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ABSTRACT
Zero-knowledge range proofs (ZKRPs) allow a prover to convince

a verifier that a secret value lies in a given interval. ZKRPs have

numerous applications: from anonymous credentials and auctions,

to confidential transactions in cryptocurrencies. At the same time,

a plethora of ZKRP constructions exist in the literature, each with

its own trade-offs. In this work, we systematize the knowledge

around ZKRPs. We create a classification of existing constructions

based on the underlying building techniques, and we summarize

their properties. We provide comparisons between schemes both

in terms of properties as well as efficiency levels, and construct

a guideline to assist in the selection of an appropriate ZKRP for

different application requirements. Finally, we discuss a number of

interesting open research problems.

1 INTRODUCTION
Zero-knowledge (ZK) proofs have receivedmuch attention in recent

years, with an abundance of generic protocols being developed

using various assumptions and techniques. Although these generic

protocols are becoming very efficient and easier to implement, there

are still cases for specific types of statements, where customized

ZK protocols are preferable.

Zero-knowledge range proofs (ZKRPs) are a subclass of zero-

knowledge proofs that proves a structured kind of set member-

ship. A ZKRP allows a prover to convince a verifier that a se-

cret, committed value lies in a given (integer) interval. Brickell

et al. [BCDvdG88] introduced the first type of zero-knowledge

range proof as a building block in a protocol for revealing a se-

cret discrete logarithm bit-by-bit. Since their introduction, ZKRPs

have been used in various applications such as private e-cash proto-

cols [CFT98] (to verify non-negative transaction amounts), anony-

mous credentials systems [CCS08, BCC
+
09, CCL

+
21] (to prove that

a secret credential attribute, i.e. user age, falls in a specific range)

as well as private voting [Gro05], auctions [AW13] and privacy

preserving federated learning [BGL
+
23] and so on. Additionally,

ZKRPs are often used as building blocks for more complex crypto-

graphic schemes. For instance, they have been used to construct

ZK proofs of non-membership [LLNW18] and ZK proofs of cer-

tain polynomial relations over the integers [CM99, CBM99], and

they have also been used to prove well-formedness of RLWE ci-

phertexts [DPLS19, Lib23] and well-formedness of shares in secret-

sharing schemes [Gro21, GHL22].

At the same time, with the rise of decentralized systems and

cryptocurrencies, range proofs have received increased attention

due to their use in mechanisms that preserve the privacy of trans-

actions posted on the blockchain. For instance, ZKRPs are a key

ingredient in confidential transactions [Max16, BAZB20, Poe16] —

which hide the amount of each transaction posted on the blockchain.

The transaction amounts are stored in a committed fashion, and to

ensure validity of the transaction the sender must prove that the

sum of the output amounts does not exceed the sum of the input

amounts. For this check to be sound, the sender must also prove that

all output amounts are positive (else an adversarial sender could

commit to negative output amounts and create coins out of thin air).

For commitments in a group, such as Pedersen commitments, this

positivity check also involves showing that the committed value

is much less than the order of the group. This check essentially

amounts to showing that the committed value is in some integer

range [0, 2𝑘 − 1] and is done via a ZKRP. Additionally, ZKRPs are

heavily used in protocols for blockchain auditing and solvency so-

lutions [DBB
+
15, Cam14, JC21, CB21] to show that transactions or

reserves of an organization satisfy certain policies.

This increased interest in ZKRPs has also resulted in a growing

number of proposed constructions with different characteristics and

properties. With numerous ZKRP constructions available, selecting

the suitable scheme for a specific application can be challenging.

The goals of this SoK are to organize the space on the various tech-

niques used to construct range proofs, compare their properties

in a systematic way, identify open research questions, and pro-

vide a guideline to select the appropriate protocol for each type of

application.

Our contributions and organization. We start by defining the nec-

essary background on cryptographic schemes and computational

assumptions in Section 2. In Section 3, we provide a taxonomy of

general approaches used in the construction of zero-knowledge

range proofs. Concretely, we identify three underlying methods

used in the constructions of known ZKRP schemes: (a) square de-

composition, (b) binary/n-ary decomposition and (c) hash-chain

approach. We describe each method in detail, and for 𝑛-ary decom-

position we present an abstraction that allows us to synthesize the

several techniques used. Our abstraction is of independent interest,

and could potentially lead to new insights. Then, in Section 4, we

collect the set of properties beyond the standard soundness and

zero-knowledge that are desirable in certain application scenarios

of ZKRPs, such as aggregation, transparent setup and efficiency

considerations. In Sections 5-7 we classify all known (to the best of

our knowledge) ZKRP constructions under the three methods we

identified in Section 3. For each method, we provide an analytical
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list of known protocols and we compare all protocols based on the

desirable properties listed in Section 4. In Section 8, we provide

a guideline for how to select the best type of ZKRP construction

based on the desired properties and then in Section 9, we report

storage and computation (verifier/prover time) costs of the most

popular ZKRP constructions using existing and new benchmarks.

In Section 10, we identify a series of research gaps relevant to ZKRP

which we believe can serve as a starting point for future research

works. Finally, we provide a more detailed list of known ZKRP

applications in Appendix 11.

Comparison with prior work. We compare our paper with the

previous survey of range proofs by Morais, Koens, van Wijk, and

Koren [MKvWK19]. The technical portion of [MKvWK19] focuses

largely on Boudot’s four-square decomposition construction [Bou00],

the signature-based construction of CCs [CCS08], and Bulletproofs

[BBB
+
18]. It omits or does not go into detail on many other works,

such as the line of lattice- and code-based constructions, the newer

and more efficient square-decomposition constructions, the poly-

nomial commitment-based constructions, and hash chain construc-

tions. In particular, many of themost efficient schemes such as Sharp

[CGKR22] and BFGW [BFGW20] are not covered in their survey.

Their work also provides a comparison only of the three schemes

that it focuses on. Our SoK is significantly more comprehensive, and

here is a summary of how our work goes beyond [MKvWK19]. First,

to the best of our knowledge, we provide a complete description of

techniques and schemes in the ZKRP category and we extensively

compare all such schemes based on their techniques, assumptions,

and other properties. Additionally, we observe a useful abstraction

for binary decomposition-based range proofs, breaking such proofs

into two components, and presenting the techniques used for each

of these components. An important aspect for our work, especially

for practitioners who will use our SoK to determine the most suit-

able ZKRP for their application, is that we provide new benchmarks

and assemble existing benchmarks for easier comparison. We plan

to open-source the code used for our benchmarks. Finally, we in-

clude open questions and research gaps, and a flowchart to help

identify the most appropriate range proof construction family for

various applications.

2 PRELIMINARIES
We use boldface, like a = (𝑎1, . . . , 𝑎𝑛), to denote a vector. We use ◦
to denote the Hadamard product, i.e., a◦b = (𝑎1𝑏1, . . . , 𝑎𝑛𝑏𝑛). For a
nonzero value 𝑎, we use a𝑛 to denote the vector (1, 𝑎, 𝑎2, . . . , 𝑎𝑛−1).
We let 0𝑛 denote the length-𝑛 vector (0, . . . , 0). We use _ to denote

the security parameter, A to denote an adversary, Z to denote the

integers, and 𝑛𝑒𝑔𝑙 (·) to denote a negligible function. We use the

word efficient to mean probabilistic polynomial time.

Definition 2.1 (Commitment scheme [KL07]). A commitment scheme

is a pair of efficiently computable algorithms (Gen,Com) where:

• Gen(1_) is an efficient randomized algorithm that outputs

public parameters pp.
• Com(pp,𝑚, 𝑟 ) is an efficient deterministic function that

takes as input the public parameters, a message 𝑚, and

randomness 𝑟 . It outputs a commitment to𝑚.

A commitment scheme must be binding and hiding, defined as

follows:

A commitment scheme is binding if for all p.p.t. adversariesA, it is

infeasible to come up with two different messages corresponding

to a given commitment.

Pr

pp←Gen(1_ )


(𝑚0, 𝑟0), (𝑚1, 𝑟1) ← A(1_, pp)∧

(𝑚0 ≠𝑚1)∧
Com(pp,𝑚0, 𝑟0) = Com(pp,𝑚1, 𝑟1)

 = 𝑛𝑒𝑔𝑙 (_)
A commitment scheme is computationally (resp., statistically) hid-
ing if for all p.p.t. (resp., unbounded) adversaries A, it is infeasible

to distinguish whether a commitment corresponds to any𝑚0 or𝑚1

known to A. That is, for all𝑚0,𝑚1:

Pr

𝑟←$

[
𝑐 ← Com(pp,𝑚0, 𝑟 )
A(1_, pp, 𝑐,𝑚0,𝑚1) = 1

]
≈ Pr

𝑟←$

[
𝑐 ← Com(pp,𝑚1, 𝑟 )
A(1_, pp, 𝑐,𝑚0,𝑚1) = 1

]
A commitment scheme is homomorphic if Com(pp,𝑚0, 𝑟0) +

Com(pp,𝑚1, 𝑟1) = Com(pp,𝑚0 +𝑚1, 𝑟0 + 𝑟1).
Next we define Zero-knowledge proof and non-interactive zero-

knowledge proof (NIZK). Most of the ZKRPs in this SoK are in fact

non-interactive. In the following sections, we will skip mention of

the non-interactive aspect, unless not clear from context. We pro-

vide informal definitions next, while deferring the formal definition

of NIZK and its properties to appendix A.

Definition 2.2 (Zero-knowledge proof). Let L be a language in NP

and R be a polynomially verifiable relation, such that 𝑥 ∈ 𝐿 ⇐⇒
∃𝑤 : 𝑅(𝑥,𝑤). A Zero-knowledge proof system for L is a tuple of

efficient interactive algorithms (Prover, Verifier, Simulator), such

that the following properties hold:

• Completeness. Given (𝑥,𝑤) ∈ 𝑅, the honest execution of the

Prover (given x, w) and the Verifier (given only x) result in

the Verifier outputting 1.

• Soundness. Given 𝑥 ∉ 𝐿, a malicious Prover interacting

with the Verifier can only make it output 1 with negligible

probability.

• Zero-Knowledge. Given 𝑥 ∈ 𝐿, the Simulator can produce an

interaction transcript of an honest Prover with a (possibly)

malicious Verifier, that is computationally indistinguishable

from an actual execution transcript of the Prover with the

Verifier. Note that the Simulator doesn’t get 𝑤 , while the

Prover gets𝑤 .

