An improved exact CRR basis conversion
algorithm for FHE without floating-point
arithmetic

Hongyuan Qu, Guangwu Xu

Abstract. Fully homomorphic encryption (FHE) has attracted much
attention recently. Chinese remainder representation (CRR) or RNS rep-
resentation is one of the core technologies of FHE. CRR basis conversion
is a key step of KeySwitching procedure. Bajard et al. proposed a fast
basis conversion method for CRR basis conversion, but the elimination of
error had to be ignored. Halevi et al. suggested a method using floating-
point arithmetic to avoid errors, but floating-point arithmetic has its
own issues such as low efficiency and complex chip design. In this work,
we establish a more concise and efficient CRR basis conversion method
by observing that each of the ciphertext modulus selected by the CRR
CKKS scheme is very close to an integer that is a power of 2. Our conver-
sion algorithm eliminates errors and involves only integer arithmetic and
bit operations. The proof of correctness of our algorithm is given. Ex-
tensive experiments are conducted and comparisons between the method
of Halevi et al. and ours are obtained, which show that our method has
the same accuracy and a slightly better effeciency. Our method is also
applicable to the CRR variant of BGV and BFV schemes, and can be
used to simplify chip design.

Keywords: Fully homomorphic encryption- CRR basis conversion- Floating-
point arithmetic- Error elimination.

1 Introduction

Since Gentry proposed the first homomorphic encryption scheme[12], the field
of homomorphic encryption has been developed rapidly. Fully homomorphic en-
cryption allows any secure computation of the encrypted ciphertexts without the
need for decryption. At present, it has been extremely important in many fields.

At present, the mainstream wordbased fully homomorphic encryption schemes
include BGV[6], BFV[5,11, 4], CKKS|9, 7], etc.. These schemes all use packing
technology to realize the component-wise homomorphic calculation of data vec-
tors[20]. One of the main advantages of CKKS scheme is that it supports homo-
morphic calculation of complex vectors, so it has a wide range of applications.
There are many open source homomorphic encryption libraries, such as Helib[15],
SEAL[2], PALISADE[1], HEAANI8], implementing one or more fully homomor-
phic encryption schemes, as well as their CRR variants. The CRR variants of
these schemes make use of the Chinese Remainder Theorem to decompose a large

2 Hongyuan Qu, Guangwu Xu

integer into many small integers, and decompose the operation of large integers
into many small integer operations, thus greatly speeding up the calculations. In
order to improve the efficiency or reduce the error of fully homomorphic encryp-
tion, many optimization methods have been proposed. In 2012, in order to reduce
the error of the KeySwitching procedure, Gentry et al. introduced an extra large
module P, which replaced the previously used method of bit decomposition, thus
reducing the complexity of the calculation. Their approach is called GHS opti-
mization[13]. Han et al. developed a hybrid KeySwitching method in 2020, which
combines the way of GHS optimization and the idea of CRR decomposition to
reduce the bit length of P, thus allowing more homomorphic calculations[16].
In 2021, Kim et al. proposed an exact rescaling method to solve the problem
of large error in CRR, CKKS rescaling process. They proposed a new mode of
selecting ciphertext modulus, which ensures that the error generated in rescaling
process is greatly reduced|[18].

In the CRR variant of the above schemes, the KeySwitching procedure dif-
fers significantly from the original scheme. When GHS or hybrid optimization
is adopted, it involves the representation conversion of ciphertext polynomials
between two coprime CRR basis, which is the core operation of KeySwitching.
Barjard et al. proposed a method called fast basis conversion to convert rep-
resentations of polynomials from one CRR basis to another. This method is
also applied to the CRR variant of the CKKS scheme. However, this method
cannot eliminate the errors in the conversion process[4]. In 2019, Halevi et al.
proposed a method that uses floating-point arithmetic to eliminate the errors
in the CRR basis conversion process, and it is the fastest accurate method cur-
rently[14]. However, floating-point arithmetic has many disadvantages such as
long operation time and complex chip design[19, 10, 17].

1.1 Owur contributions

We propose a method to eliminate errors in CRR basis conversion procedure
without the need for floating-point arithmetic. Our approach is based on the
observation that each small prime modulus is very close to an integer ¢ that is
a power of 2. Using this observation we only need to use integer addition and
subtraction and bit operations to calculate the error term, thus replacing the
floating-point operations in Halevi et al. ’s method. We prove the correctness
of our method. By selecting the encryption parameters reasonably, the error
probability is negligible. Even if there is an error, the error is reduced compared
with the original scheme. We applied our method to the CRR CKKS scheme.
After experimental verification, our method obtains the same accuracy as Halevi
et al. ’s method, with an improvement of 0 — 0.5 bits compared with the original
scheme, and the running time difference is less than 10ms from the original
scheme. We mention that our method has good theoretical significance and can
be used to simplify the design of homomorphic encryption chips. Our method
is also applicable to CRR BGV and CRR BFV schemes if they use the same
modular selection method.

Title Suppressed Due to Excessive Length 3

1.2 organizations

Section 2 provides the necessary background about CRR basis conversion meth-
ods and CRR CKKS scheme. Section 3 describes our method for faster error
calculation. Section 4 describes our modification of the CRR CKKS scheme and
complexity analysis of our method, and section 5 describes our experimental
results.

