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Abstract In a particular case, we consider the extended Maiorana-McFarland’s
class to obtain balanced bent functions restricted to vectors with even Ham-
ming weight, an equal number of pre-images for each element in the range.
Additionally, we demonstrate that all bent functions are balanced when we
restrict to vectors of even Hamming weight or vectors with odd Hamming
weight. Given the necessary tools, we provide a simple algorithm to obtain
new bent functions using Maiorana-McFarland.
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1 Introduction

The functions f : Fn
2 → F2 are called boolean functions. They are important in

cryptography and code theory because they have important properties such as
non-linearity, balance, low auto-correlation and high algebraic immunity. The
search space of these functions is very large, 22

n

, and different methods exist
to search for these functions: random search, algebraic and heuristic methods,
see for example [1], [8].

We are interested in the non-linearity of a function, defined as the dis-
tance between a boolean function and the set of affine functions. Functions
with maximum non-linearity are called bent functions; Rothaus introduced
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the name in 1976 [4]. These functions have been classified and constructed, as
examples we have the Maiorana-McFarland class [6] and Rothaus [4].

In this work, we use a particular case of the extended Maiorana-McFarland
class [2], i.e. f bent given by f : Fs+1

2 → F2, x 7→ x · ϕ(y) ⊕ ge(y), where
ϕ(y) : Fs

2 → F2 is such that ϕ−1(a) is an affine space of dimension s− 1, and
ge(y) : Fs

2 → F2, ge|ϕ−1(a) is a bent function.
First, ϕ and ge are defined and, after a series of results, we find the direct

relationship between a bent function and a bent function with a higher di-
mensional domain. Finally, we provide a pair of algorithms that simplify this
relationship.

Additionally, we show that any bent function is balanced when restricted
to an even Hamming weight or to an odd Hamming weight in its domain. This
result is crucial, since it allows us to obtain a bent function ge : C0 → F2

from a bent function g : Fs−1
2 → F2, where C0 := ϕ−1(0) is a linear code with

a vector of even Hamming weight and C1 := ϕ−1(1) the affine space of odd
Hamming weight.

2 Background

Definitions and results about boolean functions, particularly bent functions,
are recalled in this section. These can be found, for example, in [5], [7], [3].

Definition 1 A function f : Fn
2 → F2 is called a boolean function. Bn is

the set of all boolean functions with domain Fn
2 .

All boolean functions f ∈ Bn have an algebraic normal form (ANF):

f(x) =
⊕

u∈Fn
2

aux
u,

au ∈ F2, x
u = xu1

1 · · ·xun
n , x = (x1 . . . , xn), u = (u1, . . . , un).

Example 1 The boolean function f(x) ∈ B3, f(x1, x2, x3) = 1⊕x1x2⊕x1x2x3

is in its ANF.

Theorem 1 Let f ∈ Bn. Then,

f(x) =
⊕

u∈Fn
2

aux
u,

au = ⊕x≤uf(x), x ≤ u ⇔ xi ≤ ui, x = (x1, . . . , xn), u = (u1, . . . , un).

Definition 2 The set of all affine boolean functions with domain Fn
2 , denoted

An, is defined as

An := {a · x⊕ a0 | a, x ∈ Fn
2 , a0 ∈ F2},

where · is the dot product.



Bent functions construction using extended Maiorana-McFarland’s class 3

Note that the number of affine functions is 2n+1 and the number of linear
functions is 2n.

Definition 3 The non-linearity of a boolean function f ∈ Bn is defined as
the Hamming distance between f and the affine functions:

Nl(f) := mı́n g∈An
dH(f, g).

We define the following function to characterize the non-linearity:

Definition 4 The Walsh-Hadamard Transform of a boolean function, f
, is defined as

Ŵf (a) =
∑
x∈Fn

2

(−1)f(x)⊕a·x, a ∈ Fn
2 .

Theorem 2 The non-linearity of the boolean function f ∈ Bn is characterized
as

Nl(f) = 2n−1 − 1

2
maxa∈Fn

2
|Ŵf (a)|.