A non-interactive zero-knowledge (NIZK) proof system is a zero-

knowledge proof system, where the Prover, given (𝑥,𝑤) just sends
one message 𝜋 to the Verifier and the Verifier outputs 0/1 based on

(𝑥, 𝜋). A NIZK has an additional setup algorithm 𝐶𝑅𝑆𝐺𝑒𝑛, which

outputs a common reference string (CRS) used by all the proofs and

verifications. Instead of a CRS, some NIZKs can also specify a ran-

dom oracle. The Simulator algorithm is allowed to keep trapdoors

about the CRS, or be able to simulate the Random Oracle.

A zero-knowledge proof of knowledge requires that an adversary

which produces a valid proof for a statement also knows a valid

witness. This is formally captured by requiring the existence of

an extractor, which can run the adversary’s code and produce the

witness.

Definition 2.3 (Zero-knowledge range proof (ZKRP)). A zero-knowledge
range proof (ZKRP) is a zero-knowledge proof of knowledge for the
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following relation:

𝑅pp = {((𝑦,𝑢, 𝑣), (𝑚, 𝑟 )) : 𝑦 = Com(pp,𝑚, 𝑟 ) ∧ 𝑢 ≤ 𝑚 ≤ 𝑣}
where pp, 𝑦,𝑢, and 𝑣 are known to the verifier, and Com is some

particular commitment scheme.

A question may arise since pp is hard-coded in the language defi-

nition: what if a malicious prover samples pp badly and thus renders
the NIZK-soundness property vacuous? We note that most applica-

tions require both commitment security and NIZK-soundness. This

enforces that the attacker of the application’s security cannot badly

sample pp.

Pedersen commitments. Most range proofs use Pedersen commit-
ments [Ped91] as the underlying commitment scheme. Let G be a

cyclic group of prime order and 𝑔 and ℎ be generators of that group,

where the relationship between 𝑔 and ℎ is not known. The Pedersen

commitment Com(𝑥, 𝑟 ) for a value 𝑥 ∈ G with randomness 𝑟 is

𝑔𝑥ℎ𝑟 .

Pedersen commitments are statistically hiding, and their bind-

ing property is based on the hardness of the discrete logarithm

assumption.

Definition 2.4 (Discrete Logarithm Assumption). Let G be a group

of order 𝑝 and let 𝑔 be a generator of G. A challenger samples

a random 𝑥 ← Z𝑝 and sends 𝑔𝑥 to an adversary. The Discrete

Logarithm Assumption states that it is infeasible for the adversary

to output 𝑥 , given (G, 𝑔, 𝑔𝑥 ).

Apart from the Discrete Logarithm setting, we will also describe

schemes based on the hardness of the RSA problem, as well as

lattices.

Definition 2.5 (RSA Assumption). A challenger samples primes

𝑝 and 𝑞 and sets 𝑁 = 𝑝𝑞. It picks a quantity 𝑒 co-prime to 𝜙 (𝑁 ).
Then it randomly samples 𝑧 ← [1, 𝑁 ] and sends (𝑁, 𝑒, 𝑧) to the

adversary. The adversary outputs 𝑦. The RSA Assumption states

that the probability of 𝑦𝑒 = 𝑧 (𝑚𝑜𝑑 𝑁 ) is negligible.

Definition 2.6 (Strong RSA Assumption). The Strong RSA As-

sumption states that the RSA problem is intractable even when the

adversary is allowed to choose the public exponent 𝑒 (for 𝑒 ≥ 3).

Definition 2.7 (SIS Assumption). Let𝑞, 𝑛,𝑚 ∈ Z, 𝛽 ∈ 𝑅 be given. A

challenger samples a random matrix 𝐴← Z𝑛×𝑚 . The SIS Assump-

tion states that it is infeasible for an adversary to find a nonzero

m-vector 𝑒 , such that 𝐴𝑒 = 0 mod 𝑞 and | |𝑒 | |2 ≤ 𝛽 .

3 GENERAL APPROACHES
Efficient zero-knowledge range proofs typically use three classes

of approaches: square decomposition, 𝑛-ary decomposition, and

hash chains. We present these approaches below, then explore

specific instantiations of these approaches in more detail in their

respective sections. We also mention the approach of using generic

zero-knowledge proofs.

We describe these approaches for proving that a committed value

lies in a range of the form [0, 𝑛𝑘 − 1], or that a committed value is

positive in the case of square decomposition. Most works consider

ranges of this form, which may seem at a first glance to be a relaxed

version of the problem. However, when the commitments used are

homomorphic, it turns out to be sufficient for constructing more

general range proofs with only a small amount of work to translate.

Assume that we the ability to prove that any committed value

is in the interval [0, 𝑛𝑘 − 1]. To prove that 𝑧 is in some interval

[𝑢, 𝑣], one can show first that (𝑧 − 𝑢) ∈ [0, 𝑛𝑘 − 1] and then that

(𝑣 − 𝑧) ∈ [0, 𝑛𝑘 − 1]. Thus, 𝑧 ≥ 𝑢 and 𝑧 ≤ 𝑣 . Certain constructions

from integer commitments (e.g., CKLR [CKLR21]) can combine

these checks into proving a single equation: (𝑧 −𝑢) (𝑣 − 𝑧) ≥ 0. It is

easy to obtain commitments for (𝑧−𝑢) and (𝑣−𝑧) homomorphically,

given a commitment to 𝑧. For non-homomorphic commitments,

one can do this translation by creating a commitment 𝑐 to 𝑧 − 𝑢,
proving in zero knowledge that 𝑐 indeed commits to 𝑧 − 𝑢, and
performing this range proof with respect to 𝑐 .

3.1 Square decomposition
The square decomposition method involves writing the committed

integer as a sum of squares. A common version of this method, the

four-square decomposition method, uses Lagrange’s four-square

theorem. This theorem states that for any integer 𝑧 ∈ Z≥0, there
exist 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ Z such that

𝑧 = 𝑥2
1
+ 𝑥2

2
+ 𝑥2

3
+ 𝑥2

4
(1)

Thus, to prove that a committed value 𝑧 is non-negative, it suffices

to prove knowledge of 𝑥1, . . . , 𝑥4 such that Equation 1 holds. This

approach requires a special type of commitment called an integer

commitment, which ensures that equations that hold over commit-

ted values also hold over the integers. The issue that this property
avoids is that Equation 1 may hold for a negative 𝑧 if we are working

in some group rather than over Z. For example, in Z5 it is possible
that 𝑧 = −1 and 0

2 + 12 + 22 + 22 = 9 = 𝑧 (mod 5).

3.1.1 Integer commitments. An integer commitment scheme is a
commitment scheme where binding holds over Z. That is, for all
p.p.t. adversaries A,

Pr

pp←Gen(1_ )


(𝑚0, 𝑟0), (𝑚1, 𝑟1) ← A(1_, pp)

∧(𝑚0 ≠Z 𝑚1)
∧Com(pp,𝑚0, 𝑟0) = Com(pp,𝑚1, 𝑟1)

 = 𝑛𝑒𝑔𝑙 (_)
where𝑚0 ≠Z 𝑚1 denotes that𝑚0 and𝑚1 are not equal over the
integers. Bounded integer commitments (used in [CKLR21]) satisfy

the same binding property, but are weaker in that the message

space is restricted to some bounded interval, e.g., {𝑥 ∈ Z : |𝑥 | ≤ 𝐵}.
For constructing range proofs, this boundedness is not an issue as

long as the ranges in question are well within the bounds.

Pedersen commitments, for example, are not integer commit-

ments as their message space is Z𝑝 , and any messages that are

equivalent (mod 𝑝) result in the same commitment given the same

randomness: 𝑔𝑚ℎ𝑟 = 𝑔𝑚+𝑝ℎ𝑟 over a cyclic group of order 𝑝 . This at-
tack against binding fails if the order of the group is unknown, and

indeed many integer commitment schemes (e.g., Fujisaki-Okamoto

commitments, and constructions of [CKLR21, CGKR22]) operate

in groups of unknown order.

Fujisaki-Okamoto commitments [FO97]. We recall an overview

of FO commitments but refer the reader to [FO97] for details. FO

commitments operate over a group of unknown order Z𝑁 . 𝑔 and ℎ

are generators of large subgroups ofZ𝑁 , whose relation is unknown.

The commitment to 𝑥 ∈ Z is
3
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Com𝐹𝑂 (pp, 𝑥, 𝑟 ) := 𝑔𝑥ℎ𝑟

This commitment is computationally hiding when 𝑟 is chosen uni-

formly in the interval [2−_ ·𝑁 +1, . . . , 2_ ·𝑁 −1]. Fujisaki-Okamoto

commitments are binding under the factoring assumption.

3.2 𝑛-ary decomposition
The 𝑛-ary decomposition method involves committing to the digits

of the committed value 𝑧 in some base 𝑛. For simplicity, assume for

this explanation that we use base 2, although certain approaches

can be generalized to other bases. Thus, if the prover wishes to show

that 𝑧 ∈ [0, 2𝑘−1], the proverwrites 𝑧 = 𝑧0·20+𝑧1·𝑠1+. . .+𝑧𝑘−1·2𝑘−1
and generates commitments to 𝑧0, . . . , 𝑧𝑘−1. The prover then shows

that both of the following properties hold, which we present as

predicates:

Digit validity (DV(z)): DV(z) = 1 if and only if 𝑧𝑖 ∈ {0, 1} for all
𝑖 ∈ [0, 𝑘 − 1].

Representativeness (Rep(z, 𝑧)): Rep(z, 𝑧) = 1 if and only if 𝑧 =∑𝑘−1
𝑖=0 𝑧𝑖 · 2𝑖 .

In terms of these predicates, the 𝑛-ary decomposition method

proves membership in the following relation:

Rdecomp = {(pp, (𝑐1, 𝑐2, 𝑛, 𝑘), (𝑧, z, 𝑟 , r)) : 𝑐1 = Com(pp, 𝑧, 𝑟 )
∧ 𝑐2 = Com(pp, z, r) ∧ DV(z) ∧ Rep(z, 𝑧)}

There are (at least) four common tools used to show that the dig-

its are valid for the desired base; i.e., for binary decomposition they

all lie in {0, 1}. These tools include zero-knowledge set membership
arguments, product arguments, inner product arguments, and poly-
nomial commitments. These strategies are primarily applicable for

base 2, with the exception of set membership, which easily extends

to any arbitrary base.

3.2.1 Set membership. A set membership proof shows that a com-

mitted value lies in some publicly known set; that is, it is a proof of

knowledge for the following relation:

{(pp, (Φ, 𝑦), (𝑚, 𝑟 )) : 𝑦 = Com(pp,𝑚, 𝑟 ) ∧𝑚 ∈ Φ}

Although one could define a set membership proof with respect to

a private committed set, in our application the set is determined by

the publicly known base.

