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Abstract A recent work from Eurocrypt 2023 suggests that prime-field
masking has excellent potential to improve the efficiency vs. security
tradeoff of masked implementations against side-channel attacks, espe-
cially in contexts where physical leakages show low noise. We pick up
on the main open challenge that this seed result leads to, namely the
design of an optimized prime cipher able to take advantage of this po-
tential. Given the interest of tweakable block ciphers with cheap inverses
in many leakage-resistant designs, we start by describing the FPM (Feistel
for Prime Masking) family of tweakable block ciphers based on a gen-
eralized Feistel structure. We then propose a first instantiation of FPM,
which we denote as small-pSquare. It builds on the recent observation
that the square operation (which is non-linear in Fp) can lead to masked
gadgets that are more efficient than those for multiplication, and is tai-
lored for efficient masked implementations in hardware. We analyze the
mathematical security of the FPM family of ciphers and the small-pSquare
instance, trying to isolate the parts of our study that can be re-used for
other instances. We additionally evaluate the implementation features of
small-pSquare by comparing the efficiency vs. security tradeoff of masked
FPGA circuits against those of a state-of-the art binary cipher, namely
SKINNY, confirming significant gains in relevant contexts.

1 Introduction

The design of symmetric cryptographic algorithms is generally oriented towards
optimizing their efficiency vs. security tradeoff. For most general applications,
this has led researchers to focus primarily on binary ciphers with efficient bit-
slice implementations, which are generally efficient in software [19] and hard-
ware [79]. This trend has even been amplified when considering side-channel
attacks, in good part due to the emergence of masking as the most popular so-
lution to mitigate such attacks. While various types of masking schemes exist
(e.g., additive [36], multiplicative [64], affine [63], polynomial [99], inner prod-
uct [5], code-based [115]), the efficiency of Boolean masked implementations in
software [65] and hardware [71] make it for now a default solution. As a result,



2 L. Grassi, L. Masure, P. Méaux, T. Moos, F.-X. Standaert

ciphers optimized towards low AND complexity, enabling efficient bit-oriented
implementation (e.g., bitslicing), appeared for a while as the best approach [72].
This situation is also reflected by the recent NIST Ligthweight Cryptography
standardization effort, where most ciphers designed with leakage in mind (in-
cluding the winner Ascon [50]) have efficient bitslice representations.1

While it has been shown that Boolean masking can bring high security at
limited cost, it is also known to suffer from practical limitations. Among others,
it is only effective in contexts where leakages are sufficiently noisy [98,52,53],
a condition that was shown to be challenging to reach without dedicated noise
generation circuitry, both in software [7,30] and in hardware [97,93]. Building
on theoretical advances of Dziembowski et al. [57], it has then been observed
that computing in groups of prime order can significantly reduce the noise re-
quirements of masking security proofs while keeping most of the benefits of ad-
ditive encodings, and even providing security gains in the context of noisy leak-
ages (that were not covered by theoretical analysis) [90]. More precisely, Masure
et al. showed at Eurocrypt 2023 that for concretely-relevant leakage functions,
prime-field masking can be quite efficient by re-using simple additions and mul-
tiplication algorithms “à la ISW” [76], and that the mild performance overheads
due to operating in prime fields can be largely compensated by concrete side-
channel security gains. Informally, these gains can be viewed as the result of a
decreased “algebraic compatibility” between the leakage functions observed in
practice (which are typically close to a linear combination of bits [101]) and the
field in which we mask. For example, it is well-known that observing the least
significant bit of Hamming weight leakages obtained from Boolean shares leads
to information about the secret independent of the number of shares [105]. Mov-
ing to prime encodings, such an attack is not directly possible anymore because
partial uncertainty “diffuses” better when combining the shares.

So far, this potential advantage of prime-field masking for counteracting side-
channel attacks was only demonstrated for a toy AES-like cipher. The main
open challenge that we pick up in this paper is, thus, the design of a dedicated
lightweight cipher optimized for prime masking to enable fair comparisons with
binary ciphers which are tailored for cost-efficiency when masked.

Given the interest of Tweakable Block Ciphers (TBCs) with cheap inverse
for leakage-resistant modes of operation [9,12], we start by describing the FPM
(Feistel for Prime Masking) family of tweakable block ciphers based on a gener-
alized Feistel structure [96,74]. Among other advantages, TBCs allow reducing
the need of idealized assumptions that are hard to justify in physical security
analyzes and to minimize the side-channel attack surface during tag verification
(which can leak in an unbounded manner thanks to the inverse trick of [13]).
The FPM family of ciphers allows tweaks of variable size including a version
without tweak (i.e., a block cipher, in order to enable comparisons with generic
constructions [114]). It relies on a variant of the TWEAKEY framework [78],
taking advantage of the fact that for most leakage-resistant modes of operation,
the tweak is public information and requires no countermeasures (so we can ac-

1 https://csrc.nist.gov/Projects/lightweight-cryptography

https://csrc.nist.gov/Projects/lightweight-cryptography
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tually use a simple key scheduling algorithm and a more complex, non-linear,
tweak scheduling algorithm). While moving towards a first instantiation of FPM,
we additionally exploit recent results from CHES 2023 which show how to ob-
tain a secure implementation of the square operation (non-linear in Fp) which is
more efficient than a secure multiplication [33]. This provides natural incentive
for designing a cipher using the square operation as only source of non-linearity,
which further motivates the use of Feistel-like structures for FPM TBCs and their
underlying building blocks, since the square is also non-invertible in Fp. What
then mostly remains is to choose the prime number defining the field in which
we operate. Following [90], we use a Mersenne prime for efficiency reasons.2 We
set this modulus to 27 � 1 in order to propose an instance tailored for secure
hardware implementation, which we denote as small-pSquare.

Besides defining the FPM family of ciphers and a first instance, we provide
an initial mathematical security analysis in order to select the number of cipher
rounds of small-pSquare. Doing so, we try to separate the parts of the analysis
that are generic (and could be re-used for other instances) from the ones that
are linked to our choice of square S-box and 7-bit prime. Most importantly,
we then compare masked FPGA implementations of small-pSquare and similar
implementations of a binary cipher protected with Boolean masking. We use
SKINNY for this purpose [8], which is a popular family of ciphers with tweak-
able versions that amongst other applications was used in Romulus, a finalist
to NIST lightweight cryptography competition, and for which a rich literature
on the construction and analysis of state-of-the-art Boolean masked implemen-
tations exist, both automated [80] and hand-made [111]. Our experiments allow
us to confirm the excellent performances and significantly improved efficiency
vs. (side-channel) security tradeoff for small-pSquare. We show in Section 6 that
while unprotected small-pSquare implementations come with overheads (com-
pared to SKINNY), these overheads vanish in the context of masked implementa-
tions where both algorithms perform similarly. As expected, small-pSquare also
has significantly improved performances compared to the toy AES-like cipher
considered in [90]. Furthermore, we show in Section 7 that for similar archi-
tectures, small-pSquare offers side-channel security levels which exceed those of
masked SKINNY implementations by (at least) one order of magnitude.

We conclude the paper by discussing scopes for further research and other in-
stances of FPM ciphers. First, considering different implementation contexts, for
example mid-pSquare variants could be relevant to investigate for FPGAs with
DSP blocks (e.g., with a 17-bit prime) or for ARM Cortex-like devices (e.g.,
with a 31-bit prime). Second, and more prospectively, big-pSquare variants (with
larger primes) could be of interest conceptually due to their similarity with the
different prime ciphers developed for other applications (e.g., fully-homomorphic
encryption, multi-party computation, zero-knowledge proofs), in order to better
understand the differences and similarities between the design goals to optimize

2 Both because such prime numbers allow very efficient modular reductions and be-
cause the x ÞÑ 2x operation is a rotation of the bits that is free in hardware.



4 L. Grassi, L. Masure, P. Méaux, T. Moos, F.-X. Standaert

(a) τ � 0 (b) τ � 1 (c) τ � 2

Figure 1: High-level view of FPM (tweakable) ciphers. We use the shortcut no-
tation Nr � R to denote the application of the round R Nr times.

for these various applications [2,1,3,68,51,38], and possibly to offer stronger phys-
ical security guarantees thanks to the larger field computations [56].

2 Feistel for Prime Masking

In this section, we introduce the FPMτ family of TBCs. We start by describ-
ing the high-level Feistel structure we use in Section 2.1. We then detail the
internal components of this structure in Sections 2.2 and 2.3. We conclude by
summarizing the design space that this family of ciphers defines in Section 2.4.

2.1 High-Level Structure

Let p ¥ 3 be a prime number, and let n � 2 �n1 ¥ 4 be an integer. The high-level
structure of FPMτ TBCs is given in Figure 1. FPMτ ciphers take as inputs a
plaintext x P Fn

p , a key K P Fn
p and an optional tweak defined as:

T :�

#
pT p1q, T p2q, . . . , T pτqq P Fτn

p if τ ¥ 1

H otherwise (τ � 0)
�
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If τ � 0, then FPM0 ciphers receive no tweak input and correspond to block
ciphers. FPMτ ciphers are key alternating ciphers, where a tweakey is added
every r ¡ 1 rounds. We denote a single round as R, and we denote a group
of Nr rounds R as a step S. A tweakey addition is performed after every step.
If τ � 0, the tweakey is always the master key K. If τ ¥ 1, the tweakeys are
defined as K � T0,0, K � T1,0, . . . , K � Tτ�1,0, K � T0,1, K � T1,1, . . . , K �
Tτ�1,1, . . . , K � T0,i, K � T1,i, . . . , K � Tτ�1,i, where the values Tj,i P Fn

p are
produced by a tweak scheduling and are independent of the master key. If τ � 1,
we usually omit the first index for simplicity (i.e., we use Ti instead of T0,i).

The rounds R : Fn
p Ñ Fn

p (and the steps S) are independent of both the
tweak and of the master key. The number of rounds per step Nr must at least
guarantee that full diffusion is achieved in the steps. Regarding the number of
steps Ns, we additionally require that if τ ¥ 1, then Ns � 1 must be a multiple
of τ in order to guarantee that the tweak is absorbed in equal measure.

Key and tweak scheduling algorithms. Since we do not claim security
against related-key attacks, we opted for the simplest key scheduling algorithm,
which consists of having all the subkeys equal to the master key. Note that several
tweakable lightweight symmetric primitives in the literature are based on similar
design choices, including SKINNY [8] (which we will use in our comparisons).

By contrast, our designs make use of a tweak scheduling algorithm. As men-
tioned in the introduction, this is because in many leakage-resistant modes of op-
eration, the tweak is public and therefore does not require any protection against
leakage. This context calls for operations that are cheap to implement without
countermeasures (in hardware and software) while providing good cryptographic
properties. Since FPM ciphers operate in prime fields, a natural candidate for
this purpose is to combine a shuffling of the Fp-words in each state with an
invertible mapping of the “bits” in each Fp-word, for example taking advantage
of the fact that linear mappings in F2 are non-linear in Fp. More precisely, for
each i ¥ 0 and for each j P t0, 1, . . . , τ � 1u, we define Tj,i as:

Tj,i :� Ψ0

�
T
pjq
Πip0q

	
}Ψ1

�
T
pjq
Πip1q

	
} . . . }Ψn�1

�
T
pjq
Πipn�1q

	
P Fn

p ,

where:

– For each l P t0, 1, . . . , n� 1u, T
pjq
l P Fp denotes the l-th Fp-word of T pjq;

– Π is a shuffling of t0, 1, . . . , n� 1u � N satisfying the following conditions:

1. Πi (where Πi denotes the application of Π i consecutive times) is dif-
ferent from the identity for each i ¤ i1 and a sufficiently large i1;

2. Π does not contain fix points and (if possible) two consecutive elements
before the shuffling are not consecutive after it.

– For each l P t0, 1, . . . , n� 1u, Ψl : Fp Ñ Fp is an invertible mapping.

As we are going to show in the next section, this tweak scheduling algorithm
allows us to adapt the simple security arguments used in [73] to our scheme.
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(a) 2� 2 (b) 2� 4 (c) 4� 4

Figure 2: FPM rounds. Left: b=2, c=2; middle: b=2, c=4,right: b=4, c=4.

2.2 Rounds R of FPMτ via Type-II Generalized Feistel

Let b, c ¥ 2 be positive integers such that n � b � c and b � 2 � b1. The rounds
R over pFc

pq
b � Fn

p of FPMτ ciphers are based on a Type-II generalized Feistel
network structure [116,96,74]. They are defined as:

px0, x1, . . . , xb�2, xb�1q ÞÑ pFpx0q � x1, x2,Fpx2q � x3, . . . ,Fpxb�2q � xb�1, x0q,

where F : Fc
p � Fpc Ñ Fc

p � Fpc is discussed in the next subsection. Such
structures are characterized by two parameters: b � 2 � b1 ¥ 2 is the number
of branches in the generalized Feistel network (where each branch can carry
several values in Fp), c ¥ 2 is the number of values in Fp of each branch, that
the non-linear F function takes as input. Figure 2 illustrates three examples.

Remark: Achieving faster diffusion. In this paper, we limit ourselves to
instances with small b values (up to 4) and to the classical Type-II generalized
Feistel scheme, in which a shift is applied at the output of the non-linear layer.
However, several studies have been conducted in literature to find better shuffles
of the words that can achieve faster diffusion for larger b values (see for exam-
ple [108,35]), which we suggest to use in place of the shift whenever applicable.
Besides the minimum number of rounds necessary for achieving full diffusion,
these references also provide the number of active functions F.