The boolean functions with maximum non-linearity are called bent func-
tions and their non-linearity is 2n−1 − 2n/2−1.

3 Bent functions balancedness, restricted to even or odd Hamming
weight

We will need bent functions over an affine space to find new bent functions
when using the Extended Maiorana-McFarland class [2]. Following this idea,
given a bent function with the traditional definition, we want to find a bent
function over an affine space with the same dimension.

For that purpose, the main characteristic that we need is: for all bent func-
tions f ∈ Bn, we have that f|{x∈Fn

2 |wH(x) even} is balanced or f|{x∈Fn
2 |wH(x) odd}

is balanced.

In the following, we prove this claim. For this, we first give the particular
cases n = 2 and n = 4.

Example 2 In the case B2, all the bent functions satisfy this property because
these must have three images 0 and one image 1, or three images 1 and one
image 0.

f(x1, x2) = x1x2,

x1 x2 ev(f)
0 0 0
1 1 1
1 0 0
0 1 0

.
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Remark 1 1. Let g : Fn
2 → F2 be a bent function such that g|{x∈Fn

2 |wH(x) even}
is balanced.

(a) If Ŵg(a) = 2
n
2 , then

|(g)−1
|{x∈Fn

2 |wH(x) even}(0)| = 2n−2

|(g)−1
|{x∈Fn

2 |wH(x) even}(1)| = 2n−2

|(g)−1
|{x∈Fn

2 |wH(x) odd}(0)| = 2n−2 + 2
n−2
2 .

|(g)−1
|{x∈Fn

2 |wH(x) odd}(1)| = 2n−2 − 2
n−2
2 .

(b) If Ŵg(a) = −2
n
2 , then

|(g)−1
|{x∈Fn

2 |wH(x) even}(0)| = 2n−2

|(g)−1
|{x∈Fn

2 |wH(x) even}(1)| = 2n−2

|(g)−1
|{x∈Fn

2 |wH(x) odd}(0)| = 2n−2 − 2
n−2
2 .

|(g)−1
|{x∈Fn

2 |wH(x) odd}(1)| = 2n−2 + 2
n−2
2 .

2. Similar observations if g|{x∈Fn
2 |wH(x) odd} is balanced.

Remark 2 Let A := {x ∈ Fn
2 | wH(x) even} and B := {x ∈ Fn

2 | wH(x) odd}.
We can write,

[Fn
2 ] =

[
A
B

]
=


A′ 0̄
B′ 1̄
A′ 1̄
B′ 0̄

 =

Fn−1
2 | 0̄

1̄

Fn−1
2 | 1̄

0̄

 =


I
II
III
1V

 ,

where 0̄ =

0
...
0

and 1̄ =

1
...
1

are 2n−2 × 1 arrays.

Note that A is a MDS linear code of dimension n − 1 and B is an affine
space. Also, A′ = {x ∈ Fn−1

2 | wH(x) even} and B′ = {x ∈ Fn−1
2 | wH(x) odd}.

The following result is the particular case n = 4. We use the notation of
the Observation 2.

Theorem 3 Every bent function f : F4
2 → F2 is such that f|A is balanced or

f|B is balanced.

Proof Let f be a bent function and la an affine function. Observe that, wH(f⊕
la) = 6 or wH(f ⊕ la) = 10. In particular, the linear functions l0 := 0 and
l1̄(x) := x1 ⊕ x2 ⊕ x3 ⊕ x4 satisfy the above observation. Additionally, notice
that l1̄(A) = {0} and l1̄(B) = {1}.

Since f is a bent function:
Case 1. If f|A has zero images 1, then f|B has six images 1. Hence, (f ⊕

l1̄)(A) has zero images 1 and (f ⊕ l1̄)(B) has four images 1. Therefore, f ⊕ l1̄
is not a bent function; consequently, f is not a bent function.
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Case 2. If f|A has two images 1, then f|B has four or eight images 1. If f|B
has four images 1, that means f|B is balanced. Hence, the theorem is proven.
If f|B has eight images 1, (f ⊕ l1̄)(A) has two images 1 and (f ⊕ l1̄)(B) has
zero images 1. Therefore, f ⊕ l1̄ is not a bent function; consequently, f is not
a bent function.

