
An improved exact CRR basis conversion
algorithm for FHE without floating-point

arithmetic

Hongyuan Qu, Guangwu Xu

Abstract. Fully homomorphic encryption (FHE) has attracted much
attention recently. Chinese remainder representation (CRR) or RNS rep-
resentation is one of the core technologies of FHE. CRR basis conversion
is a key step of KeySwitching procedure. Bajard et al. proposed a fast
basis conversion method for CRR basis conversion, but the elimination of
error had to be ignored. Halevi et al. suggested a method using floating-
point arithmetic to avoid errors, but floating-point arithmetic has its
own issues such as low efficiency and complex chip design. In this work,
we establish a more concise and efficient CRR basis conversion method
by observing that each of the ciphertext modulus selected by the CRR
CKKS scheme is very close to an integer that is a power of 2. Our conver-
sion algorithm eliminates errors and involves only integer arithmetic and
bit operations. The proof of correctness of our algorithm is given. Ex-
tensive experiments are conducted and comparisons between the method
of Halevi et al. and ours are obtained, which show that our method has
the same accuracy and a slightly better effeciency. Our method is also
applicable to the CRR variant of BGV and BFV schemes, and can be
used to simplify chip design.

Keywords: Fully homomorphic encryption· CRR basis conversion· Floating-
point arithmetic· Error elimination.

1 Introduction

Since Gentry proposed the first homomorphic encryption scheme[12], the field
of homomorphic encryption has been developed rapidly. Fully homomorphic en-
cryption allows any secure computation of the encrypted ciphertexts without the
need for decryption. At present, it has been extremely important in many fields.

At present, the mainstream wordbased fully homomorphic encryption schemes
include BGV[6], BFV[5, 11, 4], CKKS[9, 7], etc.. These schemes all use packing
technology to realize the component-wise homomorphic calculation of data vec-
tors[20]. One of the main advantages of CKKS scheme is that it supports homo-
morphic calculation of complex vectors, so it has a wide range of applications.
There are many open source homomorphic encryption libraries, such as Helib[15],
SEAL[2], PALISADE[1], HEAAN[8], implementing one or more fully homomor-
phic encryption schemes, as well as their CRR variants. The CRR variants of
these schemes make use of the Chinese Remainder Theorem to decompose a large

2 Hongyuan Qu, Guangwu Xu

integer into many small integers, and decompose the operation of large integers
into many small integer operations, thus greatly speeding up the calculations. In
order to improve the efficiency or reduce the error of fully homomorphic encryp-
tion, many optimization methods have been proposed. In 2012, in order to reduce
the error of the KeySwitching procedure, Gentry et al. introduced an extra large
module P , which replaced the previously used method of bit decomposition, thus
reducing the complexity of the calculation. Their approach is called GHS opti-
mization[13]. Han et al. developed a hybrid KeySwitching method in 2020, which
combines the way of GHS optimization and the idea of CRR decomposition to
reduce the bit length of P , thus allowing more homomorphic calculations[16].
In 2021, Kim et al. proposed an exact rescaling method to solve the problem
of large error in CRR CKKS rescaling process. They proposed a new mode of
selecting ciphertext modulus, which ensures that the error generated in rescaling
process is greatly reduced[18].

In the CRR variant of the above schemes, the KeySwitching procedure dif-
fers significantly from the original scheme. When GHS or hybrid optimization
is adopted, it involves the representation conversion of ciphertext polynomials
between two coprime CRR basis, which is the core operation of KeySwitching.
Barjard et al. proposed a method called fast basis conversion to convert rep-
resentations of polynomials from one CRR basis to another. This method is
also applied to the CRR variant of the CKKS scheme. However, this method
cannot eliminate the errors in the conversion process[4]. In 2019, Halevi et al.
proposed a method that uses floating-point arithmetic to eliminate the errors
in the CRR basis conversion process, and it is the fastest accurate method cur-
rently[14]. However, floating-point arithmetic has many disadvantages such as
long operation time and complex chip design[19, 10, 17].

1.1 Our contributions

We propose a method to eliminate errors in CRR basis conversion procedure
without the need for floating-point arithmetic. Our approach is based on the
observation that each small prime modulus is very close to an integer q that is
a power of 2. Using this observation we only need to use integer addition and
subtraction and bit operations to calculate the error term, thus replacing the
floating-point operations in Halevi et al. ’s method. We prove the correctness
of our method. By selecting the encryption parameters reasonably, the error
probability is negligible. Even if there is an error, the error is reduced compared
with the original scheme. We applied our method to the CRR CKKS scheme.
After experimental verification, our method obtains the same accuracy as Halevi
et al. ’s method, with an improvement of 0−0.5 bits compared with the original
scheme, and the running time difference is less than 10ms from the original
scheme. We mention that our method has good theoretical significance and can
be used to simplify the design of homomorphic encryption chips. Our method
is also applicable to CRR BGV and CRR BFV schemes if they use the same
modular selection method.

Title Suppressed Due to Excessive Length 3

1.2 organizations

Section 2 provides the necessary background about CRR basis conversion meth-
ods and CRR CKKS scheme. Section 3 describes our method for faster error
calculation. Section 4 describes our modification of the CRR CKKS scheme and
complexity analysis of our method, and section 5 describes our experimental
results.

2 Preliminaries

All logarithmic operations are in base 2 unless otherwise specified. For an integer
Q, we use [−Q/2, Q/2) ∩ Z as a representation interval of ZQ, and use [x]Q to
represent the reduction of the integer xmoduloQ into the interval. For an integer
N that is a power of 2, we denote R = Z[X]/(XN + 1), S = R[X]/(XN + 1),
RQ = R/QR. A finite ordered set C = {q0, q1, . . . , qℓ−1} is called a CRR basis

if its elements are coprime to each other. We denote Q =
∏ℓ−1

i=0 qi, q̂i = Q/qi,
q̂−1
i = 1/q̂i (mod qi).