2.3 Function F of the Type-III Generalized Feistel

The F functions over Fc
p are designed to 1) be bijective (since collisions at their

outputs could make the security analysis harder) and 2) ensure full non-linear
diffusion. This is achieved by combining the following components:

– A first non-linear layer is instantiated via a Type-III generalized Feistel
network [116,96,74] (without the shift) of the form: px0, x1, x2, . . . , xc�1q P
Fc
p ÞÑ px0,G0,0px0q � x1,G1,0px1q � x2, . . . ,Gc�2,0pxc�2q � xc�1q P Fc

p , where
G0,0,G1,0, . . . ,Gc�2,0 are non-linear operations over Fp.
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– The non-linear layer is followed by a multiplication with a c � c Maximum
Distance Separable (MDS) matrix [47,48], typically lightweight [88,82,55].3

– Finally, a non-linear layer instantiated via a Type-III generalized Feistel
network (with the shift) is applied to the state: px0, x1, x2, . . . , xc�1q P Fc

p ÞÑ
px0,G0,1px0q � x1,G1,1px1q � x2, . . . ,Gc�2,1pxc�2q � xc�1q P Fc

p , where G0,0,
G1,0, . . . ,Gc�2,0 are again non-linear operations over Fp.

Before the application of each Type-III generalized Feistel network, a round
constant is added on the first element x0. We suggest to generate these constants
via bit rotations of a mathematical constant as π � 3.14159 . . . P R rounded to
a bit size that is large enough to avoid cycles for the number of cipher rounds.

We note that using a Type-III generalized Feistel network for the F functions
is motivated by the fact that a potential candidate for the Gi,j functions is the
square operation which is non-invertible (or other small power maps which are
non-bijective in the respective field). In case the Gi,j functions are themselves
bijective, a simpler alternative is to directly use SPN rounds.

We also note that since we use a bijective F, exploiting a Feistel structure
for the rounds of Section 2.2 is not mandatory (e.g., an SPN could work there
too). However, it has the advantage that the F function can be chosen with-
out any regard for the implementation efficiency of its inverse (with or without
masking), which would not be the case when used as an S-box in a typical SPN
construction. Furthermore, the Feistel strategy directly enables us to obtain
cheap inverses in the sense that 1) cost of decryption � cost of encryption and
2) implementing a hardware circuit that can both encrypt and decrypt is not
(significantly) more expensive than one which can only encrypt (in contrast to
most standard SPN designs). In general, we believe that the high-level structure
of FPM ciphers is a natural starting point given our goals. SPN-based structures
would also require an additional linear layer (which may be more expensive) and
it is unclear whether it would enable a reduction of the number of rounds by
half (to compensate for the cost of operating on the full state in each round).
Yet, investigating whether such prime SPN ciphers could potentially improve
over the proposed FPM designs remains an interesting open problem.

2.4 Summary of the FPMτ Design Space

The size of an FPMτ cipher is determined by the number of tweaks τ , the prime
integer p, the number of branches of the Type-II generalized Feistel network b and
the number of input words of the F functions c. We use the notation FPMτ pρ, b, cq
for this purpose, where ρ � rlog2ppqs. The cipher specifications additionally
require to choose the functions Gi,j : Fp Ñ Fp and an MDS matrix, and to
define the shuffling/mapping of the tweak scheduling algorithm and the round
constants.4 Next, we first provide high-level security arguments that justify the

3 The branch number B of a matrix over Ft
p is defined as BpMq � minxPFtpzt0uthwpxq�

hwpMpxqqu, where hwp�q is denoted as the bundle weight in wide trail terminology.
A matrix M P Ft�t

p is an MDS matrix if and only if BpMq � t� 1.
4 Variants where the F function uses nearly MDS matrices could be considered.
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design choices of FPM ciphers in Section 3. We then propose a first hardware-
oriented instance in Section 4 for which we analyze the mathematical security
in Section 5 and the implementation efficiency & security in Sections 6 and 7.

3 High-level Rationale and Security Arguments

We now provide a high-level rationale and security arguments for FPMτ TBCs.

3.1 TWEAKEY Framework and LED-like Design

FPMτ ciphers follow the TWEAKEY framework proposed by Jean et al. [78] at
Asiacrypt’14. In contrast to the majority of the TBCs following this framework
(including SKINNY), we add the tweakey only every Nr ¡ 1 rounds, where Nr is
strictly bigger than 1. This approach is not new in the literature, as it has been
already exploited in the block cipher LED [73]. Its main advantage is to allow a
very simple security analysis concerning related-tweak attacks.

More precisely, since the tweaks are public, the attacker can always control
them. Similar to a related-key attack [18], in a related-tweak attack the attacker
encrypts (resp., decrypts) the same or different plaintext(s) (resp., ciphertexts)
under several related tweaks. (Anticipating the detailed analysis of Section 5,
we emphasize that related-tweak attacks are usually based on statistical prop-
erties and not on algebraic ones.) A possible way to avoid such attacks is to
treat the tweaks exactly as the plaintexts. That is, not to make any distinction
between plaintexts and tweaks. This is what is done in a sponge/duplex con-
struction [14,15], but it requires a larger state in order to arrange the inner part,
which is not suitable in our case. Another approach to prevent related-tweak at-
tacks is the one proposed in [73] to prevent related-key attacks. That is, adding
the tweak every Nr ¡ 1 rounds. The argument for τ � 1 is relatively simple:

– A statistical attack as the differential one [22,23] exploits the probability
distribution of a non-zero input difference leading to an output difference
after a given number of rounds. The security is achieved if the probability
of any differential characteristic is much smaller than the security level;

– Given T P Fn
p , assume for simplicity that all the Ti’s P Fn

p are equal to T ;
– If a difference is inserted in the tweak, then every sub-tweak Ti will be active;
– Hence, it is impossible to force two consecutive steps S to be non-active

(i.e., with zero input and zero output differences). That is, for every two
consecutive steps S of Nr-rounds, at least one of them must be active.

Indeed, let’s assume that the output difference of the i-th step S coincide with
the difference in Ti. In this case, the next i� 1-th step S is not active, since its
input difference is equal to zero. But the next tweak Ti�1 will introduce again
the difference, making the next i�2-th step S active. Using the number of active
steps Ns (each one composed of Nr rounds), it is therefore possible to provide
simple security arguments for preventing differential and other statistical attacks,
which reduce to the security of the public permutation S (which is independent
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of the tweaks and the master key). We refer to Appendix B for an initial analysis
(based on published results) regarding the selection of the number of steps Ns

independently of their internal structure.
The previous argument can be generalized for a non-trivial tweak scheduling

T : Fτ �n
p � pFn

p q
τ Ñ pFn

p q
�, for example if the following properties are satisfied:

1) T is bijective, and 2) Tj,� P Fn
p is active if and only if T pjq P Fn

p is active.
Equivalently, this second condition is satisfied if there exist τ invertible maps
T0,T1, . . . ,Tτ�1 over Fn

p such that Tj,i � Ti�1
j pT pjqq for each i ¥ 0, where

Ti�1
j :� Tj �Tj � . . . �Tj for i times. (We emphasize that this is not a necessary

condition.) In our case, we achieve this property by defining Tj,� via a shuffle of
the Fp-words of T

pjq. (The mapping of each Fp does not affect this property.) A
detailed argument will be given for small-pSquare with τ � 1, 2 in Section 5.1.

We leave the question whether adding the tweakey every round could lead to
improved (but harder to analyze) security as a scope for further research.

3.2 Rationale behind the Generalized Type-II Feistel Scheme

The main motivation behind the choice of defining FPMτ ciphers based on a
generalized Feistel structure relates to the goal of having TBCs with cheap in-
verses that are useful in some leakage-resistant modes of operation [9,12]. This
result can be achieved via 1) a Feistel or Lai-Massey scheme [84,110,67], 2) an
SPN scheme with the “reflection” property like Prince [27,29,17], or 3) an SPN
scheme in which every round – without the constant additions – is an involution
(that is, R � R�1) like Noekon [46], Khazad [107] or Iceberg [107]. Even if all
options are valid from a security viewpoint, the first one comes with the least
constraints on its internal components, which is desirable in our setting in order
to enable these components to be selected primarily for their properties against
leakage. After discarding Type-I Feistel schemes that require too many rounds
for achieving full diffusion, we opted for Type-II generalized Feistel networks
instead of Type-III ones. As witnessed by designs like Hight [75] or Clefia [104],
they generally offer a good security vs. efficiency compromise.

3.3 Rationale and Construction of the Function F

As mentioned in Section 2.3, the F functions aim to ensure good non-linear
diffusion while remaining bijective (in order to simplify the security analysis).
For functions Gi,j over Fp that are themselves bijective, this could be directly
obtained with two SPN rounds. Yet, and as mentioned in the introduction, one
natural candidate Gi,j function is the square power map, which leads to efficient
masked implementations [33]. As a result, we opted for F functions based on two
rounds of a generalized Feistel network.5 We selected the Type-III version which
is more similar to SPNs in terms of their number of non-linear Gi,j functions and
replaced the middle shift of the Fp-words by an invertible linear layer in order
to speed up the non-linear diffusion, an idea that resembles the one in [10].

5 For instances relying on invertible Gi,j functions, we suggest using two SPN rounds.
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Figure 3: F-function used in small-pSquare.

Regarding the choice of the linear layer, we opted for an MDS matrix which
allows to achieve full non-linear diffusion over Fc

p in only two rounds. Examples
include lightweight candidates [88,82,55] adapted to the prime case (where the
multiplication per two can be cheap – see Footnote 2). Such MDS matrices could
be replaced by any invertible matrix with a smaller branch number that allows
to get full non-linear diffusion in two rounds, as the ones in [87].

Finally, the round constant additions aim to (i) differentiate the rounds
(e.g., for preventing slide attacks [24,25]), (ii) break any fixed points, and (iii)
break any invariant subspace [85,86,69]. Since x ÞÑ x2 has only two fixed points
(namely, 0 and 1) and since Fp does not have any non-trivial subspace (as op-
posed to F2t � Ft

2), we believe that one Fp-constant addition before each non-
linear Type-III generalized Feistel layer is sufficient. As an extra condition when
using Mersenne primes, we require that the round constants do not belong to
any subspace of Fρ

2 (where p � 2ρ � 1). The choice to generate them via a bit
rotation of a fixed mathematical constant like π is for efficient (hardware) im-
plementation purposes. The mathematical constant must be chosen such that
all the rotations are in t0, 1, . . . , p� 1u where p is the prime that defines Fp.

4 small-pSquare: a Hardware-oriented Instance

In this section, we provide the specifications of a first instance of an FPMτ

cipher. As mentioned in the introduction, its high-level rationale follows two main
guidelines. First, we aim to exploit the recently proposed secure squaring gadgets
from [33], which were shown to be more efficient than secure multiplications
in Fp. As a result, we use the square as power map for the Gi,j functions of
Section 2.3. Second, we aim to enable efficient hardware implementations. As a
result, we use a small Mersenne prime p � 27 � 1. We then propose to use the
rounds depicted in the right part of Figure 2, leading to a FPMτ p7, 4, 4q cipher
that provides � 7� 4� 4 � 112 bits of security and we denote as small-pSquare.

We first detail the different components of the function F (depicted in Fig-
ure 3), then finalize the specification of the tweak scheduling algorithm and
conclude with the suggested number of rounds per steps and steps.
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Non-Linear Layer. The non-linear layer of small-pSquare is instantiated with
the following F4

27�1 Ñ F4
27�1 mapping:

px0, x1, x2, x3q ÞÑ
�
x0 � x21, x1 � x22, x2 � px3 � ci,jq

2, x3 � ci,j
�
,

where ci,j is a round constant specified thereafter.

Linear Layer. The linear layer of small-pSquare is instantiated with the invert-
ible matrix M P F4�4

27�1 defined as:

M �

�
���
3 2 1 1
7 6 5 1
1 1 3 2
5 1 7 6

�
��� .

This matrix has been introduced by Duval et al. [55] and is MDS over F27�1. It
can be implemented as a Type-II Feistel-like construction as shown in Figure 3,
with only 8 additions and a depth of 4 (which is optimal for 8 additions). We
recall that the doubling operation (i.e., x ÞÑ 2 � x) modulo a Mersenne prime is
just a bit rotation, hence free in hardware and cheap in software.

Round Constants. The first 64 bits of the binary sequence of π are (in hex-
adecimal): πbin64 � 0xC90FDAA22168C234. Let us denote the bit-wise rotation
left via Î. Then, the left F-function at round i uses the round constants:

– ci,0 � pπbin64 Î iq mod 27,
– ci,1 � pπbin64 Î pi� 16qq mod 27,

while the right F-function at round i uses the round constants:

– ci,2 � pπbin64 Î pi� 32qq mod 27,
– ci,3 � pπbin64 Î pi� 48qq mod 27.

As no sequence of 7 consecutive 1s exists in πbin64, all ci,0, ci,1, ci,2, ci,3’s P F27�1.

