.KeyGen, PPH.Hash, PPH.Test).

– PPH.KeyGen(1λ): On input a security parameter λ, it generates parID ←
Setup(1λ) and two key pairs (ski, pki) (i ∈ {0, 1}) by the key generation al-
gorithm IGen(parID). Define two keyed hash functions Hr : {0, 1}λ×{0, 1}∗ →
R and Hc : {0, 1}λ × {0, 1}∗ → CH, satisfying collision resistance and
pseudorandom-function property. Then, it randomly chooses two keys s, κ←$

{0, 1}λ. Finally, it returns the system parameter as parPPH = (parID, Hr, Hc),
the hash key as hk = (s, κ, sk0, sk1, pk0, pk1) and the test key as tk = κ,
where parPPH is an implicit input of other algorithms.

– PPH.Hash(hk, u): On input the hash key hk, a message u, it computes the
values û0 ← Hr(s, u), û1 ← Hr(s, u+ 1) and samples randomness r0, r1 ←$

R. Then, it generates the commitments (cmti, sti) ← Com(parID; ûi · ri),
computes the challenge ch ← Hc(κ, û0||û1||cmt0||cmt1) and the responses
rspi ← Rsp(parID, ski, sti, ch) for i ∈ {0, 1}. 6 It computes

rpar0 ← ParMap(parID, r1), rpk0 ← PkMap(pk0, r1),

rpar1 ← ParMap(parID, r0), rpk1 ← PkMap(pk1, r0),

and encodes the challenge by ech = ch⊕Hc(κ, rsp0||rsp1). Finally, it outputs
the hash value h := {rpar0, rpar1, rpk0, rpk1, ech, rsp0, rsp1} ∈ SP2×PK2×
CH ×Z2.

– PPH.Test(tk, h, h′): On input the test key tk and two hash values

h = {rpar0, rpar1, rpk0, rpk1, ech, rsp0, rsp1},

h′ = {rpar′0, rpar′1, rpk
′
0, rpk

′
1, ech

′, rsp′0, rsp
′
1},

6 Note that (ch, rspi) is a signature of the message û0||û1 with respect to the public
key pki, while the secret key is ski and the randomness is ûi · ri.

16 C. Peng et al.

it recovers the challenges ch = ech⊕Hc(κ, rsp0||rsp1) and ch′ = ech′⊕Hc(κ,
rsp′0||rsp′1). Finally, it outputs a flag b = 1 if rec0 = rec′1, or b = −1 if
rec1 = rec′0, otherwise b = 0.

rec0 ← Rec(rpar′0, rpk
′
0, ch, rsp0),

rec′1 ← Rec(rpar1, rpk1, ch
′, rsp′1),

rec1 ← Rec(rpar′1, rpk
′
1, ch, rsp1),

rec′0 ← Rec(rpar0, rpk0, ch
′, rsp′0),

Correctness. For the predicate P (in Eq. 6), correctness depends on whether
PPH.Test(tk, h, h′) equals to P(x, y) for any x, y ∈ DSet. See Theorem 2 for
detailed proof.

Theorem 2. The proposed PPH scheme Γ is computationally correct under the
collision-resistance property of the hash function Hr and the map-invariance
property of the identification ID.

Proof. By the map-invariance property, the identification ID is commitment-
augmentable and commitment-independent. So,

rec0 = Com1(parID; û0 · r0 · r′1),
rec1 = Com1(parID; û1 · r1 · r′0),
rec′0 = Com1(parID; û

′
0 · r1 · r′0),

rec′1 = Com1(parID; û
′
1 · r0 · r′1),

If rec0 = rec′1, then û0 = û′
1 by the commitment-independency of ID. If a PPT

adversaryA finds two values x, y such that both P(x, y) ̸= 1 and rec0 = rec′1 hold,
Hr(s, x) = Hr(s, y + 1) holds with the state x ̸= y + 1. Clearly, we can build
an adversary B to break the collision-resistance property of Hr with solution
(x, y + 1). So,

Pr [P(x, y) ̸= 1 |Test(tk, h, h′) = 1] ≤ AdvCOL
Hr

Similarly, one can prove

Pr [P(x, y) ̸= −1 |Test(tk, h, h′) = −1] ≤ AdvCOL
Hr

If Test(tk, h, h′) = 0, it ensures that Hr(s, x) ̸= Hr(s, y + 1) and Hr(s, x) ̸=
Hr(s, y−1), which leads to the fact x ̸= y±1. Thus, the advantage AdvCOR

Γ,P,A(λ) ≤
AdvCOL

Hr
is negligible and the scheme Γ is correct.

4.2 Security Analysis

Theorem 3. Assume the hash function family Hr is pseudorandom, Hc is en-
tropy smoothing and the identification ID is of map-invariance, the proposed PPH
scheme Γ is restricted-chosen-input secure.

Proof. We define a sequence of games as follows:

Parameter-Hiding Order-Revealing Encryption without Pairings 17

– Game G0: This is the real game. Specifically, the challenger generates the
hash key hk and tk, samples h1 ←$ HSet, and computes challenge hash value
h0 ← PPH.Hash(hk, x∗) where x∗ ∈ DSet is chosen by A. The challenger
picks up a random bit b ←$ {0, 1} and sends hb to A. The adversary A
guesses a bit b′. If b = b′, the game outputs 1.

– Game G1: The pseudorandom function Hr with key s in algorithm PPH.Hash
is replaced by a uniformly random function f∗ : {0, 1}∗ → R.

– Game G2: The challenge ch in algorithm PPH.Hash is uniformly sampled
from CH.

– Game G3: The responses rsp0, rsp1 in algorithm PPH.Hash are uniformly
sampled from Z3.