Digit validity. Setmembership arguments are useful for instances

of Rdecomp where the commitment scheme used for z commits to

its components individually; that is,

𝑐2 = (Com(pp, 𝑧0, 𝑟0), . . . ,Com(pp, 𝑧𝑘−1, 𝑟𝑘−1))

for some scheme Com. Then, one can show digit validity by pro-

viding a set membership proof for each element of 𝑐2, with respect

to the set Φ = {0, 1, . . . , 𝑛 − 1}. However, such protocols require

commitments and range proofs of length at least linear in 𝑘 .

Representativeness. There is no general way to show representa-

tiveness using set membership proofs; schemes using this construc-

tion (e.g., [CCS08]) rely on properties of the specific commitment

scheme used.

3.2.2 Product arguments. A product argument is a proof system for

showing that the product of two committed values 𝑎 and 𝑏 is some

value 𝑐 . Typically, this equality holds in the group underlying the

commitment scheme. For example, for Pedersen commitments in a

group of prime order 𝑝 , this argument shows that 𝑎𝑏 ≡ 𝑐 (mod 𝑝).
For integer commitments, we have the stronger property that this

equality holds over the integers: 𝑎𝑏 = 𝑐 .

Digit validity. Product arguments are useful for proving digit

validity base 2, if as with set membership 𝑐2 consists of individual

bit commitments. To show that a committed bit 𝑏 is in {0, 1}, the
prover can commit to a value 𝑎 and prove that 𝑎𝑏 = 0 and 𝑎 +𝑏 = 1.

Observe that if 𝑏 ≠ 0, 𝑎 must be 0 to satisfy the first equation.

Then the second equation implies that 𝑏 = 1. Thus, 𝑏 must be 0

or 1. Furthermore, the prover can always find a satisfying 𝑎; if

𝑏 = 0, 𝑎 = 1, and if 𝑏 = 1, 𝑎 = 0. Inner product arguments, which

we present next, allow the prover to simultaneously show many

product relations more efficiently.

Representativeness. As is the case with set membership proofs,

product arguments primarily useful for showing digital validity

rather than representativeness.

3.2.3 Inner product arguments. An inner product argument (IPA)

is a proof system for showing that the inner product of two commit-

ted vectors is some value. The inner product used in Bulletproofs

[BBB
+
18] shows the following relation, using Pedersen commit-

ments, where G denotes a group of prime order:{(
g, h ∈ G𝑘 , 𝑃 ∈ G, 𝑧 ∈ Z𝑝 ; a, b ∈ Z𝑛𝑝

)
: 𝑃 = gahb ∧ 𝑧 = ⟨a, b⟩

}
Bulletproofs also constructs an argument for the Hadamard product

relation (i.e., c = a ◦ b) from their inner product argument, though

we do not present the details here.

Digit validity. Auseful fact usedwhen constructing zero-knowledge

range proofs from inner product arguments is that with overwhelm-

ing probability, the inner product of a nonzero vector a and a ran-

dom vector b is nonzero. Thus, the prover can convince the verifier

that a is 0𝑘 by showing that its inner product with a random chal-

lenge vector is 0. Using the same idea as for product arguments,

the prover can commit to the binary representation of the given

value as a vector z, then use an inner product argument to show

simultaneously that all components of this vector are indeed bits.

That is, the prover commits to a vector z′ = 1𝑘 − z, and shows:

⟨z′, 1𝑘 − z⟩ = 0 and z′ ◦ z = 0𝑘

The lattice-based scheme [ALS20] uses this approach as well.

Representativeness. Although we presented an inner product re-

lation where the value 𝑧 is a public input, many inner product

arguments, such as that of Bulletproofs, work also when 𝑧 is secret

and the public input includes only a commitment to 𝑧. One shows

representativeness by a single application of this inner product

argument, showing ⟨z, 2𝑘 ⟩ = 𝑧.
Bulletproofs combines some of these checks for greater efficiency

and uses blinding factors to make their argument zero-knowledge.

3.2.4 Polynomial commitments. Apolynomial commitment scheme

allows a prover to commit to a polynomial 𝑝 (·) over a finite field
4
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F𝑝 , such that a verifier can query a point 𝑥 to the prover, which

can respond with 𝑝 (𝑥) and a proof 𝜋 that this evaluation is cor-

rect. The scheme should be hiding in that the commitment reveals

nothing about the polynomial, and the evaluation proofs reveal no

extra information beyond the evaluations themselves. Polynomial

commitments are binding in that it is computationally infeasible to

produce a verifying proof for an incorrect evaluation of the com-

mitted polynomial. A useful property of polynomial commitments

is that it is easy for a prover to show that a committed polynomial

is identically zero, by providing a proof that its evaluation at a

random point is zero. By binding and the Schwartz-Zippel lemma,

this occurs with only negligible probability if the polynomial is

nonzero.

The following approach, which we describe at a high level, was

introduced in BFGW [BFGW20] and is detailed nicely in [Tom20].

Suppose that we are given a commitment to 𝑧 in the form of a

polynomial commitment to 𝑓 such that 𝑓 (1) = 𝑧. In constructing a

range proof for 𝑧 ∈ [0, 2𝑘 − 1], it is useful to work over a subgroup

𝐻 = {1, 𝜔, 𝜔2, . . . , 𝜔𝑘−1} and use polynomials whose evaluations

over 𝐻 encode the binary representation of 𝑧. That is, the prover

computes a polynomial 𝑔 such that:

𝑔(𝜔𝑘−1) = 𝑧𝑘−1
𝑔(𝜔𝑖 ) = 2𝑔(𝜔𝑖+1) + 𝑧𝑖 ∀𝑖 ∈ {0, . . . , 𝑘 − 2}

Another useful property of polynomial commitments is that one

can show that a polynomial 𝑔(𝑋 ) is zero on all of 𝐻 by committing

to a related polynomial 𝑔′ (𝑋 ) and proving that 𝑔′ (𝑋 ) is identically
zero over F𝑝 .

Digit validity. The prover shows that the following two polyno-

mials are zero over all of 𝐻 :

𝑤2 = 𝑔 · (1 − 𝑔) (𝑋 − 1) (𝑋 − 𝜔) · · · (𝑋 − 𝜔𝑘−2)

𝑤3 = [𝑔(𝑋 ) − 2𝑔(𝑋𝜔)] · [1 − 𝑔(𝑋 ) + 2𝑔(𝑋𝜔)] · (𝑋 − 𝜔𝑘−1)

𝑤2 has zeros at 1, 𝜔, . . . , 𝜔
𝑘−2

by construction. It is zero at 1 if and

only if 𝑔(𝜔𝑘−1) ∈ {0, 1}. For𝑤3, observe that 𝑔(𝑋 ) − 2𝑔(𝑋𝜔) is ex-
actly 𝑧𝑖 when evaluated at𝜔

𝑖
. Therefore,𝑤3 is zero at {1, . . . , 𝜔𝑘−2}

if and only if 𝑧𝑖 ∈ {0, 1}.

Representativeness. The prover shows that the following polyno-

mial is zero over all of 𝐻 :

𝑤1 = (𝑔 − 𝑓 ) (𝑋 − 𝜔) (𝑋 − 𝜔2) · · · (𝑋 − 𝜔𝑘−1)

As [BFGW20] notes, this approach can be instantiated with any

polynomial commitment scheme that is hiding, binding, and addi-

tively homomorphic.

3.3 Hash chains
Hash chains can be used to prove that a committed value at least

some threshold. In the hash chain approach, a commitment to a

value 𝑧 is 𝐶𝑧 = 𝐻𝑧 (𝑟 ), the output of a hash function applied 𝑧

times to a random 𝑟 . The proof that 𝑧 exceeds some threshold 𝑡 is

𝜋 = 𝐻𝑧−𝑡 (𝑟 ). A verifier can check that 𝐻𝑡 (𝜋) = 𝐶𝑧 ; if 𝑧 < 𝑡 , then

𝑧− 𝑡 is negative and it is infeasible for a cheating prover to compute

a preimage of 𝑟 under 𝐻 .

This simple hash chain requires prover and verifier time that is

exponential in 𝑘 for ranges [0, 2𝑘 − 1]. However, using decomposi-

tion techniques, HashWires constructs a hash chain-based range

proof requiring only 𝑂 (𝑘) work.

3.4 Generic zero-knowledge
There aremany efficient generic zk-SNARKs, such as [Gro16, GWC19,

BSBHR18, BFS20a]. These proof systems can be used to construct

range proofs. However, because they are generic and do not lever-

age the structure of the range proof relation, they are less efficient

than the tailored range proofs we explore. In Section 9, we include

efficiency benchmarks for Groth16 [Gro16], one of the most popular

generic zk-SNARKs used in practice.

It is worth noting that practical benefits may outweight these

efficiency losses. In particular, because of their wide-ranging appli-

cations, generic zk-SNARKs offer convenient, well-engineered, and

optimized libraries. For example, we used Circom [BMIMT
+
22] and

rapidsnark [ide23] for our Groth16 benchmarks. Even so, the prover

and verifier times for Groth16 are roughly an order of magnitude

larger than the more tailored range proofs. Furthermore, if range

proofs are required in a larger system that already uses a generic

zk-SNARK elsewhere, using this zk-SNARK for the range proof as

well may be practically convenient.

4 DESIRABLE PROPERTIES
All zero-knowledge range proofs must satisfy the standard notions

of soundness, completeness, and zero knowledge. All ZKRPs that

we cover in this SoK are non-interactive. In this section, we dis-

cuss some additional nice features that might be desirable in some

settings.

Efficiency. Unsurprisingly, it is desirable for ZKRPs to be efficient.

In blockchain applications, where a transactor must pay for the

storage cost and the amount of computation done by validators, it

is especially important to minimize proof size and verifier time. The

proof size should be at most linear in 𝑘 for intervals [0, 2𝑘 − 1], and
several schemes offer even constant-sized proofs. Though proof size

and verifier time are often priorities, prover time also should not

be prohibitively large. In Section 9, we discuss efficiency further.

Transparent setup. Some range proofs require public parameters

that are generated using secret randomness. It is crucial for the

security of the proofs that this randomness is not known to the

prover. For example, several square decomposition range proofs use

RSA-based integer commitments, which require an RSA modulus.

Importantly, this modulus 𝑁 must be generated in such a way

that no party know the factorization of 𝑁 = 𝑝𝑞. Similarly, BFGW

[BFGW20] instantiated with KZG commitments requires a powers-

of-tau common reference string, which consists of a series of values

𝑔𝜏
𝑖
, where no party knows 𝜏 . Protocols that require secrecy of the

randomness used in parameter generation are said to require trusted
setup.