Case 3. If f|A has four images 1, that means f|A is balanced. Hence, the
theorem is proven.

Case 4. If f|A has six images 1, f|A has two images 0, then f|B has four
or eight images 0. If f|B has four images 0, that means f|B is balanced. Hence,
the theorem is proven. If f|B has eight images 0, (f ⊕ l1̄)(A) has two images
0 and (f ⊕ l1̄)(B) has zero images 0. Therefore, f ⊕ l1̄ is not a bent function;
consequently, f is not a bent function.

Case 5. If f|A has eight images 1, f|A has zero images 0, then f|B has
six images 0. Hence, (f ⊕ l1̄)(A) has zero images 0 and (f ⊕ l1̄)(B) has four
images 0. Therefore, f⊕ l1̄ is not a bent function; consequently, f is not a bent
function.

In all the sub-cases where f|A is not balanced and f|B is not balanced, we
obtain a contradiction. Indeed, if f is a bent function, it must satisfy, f|A is
balanced or f|B is balanced.

⊓⊔

We note the symmetry of the cases 1 and 2 with cases 5 and 4, respectively,
interchanging the number of images 1 by number of images 0. This will be very
important to the general case.

The following result is a general case, n even. As far as we have looking
for, we do not know this result. We use the notation of the Observation 2.

Theorem 4 Every bent function f : Fn
2 → F2, n ≥ 6, is such that f|A is

balanced or f|B is balanced.

Proof Let f be a bent function and la an affine function. Observe that, wH(f⊕
la) = 2n−1−2

n−2
2 or wH(f ⊕ la) = 2n−1+2

n−2
2 . In particular, the linear func-

tions l0(x) := 0 and l1̄(x) := x1⊕· · ·⊕xn satisfy the observation. Additionally,
notice that l1̄(A) = {0} and l1̄(B) = {1}.

Case 1. If f|A has c images 1, 0 ≤ c ≤ 2
n−2
2 .

Case 1a. f|B has 2n−1 − (2
n−2
2 + c) images 1. Then, (f ⊕ l1̄)(A) has c

images 1 and (f ⊕ l1̄)(B) has 2
n−2
2 + c images 1.

Case 1a1 (f ⊕ l1̄) has c+ (2
n−2
2 + c) = 2n−1 − 2

n−2
2 images 1. Therefore,

c = 2n−2 − 2
n−2
2 , and f|B is balanced. But, remember that, n ≥ 6, then

2
n−2
2 < 2n−2 − 2

n−2
2 .

Case 1a2 (f ⊕ l1̄) has c+ (2
n−2
2 + c) = 2n−1 + 2

n−2
2 images 1. Therefore,

c = 2n−2, and f|A is balanced. But, remember that, n ≥ 6, then 2
n−2
2 < 2n−2.
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Case 1b f|B has 2n−1 + (2
n−2
2 − c) images 1. Hence, c = 2

n−2
2 . Then,

(f ⊕ l1̄)(A) has 2
n−2
2 images 1 and (f ⊕ l1̄)(B) has zero images 1. Therefore,

(f ⊕ l1̄) is not a bent function when n ≥ 6; consequently, f is not a bent
function.

Case 2. If f|A has c+ 2
n−2
2 images 1, 0 < c ≤ 2n−2 − 2

n−2
2 .

Case 2a. f|B has 2n−2 + (2n−2 − 22
n−2
2 − c) images 1. (f ⊕ l1̄)(A) has

c+ 2
n−2
2 images 1 and (f ⊕ l1̄)(B) has 22

n−2
2 + c images 1.

