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Abstract

Sponge hashing is a novel class of cryptographic hash algorithms which underlies
the current international hash function standard SHA-3. In a nutshell, a sponge func-
tion takes as input a bit-stream of any length and processes it via a simple iterative
procedure: it repeatedly feeds each block of the input into a so-called block function,
and then produces a short digest which consists of a subset of the final output bits.
While much is known about the post-quantum security of the sponge construction in
the case when the block function is modeled as a random function or permutation,
the case of invertible permutations, which more accurately models the construction
underlying SHA-3, has so far remained a fundamental open problem.

In this work, we make new progress towards overcoming this barrier and show
several results. First, we prove the “double-sided zero-search” conjecture proposed by
Unruh (eprint’ 2021) and show that finding zero-pairs in a random 2n-bit permutation
requires at least Ω(2n/2) many queries—and this is tight due to Grover’s algorithm.
At the core of our proof lies a novel “symmetrization argument” which uses insights
from the theory of Young subgroups. Second, we consider more general variants of
the double-sided search problem and show similar query lower bounds for them. As
an application, we prove the quantum one-wayness of the single-round sponge with
invertible permutations in the quantum random oracle model.

1 Introduction
Hash functions are one of the most fundamental objects in cryptography. They are
used in a multitude of applications, such as integrity checks for data packages (e.g.,
software updates), password storage on cloud servers, or as important components
in digital signature schemes—whether it is to design hash-based signatures or simply
to construct signatures schemes for variable input lengths [KL14].

*jcarolan@umd.edu
† poremba@mit.edu
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In recent years, the National Institute of Standards and Technology (NIST) an-
nounced a new international hash function standard known as SHA-3. Unlike its
predecessor SHA-2, which was rooted in the Merkle-Damgård construction [Mer88;
Mer90; Dam87], the new hash function standard uses Keccak [Ber+11b]—a family of
cryptographic functions based on the novel idea of sponge hashing [Ber+11a]. This
particular approach allows for both variable input length and variable output length,
which makes it particularly attractive towards the design of cryptographic hash func-
tions. The internal state of a sponge function gets updated through successive ap-
plications of a so-called block function φ : {0, 1}r+c → {0, 1}r+c, where we call the
parameters r ∈N the rate and c ∈N the capacity of the sponge. The evaluation of the
sponge function Spφ : {0, 1}∗ → {0, 1}∗ takes place in two phases:

1. (Absorption phase:) During each round, a new block consisting of r many bits of
the input gets “fed” into the block function φ. Following the sponge metaphor,
we say that the sponge function “absorbs” the input. More formally, suppose
that the input consists of r-bit blocks m1, m2, . . . , mℓ. During the first round, we
compute φ(m1||0c) = y1||z1, for some y1 ∈ {0, 1}r and z1 ∈ {0, 1}c. Then, to
absorb the next block m2, we compute φ(y1 ⊕m2||z1) = y2||z2, and so on.

2. (Squeezing phase:) During each round, a new r-bit block is produced by essen-
tially running the absorption phase in reverse. Each r-bit digest becomes a block
of the final output of the function Spφ. Following the sponge metaphor, we say
that the sponge function gets “squeezed” to produce fresh random bits. More
formally, suppose the last round of the absorption phase results in a pair yℓ||zℓ.
We then let the digest yℓ serve as the first block of the output. To produce the
second block, we compute φ(yℓ||zℓ) = yℓ+1||zℓ+1, and output yℓ+1, and so on.

Several works have since analyzed the security properties behind the sponge con-
struction [Ber+08; FGK22; Aks+23]. In particular, in [Ber+08] it was shown that the
sponge hash function enjoys a strong form of security called indifferentiability in the
case when the underlying block function φ is modeled as an invertible random per-
mutation. Indifferentiability already implies many desired properties of cryptographic
hash functions, such as collision-resistance or pseudorandomness.

While much is known about the security of the sponge in a classical world, our
understanding changes significantly once we take the threat of large-scale quantum
computing into account. The good news is that most hash functions are believed
to only be mildly effected, whereas the majority of public-key cryptography faces
serious threats due to Shor’s algorithm (and its variants) [Sho97; Reg24]. The rea-
son hash functions are believed to be less susceptible to quantum attacks is due to
their inherent lack of structure, which means that generic quantum attacks tend to
achieve at most a square-root speed-up relative to their classical counterparts. To this
day, however, our understanding of the post-quantum security of the sponge remains
somewhat incomplete. In fact, the post-quantum security of the sponge construction
is only well-understood in the special case when the block function is modeled as a
non-invertible random permutation [Cza+17; Cza+19]. The case of invertible random
permutations, which more accurately models the construction underlying SHA-3, has
so far remained a major open problem.
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Figure 1: The single-round sponge.

Single-round sponge hashing. In the special case when there is only a single
round of absorption and squeezing, the sponge function Spφ : {0, 1}r → {0, 1}r has a
simple form which is illustrated in Figure 1; namely, on input x ∈ {0, 1}r, the output
is given by y = Spφ(x), where y corresponds to the first r bits of φ(x||0c). In other
words, Spφ is defined as the restriction of φ onto the first r bits of its output.

Despite its simplicity, the single-round sponge already features many of the techni-
cal difficulties that one encounters when analyzing the security of the (many-round)
sponge—especially once we model φ as an invertible random permutation. In the
post-quantum setting, this requires us to analyze quantum algorithms Aφ,φ−1

which
are allowed to make superposition queries to both the “forward oracle” Oφ, as well as
the “backward oracle” Oφ−1 . For example, one may ask:

• (One-wayness:) How many queries does a quantum algorithm Aφ,φ−1
need to

invert Spφ on a randomly chosen input? In other words, given y which corre-
sponds to the first r bits of φ(x||0c), for a random x ∼ {0, 1}r, how many queries
does A need to find x′ such that the first r many bits of φ(x′||0c) equal y?

• (Collision-resistance:) How many queries does a quantum algorithmAφ,φ−1
need

to find a collision for Spφ? Here, A needs to find a colliding pair x, x′ such that
the first r many bits of φ(x||0c) and φ(x′||0c) match.

To the best of our knowledge, there are currently no known query lower bounds for
either of the two above problems—despite the fact that they concern the seemingly
simple variant of single-round sponge hashing. The lack of lower bounds is mainly
due to the fact that all existing proof techniques for the non-invertible case [Cza+17;
Cza+19] seem to break down once the inverse oracle Oφ−1 enters the picture.

Consider, for example, the basic property of zero-preimage-resistance; that is, the
hardness of finding a pre-image of the all-zero string. Czajkowski et al. [Cza+17]
showed that if a (non-invertible) φ is both collision-resistant (when restricted to the
left and right half of its output) and zero-preimage-resistant (when restricted to the
right half of its output), then the (many-round) sponge construction is collision-resistant.
Unfortunately, this approach fails immediately if an adversary can submit inverse
queries to the block function φ. Clearly, the restriction of φ to the right half of its out-
put is no longer the zero-preimage-resistant—an adversary can simply query Oφ−1 on
inputs of the form y||0c, for any input y ∈ {0, 1}r, in order to find a zero-preimage.

Another difficulty in generalizing existing proof techniques lies in the fact it is
currently not known how to construct compressed permutation oracles [Unr21; Unr23].
Zhandry [Zha18] previously introduced compressed oracles as a tool to prove query
lower bounds for problems involving random oracles; specifically, as a means to
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“record” quantum queries to a random oracle. Compressed oracles have proven to
be extremely useful in analyzing the post-quantum security of hash functions in the
quantum random oracle model, particularly in the case of random sponges [Cza+19;
Unr21; Unr23]. However, unlike random functions where all the function outputs
are sampled independently, this is not true for random permutations. This makes it
difficult to construct compressed oracles for permutations, especially for modelling
algorithms that can query the permutation in both directions [Unr21; Unr23].

Double-sided zero-search. In light of the difficulty in proving the post-quantum
security of the sponge with invertible permutations, Unruh proposed the following
simple conjecture which seems beyond the scope of current techniques.

Conjecture 1 (Double-sided zero-search, [Unr21; Unr23]). Any quantum algorithm
Aφ,φ−1

which has quantum query-access to a random permutation φ : {0, 1}2n → {0, 1}2n

and its inverse φ−1 must make Ω(2n/2) many queries to find a zero pair (x, y) such that
φ(x||0n) = y||0n with constant success probability.

Note that the above lower bound is already tight—a simple Grover search allows
one to find a zero-pair using Θ(2n/2) many queries, if one exists. Notice that there is a
slight subtlety that arises in the statement of Conjecture 1 since not every permutation
has a zero pair; for example, the permutation φ(x||y) := (x||y⊕ 1n) has no zero pairs
since φ(x||0n) = x||1n, for any x ∈ {0, 1}n, whereas the identity permutation φ := id
has precisely 2n many zero pairs. However, for a random permutation there is at least
one zero pair with constant probability—a property we show in Lemma 3.5.

While it is not immediately clear how the double-sided zero-search problem from
Conjecture 1 relates to the security of the sponge construction, it was suggested by
Unruh [Unr21] that it may already provide some evidence for its collision-resistance.
The problem has so far also resisted attempts1 at solving it using standard techniques
from quantum query complexity; for example, the adversary method [Amb02] or the
polynomial method [Bea+01]. Therefore, a resolution to Conjecture 1 may already
offer interesting new insights into proving the post-quantum security of the sponge
construction with invertible permutations.

1.1 Our contributions
We now give an overview of our contributions in this work.

Resolving Unruh’s conjecture. We prove the double-sided zero-search conjec-
ture (Conjecture 1) due to Unruh [Unr21; Unr23] and show that finding zero-pairs in
a random 2n-bit permutation with constant probability requires at least Θ(2n/2) many
queries. Specifically, we show the following in Theorem 4.1.

Theorem (Informal). Any quantum algorithm for DOUBLE-SIDED ZERO-SEARCH that
makes T queries to an invertible permutation succeeds with probability at most O(T2/2n).

1This was pointed out by Unruh [Unr21].
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In other words, any algorithm must make at least T = Ω(
√

ϵ2n) many queries in
order to succeed with probability ϵ. As we observe in Corollary 4.2, this immediately
yields a tight lower bound of Θ(2n/2) for constant success probability due to Grover,
or more generally a tight bound of Θ(

√
ϵ2n) for any success probability ϵ > 0.

Our proof takes place in two steps:

• Reduction from worst-case unstructured search: Our first insight lies in the fact
that we can reduce UNSTRUCTURED SEARCH with K out of 2n marked elements
to a specific instance of DOUBLE-SIDED ZERO-SEARCH without any overhead;
namely, one in which the 2n-bit permutation φ has exactly K many zero pairs.
Suppose we have quantum oracle access to a function

f : {0, 1}n → {0, 1} with | f−1(1)| = K.

We now construct the following permutation φ : {0, 1}2n → {0, 1}2n such that,
for any inputs x, y ∈ {0, 1}n, it holds that:

φ(x||y) =
{

x||y if f (x) = 1
x||(y⊕ 1n) if f (x) = 0 .

Notice that φ while is not random, it has exactly K many zero pairs on inputs
of the form x||0n whenever x satisfies f (x) = 1. Furthermore, φ = φ−1 and so
backwards queries are not helpful—thus worst case hardness follows.