Ideally, protocols should have a transparent setup procedure

that does not require secret randomness. Note that trusted setup is

different from having a trusted issuer responsible for distributing

the proper commitments to users, e.g., a Pedersen commitment

corresponding to that user’s account balance. Any protocol needs
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to assume that the prover and verifier agree on the commitment at

hand.

Aggregation. Aggregation allows multiple range proofs to be

compressed into a single succinct proof. That is, a single prover

holding𝑚 commitments to values in the same range [0, 2𝑘 − 1] can
efficiently generate a short aggregate proof 𝜋 proving all of these

range statements simultaneously. For this aggregation property

to be nontrivial, 𝜋 should be shorter than the concatenation of

𝜋1, . . . , 𝜋𝑚 . For example, for Bulletproofs, Bulletproofs+, and Bul-

letproofs++, the aggregate proof for𝑚 values in [0, 2𝑘 − 1] consists
of only 𝑂 (log(𝑚 · 𝑘)) group elements. As the concatenation of𝑚

proofs would require 𝑂 (𝑚 · log(𝑘)) group elements, aggregation

results in considerable space savings.

In the notion of aggregation considered so far, a single prover

knows the openings of all commitments that are being aggregated.

A stronger notion of multi-prover aggregation allows one to com-

bine range proofs generated by multiple provers, who wish to

hide their openings from one another. Bulletproofs enables such

aggregation via an MPC protocol run by the parties holding the

commitments. Multi-prover aggregation is harder to achieve, and

is less well studied than single-prover aggregation.

Aggregation is especially useful for confidential transactions,

where minimizing the amount of space used on-chain decreases

gas costs. Since range proofs are used to show non-negativity, all

range proofs typically prove membership in the same interval.

Batch verification. A related property is batch verification, where

there exists a process for verifying many proofs together that is

more efficient than verifying each proof individually. Batch verifi-

cation is especially useful in blockchain applications, where a block

proposer can aggregate the range proofs for its block and other

validators can batch verify this proof more efficiently. Bulletproofs

provides batch verification, using an observation that verifying

many statements of the form 𝑔𝑥 = 1 can be done by combining

them into a single equation requiring fewer exponentiations.

Aggregated range proofs often naturally enable batch verifica-

tion, as some of the work is effectively done by the aggregator.

However, neither aggregation nor batch verification in general

implies the other.

Compatibility with homomorphic commitments. A commitment

scheme Com is homomorphic if Com(𝑚0, 𝑟0) + Com(𝑚1, 𝑟1) =

Com(𝑚0 +𝑚1, 𝑟0 + 𝑟1). It is convenient for applications such as

confidential transactions for the underlying commitments to be ho-

momorphic; in particular, homomorphism makes it easier to prove

that the sum of transaction output amounts is at least the sum of

input amounts.

Most ZKRPs use Pedersen commitments, which are homomor-

phic. Some exceptions are HashWires [CCL
+
21] and various lattice-

based constructions, which often achieve weaker homomorphism.

5 SQUARE DECOMPOSITION
CONSTRUCTIONS

Recall that the square decomposition method involves writing the

committed value as the sum of four squares and proving that this

equality holds over the integers. Integer commitments, which were

discussed in greater detail in Section 3, are a useful tool here:

Integer commitments. An integer commitment scheme is a com-

mitment scheme for which binding holds over the integers: it is com-

putationally infeasible for an adversary to findmessages𝑚0,𝑚1 and

randomness 𝑟0, 𝑟1 such that Com(𝑚0, 𝑟0) = Com(𝑚1, 𝑟1), where
𝑚0 ≠𝑚1 over Z.

Approaches in this class combine integer commitment schemes

with a way to prove in zero knowledge that, given a commitments

Com𝑥 and Com𝑦 , the committed values satisfy 𝑥2 = 𝑦. This implies

that 𝑦 is non-negative. One can generalize this argument to work

not just for squares 𝑦, but for all non-negative integers.

Boudot [Bou00] introduced the approach of proving that a com-

mitted value is positive by representing an arbitrary integer as a sum

of squares (although not four squares). It uses Fujisaki-Okamoto

commitments [FO97], which require a group of unknown order

such as an RSA group. Damgård-Fujisaki commitments [DF01] are

slightly more efficient integer commitments used in subsequent

work [Lip03] which refined Boudot’s idea and used Lagrange’s four

square theorem (which states that every integer can be written

as the sum of the squares of four integers). In order to do so, it

also introduced an efficient algorithm for finding this four-square

decomposition. [Gro05] similarly followed this approach and im-

proved its efficiency by observing that 𝑥 ’s of a certain form can be

written as the sum of only three squares rather than four. [CPP17]

further improved the efficiency and showed that the RSA assump-

tion (rather than the strong RSA assumption, as previously shown)

is sufficient to show the security of Damgård-Fujisaki commitments.

The integer commitments used by all of [Bou00, Lip03, Gro05]

require groups of unknown order and therefore trusted setup pro-

cedures. A newer line of work [CKLR21, CGKR22] develops new in-

teger commitment schemes, some of which do not require a trusted

setup. These schemes also yield much better efficiency, though Bul-

letproofs and subsequent binary-decomposition-based proofs are

still more efficient in practice due to compatibility with available

optimized libraries.

CKLR [CKLR21] build a bounded integer commitment by modify-

ing Pedersen commitments; their scheme essentially enforces that

the Pedersen commitment can only be opened to values within some

bounded range. They then use this bounded integer commitment to

construct their ZKRP following the square decomposition approach.

However, their commitment scheme operates over rationals rather
than integers; while honest openers round these rationals to inte-

gers, malicious openers may open to rationals instead which can be

problematic for some applications and results in a relaxed notion

of soundness. Sharp [CGKR22] improves upon CKLR in several

ways. In addition to improving over the efficiency of CKLR, Sharp

is compatible with standard Pedersen commitments. This is because

Sharp effectively moves CKLR’s modifications of Pedersen commit-

ments to the proof rather than modifying the commitment itself.

Two variants of Sharp (SharpGS, Sharp
PO
SO), like CKLR, achieve a

relaxed notion of soundness. However, they show how to boost the

soundness by adding an additional commitment using a hidden-

order group such as an RSA group or class group; the resulting

variants SharpHO achieve standard soundness but require longer

proofs. The RSA version also requires a trusted setup. Finally, Sharp

improves over CKLR by offering some batching capabilities.
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Square Decomposition-Based Range Proofs

Scheme Commitment Scheme Assumptions Transparent Setup

Boudot [Bou00] F-O [FO97] Strong RSA N

Lipmaa [Lip03] RDF integer comm.* Strong RSA N

Groth [Gro05]** RDF integer comm.* Strong RSA N

CKLR [CKLR21] Ped*** DLOG (optionally DSLE) N

CKLR [CKLR21] ElGamal variant [CKLR21] DXDH,ORD Y (class groups)

SharpGS, Sharp
PO
SO [CGKR22]† Pedersen DLOG, SEI Y

SharpHO [CGKR22]† Pedersen 1/2-fROOT N (RSA), Y (class groups)

Figure 1: Properties of square decomposition-based range proofs

*An extension of the Dåmgard-Fujisaki commitment [DF01] that [Lip03] constructs.

**[Gro05] is not exactly a new scheme; its contribution is observing a trick that can be applied to make [Lip03]

more efficient. Integers of a certain form can be written as a sum of three squares, and one can quickly find this

decomposition.

*** A bounded integer commitment scheme based on Pedersen commitments.

†Sharp is only a relaxed range proof and not sufficient for all applications. [CGKR22] has a thorough discussion;

it is sufficient for anonymous credentials and can be used for some but not all proofs in anonymous transactions,

with some modifications. SharpHO refers to a scheme where SharpGS or Sharp
PO
SO is modified using an additional

commitment requiring an RSA group or class group in order to achieve improved soundness.

6 BINARY DECOMPOSITION
CONSTRUCTIONS

CCs [CCS08] introduced the 𝑛-ary decomposition paradigm to zero-

knowledge range proofs. CCs [CCS08] operates over Pedersen com-

mitments and constructs a zero-knowledge set membership proto-

col by having the verifier publish a signature of each element in

the set. The prover then shows in zero knowledge that it knows a

signature of its committed value 𝑥 under the verifier’s secret key;

by unforgeability this is only possible if the value is in this set. By

choosing this set to be {0, . . . , 𝑛 − 1} for base 𝑛, the prover can

commit to the digits of 𝑥 and prove that they are valid digits under

that base. CCs then uses properties of Pedersen commitments to

show that the committed digits indeed represent 𝑥 . The size of the

proof is linear in log𝑛 2
𝑘
, where 𝑛 is the base used and the range

is of size 2
𝑘
. By optimizing the choice of the base 𝑛, this results in

a slightly sublinear (in 𝑘) proof size for a range [0, 2𝑘 − 1]. This
scheme requires a trusted setup for the signature generation, and it

does not offer aggregation.

Subsequent constructions (whichwe call “Bulletproofs-style”) im-

prove on the efficiency of CCs to avoid this near-linear dependence

on 𝑘 . They use inner product arguments or polynomial commit-

ment schemes in clever ways to avoid showing individually that

each bit is in {0, 1}; instead, they are able to roll all of these checks

into a shorter proof.

There are also several newer lattice- and code-based construc-

tions that use binary decomposition. While these schemes are less

efficient and have very large proofs, their main merit is that they

are plausibly post-quantum secure. Additionally, they do offer trans-

parent setup. Developing more practical lattice-based ZKRPs is an

interesting research direction.

When surveying binary decomposition constructions, we sep-

arate them into two categories: Bulletproofs-style constructions,

which are very practical; and lattice-based constructions, which are

primarily of theoretical interest.

6.1 Bulletproofs-Style Constructions
Bulletproofs [BBB

+
18], arguably considered the state-of-the-art

range proof scheme, uses the binary decomposition technique.

Bulletproofs combines the binary decomposition technique with

an inner product argument to enable the prover to send only𝑂 (log𝑘)
elements. Bulletproofs improves and uses their improvement of an

inner product argument (IPA) of [BCC
+
16] where the prover sends

only𝑂 (log𝑘) group elements for an IPA over length-𝑘 vectors. The

key idea in Bulletproofs is that the prover can use this IPA to exe-

cute the binary decomposition approach more efficiently; we give

intuition for this idea here.