2 Preliminaries

All logarithmic operations are in base 2 unless otherwise specified. For an integer
@, we use [—-Q/2,Q/2) NZ as a representation interval of Zg, and use [z]g to
represent the reduction of the integer x modulo @ into the interval. For an integer
N that is a power of 2, we denote R = Z[X]/(XY + 1), S = RIX]/(XN + 1),
Ro = R/QR. A finite ordered set C = {qo,¢1,...,qe—1} is called a CRR basis

if its elements are coprime to each other. We denote Q = Hf;é G, Gi = Q/q,

g; ' =1/g (mod g;).

For a polynomial a, we use a < U(S) to denote that a is sampled uniformly at
random in the set S. We use a < x to indicate that a is sampled according to the
distribution x. We use Xxey, Xerrs Xene to represent the distribution used during
private key generation, error generation and encryption, respectively. Ternary
distribution is commonly used in Xjey, Which means that all the coefficients of
a are selected uniformly from {—1,0,1}. This distribution is the most efficient
option recommended by homomorphic encryption standard|[3]. Discrete Gaussian
distribution is commonly used as X, to ensure security.

2.1 Chinese remainder representation (CRR)

For a CRR basis C = {qo,q1,.--,q-1}, Q@ = Hf:é g;, according to Chinese
Remainder Theorem, for any = € Zg, x can be uniquely represented by the so
called Chinese remainder representation (CRR) or RNS representation in the

basis C, denoted as [z]c = ([#]g,, [Z]grs - - -+ [2]g, 1). And x satisfies
—1
T = [x]q,"ji'qzl v-Q,
=0

where v € Z. Or

T = [[x]lh qu_l]qy '(ji_e'Q,

where e € [—-¢/2,£/2) N Z. For a polynomial a € R, its Chinese remainder
representation, denoted as [alc, is ([alg,- -, [alg,_,), Where [a], denotes the
polynomial obtained by a modulo g; for each of its coefficients.

4 Hongyuan Qu, Guangwu Xu

2.2 CRR Basis Conversion

CRR basis conversion is a core operation of the KeySwitching procedure in
CRR CKKS scheme. The original scheme uses the fast basis conversion method
to convert the representation of a polynomial into a new basis that is coprime to
the original basis. Specifically, for a CRR basis D = {po, - .., Pk—1,90s - - - »qt—1},
let B={po,...,pk—1} and C = {qo,- .., qe—1} be two sub bases of D, and let P =
Hf;ol i, Q = H?;é ¢;. Then one can convert the CRR [z]¢ = ([2]qy,- - -, [2]q,_,) €

ZLgy X -+ X Lg, , of an integer = € Zg into an element of Zy,, X --- X Zp, , by
computing
-1
Conveos ([2le) = | Y llelg; - d5 ', -5 (mod py)
j=0 0<i<k
We note that the result above is actually Conve = [z + Q - e]g, where e €
[—4/2,¢/2)NZ.

2.3 Exact CRR basis conversion

Halevi et al. proposed a method to calculate the above e using floating-point
arithmetic, which can eliminate the error of CRR basis conversion[14]. Specifi-
cally,

_ =l ~—1 o _ =l ~—1 4 | _ =l [[I]Qj'qgl]qj
= Kzuw]q,qj]qj-qj) /QJ _ [zux]q,qj }qj.QJ _ fz J

j=0 7=0 =0
Therefore, we first calculate y; := [[x]g, ~(jj_1]qj, j=0,...,£—1, then we compute
rational numbers z; :=y;/q;, j =0,...,¢— 1. Then we sum up all the z;’s and

round it to get e. And finally we calculate [z],, = [Zf;(l) vi - qilp, —€- [Q}pi}
for i =0,....k—1.

i

2.4 CRR CKKS scheme

All operations of the CRR CKKS scheme are performed under CRR. Plain-
text space is R. We let M = 2N and Z}, = {z € Zp : ged(z, M) = 1} be
the multiplication group composed of elements that are coprime with M. The
canonical embedding o : § — CV is defined as o(a) = (a(¢?));ez;,, where
¢ = exp(2mi/M). We also define natural projection 7 : C¥ — CN/2 used in en-
coding and decoding procedure in the CRR CKKS scheme. The main processes
of the scheme is as follows.

— Setup(q, L,n,1*). For a base integer ¢ = 2™ and an integer L, given the
security parameter A, choose a power-of-two N, and Xkey, Xerr, Xene for A-
bit of security. Then choose a basis D = {qo,...,q5-1,P0,---,Pk—1} such
that ¢/¢; € 1 —27",1+27" for 0 < j < L. Let B = {po,...,pk-1},

Title Suppressed Due to Excessive Length 5

k—1
Ce ={qo0:---,q-1} and D¢ = {qo, ..., qe—1,P0,-- - pr—1}- Let P =[[;Z5 pi
and Qy = H?;(l) gj for 1 < ¢ < L. Finally, perform some necessary precom-
putation.

KeyGen. First sample secret s <= Xkey, (@, .. oty U (H]L;Ol qu)7
€ < Xerr- Set the secret key as sk «+ (1,s) and public key as pk <«

(pkm — (09), a0 € jo)wd, where b9) < —al) - s+ e (mod g;).

KeySwitchGengy(s'). Sample (a (... o E+HF=1) U (Hf;ol Ry, X Hf;ol Rpi)

and an error € < Yerr, Set the switching key swk as

(ka(O) = (b’(O)va/(O))7 AR ka(L_'—k_l) = (b,(L+k_l>7a’<L+k_l))> € H]L:_ol R?h x Hf:_()l R?’z

where b'0) « —a'() . s+ [Py, -s'+¢€ (mod g;) for 0 < j < L and b (Lt
—a) g4 ¢ (mod p;) for 0 <i < k.