Tweak Scheduling (τ ¥ 1 Only). Let Π16 be the shuffle of the 16 F27�1–
words in the tweak schedule sub-tweak word permutation defined as:

Π16px0}x1} . . . }x15q � x9}x5}x13}x15}x12}x7}x14}x2}x4}x6}x8}x3}x10}x1}x11}x0.

Π16 has a cycle period of 140 which is the largest we found for 16-element shuffles
(and more than sufficient for our envisioned step numbers). On each F27�1-word,
we then apply a bit-shuffle Ψl defined as

@l P t0, 1, . . . , 15u : Ψlpxq � ψ7p2
l � x mod 27q ,

where the multiplication with 2l corresponds to a shift of the bits of l positions
(when working over F7

2), and where ψ7 is defined as:

ψ7

�
x �

6̧

i�0

xi � 2
i

�
� x0 � 2

5�x1 � 2
3�x2 � 2

0�x3 � 2
4�x4 � 2

1�x5 � 2
6�x6 � 2

2,
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for each x P F27�1 where x0, x1, . . . , x6 P t0, 1u. The cycle period of ψ7 is 12 (i.e.,
the maximum possible for a permutation over 7 bits). Moreover, the polynomial
corresponding to ψ7 over F27�1 is of degree 125 (i.e., the maximum possible)
and contains 46 out of the 127 monomials possible. We refer to Appendix C for
details on ψ7, where we also prove that the polynomial over F2ρ�1 corresponding
to any bit shuffling only contains monomials of odd degree.

Number of rounds. For a security level of 112 bits and the aforementioned
parameters (p � 27� 1; b � 4, c � 4), we use Nr � 4 rounds per step and we use
Ns � 9 steps for τ � 0, Ns � 16 steps for τ � 1 and Ns � 21 steps for τ � 2.
The security analysis that supports these choices is given in the next section.

5 Mathematical Security Analysis of small-pSquare

We now evaluate the security of small-pSquare against standard attack vectors,
including classical and truncated differential attacks and algebraic attacks (based
on interpolation, linearization, higher-order differentials and Gröbner bases). We
describe the attacks having a larger impact on small-pSquare’s number of rounds
in the paper. Details of further attacks are presented in Appendix D.

Overview of the attacks. As we are going to show, the main attack vector
against small-pSquare is differential cryptanalysis [22,23], which we present in
detail in Section 5.1 for the case τ � 0 and the case τ ¥ 1 (for which we con-
sider related-tweak differential attacks). In this last case, we exploit the strategy
introduced by the LED designers and recalled in Section 3.1 for guaranteeing
security against related tweaks. Truncated [81] and impossible differential [20]
cryptanalysis as well as other statistical attacks including linear cryptanaly-
sis [91] and boomerang attacks [113] are detailed in Appendices D.1 and D.2,
respectively. Contrary to MPC-/FHE-/ZK-friendly schemes defined over prime
fields, and similar to classical/traditional symmetric primitives, algebraic attacks
are not the main threat against small-pSquare in our analysis, essentially due to
the small size of the prime p � 27 � 1 and the high number of variables n � 16.
For this reason, we discuss the degree and density of the polynomial representa-
tion of small-pSquare in Section 5.2, limit ourselves to linearization attacks [42]
in Section 5.3, while we defer the description of interpolation [77], higher-order
differential [83,81] and Gröbner bases based attacks to Appendix D.4.

We mention that in all these cases, we tried to identify concrete strategies on
how to speed up the attacks by making use of related tweaks. In particular, we
propose concrete ways to use related tweaks for speeding up algebraic attacks
which, to the best of our knowledge, has not been thoroughly studied yet in the
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open literature.6 Besides, the non-linear tweak scheduling algorithm of small-
pSquare is also aimed to frustrate such improved cryptanalysis attempts.

5.1 Differential Cryptanalysis

Given pairs of inputs with some fixed input differences, differential cryptanal-
ysis [22,23] considers the probability distribution of the corresponding output
differences produced by the cryptographic primitive. Let ∆I , ∆O P Fn

p be re-
spectively the input and the output differences through a permutation P over
Fn
p . The Differential Probability (DP) of having a certain output difference ∆O

given a particular input difference ∆I is equal to:

ProbPp∆I Ñ ∆Oq �
|tx P Fn

p | Ppx�∆Iq � Ppxq � ∆Ou|

pn
�

In the case of iterated schemes, a cryptanalyst searches for ordered sequences
of differences over any number of rounds that are called differential character-
istics/trails. Assuming the independence of the rounds, the DP of a differential
trail is the product of the DPs of its one-round differences.

Differential property of F. As first step, we compute the maximum differential
probability of F. Since x ÞÑ x2 is a quadratic map, DPmaxpx ÞÑ x2q � p�1 � 2�7.
For our goal, we just need to compute the minimum number of active square
maps in F. We can check that it corresponds to 2. Indeed, let px0, x1, x2, x3q ÞÑ
px0, x

2
0 � x1, x

2
1 � x2, x

2
2 � x3q be the Feistel layer, and keep in mind that the

branch of the MDS matrix M is 5. Then:

– If no square map is active in the first Feistel layer of F (hence, x3 is the only
active component), then only one output is active at its output. After the
multiplication with the MDS matrix, all inputs of the second Feistel layer
are active, which implies the result. A similar result holds if only one square
map is active in the first Feistel layer, which corresponds to the case in which
only one among tx0, x1, x2u is active. In such a case, two outputs of the first
Feistel layer are active, which implies that at least 3 inputs of the second
Feistel layer are active and at least 3 square maps are active for each F;

– If two inputs are active, the best scenario for the attacker occurs when the
active inputs are either tx0, x3u or tx1, x3u. In this case, exactly one square
map is active in the first Feistel layer (due to the fact that x3 does not
activate any square map), and three outputs of the Feistel layer are active
(due to the fact that x0, x1 and x3 are not consecutive). Since the matrix is
MDS, then at least two inputs are active for the second Feistel layer, which
implies that at least one square map is active in the second Feistel layer. As
a result, at least 2 square maps are active for each F;

6 Binary schemes like AES or SHA-3/Keccak have been shown vulnerable to statistical
attacks mainly, while algebraic attacks gain more popularity recently due to the
raising of symmetric schemes designed for applications as MPC, FHE, and ZK. Still,
symmetric schemes designed for such applications are not tweakable designs.
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– If 3 or 4 inputs are active, at least two square maps are active for each F.

Overall, it directly follows that DPmaxpx ÞÑ Fpxqq � p�2 � 2�14.

Differential property of S. As shown in [108,35], at least four consecutive
rounds of Type-II generalized Feistel network are necessary to reach full diffusion
(i.e., Nr ¥ 4). Over 4 consecutive rounds, at least 3 functions F are active, as
shown in Figure 6 in the appendix. As a result, by setting Nr � 4, it directly
follows that DPmaxpx ÞÑ Spxqq ¤ DPmaxpx ÞÑ Spxqq3 ¤ p�6 � 2�42.

Number of steps for security. Finally, we compute the minimum number of
steps Ns for guaranteeing security. Due to clustering effect (that is, due to the
fact that several differential characteristics can be used together for setting up
the attack) and due to the possibility to exploit a Meet-in-the-Middle approach
for setting up the attack, we claim that the scheme is secure if every differential
characteristic has probability smaller than 2�2.5�κ � 2�280 for an arbitrary factor
2.5,7 where κ � 112 � 7 � 16 is our target security level. Moreover, we conjecture
that the attacker cannot skip more than 2 steps S by a simple partial key-
guessing, since one step S is sufficient for achieving full diffusion.

Case: τ � 0. By simple computation, we have Ns ¥ r280{42s � 2 � 7 � 2 � 9
where 2 steps S are added for preventing partial key-guessing strategies.

Case: τ � 1. Following the argument proposed by LED’s designers in [73, Sect. 3]
and recalled in Sect. 3.1, the attacker can choose related tweaks such that only
one out of two consecutive steps S is active. As a result, it is sufficient to double
the number of steps S obtained for τ � 0 to guarantee security. That is, Ns ¥
2 � 7� 2 � 16, where we again add 2 steps S for preventing partial key-guessing.

Case: τ � 2. In this case, the attacker has more freedom in the choice of the
related tweaks. Still, we can adapt the previous security argument as follows.
Let us consider separately the next two cases: (i) both T p0q and T p1q are active
(hence, T0,i and T1,i are both active for each i ¥ 0 due to the definition of the
tweak schedule), and (ii) only one among T p0q and T p1q is active (hence, only
one among T0,i and T1,i is active for each i ¥ 0 due to the definition of the
tweak schedule). In the first case, the analysis proposed for τ � 1 applies, which
implies that at least one among two consecutive steps S is active. In the second
case, w.l.o.g., we assume that T p0q is active and T p1q is inactive. We introduce a
“super-step” S2 :� S�S as the application of two consecutive steps S. By working
as before, we can deduce at least one among two consecutive super-steps S2 is
active. Moreover, if a super-step is active, then the two steps S that compose
it are active. Indeed, the fact that S2 is active implies that T0,i introduces the
difference in the first S. Its output difference cannot be canceled by T1,i, which
is inactive due to the tweak schedule and due to the assumption. Hence, both
steps of S2 are active. The same result applies if T p1q is active and T p0q is active.

This reasoning implies that Ns ¥ 14 is a necessary condition for security. Yet,
we have to keep in mind that the attacker can potentially skip one super-step S2

7 We take inspiration on the AES-128, which has 10 � 2.5 � 4 rounds, where 4 is the
minimum number of rounds for preventing classical differential attacks.
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at each side of the cipher by working with input (respectively, output) differences
in the plaintexts (resp., ciphertexts) that cancel out with the ones in the tweaks,
leading S2 to be inactive. As a result, we require that Ns ¥ 2 � 7 � 4 � 2 � 20,
where we again add 2 steps S for preventing partial key-guessing.

5.2 Degree and Density of the Polynomial Representation

In general, algebraic attacks try to take advantage of the “simple” algebraic de-
scription of a scheme for breaking it, where the simplicity can relate (among other
properties) to the low degree of the encryption/decryption function, the sparsity
of the polynomial representation of such functions, or a particular structure of
the algebraic system generated by the cipher. The main ingredient for preventing
these attacks is the minimal number of rounds such that the polynomial rep-
resentations of the cipher have a sufficient degree and too many monomials for
the attacks to apply with a complexity lower than 2κ. In this section, we there-
fore study these two characteristics, pointing out that the encryption function of
small-pSquare with a fixed key and tweak could be analyzed as a mapping over
Fp16 for p � 27�1. Nevertheless, since all the operations of F are at the basis field
level (squaring in Fp), the field we consider for the cryptanalyses is Fp, and the
polynomials built by an adversary belong to Fprx0, . . . , x15s{px

p
0�1, . . . , xp15�1q.

Note that similar results hold in the context of related tweaks, for which the ad-
versary can consider the same polynomials but with more variables.

Growth of the degree. We first focus on the minimal degree that a polynomial
in this representation can have, and the number of different monomials that
appear in an algebraic system obtainable, after r rounds. Note that the degree
in one variable is at most p � 1, the total degree is then at most 16pp � 1q,
and the total number of monomials is p16. The degree of F is degpFq � 4. More
precisely, it is 4 in three components and 2 in the last one. The degree of its
inverse is degpF�1q � 82 � 26. Indeed, note that the inverse of the internal
function given by py0, y1, y2, y3q � px0 � x21, x1 � x22, x2 � x23, x3q is given by
px0, x1, x2, x3q � py0 � py1 � py2 � y23q

2q2, y1 � py2 � y23q
2, y2 � y23 , y3q.

In both cases (F and F�1), we emphasize that one component of the internal
function of F and F�1 has degree one only. Moreover, in the second case, we
emphasize that the degree is different for each output variable, and that only
one of them has actually maximum degree 8, and therefore 64 for F�1. It follows
that the degree of a step of r consecutive rounds S is degpSq � degpFqr � 22�r,
where we point out that half of the components have degree 1 at the end of the
first round due to the Feistel structure. Accordingly, at round r two blocks have
degree degpFr�1q � 22�r�2. Therefore the minimal degree a polynomial can have
after r rounds is 22�r�3 until it reaches the maximum degree. Since the degree
of the inverse of a Type-II Feistel scheme is equal to the degree of the Type-II
Feistel scheme itself, the same bound applies for r consecutive steps S�1.

Density of the polynomial representation. While the degree’s growth is
an important indicator in order to prevent algebraic attacks, another factor
that plays a crucial role is the density of the polynomial representation. Indeed,
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various algebraic attacks depend on the number of monomials that appear in
the polynomials, which implies that a scheme that admits a sparse polynomial
is in general not secure against algebraic attacks even if it is of high degree.

Experimentally, we can verify the number of monomials we obtain in each
of the 16 polynomials of a round, but even with simpler versions with a prime
smaller than 127 it becomes too complex in practice after a few rounds. For
example, even for p � 3, we observed by practical tests that we already get
more than 216 different monomials in some of the polynomials at the end of the
third round. Since these experiments are quickly getting impractical, we decided
instead to determine the number of rounds for which we expect each polynomial
to be dense by considering the following approach. First, we determine rm defined
as the minimal number of rounds such that at least one complete monomial is
present in each one of the 16 polynomials. We denote as complete monomial one
monomial xe �

±15
i�0 x

ei
i such that for each i P r0, 15s it holds that 0   ei ¤ p�1

(i.e., xe depends on all the variables). Then, we add the number of rounds such
that all possible degrees in one variable can be taken, in other words we add the
number of rounds sufficient to wrap over p (note that the degree in xi inside a
monomial is always between 0 and p� 1 since xpi � xi over Fp).