For a polynomial a, we use a← U(S) to denote that a is sampled uniformly at
random in the set S. We use a← χ to indicate that a is sampled according to the
distribution χ. We use χkey, χerr, χenc to represent the distribution used during
private key generation, error generation and encryption, respectively. Ternary
distribution is commonly used in χkey, which means that all the coefficients of
a are selected uniformly from {−1, 0, 1}. This distribution is the most efficient
option recommended by homomorphic encryption standard[3]. Discrete Gaussian
distribution is commonly used as χerr to ensure security.

2.1 Chinese remainder representation (CRR)

For a CRR basis C = {q0, q1, . . . , qℓ−1}, Q =
∏ℓ−1

i=0 qi, according to Chinese
Remainder Theorem, for any x ∈ ZQ, x can be uniquely represented by the so
called Chinese remainder representation (CRR) or RNS representation in the
basis C, denoted as [x]C = ([x]q0 , [x]q1 , . . . , [x]qℓ−1

). And x satisfies

x =

ℓ−1∑
i=0

[x]qi · q̂i · q̂−1
i − v ·Q,

where v ∈ Z. Or

x =

ℓ−1∑
i=0

[[x]qi · q̂−1
i]qi · q̂i − e ·Q,

where e ∈ [−ℓ/2, ℓ/2) ∩ Z. For a polynomial a ∈ RQ, its Chinese remainder
representation, denoted as [a]C , is ([a]q0 , . . . , [a]qℓ−1

), where [a]qi denotes the
polynomial obtained by a modulo qi for each of its coefficients.

4 Hongyuan Qu, Guangwu Xu

2.2 CRR Basis Conversion

CRR basis conversion is a core operation of the KeySwitching procedure in
CRR CKKS scheme. The original scheme uses the fast basis conversion method
to convert the representation of a polynomial into a new basis that is coprime to
the original basis. Specifically, for a CRR basis D = {p0, . . . , pk−1, q0, . . . , qℓ−1},
let B = {p0, . . . , pk−1} and C = {q0, . . . , qℓ−1} be two sub bases of D, and let P =∏k−1

i=0 pi,Q =
∏ℓ−1

j=0 qj . Then one can convert the CRR [x]C = ([x]q0 , . . . , [x]qℓ−1
) ∈

Zq0 × · · · × Zqℓ−1
of an integer x ∈ ZQ into an element of Zp0

× · · · × Zpk−1
by

computing

ConvC→B ([x]C) =

ℓ−1∑
j=0

[[x]qj · q̂−1
j]qj · q̂j (mod pi)

0≤i<k

.

We note that the result above is actually ConvC = [x + Q · e]B, where e ∈
[−ℓ/2, ℓ/2) ∩ Z.

2.3 Exact CRR basis conversion

Halevi et al. proposed a method to calculate the above e using floating-point
arithmetic, which can eliminate the error of CRR basis conversion[14]. Specifi-
cally,

e =

⌈(
ℓ−1∑
j=0

[[x]qj · q̂−1
j]qj · q̂j

)
/Q

⌋
=

⌈
ℓ−1∑
j=0

[[x]qj · q̂−1
j]qj ·

q̂j
Q

⌋
=

⌈
ℓ−1∑
j=0

[[x]qj ·q̂
−1
j]qj

qj

⌋
.

Therefore, we first calculate yj := [[x]qj ·q̂−1
j]qj , j = 0, . . . , ℓ−1, then we compute

rational numbers zj := yj/qj , j = 0, . . . , ℓ− 1. Then we sum up all the zj ’s and

round it to get e. And finally we calculate [x]pi
=
[∑ℓ−1

j=0 yj · [q̂j]pi
− e · [Q]pi

]
pi

for i = 0, . . . , k − 1.

2.4 CRR CKKS scheme

All operations of the CRR CKKS scheme are performed under CRR. Plain-
text space is R. We let M = 2N and Z∗

M = {x ∈ ZM : gcd(x,M) = 1} be
the multiplication group composed of elements that are coprime with M . The
canonical embedding σ : S → CN is defined as σ(a) = (a(ζj))j∈Z∗

M
, where

ζ = exp(2πi/M). We also define natural projection τ : CN → CN/2 used in en-
coding and decoding procedure in the CRR CKKS scheme. The main processes
of the scheme is as follows.

– Setup(q, L, η, 1λ). For a base integer q = 2m and an integer L, given the
security parameter λ, choose a power-of-two N , and χkey, χerr, χenc for λ-
bit of security. Then choose a basis D = {q0, . . . , qL−1, p0, . . . , pk−1} such
that q/qj ∈ [1 − 2−η, 1 + 2−η] for 0 ≤ j < L. Let B = {p0, . . . , pk−1},

Title Suppressed Due to Excessive Length 5

Cℓ = {q0, . . . , qℓ−1} and Dℓ = {q0, . . . , qℓ−1, p0, . . . , pk−1}. Let P =
∏k−1

i=0 pi
and Qℓ =

∏ℓ−1
j=0 qj for 1 ≤ ℓ ≤ L. Finally, perform some necessary precom-

putation.

– KeyGen. First sample secret s← χkey, (a
(0), . . . , a(L−1))← U

(∏L−1
j=0 Rqj

)
,

e ← χerr. Set the secret key as sk ← (1, s) and public key as pk ←(
pk(j) = (b(j), a(j)) ∈ R2

qj

)
0≤j<L

, where b(j) ← −a(j) · s+ e (mod qj).

– KeySwitchGensk(s
′). Sample (a

′(0), . . . , a
′(L+k−1))← U

(∏L−1
j=0 Rqj ×

∏k−1
i=0 Rpi

)
and an error e′ ← χerr, Set the switching key swk as(
swk(0) = (b

′(0), a
′(0)), . . . , swk(L+k−1) = (b

′(L+k−1), a
′(L+k−1))

)
∈
∏L−1

j=0 R2
qj ×

∏k−1
i=0 R2

pi

where b
′(j) ← −a′(j) · s+[P]qj · s′+ e′ (mod qj) for 0 ≤ j < L and b

′(L+i) ←
−a′(L+i) · s+ e′ (mod pi) for 0 ≤ i < k.