We write 𝑥 = 𝑎0 · 20 + 𝑎1 · 21 + . . . + 𝑎𝑘−1 · 2𝑘−1 and let aL =

[𝑎0, 𝑎1, . . . , 𝑎𝑘−1]. We let 2k := [20, 21, . . . , 2𝑘−1]. The prover shows
that it knows a vector aR such that the following hold:

(1) aL · aR = 0k

(2) aL − aR = 1k

(3) aL · 2k = 𝑥

Conditions (1) and (2) show that each component of aL is in

{0, 1}, using the standard inner product strategy described in Sec-

tion 3. Condition (3) shows that indeed aL contains the binary

decomposition of 𝑥 .

These three checks can be combined into a single invocation

of the IPA. The IPA used employs a technique that reduces each

IPA of length-𝑛 vectors to an equivalent IPA over length-
𝑛
2
vectors.

Using this IPA results in a proofs size of 𝑂 (log
2
𝑘).

Subsequent works [CHJ
+
22, Eag22, WC22, WCL23] slightly op-

timize Bulletproofs but keep the scheme and its properties (in par-

ticular, its transparent setup and aggregation properties) largely

the same. Bulletproofs+ [CHJ
+
22] slightly optimizes the Bullet-

proofs argument to reduce the number of group elements sent by

the prover. Bulletproofs++ [Eag22] further improves efficiency by

reducing both prover and verifier time. All of these Bulletproofs

derivatives maintain the same aggregation properties.

BFGW [BFGW20] takes a different approach to the binary de-

composition idea, using a polynomial commitment scheme. We
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detail this approach in Section 3. This scheme assumes that the

commitment to a value 𝑥 is formed as commitment to a polynomial

𝑓 such that 𝑓 (1) = 𝑥 . For some polynomial commitment schemes,

such a commitment is nonstandard; conveniently, there is a version

of KZG commitments for which this is a Pedersen commitment.

BFGW works with any hiding and binding polynomial commit-

ment scheme, yielding different properties based on the scheme

used. Notably, when instantiated with KZG commitments [KZG10],

BFGW has constant-sized proofs and is competitive efficiency-wise

with Bulletproofs. Though KZG commitments require a trusted

setup, this setup ceremony is perhaps one of the most commonly

run, and some blockchains such as Ethereum have run a KZG cer-

emony.
1
In Section 9, we provide the first efficiency (prover and

verifier time) benchmarks that we know of for BFGW + KZG. If the

Pedersen variant of KZG commitments is used, BFGW + KZG is

compatible with Pedersen commitments. BFGW can also be instan-

tiated with DARKs [BFS20b], which do not require a trusted setup.

Both BFGW + KZG and BFGW + DARKs are aggregatable.

6.2 Lattice- and code-based constructions
There are several lattice- and code- based zero knowledge range

proof schemes. These schemes have the advantages that they are

plausibly post-quantum secure and have a transparent setup. How-

ever, they are concretelymuch less efficient than the discrete logarithm-

based schemes such as Bulletproofs. In particular, they have very

long proofs. Thus, one worthwhile research direction is to improve

the efficiency of these lattice-based protocols. One area for improve-

ment is in the repetition required to achieve negligible soundness

error. Most of these schemes build on protocols with constant sound-

ness and must repeat the protocol Ω(_) times to achieve _ bits of

security. When made non-interactive, this amplification results in

large proofs.

Lattice- and code-based schemes typically use the binary decom-

position approach, where the prover already holds a commitment

to the bits 𝑏0, . . . , 𝑏𝑘−1 of the value in question. The prover wants

to show that

∑𝑘−1
𝑖=0 2

𝑖 · 𝑏𝑖 ≤ 𝛽 for some 𝛽 . This condition can be

written equivalently as a system of equations over the bits modulo 2.

Such systems of equations can be proven in zero-knowledge using

Stern-like protocols.
In this section, we present several ideas involved in lattice-based

schemes. We first present a lattice-based commitment scheme, KTX

[KTX08], that is used in some of these ZKRPs. In doing so, we em-

phasize several challenges common to many lattice-based schemes.

We then give a high-level description of Stern-like protocols, a

standard technique for lattice-based zero-knowledge proofs.

KTX commitment scheme ([KTX08]). TheKTX commitment scheme

is based on the hardness of the Short Integer Solution (SIS) prob-
lem. Let _ be the security parameter, 𝐿 be the number of bits to

be committed to, and 𝑞 be a prime modulus of size 𝑂 (_
√
𝐿). Let

𝑚 = 2_⌈log𝑞⌉. The scheme uses public parameters (A,B) chosen
uniformly from Z_×𝐿𝑞 × Z_×𝑚𝑞 . The commitment to a bit vector

x ∈ {0, 1}𝐿 is the vector

c = A · x + B · r (mod 𝑞)

1
https://blog.ethereum.org/2023/01/16/announcing-kzg-ceremony

where r is sampled uniformly from {0, 1}𝑚 . This scheme is statisti-

cally hiding and computationally binding assuming that the public

parameters are sampled uniformly.

Note that KTX commitments are only approximately homomor-

phic. While it is the case that

A · x1 + B · r1 + A · x2 + B · r2 = A(x1 + x2) + B(r1 + r2) (mod 𝑞),
note that (x1 + x2) and (r1 + r2) may not be 0/1 vectors. Therefore,

𝐴(𝑥1 + 𝑥2) + 𝐵(𝑟1 + 𝑟2) is not necessarily a valid commitment; in

particular, it is not clear how to provide an opening proof. Many

commitment schemes used by schemes in this section have similar

limited homomorphism.

Note also that KTX commitments do not require a trusted setup

to generate the public parameters A, B, and 𝑞, as these matrices are

uniformly random and 𝑞 can be publicly known. Many lattice-based

commitment schemes similarly use random matrices as the public

parameters. All of the range proofs in this section offer transparent

setup.

Stern-like protocols. Stern’s original protocol [Ste96] proves in
zero knowledge that a committed bit vector has a certain Hamming

weight; that is, it is a zero-knowledge argument of knowledge for

the following relation:

{((H, y), s) ∈ Z𝑛×𝑚
2
× Z𝑛

2
× Z𝑚

2
: (wt(s) = 𝑤) ∧ (H · x = y)}

The key idea behind Stern’s protocol is that the prover permutes

the bits of s to obtain s′ which it reveals to the verifier. It also

convinces the verifier that s′ is indeed a permutation of s under
some 𝜋 . s′ has the same Hamming weight as s, and the distribution
of s′ is identical for any s satisfying the relation—therefore, s′

reveals no information about s. At a high level, the prover samples a

random blinding factor r and constructs three commitments, which

it sends to the verifier, as follows:

𝑐1 = Com(𝜋,H · r)
𝑐2 = Com(𝜋 (r))
𝑐3 = Com(𝜋 (r ⊕ s))

Here, 𝜋 (v) denotes the vector obtained by permuting the compo-

nents of v under 𝜋 . We now run one of three randomized checks:

the verifier sends the prover 𝑏 ∈ {0, 1, 2}. In each of these tests,

the prover opens a different combination of the commitments and

sends some additional information, e.g., 𝜋 (s) for𝑏 = 2. The cheating

prover cannot pass all of these tests simultaneously and therefore

fails with probability at least 1/3. Note that running all of these

tests at once would reveal information about s.
This permute-then-reveal strategy can be used for other relations

with similar properties. [NTWZ19] provides an abstraction of such

relations, in terms of some set VALID, which in Stern’s original

protocol was VALID = {s : wt(s) = w}:
𝑅 = {((H, y), s) ∈ Z𝑛×𝑚

2
× Z𝑛

2
× VALID : H · x = y}

Correctness under permutation: For all ((H, y), s) ∈ Z𝑛×𝑚
2
×

Z𝑛
2
× Z𝑚

2
and all permutations 𝜋 over [𝑚],
s ∈ VALID ⇐⇒ 𝜋 (s) ∈ VALID

Hiding under permutation: For all s ∈ VALID, the distribution
of 𝜋 (s) where 𝜋 is a random permutation over [𝑚] is uni-
form over the set VALID

8
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Bulletproofs-Style Range Proofs (all DLOG-based, all aggregatable)

Scheme Commitment Scheme Transparent Setup

Bulletproofs [BBB
+
18] Pedersen Y

Bulletproofs+ [CHJ
+
22] Pedersen Y

Bulletproofs++ [Eag22] Pedersen Y

Flashproofs [WC22] Pedersen Y

SwiftRange [WCL23] Pedersen Y

DRZ [DRZ20] Pedersen N

ZZT+ [ZZT
+
23] Pedersen N

Libert [Lib23] Pedersen N

BFGW [BFGW20] + 𝐾𝑍𝐺Ped Pedersen N

BFGW [BFGW20] + DARKs [BFS20b] DARK [BFS20b] Y with class groups; N with RSA

Figure 2: Properties of Bulletproofs-style range proofs

Even given a relation that does not fit the above requirements,

one can sometimes construct an associated relation (e.g., using a

common technique called extension) that does fall into this paradigm
and allows one to construct the desired argument.

Other relations that can be proven under Stern’s paradigm in-

clude proving knowledge of one secret bit that may appear in

multiple equations [LLNW16], or proving the knowledge of the

product of two secret bits [LLM
+
16]. Stern-like techniques underlie

the majority of lattice- and code-based zero knowledge protocols.

However, recall that due to the randomized tests, Stern’s original

protocol has soundness error 2/3. In general, Stern-like protocols

have constant soundness error and thus require roughly _ repeti-

tions for _ bits of security. Thus, once made non-interactive via

Fiat-Shamir, these protocols result in long proofs.

Only recently have techniques emerged for avoiding Stern-like

protocols in constructing lattice-based ZKRPs, whose state-of-the-

art is thus not reflected in the previous ZKRP survey [MKvWK19].

These new techniques have resulted in a surge of lattice-based

constructions with greatly improved efficiency, with proofs on the

order of 10,000 KB rather than 100,000 KB. However, this efficiency

still lags behind many non-lattice-based constructions with 5̃00-

byte proofs, as seen in Figure 5. Improving lattice-based schemes

remains a fruitful research direction.

[ESLL19] proposes techniques for avoiding the repetition that

Stern-like protocols require for soundness. Their one-shot proto-
col saves a factor of _ computation time over repeated Stern-like

protocols, though the proofs are still quite long as shown in Fig-

ure 5. One-shot approaches are a fruitful direction for developing a

more practical (in terms of both communication and computation)

lattice-based ZKRP.

ALS [ALS20] uses an inner product argument in the 𝑛-ary de-

composition approach, which results in significantly shorter proofs

compared to other lattice-based constructions; see Figure 5. Its

proofs are roughly an order of magnitude larger than those of the

most efficient non-lattice schemes, such as Bulletproofs. Another

barrier to practical efficiency is that the proofs of ALS cannot be

aggregated.