We next determine a bound on rm. First, due to the Type-II Feistel structure,
after 3 rounds not every input has an impact on the 16 outputs, which implies
rm ¡ 3. Then, we get an upper bound on rm based on our experiments (the
real value could be smaller, taking the upper bound is conservative). With p � 3
we obtain monomials depending on 10 variables in the polynomials in position
1, 2 and 3 and in positions 9, 10 and 11 by symmetry of the Type-II Feistel
structure. These monomials contain all the variables from x0 to x7 and x8 to
x15 respectively. Calling X and Y monomials of this shape, we get that at round
5 there are terms of shape X+Y in the polynomials in positions 0, 1, 2, 3, 8,
9, 10 and 11, therefore giving complete monomials after passing through F due
to the square operations. Since only half of the input goes through F at each
round, one more round is needed to obtain these complete monomials in each
position, therefore rm ¤ 7. When moving to p � 27 � 1 we can only observe
more monomials (since all the ones with a coefficient multiple of 127 rather than
3 are canceled). Combined with the fact that the degree is at least 22r�3 as
shown before, we conclude that 5 extra rounds are sufficient to wrap around
p and reach any degree in one variable. This gives us a bound of 12 rounds
(equivalently, three steps S) to expect dense polynomials in the 16 positions.

5.3 Linearization Attack

Given a system of polynomial equations, one possible way to solve it is via the
linearization technique which works by turning it into a system of linear equa-
tions and adding new variables that replace all the monomials in the system
of degree larger than 1. The resulting linear system of equations can be solved
using linear algebra if there are sufficiently many equations. Consider a system
in x unknowns of degree limited by D, where the number of monomials NpD,xq
is given by NpD,xq �

�
D�x
D

�
when D   p. The attack has a computational cost
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of OpNpD,xqωq operations (for 2   ω ¤ 3), and a memory cost of OpNpD,xq2q
to store the linear equations. Depending on parameters’ choices, the hybrid ap-
proach which combines exhaustive search with this resolution may lead to a
reduced cost. Guessing l   x variables leads to a complexity of:

O
�
pl �NpD,x� lqω

�
.

Case: τ � 0 (no tweak). Since the key is composed of 16 F27�1-words, for any
l P r0, 15s we computed that pl �NpD,x� lqω ¡ 2112 occurs already for D � 69
(taking the conservative value of ω � 2). Since the minimal degree follows 22r�3

as shown previously (where 22r�3 ¡ 27 � 1 for r ¥ 5), and based on the density
analysis just given, we can conclude that 3 steps S (equivalently, 12 rounds) are
sufficient to prevent algebraic attacks based on linearization.

Case: τ ¥ 1 (related tweaks). The freedom of choosing the tweak(s) can be
exploited to cancel some monomials whose coefficients depend on the tweak(s)
or part of them. Similarly, the difference of two polynomials under related tweaks
can be exploited to cancel monomials whose coefficients are independent of the
tweaks. Moreover, the linear combinations of more polynomials under properly
chosen related tweaks can be exploited to cancel monomials whose coefficients
depend on the tweaks or part of them. In this last case, the attacker has to (i)
set up a system of equations in which the linear combinations of the coefficients
of some monomials is set to zero, and (ii) solve it (e.g., via linearization or using
Gröbner bases) to find the related tweaks that satisfy such conditions.

Obviously, this procedure is not free, since one has to solve equations in the
tweak variables that are dense and of high (e.g., maximum) degree. Moreover,
the non-linear tweak scheduling must be taken into account as well. Based on
the analysis just given (and on the results presented in Appendix D.4 for attacks
based on Gröbner bases), it would be infeasible for the attacker to solve a system
of equations (in the tweaks instead of the plaintexts) that cover more than 12
rounds (or equivalently 3 steps) of the cipher once the tweak is fully absorbed
(where we remind that 12 is the minimum number of rounds for achieving full
diffusion in the interpolation polynomial). For this reason, we conjecture that
12�4�pτ�1q � 8�4�τ extra rounds (or 2�τ , extra steps, which means 3 or 4 for
τ P t1, 2u) are sufficient for preventing related-tweak algebraic attacks. We note
that this conjecture does not have to be tight for the security of small-pSquare
to hold, since we need a larger number of extra steps to prevent related-tweak
statistical attacks (respectively, 9 and 12 for τ P t1, 2u).

Note on Gröbner Bases Attacks.We recall that Gröbner bases based attacks
reduce to linearization attacks when (i) the attacker aims to solve equations
linking the plaintexts (and the tweaks) to the ciphertexts only, with the key
as only variable, and (ii) the attacker can collect enough data for linearizing
the system (i.e., the best scenario for the attacker). Hence, when analyzing the
security of our scheme against such attacks in Appendix D.4, we only consider
the case in which the system of equations is set up at round level.
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6 Hardware Performance Evaluation of small-pSquare

In this section we evaluate the hardware cost and performance of the small-
pSquare instance in comparison to respective implementations of the SKINNY

lightweight tweakable block cipher [8]. Due to its simple and efficient design,
SKINNY has gained remarkable popularity in recent years, both in academia and
industry, and was selected as part of the ISO/IEC 18033-7:2022 standard for
tweakable block ciphers. It has been designed with efficient application of side-
channel countermeasures in mind, in particular masking, and is therefore ideally
suited for our comparison [8]. Naturally, the general design strategy as well as the
individual operations employed by the two ciphers (small-pSquare vs. SKINNY) are
vastly different. At first sight, comparing two primitives with more differences
than similarities may appear suboptimal to gain meaningful insights. However,
in order to achieve a high level of cost-efficiency, lightweight TBCs necessarily
need to be tailored to the amenities of their particular mathematical foundation.
Hence, the stark differences between these primitives are a direct manifestation
of their specialization to the finite fields they operate in. Only such a comparison
can answer the question which mathematical setting (e.g., binary field vs. prime
field masking) is preferable for constructing dedicated instances to maximize the
efficiency vs. security tradeoff of protected TBC implementations.

Table 1: Cost and performance of round-based unprotected SKINNY-128 and
small-pSquare hardware implementations evaluated in TSMC 65nm technology
at typical operating conditions for 100 MHz and 250 MHz clock frequency.

Cipher Block Size Key Size Tweak Size Freq. Crit. Path Area Power Latency
[MHz] [ns] [GE] [mW] [cyc/enc]

SKINNY 128 128
0

100|250
1.877155 2450.75 0.3915 40/1

128 1.812617 3396.00 0.5613 48/1
256 1.905185 4353.00 0.7304 56/1

small-pSquare 112 112

0
100

9.777720 9684.75 1.3547 36/1
112 9.970046 10798.75 1.5424 64/1
224 9.937350 11989.50 1.6745 84/1

0
250

3.945602 12407.75 1.7942 36/1
112 3.971674 14716.50 2.1160 64/1
224 3.972123 16034.00 2.2392 84/1

small-pSquare has been designed to offer competitive performances to com-
mon binary lightweight block ciphers when masking is applied. Nevertheless, we
begin by comparing its critical path delay, area, power consumption (at 100 MHz
operation) and encryption latency to SKINNY-128 when both are implemented as
unmasked round-based hardware circuits in Table 1. All values are post-synthesis
results obtained using Synopsys Design Compiler Version O-2018.06-SP4 as a
synthesis tool together with the TSMC 65nm standard cell library at typical
operating conditions for two different clock frequencies, 100 MHz and 250 MHz.
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The results show that regardless of the tweak size, unmasked SKINNY-128 is sig-
nificantly more efficient in terms of critical path delay, area footprint and power
consumption when compared to unmasked small-pSquare. The encryption la-
tency, which directly corresponds to the number of rounds, is slightly smaller for
small-pSquare without tweak compared to SKINNY-128 without tweak. However,
for the tweakable variants it is larger in case of small-pSquare. We conclude that
when unprotected, and hence for implementation settings where physical attacks
are not a concern, small-pSquare is not fully competitive with binary lightweight
ciphers in hardware. Yet, as mentioned before, this was not the primary goal of
our design effort. Significantly better efficiency in unprotected hardware would
have commanded different design choices that, in part, directly oppose to effi-
ciency in masked representation.

We now focus on the more relevant comparison of secure higher-order masked
hardware circuits. We have chosen to compare the small-pSquare version with
τ � 1 with SKINNY-128-256 for 2 up to 4 shares (i.e., first- to third-order secure
designs). SKINNY-128-256 is the denotation of the SKINNY variant which receives
a 128-bit plaintext, 128-bit key and 128-bit tweak (i.e., a 256-bit tweakey) as
inputs and computes 48 cipher rounds for one encryption or decryption. We
recall that small-pSquare with τ � 1 receives a 112-bit plaintext, 112-bit key
and 112-bit tweak as inputs and computes 64 cipher rounds for one encryption
or decryption. To put the difference of round numbers in perspective, remember
that small-pSquare is a Type-II generalized Feistel design, i.e., each round updates
only half of the state. We will see in the next results that with all other factors
being equal, masked small-pSquare implementations generally require fewer clock
cycles per encryption (sometimes significantly) than masked SKINNY-128-256

implementations, despite the larger number of rounds of the former design.

We have scanned the literature for publicly available securely masked SKINNY-
128-256 implementations, with moderate success. The only higher-order masked
hardware implementations of tweakable SKINNY-128 we could find have been
published in conjunction with [111,103] as part of a study of the leakage resis-
tance of Romulus and other Authenticated Encryption with Associated Data
(AEAD) schemes that made it into the finals of NIST’s Lightweight Crypto
Competition. The concrete implementation is hence of the SKINNY-128-384+

variant which is used in Romulus and publicly available on GitHub.8 Please
note that the authors have not verified its security properties experimentally.
However, it is based on the trivially composable HPC2 masking scheme [32]
which eases the extension of gadget security to full-implementation security. We
have modified this implementation slightly to make it compute SKINNY-128-256
instead of SKINNY-128-384+, which commanded small changes to the round
numbers and tweak schedule. Since this concrete implementation uses a specific
implementation of the SKINNY 8-bit S-box that is tailored towards a certain set
of optimization goals, we also wanted to include other, more general, masked
SKINNY-128 implementations in our comparison. To this end we have employed
the Automated Generation of Masked Hardware (AGEMA) tool published at

8 https://github.com/uclcrypto/aead_modes_leveled_hw

https://github.com/uclcrypto/aead_modes_leveled_hw


20 L. Grassi, L. Masure, P. Méaux, T. Moos, F.-X. Standaert

Table 2: Cost and performance comparison of masked SKINNY-128-256 and
small-pSquare (τ � 1) hardware implementations evaluated in TSMC 65nm tech-
nology at typical operating conditions for 100 MHz and 250 MHz clock.

Cipher Ref. Par. Freq. d Pip. Crit. Path Area Power Latency Random
[MHz] [ns] [GE] [mW] [cyc/enc] [bit/cyc]

SKINNY-128-256

[80]

128 100|250

2 1.519177 19026.75 2.8547 432/1 128
3 1.763878 38828.75 6.2545 432/1 384
4 1.839592 65502.00 8.9225 432/1 768

2 ✓ 1.566238 58475.50 13.6144 432/9 128
3 ✓ 1.801272 94611.50 21.6698 432/9 384
4 ✓ 1.882408 137625.50 30.8983 432/9 768

32 100|250

2 1.743940 9274.50 1.0755 2160/1 32
3 1.903482 15999.00 2.0608 2160/1 96
4 1.823993 24442.00 8.2697 2160/1 192

2 ✓ 1.885406 39016.25 9.1220 2160/9 32
3 ✓ 1.943746 57757.00 13.4186 2160/9 96
4 ✓ 1.909085 78243.00 17.9452 2160/9 192

[111] 128 100|250
2 3.715469 18035.75 2.5276 288/1 32
3 3.232731 28740.75 4.1347 288/1 96
4 3.849724 41136.75 5.9918 288/1 192

small-pSquare [this]

112

100

2 9.845555 21714.50 2.9370 128/1 84
3 9.854049 41982.50 5.6533 128/1 210
4 9.852280 62587.75 8.4822 128/1 504

2 ✓ 9.852014 30730.25 4.4491 128/2 168
3 ✓ 9.854022 65273.00 9.2764 128/2 420
4 ✓ 9.853921 101168.00 14.3426 128/2 1008

250

2 3.857306 29438.50 3.7809 128/1 84
3 3.861372 52073.50 6.9574 128/1 210
4 3.907730 78441.00 10.5274 128/1 504

2 ✓ 3.852503 40414.75 5.5467 128/2 168
3 ✓ 3.857475 77556.50 11.0357 128/2 420
4 ✓ 3.859051 121589.25 17.4111 128/2 1008

56

100

2 9.847473 15332.25 1.9296 256/1 42
3 9.851035 27215.75 3.4077 256/1 105
4 9.852068 39237.50 4.9897 256/1 252

2 ✓ 9.848985 20735.75 2.8794 256/2 84
3 ✓ 9.941982 39958.75 5.5274 256/2 210
4 ✓ 9.851659 59404.75 8.2398 256/2 504

250

2 3.855009 20471.00 2.4330 256/1 42
3 3.858206 34485.25 4.2527 256/1 105
4 3.859086 48511.25 6.1763 256/1 252

2 ✓ 3.858980 26823.25 3.5092 256/2 84
3 ✓ 3.858999 48147.50 6.5390 256/2 210
4 ✓ 3.857775 72245.00 9.9639 256/2 504

Cipher = Evaluation target, either SKINNY-128-256 or small-pSquare (τ � 1).
Ref. = Reference, i.e., related publication, AGEMA is cited for automatically generated circuits.
Par. = Parallelism, i.e., size of the state that is operated on in parallel measured in bits.
Freq. = Synthesis frequency measured in Megahertz (MHz).
d = Number of shares, resulting in security order d � 1.
Pip. = Design is pipelined (✓) or not ( ).
Crit. Path = Critical path of the synthesized circuit measured in nanoseconds (ns).
Area = Area consumption of the synthesized circuit measured in gate equivalents (GE).
Power = Power consumption of the synthesized circuit measured in milliwatts (mW).
Latency = Latency of the synthesized circuit measured in clock cycles per encryption(s).
Random = Fresh randomness consumption measured in bits per clock cycle.
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TCHES 2022 [80] which is able to turn unprotected hardware implementations
of cryptographic primitives automatically into securely masked equivalents. We
have utilized the tool to autonomously generate masked implementations of
SKINNY-128-256 from the source code for unprotected hardware circuits pro-
vided by the SKINNY authors on its website as source material.9 In particular,
we translated both, round-based and 32-bit serialized implementations into their
masked equivalents based on the HPC2 masking scheme using the Naive pro-
cessing method (see [80]), as it led to the most suitable results for a comparison.
We further generated both pipelined and non-pipelined masked circuits. Given
this collection of securely masked SKINNY-128-256 circuits we are now equipped
for an in-depth cost and performance comparison to our prime-field TBC.