• Worst-case to average-case reduction via symmetrization: Our next insight lies
in the fact that we can re-randomize any worst-case permutation φ with K zero
pairs into an average-case permutation φsym with K zero pairs:

1. Select two 2n-bit permutations σ, ω such that both preserve the property of
ending in 0n, but are otherwise independently random.2

2. Symmetrize φ by letting φsym = ω ◦ φ ◦ σ.

A zero pair of φ can be reconstructed from a zero pair of φsym, but the location of
the zero pairs and the permutation behaviour everywhere else is now random-
ized. We have inverse access to φ, and so we also have inverse access to φsym.
Hardness of the average case is now implied by hardness of the worst case.

Our symmetrization argument (formally shown in Lemma 3.12) uses insights from the
theory of Young subroups. We give an extensive treatment of the subject in Section 3.

In Section 4.2, we give an alternative proof of Unruh’s double-sided zero-search
conjecture (Conjecture 1) which combines our technique of symmetrization with a
more conventional approach rooted in one-way to hiding [AHU18]. The advantage
of our alternative proof is that it is more direct—it avoids the two-step template of
the previous proof. At a high level, it uses the superposition oracle framework and
introduces a function register which is outside of the view of the query algorithm, and
contains a uniform superposition over permutations. Note that the superposition or-
acle formalism makes it especially easy to analyze quantum query-algorithms which
query permutations both in the forward, as well as in the backward direction.

2More formally, we require that σ and ω map strings of the form (x||0n) to (y||0n), for x, y ∈ {0, 1}n.
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Once we introduce the function register, we can then “symmetrize it in superpo-
sition”. This framework allows us to directly show that no quantum algorithm can
distinguish whether it is querying a random invertible permutation with exactly K
many zero pairs, or a random invertible permutation with no zero pairs—unless it
makes a large number of queries. We remark, however, that contrary to the work of
Zhandry [Zha18], we do not need to “compress” the superposition oracles and use
inefficient representations instead.

Subset pairs and double-sided search. Motivated by the sponge construction,
we generalize these techniques to handle search problems which are non-uniform in
the sense of (1) different constraints on preimages vs images and (2) non-uniform
distribution on permutations. In particular, we define a variant of two-sided search
in which one is given query access to an n-bit permutation φ : {0, 1}n → {0, 1}n

and its inverse, for an integer n = r + c, and asked to produce inputs that end in c
many zeros and whose outputs begin in r many zeros. We further consider a class of
non-uniform distributions on permutations that weights permutations according to
their number of solutions. Notably, under this new distribution a solution is always
guaranteed to exist, avoiding a subtlety in the original uniform problem. We show
that these modifications do not make the problem significantly easier in Theorem 4.7.

Theorem (Informal). Any quantum algorithm for NON-UNIFORM DOUBLE-SIDED SEARCH

that makes at most T queries to an invertible (non-uniform) random permutation and succeeds
with probability ϵ > 0 satisfies ϵ = O(T2/2min(r,c)).

The argument mirrors that of the uniform case, though with a slightly more com-
plicated worst-case instance.

Quantum one-wayness of the single-round sponge. As an application of our
techniques, we give a reduction from our NON-UNIFORM DOUBLE-SIDED SEARCH

problem to the one-wayness (formally defined in Definition 5.1) of the single-round
sponge. As a corollary of our bound for NON-UNIFORM DOUBLE-SIDED SEARCH, in
Theorem 5.2 we establish the first post-quantum security result for sponge hashing in
the case when the block function is modeled as an invertible permutation.

Theorem (Informal). Any T-query quantum algorithm that breaks the quantum one-wayness
of the single-round sponge, where the block function is instantiated with an invertible random
permutation, has a success probability of at most ϵ = O(T2/2min(r,c)).

By modeling the block function as an invertible random permutation, our theorem
shows the post-quantum security of the single-round sponge in the quantum random
oracle model [Bon+11]. To prove our main theorem, we first switch to an alternative
but equivalent characterization of one-wayness of the sponge (Lemma 5.3), where the
image is chosen uniformly at random before the actual block function is sampled (in
this case, φ). Note that this approach, however, results in a non-uniform distribution
over φ. To complete the proof, we then give a reduction from the NON-UNIFORM

DOUBLE-SIDED SEARCH problem (formally defined in Definition 5.1).
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Combinatorics of subset-pairs. Along the way, we work out the combinatorics of
the expected number of input-output pairs of any given kind (i.e., for a general subset-
pair), as well as strong tail bounds in the case where the expected number is small.
We show that the number of such pairs decays exponentially in this case for both the
uniform distribution in Theorem 3.15 and a certain non-uniform one in Theorem 3.20.

Theorem (Informal). Whenever the average number of subset pairs of a random permutation
is a constant, the probability that there are more than K subset pairs is at most exp(−Ω(K)).

In the uniform case, the number of subset pairs of permutations follows a so-
called hypergeometric distribution—a well studied distribution corresponding to sam-
pling without replacement. We relate our non-uniform distribution, in which per-
mutations are favored proportional to their number of subset pairs, to the uniform
distribution, and show how to derive strong tail bounds in this case as well.

1.2 Open questions
This work does not address post-quantum security of the many-round sponge, which
is a natural and important next direction. In particular, we do not address whether
the many-round sponge when instantiated with an invertible random permutation is
one-way. However, we believe that our techniques could potentially open up new
directions towards proving the post-quantum security of the many-round sponge,
especially when combined with insights from the non-invertible case [Cza+17].

Another natural question is whether one can show stronger security properties of
the sponge with invertible permutations, even in the single-round case. For example,
whether the single-round sponge is collision-resistant (or more generally, collapsing)
when the block function is instantiated with an invertible random permutation. This
is not addressed by our work. However, in this case, it is conceivable that there exist
direct reductions from collision-resistance (or collapsing) to natural query problems
involving invertible permutations, similar to our reduction for one-wayness. In such
a case, our techniques would be well suited to analyzing this type of problem.

1.3 Related work
Czajkowski, Bruinderink, Hülsing, Schaffner and Unruh [Cza+17] showed that the
many-round sponge is collapsing—a strengthening of collision-resistance—in the case
when the block function is modeled as a random function or a random (non-invertible)
permutation. In the same model, Czajkowski, Majenz, Schaffner and Zur [Cza+19]
proved the quantum indifferentiability of the (many-round) sponge. However, in
contrast with the former work, the latter relies on Zhandry’s compressed oracle tech-
nique [Zha18]. Inspired by Zhandry’s compressed oracle method, Rosmanis [Ros22]
recently also gave tight bounds for the permutation inversion problem. We remark
that the results in the aforementioned works do not apply in the case where the ad-
versary has access to an invertible random permutation.

Unruh proposed the notion of compressed permutation oracles [Unr21; Unr23] which
are aimed at dealing with invertible permutations. However, the soundness of the
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construction is still unresolved and currently relies on a conjecture. Unruh also put
forward the double-sided zero-search conjecture [Unr21; Unr23] as a simple and non-
trivial query problem in the context of invertible random permutations which may
potentially have implications for collision-resistance.

Alagic, Bai, Poremba and Shi [Ala+23] showed space-time trade-offs for two-sided
permutation inversion—the task of inverting a random but invertible permutation on
a random input. While the inverter does in fact receive access to an inverse oracle, it is
crucial that such an oracle is punctured at the challenge input; otherwise, the inversion
task would become trivial. Although this work does not seem to have any immediate
implications for the single-round sponge, it does suggest that permutation inversion
remains hard in the presence of inverse oracles.

Acknowledgments. We thank Gorjan Alagic, Chen Bai, Luke Schaeffer and Kaiyan
Shi for many useful discussions. JC acknowledges funding from the Department of
Defense. AP is supported by the National Science Foundation (NSF) under Grant No.
CCF-1729369.

1.4 Organization
In Section 2, we review the fundamentals of quantum computing and quantum search
lower bounds. In Section 3, we review basic group theory—with a particular focus
on the theory of Young subgroups—and state the key group-theoretic lemma for our
symmetrization argument. We also introduce the concept of a zero pair as well as a sub-
set pair, which constitute the main objects in the query problems we study. Moreover,
we analyze many general combinatorial properties of these objects.

In Section 4, we prove tight lower bounds for the DOUBLE-SIDED ZERO-SEARCH

problem using a worst-case to average-case reduction, as well as a direct proof based
on the superposition oracle framework. We also define and show lower bounds for
a non-uniform variant of this problem which we call NON-UNIFORM DOUBLE-SIDED

SEARCH—a problem which we naturally encounter later in Section 5. In the final
section, we give a reduction from NON-UNIFORM DOUBLE-SIDED SEARCH to the one-
way game of the single-round sponge with invertible permutations.

2 Preliminaries
Let us first introduce some basic notation and relevant background.

Notation. For N ∈ N, we use [N] = {1, 2, . . . , N} to denote the set of integers up
to N. The symmetric group on [N] is denoted by SN . In slight abuse of notation,
we oftentimes identify elements x ∈ [N] with bit strings x ∈ {0, 1}n via their binary
representation whenever N = 2n and n ∈ N. Similarly, we identify permutations
π ∈ SN with permutations π : {0, 1}n → {0, 1}n over bit strings of length n.

We write negl(·) to denote any negligible function, which is a function f such that,
for every constant c ∈N, there exists an integer N such that for all n > N, f (n) < n−c.
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Probability theory. The notation x ∼ X describes that an element x is drawn uni-
formly at random from the set X. Similarly, if D is a distribution, we let x ∼ D denote
sampling x according to D. We denote the expectation value of a random variable X
by E[X] = ∑x x Pr[X = x]. We make use of the following distribution.

Definition 2.1 (Hypergeometric distribution). A hypergeometric distribution describes
the number of marked elements found by drawing T many objects from a total of N, of which
K are marked. More formally, for X ∼ Hypergeometric(N, K, T), we have

Pr[X = k] =
(K

k)(
N−K
T−k )

(N
T)

.

We use the following tail bound for the hypergeometric distribution.

Lemma 2.2 (Hoeffding’s inequality, [Hoe63; Chv79]). Let X ∼ Hypergeometric(N, K, T)
and define p = K/N. Then, for any t ∈ R with 0 ≤ t < 1− p, it holds that

Pr [X ≥ (p + t) · T] ≤ exp
(
− T · DKL(p + t||p)

)
,

where DKL(q||p) denotes the Kullback-Leibler divergence with

DKL(q||p) = q · ln
(

q
p

)
+ (1− q) · ln

(
1− q
1− p

)
.

Quantum computing. A finite-dimensional complex Hilbert space is denoted by
H, and we use subscripts to distinguish between different systems (or registers); for
example, we let HA be the Hilbert space corresponding to a system A. The tensor
product of two Hilbert spaces HA and HB is another Hilbert space which we denote
by HAB = HA ⊗ HB. We let L(H) denote the set of linear operators over H. A
quantum system over the 2-dimensional Hilbert space H = C2 is called a qubit. For
n ∈ N, we refer to quantum registers over the Hilbert space H =

(
C2)⊗n as n-qubit

states. We use the word quantum state to refer to both pure states (unit vectors |ψ⟩ ∈ H)
and density matrices ρ ∈ D(H), where we use the notation D(H) to refer to the space
of positive semidefinite linear operators of unit trace acting onH.

The trace distance between two density matrices ρ, σ ∈ D(H) is given by

TD(ρ, σ) =
1
2

Tr
[√

(ρ− σ)†(ρ− σ)

]
.