– Encode(x). For a vector x ∈ CN/2, output ⌈σ−1 ◦ τ−1(q · x)⌋ ∈ R.
– Decode(m). For a plaintext m ∈ R, output τ ◦ σ(m) ∈ CN/2.
– Encpk(m). For m ∈ R, sample r ← χenc, e0, e1 ← χerr, output ciphertext

ct = (ct(j))0≤j<L ∈
∏L−1

j=0 R2
qj where ct

(j) ← r ·pk(j)+(m+e0, e1) (mod qj)
for 0 ≤ j < L.

– Decsk(ct). For a ciphertext ct = (ct
(j)
0≤j≤ℓ−1), output ⟨ct

(0), sk⟩ (mod q0).

– Add(ct, ct′). For two ciphertexts ct = (ct(j))0≤j<ℓ, ct′ = (ct′
(j)

)0≤j<ℓ,

output ctadd = (ct
(j)

add
)0≤j<ℓ where ct

(j)

add
← ct(j) + ct′

(j)
(mod qj) for

0 ≤ j < ℓ.
– KeySwitchswk(ct). The two core operations used in this stage are

ModUpCℓ→Dℓ
(·) :

ℓ−1∏
j=0

Rqj →
ℓ−1∏
j=0

Rqj ×
k−1∏
i=0

Rpi
,

ModDownDℓ→Cℓ
(·) :

ℓ−1∏
j=0

Rqj ×
k−1∏
i=0

Rpi →
ℓ−1∏
j=0

Rqj ,

where ModUpCℓ→Dℓ
([a]Cℓ

) uses ConvCℓ→B coefficient-wisely to convert the
CRR of the polynomial a under basis Cℓ to the CRR under basis Dℓ. The
functionality of ModDownDℓ→Cℓ

([a]Dℓ
) is to calculate ⌈ aP ⌋, during which

ConvB→Cℓ
is used coefficient-wisely to compute the CRR of a (mod P) under

basis Cℓ.
The process is as follows. For a ciphertext ct = (ct(j))0≤j<ℓ, where ct(j) =

(ct
(j)
0 , ct

(j)
1) ∈ R2

qj , first compute

˜ct1 ← ModUpCℓ→Dℓ
(ct

(0)
1 , . . . , ct

(ℓ−1)
1).

Then compute

c̃t = (c̃t
(0)

= (c̃0
(0), c̃1

(0)), . . . , c̃t
(ℓ+k−1)

= (c̃0
(ℓ+k−1), c̃1

(ℓ+k−1))) ∈
ℓ−1∏
j=0

R2
qj×

k−1∏
i=0

R2
pi
,

6 Hongyuan Qu, Guangwu Xu

where c̃t
(j)

= ˜ct1
(j) · swk(j) (mod qj) and c̃t

(ℓ+i)
= ˜ct1

(ℓ+i) · swk(ℓ+i)

(mod pi) for 0 ≤ j < ℓ, 0 ≤ i < k. Then compute

(ĉ
(0)
0 , . . . , ĉ

(ℓ−1)
0)← ModDownDℓ→Cℓ

(c̃0
(0), . . . , c̃0

(ℓ+k−1))

(ĉ
(0)
1 , . . . , ĉ

(ℓ−1)
1)← ModDownDℓ→Cℓ

(c̃1
(0), . . . , c̃1

(ℓ+k−1)).

Finally output

ĉt = (ĉt
(0)

, . . . , ĉt
(ℓ−1)

) ∈
ℓ−1∏
j=0

R2
qj

where ĉt
(j)

= (ct
(j)
0 , 0) + (ĉ

(j)
0 , ĉ

(j)
1) (mod qj) for 0 ≤ j < ℓ.

– Multevk(ct, ct
′). For two ciphertexts ct =

(
ct(j) = (c

(j)
0 , c

(j)
1)
)
0≤j<ℓ

and

ct′ =
(
ct

′(j) = (c
′(j)
0 , c

′(j)
1)

)
0≤j<ℓ

, for 0 ≤ j < ℓ, compute

d
(j)
0 ← c

(j)
0 · c

′(j)
0 (mod qj),

d
(j)
1 ← c

(j)
0 · c

′(j)
1 + c

(j)
1 · c

′(j)
0 (mod qj),

d
(j)
2 ← c

(j)
1 · c

′(j)
1 (mod qj)

Then compute d̂2 ← KeySwitchswk

((
(0, d

(j)
2)
)
0≤j<ℓ

)
. Output

ctMult =
(
(d

(j)
0 , d

(j)
1) + d̂

(j)

2

)
0≤j<ℓ

.

– Rotrkκ
(ct, κ). For a ciphtertext ct =

(
ct(j) = (c

(j)
0 , c

(j)
1)
)
0≤j<ℓ

and a rota-

tion index κ, first apply automorphism τκ to ct and get ctκ =
(
ct

(j)
κ = (c

(j)
κ0 , c

(j)
κ1)
)
0≤j<ℓ

,

then compute ĉκ ← KeySwitchrkκ

((
(0, c

(j)
κ1)
)
0≤j<ℓ

)
and finally output

ctrot =
(
(c

(j)
κ0 , 0) + ĉ(j)κ

)
0≤j<ℓ

.

– Rescaling(ct). For a ciphertext ct =
(
ct(j) = (c

(j)
0 , c

(j)
1)
)
0≤j<ℓ

∈
∏ℓ−1

j=0R2
qj ,

compute c
′(j)
i ← q−1

ℓ ·
(
c
(j)
i − c

(ℓ−1)
i

)
(mod qj) for i = 0, 1 and 0 ≤ j < ℓ−1.

Output ct′ ←
(
ct

′(j) = (c
′(j)
0 , c

′(j)
1)

)
0≤j<ℓ−1

∈
∏ℓ−2

j=0R2
qj .

3 Exact CRR basis conversion algorithm without floats

The fast basis conversion procedure is one of the core technologies in CRR CKKS,
but it brings additional errors, which is generally an integer multiple of mod-
ule Qℓ. Halevi et al. proposed a universal method for eliminating errors, but

Title Suppressed Due to Excessive Length 7

at the cost of introducing additional floating-point operations. We propose a
new method for eliminating errors during CRR basis conversion according to
the modulus selection method of the CRR CKKS scheme. Our method converts
floating-point operations into very low-cost integer addition and bit operations,
thereby improving the computational efficiency. Moreover, our method is also ap-
plicable to the CRR BFV and CRR BGV schemes if they use the same modulus
selection method as the CRR CKKS scheme.