– Game G4: rpar0, rpar1, rpk0, rpk1 in algorithm PPH.Hash are uniformly sam-
pled from SP2 × PK2, instead of computing via ParMap and PkMap.

Note that in G4, all the elements of hash value h0 are uniformly sampled
from appropriate space, and the oracle does not provide any extra information
about the bit b. Clearly, the advantage of adversary A in game G4 is 0.

Lemma 1. G0 ≈ G1 under the pseudorandom property of the hash function Hr.

Proof (Proof of Lemma 1). Assume A is a PPT adversary that can distinguish
G0 and G1 with non-negligible probability. We can build an adversary B to break
the pseudorandom property of Hr as follows.
B simulates the PPH security game as prescribed for A, except that the

computation of û0 and û1 in algorithm PPH.Hash relies on the oracle in the
PRF game. When the oracle is Hr(s, ·), B simulates G0. When the oracle is f∗,
B simulates G1. So, we have

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ AdvPRFHr
.

Lemma 2. G1 ≈ G2 under the commitment-independency of identification scheme
and the entropy smoothing property of hash function Hc.

Proof (Proof of Lemma 2). Consider game G′
1 that is the same as G1 except

that the challenge ch in algorithm PPH.Hash is computed by Hc(κ, δ) where δ is
uniformly sampled from R2 ×W2.

First, we claim that G1 = G′
1. In G1, since û0 and û1 are generated via random

function, these two elements can be viewed as one uniform sampling from R2.
Note that the identification scheme is commitment-independent. In H1, given
fixed system parameters parID, the value of cmti is determined by randomness
ûi ·ri for i ∈ {0, 1}. Since ûi ·ri is uniformly distributed over R, cmti is uniformly
distributed over W.

Then, we claim that G′
1 ≈ G2. Let Q denote the number of hash value queries

by adversary A. W.l.o.g., we assume every query made by adversary A is valid so
that the oracle would not return ⊥. Thus, the oracle would invoke the algorithm
PPH.Hash Q times in G′

1.
Let G′

1,0 be the same as G′
1 except that challenge ch∗ in h0 is randomly

sampled from CH. For i ∈ {1, · · · , Q}, let G′
1,i be the same as G′

1,i−1 except that

18 C. Peng et al.

challenge ch in the hash value of the i-th query is randomly sampled from CH.
Clearly, G′

1,Q = G2.
Assume A is a PPT adversary that can distinguish G′

1 and G′
1,0 with non-

negligible probability. We can build an adversary B to break the entropy smooth-
ing property of Hc as follows. B receives (k, g) from the challenger in the game
of entropy smoothing, and sets κ = k and ch∗ = g. The rest of the simulation
is the same as G′

1. When g = Hc(k, δ) and δ ←$ R2 × W2, B simulates G′
1.

When g ←$ CH, B simulates G′
1,0. Similarly, one can prove G′

1,i−1 ≈ G′
1,i for

i ∈ {1, · · · , Q}.

Lemma 3. G2 ≈ G3 under the indistinguishability of response.

Proof (Proof of Lemma 3). Let game G′
2 be the same as G2 except that response

rsp0 in algorithm PPH.Hash is randomly sampled from Z. Let Q be the number
of hash value queries by adversary A. Let G2,0 be the same as G2 except that
response rsp∗0 in h0 is randomly sampled from Z. For i ∈ {1, · · · , Q}, let G2,i be
the same as G2,i−1 except that response rsp0 in the hash value of the i-th query
is randomly sampled from Z. Clearly, G2,Q = G′

2.
We claim that G2 ≈ G2,0. Assume that A can distinguish G2 and G2,0 with

non-negligible probability, we can build an adversary B to break the indistin-
guishability of response as follows. The adversary B receives par, sk, ch and rspb
from challenger in game INDRSP

ID , and uses them to simulate game G2 for A. In
particular, parID and sk0 in algorithm PPH.KeyGen are set as par and sk respec-
tively. When computing hash value h0, challenge ch∗ is set as ch and rsp∗0 is set
as rspb. If rspb is computed via algorithm Rsp, B simulates game G2. Otherwise,
rspb is randomly sampled from Z and B simulates game G2,0. Similarly, one can
prove G2,i−1 ≈ G2,i for i ∈ {1, · · · , Q}.

Let game G′′
2 be the same as G′

2 except that response rsp1 in algorithm
PPH.Hash is randomly sampled from Z. Note that G3 is the same as G′′

2 ex-
cept that response rsp2 in algorithm PPH.Hash is randomly sampled from Z.
Using same strategy, one can prove G′

2 ≈ G′′
2 and G′′

2 ≈ G3.

Lemma 4. G3 ≈ G4 under the map-invariance of identification scheme.

Proof (Proof of Lemma 4). Let game G′
3 be the same as G3 except that rpar0

and rpk0 in algorithm PPH.Hash are uniformly sampled from SP × PK. Let Q
be the number of hash value queries by adversary A. Let G3,0 be the same as
G3 except that rpar∗0 and rpk∗0 in h0 are uniformly sampled from SP × PK. For
i ∈ {1, · · · , Q}, let G3,i be the same as G3,i−1 except that rpar0 and rpk0 in
the hash value of the i-th query are randomly sampled from SP ×PK. Clearly,
G3,Q = G′

3.
We claim that G3 ≈ G3,0. If there exists a PPT adversary A that can distin-

guish G3 and G3,0 with overwhelming probability, we can build a PPT adversary
B to distinguish the distributions of rpar∗0 and rpk∗0 in G3 and G3,0.

The adversary B receives an instance of (parID, rpar, rpk) and simulates the
game G3 as prescribed for A using parID. In particular, B sets rpar∗0 = rpar and
rpk∗0 = rpk. If rpar and rpk are computed via algorithms ParMap and PkMap,

Parameter-Hiding Order-Revealing Encryption without Pairings 19

B simulates G3. If rpar and rpk are randomly sampled from SP and PK, B
simulates G3,0. Simlarly, one can prove G3,i−1 ≈ G3,i for i ∈ {1, · · · , Q}.