Note that the trace distance between two pure states |ψ⟩ , |ϕ⟩ ∈
(
C2)⊗n satisfies

TD(|ψ⟩⟨ψ|, |ϕ⟩⟨ϕ|) ≤
∥∥|ψ⟩ − |ϕ⟩∥∥ ,

where ∥ · ∥ denotes the Euclidean distance over the vector space
(
C2)⊗n.

When the dimensions are clear from context, we use 1 to denote the identity ma-
trix. A unitary U : L(HA) → L(HA) is a linear operator such that U†U = UU† = 1A.
A projector Π is a Hermitian operator such that Π2 = Π. Oftentimes, we use the
shorthand notation Π̄ = 1−Π.
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A quantum algorithm is a uniform family of quantum circuits {Aλ}λ∈N, where
each circuit Aλ is described by a sequence of unitary gates and measurements; more-
over, for each λ ∈ N, there exists a deterministic Turing machine that, on input 1λ,
outputs a circuit description of Aλ. We say that a quantum algorithm A has oracle
access to a classical function f : {0, 1}n → {0, 1}m, denoted by A f , if A is allowed
to use a unitary gate O f at unit cost in time. The unitary O f acts as follows on the
computational basis states of a Hilbert spaceHX ⊗HY of n + m qubits:

O f : |x⟩X ⊗ |y⟩Y −→ |x⟩X ⊗ |y⊕ f (x)⟩Y ,

where the operation ⊕ denotes bit-wise addition modulo 2. Oracles with quantum
query-access have been studied extensively, for example in the context of quantum
complexity theory [Ben+97], as well as in cryptography [Bon+11; AHU18; Ala+20].

2.1 Lower bounds for unstructured search
The quantum query complexity of worst-case UNSTRUCTURED SEARCH is one of the
most fundamental results in quantum computing [Gro96; Ben+97; Boy+98]. In this
problem, a quantum algorithm is given query access to a function f : [N]→ {0, 1} and
is tasked with finding an x ∈ [N] such that f (x) = 1. We will consider this problem
subject to the promise that there are exactly K preimages of 1, i.e., | f−1(1)| = K. Note
also that only ever consider the worst-case complexity of this problem, meaning the
success probability is only over the internal randomness of the algorithm.

The exact query complexity of this problem is well-understood [Gro96; Zal99;
DH09]. We use the following lower bound, which is a direct corollary of the work
of Dohotaru and Høyer.

Theorem 2.3 ([DH09], Theorem 8). Any algorithm which solves UNSTRUCTURED SEARCH

with K out of N marked elements with worst-case success probability ϵ > 0 requires at least

T ≥
√

N/K
2
√

2

(
1 +
√

ϵ−
√

1− ϵ− 2√
N/K

)
many queries.

We can rearrange the expression in Theorem 2.3 to obtain a bound on the worst-
case success probability of a T-query quantum algorithm.

Corollary 2.4. Any algorithm which solves UNSTRUCTURED SEARCH with K marked ele-
ments out of N with worst-case success probability ϵ > 0, satisfies the inequality

ϵ ≤ 8(T + 1)2K
N

.

Proof. We have

T ≥
√

N/K
2
√

2

(
1 +
√

ϵ−
√

1− ϵ− 2√
N/K

)
(Theorem 2.3)

≥
√

N/K
2
√

2

(√
ϵ− 2√

N/K

)
.
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This implies that T + 1 ≥
√

Nϵ/K/
√

8, which yields the desired inequality.

This bound is no longer exact, but will suffice for our purposes.

3 Subset Pairs and the Symmetric Group
In this section, we recall some basic facts from the theory of Young subgroups. Due to
the nature of the query problems in Section 4, we oftentimes encounter subgroups of
the symmetric group SN consisting of permutations that fix certain subsets of [N]; for
example, zero pairs in the case of DOUBLE-SIDED ZERO-SEARCH in Problem 1. This
forces us to analyze certain subgroups of SN—called Young subgroups—which are
direct products of subgroups on fewer elements that form a partition of [N].

We use the machinery of Young subgroups to prove a key lemma which shows our
symmetrization procedure is sound, and to offer an algebraic characterization of the
input/output pairs of a permutation satisfying certain constraints.

3.1 Group Theory
We first define relevant notions in group theory, and recall known results about the
symmetric group SN on N elements. For a more complete overview of the subject, we
refer the reader to the work of James [Jam84].

Let SN denote the symmetric group consisting of permutations which act on the
set [N] := {1, ..., N}. For a subset A ⊂ [N], let SA denote the maximal subgroup of SN
which fixes every element in the complement of A, i.e. [N] \ A. Now let A1, ..., Al be
a partition of [N] such that the disjoint union satisfies

⊔
i∈[ℓ] Ai = [N].

Definition 3.1 (Young subgroup). A subgroup H of the symmetric group SN is a Young
subgroup if it can be expressed as H = SA1 × ...× SAl , where × denotes the internal direct
product and the collection of subsets {Ai}i∈[ℓ] forms a partition of [N].

The concept of a double coset, which we review below, will also be relevant.

Definition 3.2 (Double cosets). Let H, K be subgroups of a group G. The double cosets
of G under (H, K), which we denote by H⧹G⧸K, are the set of sets of elements which are
invariant under left multiplication by H and right multiplication by K. Formally,

H⧹G⧸K =
{
{hxk : h ∈ H, k ∈ K} : x ∈ G

}
.

It is well-known that G is the disjoint union of its double cosets for any subgroups
H, K ≤ G. We focus on the double cosets of the symmetric group SN , specifically
those generated by Young subgroups. These subgroups admit the following charac-
terization, adapted from Jones [Jon96] and James [Jam84].

Theorem 3.3 ([Jon96], Theorem 2.2). Let H, K be Young subgroups of SN , with correspond-
ing partitions A1, ..., Al (for H) and B1, ..., Bm (for K). Let π ∈ SN and C = HπK be the
corresponding double coset. Any other permutation π′ ∈ SN is in C if and only if for all
i ≤ l, j ≤ m we have |Ai ∩ π′Bj| = |Ai ∩ πBj|.
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Intuitively, the above characterization says that the double cosets defined by Young
subgroups (H, K) correspond to sets of permutations which look the same if one only
considers how they distribute the elements of each Bj among the different Ai’s. Two
permutations π, π′ are in the same double coset if and only if for every Ai, Bj both π
and π′ send the same number of elements from Bj to Ai. This characterization will
prove useful when showing the random self-reducibility of two-sided search prob-
lems. The following lemma and proof is a key component of this reduction, and is
based heavily on the approach of Wildon [Wil], Theorem 4.4.

Lemma 3.4. For any subgroups H, K of a (finite) group G with x, g ∈ G both in the same
(H, K) double coset, there are exactly |x−1Hx ∩ K| ways of choosing h ∈ H and k ∈ K such
that g = hxk.

Proof. Fix some x ∈ G, and consider any g ∈ G in the same double coset as x. Then,
there exist elements h ∈ H, k ∈ K such that

g =hxk

=x(x−1hx)k.

Any alternative k′ ∈ K can be written as k′ = ukk for uk ∈ K, and an alternative h′ ∈ H
can be written as x−1h′x = (x−1hx)uh for uh ∈ x−1Hx. These new elements satisfy

g′ =h′xk′

=x(x−1hx)uhukk

It is apparent that g′ = g holds if and only if uh = u−1
k . This implies that

uk, uh ∈ K ∩ x−1Hx.

Thus, there are |x−1Hx ∩ K| alternative ways to choose a satisfying h ∈ H and k ∈ K.

3.2 Subset Pairs
In this section, we introduce the notion of a subset pair, which will be the main object
of study. Specifically, we are interested in the complexity of finding input/output
pairs of a permutation which lie within certain pairs of subsets.

Zero pairs. Before giving the general definition of a subset pair, we first define a
zero pair as a specific and relevant example of a subset pair.

Example 3.1 (Zero pair). Let Z ⊂ [22n] be the subset consisting of all z ∈ [22n] with binary
decomposition (z1, z2, . . . , z2n) ∈ {0, 1}2n such that

zn+1 = zn+2 = . . . = z2n = 0.

12



Then, Z is a subset of size 2n and, when identifying S22n with permutations over 2n-
bit strings, (x||0n) and (y||0n) form a Z-pair for a permutation π : {0, 1}2n → {0, 1}2n,
if π(x||0n) = y||0n. For brevity, we sometimes call (x, y) a zero pair of the permutation
π. We show the following concerning zero pairs in random permutations.

Lemma 3.5. A random permutation π ∼ S22n contains at least one zero pair with probability

Pr
π∼S22n

[|Zπ| ≥ 1] = 1− 1/e + o(1).

Here, |Zπ| denotes the random variable for the number of zero pairs of the permutation π.

Proof. Let N = 22n and let Z ⊂ [N] be the subset from Example 3.1, where |Z| =
√

N.
It suffices the estimate the probability that a random permutation π ∼ SN has no zero
pairs. The total number of permutations over [N] which have no zero pairs is

(N −
√

N)!
(N − 2

√
N)!
· (N −

√
N)! .

This is because we need to match all
√

N elements in the subset Z exclusively with
elements outside of Z. Therefore, we get

Pr
π∼SN

[|Zπ| ≥ 1] = 1− Pr
π∼SN

[|Zπ| = 0]

= 1− (N −
√

N)! · (N −
√

N)!
N! · (N − 2

√
N)!

= 1−
(

N −
√

N√
N

)
/
(

N√
N

)
.

Therefore, the claim follows from the fact that (N−
√

N√
N )/( N√

N) is a monotonically in-
creasing sequence which approaches the limit 1/e as N → ∞.

We will use the notation GZ to denote the subgroup GZ ≤ S22n of permutations
which preserve membership in Z.

Definition 3.6 (Subgroup GZ). A permutation π is a member of the subgroup GZ ≤ S22n if
and only if π fixes the subset Z such that π(Z) = Z. In other words, for every x ∈ {0, 1}n,
there exists y ∈ {0, 1}n such that π(x||0n) = y||0n.

Note that the subgroup GZ decomposes as GZ ≃ SZ × S[N]\Z. The algebraic struc-
ture of the double cosets induced by GZ × GZ will be central in proving the hardness
of DOUBLE-SIDED ZERO-SEARCH in Problem 1.

General statements. We now turn to defining a subset pair in full generality, and
prove a key “symmetrization lemma” using the theory of Young subgroups.

Definition 3.7 (Subset pair). Let N ∈ N, let X1, X2 ⊆ [N] be subsets and X = (X1, X2).
We say that a pair (i, j) is an X-pair for a permutation π ∈ SN if i ∈ X1, j ∈ X2 and π(i) = j.
We denote the set of all X-pairs of a permutation π ∈ SN by

Xπ = {(i, j) | i ∈ X1, j ∈ X2 and π(i) = j}.
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Remark 3.8. Whenever X = (X1, X2) is a pair of identical subsets with X1 = X2 = Z, for
some Z ⊆ [N], we sometimes refer to the pairs (i, j) in Definition 3.7 as Z-pairs instead. This
is the case for the zero pair subsets from Example 3.1.

For an X = (X1, X2), define the subgroups G1 ≤ SN and G2 ≤ SN with

G1 :={π ∈ SN : π(X1) = X1}
G2 :={π ∈ SN : π(X2) = X2}.

In other words, Gi consists of all permutations in SN that fix Xi. Moreover, it follows
from Definition 3.2 that G1 and G2 are Young subgroups of SN .