3.1 Algorithm to calculate the error term

According to 2.3, calculating error term e is the core operation for eliminating
errors. We notice that q and qj satisfy the following relation when selecting small
prime modules: q/qj ∈ [1− 2−η, 1 + 2−η], where q = 2m for some m ∈ Z+. This
means that qj is very close to q. According to 2.3, we know that the calculation
formula of the error term is

e =

ℓ−1∑
j=0

[[x]qj · q̂−1
j]qj

qj

 .

Because qj ≈ q, j = 0, . . . , ℓ− 1, the above equation can be approximated as

e =

ℓ−1∑
j=0

[[x]qj · q̂−1
j]qj

qj

 ≈

ℓ−1∑
j=0

[[x]qj · q̂−1
j]qj

q

 =

⌈∑ℓ−1
j=0[[x]qj · q̂

−1
j]qj

q

⌋
.

So we get the following fast algorithm for calculating e:

Algorithm 1 Fast algorithm for calculating e

Input: [x]qj , q̂
−1
j , q, qj

Output: e
1: Compute y0 := [[x]q0 · q̂−1

0]q0 , . . . , yℓ−1 := [[x]qℓ−1 · q̂−1
ℓ−1]qℓ−1 .

2: Let e = 0, temp = y0.
3: for j = 1 → ℓ− 1 do
4: temp = temp+ yj
5: if temp > q

2
then

6: e = e+ 1
7: temp = temp− q
8: else if temp < − q

2
then

9: e = e− 1
10: temp = temp+ q
11: end if
12: end for
13: return e

At this point, we only need to perform up to 3(ℓ− 1) additions and subtrac-
tions to obtain e, which replaces ℓ floating-point division and ℓ floating-point
addition as well as the final rounding operation in Halevi et al.’s method.

8 Hongyuan Qu, Guangwu Xu

3.2 The correctness of the algorithm

We note that the above algorithm obtains an approximate value of e. In order
to ensure that the result obtained by our algorithm is equal to the true value of
e, we need to analyze the relation between ℓ and η. We first prove the following
lemma:

Lemma 1. For the number x that is uniformly distributed in the real number
field, r ∈ (0, 1) is a constant, then the probability that ⌈x⌋ is equal to ⌈x+ r⌋ is
1− r. That is

P [⌈x⌋ = ⌈x+ r⌋] = 1− r.

Further more, if ⌈x⌋ ≠ ⌈x+ r⌋, we have ⌈x+ r⌋ − ⌈x⌋ = 1.

Proof. We can choose x in the following way: first choose an integer a uniformly
at random, and then choose a real number b between [0, 1) independently and
uniformly at random, and let x = a+ b. Then P [b ∈ [0, 1

2)] = P [b ∈ [12 , 1)] =
1
2 .

This is equivalent to P [⌈x⌋ = a] = P [⌈x⌋ = a + 1] = 1
2 . And x + r = a + b + r,

0 < b+r < 2, so ⌈x+r⌋ depends on the size of b+r. In the following, we classify
and discuss b and r on the intervals [0, 1

2) and [12 , 1), respectively.

1. b ∈ [0, 1
2), r ∈ [0, 1

2). In this case, ⌈x⌋ = a, b+r ∈ [0, 1), so we have ⌈x+r⌋ = a
or ⌈x+r⌋ = a+1. In order to make ⌈x+r⌋ = a, there needs to be b+r ∈ [0, 1

2).
Because r is a constant, we have

P [b+ r ∈ [0,
1

2
)|b ∈ [0,

1

2
)] = P [b ∈ [0,

1

2
− r)|b ∈ [0,

1

2
)] =

1
2 − r

1
2

= 1− 2r.

And when b+ r ∈ [12 , 1), we have ⌈x+ r⌋ = a+ 1 = ⌈x⌋+ 1.
2. b ∈ [12 , 1), r ∈ [0, 1

2). In this case, ⌈x⌋ = a + 1, b + r ∈ [12 ,
3
2), and we have

⌈x+ r⌋ = a+ 1 = ⌈x⌋.
3. b ∈ [0, 1

2), r ∈ [12 , 1). In this case, ⌈x⌋ = a, while b+ r ∈ [12 ,
3
2), so ⌈x+ r⌋ =

a+1, and the probability that ⌈x⌋ equals ⌈x+ r⌋ is 0, and ⌈x+ r⌋−⌈x⌋ = 1.
4. b ∈ [12 , 1), r ∈ [12 , 1). In this case, ⌈x⌋ = a + 1, b + r ∈ [1, 2), so we have
⌈x+ r⌋ = a+ 1 or ⌈x+ r⌋ = a+ 2. In order to make ⌈x+ r⌋ = ⌈x⌋ = a+ 1,
there needs to be b+ r ∈ [12 ,

3
2) , so we have

P [b+r ∈ [
1

2
,
3

2
)|b ∈ [

1

2
, 1)] = P [b ∈ [

1

2
,
3

2
−r)|b ∈ [

1

2
, 1)] =

3
2 − r − 1

2

1− 1
2

= 2−2r.

And when b+ r ∈ [32 , 2), we have ⌈x+ r⌋ = a+ 2 = ⌈x⌋+ 1.

In summary, when r ∈ [0, 1
2), according to 1 and 2 above, we have

P [⌈x⌋ = ⌈x+ r⌋] = P [b+ r ∈ [0,
1

2
)|b ∈ [0,

1

2
)] · P [b ∈ [0,

1

2
)] + 1 · P [b ∈ [

1

2
, 1)]

= (1− 2r) · 1
2
+

1

2
= 1− r.

Title Suppressed Due to Excessive Length 9

When r ∈ [12 , 1), according to 3 and 4 above, we have

P [⌈x⌋ = ⌈x+ r⌋] = 0 · P [b ∈ [0,
1

2
)] + P [b+ r ∈ [

1

2
,
3

2
)|b ∈ [

1

2
, 1)] · P [b ∈ [

1

2
, 1)]

= 0 + (2− 2r) · 1
2

= 1− r.