Case 2a1 (f ⊕ l1̄) has (a) c+ 2
n−2
2 + 22

n−2
2 + c = 2n−1 − 2

n−2
2 images 1.

Therefore, c = 2n−2−2
n
2 , then, f|B has 2n−2 images 1. Hence, f|B is balanced.

Case 2a2 (f⊕ l1̄) has c+2
n−2
2 +22

n−2
2 +c = 2n−1+2

n−2
2 images 1. There-

fore, c = 2n−2 − 2
n−2
2 , then, f|A has 2n−2 images 1. Hence, f|A is balanced.

Case 2b f|B has 2n−2+(2n−2−c) images 1. Hence, (f⊕l1̄)(A) has c+2
n−2
2

images 1 and (f ⊕ l1̄)(B) has c images 1.

Case 2b1 (f ⊕ l1̄) has c+ (c+ 2
n−2
2 ) = 2n−1 − 2

n−2
2 images 1. Therefore,

c = 2n−2 − 2
n−2
2 . Hence, f|A is balanced.

Case 2b2 (f ⊕ l1̄) has c+ (c+ 2
n−2
2 ) = 2n−1 + 2

n−2
2 images 1. Therefore,

c = 2n−2. But, 0 < c ≤ 2n−2 − 2
n−2
2 . Thus, we don’t consider this case.

When f|A has more than 2n−2 images 1, the proof is similar to the previous
cases, but we use the number of images 0 of f|A in place of number of images

1 of f|A. Also, we use the fact that, wH(1̄ ⊕ f) = 2n−1 − 2
n−2
2 or wH(1̄ ⊕

f) = 2n−1 + 2
n−2
2 . That means, the number of zeros of f is 2n−1 − 2

n−2
2 or

2n−1 + 2
n−2
2 .

In all the cases where f|A is not balanced and f|B is not balanced, we obtain
a contradiction. Indeed, if f is a bent function, it must satisfy, f|A is balanced
or f|B is balanced.

⊓⊔

4 Construction of a particular family from the extended
Maiorana-McFarland class

We extend the definition of bent functions over Fn
2 to an affine subspace in-

cluded in Fn
2 as suggested in the extended Maiorana–McFarland’s Proposition

1 [2].

Definition 5 A function f : C → F2, C ⊂ Fn
2 affine space, m ≤ n, dim C = m,

is bent if Nl(f) := dH(f,An) is a maximum.

The following two results are easily obtained, similarly to the traditional
bent function proofs.

Theorem 5 Let a function f : C → F2. Then Nl(f) = 2m−1− 1
2 maxa∈Fn

2
|Ŵf (a)|,

where Ŵf (a) :=
∑

x∈C(−1)f(x)⊕a·x.
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⊓⊔
Observe that all a ∈ Fn

2 are considered.

Theorem 6 If f : C ⊂ Fn
2 → F2, dim C = m, is a bent function, then Ŵf (a) =

±2m/2.

⊓⊔
The following theorem corresponds to a class of bent functions: the ex-

tended Maiorana–McFarland class.

Theorem 7 [2] Let the function ϕ(y) : Fs
2 → Fr

2 such that for all a ∈ Fr
2,

ϕ−1(a) is an affine space of dimension s− r. Also, let a function ge(y) : Fs
2 →

F2, where ge|ϕ−1(a) is a bent function. Then, the function f : Fr+s
2 → F2,

(x, y) 7→ x · ϕ(y)⊕ ge(y), x ∈ Fr
2, is a bent function.

Here in after, according to Theorem 7, particular case r = 1, we denote
ϕ(y) : Fs

2 → F2, ge : Fs
2 → F2, and define

g : Fs−1
2 → F2 a bent function,

C0 = ϕ−1(0) := {x ∈ Fs
2 | wH(x) even} and C1 = ϕ−1(1) := {x ∈

Fs
2 | wH(x) odd},

ge0 : C0 → F2, defined ge0(x|xs) := g(x), x ∈ Fs−1
2 , xs ∈ F2,

ge1 : C1 → F2, defined ge1(x|xs) := g(x), x ∈ Fs−1
2 , xs ∈ F2,

ge|C0
:= ge0 and ge|C1

:= ge1 .