Encode(z). For a vector € CV/2, output [c~ o7 (¢-x)| € R.
Decode(m). For a plaintext m € R, output 7o o(m) € CN/2,

Encyi(m). For m € R, sample r < Xenc, €0, €1 < Xerr, OUutput ciphertext
ct = (ctW)o<jop € Hf;ol jo where ¢t < r-pk'Y +(m+eg, e1) (mod q;)
for0<j < L. A

Decsi(ct). For a ciphertext ¢t = (ct(()j<)j<efl), output (ct?, sk) (mod qp).
Add(et, ct’). For two ciphertexts ct = (ct9))o<;cp, ct’ = (ct’(j))ogjd,
output ct,jq = (ctg()id)ogjd where ctggld — et + ct'? (mod g;) for
0<j<t.

KeySwitchg(ct). The two core operations used in this stage are

-1 -1 k—1
ModUpe, ,p,(-) : [[Ra, = [Ray x [] Ro.:

j=0 §=0 i=0
-1 k—1 -1

ModDownp, ¢, (-) : [[Rq, x [Rp. = [[Ras»
j=0 i=0 j=0

where ModUpg, ,p, ([a]c,) uses Conve, 5 coefficient-wisely to convert the
CRR of the polynomial a under basis C; to the CRR under basis D,. The
functionality of ModDownp, ¢,([a]p,) is to calculate [%], during which
Convp_sc, is used coefficient-wisely to compute the CRR of a (mod P) under
basis Cy.

The process is as follows. For a ciphertext et = (ct(j))0§j<£, where ctl) =

(et et € R, first compute

cty + ModUpe,_,p, (ctgo), ce ct(lefl)).

Then compute

-1 k—1

~ ~, (0 ~ ~ ~ (+k—1 ~ _ ~ —

ct = (Ct() = (CO(O), C1(O)), ceey Ct() = (Co(z+k 1), C1(£+k 1))) S H jo X H R;”
j=0 i=0

6 Hongyuan Qu, Guangwu Xu

where ¢t = cfl(j) - swk' (mod g;) and ' = 0%1(€+i) - swk!“)

(mod p;) for 0 < j < ¢, 0 <4 < k. Then compute
@9 ey« ModDownp, ¢, (..., ¢ D)
@9, &) « ModDownp, e, (@, ..., & ¢+,
Finally output

—1
ct= ", e [[RY
j=0

where ¢t = (ctéj), 0) + (é(()j), égj)) (mod g;) for 0 < j < £.

— Multeyi(ct, ct’). For two ciphertexts et = (ct(j) = (céj),c(lj))) , and
0<j<
ct' = (ct/(j) = (CO(])701(J))) , for 0 < j < ¢, compute
0<j<t

d§) e’ - cf? (mod g5),

49 9D LD D (mod gy),
déj) — ng) ~c/1(j) (mod g;)
Then compute dy + KeySwitch,,,, (((0, dgj))) B 2>' Output
0<5<

_ (@) ;0G) AU))
CtMult_ ((dO 7d1)+d2 O§j<5'

— Rot,k, (ct, k). For a ciphtertext ct = (ct(j) = (c(()j)7c§j))) , and a rota-
0<j<

tion index k, first apply automorphism 7, to ¢t and get ct,, = (ctg) = (c,(_gg , c,(jl))) ,
0<j<t

then compute ¢, < KeySwitch,,, <((O, c,(gl))) > and finally output
" 0<j<t

ctyop = ((Cf(-cjo)ao) + é’("j))ogg‘d'

— Rescaling(ct). For a ciphertext ct = (ct(j) = (c(()j), cgj))) , € Hﬁ;é RZ,
0<5< /

compute c;(j) +— q[1~ (c§j) - 62471)) (mod ¢;) fort =0,1and 0 < j < {—1.

Output ct’ < (ct’U) = (e” e))) €[S,

0<j<t—1

3 Exact CRR basis conversion algorithm without floats

The fast basis conversion procedure is one of the core technologies in CRR CKKS,
but it brings additional errors, which is generally an integer multiple of mod-
ule Q.. Halevi et al. proposed a universal method for eliminating errors, but

Title Suppressed Due to Excessive Length 7

at the cost of introducing additional floating-point operations. We propose a
new method for eliminating errors during CRR basis conversion according to
the modulus selection method of the CRR CKKS scheme. Our method converts
floating-point operations into very low-cost integer addition and bit operations,
thereby improving the computational efficiency. Moreover, our method is also ap-
plicable to the CRR BFV and CRR BGYV schemes if they use the same modulus
selection method as the CRR CKKS scheme.

3.1 Algorithm to calculate the error term

According to 2.3, calculating error term e is the core operation for eliminating
errors. We notice that ¢ and g; satisfy the following relation when selecting small
prime modules: g/q; € [1 — 27,1+ 27"], where ¢ = 2™ for some m € Z*. This
means that g; is very close to ¢. According to 2.3, we know that the calculation
formula of the error term is

—

s ey, - 31,

iy

Jj=0 4
Because ¢; ~ ¢,j =0,...,¢ — 1, the above equation can be approximated as
‘— - ‘— - -1 1
o — 2:1 [[x}qj "4 1]%' - z:l [[I]qj g 1]Qj _ Zj:OHx]Qj g]Qj
= a = q q

So we get the following fast algorithm for calculating e:

Algorithm 1 Fast algorithm for calculating e
Input: [‘T]Qj) qu_la q,4;
Output: e
: Compute yo := [[z]q, - qal]qoa o ye—1 = [@lg, Cj[jl]qul.
: Let e =0, temp = yo.
:for j=1—-/¢—-1 do
temp = temp + y;
if temp > £ then
e=e+1
temp = temp — q
else if temp < —2 then
e=e—1
temp = temp + q
end if
12: end for
13: return e

PPN

—_ =
=ow

At this point, we only need to perform up to 3(¢ — 1) additions and subtrac-
tions to obtain e, which replaces ¢ floating-point division and ¢ floating-point
addition as well as the final rounding operation in Halevi et al.’s method.