Analogously to the selected implementations of SKINNY, we created round-
based and half-round-based masked hardware circuits of small-pSquare. While
these implementations operate on the full state (112 bits) and half the state
(56 bits) in parallel, respectively, non-linear operations are only applied to 56
and 28 bits in parallel respectively due to the Feistel structure. Hence, the half-
round-based implementations compute only one F-function on a 28-bit input
at a time, resulting in a similar serialization level (28 vs. 32) compared to the
SKINNY equivalent. The circuits are based on the secure and composable prime-
field squaring gadgets introduced in [33]. In fact, we even optimized the 4-share
gadget in a way that it only needs a single register stage, using similar opti-
mization strategies as for the 2-share and 3-share case presented by the authors
of [33]. The pseudo-code for this optimized 4-share gadget is given in Algorithm 1
of Appendix E. The resulting comparison is presented in Table 2. All results are
based on post-synthesis estimations obtained using Synopsys Design Compiler
and TSMC 65nm technology at typical operating conditions for two different fre-
quencies, 100 MHz and 250 MHz. The resulting figures for the SKINNY-128-256
circuits are identical for both frequencies due to the short critical path length.
For completeness we also provide figures for the more extreme cases of 500 MHz
and 1 GHz operation in Appendix F.10 Based on this collection of cost and per-
formance results, we conclude that small-pSquare is indeed able to compete with
SKINNY-128-256 when masked in hardware, especially at lower frequencies. The
automatically generated hardware circuits of SKINNY need a rather large amount
of cycles per round (regardless of the frequency) and are costly when pipelined.
At the target frequencies considered in the table (¤ 250 MHz) SKINNY-128-256
is only consistently cheaper in terms of area when non-pipelined serialized im-
plementations are compared. Yet, this advantage in area footprint comes at a
steep price, as the encryption latency is larger by a considerable factor. Overall,

9 https://sites.google.com/site/skinnycipher/implementation
10 More “extreme”, because cryptographic co-processors manufactured in 65 nm tech-

nology are rarely clocked at such high frequencies. This is evident for example
in research ASICs manufactured in such technology nodes, as reported in http:

//asic.ethz.ch/technologies/65.html. Furthermore, the vast majority of com-
mon criteria certified co-processors protected against side-channel attacks do not ex-
ceed 200-300 MHz operation (https://www.commoncriteriaportal.org/products).

https://sites.google.com/site/skinnycipher/implementation
http://asic.ethz.ch/technologies/65.html
http://asic.ethz.ch/technologies/65.html
https://www.commoncriteriaportal.org/products
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considering the area/power consumption and the latency together, small-pSquare
often appears preferable. This changes when very high operating frequencies are
needed. Then SKINNY becomes preferable, as shown in Tables 5 and 6 of Ap-
pendix F. In summary, our results show that small-pSquare is indeed capable of
providing competitive cost and performance results in the envisioned application
settings, and even outperforms its competitor consistently when the frequency
is sufficiently low.

Decryption. Our comparison focuses on encryption-only circuits. However, adding
capability for decryption is trivial for small-pSquare due to the Feistel structure.
The additional cost for multiplexing between addition and subtraction of F-
function results for the encryption and decryption process falls in the range of a
few percent (depending on masking order and parallelization). Adding decryp-
tion capability to the SKINNY circuits typically requires twice the area.

Comparison to AES-prime. We note that small-pSquare is also significantly more
efficient in hardware compared to AES-prime which has been introduced at Euro-
crypt 2023 as the first example of a dedicated cipher for prime-field masking [90].
It shares the same block and key size as small-pSquare, but is not tweakable. Com-
pared to AES-prime our unmasked small-pSquare with τ � 0 is at least 3 times
smaller. More importantly, masked small-pSquare with τ � 1 is on average (over
the number of shares) 5 times smaller compared to masked AES-prime despite
the additional tweak input [90]. This implies that masked small-pSquare with
τ � 0 requires a more than 5 times smaller area footprint while also executing
in fewer clock cycles under the same frequency, constituting a very notable im-
provement over the state of the art. In addition, we recall that all variants of
small-pSquare enable efficient decryption, while AES-prime does not.

Area and power consumption. It is clear that the comparison of the area and
power consumption in Table 2 is affected by the different block, key and tweak
sizes of the analyzed primitives. Since all those size parameters are smaller for
the chosen prime-field design, this fact may tilt the comparison of the imple-
mentation size to small-pSquare’s advantage. However, we argue that even if
normalizing all area and power figures related to small-pSquare artificially by, for
example, multiplying them with the corresponding size difference factor, namely
128
112 �

8
7 , our conclusions would not change drastically. In order to avoid any con-

fusion we have not applied any artificial normalization of our results. We would
also like to mention that for cases where 112 bits of security are insufficient,
increasing the security level of small-pSquare at low additional cost is possible
using the trick employed by the PRINCE block cipher with whitening keys [27].

Latency vs. frequency. small-pSquare naturally allows to trade latency in cycles
for frequency in Megahertz and vice versa. The considered masked SKINNY-128-

256 implementations offer less flexibility. They always have a very short critical
path but require a larger number of cycles due to the type of masked gadgets
that are used. In fact, bit-wise masking, where each binary two-input non-linear
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gate (e.g., AND, OR, NAND, NOR) is individually replaced by a masked gadget
equivalent, enables high frequency operation but requires many register stages
to uphold masking security. This is because any secure masked hardware gadget
computing a non-linear operation requires at least one register stage (attempts
to improve this are usually based on additional specialized hardware assump-
tions [100,94]). Introducing a register stage for each atomic bit-level gate entails
a high overhead in latency of the implementation, but also in area. While this
makes masked SKINNY-128-256 well-suited for high frequency operation, it lim-
its its performance in lower frequency and low-latency applications.

Mild additional constraints. We note that small-pSquare comes with a few ad-
ditional constraints due to the fact that it operates in a prime field while data
is usually encoded in a binary manner. It is however pretty simple to convert
a vector of prime field elements into a sequence of bits, by just viewing it as a
representation of an integer in basis p. For small-pSquare, the maximum value
is worth 12716 � 1 which can represent 111-bit values (yielding a one-bit loss in
the conversion). Similarly, masking small-pSquare requires to generate uniformly
random prime numbers. Rejection sampling is a viable method (with probability
1/127 to reject a value). Using a PRNG that natively operates in Fp is an alter-
native. Eventually, small-pSquare would be best integrated in a leakage-resistant
mode of operation, which should not raise specific problems since TBC-based
constructions like [11] or [103] are field-agnostic. Overall, none of these minor
caveats is expected to bring significant overheads.

7 Side-Channel Security Assessment of small-pSquare

Finally, we evaluate the security of our masked implementations. In particu-
lar, we experimentally assess and compare the side-channel resistance of masked
small-pSquare (τ � 1) and SKINNY-128-256 implementations by measuring their
power consumption on an FPGA device and trying to infer the secret key from
their side-channel leakage. We focus on pipelined implementations of small-
pSquare and SKINNY-128-256 for 2, 3 and 4 shares. The serialized circuits consti-
tute a scenario with lower noise, while the parallel ones help to show the differ-
ences at slightly higher noise levels, although their side-channel Signal-to-Noise
Ratios (SNRs) are not drastically different. Table 7 of Appendix F additionally
contains the SCA evaluation results for the small-pSquare versions with extra
register stages to enable larger maximum frequencies.

Setup. For our experiments we use a SAKURA-G FPGA board which houses
two Spartan-6 FPGAs serving as controller and device under test, respectively.
All designs are operated at 6 MHz clock frequency (for low noise) and their power
consumption is measured using a PicoScope 5244D digital sampling oscilloscope
at 250 MS/s sampling rate with 12-bit vertical resolution through a Tektronix
CT-1 current probe (bandwidth of up to 1 GHz) placed in the power supply path
of the target FPGA. Xilinx ISE Version 14.7 is used to synthesize the circuits,
with default parameters except the -keep hierarchy attribute set to yes.
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Table 3: Comparative side-channel evaluation of pipelined masked
SKINNY-128-256 and small-pSquare hardware implementations.

Cipher Par. CPR d mean SNR median SNR TVLA det. compl. SASCA compl.

SKINNY-128-256

128 9
2 0.0023 0.0021 71 000 25 000
3 0.0015 0.0019 811 000 362 000
4 0.0013 0.0010 57 000 000 29 832 000

32 45
2 0.0064 0.0048 52 000 6 000
3 0.0026 0.0028 680 000 157 000
4 0.0020 0.0016 48 000 000 17 169 000

small-pSquare

112 2
2 0.0021 0.0019 321 000 213 000
3 0.0032 0.0013 8 040 000 4 002 000
4 0.0016 0.0011 ¡ 100 000 000 ¡ 100 000 000

56 4
2 0.0073 0.0031 238 000 45 000
3 0.0030 0.0025 7 040 000 1 754 000
4 0.0018 0.0020 ¡ 100 000 000 ¡ 100 000 000

Cipher = Evaluation target, either SKINNY-128-256 or small-pSquare (τ � 1).
Par. = Parallelism, i.e., size of the state that is operated on in parallel measured in bits.
CPR = Cycles per round, i.e., latency of one round function computation measured in cycles.
d = Number of shares, resulting in security order d � 1.
mean SNR = Mean maximum SNR of all S-box/Squaring input shares in the first round.
median SNR = Median maximum SNR of all S-box/Squaring input shares in the first round.
TVLA det. compl. = Minimum number of traces to surpass the TVLA detection threshold.
SASCA compl. = Minimum number of traces to achieve key rank 1 in a SASCA key recovery.

Table 3 summarizes the evaluation results collected for the 12 different masked
implementations, 6 � SKINNY-128-256 and 6 � small-pSquare. It is apparent
from the mean and median side-channel SNRs computed over all first-round
8-bit S-box (SKINNY-128-256) input shares or 7-bit Squaring (small-pSquare)
input shares, that the quality of observations an adversary can make of individ-
ual words processed in the circuits is quite similar in both cases (binary-field
or prime-field cipher). Thus, the noise levels are not expected to significantly
impact the following investigation. We have plotted one set of evaluation results
in Figure 4 for the concrete example of serialized pipelined implementations
with 3 shares. For all 2-, 3- and 4-share implementations respectively, we have
first measured 1 million, 10 million and 100 million traces, in a randomly inter-
leaved sequence of measurements for fixed and for random inputs, according to
the Test Vector Leakage Assessment (TVLA) methodology [102]. The resulting
non-specific t-test results are illustrated in the third row of Figure 4. The imple-
mentations satisfy the expected statistical security order in the experiments, as
the smallest moment where leakage is detected is equal to the number of shares.
The same holds for all evaluated circuits in Table 3. As a next step we per-
formed exemplary key recovery attacks on the most leaking (highest SNR) 8-bit
or 7-bit word respectively of the state. In order to extract the most information
from the traces and reduce the effective noise level we have employed a profiled
horizontal Soft-Analytical Side-Channel Attack (SASCA) [112]. In a first step
all relevant intermediate values are profiled over multiple clock cycles to obtain
multivariate templates. Next, a Linear Discriminant Analysis (LDA) is used to
perform a linear dimensionality reduction which maximizes class separation on
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Figure 4: Exemplary SCA results of serialized second-order masked
SKINNY-128-256 (left) and small-pSquare (right) hardware implementa-
tions. From top to bottom: Sample traces, SNRs (1M traces), Fixed-vs-random
t-tests (10M traces), Profiled SASCA (1M profiling, 10M attack traces).

the profiling traces (always 1M) [106]. Finally, on the distinct attack trace set,
likelihoods for all intermediate values and corresponding templates are collected
separately, before a discrete probability distribution of the secret value is de-
rived using belief propagation inside a SASCA tree graph that contains multiple
intermediate computation stages of the masked S-box or squaring. These proce-
dures are readily implemented in the publicly available SCALib library [31]. We
then estimate the average rank of the correct key (over 1 000 iterations) with
the probabilities obtained from all the attack traces. The results of that proce-
dure plotted over the number of attack traces are shown in the bottom row of
Figure 4. In both the TVLA and the SASCA results it is apparent that, despite
similar SNR values, successful leakage detection and key recovery require con-
sistently significantly more traces (higher data complexity) on the small-pSquare
compared to the SKINNY circuits, regardless of the concrete implementation cho-
sen. This advantage of prime-field masking can be attributed to the “algebraic
incompatibility” between physical leakage and recombination function to com-
pute the secret from its shares. It can be observed that in case of attacks on 3-
and 4-share implementations the advantage of small-pSquare is around or above
one order of magnitude (slightly less in case of 2 shares). Furthermore no leakage



26 L. Grassi, L. Masure, P. Méaux, T. Moos, F.-X. Standaert

detection or sophisticated key recovery attack succeeded on any of the 4-share
implementations of small-pSquare using 100 million traces. Despite their empir-
ical nature, we believe these results clearly emphasize the interest of efficient
TBCs dedicated for prime-field masking based on established design principles
(e.g., Feistel structures) while also tailoring the design to specific advantages
that a given mathematical structure can lead to (e.g., using squaring as source
of non-linearity in prime fields to exploit their efficient masked gadgets).