Thus when r ∈ [0, 1) is a constant,

P [⌈x⌋ = ⌈x+ r⌋] = 1− r,

and
⌈x+ r⌋ − ⌈x⌋ ≤ 1.

With the above lemma, we can prove the following theorem about the correctness
of Algorithm 1 :

Theorem 1. Let r ∈ (0, 1) be a constant. Assume that the output of Algorithm
1 is e′. Then when η > log r+ℓ

r , we have Pr[e′ = e] > 1 − r. Even if e′ ̸= e,
|e′ − e| must be 1.

Proof. We notice that

ℓ−1∑
j=0

[[x]qj · q̂−1
j]qj

qj
=

ℓ−1∑
j=0

[[x]qj · q̂−1
j]qj

q
· q
qj
.

According to q
qj
∈ [1− 2−η, 1 + 2−η] for 0 ≤ j < ℓ, we have

ℓ−1∑
j=0

[[x]qj · q̂−1
j]qj

q
· (1− 2−η) ≤

ℓ−1∑
j=0

[[x]qj · q̂−1
j]qj

qj
≤

ℓ−1∑
j=0

[[x]qj · q̂−1
j]qj

q
· (1 + 2−η).

(1)

Let A =
∑ℓ−1

j=0

[[x]qj ·q̂
−1
j]qj

q , B =
∑ℓ−1

j=0

[[x]qj ·q̂
−1
j]qj

qj
, then e = ⌈B⌋, and the output

of Algorithm 1 is ⌈A⌋. According to (1) we have

⌈A · (1− 2−η)⌋ ≤ e ≤ ⌈A · (1 + 2−η)⌋.

We want e = ⌈A⌋ to be true. All we have to do is make ⌈A · (1 − 2−η)⌋ =
⌈A · (1 + 2−η)⌋, and we can’t know the size of A in advance, but we can get the
upper and lower bounds of A. Specifically, we have the following formula

A =

ℓ−1∑
j=0

[[x]qj · q̂−1
j]qj

q
≤

q0
2 + · · ·+ qℓ−1

2

q
≤ ℓ

2(1− 2−η)
,

A =

ℓ−1∑
j=0

[[x]qj · q̂−1
j]qj

q
≥
− q0

2 − · · · −
qℓ−1

2

q
≥ − ℓ

2(1− 2−η)
.

10 Hongyuan Qu, Guangwu Xu

Thus |A| ≤ ℓ
2(1−2−η) . Let

α = |A · (1 + 2−η)−A · (1− 2−η)| = |A · 21−η|,

and α ≤ ℓ·21−η

2(1−2−η) = ℓ·2−η

1−2−η . Observe that the upper bound of α is only deter-

mined by η and ℓ, so we can control the upper bound of α by selecting η and
ℓ. Let r ∈ (0, 1) be a constant, and assume that A is uniformly distributed. Let
α < r, then according to lemma 1, the probability that ⌈A · (1 − 2−η)⌋ equals
⌈A · (1 + 2−η)⌋ is 1 − α > 1 − r, so the probability of e = ⌈A⌋ is greater than
1− r. Now we turn to analyze the relation between η and ℓ.

Let α < r, it is enough to make ℓ·2−η

1−2−η < r. Solve the inequality and we

get 2−η < r
r+ℓ . Take the logarithm of both sides and multiply by −1 to get

η > log r+ℓ
r .

In summary, when η > log r+ℓ
r , the probability that the output of Algorithm

1 is equal to e is greater than 1−r, and even if they are not equal, the difference
between the two is ±1.

According to the theorem 1, given r and ℓ, we can determine the lower bound
of η. We observe that the lower bound of η is a logarithmic function of ℓ. As ℓ
increases, so does the lower bound of η. Therefore, when the scheme is initialized,
we can determine the values of L and η, which naturally satisfy the conditions
of the remaining layers. In addition, the logarithmic function grows very slowly,
which enables us to select a small enough r to ensure the correctness of Algorithm
1 without causing the lower bound of η to be too large. For example, Fig. 1 shows
how the lower bound of η changes with ℓ when taking r = 0.001.

Fig. 1. The relation between the lower bound of η and ℓ for r = 0.001.

Title Suppressed Due to Excessive Length 11

3.3 Optimal parameter selection

We note that the lower bound of η above is loose. In practice, we want η to

be as big as possible, because the bigger η is, the smaller ℓ·2−η

1−2−η is, the greater
the probability that Algorithm 1 is correct. But η has an upper bound. This
is because when the CRR CKKS scheme is initialized, we are given N, q, L,
and then select L prime numbers in the interval [q

1+2−η ,
q

1−2−η] all of which are
congruent to 1 modulo 2N . The selection of η should ensure that the number of
prime numbers in the interval [q

1+2−η ,
q

1−2−η] that are congruent to 1 modulo 2N
is greater than or equal to L. The larger the η, the smaller the interval length,
and the fewer primes that meet the condition. Given N, q, L, we use the binary
search to find the maximum value of η that we can get.

Algorithm 2 Binary search algorithm to compute the maximum value of η.

Input: N, q, L
Output: The maximum value of η.
1: Set ηl = 1.
2: while ηl < ηr do
3: Let ηm = ⌊ ηl+ηr

2
⌋. Calculate the number of primes that are congruent to 1 mod-

ulo 2N in the interval [q
1+2−ηm

, q
1−2−ηm

] and [q

1+2−(ηm+1) ,
q

1−2−(ηm+1)] respectively,

and denote them as cm, cm+1.
4: if cm ≥ L and cm+1 < L then
5: return ηm.
6: else if cm < L then
7: ηr = ηm
8: else
9: ηl = ηm + 1
10: end if
11: end while

According to Algorithm 2, we can get the optimal value of η when N , q and
L are set to different values. For example, Fig. 2 shows how the upperbound of

η and L·2−η

1−2−η change with L when N = 214, q = 250. We observe that the upper

bound of η decreases very slowly as L increases, and that L·2−η

1−2−η does not exceed

8 × 10−8. This shows that the probability of Algorithm 1 getting the correct
result with this parameter setting is greater than 1 − 8 × 10−8, which is very
close to 1.