8 Hongyuan Qu, Guangwu Xu

3.2 The correctness of the algorithm

We note that the above algorithm obtains an approximate value of e. In order
to ensure that the result obtained by our algorithm is equal to the true value of
e, we need to analyze the relation between ¢ and 7. We first prove the following
lemma:

Lemma 1. For the number x that is uniformly distributed in the real number
field, r € (0,1) is a constant, then the probability that [x| is equal to [z +] is
1—r. That is

Pllz|=[z+r]]=1-—r.

Further more, if [x] # [x + 1], we have [z + 7] — [2| = 1.

Proof. We can choose z in the following way: first choose an integer a uniformly
at random, and then choose a real number b between [0,1) independently and
uniformly at random, and let z = a + b. Then P[b € [0,3)] = Plb € [5,1)] = 3.
This is equivalent to P[[z] =a] = P[[z] =a+1] =3 Andz+r=a+b+r,
0 <b+r <2, s0[x+r]| depends on the size of b+r. In the following, we classify
and discuss b and r on the intervals [0, %) and [%, 1), respectively.

1. b€ [0,3),r €[0,3). In this case, [z] = a,b+r € [0,1), so we have [z+7] = a
or [z+7] = a+1. In order to make [z+7] = a, there needs to be b+r € [0, 1).
Because r is a constant, we have

1 % -

Plb+re [0,%)\1) c [o,%)] —Plhe [0,% —nbelo,)= — 1o

And when b+r € [1,1), we have [z +r|=a+1=[z] + 1.

2. be[i1),r€[0,3). In this case, [x] =a+1,b+7r € [4,32), and we have
[x+7r]=a+1=[z].

3.b€[0,2),r €[3,1). In this case, [z] =a, while b+ 7 € [5,3),50 [z 47| =
a+ 1, and the probability that [z | equals [z+7] is 0, and [z +7] — [z] = 1.

4. b € [3,1),r € [3,1). In this case, [2] = a+ 1, b+r € [1,2), so we have
[t+r|=a+1or [x+7r] =a+2. Inorder to make [z +7r] =[z] =a+1,
there needs to be b+ 1r € [%, %) , so we have

Plb+r €[5, [3,1)] = Plbe [5, 3-nlbe [5,1)] =

And when b+r € [2,2), we have [z +7] =a+2 = [z] + 1.
In summary, when r € [0, %), according to 1 and 2 above, we have

be o, %)] Phe [o,%)] +1-Phe [%,1)]

Pllz) =[x+ 7)) = Ph+r €0,)

11
=(1-2r)- =+
(1=2r)-5+5

=1-r

Title Suppressed Due to Excessive Length 9

When r € [%, 1), according to 3 and 4 above, we have

1

Plle) = o +r]]=0-Pbe 0, 5)] + Pl+r €5, 5)b € [5,1] - Pl e [5,1)

5 S e s,

1
=1-r
Thus when r € [0,1) is a constant,

Plle] =[z+r]]=1-r

and
[x+7]—[z] <1

With the above lemma, we can prove the following theorem about the correctness
of Algorithm 1 :

Theorem 1. Let r € (0,1) be a constant. Assume that the output of Algorithm
1 is e'. Then when n > log r”, we have Prle’ = e > 1—r. Even if ¢’ # e,
le’ —e| must be 1.

Proof. We notice that

According to f el—2""71+27" for 0 < j < £, we have
J

~

-1 ~—1 -1 A—l {—1 A—l
A [l 0y o),

495
A 1)
Let A = 22—1 M =y 0 M , then e = [B], and the output
(1

.
I
<
Il
<

J]=0

q J=

of Algorithm 1is [A]. Accordlng to (1) we have

[A-(1-2"N)| <e<[A-(1+277)].

We want e = [A] to be true. All we have to do is make [A - (1 —277)| =
[A-(14277)], and we can’t know the size of A in advance, but we can get the
upper and lower bounds of A. Specifically, we have the following formula

57 N —
. 1[[$]qj-qj1]qj<q?0_|_...+427l< /
=0 q a q = 2(1—2-n)
-1 1 .
q a q = 2(1-27)

10 Hongyuan Qu, Guangwu Xu

a=A-(1+2M)—A-(1-277)|=|A 277,

and a < 2(51'2:27_1,) = 1@7227_”,7. Observe that the upper bound of « is only deter-
mined by 7 and ¢, so we can control the upper bound of « by selecting n and
L. Let r € (0,1) be a constant, and assume that A is uniformly distributed. Let
a < r, then according to lemma 1, the probability that [A - (1 — 27")] equals
[A-(1+27")] is 1 — a > 1 — r, so the probability of e = [A] is greater than
1 —r. Now we turn to analyze the relation between 7 and £.