7 HASH CHAIN CONSTRUCTIONS
Payword [RS96] was the first to use hash chains to construct a

range proof for electronic payments, and HashWires [CCL
+
21]

more recently revisited this ideawith great efficiency improvements.

In this approach, the core idea is that a commitment 𝐶𝑥 to a value

𝑥 is the output of a hash function evaluated 𝑥 times on a random

value. That is, 𝐶𝑥 = 𝐻𝑥 (𝑟 ) for a random 𝑟 . The proof that 𝑥 is at

least some threshold 𝑡 is a value 𝜋 = 𝐻𝑥−𝑡 (𝑟 ) such that applying

the hash function 𝑡 more times to 𝜋 yields 𝐶𝑥 ; that is, 𝐻
𝑡 (𝜋) = 𝐶𝑥 .

Since the hash function is hard to invert, if 𝑥 − 𝑡 is negative it

should be hard for the prover to find an accepting 𝜋 . Importantly,

though, 𝐶𝑥 must be well-formed to ensure soundness. Thus, the

setting where hash chain constructions can be used is slightly more

restricted.

HashWires [CCL
+
21] defines a relaxation of zero-knowledge

range proofs called credential-based range proofs. This notion is

weaker than general ZKRPs in that the commitment is assumed to

be well-formed. Soundness is shown only under this assumption,

which is motivated by a setting where a trusted authority distributes

commitments to parties that later prove that their committed values

exceed some threshold. For example, the trusted authority may be

a government, and the commitments might be used for creden-

tials including citizens’ ages. If a commitment is signed by this

trusted authority, a verifier can be confident that the commitment

is properly formed.

As described, the time to generate 𝜋 and 𝐶𝑥 is linear in 𝑥 , and

the verifier time is linear in 𝑡 . This is very expensive if we wish to

prove that 𝑥 is in some large range [0, 2𝑘 − 1]; ideally, these costs
should grow at most linearly with 𝑘 . HashWires achieves this by

observing that 𝑥 can be written in some base 𝑢, and the proof can

be broken into several sub-chains to greatly improve this efficiency

(they called this a minimum dominating partition). This base can be

chosen to trade off between proof size and prover/verifier efficiency.

In our later discussion of efficiency, we include benchmarks for a va-

riety of bases. We will see in Section 9 that HashWires is extremely

concretely efficient, in terms of both verifier time and prover time.

Its proof sizes are also competitive with other constructions.

8 CHOOSING THE CONSTRUCTION FAMILY
FOR YOUR APPLICATION

As there are dozens of ZKRP constructions, choosing the appro-

priate scheme for a particular application can be challenging. In

Figure 4, we give a flowchart for narrowing down the class of

range proofs depending on constraints. The next section gives an

efficiency comparison to help choose a scheme within this class.
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Lattice- and Code-Based Range Proofs

Scheme Commitment Scheme Assumptions Transparent Setup

LLNW [LLNW18] KTX SIVP Y

ESLL [ESLL19] UMC, HMC [BKLP15, BDL
+
18, ESS

+
19] Module-SIS, Module-LWE Y

YAZ+ [YAZ
+
19] KTX LWE, SIS Y

ALS [ALS20] [BDL
+
18] Module-SIS, Module-LWE Y

CKLR [CKLR21]† [BDL
+
18], as modified by [YAZ

+
19] LWE, SIS Y

LNS [LNS20]* [BDL
+
18] Module-SIS, Module-LWE Y

LNP [LNP22]** ABDLOP [Ajt96, BDL
+
18] Module-SIS, Module-LWE Y

Code-based [NTWZ19] [NTWZ19] 2-RNSD Y

Figure 3: Properties of lattice- and code-based range proofs

†CKLR [CKLR21] uses the square decomposition approach, but one of their constructions is lattice-based.

*In addition to their standard range proof, LNS [LNS20] also constructs an approximate range proof, showing that
𝑧 ∈ [0, 𝑛 · 2𝑘 − 1] for some small 𝑛. While relaxed, this kind of approximate range proof is sufficient for showing

smallness of vectors, which is an application they target. Its efficiency does not depend on 𝑘 .

**LNP [LNP22] is an approximate range proof. For a vector s such that | |s| | is much smaller than some bound 𝐵, this

proof can be used to show that | |s| | ≤ 𝐵.

Start

Credential-based?

HashWires [CCL
+
21] Post-quantum security?

Lattice- & code-based
Transparent setup?

BFGW + KZG [BFGW20],

Sharp [CGKR22], [Lib23]

Bulletproofs family,

CKLR [CKLR21]

Yes No

Yes No

Yes No

Figure 4: Flowchart for choosing a range proof based on desired properties.

HashWires [CCL
+
21] are concretely quite efficient and use only

hash functions; thus, they are plausibly post-quantum secure and

do not require a trusted setup. However, they’re in a more stringent

trust model (they are credential-based range proofs), where there
is a trusted issuer distributing commitments; that is, soundness

holds only if the commitment is well-formed. If the desired use case

does have this trusted issuer, HashWires is likely the most efficient

scheme.

Among the remaining constructions, only the lattice-and code-

based constructions are plausibly post-quantum secure, and thus if

this is a requirement this class is the only option. These schemes

have relatively large proof sizes (on the order of 10KB).

If trusted setup is allowed, there are several schemes with very

short proofs and efficient verifier and prover. BFGW+KZG [BFGW20],

Sharp [CGKR22], and Libert’s DLOG-based scheme [Lib23] all have

constant-sized proofs.

If trusted setup is undesired, the Bulletproofs family is recom-

mended. Although many lattice- and code-based constructions do

not require a trusted setup, all Bulletproofs-style constructions have

much shorter proofs. Even if a trusted setup is allowed, Bulletproofs-

style constructions may still be worth considering depending on

howmuch one values short proofs. Though their proof sizes are not

constant, they seem to be the most commonly used in practice. We

list CKLR [CKLR21] as well because it has comparable efficiency

to Bulletproofs on paper and also does not require trusted setup.

However, it has several drawbacks: it does not allow batching, it is

less efficient in practice due to its incompatibility with optimized

libraries for common elliptic curves, and it offers a more relaxed

notion of security. For certain applications where these drawbacks

are less important, CKLR may be worth considering.

9 EFFICIENCY COMPARISON
This section includes an efficiency comparison of various ZKRPs. In

Figure 5, we compile both concrete and asymptotic proof sizes for

schemes of particular interest. The concrete proof sizes have been

extracted directly from the schemes’ respective papers, as the proof

sizes are largely the same across machine configurations. Groth16

has the shortest range proofs for a 64-bit range at 192 bytes whereas

HashWires has the shortest range proofs at 177 bytes for a 32-bit

range.

In Figure 6, we record prover and verifier times for various

schemes. We add many of our own benchmarks to ensure that

10
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configurations are standardized. In particular, we add a benchmark

for Groth16 [Gro16] that was absent in prior work. The configu-

rations for benchmarks that we pull from other papers are noted

below.

Other benchmarks. The Sharp paper’s [CGKR22] benchmark of

their scheme, Sharp, was run on a MacBook Pro with a 2.3 GHz Intel

core i7 processor and uses the library libsecp256k1 [Wui18]. The

HashWires paper [CCL
+
21] includes a benchmark for Bulletproofs

which is significantly faster than ours. They used an AVX2 backend

was usedwhich significantly speeds up curve arithmetic.We include

this benchmark in addition to ours, to reflect the speedup possible

with their configuration.

Our benchmarks. We add our own benchmarks for Hashwires

(base 16 and base 256), Bulletproofs, BFGW + KZG, and Groth16.

In all cases, we record the median running time over 100 runs. We

plan to open source all of our benchmarks for reproducibility.

For Groth16, we implement range proofs with two versions of

the commitment scheme: the well-established Pedersen commit-

ments and the new zk-friendly Poseidon commitments. We’ve used

Circom [BMIMT
+
22] for writing circuits and rapidsnark [ide23] for

generating and verifying the Groth16 proofs.

The implementations for Hashwires, Bulletproofs and BFGW +

KZG are in Rust. All the benchmarks were run on a AMD EPYC

7443P 24-Core with 512GB of RAM (a c3.large.x86 machine hosted

by latitude.sh). All implementations are in Rust and open sourced

at https://github.com/joyqvq/range-proof-benches with various

attributions to original implementations. We explicitly chose a non-

Mac machine because rapidsnark leverages Intel Assembly to speed

up Groth16 proof generation.

Hashwires has the fastest proof generation and verification times.

Both BFGW + KZG and Groth16 have constant-sized proofs but

they are less computationally efficient than others. Groth16 has

the longest proof generation times. This is expected because we

are instantiating range proofs within a general-purpose zk proof

system.

It is worth noting that in practice the availability of a reliable li-

brary may outweigh mild efficiency gains. Bulletproofs is the most

widely used range proof in practice and is likely a good choice.

Groth16, though not tailored to range proofs, is one of the most

popular general-purpose zero-knowledge proof systems and of-

fers several well supported libraries; we use Circom [BMIMT
+
22]

and rapidsnark [ide23]. From our benchmarks, one can see the effi-

ciency gains offered by tailored range proof solutions over generic

solutions, which can be seen especially in the long prover times

required for Groth16 relative to the other range proofs.

10 RESEARCH GAPS
ResearchGap 1. Practical transparent constant-sized range proofs.

No zero-knowledge range proofs are practical, transparent, and

have constant-sized proofs. Bulletproofs and its close relatives have

transparent setup but have proofs of size𝑂 (log𝑘) for a 𝑘-bit range.
BFGW+KZG has constant-sized proofs but requires a trusted setup;

BFGW+DARKs has a transparent setup but requires𝑂 (log𝑘)-sized
proofs. CKLR has a transparent setup and has constant-sized proofs

but achieves only a relaxed notion of soundness. Furthermore, its

proofs are not as practically efficient as the above schemes because

they use less common curves that optimized libraries do not sup-

port.

Research Gap 2. Shorter (even amortized) lattice- or code-based
ZKRPs.

The proofs of lattice-based and code-based ZKRPs are concretely

quite long, as shown in Figure 5. For blockchain applications where

one must pay for the space used on-chain, this length is problematic,

especially as these constructions do not support aggregation. In

order to be competitive with constructions using other techniques

shown in Figure 5, the proof size must be under 1 KB.

Research Gap 3. Lattice- or code-based ZKRPs with multi-prover
aggregation.

Lattice-based ZKRPs with short proofs are desirable for confiden-

tial transactions, as blockchains transition to post-quantum security.