8 Summary and Open Problems

In this paper, we proposed both the FPM family of ciphers that leverages a
generalized Feistel structure for prime masking and easy integration in leakage-
resistant modes of operation, and the small-pSquare instance that is tailored for
hardware implementations (due to its small prime) and exploits recent advances
for masked squaring gadgets. Combining a hardware performance evaluation
with an initial side-channel security assessment allows us to put forward the in-
terest of this approach. small-pSquare protected with prime masking shows sig-
nificantly improved (side-channel) security vs. performance tradeoffs compared
to SKINNY protected with Boolean masking. Besides their concrete interest, we
believe our investigations uncover new design principles for side-channel resistant
implementations, leading to new challenges for further research.

Starting from more specific questions, the mathematical and physical secu-
rity evaluation of small-pSquare is, as usual for new ciphers, a natural direction
for deeper analyzes. Given the breadth of the FPM family, investigating other
instances would be interesting as well. For example, a mid-pSquare instance with
p � 231 � 1 would be particularly well-suited for software implementations for
which masking is known to be difficult to implement due to a lack of noise [7,30].
Such an instance could for example be based on the high-level structure depicted
in the left part of Figure 2 combined with the candidate F function given in Fig-
ure 5. For modes of operation where having efficient inverses is not critical, it
could also be possible to replace the generalized Feistel structure of Section 2.2
by an SPN one. More generally, the use of prime masking raises important theo-
retical questions regarding security proofs. For example, while the seed results of
Dziembowski et al. provide a rationale for prime masking [57], the understand-
ing of this approach is still far from the one of Boolean masking. Typical open
problems in this respect are to improve the tightness of the security proofs and
to better formalize the intuition of “algebraic incompatibility” that makes prime
computations less sensitive to a lack of noise than Boolean masking.

The source code for all our small-pSquare implementations is publicly avail-
able here: https://github.com/uclcrypto/small-pSquare
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Figure 5: Candidate F-function for a mid-pSquare instance.
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1. Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Christian
Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. Feistel Struc-
tures for MPC, and More. In ESORICS, volume 11736 of LNCS, pages 151–171.
Springer, 2019.

2. Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. MiMC: Efficient Encryption and Cryptographic Hashing with Minimal
Multiplicative Complexity. In ASIACRYPT, volume 10031 of LNCS, pages 191–
219, 2016.

3. Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan
Szepieniec. Design of Symmetric-Key Primitives for Advanced Cryptographic
Protocols. IACR Trans. Symmetric Cryptol., 2020(3):1–45, 2020.

4. Thomas Baignères, Jacques Stern, and Serge Vaudenay. Linear Cryptanalysis of
Non Binary Ciphers. In Selected Areas in Cryptography, volume 4876 of LNCS,
pages 184–211. Springer, 2007.

5. Josep Balasch, Sebastian Faust, Benedikt Gierlichs, and Ingrid Verbauwhede.
Theory and Practice of a Leakage Resilient Masking Scheme. In ASIACRYPT,
volume 7658 of LNCS, pages 758–775. Springer, 2012.
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(F4). Journal of pure and applied algebra, 139(1-3):61–88, 1999.



Generalized Feistel Ciphers for Efficient Prime Field Masking - Full Version 31
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A Active F functions

Figure 6: Example of minimum number of active F functions over 4 rounds.
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B High-Level (Provable) Security of FPM TBCs

In this section, we recall a number of results that drive the selection of the
number of steps Ns independent of the internal structure of these steps.

Case: τ � 0. The cipher FPM0 is a typical example of an iterated Even-
Mansour (EM) scheme [58]. In their paper, Even and Mansour showed that
the security of a 1-round 2-key EM scheme Ek0,k1

pxq :� k1 ` Ppx ` k0q for a
permutation P over Fn

2 is at most of n{2 bits. Since the security provided by a
1-round 2-key EM is much smaller than the 22n time complexity of exhaustive
key search, multiple papers published in the last couple of years have studied the
security of iterated EM schemes with more than one round [44,54,26,95,37,49]:

– Bogdanov et al. [26] showed that the r-round EM scheme with independent
keys and permutations and at least r ¥ 2 rounds provides security up to
approximately 22n{3 queries, but can be broken in r � 2r�n{pr�1q queries. This
bound has been proven to be tight by Chen and Steinberger [37];

– Daemen [44] described a differential chosen-plaintext attack that recovers
the key of 1-round EM scheme in approximately 2n{2 queries. Later on,
Dinur et al. [49] proved that at least 4 rounds are necessary to provide full
key-recovery security for an iterated EM scheme with identical sub-keys.

Case: τ ¥ 1. In the case τ ¥ 1, the attacker can speed up the attacks by exploit-
ing related tweaks. In the TWEAKEY framework in which a tweakey is used as
the key material, several related-tweak attacks can be seen/described as related-
key attacks on the EM scheme, since the difference in the sub-key can be simply
seen as the difference in the sub-tweak. In [26], Bogdanov et al. remarked that
related-key distinguishing attacks against the iterated EM scheme with indepen-
dent round keys “exist trivially”, and described a related-key key-recovery attack
against the two-round EM scheme with identical round keys requiring roughly
2n{2 queries (e.g., the 1-round EM scheme satisfies Ek0,k1pxq � Ek0`δ,k1px ` δq,
which only holds with negligible probability for an ideal cipher).

In [92], Mendel et al. describe how to extend Daemen’s attack [44] on the EM
scheme to a related-key version on iterated EM constructions. For iterated EM
with independent sub-keys, they showed that Daemen’s attack can be generalized
to yield a related-key attack on r rounds with complexity of Opr � 2n{2q (where
n is the sub-key size). More interestingly for our purpose, for iterated EM with
identical sub-keys, Mendel et al. showed that Daemen’s attack can be used to
break two rounds with complexity of Op2n{2q in the related-key model.11 Besides
that, they also presented some attacks in the single-key and related-key models,
which assume that some of the internal permutations exhibit a high probability
differential characteristic (that is, much bigger than 2�n). In particular, if a

11 For completeness, we mention a similar related-tweak attack has been presented
later on by Cogliati et al. [40] for the case of tweakable EM ciphers with linear
tweak schedule.
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differential characteristic with probability 0   ρ   1 exists for (at least) one
of the internal permutations, then they show a related-key attack on a 4-round
EM scheme instantiated with identical sub-keys with complexity Op2n{2 �ρ�1{2q.
The attack is described in Figure 7, where the initial difference ∆I is equal to

Figure 7: Attack on 4-round EM with related tweaks.

the difference in the first sub-key ∆0, and where the differential trail ∆1 Ñ ∆2

holds with probability ρ for S. It is trivial to note that the previous attack
works exactly in the same way in our context in the case τ � 1, assuming the
difference is not in the key but in the tweak. For the case τ � 2, the previous
attack can be easily extended to 5 rounds by exploiting the freedom in the second
sub-tweak (since it is independent of the first one, the attacker can impose a
zero difference in there). Moreover, we point out that the existence of a high
probability differential allows the attacker to cover more rounds.

We finally mention that the security of tweakable EM schemes was studied
by Cogliati et al. in [41,39], but such results do not apply to our scenario either
due to stronger tweak scheduling they considered (based on a hash function)
or due to the different size of the key and of tweak with respect to the ones
considered in our project.

C Details about Ψ7

In this part first we show that the polynomial over F2ρ�1 corresponding to any
bit shuffle only contains monomials of odd degree. Then, we give more details
on Ψ7, the particular bit shuffle we chose and its inverse Ψ�1

7 . Finally we show
that Ψ7 has maximal period.

C.1 Bit shuffle and odd functions over Mersenne-Prime fields

A bit shuffling is a non-linear operation over Fp, where p is a Mersenne prime.
This allows us to set up a non-linear tweak schedule that could help to prevent
related-tweak algebraic attacks. From this point of view, we present the following
result:

Proposition 1. Let p � 2ρ � 1 ¥ 3 be a prime integer. Let λ : Fp Ñ F̂ρ
2, where

Fp is identified to t0, . . . , p� 1u and F̂ρ
2 is Fρ

2 where r0, . . . , 0s and r1, . . . , 1s are
identified, be defined as

λ

�
x �

ρ�1̧

i�0

xi � 2
i

�
� x0}x1} . . . }xρ�1 ,
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where x0, x1, . . . , xρ�1 P t0, 1u. Let Λ be a linear function over Fρ
2 such that

Λpr1, 1, . . . , 1sq � r1, 1, . . . , 1s. The algebraic polynomial corresponding to Lp�q :�
λ�1 �Λ �λp�q (formally the algebraic normal form of the p-ary function L), does
not contain monomials of even degree (equivalently, it is an odd function, that
is, Lpxq � �Lp�xq for each x P Fp).

Proof. Given λpxq � rx0, x1, . . . , xρ�1s, for x � 0 we have λp�xq � λpp � xq �
r1` x0, 1` x1, . . . , 1` xρ�1s. For x � 0 we have λp�xq � λp0q � r0, 0, . . . , 0s. It
follows that, for x � 0

Lpxq � Lp�xq � λ�1 � Λ � λpxq � λ�1 � Λ � λp�xq

�λ�1 � Λprx0, x1, . . . , xρ�1sq ` λ�1 � Λpr1` x0, 1` x1, . . . , 1` xρ�1sq

�λ�1 � Λprx0, x1, . . . , xρ�1s ` r1` x0, 1` x1, . . . , 1` xρ�1sq

�λ�1 � Λpr1, 1, . . . , 1sq � λ�1pr1, 1, . . . , 1sq � λ�1pr0, 0, . . . , 0sq � 0 .

For x � 0, since Λ is linear, Lpxq � Lp�xq � 2λ�1 � Λ � λp0q � 2λ�1 �
Λpr0, . . . , 0sq � 2λ�1 � r0, . . . , 0s � 0.

Since L is an odd function (that is, Lpxq �Lp�xq � 0 for each x P Fp), Lpxq
has only monomials with odd degrees as a polynomial over Fp, that is,

@x P Fp :
¸

1¤i�2�i1�1¤p�1

αi � x
i � 0

for αi P Fp. [\

Since a bit shuffle is a linear operation, then the polynomial representation of Ψl

defined in Section 4 contains only monomials of odd degree.

C.2 Polynomial Expression of Ψ7 and Ψ�1
7

The polynomial corresponding to Ψ7 over F27�1 is

Ψ7pxq �6 � x
125 � 60 � x123 � 7 � x121 � 42 � x117 � 15 � x115 � 85 � x111

� 29 � x109 � 49 � x107 � 71 � x103 � 56 � x101 � 59 � x97 � 62 � x95

� 51 � x93 � 12 � x89 � 75 � x87 � 29 � x83 � 120 � x81 � 100 � x79

� 37 � x75 � 45 � x73 � 63 � x69 � 61 � x67 � 67 � x65 � 43 � x61

� 13 � x59 � 108 � x55 � 106 � x53 � 87 � x51 � 82 � x47 � 8 � x45

� 77 � x41 � 95 � x39 � 111 � x37 � 29 � x33 � 85 � x31 � 49 � x27

� 28 � x25 � 72 � x23 � 2 � x19 � 51 � x17 � 83 � x13 � 70 � x11

� 87 � x9 � 95 � x5 � 67 � x3 � 50 � x ,
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while the polynomial corresponding to Ψ�1
7 over F27�1 is

Ψ�1
7 pxq �6 � x125 � 86 � x123 � 86 � x121 � 76 � x117 � 40 � x115 � 85 � x111

� 122 � x109 � 94 � x107 � 68 � x103 � 107 � x101 � 59 � x97 � 55 � x95

� 46 � x93 � 58 � x89 � 73 � x87 � 29 � x83 � 45 � x81 � 13 � x79

� 73 � x75 � 120 � x73 � 63 � x69 � 7 � x67 � 43 � x65 � 102 � x61

� 77 � x59 � 108 � x55 � 8 � x53 � 71 � x51 � 100 � x47 � 106 � x45

� 77 � x41 � 115 � x39 � 3 � x37 � 119 � x33 � 15 � x31 � 49 � x27

� 74 � x25 � 50 � x23 � 52 � x19 � 9 � x17 � 83 � x13 � 58 � x11

� 71 � x9 � 57 � x5 � 94 � x3 � 100 � x .