Let a < 7, it is enough to make 16'_22_,"" < 1. Solve the inequality and we

get 277 < . Take the logarithm of both sides and multiply by —1 to get

n > log "t
In summary, when n > log Tjg , the probability that the output of Algorithm
1 is equal to e is greater than 1 —r, and even if they are not equal, the difference

between the two is £1.

According to the theorem 1, given r and ¢, we can determine the lower bound
of 1. We observe that the lower bound of 7 is a logarithmic function of ¢. As ¢
increases, so does the lower bound of 7. Therefore, when the scheme is initialized,
we can determine the values of L and 7, which naturally satisfy the conditions
of the remaining layers. In addition, the logarithmic function grows very slowly,
which enables us to select a small enough r to ensure the correctness of Algorithm
1 without causing the lower bound of 7 to be too large. For example, Fig. 1 shows
how the lower bound of 1 changes with ¢ when taking » = 0.001.

el
3}

[e)
T

lowerbound of 7

6.5

Fig. 1. The relation between the lower bound of n and ¢ for » = 0.001.

Title Suppressed Due to Excessive Length 11

3.3 Optimal parameter selection

We note that the lower bound of i above is loose. In practice, we want 7 to
be as big as possible, because the bigger 7 is, the smaller % is, the greater
the probability that Algorithm 1 is correct. But n has an upper bound. This
is because when the CRR CKKS scheme is initialized, we are given N,q, L,
and then select L prime numbers in the interval [{2=; T = 1—4==] all of which are
congruent to 1 modulo 2N. The selection of 77 should ensure that the number of
prime numbers in the interval [{2—, ;=4 that are congruent to 1 modulo 2V
is greater than or equal to L. The larger the 7, the smaller the interval length,
and the fewer primes that meet the condition. Given N, ¢, L, we use the binary
search to find the maximum value of 1 that we can get.

Algorithm 2 Binary search algorithm to compute the maximum value of 7.
Input: N,q, L
Output: The maximum value of 7.
1: Set m; = 1.
2: while n; < n, do
3: Let nm = L"H'T"Tj Calculate the number of primes that are congruent to 1 mod-
ulo 2N in the interval [{5%5—, 75551 and | | respectively,

1+2*(qnm+l) ’ 172*(qnm+1)
and denote them as ¢y, Cm+1-
if ¢, > L and ¢m+1 < L then
return 7,,.
else if ¢, < L then
Nr = Nm
else
9: m="nm+1
10: end if
11: end while

According to Algorithm 2, we can get the optimal value of 7 when N, ¢ and
L are set to different values. For example, Fig. 2 shows how the upperbound of

n and 77], change with L when N = 24 ¢ =250, We observe that the upper
L 2

bound of 71 decreases very slowly as L increases, and that does not exceed
8 x 1078, This shows that the probability of Algorlthm 1 gettlng the correct
result with this parameter setting is greater than 1 — 8 x 10~%, which is very
close to 1.

We notice that the image of 1L 22 - changes with L has a large increase from
L=2to L=3and from L =11 to L = 12 respectively, roughly doubling. This
is because the upper bound of 7 decreases by 1 from L = 2 to L = 3 and from
L =11 to L = 12. The upper bound of n is not only related to L, but also to the
bit length of N and q. Specifically, when ¢ increases 1 bit, or N decreases 1 bit,
the number of numbers in the interval [1+2 7, 4= that are congruent to 1
modulo 2N is twice as large, so the number of prime numbers in these numbers
is roughly twice as large. Thus the upper bound of 1 increases roughly by 1. In

12 Hongyuan Qu, Guangwu Xu

upperbound of 7

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

(a) Relation between upperbound of i and L. (b) Relation between 1]“;22,7:,

and L.

Fig.2. When N = 2 ¢ = 2°°, the images of how the upper bound of n and 57227_77
change respectively as a function of L.

order to ensure the amortization efficiency of the scheme, a relatively large value
of N is usually taken in practice. Therefore, in order to maximize the probability
of obtaining the correct value of Algorithm 1, we suggest that the bit length of
q should be increased appropriately.

4 Modifications and comparisons to the original scheme

We have implemented our method on the PALISADE homomorphic encryption
open source library. We have modified the process of CKKS scheme in the fol-
lowing aspects: First, in the initialization phase of the scheme, we input three
parameters, namely ring dimension N, the size of ciphertext module ¢ and the
number of prime modulus L, where ¢ is a power of 2. We first use Algorithm 2
to calculate the maximum value that n can take, and use Algorithm 3 below to
obtain L ciphertext modulus. Observe that Algorithm 2 guarantees that there
are at least L prime numbers in the interval [{-1—, =1—] that meet the condi-
tion, which guarantees the correctness of Algorithm 3. We also use Algorithm 2
followed by Algorithm 3 in turn to obtain k¥ KeySwitching modulus pg, ..., pk_1-

We note that the PALISADE open source library uses a residual class rep-
resentation range of {0,1,...,¢; — 1} for ciphertext computation, which allows
us to further simplify Algorithm 1, avoid conditional branching, and replace
addition and subtraction with bit operations. Specifically, we use Algorithm 4
below to calculate e. Similarly, for the basis B = {po, ..., px—1} we use the same
algorithm to calculate e,.

4.1 Precomputation

Notice that when we use exact basis conversion, we need to subtract e - Qy
(mod p;) for 0 < i < k or e,- P (mod g;) for 0 < j < £. According to Algorithm
4, we know the range of e or ey, i.e. e € {0,...,¢{ —1} and ¢, € {0,...,k — 1}.