Remark 3 1. We can see that, C0 = ϕ−1(0) is a linear code of dimension s−1.
2. b⊕ C0 = C1, for any b ∈ Fs

2 with odd Hamming weight.
3. C0 is an MDS linear code.
4. In C0, if x ∈ Fs−1

2 has an even Hamming weight, then xs is 0 and, if
x ∈ Fs−1

2 has and odd Hamming weight, then x ∈ F2 is 1.
5. In C1, if x ∈ Fs−1

2 has an even Hamming weight, then xs is 1 and, if
x ∈ Fs−1

2 has an odd Hamming weight, then xs is 0.

In the proof of the following theorem, it is essential that if g is a bent
function, then g|{x|wH(x) even} is balanced or g|{x|wH(x) odd} is balanced.

Using the above notation.

Theorem 8 Let g : Fs−1
2 → F2 be a bent function. Then, ge0 : C0 → F2 is a

bent function and ge1 : C1 → F2 is a bent function.

Proof We will rely on the fact that, if g is a bent function, then g|{x∈Fs−1
2 |wH(x) even}

is balanced or g|{x∈Fs−1
2 |wH(x) odd} is balanced.
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Let b ∈ Fs
2 and x̄ = (x1, . . . , xs−1, xs) ∈ C0.

Ŵge0
(b)

=
∑
x̄∈C0

(−1)ge0 (x1,...,xs−1,xs)+(x1...·xs−1,xs)·b

=
∑
x̄∈C0

(−1)ge0 (x1,...,xs−1,xs)+x1b1+···+xs−1bs−1+xsbs .

If bs = 0,

Ŵge0
(b) =

∑
x̄∈C0

(−1)g(x1,...,xs−1)+x1b1+···+xs−1bs−1 = Ŵg(b1, . . . , bs−1).

If bs = 1

Ŵge0
(b)

=
∑
x̄∈C0

(−1)ge0 (x1,...,xs−1,xs)+x1b1+···+xs−1bs−1+xs

=
∑
x̄∈C0

(−1)ge0 (x1,...,xs−1,0)+x1b1+···+xs−1bs−1 +
∑
x̄∈C0

(−1)ge0 (x1,...,xs−1,1)+x1b1+···+xs−1bs−1+1

=
∑
x̄∈C0

(−1)ge0 (x1,...,xs−1,0)+x1b1+···+xs−1bs−1 + (−1)
∑
x̄∈C0

(−1)ge0 (x1,...,xs−1,1)+x1b1+···+xs−1bs−1

=
∑

{x∈Fs−1
2 | wH(x) even}

(−1)g(x1,...,xs−1)+x1b1+···+xs−1bs−1

+ (−1)
∑

{x∈Fs−1
2 | wH(x) odd}

(−1)g(x1,...,xs−1)+x1b1+···+xs−1bs−1

The last equality, by Observation 3, Item 4.

If g|{x∈Fs−1
2 |wH(x) even} is balanced,

Ŵge0
(b) = (−1)

∑
{x∈Fs−1

2 | wH(x) odd}

(−1)g(x1,...,xs−1)+x1b1+···+xs−1bs−1 = Ŵg((b1, . . . , bs−1)).

If g|{x∈Fs−1
2 |wH(x) odd} is balanced,

Ŵge0
(b) =

∑
{x∈Fs−1

2 | wH(x) even}

(−1)g(x1,...,xs−1)+x1b1+···+xs−1bs−1 = Ŵg((b1, . . . , bs−1)).

In both cases, since g is a bent function, then ge0 is a bent function.