Fact 3.9. The Young subgroups G1 ≤ SN and G2 ≤ SN decompose as

Gi ≃ SXi × S[N]\Xi
, for i ∈ {1, 2}.

We introduce the following notation for the double cosets of SN under (G1, G2).

Definition 3.10. For κ ∈N∪ {0}, and X = (X1, X2) with X1, X2 ⊂ [N], define the subset

Sκ,X
N := {π ∈ SN : π has exactly κ-many X-pairs}.

We oftentimes omit the superscript X when it is clear from context. Note that
SN =

⊔|X1|
κ=0 Sκ

N , i.e., SN is the disjoint union over all the Sκ
N . Note, however, that

whenever we have κ > |X1| or κ > |X2|, it must be that Sκ
N = ∅. The following

corollary is immediate from the characterization in Theorem 3.3, since G1 and G2 are
both Young subgroups.

Corollary 3.11. The sets {Sκ
N} are the double cosets of SN under (G1, G2); formally,

G1⧹SN⧸G2 = {Sκ
N | κ ∈ {0, 1, . . . , |X1|}}.

We are now ready to prove the main tool for analyzing random double-sided
search problems, such as DOUBLE-SIDED ZERO-SEARCH in Problem 1.

Lemma 3.12 (Symmetrization lemma). Consider any fixed permutation π ∈ Sκ
N , for some

κ ∈ N ∪ {0}, and suppose that ω ∼ G1, σ ∼ G2 are sampled independently and uniformly
at random. Then, ω ◦ π ◦ σ is a uniformly random element of Sκ

N .

Proof. From Lemma 3.4, it follows that for any fixed π ∈ Sκ
N and some φ ∈ Sκ

N the
number of ω, σ pairs with ω ∈ G1, σ ∈ G2 such that φ = ω ◦ π ◦ σ is |πG1π−1 ∩ G2|,
which notably is independent of φ. In particular, we have

Pr
ω∼G1,σ∼G2

[ω ◦ π ◦ σ = φ] =
|πG1π−1 ∩ G2|

∑φ′∈Sk
N
|πG1π−1 ∩ G2|

=
1
|Sκ

N |
.

The probability is the same for all elements φ ∈ Sκ
N , and so the element ω ◦ π ◦ σ is

uniformly random among elements of Sκ
N .

14



3.3 Combinatorics of Subset Pairs
In this section, we work out the combinatorics behind the expected number of subset
pairs (on average over the choice of permutation), as well derive strong tail bounds
in the case where the expected number is small. We show that the number of subset
pairs decays exponentially for the uniform distribution (see Theorem 3.15), as well as
for a particular choice of non-uniform distribution (see Theorem 3.20).

Uniform case. We begin by considering the case of uniformly random π ∼ SN and
derive the expected number of X-pairs as well as tail bounds. We show the following:

Theorem 3.13. Let N ∈ N and let X1, X2 ⊆ [N] be subsets with X = (X1, X2). Then, on
average over the uniform choice of π ∼ SN , the expected number of X-pairs equals

E
π∼SN

[|Xπ|] =
|X1||X2|

N
.

Proof. For a uniform random π ∼ SN , we let Ix denote the indicator variable which
equals 1, if π(x) ∈ X1, and 0 otherwise. Thus, we have

E[Ix] =
|X2|
N

, |Xπ| = ∑
x∈X1

Ix .

From the above, it then follows that

E
π∼SN

[|Xπ|] = ∑
x∈X1

E[Ix] (Linearity of Expectation)

=
|X1||X2|

N
.

A simple corollary of this bound is an alternative characterization of the total num-
ber of subset pairs over all permutations.

Corollary 3.14. Let N ∈ N and fix arbitrary subsets X1, X2 ⊆ [N] with X = (X1, X2).
Then, there exist precisely

∑
π∈SN

|Xπ| =
|X1||X2|

N
· N!

many X-pairs over all permutations π ∈ SN .

Proof. This is easily verified as follows:

∑
π∈SN

|Xπ| = E
π∼SN

[|Xπ|] · |SN |

=
|X1||X2|

N
· N! . (Theorem 3.13)
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We now state and prove tail bounds, which will be sufficiently tight for the case
where the expected number of subset pairs is small.

Theorem 3.15. Let N ∈ N and X1, X2 ⊆ [N] be subsets with X = (X1, X2). Then, for any
real number u ≥ 6 Eσ∼SN [|Xσ|], it holds that

Pr
π∼SN

[
|Xπ| ≥ E

σ∼SN
[|Xσ|] + u

]
≤ exp

(
−3

4
u
)

.

Proof. The number of permutations having κ many X-pairs for 0 ≤ κ ≤ |X1|, |X2| is
hypergeometrically distributed (see Definition 2.1). In other words,

Pr
π∼SN

[|Xπ| = κ] =
(|X2|

κ )(N−|X2|
|X1|−κ

)

( N
|X1|)

.

This is because each image of X1 can be assigned without replacement by a random
permutation to one of N images. Next, we want to count how many images there
are in X2, which we interpret as a “success”. Let us consider the hypergeometric
distribution Hypergeometric(N, K, T) with the following parameters:

N :=N (Total Objects)
K :=|X2| (Success Objects)
T :=|X1| (Trials)

Let p = |X2|/N denote the probability that the first draw is a success. Applying
Hoeffding’s inequality (see Lemma 2.2), we get

Pr
π∼SN

[
|Xπ| ≥ (p + t)|X1|

]
≤ exp (−|X1|DKL(p + t||p))

≤ exp
(
−3

4
|X1|t

)
(From Lemma 3.16).

By substituting u = |X1|t and applying Theorem 3.13, we obtain

Pr
π∼SN

[
|Xπ| ≥ E

σ∼SN
[|Xσ|] + u

]
≤ exp

(
−3

4
u
)

(When u ≥ 6 E
σ∼SN

[|Xσ|]).

We use the following technical lemma.

Lemma 3.16. Let p, t ∈ (0, 1) such that t ≥ 6p and p + t < 1. Then, we can lower bound
the Kullback-Leibler divergence as follows:

DKL(p + t||p) > 3t/4.
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Proof. Recall that the Kullback-Leibler divergence DKL(p + t||p) is defined as

DKL(p + t||p) = (p + t) ln
(

p + t
p

)
︸ ︷︷ ︸

=D1

+ (1− p− t) ln
(

1− p− t
1− p

)
︸ ︷︷ ︸

=D2

.

We now bound D1 and D2 separately. Beginning with the first term, we get

D1 > t ln
(

p + t
p

)
> t ln

(
t
p

)
≥ t ln(6) ,

where we used that t ≥ 6p. We now continue with the second term. First, we consider
the following first-order derivatives with respect to t:

∂

∂t
(D2) =− ln

(
p + t− 1

p− 1

)
− 1

∂

∂t
(D2)

∣∣
t=0 =− 1 .

Calculating the second-order derivatives, we also find that

∂2

∂t2 (D2) =−
1

p + t− 1
∂2

∂t2 (D2) > 0 . (From p + t < 1).

It follows that D2 is concave upwards in the relevant regime, and the derivative at
t = 0 is −1. We further have D2|t=0 = 0, so when p + t < 1 and t ≥ 0 we have
D2 > −t. Combining these results, we obtain the desired inequality:

D(p + t||p) > t ln(6)− t > 3t/4.

Non-uniform case. In this section, we work out the combinatorics for the num-
ber of subset pairs with respect to a particular non-uniform distribution which assigns
more weight to permutations that have a large amount of X-pairs.

Definition 3.17. Let N ∈ N. The non-uniform distribution DX over permutations in SN is
parameterized by a pair of subsets X = (X1, X2), and is defined as follows:

Pr
Φ∼DX

[Φ = φ] =
|Xφ|

∑ σ∈SN
|Xσ|

, for φ ∈ SN .

We begin by bounding the average number of X-pairs.
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Theorem 3.18. Let N ∈ N and X1, X2 ⊂ [N] be non-empty subsets. Let |Xπ| denote the
number of X-pairs with respect to π ∈ SN . Then, the average number of X-pairs over the
choice of permutation from π ∼ DX satisfies

1 ≤ E
π∼DX

[|Xπ|] ≤ 1 +
|X1||X2|

N
.

Proof. Recall that the subsets {Sκ
N} form a partition SN =

⊔|X1|
κ=0 Sκ

N , i.e., SN is the
disjoint union over all the Sκ

N , we have N! = ∑|X1|
κ=0 |Sκ

N |, and thus

E
σ∼SN

[|Xσ|] =
|X1|

∑
κ=0

κ · Pr
σ∼SN

[σ ∈ Sκ
N ] =

|X1|

∑
κ=0

κ · |S
κ
N |

N!
.

Therefore, we obtain the following identity,

∑
σ∈SN

|Xσ| =
|X1|

∑
κ=0

∑
σ∈Sκ

N

|Xσ| =
|X1|

∑
κ=0

κ · |Sκ
N | = N! · E

σ∼SN
[|Xσ|]. (1)

We can now write the average number of X-pairs as follows:

E
π∼DX

[|Xπ|] =
|X1|

∑
κ=0

κ · Pr
π∼DX

[π ∈ Sκ
N ]

=
|X1|

∑
κ=0

κ · ∑
π∈Sκ

N

Pr
Π∼DX

[Π = π]

=
|X1|

∑
κ=0

κ ·
∑π∈Sκ

N
|Xπ|

∑σ∈SN
|Xσ|

=
|X1|

∑
κ=0

κ · κ · |Sκ
N |

∑σ∈SN
|Xσ|

=

(
E

σ∼SN
[|Xσ|]

)−1 |X1|

∑
κ=0

κ2 · |S
κ
N |

N!
(By Equation (1))

=

E
σ∼SN

[|Xσ|2]

E
σ∼SN

[|Xσ|]
. (2)

In other words, the average number of zero pairs in the non-uniform case is the ratio
between the second moment and the first moment in the uniform case. We also have

|X1||X2|
N

≤ E
σ∼SN

[|Xσ|2] ≤
|X1||X2|

N
+
|X1|2|X2|2

N2 (Lemma 3.19)

E
σ∼SN

[|Xσ|] =
|X1||X2|

N
. (Theorem 3.13)
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Putting everything together, we find that

1 ≤ E
π∼D

[|Xπ|] ≤ 1 +
|X1||X2|

N
.

Recall that the previous lemma relied on the following fact:

Lemma 3.19. Let N ∈ N and X1, X2 ⊂ [N] be non-empty subsets. Let |Xπ| denote the
random variable for the number of X-pairs for π ∈ SN . Then, the second moment satisfies(

|X1||X2|
N

)
≤ E

π∼SN
[|Xπ|2] ≤

(
|X1||X2|

N
+
|X1|2|X2|2

N2

)
.

Proof. For a uniform random π ∼ SN and some x ∈ [N], we let Ix be the indicator
variable which equals 1, if π(x) ∈ X2, and 0 otherwise. Then, we find that

E[Ix] =
|X2|
N

, |Xπ|2 =

(
∑

x∈X1

Ix

)2

Therefore, we can express the second moment as follows:

E
π∼SN

[|Xπ|2] = ∑
x,y∈X

E[Ix Iy] (Linearity of Expectation)

= ∑
x∈X1

E[Ix] + ∑
x ̸=y∈X1

E[Ix Iy].

Note that the the first term is equal to

E
σ∼SN

[|Xσ|] =
|X1||X2|

N
.

The second term is obviously positive, hence the lower bound. The second term has
less than |X1|2 summands, and each summand can be bounded above via

|X2|(|X2| − 1)
N(N − 1)

<
|X2|2
N2 .