We notice that the image of L·2−η

1−2−η changes with L has a large increase from
L = 2 to L = 3 and from L = 11 to L = 12 respectively, roughly doubling. This
is because the upper bound of η decreases by 1 from L = 2 to L = 3 and from
L = 11 to L = 12. The upper bound of η is not only related to L, but also to the
bit length of N and q. Specifically, when q increases 1 bit, or N decreases 1 bit,
the number of numbers in the interval [q

1+2−η ,
q

1−2−η] that are congruent to 1
modulo 2N is twice as large, so the number of prime numbers in these numbers
is roughly twice as large. Thus the upper bound of η increases roughly by 1. In

12 Hongyuan Qu, Guangwu Xu

0 2 4 6 8 10 12 14 16 18 20

28

28.2

28.4

28.6

28.8

29

29.2

29.4

29.6

29.8

30

(a) Relation between upperbound of η and L.

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

8
10

-8

(b) Relation between L·2−η

1−2−η and L.

Fig. 2. When N = 214, q = 250, the images of how the upper bound of η and L·2−η

1−2−η

change respectively as a function of L.

order to ensure the amortization efficiency of the scheme, a relatively large value
of N is usually taken in practice. Therefore, in order to maximize the probability
of obtaining the correct value of Algorithm 1, we suggest that the bit length of
q should be increased appropriately.

4 Modifications and comparisons to the original scheme

We have implemented our method on the PALISADE homomorphic encryption
open source library. We have modified the process of CKKS scheme in the fol-
lowing aspects: First, in the initialization phase of the scheme, we input three
parameters, namely ring dimension N , the size of ciphertext module q and the
number of prime modulus L, where q is a power of 2. We first use Algorithm 2
to calculate the maximum value that η can take, and use Algorithm 3 below to
obtain L ciphertext modulus. Observe that Algorithm 2 guarantees that there
are at least L prime numbers in the interval [q

1+2−η ,
q

1−2−η] that meet the condi-
tion, which guarantees the correctness of Algorithm 3. We also use Algorithm 2
followed by Algorithm 3 in turn to obtain k KeySwitching modulus p0, . . . , pk−1.

We note that the PALISADE open source library uses a residual class rep-
resentation range of {0, 1, . . . , qj − 1} for ciphertext computation, which allows
us to further simplify Algorithm 1, avoid conditional branching, and replace
addition and subtraction with bit operations. Specifically, we use Algorithm 4
below to calculate e. Similarly, for the basis B = {p0, . . . , pk−1} we use the same
algorithm to calculate ep.

4.1 Precomputation

Notice that when we use exact basis conversion, we need to subtract e · Qℓ

(mod pi) for 0 ≤ i < k or ep ·P (mod qj) for 0 ≤ j < ℓ. According to Algorithm
4, we know the range of e or ep, i.e. e ∈ {0, . . . , ℓ − 1} and ep ∈ {0, . . . , k − 1}.

Title Suppressed Due to Excessive Length 13

Algorithm 3 Algorithm for computing L prime modulus

Input: N, q, L, η
Output: L prime modulus
1: Compute upperbound = q

1−2−η , lowerbound = q
1+2−η .

2: Compute qF irst = 2N · ⌊upperbound
2N

⌋+ 1.
3: Construct an empty array result.
4: while L ≥ 1 do
5: if MillerRabinTest(qF irst) = True then
6: result.append(qF irst).
7: L = L− 1.
8: else
9: qF irst = qF irst− 2N .
10: end if
11: end while
12: return result.

Algorithm 4 A faster algorithm for calculating e.

Input: [x]qj , q̂
−1
j , q, qj

Output: e
1: Compute y0 := [[x]q0 · q̂−1

0]q0 , . . . , yℓ−1 := [[x]qℓ−1 · q̂−1
ℓ−1]qℓ−1 .

2: Set e = 0, temp = y0.
3: for j = 1 → ℓ− 1 do
4: temp = temp+ yj
5: e = e+ temp&q
6: temp = temp&(q − 1)
7: end for
8: return e

14 Hongyuan Qu, Guangwu Xu

Thus we can precompute these values during the initialization of the scheme.
Specifically, we compute and store α ·Qℓ (mod pi) for 1 ≤ ℓ ≤ L, 0 ≤ α < ℓ, 0 ≤
i < k and β · P (mod qj) for 0 ≤ β < k, 0 ≤ j < L during the initialization
phase of the scheme.

4.2 Complexity analysis

We first analyze the complexity of Algorithm 4. Algorithm 4 first evaluates
y0, . . . , yℓ−1, which requires ℓ modular multiplication. Next, it loops ℓ− 1 times,
each time performing 3 integer additions and subtractions and 2 bit operations,
for a total of 3(ℓ− 1) integer additions and subtractions and 2(ℓ− 1) bit opera-
tions. Finally we compute

ℓ−1∑
j=0

yj · [q̂j]pi
− e ·Qℓ (mod pi) for 0 ≤ i < k,

Since e ·Qℓ (mod pi) for 0 ≤ i < k has been calculated in the initialization phase
of the scheme, a total of ℓ ·k modular multiplications and ℓ ·k modular additions
are needed. In summary, in the whole exact CRR basis conversion procedure,
we perform a total of ℓ · (k+1) integral modular multiplications, ℓ · k+3(ℓ− 1)
integral modular additions or subtractions and 2(ℓ− 1) bit operations.

We compare the complexity of our method with the original scheme and the
method of Halevi et al. in the CRR basis conversion process, respectively. The
following table shows the numbers of different operations in the three methods.

Modular
multiplications

Modular additions
or subtractions

Floating-point
multiplications

Floating-point
additions or
subtractions

Bit operations
Floating-point

roundings

Whether to
eliminate
error

Our method ℓ · (k + 1) ℓ · k + 3(ℓ− 1) 0 0 2(ℓ− 1) 0 Yes
Halevi et al. ’s method[14] ℓ · (k + 1) ℓ · k ℓ ℓ− 1 0 1 Yes
Fast basis conversion[7, 4] ℓ · (k + 1) (ℓ− 1) · k 0 0 0 0 No

Table 1. Complexity comparison of CRR basis conversion for ciphertext at ℓ layer.