Title Suppressed Due to Excessive Length

13

Algorithm 3 Algorithm for computing L prime modulus

Input: N,q,L,n
Output: L prime modulus

= =
w»—ng@

Compute upperbound = —i=;, lowerbound = M%”'
Compute gFirst = 2N - | 4eperbound | 4 1,
Construct an empty array result.
while L > 1 do
if Miller RabinTest(qFirst) = True then

result.append(qFirst).

L=L-1.
else

qFirst = qFirst — 2N.
end if

: end while
: return result.

Algorithm 4 A faster algorithm for calculating e.

Input: [x]qj') 4517 q,9;
Output: e

S I A S ol e

—1

: Compute yo := [[z]qo - do Jaos - - > Ye—1 = [@lay_1 - G 1Jap -
: Set e = 0, temp = yo.
:for j=1—-¢—-1 do

temp = temp + y;
e = e + temp&eq
temp = temp&(q — 1)
end for
return e

14 Hongyuan Qu, Guangwu Xu

Thus we can precompute these values during the initialization of the scheme.
Specifically, we compute and store - @y (mod p;) for 1 </ <L, 0<a<{,0<
i < kand g-P (modg;) for 0 < 8 < k,0 < j < L during the initialization
phase of the scheme.

4.2 Complexity analysis

We first analyze the complexity of Algorithm 4. Algorithm 4 first evaluates
Yo, - - - , Ye—1, which requires ¢ modular multiplication. Next, it loops ¢ — 1 times,
each time performing 3 integer additions and subtractions and 2 bit operations,
for a total of 3(¢ — 1) integer additions and subtractions and 2(¢ — 1) bit opera-
tions. Finally we compute

-1

Zyj [4jlp;, —e- Q¢ (mod p;) for 0 <i <k,
3=0

Since e- Q¢ (mod p;) for 0 < ¢ < k has been calculated in the initialization phase
of the scheme, a total of £-k modular multiplications and ¢- k modular additions
are needed. In summary, in the whole exact CRR basis conversion procedure,
we perform a total of £- (k4 1) integral modular multiplications, ¢k + 3(¢ — 1)
integral modular additions or subtractions and 2(¢ — 1) bit operations.

We compare the complexity of our method with the original scheme and the
method of Halevi et al. in the CRR basis conversion process, respectively. The
following table shows the numbers of different operations in the three methods.

Modular Modular additions| Floating-point Float.u.lg-pomt . . Floating-point W}_xet»her to
R . Lo additions or |Bit operations . eliminate
multiplications| or subtractions |multiplications . roundings
subtractions error
Our method £-(k+1) L k+3(—1) 0 0 2(0-1) 0 Yes
Halevi et al. ’s method[14]| ¢- (k+1) -k 0 ‘-1 0 1 Yes
Fast basis conversion[7,4] | (- (k+1) (t-1)-k 0 0 0 0 No

Table 1. Complexity comparison of CRR basis conversion for ciphertext at ¢ layer.

It is a well-known fact that the costs of computational tasks such as integer or
floating-point multiplications, division and modular operation are significantly
higher than that for integer modular addition and bit operations. The bit op-
erations are even trivial compared to operations such as multiplications, so our
method is more efficient than the method of Halevi et al..Our method eliminates
the error of CRR basis conversion used in the original fast method, but the
performance is not much affected.

5 Experimental results

We implemented our method and Helavi et al. ’s method in the CKKS scheme
of PALISADE library, and combined them with hybrid method[16] and exac-
tRescale method[18]. Our experiments were run on a laptop with AMD Ryzen 7

Title Suppressed Due to Excessive Length 15

4800U with Radeon Graphics 1.80 GHz CPU with 16 GB RAM, running Ubuntu
20.04. All experiments were conducted in single-thread mode.

Our experiments were carried out in full packing mode, that is, we encrypted
a vector € CN/2 each time. Every elements in the vector were randomly
selected in the interval [0, 1]. In order to measure the precision of the decryption
result &, we calculate 2 21:/12 —log(|z; — #;|) to represent the precision.

We use the following notation to indicate the different technologies used in
the CRR CKKS scheme:

— Fast represents the CRR basis conversion method of the original scheme|7],

EzactHPS denotes the method proposed by Helevi et al for eliminating

errors using floating-point arithmetic[14], and Fzact denotes our method

for eliminating errors using integer arithmetic.

ApproxzRescaling denotes the rescaling method of the original scheme[7],

and FzxactRescaling denotes the exact rescaling method proposed by Kim

et al[18].

— GHS represents the KeySwitching method proposed by Gentry et al[13].,
and Hybrid represents the hybrid KeySwitching method proposed by Han
et al[16].

We compared the efficiency and error of homomorphic multiplication and homo-
morphic rotation using Fast, ExactHPS and Exact methods under different
parameter settings and different techniques, respectively. Table 2,3,4,5 shows
the results.