Multiplying this through, we can upper bound the term as |X1|2|X2|2
N2 . This gives the

desired inequality.

We can now give a tail bound for the number of X-pairs in the non-uniform case.
Our bound is tailored to the case where |X1| · |X2| = N.

Theorem 3.20. Let N ∈ N and let X = (X1, X2) be a pair of subsets X1, X2 ⊆ [N] such
that |X1| · |X2| = N. Then, for any real number u ≥ 6 E

σ∼SN
[|Xσ|], it holds that

Pr
π∼SN

[
|Xπ| ≥ E

σ∼SN
[|Xσ|] + u

]
≤ 3 exp (−4u/9) .
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Proof. Note that because |X1| · |X2| = N we can write DX as

Pr
Φ∼DX

[Φ = φ] =
|Xφ|

∑ σ∈SN
|Xσ|

=
|Xφ|
N!

(Corollary 3.14)

Using the above equation, we can now write the probability distribution on X-pairs
as follows:

Pr
π∼D

[|Xπ| = κ] =κ · Pr
σ∼SN

[|Xσ| = κ],

for any κ ∈ {0, 1, . . . , |X1|}. In particular, for κ > 6, we have the bound

Pr
π∼SN

[|Xπ| ≥ κ] ≤ exp(−3κ/4). (Theorem 3.15)

Therefore, we obtain

Pr
π∼DX

[|Xπ| = κ] ≤κ · exp(−3κ/4)

≤ exp
(
−
(

9− 2 ln(6)
12

)
κ

)
. (From κ ≥ 6).

Putting everything together and bounding the geometric series, we get that

Pr
π∼DX

[|Xπ| ≥ κ] =
|X1|

∑
i=κ

Pr
π∼D

[|Xπ| = i]

≤
∞

∑
i=κ

exp
(
−
(

9− 2 ln(6)
12

)
i
)

≤
(

1− exp
(
− 9− 2 ln(6)

12

))−1

exp
(
−
(

9− 2 ln(6)
12

)
κ

)
≤3 exp

(
−4κ

9

)
.

4 Query Problem Lower Bounds
Unruh [Unr21; Unr23] proposed the task of “double-sided zero-search”—a simple
query problem dealing with invertible permutations which seems to go beyond the
scope of current techniques, and may potentially offer new insights into the post-
quantum security of the sponge construction. Unruh conjectured that it requires at
least Ω(2n/2) many queries to solve the problem with constant success probability—
and this is tight due to Grover’s algorithm.

In this section, we prove query-lower bounds for Unruh’s original double-sided
zero-search problem, as well as a non-uniform variant that will be useful in proving
the one-wayness of the single-round sponge with invertible permutations. We remark
that our lower bounds on double-sided zero-search are tight up to a constant factor,
and therefore resolve Unruh’s original conjecture.
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4.1 Double-Sided Zero-Search
In light of the difficulty in proving the post-quantum security of the sponge with
invertible permutations, Unruh [Unr21; Unr23] proposed the following simple query
problem which seems beyond the scope of current techniques.

Problem 1 (DOUBLE-SIDED ZERO-SEARCH). Given quantum query-access to a uni-
formly random permutation φ : {0, 1}2n → {0, 1}2n as well as its inverse φ−1, output
a pair of strings x, y ∈ {0, 1}n such that φ(x||0n) = y||0n.

Recall that we call x, y ∈ {0, 1}n which satisfy φ(x||0n) = y||0n a zero pair of φ.
We prove that any algorithm must make at least T = Ω(

√
ϵ2n) many queries in

order to find a zero pair for a random 2n-bit permutation with probability ϵ. At a high
level, the first step of the proof is showing that there is some worst case instances on
which the problem is hard for any fixed number of zero pairs, in Lemma 4.3. Then we
give a worst to average case reduction to show hardness for a random permutation
with a fixed number of zero pairs in Lemma 4.4. Finally, we give a bound for the gen-
eral problem using the aforementioned bounds as well as tail bounds on the number
of zero pairs.

Theorem 4.1. Any quantum algorithm for DOUBLE-SIDED ZERO-SEARCH that makes T
queries to a random 2n-bit permutation or its inverse and succeeds with probability ϵ > 0
satisfies

ϵ ≤ 50(T + 1)2

2n .

Proof. Let φ be a uniformly random 2n-bit permutation and K = |Zφ| ∈ {0, 1, . . . , 2n}
be the random variable corresponding to the number of zero pairs in φ. By the law of
total probability, we can write the success probability ϵ of a T-query algorithm as

ϵ =
2n

∑
κ=0

Pr[K = κ] · Pr[success|K = κ]

=
6

∑
κ=1

Pr[K = κ] · Pr[success|K = κ]︸ ︷︷ ︸
=P1

+
2n

∑
κ=7

Pr[K = κ] · Pr[success|K = κ]︸ ︷︷ ︸
=P2

.

We bound each term separately. Beginning with the first, we get

P1 ≤max
κ∈[6]
{Pr[success|K = κ]} (By Convexity)

≤48(T + 1)2

2n . (By Lemma 4.4)
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Continuing with the second, we find that

P2 ≤
2n

∑
κ=7

Pr[success|K = κ] · exp(−3κ/4) (By Theorem 3.15)

≤
2n

∑
κ=7

8(T + 1)2κ

2n · exp(−3κ/4) (By Lemma 4.4)

≤2(T + 1)2

2n . (Arithmetico-geometric series)

Therefore, we obtain the following bound on total success probability:

ϵ ≤ 50(T + 1)2

2n

We observe that this bound is tight up to constant factors for any ϵ, as there is at
least single zero pair with Ω(1) probability (Lemma 3.5), which can be found using
Grover’s algorithm [Gro96] with probability Θ(T2/2n) after T queries. In particular,
we have the following corollary.

Corollary 4.2. Given quantum oracle-access to a random 2n-bit permutation and its inverse,
the query complexity of outputting a zero pair with probability ϵ is Θ(

√
ϵ2n).

Reduction from worst-case unstructured search. In the following lemma, we
prove a query-lower bound for a worst-case variant of DOUBLE-SIDED ZERO-SEARCH

in Problem 1, where we are given the promise that the underlying permutation has
exactly K-many zero pairs. We show the following.

Lemma 4.3. Any T-query quantum algorithm for the DOUBLE-SIDED ZERO-SEARCH

problem with respect to a 2n-bit worst-case permutation with exactly K > 0 zero and which
succeeds with probability ϵ > 0 must satisfy the inequality

ϵ ≤ 8(T + 1)2K
2n .

Proof. We reduce the worst-case UNSTRUCTURED SEARCH problem with K out of 2n

marked elements to a specific instance of DOUBLE-SIDED ZERO-SEARCH for a 2n-bit
permutation φ with exactly K many zero pairs without any query overhead.

Suppose we are given quantum query access to a function

f : {0, 1}n → {0, 1}

such that | f−1(1)| = K. We now construct a permutation φ : {0, 1}2n → {0, 1}2n,
where φ is defined as follows for any pair of strings x, y ∈ {0, 1}n:

φ(x||y) =
{

x||y if f (x) = 1
x||(y⊕ 1n) if f (x) = 0.
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It is apparent that we can implement a query to φ using a single query to f . Further,
we have φ = φ−1 since φ is a composition of 1 and 2-cycles; hence, we can also
implement queries to φ−1. Now let x||0n be a zero pair of φ. It follows that f (x) = 1,
as otherwise φ(x||0n) = x||1n. Similarly, if, for any x′, we have f (x′) = 1, then x′||0n

is a zero pair of φ. There are therefore K zero pairs in φ and, given a zero pair of
φ, it is straight forward to find a preimage of 1 under f , which can be used to solve
UNSTRUCTURED SEARCH. The claim now follows from Corollary 2.4.

Worst-case to average-case reduction. In the following lemma, we prove a query-
lower bound for an average-case variant of DOUBLE-SIDED ZERO-SEARCH in Prob-
lem 1, where we are given the promise that the underlying permutation has exactly
K-many zero pairs. In this case, average refers to a uniform random permutation over
all that have exactly K-many zero pairs. We show the following.

Lemma 4.4. Any quantum algorithm for DOUBLE-SIDED ZERO-SEARCH on a uniform
random permutation φ, subject to the constraint that φ has exactly K > 0 zero pairs, making
T queries to φ, φ−1 and succeeding with probability ϵ > 0 satisfies the inequality

ϵ ≤ 8(T + 1)2K
2n

Proof. Let N = 22n and let Z ⊂ [N] denote the set of elements whose binary decom-
position ends in 0n. Let GZ ≤ SN be the subgroup of permutations that fix Z, i.e.,

GZ ≃ SZ × S[N]\Z.

We can re-randomize any worst-case permutation φ : {0, 1}2n → {0, 1}2n with K zero
pairs into an average-case permutation φsym with K zero pairs as follows.

1. Randomly and independently sample permutations ω, σ ∼ GZ.

2. Define the symmetrized permutation φsym = ω ◦ φ ◦ σ.

It follows from Lemma 3.12 that φsym is uniform random among permutations with
K zero pairs. Let x, y ∈ Z be a zero pair of φsym such that φsym(x) = y. We have that

x′ = σ(x), y′ = ω−1(y) (3)

satisfy x′, y′ ∈ Z and φ(x′) = y′, hence a zero pair of φ can be constructed for free
from a zero pair of φsym. We can simulate queries to φsym as well as its inverse with
a single query to φ, φ−1 respectively, so the reduction incurs no overhead. Therefore,
the claim follows from Lemma 4.3.

4.2 Alternative proof in the superposition-oracle framework
In this section, we give an alternative proof for Lemma 4.4, i.e., the query lower bound
for DOUBLE-SIDED ZERO-SEARCH. Because this lemma is a key component of Theo-
rem 4.1, it presents an alternative approach for resolving Conjecture 1.
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We work with two-way accessible superposition oracles for invertible permuta-
tions. The superposition oracle framework is a powerful tool which has been used
to prove query lower bounds in a variety of settings, e.g., [Amb+11; Zha18; Ros22;
Ala+22]. Zhandry [Zha18] also introduced the notion of compressed oracles as a
means to “record” quantum queries to a random oracle. However, contrary to the
work of Zhandry [Zha18], we do not need to “compress” the oracles and use ineffi-
cient representations instead. First, we introduce some relevant notation.

Superposition oracles. Let Fn = { f : {0, 1}n → {0, 1}n} be the family of n-bit
functions. The function register for f ∈ Fn is a collection F = {Fx}x∈{0,1}n with

| f ⟩F =
⊗

x∈{0,1}n

| f (x)⟩Fx
.

A query to f in the superposition oracle framework amounts to the operation O with

OXYF |x⟩X |y⟩Y | f ⟩F = CNOTFx :Y |x⟩X |y⟩Y | f ⟩F = |x⟩X |y⊕ f (x)⟩Y | f ⟩F .

We can also model inverse queries in the superposition oracle framework. This amounts
to the operation O−1 which is defined as the unitary

O−1
XYF |x⟩X |y⟩Y | f ⟩F = |x⊕ (⊕x′ : f (x′)=y x′)⟩

X
|y⟩Y | f ⟩F .

For example, if f is a permutation, the inverse oracle amounts to the operation

O−1
XYF |x⟩X |y⟩Y | f ⟩F = |x⊕ f−1(y)⟩X |y⟩Y | f ⟩F .