It is a well-known fact that the costs of computational tasks such as integer or
floating-point multiplications, division and modular operation are significantly
higher than that for integer modular addition and bit operations. The bit op-
erations are even trivial compared to operations such as multiplications, so our
method is more efficient than the method of Halevi et al..Our method eliminates
the error of CRR basis conversion used in the original fast method, but the
performance is not much affected.

5 Experimental results

We implemented our method and Helavi et al. ’s method in the CKKS scheme
of PALISADE library, and combined them with hybrid method[16] and exac-
tRescale method[18]. Our experiments were run on a laptop with AMD Ryzen 7

Title Suppressed Due to Excessive Length 15

4800U with Radeon Graphics 1.80 GHz CPU with 16 GB RAM, running Ubuntu
20.04. All experiments were conducted in single-thread mode.

Our experiments were carried out in full packing mode, that is, we encrypted
a vector x ∈ CN/2 each time. Every elements in the vector were randomly
selected in the interval [0, 1]. In order to measure the precision of the decryption

result x̃, we calculate 2
N

∑N/2
i=1 − log(|xi − x̃i|) to represent the precision.

We use the following notation to indicate the different technologies used in
the CRR CKKS scheme:

– Fast represents the CRR basis conversion method of the original scheme[7],
ExactHPS denotes the method proposed by Helevi et al for eliminating
errors using floating-point arithmetic[14], and Exact denotes our method
for eliminating errors using integer arithmetic.

– ApproxRescaling denotes the rescaling method of the original scheme[7],
and ExactRescaling denotes the exact rescaling method proposed by Kim
et al[18].

– GHS represents the KeySwitching method proposed by Gentry et al[13].,
and Hybrid represents the hybrid KeySwitching method proposed by Han
et al[16].

We compared the efficiency and error of homomorphic multiplication and homo-
morphic rotation using Fast, ExactHPS and Exact methods under different
parameter settings and different techniques, respectively. Table 2,3,4,5 shows
the results.

Fast Exact ExactHPS

q logN K
Mult. Rot. Mult. Rot. Mult. Rot.

prec. time prec. time prec. time prec. time prec. time prec. time

240

13 80 18.33 2.896 18.06 2.081 18.33 2.998 18.09 2.145 18.34 3.201 18.07 2.245
14 200 17.598 8.51 17.32 7.549 17.613 9.053 17.372 8.487 17.604 9.889 17.382 8.691
15 400 16.911 34.396 16.482 31.474 16.925 37.032 16.68 32.374 16.913 33.873 16.687 32.275
16 800 16.219 140.467 15.544 135.643 16.241 144.343 15.992 135.428 16.232 141.314 15.997 133.13

250

13 100 25.238 3.653 24.980 2.07 25.274 3.437 25.008 2.106 25.259 2.844 25.001 2.207
14 200 24.523 6.808 24.225 6.063 24.509 7.228 24.297 7.005 24.526 7.718 24.311 7.405
15 400 23.822 28.233 23.547 26.263 23.843 27.374 23.605 23.258 23.826 27.713 23.628 23.967
16 1000 23.141 163.081 22.418 144.776 23.162 163.795 22.923 146.913 23.146 162.335 22.912 147.347

Table 2. Comparison of homomorphic multiplication and homomorphic rotation op-
erations between the three methods in ApproxRescaling and GHS modes, where
K = ⌈logQL⌉ and λ ≥ 128 bits. Precision and time are measured in bits and mil-
liseconds, respectively.

We observe that our method and Helevi et al. ’s method have an precision
improvement of 0 − 0.5 bits compared to the original scheme, in which the
precision improvement of homomorphic multiplication is small, and the precision
improvement of homomorphic rotation is large. And the running time of the three
methods is about the same. We find that our method do not improve significantly
over the original method because the CRR basis conversion operation is not the

16 Hongyuan Qu, Guangwu Xu

Fast Exact ExactHPS

q logN K
Mult. Rot. Mult. Rot. Mult. Rot.

prec. time prec. time prec. time prec. time prec. time prec. time

240

14 200 17.610 14.035 17.298 12.364 17.618 14.763 17.392 13.07 17.62 15.106 17.377 13.912
14 320 17.605 20.304 17.335 18.054 17.591 20.688 17.363 17.869 17.601 23.156 17.377 18.526
15 640 16.903 87.146 16.580 82.141 16.912 82.08 16.695 73.642 16.921 79.74 16.669 79.708
16 880 16.219 247.18 15.923 198.613 16.235 220.947 15.989 205.13 16.215 221.865 15.982 202.583

250

13 150 25.244 4.135 24.987 3.898 25.246 4.372 25.013 4.195 25.237 4.506 24.968 4.003
14 300 24.508 15.451 24.3 14.211 24.532 15.662 24.312 13.907 24.528 15.352 24.318 14.016
15 600 23.835 65.389 23.54 57.243 23.846 66.145 23.623 58.928 23.842 62.922 23.631 59.394
16 1000 23.156 218.138 22.898 188.795 23.145 221.221 22.924 185.967 23.158 221.512 22.924 186.801

Table 3. Comparison of homomorphic multiplication and homomorphic rotation op-
erations between the three methods in ApproxRescaling and Hybrid modes, where
K = ⌈logQL⌉ and λ ≥ 128 bits. Precision and time are measured in bits and millisec-
onds, respectively.

Fast Exact ExactHPS

q logN K
Mult. Rot. Mult. Rot. Mult. Rot.

prec. time prec. time prec. time prec. time prec. time prec. time

240

13 80 18.312 2.524 18.027 1.928 18.33 3.241 18.081 1.922 18.312 2.278 18.048 2.348
14 200 17.61 9.919 17.346 7.583 17.623 9.389 17.374 8.839 17.613 9.279 17.37 9.058
15 400 16.913 39.138 16.535 31.682 16.934 39.214 16.96 31.955 16.927 38.436 16.683 33.343
16 800 16.208 155.385 15.647 132.868 16.235 157.638 15.996 135.163 16.215 154.668 15.988 136.18

250

13 100 25.239 2.384 24.972 3.689 25.265 2.975 24.981 2.813 25.231 3.164 25.023 2.091
14 200 24.530 7.049 24.254 6.256 24.558 6.701 24.309 7.145 24.547 7.935 24.322 7.731
15 400 23.82 29.438 23.44 26.137 23.85 30.288 23.625 27.936 23.823 29.171 23.613 25.921
16 1000 23.15 167.717 22.433 144.642 23.153 177.682 22.913 144.525 23.145 166.603 22.92 147.33

Table 4. Comparison of homomorphic multiplication and homomorphic rotation op-
erations between the three methods in ExactRescaling and GHS modes, where
K = ⌈logQL⌉ and λ ≥ 128 bits. Precision and time are measured in bits and mil-
liseconds, respectively.