In such settings, this size issue may be mitigated by multi-prover ag-

gregation. Each block would then contain only an aggregate range

proof for all included transactions. However, this aggregation must

be multi-prover as these transactions may be made by many differ-

ent parties, each holding commitments to private values. Lattice-

and code-based ZKRPs with multi-prover aggregation have not yet

been constructed, leading us to the this related research gap.

Research Gap 4. Un-replayable credential-based range proofs.

For credential applications, one might want an interactive range

proof that cannot be replayed. Suppose that Alice has a commitment

of her age signed by a trusted credential issuer. Alice should be able

to visit the DMV and prove in zero knowledge that her committed

age is above 16. An observer Bob should not be able to copy Alice’s

commitment and re-use the transcript of the protocol to prove

(possibly falsely) that his age is above 16. If this range proof is

non-interactive, Bob can simply copy the proof and re-use it. This

re-use might be avoided if the protocol is public-coin interactive,

and the DMV issues a random challenge that requires knowledge

of the committed value to respond to.

Canwemake hash-chain-based range proofs that are un-replayable

in this way? As credentials are a primary motivation for HashWires,

un-replayability would be a nice property to add.

Research Gap 5. Integer commitments with full soundness with
transparent setup.

CKLR [CKLR21] and Sharp [CGKR22] construct integer commit-

ments with a relaxed notion of soundness. In order to be used for

confidential transactions, they must be augmented with additional

proof elements from an RSA group or class group. The RSA ver-

sion requires a trusted setup, and the class group solution is not

compatible with existing optimized libraries. Rather than patching

soundness issues by adding these extra elements, it would be pre-

ferred to construct practically efficient integer commitments with

full soundness and transparent setup.

Research Gap 6. Efficient post-quantum ZKRPs compatible with
LWE-based ciphertexts.

Zero-knowledge range proofs can be used to build verifiable

LWE-based encryption schemes as discussed in Appendix 11.2.

11

https://github.com/joyqvq/range-proof-benches


Miranda Christ, Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Deepak Maram, Arnab Roy, and Joy Wang

Scheme Proof size (bytes) Proof size (asymptotic)

64-bit range 32-bit range 𝑘-bit range

Bulletproofs 675 610 𝑂 (log𝑘)
BFGW + KZG † 576 576 𝑂 (1)

SharpGS 360 318 𝑂 (1)
SharpPoSO 389 335 𝑂 (1)
SharpRSA 793 751 𝑂 (1)

HashWires (Base 16)† 263 231 𝑂 (log𝑘)
HashWires (Base 256)† 199 167 𝑂 (log𝑘)

Groth16 [Gro16]
§

192 192 𝑂 (1)
Lattice-based ALS [ALS20]** - 5,900 𝑂 (𝑘)
Lattice-based ESLL [ESLL19] 93,000 58,000 Ω(𝑘)*
Lattice-based LNS [LNS20]** - 11,800 𝑜 (𝑘)‡

Figure 5: Proof sizes in bytes for 64- and 32-bit ranges. The benchmark for each
of these schemes is from that scheme’s original paper, except where otherwise
noted.

† Our own benchmark.

§
Benchmark from HashWires [CCL

+
21], over the BLS12-381 curve.

*See [ESLL19] for the exact expression, which includes several other parameters not

described here. It is Ω(𝑘) and is large relative to the other schemes.

**The proof sizes for 64-bit ranges were not included in [ALS20, LNS20]. Note that

[ALS20] has linear growth, so extrapolating from its 5,900-bit proof for 32-bit ranges,

its proof for 64-bit ranges would be large.

‡ See [LNS20] for the exact expression, which is complicated; it is sublinear in 𝑘 .

Scheme Verifier Time (ms) Prover Time (ms)

64-bit range 32-bit range 64-bit range 32-bit range

Bulletproofs† 2.51 1.37 11.96 6.32

SharpPoSO 0.75 0.74 1.17 0.97

Bulletproofs AVX2 (HashWires benchmark) 0.938 - 6.516 -

HashWires base 16† 0.002 0.002 0.061 0.003

HashWires base 256† 0.01 0.009 0.194 0.083

BFGW + KZG† 5.682 5.653 12.569 9.572

Groth16-Poseidon† 4 4 34.46 34.23

Groth16-Pedersen† 4 4 33.57 31.18

Figure 6: Verifier and prover times. See implementations: https://github.com/joyqvq/range-proof-
benches

†Our own benchmark.

However, existing verifiable LWE-based encryption schemes con-

structed using ZKRPs [DPLS19, Lib23] use discrete logarithm-based

ZKRPs. Thus, while they obtain privacy against quantum adver-

saries due to the LWE-based encryption used, they lack soundness

in verification due to the DLOG-based range proofs. If there were

efficient post-quantum range proofs compatible with LWE-based

ciphertexts, one could obtain verifiable encryption with sound-

ness against quantum adversaries as well. While a lattice-based zk-

SNARK (e.g., [ACL
+
22]) may work in theory, it may not be efficient

(yielding long ciphertexts and heavy computation). An efficient

lattice-based ZKRP that is compatible with lattice-based encryption

would be more satisfactory.

11 APPLICATIONS
11.1 Practical applications

Confidential transactions. Confidential transactions are an appli-

cation of range proofs that’s especially relevant to cryptocurrencies,

and have spurred research yielding significant efficiency improve-

ments for ZKRPs in recent years. In most cryptocurrencies, such as

Bitcoin and Ethereum, transaction details are visible to everyone;

in particular, anyone with access to the underlying blockchain can

see the amounts of currency being transferred.

Confidential transactions, initially proposed byMaxwell [Max16],

explored further in [BAZB20, Poe16], and deployed in applications
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such as Monero
2
, aim to hide the amounts involved in each trans-

action. In Maxwell’s approach, these amounts are stored using

Pedersen commitments [Ped91], and the sender must prove to the

miners that the sum of the output amounts does not exceed the

input amount. In other words, if amt𝑖𝑛 is the input amount and

each (amt𝑜𝑢𝑡 )𝑖 is an output amount,

amt𝑖𝑛 −
∑︁
𝑖

(amt𝑜𝑢𝑡 )𝑖 ≥ 0

However, this check on its own is not enough to ensure security.

A malicious sender Eve could create coins by creating a transaction

with herself as the recipient where, for example,

amt𝑖𝑛 = 0, (amt𝑜𝑢𝑡 )1 = −1, (amt𝑜𝑢𝑡 )2 = 1

Since amt𝑖𝑛 = 0, this transaction does not require Eve to spend

any coins. However, since Eve receives the output (amt𝑜𝑢𝑡 )2 = 1,

she gains a coin. Yet this transaction satisfies the check above. Thus,

confidential transactions also require the sender to prove that each

output amount is positive: (amt𝑜𝑢𝑡 )𝑖 ≥ 0 for each 𝑖 .

Zero knowledge range proofs give us a way to prove that a

committed (or encrypted) value 𝑥 lies in a range [0, 2𝑘 − 1] without
revealing any other information about 𝑥 . Thus, when applied to

confidential transactions, they allow the sender to show exactly

these checks without compromising confidentiality.

Receiver hiding. In addition to hiding the amounts involved in

transactions, confidential transactions (enabled by range proofs)

allow the sender to hide the identity of the receiver of a transac-

tion. If party 𝐴 wants to send 𝑥 amount to party 𝐵, it can create a

transaction that sends a confidential amount to 𝑛 different users

𝐵1, . . . , 𝐵𝑛 , one of which is actually 𝐵. The amounts sent to 𝐵𝑖 ≠ 𝐵

are zero, and the amount sent to 𝐵 is 𝑥 . Because the transaction

is confidential, an outside observer cannot tell which recipient 𝐴

actually paid.

However, later transactions may suggest which 𝐵𝑖 received

nonzero currency from 𝐴, since 𝐵𝑖 ≠ 𝐵 will likely never spend

their amounts of zero, which are useless. Thus, an observer can

infer that the party that spends its received amount is likely 𝐵. One

way to mitigate this issue is for 𝐴 to send a very small amount to

each 𝐵𝑖 ≠ 𝐵, to incentivize them to use this amount in a future

transaction. This introduces a trade-off between cost and the size

of the anonymity set.

Proofs of liabilities, reserves, and solvency. Proofs of solvency
allow exchanges or banks to show that they hold enough currency

in reserves to pay out all customers. There are two aspects to this:

proving that the bank holds at least a certain amount in reserves,

and proving that the bank holds at most that amount in liabilities.

These proofs should be privacy-preserving in that they don’t reveal

users’ balances. Zero knowledge range proofs have been used in

many schemes such as Provisions [DBB
+
15, Cam14, JC21].

Private voting. Consider the setting where users send encrypted

votes to a group of authorities that may jointly decrypt the sums

of the votes but should not be able to learn any individual user’s

vote. A challenge here is that users’ votes should be kept private,

yet dishonest users should not be able to submit negative votes for

2
https://www.getmonero.org/

candidates that they dislike. [Gro05] constructs several protocols

in this setting and mitigates this issue by requiring users to provide

zero-knowledge range proofs of their votes’ validity.

Federated learning. In federated learning, many distributed clients

train machine learning models on locally held data. These models

are then aggregated into a global model, often by averaging their

weights. To protect the privacy of clients’ data, these weights are of-

ten submitted under encryption. One concern in this setting is that

a malicious client may submit an encrypted model with very large

weights, which could hurt the accuracy of the global model by skew-

ing this average. One way to mitigate this problem is to use input

validation to ensure that each client’s model has bounded weights.

Range proofs, used for federated learning by Acorn [BGL
+
23], en-

able input validation even over encrypted weights, where clients

can show that their inputs satisfy these bounds without revealing

their models in the clear.

Auctions. [AW13] uses range proofs for verifiable auctions. Range

proofs help an auctioneer to prove to an auditor that the sale price

was set correctly without revealing the values of the bids. For exam-

ple, in a second-price auction with 𝑛 bids, (where the sale price is

equal to the second-highest bid), the auctioneer can provide proofs

that 𝑛 − 1 bids were at most the sale price and one bid was greater

than the sale price.

Anonymous credentials. In an anonymous credential system, users

are issued credentials that they can later use to prove facts about

their attributes, such as their age. Ideally, these proofs should re-

veal no more than is necessary. For example, a user should be able

to prove that their age is at least 18 without revealing their ex-

act age. Here, range proofs can be used; this was a motivation for

[CCS08, CCL
+
21]. An additional desirable property motivated by

this setting is unlinkability, where one cannot tell that two such

proofs are for the same commitment.