Fast FEzxact EzactHPS
Mult. Rot. Mult. Rot. Mult. Rot.
prec. | time | prec. | time | prec. | time | prec. | time | prec. | time | prec. | time
13 | 80 [18.33| 2.896 | 18.06 | 2.081 |18.33 | 2.998 | 18.09 | 2.145 | 18.34 | 3.201 | 18.07 | 2.245
940 14 | 200 |17.598| 8.51 |17.32| 7.549 |17.613| 9.053 |17.372| 8.487 |17.604| 9.889 |17.382| 8.691
15 |400 (16.911| 34.396 |16.482| 31.474 |16.925| 37.032 | 16.68 | 32.374 {16.913| 33.873 |16.687| 32.275
16 | 800 {16.219(140.467|15.544|135.643|16.241|144.343|15.992|135.428(16.232|141.314(15.997| 133.13
13 | 100 |25.238| 3.653 |24.980| 2.07 |25.274| 3.437 |25.008| 2.106 |25.259| 2.844 [25.001| 2.207
950 14 | 200 (24.523| 6.808 |24.225| 6.063 |24.509| 7.228 |24.297| 7.005 |24.526| 7.718 |24.311| 7.405
15 | 400 |23.822| 28.233 (23.547| 26.263 |23.843| 27.374 |23.605| 23.258 (23.826| 27.713 |23.628| 23.967
16 |1000(23.141|163.081|22.418|144.776|23.162|163.795|22.923|146.913|23.146|162.335|22.912|147.347
Table 2. Comparison of homomorphic multiplication and homomorphic rotation op-
erations between the three methods in ApproxrRescaling and GHS modes, where
K = [logQr] and A > 128 bits. Precision and time are measured in bits and mil-

liseconds, respectively.

q (logN| K

We observe that our method and Helevi et al. ’s method have an precision
improvement of 0 — 0.5 bits compared to the original scheme, in which the
precision improvement of homomorphic multiplication is small, and the precision
improvement of homomorphic rotation is large. And the running time of the three
methods is about the same. We find that our method do not improve significantly
over the original method because the CRR basis conversion operation is not the

16 Hongyuan Qu, Guangwu Xu

Fast Ezact ExactHPS

Mult. Rot. Mult. Rot. Mult. Rot.

q logN| K - - - - < 5
prec. | time | prec. | time | prec. | time | prec. | time | prec. | time | prec. | time
14 | 200 [17.610] 14.035 |17.298| 12.364 |17.618| 14.763 |17.392| 13.07 | 17.62 | 15.106 |17.377| 13.912
940 14 | 320 |17.605| 20.304 |17.335| 18.054 [17.591| 20.688 |17.363| 17.869 |17.601| 23.156 [17.377| 18.526
15 | 640 [16.903| 87.146 |16.580| 82.141 [16.912| 82.08 |16.695| 73.642 {16.921| 79.74 [16.669| 79.708
16 | 880 (16.219| 247.18 |15.923|198.613|16.235(220.947(15.989| 205.13 [16.215|221.865|15.982|202.583
13 | 150 |25.244| 4.135 |24.987| 3.898 |25.246| 4.372 |25.013| 4.195 |25.237| 4.506 |24.968| 4.003
gso| 14| 300 24.508| 15.451 | 24.3 | 14.211 |24.532| 15.662 |24.312| 13.907 |24.528| 15.352 |24.318| 14.016
15 | 600 |23.835| 65.389 | 23.54 | 57.243 |23.846| 66.145 |23.623| 58.928 |23.842| 62.922 (23.631| 59.394
16 [1000(23.156|218.138|22.898|188.795(23.145|221.221|22.924|185.967|23.158(221.512|22.924|186.801
Table 3. Comparison of homomorphic multiplication and homomorphic rotation op-
erations between the three methods in ApproxRescaling and Hybrid modes, where
K = [logQr] and X > 128 bits. Precision and time are measured in bits and millisec-

onds, respectively.

Fast FExact ExactHPS

Mult. Rot. Mult. Rot. Mult. Rot.
q |logN| K - : : - - -

prec. | time | prec. | time | prec. | time | prec. | time | prec. | time | prec. | time
13 | 80 [18.312] 2.524 |18.027| 1.928 | 18.33 | 3.241 (18.081] 1.922 |18.312| 2.278 |18.048| 2.348
10 14 |200 | 17.61 | 9.919 (17.346| 7.583 [17.623| 9.389 |17.374| 8.839 |17.613| 9.279 | 17.37 | 9.058
15 | 400 |16.913| 39.138 [16.535| 31.682 [16.934| 39.214 | 16.96 | 31.955 |16.927| 38.436 |16.683|33.343
16 | 800 [16.208]155.385(15.647|132.868|16.235(157.638(15.996{135.163|16.215|154.668|15.988(136.18
13 | 100 [25.239| 2.384 |24.972| 3.689 |25.265| 2.975 (24.981| 2.813 |25.231| 3.164 |25.023| 2.091
950 14 | 200 [24.530| 7.049 |24.254| 6.256 |24.558| 6.701 |24.309| 7.145 |24.547| 7.935 |24.322| 7.731
15 | 400 | 23.82 | 29.438 | 23.44 | 26.137 | 23.85 | 30.288 |23.625| 27.936 |23.823| 29.171 |23.613|25.921
16 |1000| 23.15 |167.717(22.433|144.642|23.153|177.682|22.913|144.525|23.145/166.603| 22.92 |147.33
Table 4. Comparison of homomorphic multiplication and homomorphic rotation op-
erations between the three methods in FEzactRescaling and GHS modes, where
K = [logQr] and A > 128 bits. Precision and time are measured in bits and mil-

liseconds, respectively.