Fast Exact ExactHPS

q logN K
Mult. Rot. Mult. Rot. Mult. Rot.

prec. time prec. time prec. time prec. time prec. time prec. time

240

14 200 17.588 15.961 17.362 12.246 17.622 15.186 17.398 12.885 17.633 16.662 17.387 13.792
14 320 17.598 20.201 17.369 17.026 17.597 23.898 17.391 17.581 17.599 21.979 17.382 18.454
15 640 16.917 86.446 16.583 74.926 16.925 88.25 16.672 78.572 16.932 87.347 16.682 75.827
16 880 16.219 250.123 15.929 198.537 16.231 273.638 15.995 208.834 16.224 279.17 15.99 212.747

250

13 150 25.219 4.317 25.005 4.04 25.271 4.667 24.996 4.109 25.245 4.396 24.976 4.136
14 300 24.556 17.944 24.309 14.63 24.541 17.012 24.288 14.524 24.55 18.994 24.297 16.495
15 600 23.845 64.447 23.578 56.934 23.848 68.938 23.616 58.57 23.837 68.135 23.613 58.507
16 1000 23.14 217.689 22.72 183.25 23.166 217.891 22.918 185.668 23.152 216.967 22.92 189.188

Table 5. Comparison of homomorphic multiplication and homomorphic rotation op-
erations between the three methods in ExactRescaling and Hybrid modes, where
K = ⌈logQL⌉ and λ ≥ 128 bits. Precision and time are measured in bits and millisec-
onds, respectively.

Title Suppressed Due to Excessive Length 17

main source of error, nor is it a major part of the cost time. However, our method
has a good theoretical significance. We only use the low cost modular addition
and bit operation to eliminate the error of CRR basis conversion procedure,
replacing the floating-point operations in the method of Helevi et al., which has
a positive significance in simplifying chip design.

6 Declarations

The authors have no conflicts of interest to declare that are relevant to the
content of this article.

References

1. PALISADE lattice cryptography library(release v1.11.6). https://palisade-
crypto.org/ (2022)

2. Microsoft SEAL. https://github.com/Microsoft/SEAL (2023)
3. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi,

S., Hoffstein, J., Laine, K., Lauter, K., et al.: Homomorphic encryption standard.
Protecting privacy through homomorphic encryption pp. 31–62 (2021)

4. Bajard, J.C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: Selected Areas in Cryptography–
SAC 2016: 23rd International Conference, St. John’s, NL, Canada, August 10-12,
2016, Revised Selected Papers. pp. 423–442. Springer (2017)

5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Advances in Cryptology–CRYPTO 2012: 32nd Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings. pp.
868–886. Springer (2012)

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. ACM Transactions on Computation Theory
(TOCT) 6(3), 1–36 (2014)

7. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approx-
imate homomorphic encryption. In: Selected Areas in Cryptography–SAC 2018:
25th International Conference, Calgary, AB, Canada, August 15–17, 2018, Revised
Selected Papers 25. pp. 347–368. Springer (2019)

8. Cheon, J.H., Kim, A., Kim, M., Song, Y.: HEAAN.
https://github.com/snucrypto/HEAAN (2016)

9. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Advances in Cryptology–ASIACRYPT 2017: 23rd
International Conference on the Theory and Applications of Cryptology and In-
formation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I
23. pp. 409–437. Springer (2017)

10. Ducas, L., Galbraith, S., Prest, T., Yu, Y.: Integral matrix gram root and lat-
tice Gaussian sampling without floats. In: Advances in Cryptology–EUROCRYPT
2020: 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part
II 30. pp. 608–637. Springer (2020)

11. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive (2012)

18 Hongyuan Qu, Guangwu Xu

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

13. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: Advances in Cryptology–CRYPTO 2012: 32nd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2012. Proceedings. pp. 850–867. Springer
(2012)

14. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homo-
morphic encryption scheme. In: Topics in Cryptology–CT-RSA 2019: The Cryp-
tographers’ Track at the RSA Conference 2019, San Francisco, CA, USA, March
4–8, 2019, Proceedings. pp. 83–105. Springer (2019)

15. Halevi, S., Shoup, V.: Algorithms in helib. In: Advances in Cryptology–CRYPTO
2014: 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-
21, 2014, Proceedings, Part I 34. pp. 554–571. Springer (2014)

16. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption.
In: Topics in Cryptology–CT-RSA 2020: The Cryptographers’ Track at the RSA
Conference 2020, San Francisco, CA, USA, February 24–28, 2020, Proceedings. pp.
364–390. Springer (2020)

17. Hettiarachchi, D.L.N., Davuluru, V.S.P., Balster, E.J.: Integer vs. Floating-Point
Processing on Modern FPGA Technology. In: 2020 10th Annual Computing
and Communication Workshop and Conference (CCWC). pp. 0606–0612 (2020).
https://doi.org/10.1109/CCWC47524.2020.9031118

18. Kim, A., Papadimitriou, A., Polyakov, Y.: Approximate homomorphic encryption
with reduced approximation error. In: Topics in Cryptology–CT-RSA 2022: Cryp-
tographers’ Track at the RSA Conference 2022, Virtual Event, March 1–2, 2022,
Proceedings. pp. 120–144. Springer (2022)

19. Louca, Cook, Johnson: Implementation of IEEE single precision floating point
addition and multiplication on FPGAs. In: 1996 Proceedings IEEE Sym-
posium on FPGAs for Custom Computing Machines. pp. 107–116 (1996).
https://doi.org/10.1109/FPGA.1996.564761

20. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Designs, codes
and cryptography 71, 57–81 (2014)