For Ψ7 and Ψ�1
7 (and the other order-12 bit shuffles we tried), we observed

that the corresponding polynomials over F27�1 never have degrees even (as
proven by Proposition 1), multiple of 7 or congruent to 1 modulo 14 except
x1. Accordingly, they all have 46 terms.

C.3 Period of Ψ7

Finally, we prove that Ψ7 has maximum period, in the sense that there is no bit
shuffle that requires a higher number of iterations before returning the original
input. For doing this, we point out that the shuffle corresponding to Ψ7, that is,

p0, 1, 2, 3, 4, 5, 6q ÝÑ p5, 3, 0, 4, 1, 6, 2q ,

can be divided in two independent cycles, that is,

p0, 2, 6, 5q and p1, 4, 3q .

Hence, its period is lcmp3, 4q � 12 (where lcm refers to ’least common multiple’).
Since we aim to avoid fixed points, we have the following situations:

– two cycles of length 2 and a cycle of length 3, which corresponds to a period
of lcmp2, 2, 3q � 6;

– a cycle of length 2 and a cycle of length 5, which corresponds to a period of
lcmp2, 5q � 10;

– a cycle of length 3 and a cycle of length 4, which corresponds to a period of
lcmp3, 4q � 12;

– a single cycle of period 7.

D Detailed Security Analysis

D.1 Truncated and Impossible Differential Cryptanalysis

Truncated differential cryptanalysis [81] generalizes differential cryptanalysis in
the sense that truncated differentials are differentials where only a part of the
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Figure 8: Graphical representation, truncated differential over 4 rounds.

difference can be predicted. That is, the attacker specifies only part of the dif-
ference between input texts and lets the remainder take any arbitrary value.
Impossible differential attacks [20] exploit output differences which cannot occur
in the course of a function (i.e., output differences with probability zero). Impos-
sible differentials are usually set up by concatenating two consecutive truncated
differentials that hold with probability 1 and that do not match in the middle.

Let’s start by analyzing the single tweak attack scenario. A Type-II Feistel
admits the following 4-round truncated differential with probability 1:

p0, 0, 0, ∆q P pF4
pq

4 ÞÑ p0, 0, ∆, 0q ÞÑ p0, ∆, ?, 0q ÞÑ p∆, ?, ?, 0q ÞÑ p?, ?, ?, ∆q P pF4
pq

4

for each ∆ P F4
pzt0u. Obviously, an analogous truncated differential exists by

considering inputs of the form p0, ∆, 0, 0q. A graphical representation is provided
in Figure 8, where note that �, � P F4

pzt0u are non-zero differences since F is a
permutation.

If no shift is applied at the end of F, it is possible to extend the previous
truncated differential to 5 rounds by exploiting the details of F, as showed in
details in Figure 9. We note that the function F over F4

p admits a truncated
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differential with probability 1 of the form

pδ, 0, 0, 0q P F4
p ÞÑ p?, ?, ?, 6 � δq P F4

p

for each δ P Fpzt0u. However, if no final shift is applied on F, the truncated
differential is of the form

pδ, 0, 0, 0q P F4
p ÞÑ p6 � δ, ?, ?, ?q P F4

p .

In such a case, our design admits a 5-round truncated differential with probability
1 of the form

p0, . . . , 0loomoon
PF12

p

, δ, 0, 0, 0q P F16
p ÞÑ p7 � δ, ?, ?, ?, ?, ?, ?, ?, δ10, δ

1
1, δ

1
2, δ

1
3, ?, ?, ?, ?q P F16

p

for each δ P Fpzt0u, where pδ
1
0, δ

1
1, δ

1
2, δ

1
3q � p0, 0, 0, 0q. A graphical representation

is provided in Figure 9.
By combining two truncated differentials with probability 1, it is possible to

set up an impossible differential over 9 rounds of the form

p0, 0, 0, ∆q
R�R�R�R
ÝÝÝÝÝÑ
prob. 1

p?,�, �, ∆q
R

ÝÝÝÝÑ
prob. 1

p?, �, ∆��, ?q

�p?, ?, ∆, ?q
R�1�R�1�R�1�R�1

ÐÝÝÝÝÝÝÝÝÝÝÝÝ
prob. 1

p0, 0, 0, ∆q ,

for a certain � P F4
pzt0u which is non-zero since F is a permutation.

Not surprisingly, this is the same impossible truncated differential distin-
guisher that applies to CLEFIA [104], a Type-2 generalized Feistel over F4

232

whose round functions are instantiated with 1-round SPN scheme (that is, one
round defined via the concatenation of one S-Box non-linear layer followed by
the multiplication with an MDS matrix). Based on this, attacks on 13 rounds
CLEFIA have been proposed in the literature [104,109,89,28]. To the best of our
knowledge, no other systematic analysis of the impact of (impossible) truncated
differential attacks has been performed in the literature. Since 1) we require at
least Nr �Ns ¥ 4 � 9 � 36 rounds for the security against differential attacks (in
the case of a single tweak attack) and since 2) the round function F of our design
(which involves a 2-round Type-III Feistel scheme in which the diffusion is sped
up by an MDS matrix multiplication) is not “weaker” than the one of CLEFIA,
we conjecture that 36 rounds are sufficient for preventing (impossible) truncated
differentials as well.

In a similar fashion, we conjecture that the number of rounds necessary for
preventing classical differential attacks in the case τ P t1, 2u are sufficient for
preventing (impossible) truncated differentials as well.

D.2 Other Statistical Attacks

We finally claim that the previous number of rounds stated in Section 5.1
provides security against other statistical attacks published in the literature,
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Figure 9: Graphical representation, truncated differential over 5 rounds (when
no shift is applied).

including (but not limited to) the linearization [91] one and its variants, the
boomerang [113] and the rectangle [21] attack, and to structural statistical at-
tacks as the integral [45] one, the multiple-of-n [70] one, and the mixture differ-
ential one [66]. We briefly motivate this claim in the following.

In a linear attack, the attacker looks for a linear combination of input, output,
and key words that is unbalanced, i.e., biased towards an element of Fp with
probability higher than 1{p (we refer to [4,51] for more details regarding the
linear cryptanalysis over prime fields). In our case, the only non-linear operation
is the square map x ÞÑ x2, which can be approximated by a linear function with
probability at most 2{p (x2 � µ �x if and only if x P t0, µu). Due to this fact and
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based on the same analysis proposed for differential attacks proposed before,
linear attacks pose no threat against our scheme.

The boomerang attack is a variant of a differential attack which relies on
chaining two good differential trails simultaneously. As studied before, any dif-
ferential characterestic that covers half the number of rounds of our scheme has
probability smaller than 2�1.25�κ. It follows that, even if an attacker can find
good differentials over a limited number of rounds, it is not possible to set up a
boomerang distinguisher/attack on the entire scheme.

Finally, as our scheme works over a prime field, small-pSquare could be po-
tentially attacked by all attacks vectors that exploit the strong alignment on
symmetric schemes, as the integral and square attacks, or more recently the
multiple-of-n differential cryptanalysis and the mixture differential one. How-
ever, we claim that such attacks become quickly infeasible, since the nonlin-
ear layer (instantiated via a Feistel scheme) is not aligned and full diffusion is
achieved in a single step S.

D.3 Interpolation and Higher Order Differential Attacks

Interpolation Attack. In the interpolation attack, the attacker aims to con-
struct the interpolation polynomial that describes the encryption function. With
respect to the linearization attack, the variable of such polynomial is the plain-
texts (or the ciphertexts) and not the key. Such interpolation polynomial can
be exploited to set up attacks, as the forgery attack, a distinguisher one, or a
key-recovery attack. E.g., in this last case, the attacker (partially) guesses the
final key, sets up the interpolation polynomial on the reduced cipher, and checks
it via an extra input/output pair – see [77] for more details. We remark that
Meet-in-the-Middle versions of such attack are also possible.

Case: τ � 0 (No Tweak). Since the system of equations over Fprx0, . . . , x15s{px
p
0�

1, . . . , xp15 � 1q given by the plaintexts and ciphertexts pairs has the same struc-
ture as the one considered previously, we consider again that after 12 rounds
(equivalently, 3 steps S) we obtain only dense polynomials of maximum degrees.
This corresponds to the fact that no adversary can construct the interpolation
polynomial with approximately 2112 different monomials with a complexity sig-
nificantly lower than 2112. Since Meet-in-the-Middle versions of such attack are
also possible, and since some rounds can be covered by key-guessing (note that 1
step S is sufficient for fully absorbing the key), we consider at least 2 �12�4 � 28
rounds (or 7 steps S) are sufficient for preventing the interpolation attack in the
case τ � 0 (no tweaks).

Case: τ ¥ 1 (Related Tweaks). In the case τ ¥ 1 (related tweaks), the at-
tacker can exploit related tweaks to cancel some monomials that appear in the
interpolation polynomial. Moreover, the attacker can potentially construct the
polynomial whose variables are both the plaintexts and the tweaks. Hence, more
data for the attacker means that the attacker can potentially recover a larger
number of coefficients of the monomials but at the same time, the number of
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monomials grows much faster. Due to the same analysis proposed in Section 5.3,
we require at least a number of extra rounds sufficient to get dense polynomials
between the addition of two tweaks, that is, 8� 4 � τ (that is, 2� τ extra steps).
Having said that, as for the case of the linearization attack discussed in Sec-
tion 5.3, related-tweak interpolation attacks do not seem to be as competitive
as related-tweak statistical attacks.

Higher-Order Differential Attack. The higher-order differential attack has
been proposed independently by Lai [83] and by Knudsen [81] for the binary case.
Given a function F : Fn

2 Ñ F2 of degree d, the attacker exploits the fact thatÀ
xPV`ν F pxq � 0 for each ν P Fn

2 and for each subspace V � Fn
2 of dimension

at least equal to d � 1 (that is, dimpVq ¥ d � 1). For the odd prime case, the
result has been recently generalized by Beyne et al. [16] as following. Let p ¥ 3
be a prime. Given a function F : Fn

p Ñ Fp with degree degpF q   l � pp� 1q, then

¸
xPV�ν

F pxq � 0

for each ν P Fn
p and for each subspace V � Fn

p of dimension at least l (remember
that Fp does not admit any subspace). Therefore an attack with data complexity
pl can be mounted whenever the degree of F as a polynomial over Fp is strictly
less than lpp � 1q. As usual, such distinguisher can be easily extended into a
key-recovery attack, while we are not aware of MitM version of such attack.

Case: τ � 0 (No Tweak). In order to prevent the attack, we ensure that the
encryption function has degree at least p16� 1q � p27� 2q to ensure a complexity
of p16 � 2κ. We consider 12 rounds (i.e., 3 steps), to get dense polynomials of
maximum degree from the previous analysis. We add 1 extra step due to the
possibility for the attacker to cover extra rounds via partial key-guessing.

Case: τ ¥ 1 (Related Tweaks). As before, even if the attacker can make use of
related tweaks to cancel the monomials of higher degree, the number of rounds
necessary for preventing related-tweak statistical attacks are sufficient for pre-
venting related-tweak higher-order differential attacks.

D.4 Gröbner Basis Based Attacks

Given a system of multivariate equations, the most efficient methods for solving
it over large finite fields involve computing a Gröbner basis associated with the
system. We refer to [43] for details on the underlying theory. In the following,
we first recall some generic notions about Gröbner basis, and then we estimate
the complexity of solving the system of multivariate equations associated to our
cipher, first in the case τ � 0, and then in the case τ ¥ 1.
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Theoretical Preliminary. Given a system of multivariate equations, Gröbner
basis algorithms require three steps for solving it:

1. compute the Gröbner basis with respect to degrevlex term order with the
F4 [61] or F5 [62] algorithm;

2. convert the Gröbner basis into the lexicographic term order using the FGLM
algorithm [59,60];

3. find the roots of the polynomial system by factoring univariate polynomials
and extending the partial solutions.

The complexity depends on several factors, including the number of variables nv,
the number of equations ne, the degree of each equation d0, d1, . . . , dne�1 ¥ 1,
and the degree of regularityDreg. In order to guarantee the security of our cipher,
it is sufficient to show that the cost of (at least) one of the previous steps is higher
than 2κ where κ is the security level. In the case nv ¤ ne, the complexity of the
first step (which is in general the most expensive one) is well estimated by

O
��

nv �Dreg

nv



ω

,

where 2 ¤ ω   3 is the linear algebra constant, and where the terms hidden
by Op�q are relatively small (for this reason, in the following analysis, we drop
the Op�q, and use the expression directly). In general, there does not exist a
precise estimation of the degree of regularity for a generic system of equations.
However, for the case of a semi-regular system of equations (see e.g. [6] for a
formal definition), the degree of regularity is defined as the index of the first
non-positive coefficient in the series

Hpzq �

±ne�1
i�0 p1� zdiq

p1� zqnv
,

where di is the degree of the i-th equation. If nv � ne, then Dreg admits a closed

formula given by Dreg � 1�
°ne�1

i�0 pdi � 1q.