Verified location. Range proofs can be used to show that a lo-

cation is in a permitted region, by proving that the latitude and

longitude lie in the proper intervals. This and the following ap-

plication, timestamping, are suggested applications of HashWires

[CCL
+
21].

Timestamping. Suppose one is issued a certificate with a secret

expiration date. Range proofs can be used to privately show that

the certificate is still valid; i.e., the current date is less than the

expiration date.

Certificate transparency. Certificate transparency helps identify

when certificate authorities misbehave. This can be done using

a public transparency log, allowing all certificates to be publicly

viewable. One feature put forth in [EMBB17] is a way for auditors to

prove when a certificate has been incorrectly omitted from the log,

without revealing which certificate has been excluded for privacy

reasons. [EMBB17] uses ZKRPs to construct these zero-knowledge

non-inclusion proofs.

Differential privacy. In some applications, encrypted consumer

data is aggregated to support statistical studies. For example, en-

crypted electricity consumption data [MR14]. To enable privacy

of individual users, [MR14] added noise for differential privacy. A
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ZKRP is used to prove that the added noise is within an accepted

range.

11.2 Cryptographic applications
Non-membership proofs. Zero knowledge range proofs can be

used to construct zero knowledge proofs of non-membership. In

other words, one can prove that a committed value 𝑥 does not

belong to some public set 𝑆 , without revealing any additional in-

formation about the committed value. The approach to doing so

is to construct a Merkle tree containing elements of 𝑆 as leaves in

sorted order (if 𝑆 is not a set over the integers, assume some known

mapping from the data universe to integers). A non-membership

proof for 𝑥 is a zero knowledge proof that one knows leaves 𝑠𝑖 and

𝑠 𝑗 such that 𝑠𝑖 and 𝑠 𝑗 are adjacent and 𝑠𝑖 < 𝑥 < 𝑠 𝑗 . It is convenient

to use a range proof for this second property.

[EMBB17] constructs non-membership proofs from zero knowl-

edge range proofs in this fashion and uses them for certificate trans-

parency, to allow an auditor to prove in zero knowledge that a valid

certificate is not included in the log. [LLNW18] combines range

proofs with techniques from [LLNW16] to construct lattice-based

non-membership proofs as a generic primitive.

Well-formedness of LWE-based ciphertexts. When computing a

function over multiple (potentially untrusted) parties’ encrypted

inputs, it is important to ensure that these ciphertexts are well

formed. FHE schemes based on Ring LWE (RLWE) are often used in

such settings [BGV14]. In such schemes, ciphertexts t take the form
t = As (over a ring), where A is a matrix representing the public key

and s is a vector representing the message and randomness used in

the encryption. This encryption is correct if and only if all entries

of s are bounded. Zero knowledge range proofs have a natural

application here: they can be used to show exactly this boundedness

without revealing any information about the underlying plaintext.

[DPLS19] constructs efficient proofs of well-formedness for RLWE

ciphertexts by committing to the components of s using a Pedersen
commitment and using Bulletproofs [BBB

+
18] to prove that these

components are in the desired range. [Lib23] follows a similar strat-

egy but replaces the use of Bulletproofs with a more efficient zero

knowledge range proof.

Publicly verifiable secret sharing. Publicly verifiable secret shar-

ing allows an untrusted dealer to share a secret in a way that any

other party can verify that the secret was properly shared. If the

dealer encrypts the shares for the recipients, there must be a way

to verify that these recipients can indeed decrypt the ciphertexts to

learn well-formed shares.

[Gro21] constructs a PVSS scheme using an encryption scheme

which requires solving a discrete logarithm problem for decryp-

tion. To make this feasible, it uses chunked encryption, which

breaks the plaintext into smaller chunks that allow this discrete

logarithm problem to be solved efficiently. It uses range proofs to

show that the chunks are indeed small enough. In another PVSS

scheme, [GHL22] uses Bulletproofs to construct proofs of correct

encryption/decryption of LWE-based PVW ciphertexts [PVW08].

Polynomial relations over the integers. [CM99, CBM99] shows

how zero-knowledge range proofs can be used to construct zero-

knowledge proofs of polynomial relations among the discrete logs

of given elements, even if these elements lie in different groups.

This should be reminiscent of integer commitments, which let us

prove relations about committed values over the integers, as is

useful in the four-square decomposition range proof constructions.

Interestingly, range proofs help achieve this functionality as well.

More precisely, let G1 and G2 be two such groups with generators

𝑔1 and 𝑔2 respectively, and suppose we want to prove equality of

discrete logarithms of elements in these two groups. That is, for

the simple equality relation, given 𝑦1 ∈ G1 and 𝑦2 ∈ G2, the prover
can convince the verifier that it knows 𝛼 such that 𝑦1 = 𝑔

𝛼
1
in G1

and 𝑦2 = 𝑔𝛼
2
in G2. Showing also that 𝛼 lies in −2ℓ < 𝛼 < 2

ℓ
for

appropriately chosen ℓ suffices to show that log𝑔1
𝑦1 = log𝑔2

𝑦2

over Z. The range proof used here serves to show that 𝛼 does not

wrap around either group. The construction used in [CBM99] uses

this idea but is much more efficient than combining these proofs

naively.
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A FORMAL DEFINITION OF NIZKS
NIZK. Non-interactive zero knowledge (NIZK) [BFM88] proof is

a cryptographic primitive enables a prover to convince a (sceptical)

verifier about the truth of a statement without disclosing any ad-

ditional information in one round of communication. A NIZK can

be build in two possible settings: either in Random Oracle Model

(ROM) or in the Common Reference String (CRS) model. Next we

recall the definition of NIZK proofs in the CRS model and list their

main security properties.

Definition A.1 (Non-Interactive Zero-Knowledge Proofs). Let R
be an NP-relation, the language LR can be defined as LR =

{𝑥 | ∃ 𝑤 s.t. (𝑥,𝑤) ∈ R}, where 𝑥 and 𝑤 denote public statement

and secret witness, respectively. A NIZK, denoted by Π, for R con-

sists of three main PPT algorithms Π = (CRSGen, Prove,Verify)
defined as follows:

• Π.CRSGen(1_,R) → CRS: The CRS generation algorithm

takes the unary representation of the security parameter

_ and relation R as inputs and returns a set of common

reference string CRS as output.

• Prove(CRS, 𝑥,𝑤) → 𝜋 : The prove algorithm takes CRS, a
public statement 𝑥 and a secret witness𝑤 as inputs, and it

then returns a proof 𝜋 as output.

• Verify(CRS, 𝑥, 𝜋) → 0/1: The verify algorithm takes CRS,
a public statement 𝑥 and a proof 𝜋 as input, and it then

returns a bit indicating either the acceptance, 1, or rejection,

0, as output.

Informally speaking, a NIZK proof has three main security prop-

erties: Completeness, Zero-Knowledge and soundness (extractabil-

ity), which we formally recall them in below:

Definition A.2 (Completeness). A NIZK proof, Π, is called com-

plete, if for all security parameters, _, and all pairs of valid (𝑥,𝑤) ∈
𝑅 we have,

Pr

[
CRS← CRSGen(1_) :

Verify(CRS, 𝑥, Prove(CRS, 𝑥,𝑤)) = 1]

]
≥ 1 − negl(_) .

Definition A.3 (Zero-Knowledge). A NIZK proof system, Π, for a
given relation R and its corresponding language LR , we define a
pair of algorithms Sim = (Sim1, Sim2) as the simulator. The simu-

lator operates such that Sim′ (CRS, tpd, 𝑥,𝑤) = Sim2 (CRS, tpd, 𝑥)
when (𝑥,𝑤) ∈ R, and Sim′ (CRS, tpd, 𝑥,𝑤) = ⊥ when (𝑥,𝑤) ∉ R,
where tpd is a trapdoor. For 𝑏 ∈ {0, 1}, we define the experiment

ZKΠ
𝑏,Sim (1

_,A) in fig. 7. The associated advantage of an adversary

A is defined as

𝐴𝑑𝑣ZKΠ,A,Sim (_) B
�����Pr[ZKΠ

0,Sim (1
_,A) = 1]−

Pr[ZKΠ
1,Sim (1

_,A) = 1]

����� .
A NIZK proof system Π achieves perfect and computational zero-

knowledge, w.r.t a simulator Sim = (Sim1, Sim2), if for all PPT
adversaries A we have 𝐴𝑑𝑣ZKΠ,A,Sim (_) = 0, and 𝐴𝑑𝑣ZKΠ,A,Sim (_) ≤
negl(_), respectively.

ZKΠ
0,Sim (1

_,A)

CRS← CRSGen(1_)
𝛼 ← AProve(CRS,·,· ) (CRS)
return 𝛼

ZKΠ
1,Sim (1

_,A)

(CRS, tpd) ← Sim1 (1_)
𝛼 ← ASim′ (CRS,tpd,·,· ) (CRS)
return 𝛼

Figure 7: Zero-knowledge security property of a NIZK, Π.

Definition A.4 (Extractability [CKLM12]). A NIZK proof system

Π for a relation R and the language 𝐿 is called extractable if there
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exists a pair of algorithms Ext := (Ext1, Ext2) called extractors with
the following advantage for all PPT adversaries A:

𝐴𝑑𝑣CRSΠ,A B | Pr[CRS← CRSGen(1_); 1← A(CRS)]−

Pr[(CRS, st) ← Ext1 (1_); 1← A(CRS)] | ,
and

𝐴𝑑𝑣ExtΠ,A (_) B Pr


(CRSExt, stExt) ← Ext1 (1_)
(𝑥, 𝜋) ← A(CRSExt) :
Verify(CRSExt, 𝑥, 𝜋) = 1 ∧
(𝑥, Ext2 (CRSExt, stExt, 𝑥, 𝜋)) ∉ R


.

A NIZK proof system Π is called extractable, w.r.t an extrac-

tor Ext = (Ext1, Ext2), if 𝐴𝑑𝑣CRSΠ,A ≤ negl(_) and 𝐴𝑑𝑣ExtΠ,A (_) ≤
negl(_). Additionally, we refer to an extractable NIZK proof as a

non-interactive zero-knowledge proof of knowledge, or NIZKPoK

in short.

Succinctness. Zero-Knowledge Succinct Non-Interactive Ar-

guments of Knowledge, zkSNARK in short, are NIZKPoK proofs

that adhere to succinctness requirements. These proofs maintain

communication complexity (proof size) at sublinear levels, and in

some cases, the verifier’s computational workload remains sublin-

ear, regardless of the size of the witness. In this paper, we primarily

concentrate on zkSNARKs, ensuring that the proofs are short and

verification cost is low while the mentioned security definitions for

NIZK remain applicable for them.
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