Let game G′′
3 be the same as G′

3 except that rpar1 and rpk1 in algorithm
PPH.Hash are uniformly sampled from SP × PK. Clearly, G′′

3 = G4 Similarly,
one can prove that G′

3 ≈ G′′
3 under the map-invariance of identification scheme.

To sum up, the advantage of A is

AdvPPHΓ,P,A ≤ AdvPRFHr
+ (Q+ 1)(AdvESHc

+ 3(AdvRSPID + AdvMI
ID)).

Thus, the proposed PPH scheme Γ is restricted-chosen-input secure.

4.3 PPH Instance from Schnorr Identification

The instanced PPH construction Γ based on the Schnorr identification ID with
commitment space G, randomness space Z∗

p and challenge space Zp is described
formally in Figure 4.

5 The Proposed Parameter-Hiding ORE

In this part, based on our proposed generic PPH schemes from identification
schemes, we optimize Cash et al.’s scheme by eliminating bilinear mappings.
Finally, we follow the security analysis of previous works [10] to prove the security
of our scheme.

5.1 From PPH to Parameter-Hiding ORE

Below, we follow Cash et al’s framework [10] to construct a generic parameter-
hiding ORE scheme. The first step is to construct ORE with smoothed CLWW
leakage based on PPH. Here, consider the same leakage profile L1 (see Equation
4) as [10]. By definition, it is clear that the ORE construction only leaks the
order of underlying plaintexts and the statement whether msdb(mi,mj) and
msdb(mi,mk) are the same.

Let Γ = (PPH.KeyGen, PPH.Hash, PPH.Test) be a PPH scheme with respect
to the predicate P, the generic ORE construction is given as follows:

– ORE.KGen(1λ): On input a security parameter λ, it runs PPH.KeyGen(1λ)
to generate (parPPH, hk, tk). Let F : K × ([n] × {0, 1}n) → {0, 1}λ be a
pseudorandom hash function family. It picks k ←$ K. Define the encoding
function E(k,m, i) = F (k, i||m[:i−1]||0n−i+1) +m[i] ∈ {0, 1}λ. Then, it out-
puts the master secret key msk = (hk, k) and the comparison key ck = tk.
For brevity, the system parameters par = {parPPH, E} are implicit inputs of
other algorithms.

20 C. Peng et al.

PPH.KeyGen(1λ)

1: Pick keyed hash functions Hr : {0, 1}λ × {0, 1}∗ → Z∗
p and Hc : {0, 1}λ ×

{0, 1}∗ → Zp.
2: g ←$ G, s, κ, x0, x1 ←$ Zp

3: y0 := gx0 , y1 := gx1

4: parPPH := {g,Hr, Hc}
5: hk := {s, κ, x0, x1, g, y0, y1}, tk := {κ}
6: return (parPPH,hk, tk)

PPH.Hash(hk, u)

1: {s, κ, x0, x1, g, y0, y1} ← hk
2: û0 ← Hr(s, u), û1 ← Hr(s, u+ 1)
3: r0, r1 ←$ Zp, w0 := gû0·r0 , w1 := gû1·r1

4: ξ ← Hc(û0||û1||w0||w1)
5: z0 := û0 · r0 − ξ · x0, z1 := û1 · r1 − ξ · x1

6: ĝ0 := gr1 , ŷ0 := yr1
0 , ĝ1 := gr0 , ŷ1 := yr0

1

7: ξ̂ := ξ ⊕Hc(κ||z0||z1)
8: return H := {ĝ0, ĝ1, ŷ0, ŷ1, ξ̂, z0, z1}

PPH.Test(tk, h, h′)

1: {ĝ0, ĝ1, ŷ0, ŷ1, ξ̂, z0, z1} ← h
2: {ĝ′0, ĝ′1, ŷ′

0, ŷ
′
1, ξ̂

′, z′0, z
′
1} ← h′

3: ξ := ξ̂ ⊕Hc(κ||z0||z1), ξ′ := ξ̂′ ⊕Hc(κ||z′0||z′1)
4: rec0 := (ĝ′0)

z0 · (ŷ′
0)

ξ, rec′1 := (ĝ1)
z′1 · (ŷ1)ξ

′

5: if rec0 = rec′1 then
6: return 1
7: rec1 := (ĝ′1)

z1 · (ŷ′
1)

ξ, rec′0 := (ĝ0)
z′0 · (ŷ0)ξ

′

8: if rec1 = rec′0 then
9: return −1

10: return 0

Fig. 4. The instanced PPH construction based on the Schnorr identification ID.

– ORE.Enc(msk,m): On input msk and a n bits message m, it randomly selects
a permutation π : [n]→ [n] and computes{

ui = E(k,m, π(i)),

hi ← PPH.Hash(hk, ui),
∀i ∈ [n]

Finally, it outputs the ciphertext

c⃗ := {h1, · · · , hn} ∈ SP2n × PK2n × CHn ×Z2n.

– ORE.Cmp(ck, c⃗, c⃗′): On input the comparison key ck and two ciphertexts
(c⃗, c⃗′), it computes

bij ← PPH.Test(ck, hi, h
′
j), ∀i, j ∈ [n]

Parameter-Hiding Order-Revealing Encryption without Pairings 21

and stops when bij ̸= 0. If it stops with bij = 1, it outputs 1 to indicate
that m > m′; else if it stops with bij = −1, it outputs −1 to indicate that
m > m′. If there does not exist i, j such that bij ̸= 0, it outputs 0 to indicate
that m = m′.