Symmetrization. Let N = 22n and consider a random permutation φ ∈ Sκ
N which

has exactly κ many zero pairs. In the superposition oracle framework, we can model
queries to such a permutation using a function register of the form

|Φκ⟩F = |Sκ
N |−

1
2 ∑

φ∈Sκ
N

|φ⟩F . (4)

We now switch to an alternative characterization of the function registers which uses
our technique of symmetrization via subset pairs of the symmetric group. Let Z ⊂ [N]
denote the set of strings whose binary decomposition ends in 0n many zeroes. Let
GZ ≤ SN be the subgroup of permutations in SN that fix Z, i.e.,

GZ ≃ SZ × S[N]\Z.

Define the product group G = GZ × GZ, where G consists of pairs of permutations
(σ, ω) such that each permutation fixes Z, i.e., σ(Z) = Z = ω(Z). Define the unitary
representation U : G → GL(CF ) with (σ, ω) 7→ Uσ,ω and

Uσ,ω | f ⟩F = |ω ◦ f ◦ σ⟩F , for f ∈ F2n.
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Using symmetrization, we can now equivalently instantiate the function register F in
Equation (4) via the extension

|Φκ⟩F 7→ |π
sym
κ ⟩ΣΩF =

1√
|G| ∑

(σ,ω)∈G
|σ⟩Σ |ω⟩Ω Uσ,ω |πκ⟩F ,

where πκ is an arbitrary fixed permutation in Sκ
N with exactly κ many zero pairs.

To see why this is a valid purification, we can use our symmetrization argument
in Lemma 3.12 to argue that—once we trace out registers ΣΩ—the reduced state
equals

1
|G| ∑

(σ,ω)∈G
Uσ,ω|πκ⟩⟨πκ|FU†

σ,ω =
1
|Sκ

N |
∑

φ∈Sκ
N

|φ⟩⟨φ|F.

Double-sided zero-search revisited. To give an alternative proof for Lemma 4.4
in the superposition oracle framework, we first prove a lower bound for the decision
problem. We show that no quantum algorithm can distinguish whether it is query-
ing a random invertible permutation with exactly κ many zero pairs, or a random
invertible permutation with no zero pairs—unless it makes a large number of queries.
Our proof is rooted in one-way to hiding [AHU18] and allows the query algorithm to
query two oracles: one in the forward direction and one in the backward direction.

Theorem 4.5. Let N = 22n and let κ ∈ {0, 1, . . . ,
√

N}. Then, for any quantum algorithm
D which makes at most T many queries, it holds that∣∣∣ Pr

φ∼Sκ
N

[Dφ,φ−1
(1n) = 1]− Pr

φ∼S0
N

[Dφ,φ−1
(1n) = 1]

∣∣∣ ≤ 2T
√

κ

2n .

Proof. Suppose that a distinguisher D makes a total amount of T oracle queries. In
the superposition oracle framework, we can model the adversary/oracle interaction
by introducing a function register F which is outside of the view of D. Suppose the
register F is initially in the state |Φ0⟩F. Using symmetrization, we can now equiva-
lently instantiate the register F as the uniform superposition

|Φ0⟩F 7→ |π
sym
0 ⟩ΣΩF =

1√
|G| ∑

(σ,ω)∈G
|σ⟩Σ |ω⟩Ω Uσ,ω |π0⟩F ,

where π0(x1||x2) = (x1||x2 ⊕ 1n) is a fixed permutation in S0
N with no zero pairs.

For the remainder of the proof, we will analyze the effect of swapping out the
symmetrization of π0 ∈ S0

N with symmetrization of a different permutation which
comes from Sκ

N . Specifically, we will choose a particular permutation πK which is
generated as follows: first sample a random subset K ⊂ {0, 1}n (independently of
everything else) of size |K| = κ, and then let πK be the permutation

πK(x1||x2) =

{
x1||x2 if x1 ∈ K;
x1||x2 ⊕ 1n otherwise.
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Note that πK differs from π0 on exactly κ · 2n many inputs of the form (x1||x2), where
x1 ∈ K and x2 is arbitrary. Moreover, πK has exactly κ many zero pairs of the form
(x1||0n) whenever x1 ∈ K. Thus, πK ∈ Sκ

N . Notice that we can map between the
symmetrizations |πsym

0 ⟩ and |πsym
K ⟩ via the following unitary

SWAPπK ,π0
ΣΩF = UΣΩ:F(1ΣΩ ⊗WK

F )U
†
ΣΩ:F ,

where UΣΩ:F is a controlled unitary of the form

U |σ⟩Σ |ω⟩Ω | f ⟩F = |σ⟩Σ |ω⟩Ω Uσ,ω | f ⟩F , for f ∈ F2n,

and where WK is the unitary which flips between |πK⟩ and |π0⟩. 3 Therefore,

SWAPπK ,π0
ΣΩF |π

sym
0 ⟩ΣΩF = |πsym

K ⟩ΣΩF .

Our goal is to show the following property: on average over the choice of K, the query
magnitude on symmetrized oracle calls that involve π0 on (x1||x2) with x1 ∈ K and
arbitrary x2 will be small. We will prove this through a sequence of intermediate
steps. Note that oracle calls to |ω ◦ π0 ◦ σ⟩F, where the permutations σ, ω come from
registers Σ and Ω) only involve K in one of two ways:

• a forward query in the X register is made on σ−1(x1||x2) with x1 ∈ K; or

• a backward query in the Y register is made on ω(x1||x2) with x1 ∈ K.

Define the following projectors that exclude each of the two cases:

ΠK
XΣ = ∑

x′∈{0,1}2n

|x′⟩⟨x′|X ⊗
⊗
x1∈K

x2∈{0,1}n

(
1− |x1||x2⟩⟨x1||x2|

)
Σx′

(5)

ΞK
YΩ = ∑

y′∈{0,1}2n

|y′⟩⟨y′|Y ⊗
⊗
x1∈K

x2∈{0,1}n

(
1− |y′⟩⟨y′|

)
Ωx1 ||x2

. (6)

If we apply the projectors ΠK
XΣ and ΞK

YΩ to each forward/backward query just before
the oracle is applied, then swapping from π0 to πK before the oracle evaluation has
no effect. Formally, we have the commutation relations4[

SWAPπK ,π0
ΣΩF , OXYF ΠK

XΣ

]
= 0 (7)[

SWAPπK ,π0
ΣΩF , O−1

XYF ΞK
YΩ

]
= 0. (8)

For i ∈ [T], we now define the ensemble of projectors {PK
i }i∈[T], where

PK
i =

{
ΠK, if Oi = O;
ΞK, if Oi = O−1.

(9)

3WK has a well-defined extension to all | f ⟩F since we just need to XOR the string (0n||1n) into the
function output whenever the input is of the form (x1||y), for x1 ∈ K and y ∈ {0, 1}n

4For two linear operators A and B, the commutator is defined as [A, B] := AB− BA.
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Suppose F is initially in the state |Φ0⟩F and D starts out with some normalized pure
state |η0⟩ on registers XYE. We can model the interaction between D and the oracle
as sequence of oracle queries and unitaries such that for i ∈ [T],

|ψi⟩XYEΣΩF = UiOiUi−1Oi−1 · · ·U1O1 |ψ0⟩ . (10)

Here, the unitaries Oi ∈ {O, O−1} represent a call to the forward/backward ora-
cles acting on registers XYF, the Ui represent intermediate unitaries performed by
D which act on XYE, for some workspace register E, and where |ψ0⟩ is the state

|ψ0⟩XYEΣΩF = |η0⟩XYE ⊗ |π
sym
0 ⟩ΣΩF .

To study the effects of swapping between symmetrizations of π0 ∈ S0
N and πK ∈ Sκ

N ,
we now define i-th intermediate state as

|ψK
i ⟩XYEΣΩF = UiOiUi−1Oi−1 · · ·U1O1 |ψK

0 ⟩ ,

where |ψ0⟩ is the initial state corresponding to a symmetrization of πK, i.e.,

|ψK
0 ⟩XYEΣΩF = |η0⟩XYE ⊗ |π

sym
K ⟩ΣΩF .

We now introduce the K-dependent oracle unitaries {OK
i }i∈[T] where

OK
i =

(
SWAPπK ,π0

ΣΩF

)†
(Oi)XYF SWAPπK ,π0

ΣΩF

acts on registers XYΣΩF. This yields the following equivalent characterization

|ψK
i ⟩XYEΣΩF = UiOK

i Ui−1OK
i−1 · · ·U1OK

1 |ψ0⟩ . (11)

By unitarity, we can now bound the distance between the i-th hybrid states as∥∥∥|ψi⟩ − |ψK
i ⟩
∥∥∥2

=
∥∥∥UiOi |ψi−1⟩ −UiOK

i |ψK
i−1⟩

∥∥∥2

=
∥∥∥Oi |ψi−1⟩ −OK

i |ψK
i−1⟩

∥∥∥2

=
∥∥∥Oi |ψi−1⟩ −OK

i |ψi−1⟩+ OK
i |ψi−1⟩ −OK

i |ψK
i−1⟩

∥∥∥2

≤
∥∥∥Oi |ψi−1⟩ −OK

i |ψi−1⟩
∥∥∥2

+
∥∥∥OK

i |ψi−1⟩ −OK
i |ψK

i−1⟩
∥∥∥2

+ 2 ·
∥∥∥Oi |ψi−1⟩ −OK

i |ψi−1⟩
∥∥∥ · ∥∥∥OK

i (|ψi−1⟩ − |ψi−1⟩)
∥∥∥

=
∥∥∥(Oi −OK

i ) |ψi−1⟩
∥∥∥2

+
∥∥∥|ψi−1⟩ − |ψK

i−1⟩
∥∥∥2

+ 2 ·
∥∥∥(Oi −OK

i ) |ψi−1⟩
∥∥∥ · ∥∥∥|ψi−1⟩ − |ψK

i−1⟩
∥∥∥ , (12)

where the inequality follows from Cauchy-Schwarz. We now observe that∥∥∥(Oi −OK
i ) |ψi−1⟩

∥∥∥ =
∥∥∥(Oi −OK

i )P̄K
i |ψi−1⟩+ (Oi −OK

i )PK
i |ψi−1⟩

∥∥∥
≤
∥∥∥(Oi −OK

i )P̄K
i |ψi−1⟩

∥∥∥+ ∥∥∥(Oi −OK
i )PK

i |ψi−1⟩
∥∥∥

≤ 2 ·
∥∥∥P̄K

i |ψi−1⟩
∥∥∥+ ∥∥∥(Oi −OK

i )PK
i |ψi−1⟩

∥∥∥
= 2 ·

∥∥∥P̄K
i |ψi−1⟩

∥∥∥ . (13)
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Here, the second to last line uses that (Oi −OK
i ) has operator norm at most 2. For the

last line, we first invoke the fact that SWAPπK ,π0
ΣΩF and PK

i commute, and then use the
commutation relations from Equations (7) and (8) so that∥∥∥(Oi −OK

i )PK
i |ψi−1⟩

∥∥∥ =
∥∥∥SWAPπK ,π0

ΣΩF (Oi −OK
i )PK

i |ψi−1⟩
∥∥∥ (By unitarity)

=
∥∥∥(SWAPπK ,π0

ΣΩF Oi PK
i −Oi SWAPπK ,π0

ΣΩF PK
i ) |ψi−1⟩

∥∥∥
=
∥∥∥(SWAPπK ,π0

ΣΩF Oi PK
i −Oi PK

i SWAPπK ,π0
ΣΩF ) |ψi−1⟩

∥∥∥
=
∥∥∥[SWAPπK ,π0

ΣΩF , Oi PK
i

]
|ψi−1⟩

∥∥∥ = 0.