Fast Ezact EzactHPS

Mult. Rot. Mult. Rot. Mult. Rot.
q |logN| K : - - - - -

prec. | time | prec. | time | prec. | time | prec. | time | prec. | time | prec. | time
14 | 200 |17.588| 15.961 (17.362| 12.246 |17.622| 15.186 |17.398| 12.885 |17.633| 16.662 |17.387| 13.792
940 14 | 320 |17.598| 20.201 |17.369| 17.026 |17.597| 23.898 |17.391| 17.581 |17.599| 21.979 (17.382| 18.454
15 | 640 |16.917| 86.446 |16.583| 74.926 [16.925| 88.25 |16.672| 78.572 |16.932| 87.347 (16.682| 75.827
16 | 880 (16.219|250.123|15.929|198.537(16.231|273.638|15.995|208.834(16.224| 279.17 | 15.99 |212.747
13 | 150 (25.219| 4.317 |25.005| 4.04 |[25.271] 4.667 |24.996| 4.109 |25.245| 4.396 |24.976| 4.136
250 14 | 300 (24.556| 17.944 {24.309| 14.63 |24.541| 17.012 |24.288| 14.524 | 24.55 | 18.994 |24.297| 16.495
15 | 600 |23.845| 64.447 |23.578| 56.934 |23.848| 68.938 |23.616| 58.57 |23.837| 68.135 (23.613| 58.507
16 |1000| 23.14 |217.689| 22.72 | 183.25 |23.166|217.891|22.918(185.668|23.152(216.967| 22.92 |189.188
Table 5. Comparison of homomorphic multiplication and homomorphic rotation op-
erations between the three methods in FxactRescaling and Hybrid modes, where
K = [logQr] and X > 128 bits. Precision and time are measured in bits and millisec-

onds, respectively.

Title Suppressed Due to Excessive Length 17

main source of error, nor is it a major part of the cost time. However, our method
has a good theoretical significance. We only use the low cost modular addition
and bit operation to eliminate the error of CRR basis conversion procedure,
replacing the floating-point operations in the method of Helevi et al., which has
a positive significance in simplifying chip design.

6

Declarations

The authors have no conflicts of interest to declare that are relevant to the
content of this article.

References

10.

11.

PALISADE lattice cryptography library(release v1.11.6). https://palisade-
crypto.org/ (2022)

Microsoft SEAL. https://github.com/Microsoft /SEAL (2023)

Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi,
S., Hoffstein, J., Laine, K., Lauter, K., et al.: Homomorphic encryption standard.
Protecting privacy through homomorphic encryption pp. 31-62 (2021)

Bajard, J.C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: Selected Areas in Cryptography—
SAC 2016: 23rd International Conference, St. John’s, NL, Canada, August 10-12,
2016, Revised Selected Papers. pp. 423-442. Springer (2017)

Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Advances in Cryptology—CRYPTO 2012: 32nd Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings. pp.
868-886. Springer (2012)

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. ACM Transactions on Computation Theory
(TOCT) 6(3), 1-36 (2014)

Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approx-
imate homomorphic encryption. In: Selected Areas in Cryptography—SAC 2018:
25th International Conference, Calgary, AB, Canada, August 15-17, 2018, Revised
Selected Papers 25. pp. 347-368. Springer (2019)

Cheon, J.H., Kim, A, Kim, M., Song, Y.: HEAAN.
https://github.com/snucrypto/HEAAN (2016)

Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Advances in Cryptology—ASIACRYPT 2017: 23rd
International Conference on the Theory and Applications of Cryptology and In-
formation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I
23. pp. 409-437. Springer (2017)

Ducas, L., Galbraith, S., Prest, T., Yu, Y.: Integral matrix gram root and lat-
tice Gaussian sampling without floats. In: Advances in Cryptology-EUROCRYPT
2020: 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part
IT 30. pp. 608-637. Springer (2020)

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive (2012)

18

12.

13.

14.

15.

16.

17.

18.

19.

20.

Hongyuan Qu, Guangwu Xu

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169-178
(2009)

Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: Advances in Cryptology—CRYPTO 2012: 32nd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2012. Proceedings. pp. 850-867. Springer
(2012)

Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homo-
morphic encryption scheme. In: Topics in Cryptology—CT-RSA 2019: The Cryp-
tographers’ Track at the RSA Conference 2019, San Francisco, CA, USA, March
4-8, 2019, Proceedings. pp. 83-105. Springer (2019)

Halevi, S., Shoup, V.: Algorithms in helib. In: Advances in Cryptology—CRYPTO
2014: 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-
21, 2014, Proceedings, Part I 34. pp. 554-571. Springer (2014)

Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption.
In: Topics in Cryptology—CT-RSA 2020: The Cryptographers’ Track at the RSA
Conference 2020, San Francisco, CA, USA, February 24-28, 2020, Proceedings. pp.
364-390. Springer (2020)

Hettiarachchi, D.L.N., Davuluru, V.S.P., Balster, E.J.: Integer vs. Floating-Point
Processing on Modern FPGA Technology. In: 2020 10th Annual Computing
and Communication Workshop and Conference (CCWC). pp. 0606-0612 (2020).
https://doi.org/10.1109/CCWC47524.2020.9031118

Kim, A., Papadimitriou, A., Polyakov, Y.: Approximate homomorphic encryption
with reduced approximation error. In: Topics in Cryptology—CT-RSA 2022: Cryp-
tographers’ Track at the RSA Conference 2022, Virtual Event, March 1-2, 2022,
Proceedings. pp. 120-144. Springer (2022)

Louca, Cook, Johnson: Implementation of IEEE single precision floating point
addition and multiplication on FPGAs. In: 1996 Proceedings IEEE Sym-
posium on FPGAs for Custom Computing Machines. pp. 107-116 (1996).
https://doi.org/10.1109/FPGA.1996.564761

Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Designs, codes
and cryptography 71, 57-81 (2014)