The above description differs from the original construction [10] mainly in
that the predicate corresponding to PPH adds an additional case, i.e P(x, y) =
−1 if and only if x < y. In the original construction, the predicate is defined as
P(x, y) = 1 if and only if x > y, which results in that it needs to execute PPH.Test
algorithm twice for each ci, c

′
j , i.e. PPH.Test(ck, hi, h

′
j) and PPH.Test(ck, h′

j , hi).
But, our generic PPH construction only needs to execute PPH.Test algorithm
once for each hi, h

′
j .

Correctness. For the predicate O (in Eq. 1), correctness depends on whether
ORE.Cmp(ck, c, c′) equals to O(m,m′) for any m,m′ ∈ D. See Theorem 4 for
detailed proof.

Theorem 4. The proposed ORE scheme Π is computationally correct under the
pseudorandom property of the hash function F and the computational correctness
of the PPH scheme Γ .

Proof. If the PPH scheme Γ is computationally correct, bij equals to P(ui, u
′
j)

with overwhelming probability. Considering the first case O(m,m′) = 1, there
must be two indexes (i, j) satisfying π(i) = π′(j′) and P(ui, u

′
j) = 1, since the

function F with the key s outputs deterministic results. Here,

E(k,m, π(i)) = E(k,m′, π′(j)) + 1⇒
F (k, π(i)||m[:π(i)−1]||0n−π(i)+1) +m[π(i)]

=F (k, π′(j)||m′
[:π′(j)−1]||0

n−π′(j)+1) +m′
[π′(j)] + 1.

As long as there is no indexes (i′, j′) satisfying P(ui′ , u
′
j′) = −1, ORE.Cmp(ck, c, c′)

must output 1. For all (i′, j′) ̸= (i, j), we have

Pr
[
P(ui′ , u

′
j′) = −1

]
≤ 1−

(
1− n

2λ

)n

In this case, the probability of ORE.Cmp (ck, c, c′) ̸= O(m,m′) is negligible.
Similarly, one can prove this probability is also negligible in the case O(m,m′) =
−1 and O(m,m′) = 0. Thus, the proposed ORE scheme Π is correct.

Security. The proof of Theorem 5 is similar to Theorem 12 in [10], so we omit
the details here.

Theorem 5. Given a secure pseudorandom function F , if the underlying PPH
scheme Γ is restricted-chosen-input secure, the generic ORE scheme is L1-non-
adaptive-simulation secure.

22 C. Peng et al.

Starting from Cash et al.’s framework, one can easily construct pORE schemes
from identification-based PPH schemes. For instance with identification schemes,
the hash key and the test key are modified by hk := {s, κ, sk0, sk1, pk0, pk1} and
tk := {κ}, respectively. For each i ∈ [n], the hash value hi is composed of {rpari,0,
rpari,1, rpki,0, rpki,1, echi, rspi,0, rspi,1}. Clearly, the ciphertext c⃗ belongs to the
space SP2n × PK2n × CHn ×Z2n and the comparison algorithm Cmp needs to
perform n2 times Hash algorithms, equivalent to 4n2 times Rec operations.

5.2 ORE Instance from Schnorr Identification

Now, from Schnorr identification, we construct an efficient ORE scheme, named
Sch-ORE, without bilinear pairings in Figure 5. The master secret key consists
of two randomness s, κ ←$ Zp, two secret keys x0, x1 ←$ Zp and public keys
{g, y0, y1} ∈ G, while the comparison key is only the randomness κ. For each
bit-wise hash value hi, its size is 4|G| + 3|Zp|. For the comparison algorithm,
at most 8n2 group exponentiation operations are required to compare two ci-
phertexts with respect to any messages. Essentially, our ORE scheme uses two
group exponentiation operations to replace one bilinear pairing operation. The-
oretically, the comparison efficiency can be improved by about 3 to 4 times with
the same security level.
Improving Efficiency with L′

1 Leakage. Cash et al. [10] proposed the opti-
mization idea of fixing the permutation π in msk to replace randomized permuta-
tion in PPH.Hash algorithm. The optimization point is that it only executes the
PPH.Test algorithm on the same index, i.e. i = j, in the comparison algorithm.
Combined with our optimization points, each comparison algorithm requires 8n
times group exponentiation operations, but it can lead to a weaker leakage L′

1 (in
Equation 5). Compared to L1 (in Equation 4), L′

1 reveals extra information that
1(msdb(mi,mj) = msdb(mk,ml)) even when i ̸= k. According to Theorem 12
in [10], it can still be confirmed that our Sch-ORE is L′

1-non-adaptive-simulation
secure if Γ is restricted-chosen-input secure and F is a secure pseudorandom
function.

6 Experimental Evaluation

In order to evaluate the performance of our parameter-hiding ORE scheme, we
built and evaluated an implementation with instantiated components 7. Then,
we describe the comparison results with Cash et al.’s ORE scheme [10] in the
aspect of storage and computation costs under different plaintext bit-lengths.
Instantiating Primitives. Our implementation is written in C language. We
instantiate the necessary keyed hash function using SHA-256. We use GMP
library to implement multi-precision integer arithmetic and PBC library to im-
plement bilinear pairings. Notice that there is no need to use bilinear pairing
operation in our schemes, but to ensure fairness, we uniformly use the G1 group
7 Our implementation is available at https://github.com/cpeng-crypto/pORE.