By combining Equation (12) and Equation (13), we get that∥∥∥|ψi⟩ − |ψK
i ⟩
∥∥∥2
≤ 4 ·

∥∥∥P̄K
i |ψi−1⟩

∥∥∥2
+
∥∥∥|ψi−1⟩ − |ψK

i−1⟩
∥∥∥2

+ 4 ·
∥∥∥P̄K

i |ψi−1⟩
∥∥∥ · ∥∥∥|ψi−1⟩ − |ψK

i−1⟩
∥∥∥

=
(∥∥∥|ψi−1⟩ − |ψK

i−1⟩
∥∥∥+ 2 ·

∥∥∥P̄K
i |ψi−1⟩

∥∥∥)2
, (14)

and thus ∥∥∥|ψT⟩ − |ψK
T ⟩
∥∥∥ ≤ 2 ·

T

∑
i=1

∥∥∥P̄K
i |ψi⟩

∥∥∥ . (15)

Therefore, we can bound the average distance as follows:

TD
(
|ψT⟩⟨ψT|, E

K⊂{0,1}n

|K|=κ

|ψK
T ⟩⟨ψK

T |
)

≤ E
K⊂{0,1}n

|K|=κ

TD
(
|ψT⟩⟨ψT|, |ψK

T ⟩⟨ψK
T |
)

(By convexity)

≤ E
K⊂{0,1}n

|K|=κ

∥∥∥|ψT⟩ − |ψK
T ⟩
∥∥∥ (Norm inequality)

≤ E
K⊂{0,1}n

|K|=κ

2 ·
T

∑
i=1

∥∥∥P̄K
i |ψi⟩

∥∥∥ (By Equation (15))

= 2T E
i∼[T]

E
K⊂{0,1}n

|K|=κ

∥∥∥P̄K
i |ψi⟩

∥∥∥
≤ 2T

√√√√ E
i∼[T]

E
K⊂{0,1}n

|K|=κ

∥∥P̄K
i |ψi⟩

∥∥2. (Jensen’s inequality).

To complete the proof, it suffices to bound the expectation. By the definition of
{PK

i }i∈[T] in Equation (9), we have to consider two cases for each i ∈ [T]. First, suppose
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that the i-th query is a forward query with Oi = O. Then,

E
K⊂{0,1}n

|K|=κ

∥∥∥P̄K
i |ψi⟩

∥∥∥2
= E

K⊂{0,1}n

|K|=κ

[∥∥∥(1−ΠK)XΣ |ψi⟩XYΣΩE

∥∥∥2

2

]
≤ κ

2n . (16)

Next, suppose that the i-th query is to the inverse oracle Oi = O−1. Then, we have

E
K⊂{0,1}n

|K|=κ

∥∥∥P̄K
i |ψi⟩

∥∥∥2
= E

K⊂{0,1}n

|K|=κ

[∥∥∥(1− ΞK)YΩ |ψi⟩XYΣΩE

∥∥∥2

2

]
≤ κ

2n . (17)

Putting everything together and using Equation (16) and Equation (17), we arrive that

TD
(
|ψT⟩⟨ψT|, E

K⊂{0,1}n

|K|=κ

|ψK
T ⟩⟨ψK

T |
)
≤ 2T ·

√
κ

2n .

This proves the claim.

Alternative to resolving Unruh’s conjecture. We can use Theorem 4.5 to prove
an alternative version of Lemma 4.4, which in turn is the key component of Theo-
rem 4.1, and thus in resolving Conjecture 1.

Lemma 4.6 (Alternative to Lemma 4.4). Any quantum T-query algorithm for the DOUBLE-
SIDED ZERO-SEARCH problem with respect to a random 2n-bit invertible permutation with
exactly κ > 0 zero pairs, π ∼ Sκ

22n , that succeeds with probability ϵ > 0 satisfies the inequal-
ity

ϵ ≤ 2(T + 1)
√

κ

2n .

Before proceeding with the proof, we observe a difference between Lemma 4.6
and Lemma 4.4. While both are tight up to constant factors for a constant success
probability (and thus sufficient to resolve Conjecture 1), the bound in Lemma 4.6 is
of the form ϵ = O(T

√
κ/2n) whereas in Lemma 4.4 the bound derived is of the form

ϵ = O(T2κ/2n). The latter bound is quadratically tighter for small ϵ ≪ 1, and so
we state our main theorem in these terms. We leave tightening the analysis in the
superposition-oracle framework as an interesting open problem

Proof. Suppose that Aφ,φ−1
finds a zero pair with probability ϵ > 0 whenever φ is

random 2n-bit permutation with exactly κ many zero pairs. We can transform such
an A into a distinguisher between permutations with κ zero pairs and no zero pairs
by running it on a given permutation, and guessing that φ has κ zero pairs if and only
if A finds a zero pair. Formally, given a permutation φ, φ−1 the distinguisher Dφ,φ−1

proceeds as follows:

1. Run Aφ,φ−1
(1n) to obtain5 a pair (x||0n, y||0n).

5If the output is not of this form, simply output 0 (guess φ has no zero pairs).
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2. If φ(x||0n) = y||0n, then output 1 (guess that φ has κ zero pairs)

3. Otherwise, output 0 (guess that φ has no zero pairs)

If A makes T queries then D makes T + 1 queries, and the distinguishing advantage
of D is the probability that A succeeds given that φ has κ zero pairs. We have∣∣∣ Pr

φ∼Sκ
N

[Dφ,φ−1
(1n) = 1]− Pr

φ∼S0
N

[Dφ,φ−1
(1n) = 1]

∣∣∣ = Pr
φ∼Sκ

N

[Aφ,φ−1
(1n)].

Now applying Theorem 4.5, we obtain

Pr
φ∼Sκ

N

[Aφ,φ−1
(1n)] ≤ 2(T + 1)

√
κ

2n .

4.3 Non-Uniform Double-Sided Search
In this section we define a new variant of Unruh’s original double-sided zero-search
problem [Unr21; Unr23]. Namely, we consider the DOUBLE-SIDED SEARCH prob-
lem in which the distribution on permutations is non-uniform, and the constraints on
preimages versus images are more flexible. This problem will be useful for proving
the one-wayness of the single-round sponge, which is our motivation for studying it.

Notation. For the remainder of this section, we fix the following notation:

• N = 2n and r, c > 0 are integers such that r + c = n.

• X = (X1, X2) is a pair of subsets, where X1 ⊂ {0, 1}n is the set of bitstrings
ending in 0c, X2 ⊂ {0, 1}n is the set of bitstrings beginning in 0r.

• |Xφ| denotes the number of X-pairs with respect to a permutation φ ∈ SN .

• G1 is the subgroup of SN consisting of permutations which preserve membership
in X1, whereas G2 is the subgroup of SN which preserves membership in X2

Note that |X1| · |X2| = N, and G1, G2 are both Young subgroups. In this section,
we consider the distribution DX from Definition 3.17 which assigns more weight to
permutations φ ∈ SN that have a large amount of X-pairs. We will occasionally omit
the subscript which specifies X = (X1, X2), for the pair of subsets X1, X2, when it is
clear from context.

Problem 2 (NON-UNIFORM DOUBLE-SIDED SEARCH). Given quantum query access
to a permutation φ : {0, 1}n → {0, 1}n as well as its inverse φ−1, where φ is sampled
according to the non-uniform distribution DX from Definition 3.17, output a pair of strings
x ∈ X1, y ∈ X2 such that φ(x) = y.

In the remainder of this section, we prove that any algorithm must make at least
T = Ω(

√
ϵ2min(r,c)) many queries in order to find an X-pair for an n-bit permutation

sampled from DX with probability ϵ. At a high level, the first step of the proof is
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showing that there exist worst-case instances on which the problem is hard for any
fixed number of X-pairs (see Lemma 4.9). Then, we give a worst-case to average-case
reduction to show hardness for a random permutation with a fixed number of X-
pairs in Lemma 4.10. In the below theorem we give a bound for the general problem
using the aforementioned results, as well as tail bounds on the number of subset pairs
derived in Section 3.3.

Theorem 4.7. Any quantum algorithm for NON-UNIFORM DOUBLE-SIDED SEARCH that
makes T queries to an invertible permutation and succeeds with probability ϵ > 0 satisfies

ϵ ≤ 80(T + 1)2

2min(r,c)
.

Proof. Let φ ∼ DX be a permutation sampled according to the distribution DX from
Definition 3.17 and let K = |Xφ| ∈ {0, 1, . . . , 2min(r,c)} be the random variable corre-
sponding to the number of X-pairs in φ. By the law of total probability, we can write
the success probability of any T-query algorithm as the sum

ϵ =
2min(r,c)

∑
κ=0

Pr[K = κ] · Pr[success|K = κ]

=
6

∑
κ=1

Pr[K = κ] · Pr[success|K = κ]︸ ︷︷ ︸
=P1

+
2min(r,c)

∑
κ=7

Pr[K = κ] · Pr[success|K = κ]︸ ︷︷ ︸
=P2

.

We bound each term separately. Beginning with the first, we find

P1 ≤max
κ∈[6]
{Pr[success|K = κ]} (By Convexity)

≤48(T + 1)2

2min(r,c)
. (By Lemma 4.10)

Next, continuing with the second term, we get

P2 ≤
2min(r,c)

∑
κ=7

Pr[success|K = κ] · 3 exp(−4κ/9) (By Theorem 3.20)

≤
2min(r,c)

∑
κ=7

24(T + 1)2κ

2min(r,c)
· exp(−4κ/9) (By Lemma 4.10)

≤32(T + 1)2

2min(r,c)
. (Arithmetico-geometric series)

This concludes the proof, as we can bound the success probability as

ϵ ≤ 80(T + 1)2

2min(r,c)
.
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This bound is tight up to constant factors for any ϵ, as there is at least a single X-
pair with Ω(1) probability (Lemma 3.5), which can be found using Grover’s algorithm
[Gro96] with probability Θ(T2/2min(r,c)) after T queries. In particular, we have the
following corollary.

Corollary 4.8. Given quantum oracle-access to an n-bit permutation chosen from DX, the
query complexity of outputting an X-pair with probability ϵ is Θ(

√
ϵ2min(r,c)).

Reduction from worst-case unstructured search. In the following lemma, we
prove a query-lower bound for a worst-case variant of NON-UNIFORM DOUBLE-SIDED

SEARCH in Problem 2, where we are given the promise that the underlying permuta-
tion has exactly K-many X-pairs. We show the following.

Lemma 4.9. Any T-query quantum algorithm for NON-UNIFORM DOUBLE-SIDED SEARCH

on a worst-case permutation with exactly K > 0 many X-pairs that succeeds with probability
ϵ > 0 must satisfy the inequality

ϵ ≤ 8(T + 1)2K
2min(r,c)

.

Proof. We can reduce UNSTRUCTURED SEARCH with K out of 2min(r,c) marked ele-
ments to a specific instance of NON-UNIFORM DOUBLE-SIDED SEARCH with respect
to a permutation φ on N = 2n elements and K many X pairs. Moreover, as we will
show, our reduction does not incur any query overhead.