Remark 1. Before going on, we point out that the polynomial systems repre-
senting algebraic cryptographic algorithms are often not regular. Since analyzing
non-regular systems is very complex in general, a common practice consists in
estimating the complexity of the Gröbner basis attack for an equivalent regular
system, and to add extra rounds to account for the non-regularity of the system.

Gröbner Basis Attacks on small-pSquare: Working at Round-Level.
There are many possible ways to represent a cryptographic construction as a
system of multivariate polynomials, and this choice impacts the performance of
the Gröbner basis algorithm. A first possible way is to set up a system of equa-
tions that involves only the known inputs and outputs of the attacked cipher.
For small-pSquare, the variables of such system are represented by the secret key
words only, and their number is equal to 16. In such a scenario, the attacker
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can potentially collect enough polynomials for solving the system of equations
by direct linearization, as discussed previously.

Another possible approach consists in working at round level, by introduc-
ing new variables and equations for each Feistel layer. While this increases the
number of variables, it keeps the degree low. Here, we analyze the security of
small-pSquare against this attack, first in the case τ � 0 (no tweaks), and then
in the case τ ¥ 1.

Number of Equations and Variables. The first step for estimating the cost of the
Gröbner basis attack consists in setting up the system of equations we aim to
solve. Let’s start by considering a single input/output. Since the secret key is
unknown, it contributes 16 variables. Next, each application of Fpx0, x1, x2, x3q �
py0, y1, y2, y3q over F4

27�1 can be described by 6 equations of degree 2 (that is,
y0, y1, y2 and the auxiliary variables z1, z2, z3) and 1 equation of degree 1 (that
is, y3):

z1 � x20 � x1, z2 � x21 � x2, z3 � x32 � x3,

y0 � pz3 � z2 � 2 � z1 � 3 � x0q
2 � pz3 � 5 � z2 � 6 � z1 � 7 � x0q,

y1 � pz3 � 5 � z2 � 6 � z1 � 7 � x0q
2 � p2 � z3 � 3 � z2 � z1 � x0q,

y2 � p2 � z3 � 3 � z2 � z1 � x0q
2 � p6 � z3 � 7 � z2 � z1 � 5 � x0q,

y3 � z3 � z2 � 2 � z1 � 3 � x0.

Working over r ¥ 2 rounds (remember that each round R is composed of 2
functions F), we have 12 � r equations of degree 2 plus 2 � r equations of degree
1. We can use the intermediate linear equations to eliminate variables, reducing
ourselves to 12 � r equations of degree 2 plus 4 final equations of degree 1 (that
describe the output of the cipher). The number of variables of this system is
16 � p12 � r � 4q. Since the output of the cipher is assumed to be known, we
can use it to eliminate the 16 last variables, reducing ourselves to a system of
12 � r � 4 equations in 12 � r � 4 variables.

Over-Determined Case. In the most general case, one can consider m ¥ 2 in-
puts/outputs. By working as before, one sets up a system of equations com-
posed of 12 � r � m equations of degree 2 and 4 � m equations of degree 1, in
16 � p12 � r � 12q �m variables. Note that the such system if over-determined,
since the number of equations 12 � r � m � 4 � m � 4 � m � p3r � 1q is always
bigger than the number of variables. However, since the number of variables and
equations is much higher than the single input/output case, it is expected that
the cost of solving such system is minimized for m � 1.

Estimation of the Degree of Regularity. Working with a single input/output, and
assuming the system of equation to be semi-regular, the degree of regularity is
given by

Dreg � 1� 12 � r ,
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which is depicted by the green dashed curve in Figure 10. To verify this trend,
we have encoded the equations in sage, and computed the degree using the
.degree of semi regularity() method. Our practical tests, depicted by the
blue points on Figure 10, suggest however that a good estimation for the degree
of regularity is given by Dest � 4 � r� 3 , as given by the light green dotted line.
Still, in the following, we will use

Dest � 2 � r � 1

depicted in Figure 10 by the pink dashed curve, as a more conservative choice.

2 4 6 8 10 12 14 16 18 20

0

100

200

Number of rounds r
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2 � r � 1
4 � r � 3

Dreg

Figure 10: Degree of regularity with respect to the number of rounds: estimations
and practical tests.

Estimation of the Cost of the Gröbner Basis Attack (for τ � 0). By using Dest,
the cost of the first step of the attack is estimated by��

4� 12 � r � 2 � r � 1

12 � r � 4



ω

.

Since ω ¥ 2 and since 112 is our security level (in bits), such attack is prevented
if ��

14 � r � 3

12 � r � 4



2

¥ 2112 ùñ r ¥ 8 ,

that is, 2 steps S.
In the previous computation, we assumed that the Gröbner basis attack

against small-pSquare is comparable to that of solving a semi-regular system with
12r quadratic equations + 4 linear equations in 12r � 4 variables. However, we
note that not all polynomials in our modeling will contain every variable, which
adds a certain structure that an attacker might be able to use when reducing
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the matrices encountered in F4. We emphasize that we accounted this fact 1) in
the conservative choice of using ω � 2 for the linear algebra constant, 2) in the
use of Dest which is smaller than the results of our practical tests. Finally, the
choice Ns � 9 for preventing differential attacks implies a security margin of 7
steps S (equivalently, 28 rounds) against such attack.

Case: τ ¥ 1. Finally, even if the attack can be potentially sped up by taking
into account related tweaks, it seems infeasible that it can be as competitive as
other related-tweak attacks discussed before.

E Single-Cycle 4-Share PINI Squaring Gadget

The masked squaring gadget with 4 shares and a single register stage described
by Algorithm 1 is conjectured to be 3-glitch-robust PINI [34].

Algorithm 1 Masked squaring (glitch-robust PINI) with d � 4 shares.

Input: Sharing a.
Output: Sharing b such that b � a2.

1: for i � 0 to 11 do
2: ri

$
Ð Fp

3: α0 Ð 2a1 � r0
4: α1 Ð 2a2 � r1
5: α2 Ð 2a3 � r2
6: α3 Ð 2a0 � r3
7: α4 Ð 2a0 � r4
8: α5 Ð 2a1 � r5

9: β0 Ð a0pa0 � r0q � r6 � r7
10: β1 Ð a1pa1 � r1q � r7 � r8
11: β2 Ð a2pa2 � r2q � r8 � r9
12: β3 Ð a3pa3 � r3q � r9 � r10
13: β4 Ð a2r4 � r10 � r11
14: β5 Ð a3r5 � r11 � r6

15: b0 Ð Reg pβ1q � a0 Reg pα0q
16: b1 Ð Reg pβ2q � Reg pβ4q � a1 Reg pα1q
17: b2 Ð Reg pβ3q � Reg pβ5q � a2pReg pα2q � Reg pα4qq
18: b3 Ð Reg pβ0q � a3pReg pα3q � Reg pα5qq
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F Higher Frequency and Latency Results

Table 4: Cost and performance of round-based unprotected SKINNY-128 and
small-pSquare hardware implementations evaluated in TSMC 65nm technology
at typical operating conditions for 500 MHz and 1 GHz clock frequency.

Cipher Block Size Key Size Tweak Size Freq. Crit. Path Area Power Latency
[MHz] [ns] [GE] [mW] [cyc/enc]

SKINNY 128 128

0
500

1.850039 2450.75 0.3914 40/1
128 1.812617 3396.00 0.5613 48/1
256 1.866683 4353.00 0.7306 56/1

0
1000

0.913763 2835.00 0.4330 40/1
112 0.957316 3797.75 0.6219 48/1
224 0.943099 4736.50 0.7765 56/1

small-pSquare 112 112

0
500

1.970174 14382.50 1.8891 72/2
112 1.965831 16571.25 2.1521 128/2
224 1.946081 17498.25 2.2782 168/2

0
1000

0.979052 17217.00 2.4286 144/4
112 0.977633 19424.25 2.7170 256/4
224 0.981642 20693.75 2.8573 336/4

Table 5: Cost and performance comparison of masked SKINNY-128-256 and
small-pSquare (τ � 1) hardware implementations evaluated in TSMC 65nm tech-
nology at typical operating conditions for 500 MHz clock frequency.

Cipher Ref. Par. d Pip. Crit. Path Area Power Latency Random
[ns] [GE] [mW] [cyc/enc] [bit/cyc]

SKINNY-128-256

[80]

128

2 1.519177 19026.75 2.8547 432/1 128
3 1.763878 38828.75 6.2545 432/1 384
4 1.839592 65502.00 8.9225 432/1 768

2 ✓ 1.566238 58475.50 13.6144 432/9 128
3 ✓ 1.801272 94611.50 21.6698 432/9 384
4 ✓ 1.882408 137625.50 30.8983 432/9 768

32

2 1.743940 9274.50 1.0755 2160/1 32
3 1.903482 15999.00 2.0608 2160/1 96
4 1.823993 24442.00 8.2697 2160/1 192

2 ✓ 1.885406 39016.25 9.1220 2160/9 32
3 ✓ 1.943746 57757.00 13.4186 2160/9 96
4 ✓ 1.909085 78243.00 17.9452 2160/9 192

[111] 128
2 1.933508 18035.75 2.5361 288/1 32
3 1.944391 28775.50 4.1321 288/1 96
4 1.933779 41143.75 5.9978 288/1 192

small-pSquare [this]

112

2 1.859616 29862.75 3.5537 320/1 34
3 1.955726 52153.25 6.4189 320/1 84
4 1.955649 78087.00 9.8462 320/1 202

2 ✓ 1.953954 47786.50 6.7981 320/5 168
3 ✓ 1.906346 87437.50 12.5397 320/5 420
4 ✓ 1.859594 136319.50 19.7666 320/5 1008

56

2 1.955629 21186.50 2.3152 640/1 17
3 1.955702 34677.25 3.9515 640/1 42
4 1.955738 50638.25 5.9314 640/1 101

2 ✓ 1.859584 33663.25 4.6977 640/5 84
3 ✓ 1.956702 57478.75 8.3328 640/5 210
4 ✓ 1.980931 86320.25 12.1962 640/5 504
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Table 6: Cost and performance comparison of masked SKINNY-128-256 and
small-pSquare (τ � 1) hardware implementations evaluated in TSMC 65nm tech-
nology at typical operating conditions for a 1 GHz clock frequency.

Cipher Ref. Par. d Pip. Crit. Path Area Power Latency Random
[ns] [GE] [mW] [cyc/enc] [bit/cyc]

SKINNY-128-256

[80]

128

2 0.949509 19407.50 2.9036 432/1 128
3 0.947323 40094.25 6.4985 432/1 384
4 0.954137 67513.25 8.9752 432/1 768

2 ✓ 0.951373 58928.50 13.7255 432/9 128
3 ✓ 0.953803 95915.50 21.9737 432/9 384
4 ✓ 0.950508 139883.75 31.4951 432/9 768

32

2 0.955532 9544.50 1.0952 2160/1 32
3 0.955728 16525.50 2.1183 2160/1 96
4 0.947166 25104.00 8.1450 2160/1 192

2 ✓ 0.950554 39256.75 9.1467 2160/9 32
3 ✓ 0.952657 58274.75 13.5388 2160/9 96
4 ✓ 0.951762 78972.25 18.1421 2160/9 192

[111] 128
2 0.953287 19077.50 2.5824 288/1 32
3 0.951160 29998.25 4.2289 288/1 96
4 0.955633 42781.25 6.1521 288/1 192

small-pSquare [this]

112

2 0.984539 33206.50 4.0781 640/1 17
3 0.988338 61491.00 7.7516 640/1 42
4 0.989980 90334.25 11.8584 640/1 101

2 ✓ 0.974142 61712.75 9.9905 640/10 168
3 ✓ 0.930758 114461.25 18.1467 640/10 420
4 ✓ 0.982303 158879.25 27.0836 640/10 1008

56

2 0.988946 24377.25 2.6962 1280/1 9
3 0.989175 41025.75 4.7424 1280/1 21
4 0.989994 58694.00 7.1102 1280/1 51

2 ✓ 0.930693 46481.75 7.3055 1280/10 84
3 ✓ 0.983510 79853.25 12.3280 1280/10 210
4 ✓ 0.986008 117094.00 18.2342 1280/10 504

Table 7: Side-channel security evaluation of pipelined masked small-pSquare hard-
ware implementations optimized for higher frequency operation.

Cipher Par. CPR d mean SNR median SNR TVLA det. compl. SASCA compl.

small-pSquare

112

5
2 0.0094 0.0019 417 000 163 000
3 0.0024 0.0024 9 350 000 6 183 000
4 0.0020 0.0016 ¡ 100 000 000 ¡ 100 000 000

10
2 0.0034 0.0021 309 000 188 000
3 0.0022 0.0018 8 478 000 3 831 000
4 0.0018 0.0012 ¡ 100 000 000 ¡ 100 000 000

56

10
2 0.0043 0.0038 229 000 53 000
3 0.0041 0.0039 7 504 000 1 562 000
4 0.0036 0.0033 ¡ 100 000 000 ¡ 100 000 000

20
2 0.0045 0.0052 343 000 42 000
3 0.0046 0.0036 9 881 000 1 439 000
4 0.0029 0.0021 ¡ 100 000 000 ¡ 100 000 000
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