Parameter-Hiding Order-Revealing Encryption without Pairings 23

ORE.KGen(1λ)

1: Pick keyed hash functions Hr : {0, 1}λ × {0, 1}∗ → Z∗
p and Hc : {0, 1}λ ×

{0, 1}∗ → Zp.
2: g ←$ G, s, κ, x0, x1 ←$ Zp

3: y0 := gx0 , y1 := gx1

4: parPPH := {g,Hr, Hc}
5: hk := {s, κ, x0, x1, g, y0, y1}, tk := {κ}
6: k ←$ K
7: E(k,m, i) := F (k, i||m[:i−1]||0n−i+1) +m[i]

8: par := (parPPH, E), msk := (hk, k), ck := tk
9: return (par,msk, ck)

ORE.Enc(msk,m)

1: {s, κ, x0, x1, g, y0, y1, k} ← msk
2: π : [n]→ [n]
3: for i ∈ [n] do
4: ri,0, ri,1 ←$ Z∗

p

5: ui := E(k,m, π(i))
6: ûi,0 ← Hr(s, ui), ûi,1 ← Hr(s, ui + 1)
7: wi,0 := gûi,0·ri,0 , wi,1 := gûi,1·ri,1

8: ξi ← Hc(ûi,0||wi,0||ûi,1||wi,1)
9: zi,0 := ûi,0 · ri,0 − ξi · x0

10: zi,1 := ûi,1 · ri,1 − ξi · x1

11: ĝi,0 := gri,1 , ŷi,0 := y
ri,1
0 , ĝi,1 := gri,0 , ŷi,1 := y

ri,0
1

12: ξ̂i := ξi ⊕Hc(κ||zi,0||zi,1)
13: hi := {ĝi,0, ŷi,0, ĝi,1, ŷi,1, ξ̂i, zi,0, zi,1}
14: c⃗ := {h1, · · · , hn};
15: return c⃗

ORE.Cmp(ck, c⃗, c⃗′)

1: {h1, · · · , hn} ← c⃗, {h′
1, · · · , h′

n} ← c⃗′

2: {ĝi,0, ŷi,0, ĝi,1, ŷi,1, ξ̂i, zi,0, zi,1} ← hi

3: {ĝ′j,0, ŷ′
j,0, ĝ

′
j,1, ŷ

′
j,1, ξ̂

′
j , z

′
j,0, z

′
j,1} ← h′

j

4: for i ∈ [n], j ∈ [n] do
5: ξi := ξ̂i ⊕Hc(κ||zi,0||zi,1)
6: ξ′j := ξ̂′j ⊕Hc(κ||z′j,0||z′j,1)
7: reci,j,0 := (ĝ′j,0)

zi,0 · (ŷ′
j,0)

ξi , rec′i,j,1 := (ĝi,1)
z′j,1 · (ŷi,1)ξ

′
j

8: if reci,j,0 = rec′i,j,1 then ▷ check ui = u′
j + 1?

9: return bij = 1

10: reci,j,1 = (ĝ′j,1)
zi,1 · (ŷ′

j,1)
ξi , rec′i,j,0 = (ĝi,0)

z′j,0 · (ŷi,0)ξ
′
j

11: if reci,j,1 = rec′i,j,0 then ▷ check ui + 1 = u′
j?

12: return bij = −1
13: return b = 0

Fig. 5. Sch-ORE scheme, the instanced ORE construction based on the Schnorr iden-
tification.

24 C. Peng et al.

n Scheme Ciphertext
size (KB)

Encryption
cost (ms)

Comparison
Cost (ms) Leakage

8

Cash et al.’s ORE [10] 2.50 43.52 487.17 L1

Cash et al.’s ORE∗ [10] 2.50 43.52 60.91 L′
1

Our Sch-ORE 1.72 16.71 151.06 L1

Our Sch-ORE 1.72 16.71 19.81 L′
1

16

Cash et al.’s ORE [10] 5.00 87.04 1948.67 L1

Cash et al.’s ORE∗ [10] 5.00 87.04 121.97 L′
1

Our Sch-ORE 3.44 33.42 602.14 L1

Our Sch-ORE 3.44 33.42 39.62 L′
1

24

Cash et al.’s ORE [10] 7.50 130.56 4384.51 L1

Cash et al.’s ORE∗ [10] 7.50 130.56 182.69 L′
1

Our Sch-ORE 5.16 50.12 1353.23 L1

Our Sch-ORE 5.16 50.12 59.43 L′
1

32

Cash et al.’s ORE [10] 10.00 174.08 7794.69 L1

Cash et al.’s ORE∗ [10] 10.00 174.08 243.58 L′
1

Our Sch-ORE 6.88 66.83 2404.32 L1

Our Sch-ORE 6.88 66.83 79.24 L′
1

48

Cash et al.’s ORE [10] 15.00 261.12 17538.05 L1

Cash et al.’s ORE∗ [10] 15.00 261.12 365.38 L′
1

Our Sch-ORE 10.31 100.25 5406.56 L1

Our Sch-ORE 10.31 100.25 118.85 L′
1

64

Cash et al.’s ORE [10] 20.00 348.16 31178.75 L1

Cash et al.’s ORE∗ [10] 20.00 348.16 487.17 L′
1

Our Sch-ORE 13.75 133.67 9608.83 L1

Our Sch-ORE 13.75 133.67 158.47 L′
1

Table 2. Ciphertext size in KB and running time in milliseconds of ORE schemes with
different message bit-length n in {8, 16, 24, 32, 48, 64}.ORE∗ refers to the ORE scheme
with fixed permutation.

of bilinear pairing as the cyclic group G in our schemes. We believe this provides
a more balanced comparison of the performance tradeoffs between Cash et al.’s
scheme and our new scheme.

Security Parameters. All evaluations were performed with the bilinear pairing
parameter set "d159.param" under the security parameter λ = 80 bits. In such
case, Symmetric eXternal Diffie-Hellman (SXDH) assumption holds, which is
the basis for the security of parameter-hiding ORE in [10]. Specifically, the size
of elements in G1 and G2 is |G1| = 40 bytes and |G2| = 120 bytes, respectively.