Suppose we are given query access to a function

f : {0, 1}min(r,c) → {0, 1}

such that | f−1(1)| = K. We can construct a permutation φ : {0, 1}n → {0, 1}n for
x ∈ {0, 1}min(r,c), y ∈ {0, 1}max(r,c) as follows, where sR denotes the reverse of string s:

φ(x||y) =
{
(x||y)R if f (x) = 1
(x||y)R ⊕ 1r||0c if f (x) = 0.

It is apparent that we can implement a query to φ using a single query to f . More-
over, the image φ(x||y) always contains xR in the last min(r, c) bits, which suffices to
determine f (x), and thus to determine x||y by inverting whichever case was applied.
Hence, we can implement φ−1 with a single query to f . Now let x ∈ {0, 1}min(r,c), y ∈
{0, 1}max(r,c) such that y ends in 0c and φ(x||y) begins with 0r. It follows that f (x) = 1
and y = 0max(r,c), as otherwise either y does not end in 0c or φ(x||y) does not begin
with 0r. Similarly, if for any x′ we have f (x′) = 1 then x′||0max(r,c) is an X-pair of
φ. Therefore, there are K-many X-pairs in φ, and given an X-pair of φ it is straight
forward to find a preimage of 1 under f , which can be used to solve UNSTRUCTURED

SEARCH. The claim now follows from Corollary 2.4.
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Worst-case to average-case reduction. In the following lemma, we prove a query-
lower bound for an average-case variant of NON-UNIFORM DOUBLE-SIDED SEARCH

in Problem 2, where we are given the promise that the underlying permutation has
exactly K-many X-pairs. In this case, average refers to a uniform random permutation
subject to this promise. We show the following.

Lemma 4.10. Any T-query algorithm for NON-UNIFORM DOUBLE-SIDED SEARCH on a
random permutation which has exactly K > 0 many X-pairs that succeeds with probability
ϵ > 0 must satisfy the inequality

ϵ ≤ 8(T + 1)2K
2min(r,c)

.

Proof. We can re-randomize any worst-case permutation φ with K many X-pairs to-
ward an average-case permutation φsym with K many X-pairs as follows.

1. Randomly and independently sample ω ∼ G1, σ ∼ G2, where ω preserves mem-
bership in X1 and σ preserves membership in X2.

2. Define the symmetrized permutation φsym = ω ◦ φ ◦ σ.

It follows from Lemma 3.12 that φsym is random among permutations with K many
X-pairs. Let (x, y) ∈ X1 × X2 be an X-pair of φsym such that φsym(x) = y. Then,

x′ = σ(x), y′ = ω−1(y) (18)

which satisfy x′ ∈ X1, y′ ∈ X2 and φ(x′) = y′. Hence, an X-pair of φ can be con-
structed for free from an X-pair of φsym. We can simulate queries to φsym as well as its
inverse with a single query to φ, φ−1 respectively, so the reduction incurs no overhead.
Lemma 2.4 now implies the claim.

5 One-Wayness of the Sponge Construction
In this section, we prove our main result; namely, the quantum one-wayness of the
single-round sponge when instantiated with invertible random permutations.

The sponge construction. Recall that the sponge construction [Ber+11a] uses two
main parameters which we call the rate r and the capacity c of the sponge. The internal
state of the sponge function gets updated through successive applications of a block
function φ : {0, 1}r+c → {0, 1}r+c. Let σ(0) = (0r||IV) denote the initial state of the
sponge, where IV ∈ {0, 1}c is some initialization vector; for simplicity, we consider
the choice IV = 0c. In the following, we use the notation xr ∈ {0, 1}r and xc ∈ {0, 1}c

to denote the first r bits as well as the last c bits of x ∈ {0, 1}r+c, respectively.
The sponge hash function Spφ : {0, 1}∗ → {0, 1}r is evaluated as follows on a

sequence of r-bit blocks m = (m1, . . . , mℓ):
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• (Absorption phase) for i ∈ [ℓ], update the state by computing

σ(i) = φ
(
(σ

(i−1)
r ⊕mi)||σ(i−1)

c
)
.

• (Squeezing phase) parse the final state σ(ℓ) as (σ(ℓ)
r , σ

(ℓ)
c ) ∈ {0, 1}r × {0, 1}c, and

output the digest Spφ(m1, . . . , mℓ) = σ
(ℓ)
r consisting of the first r bits of σ(ℓ).

We remark that the sponge construction also allows for variable-length output by
essentially running the absorption phase in reverse [Ber+11a]; we choose to ignore
this option for simplicity as we only focus on single-round sponge hashing.

One-wayness of the single-round sponge. Recall that, in the special case when
there is only a single round of absorption, the sponge function Spφ : {0, 1}r → {0, 1}r

takes on a simple form; namely, on input x ∈ {0, 1}r, the output is given by the string
y = Spφ(x), where y corresponds to the first r bits of φ(x||0c).

We now answer the following question on the one-wayness of the single-round
sponge; namely, how many queries does a quantum algorithm Aφ,φ−1

need to invert
Spφ on a randomly chosen input, when φ is an invertible random permutation?

Let us first define the one-wayness experiment in full generality. Note that the
sponge function Spφ depends on φ, which in turn is modeled as a uniformly random
permutation which we have oracle access to. Therefore, we need to consider a variant
of one-wayness which is parameterized by an ensemble of oracle functions.

Definition 5.1 (One-wayness). Let λ ∈N be the security parameter and let O = {Oλ} be
an ensemble of oracle functions. A function family

HO =
{
{hO : {0, 1}m(λ) → {0, 1}n(λ)}O∈Oλ

}
λ∈N

is called one-way if (i) there exists a polynomial-time algorithmMO(1λ) that efficiently com-
putes hO with oracle access to O and (ii), for any efficient quantum algorithm A, it holds

Pr
x∼{0,1}m

O∼Oλ

[
hO(x) = hO(x′) : x′ ← AO(1λ, hO(x))

]
≤ negl(λ).

We now prove a lower bound for single-round sponge hashing, where ℓ = 1 and
the block function φ : {0, 1}r+c → {0, 1}r+c is an invertible random permutation.
Specifically, we show that any algorithm must make at least T = Ω(

√
ϵ2min(r,c)) many

queries in order to find a pre-image of a randomly chosen image with probability ϵ.

Theorem 5.2. Let n = r + c and N = 2n. Suppose that a quantum algorithm A breaks the
one-wayness of the single-round Sponge Spφ : {0, 1}r → {0, 1}r with probability

Pr
x∼{0,1}r

φ∼SN

[
Spφ(x) = Spφ(x′) : x′ ← Aφ,φ−1

(1n,Spφ(x))
]
= ϵ.
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Then, if A makes a total amount of T quantum queries to φ, φ−1, it satisfies the inequality

ϵ ≤ 80(T + 1)2

2min(r,c)
.

Proof. Suppose that a quantum algorithm A breaks the one-wayness of the single-
round sponge hash function Spφ : {0, 1}r → {0, 1}r with probability ϵ > 0. We
reduce from the problem of NON-UNIFORM DOUBLE-SIDED SEARCH in Problem 2.
Let X = (X1, X2) be a pair of subsets, where X1 ⊂ {0, 1}n denotes the set of bitstrings
ending in 0c and X2 ⊂ {0, 1}n denotes the set of bitstrings beginning in 0r.

Consider the following reduction Bπ,π−1
(1n) which receives quantum query access

to a random permutation π : {0, 1}n → {0, 1}n chosen from DX (Definition 3.17) as
well as its inverse π−1.

1. B samples a random y ∼ {0, 1}r.

2. B runsAφ,φ−1
(1n, y) to get x′ ∈ {0, 1}r; wheneverAmakes a query to either φ or

φ−1, the reduction B answers with either Oφ or Oφ−1 , where φ is the permutation

φ := XORy||0c ◦ π

with XOR(y||0c)(a||b) = (a⊕ y)||b for a ∈ {0, 1}r and b ∈ {0, 1}c.
3. B computes φ(x′||0c) = yx′ ||zx′ using a single query to Oπ, and outputs the pair

(x′||0c) and (0r||zx′).

By Lemma 5.3, we know A sees an instance (φ, y) drawn from the proper one-way
game distribution. Note that wheneverAφ,φ−1

(1n, y) succeeds at breaking one-wayness
with respect to Spφ, it holds that yx′ = y, and thus φ(x′||0c) = y||zx′ . But then the out-
put (x′||0c) and (0r||zx′) of the reduction B forms an X-pair of π, since

π(x′||0c) = XOR(y||0c)(φ(x′||0c))

= XOR(y||0c)(y||zx′)

= 0r||zx′ .

The lower bound now follows from Theorem 4.7.

Next, we prove the following technical lemma which we require for our main
result. Here, we denote by DX the non-uniform distribution from Definition 3.17.

Lemma 5.3. Let n = r + c for r, c ∈ N and N = 2r+c. Let X = (X1, X2), where X1 ⊂
{0, 1}n denotes the set of bitstrings ending in 0c and X2 ⊂ {0, 1}n denotes the set of bitstrings
beginning in 0r. Consider the following two distributions:

Distribution D1 : Distribution D2 :
1. Sample φ ∼ SN ; 1. Sample y ∼ {0, 1}r;
2. Sample x ∼ {0, 1}r; 2. Sample π ∼ DX with

3. Let y = Spφ(x); Pr
Π∼DX

[Π = π] = |Xπ|/ ∑
σ∈SN

|Xσ| ;

4. Output (φ, y). 3. Output (φ, y) with φ = XOR(y||0c) ◦ π.

Then, the distributions D1 and D2 are identical.
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Proof. To show that the distributions D1 and D2 are identical, it suffices to show that
each pair (φ, y) ∈ SN × {0, 1}r is equally likely to occur under both D1 and D2.

First, we consider the probability that (φ, y) occur under D1. Thus,

Pr
(Φ,Y)∼D1

[(Φ, Y) = (φ, y)] =Pr[Φ = φ] · Pr[Y = y|Φ = φ]

=
1

N!
· |{x ∈ {0, 1}r : Spφ(x) = y}|

2c .

Next, we consider the probability that (φ, y) occurs under D2. We find that

Pr
(Φ,Y)∼D2

[(Φ, Y) = (φ, y)] = Pr[Y = y] · Pr[Φ = φ|Y = y]

=
1
2c ·
|{x ∈ {0, 1}r : Spπ(x) = 0r and φ = XOR(y||0c) ◦ π, for π ∈ SN}|

∑σ∈SN
|{x ∈ {0, 1}r : Spσ(x) = 0r, for σ ∈ SN}|

.

Note that since |X1| · |X2| = N, we can invoke Theorem 3.13 to show that there is
precisely one X-pair on average over the uniform choice over SN . But since there are
N! such permutations the total number of X pairs must be N!. Thus,

N! = ∑
σ∈SN

|{x ∈ {0, 1}r : Spσ(x) = 0r, for σ ∈ SN}|.

Moreover, because the permutation π is uniquely defined by the permutation φ and
the image y, it is also easy to see that

|{x ∈ {0, 1}r : Spπ(x) = 0r and φ = XOR(y||0c) ◦ π, for π ∈ SN}|
= |{x ∈ {0, 1}r : Spφ(x) = y}|.

Putting everything together, it follows that

Pr
(Φ,Y)∼D2

[(Φ, Y) = (φ, y)] =
1

N!
· |{x ∈ {0, 1}r : Spφ(x) = y}|

2c .

This completes the proof.
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