Parameter-Hiding Order-Revealing Encryption without Pairings 25

The size of elements in Z∗
q is |Z∗

q | = 20 bytes. Note that elements in group G2

need only be 3 times longer than elements in group G1.

8 16 24 32 48 64
length of the plaintext (bit)

2500

5000

7500

10000

12500

15000

17500

20000

le
ng

th
 o

f t
he

 c
ip

he
rte

xt
 (b

yt
e)

2560

5120

7680

10240

15360

20480

2560

5120

7680

10240

15360

20480

1760

3520

5280

7040

10560

14080

1760

3520

5280

7040

10560

14080

Cash et al.'s ORE-1
Cash et al.'s ORE-2
Our Sch-ORE-1
Our Sch-ORE-2

(a) Ciphertext size in ORE

8 16 24 32 48 64
length of the plaintext (bit)

50

100

150

200

250

300

350

en
cr

yp
tio

n
tim

e
(m

s)

43.52

87.04

130.56

174.08

261.12

348.16

43.52

87.04

130.56

174.08

261.12

348.16

16.71
33.42

50.12
66.83

100.25

133.67

16.71
33.42

50.12
66.83

100.25

133.67

Cash et al.'s ORE-1
Cash et al.'s ORE-2
Our Sch-ORE-1
Our Sch-ORE-2

(b) Encryption time in ORE

8 16 24 32 48 64
length of the plaintext (bit)

0

5000

10000

15000

20000

25000

30000

co
m

pa
ris

on
 ti

m
e

(m
s)

487.17
1948.67

4384.51

7794.69

17538.05

31178.75

1151.06 602.14 1353.23 2404.32

5406.56

9608.83

Cash et al.'s ORE-1
Our Sch-ORE-1

(c) Comparison time in ORE with ran-
domized permutations

8 16 24 32 48 64
length of the plaintext (bit)

0

100

200

300

400

500
co

m
pa

ris
on

 ti
m

e
(m

s)

60.9

121.79

182.69

243.58

365.38

487.17

19.81
39.62

59.43
79.24

118.85
158.47

Cash et al.'s ORE-2
Our Sch-ORE-2

(d) Comparison time in ORE with fixed
permutations

Fig. 6. Performance comparison

Benchmarks and Evaluation. All experiments are executed on a desktop with
Intel(R) Core(TM) i5-10500 CPU @ 3.10GHz, 16GB RAM and Ubuntu 18.04
LTS. Although both Cash et al.’s scheme and our scheme are easily parallelizable,
we do not exploit parallelism in our benchmarks. We report detailed compar-
isons in Table 2 for different plaintext bit-length n ∈ {8, 16, 24, 32, 48, 64}. As
expected, our protocol shows a significant performance improvement for each
bit-length. For a more intuitive presentation, we divide into these results into
three categories for comparison.

Ciphertext Size. As shown in Figure 6(a), ciphertexts encrypted with random
permutation or fixed permutation have the same bit length for the same plaintext
length. For n bits plaintext, our Sch-ORE scheme costs 4n|G1|+ 3n|Zp| ≈ 220n
bytes. Compared to Cash et al.’s ORE [10], our Sch-ORE scheme can reduce
the ciphertext size by about 31.25%. However, the ciphertext expansion ratio is
still large, for example, the ciphertext size reaches 13.75 KB at 64-bit plaintext
length.

26 C. Peng et al.

Encryption Efficiency. For encrypted n-bit messages, roughly 6n G1 group
exponentiation operations need to be computed in Sch-ORE scheme while 2n
G1 group exponentiation and 2n G2 group exponentiation operations in [10]. In
contrast, G2 is an elliptic curve point group over Fp3 , which is nearly 7 times
less efficient in terms of point multiplication than the elliptic curve point group
G2 over Fp. As shown in Figure 6(b), for the whole encryption algorithm, our
scheme is almost 2.6 times faster than Cash et al.’s ORE [10].
Comparison Efficiency. In Fig.6(c) and 6(d), we evaluate the comparative
efficiency of various ORE schemes. It show that in the case of randomized per-
mutations, the comparison time consumption grows rapidly with the increase of
plaintext bits, but for fixed permutations, it grows more slowly. Clearly, the com-
parative efficiency of random permutations is n times slower than that of fixed
permutations. Besides, in both modes, our Sch-ORE is more than 3 times faster
than ORE in [10]. For 64-bit plaintext, it needs 158 ms for a single comparison.

To sum up, our Sch-ORE scheme performs better than other parameter-hiding
ORE at the same security level and leakage, in which the ciphertext length is
reduced by more than 31.25%, the encryption efficiency increased by nearly 2.6
times and the comparison efficiency increased by more than 3 times.

7 Conclusion

In this paper, we proposed an efficient and secure construction for parameter-
hiding order-revealing encryption (pORE). Our approach relies on the map-
invariance property for identification protocols, which enables us to develop a
generic construction of property-preserving hash (PPH) schemes. Using our PPH
scheme, we presented a new parameter-hiding ORE that outperforms existing
state-of-the-art constructions. Specifically, we instantiated our framework with
the pairing-free Schnorr identification scheme and demonstrated that our pro-
posed pORE scheme achieves a reduction in ciphertext size of approximately
31.25%, while improving encryption and comparison efficiency by more than
two times.

Our work offers a practical and secure alternative to existing pORE con-
structions. As future work, it is interesting to instant our ID schemes (with
map-variance) from other hardness assumptions. For example, it seems like that
one could construct ID scheme based on isogeny-related assumptions for post-
quantum pORE. Note that it is difficult to extend previous construction for
post-quantum security due to the need of pairing computation for comparison,
while our work enables more potential for constructing pORE with better secu-
rity and efficiency.
Acknowlegements. We thank the anonymous reviewers for their helpful discus-
sion and feedback. The work was supported by the National Key Research and
Development Program of China (No. 2022YFB3102400), the National Natural
Science Foundation of China (Nos. U21A20466, 62325209, 62272350,62122092,
62032005, 62202485), and the Major Program(JD) of Hubei Province (No. 2023BA
A027).

Parameter-Hiding Order-Revealing Encryption without Pairings 27

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of the 2004 ACM SIGMOD international conference
on Management of data. pp. 563–574 (2004)

2. Arasu, A., Blanas, S., Eguro, K., Kaushik, R., Kossmann, D., Ramamurthy, R.,
Venkatesan, R.: Orthogonal security with cipherbase. In: CIDR (2013)

3. Bajaj, S., Sion, R.: Trusteddb: A trusted hardware-based database with privacy
and data confidentiality. IEEE Transactions on Knowledge and Data Engineering
26(3), 752–765 (2013)

4. Bogatov, D., Kollios, G., Reyzin, L.: A comparative evaluation of order-revealing
encryption schemes and secure range-query protocols. Proceedings of the VLDB
Endowment 12(8), 933–947 (2019)

5. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric en-
cryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (Apr 2009). https://doi.org/10.1007/978-3-642-01001-9_13

6. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revis-
ited: Improved security analysis and alternative solutions. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (Aug 2011).
https://doi.org/10.1007/978-3-642-22792-9_33

7. Boneh, D., Kogan, D., Woo, K.: Oblivious pseudorandom functions from isogenies.
In: International Conference on the Theory and Application of Cryptology and
Information Security. pp. 520–550. Springer (2020)

8. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Se-
mantically secure order-revealing encryption: Multi-input functional encryption
without obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part II. LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (Apr 2015).
https://doi.org/10.1007/978-3-662-46803-6_19

9. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Proceedings of the 22nd ACM SIGSAC conference on
computer and communications security. pp. 668–679 (2015)

10. Cash, D., Liu, F.H., O’Neill, A., Zhandry, M., Zhang, C.: Parameter-hiding or-
der revealing encryption. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018,
Part I. LNCS, vol. 11272, pp. 181–210. Springer, Heidelberg (Dec 2018).
https://doi.org/10.1007/978-3-030-03326-2_7

11. Chang, Z., Xie, D., Li, F.: Oblivious ram: A dissection and experimental evaluation.
Proceedings of the VLDB Endowment 9(12), 1113–1124 (2016)

12. Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption
with limited leakage. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 474–493.
Springer, Heidelberg (Mar 2016). https://doi.org/10.1007/978-3-662-52993-5_24

13. Demertzis, I., Papadopoulos, S., Papapetrou, O., Deligiannakis, A., Garofalakis,
M.: Practical private range search revisited. In: Proceedings of the 2016 Interna-
tional Conference on Management of Data. pp. 185–198 (2016)

14. Durak, F.B., DuBuisson, T.M., Cash, D.: What else is revealed by order-revealing
encryption? In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. pp. 1155–1166 (2016)

15. Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M.C., Steiner, M.: Rich
queries on encrypted data: Beyond exact matches. In: Pernul, G., Ryan, P.Y.A.,
Weippl, E.R. (eds.) ESORICS 2015, Part II. LNCS, vol. 9327, pp. 123–145.
Springer, Heidelberg (Sep 2015). https://doi.org/10.1007/978-3-319-24177-7_7

28 C. Peng et al.

16. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM (JACM) 33(4), 792–807 (1986)

17. Grubbs, P., Lacharité, M.S., Minaud, B., Paterson, K.G.: Pump up the volume:
Practical database reconstruction from volume leakage on range queries. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 315–331. ACM
Press (Oct 2018). https://doi.org/10.1145/3243734.3243864

18. Grubbs, P., Lacharité, M.S., Minaud, B., Paterson, K.G.: Learning to reconstruct:
Statistical learning theory and encrypted database attacks. In: 2019 IEEE Sympo-
sium on Security and Privacy. pp. 1067–1083. IEEE Computer Society Press (May
2019). https://doi.org/10.1109/SP.2019.00030

19. Grubbs, P., Sekniqi, K., Bindschaedler, V., Naveed, M., Ristenpart, T.: Leakage-
abuse attacks against order-revealing encryption. In: 2017 IEEE Symposium on
Security and Privacy. pp. 655–672. IEEE Computer Society Press (May 2017).
https://doi.org/10.1109/SP.2017.44

20. Hirose, S.: Collision-resistant and pseudorandom function based on merkle-
damgård hash function. In: International Conference on Information Security and
Cryptology. pp. 325–338. Springer (2022)

21. Kamara, S., Moataz, T.: Computationally volume-hiding structured encryption.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477,
pp. 183–213. Springer, Heidelberg (May 2019). https://doi.org/10.1007/978-3-030-
17656-3_7

22. Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Generic attacks on secure
outsourced databases. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 1329–1340. ACM Press (Oct 2016).
https://doi.org/10.1145/2976749.2978386

23. Kerschbaum, F.: Frequency-hiding order-preserving encryption. In: Ray, I., Li,
N., Kruegel, C. (eds.) ACM CCS 2015. pp. 656–667. ACM Press (Oct 2015).
https://doi.org/10.1145/2810103.2813629

24. Kerschbaum, F., Schröpfer, A.: Optimal average-complexity ideal-security order-
preserving encryption. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014. pp.
275–286. ACM Press (Nov 2014). https://doi.org/10.1145/2660267.2660277

25. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of fiat-shamir
signatures in the quantum random-oracle model. In: Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques. pp. 552–586.
Springer (2018)

26. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifica-
tion schemes. In: Annual International Cryptology Conference. pp. 33–61. Springer
(2016)

27. Kornaropoulos, E.M., Papamanthou, C., Tamassia, R.: The state of the uniform:
Attacks on encrypted databases beyond the uniform query distribution. In: 2020
IEEE Symposium on Security and Privacy. pp. 1223–1240. IEEE Computer Society
Press (May 2020). https://doi.org/10.1109/SP40000.2020.00029

28. Kornaropoulos, E.M., Papamanthou, C., Tamassia, R.: Response-hiding encrypted
ranges: Revisiting security via parametrized leakage-abuse attacks. In: 2021 IEEE
Symposium on Security and Privacy. pp. 1502–1519. IEEE Computer Society Press
(May 2021). https://doi.org/10.1109/SP40001.2021.00044

29. Lacharité, M.S., Minaud, B., Paterson, K.G.: Improved reconstruction attacks
on encrypted data using range query leakage. In: 2018 IEEE Symposium on
Security and Privacy. pp. 297–314. IEEE Computer Society Press (May 2018).
https://doi.org/10.1109/SP.2018.00002

Parameter-Hiding Order-Revealing Encryption without Pairings 29

30. Lewi, K., Wu, D.J.: Order-revealing encryption: New constructions, applica-
tions, and lower bounds. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 1167–1178. ACM Press (Oct 2016).
https://doi.org/10.1145/2976749.2978376

31. Markatou, E.A., Tamassia, R.: Full database reconstruction with access and
search pattern leakage. In: Lin, Z., Papamanthou, C., Polychronakis, M. (eds.)
ISC 2019. LNCS, vol. 11723, pp. 25–43. Springer, Heidelberg (Sep 2019).
https://doi.org/10.1007/978-3-030-30215-3_2

32. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015. pp.
644–655. ACM Press (Oct 2015). https://doi.org/10.1145/2810103.2813651

33. Pandey, O., Rouselakis, Y.: Property preserving symmetric encryption. In: An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 375–391. Springer (2012)

34. Popa, R.A., Li, F.H., Zeldovich, N.: An ideal-security protocol for order-preserving
encoding. In: 2013 IEEE Symposium on Security and Privacy. pp. 463–477. IEEE
Computer Society Press (May 2013). https://doi.org/10.1109/SP.2013.38

35. Popa, R.A., Redfield, C.M., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting
confidentiality with encrypted query processing. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles. pp. 85–100 (2011)

36. Teranishi, I., Yung, M., Malkin, T.: Order-preserving encryption secure be-
yond one-wayness. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014,
Part II. LNCS, vol. 8874, pp. 42–61. Springer, Heidelberg (Dec 2014).
https://doi.org/10.1007/978-3-662-45608-8_3

A More on the Leakage of Different ORE Schemes

As shown by Cash et al. [10], L1 leaks less information than the leakage caused
by CLWW ORE (L2) and Lewi-Wu ORE. Below we will provide more details
about these leakage profiles.
Smoothed CLWW Leakage. Considering the set {0, 4, 5, 10, 11} in 4-bit plaintext
space, it can be viewed as leaves of a 4-level full binary tree. In Figure 7, the ideal
leakage L0 refers to the numeric order-relation. After removing the irrelevant
leaves/nodes, the CLWW leakage L2 refers to the subtree structure, in which grey
points mean the position of msdb and green nodes mean unleaked msdb. Note
that for some plaintexts such as {2, 6, 7, 12, 13}, it would also have equivalent
subtree w.r.t. {0, 4, 5, 10, 11}. While for other plaintexts such as {1, 2, 3, 5, 6},
there are significant differences between the two subtree structures, and these
two plaintext sequences are distinguishable by the leakage L2 of the ciphertext
alone. Moreover, the comparator can know from the ciphertext that mi = 4
has the bit form "01-0", where "-" indicates the unknown bits. Considering
the leakage L1 which leaks the equality pattern of msdb, while the comparator
can infer additional information (i.e., msdb(0,4) < msdb(5, 11)), green nodes
in subtrees are unknown to the comparator as the positions of msdb are not
determined. Also, the position of gray nodes can be moved up or down. So, one
can see that {0, 4, 5, 10, 11} and {1, 2, 3, 5, 6} leak the same information under
L1. Note that inspired by the block-wise encryption [30], Cash et al. [10] also

30 C. Peng et al.

0 4 5 10 11

Plaintext set {0,4,5,10,11}

0 4 5 10 11

Plaintext set {0,4,5,10,11}

Plaintext set {1,2,3,5,6}

1 2 3 5 6

Plaintext set {1,2,3,5,6}

1 2 3 5 6

Fig. 7. Comparison of different leakage profiles.

demonstrated that an enhanced level of leakage L1 can be achieved by encrypting
message blocks instead of individual bits.
Specific Applications of pORE. Cash et al. [10] show that pORE is particularly
suitable for specific scenarios where the adversary lacks a strong estimate of
the prior distribution of the data. In many settings, data often follows a known
type of distribution, as exemplified by Cash et al. [10], where various physical,
biological, and financial quantities approximate a normal distribution due to the
central limit theorem. In these scenarios, the database entries are independently
drawn from a distribution with a known “shape" (e.g., normal, uniform, Laplace,
etc.), but the adversary does not possess the mean and variance information
necessary to determine the shifting and scaling factors. Consequently, pORE
can be employed to effectively conceal both the shifting and scaling information.
Notably, it has been observed by Cash et al. [10] that CLWW ORE [12] and
Lewis-Wu ORE [30] fail to achieve shift hiding and scale hiding simultaneously.
Nonetheless, as acknowledged by Cash et al. [10], pORE specifically guarantees
security when the sensitivity lies solely in the scale and shift of the underlying
plaintext distributions, and it may not be sufficient in scenarios where the shape
of the distribution itself is highly sensitive or when there are correlations with
other available data that could be exploited by an attacker.