Proceeding similarly, ge1 : C1 → F2 is a bent function.
⊓⊔
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Corollary 1 Let g : Fs−1
2 → F2 be a bent function. For all a ∈ Fs−1

2 :

1. Ŵg(a) = Ŵge0
(a, 0) = Ŵge1

(a, 0).
2. If g|{x∈Fs−1

2 |wH(x) even} is balanced,

Ŵg(a) = 2
s−1
2 ⇔ Ŵge0

(a, 1) = −2
s−1
2 and Ŵge1

(a, 1) = 2
s−1
2 .

3. If g|{x∈Fs−1
2 |wH(x) odd} is balanced,

Ŵg(a) = −2
s−1
2 ⇔ Ŵge0

(a, 1) = 2
s−1
2 and Ŵge1

(a, 1) = −2
s−1
2 .

⊓⊔

Now, we are ready to use the extended Maiorana-McFarland, particular
case r = 1.

In the following theorem, we always have that f|{(x,y)|wH((x,y)) even} is
uniquely balanced.

Theorem 9 Let g : Fs−1
2 → F2 be a bent function, ge, and ϕ defined as above.

Then, the function

f : F1+s
2 → F2, (x, ȳ) 7→ xϕ(ȳ)⊕ ge(ȳ), x ∈ F2, ȳ ∈ Fs

2,

is a bent function and f|{(x,ȳ)|wH((x,ȳ)) even} is balanced.

Proof Since, ϕ y ge satisfy the conditions of Theorem 7 (Observation 3 and
Theorem 8), then f is a bent function.

We will rely on the fact that, g|{x̄∈Fs−1
2 |wH(x̄) even} is balanced or g|{x̄∈Fs−1

2 |wH(x̄) odd}
is balanced.

Let’s see the balance. Let g|{x̄|wH(x̄) even} be balanced and Ŵg(0) = 2
s−1
2 .

If we consider x̄ = (y1, . . . , ys−1), we can write f as

f(x, y1, . . . , ys−1, ys) = xϕ(y1, . . . , ys−1, ys)⊕ ge(y1, . . . , ys−1, ys).

Let x = 0 and ys = 0.
Case 1. If wH(y1, . . . , ys−1) is even,
f(0, y1, . . . , ys−1, 0) = 0 · 0 ⊕ ge(y1, . . . , ys−1, 0) = ge0(y1, . . . , ys−1, 0) =

0, 2s−3 times.
Case 2. If wH(y1, . . . , ys−1) is odd,
f(0, y1, . . . , ys−1, 0) = 0 · 1 ⊕ ge(y1, . . . , ys−1, 0) = ge1(y1, . . . , ys−1, 0) =

0, 2s−3 + 2
s−3
2 times.

Let x = 0 and ys = 1.
Case 3. If wH(y1, . . . , ys−1) is even,
f(0, y1, . . . , ys−1, 1) = 0 · 1 ⊕ ge(y1, . . . , ys−1, 1) = ge1(y1, . . . , ys−1, 1) =

0, 2s−3 times.
Case 4. If wH(y1, . . . , ys−1) is odd,
f(0, y1, . . . , ys−1, 1) = 0 · 0 ⊕ ge(y1, . . . , ys−1, 1) = ge0(y1, . . . , ys−1, 1) =

0, 2s−3 + 2
s−3
2 times.
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Let x = 1 and ys = 0.
Case 5. If wH(y1, . . . , ys−1) is even,
f(1, y1, . . . , ys−1, 0) = 1 · 0 ⊕ ge(y1, . . . , ys−1, 0) = ge0(y1, . . . , ys−1, 0) =

0, 2s−3 times.
Case 6. If wH(y1, . . . , ys−1) is odd,
f(1, y1, . . . , ys−1, 1) = 1 · 1⊕ ge(y1, . . . , ys−1, 0) = 1⊕ ge1(y1, . . . , ys−1, 0) =

0, 2s−3 − 2
s−3
2 times.

Let x = 1 and ys = 1.
Case 7. If wH(y1, . . . , ys−1) is even,
f(1, y1, . . . , ys−1, 1) = 1 · 1⊕ ge(y1, . . . , ys−1, 1) = 1⊕ ge1(y1, . . . , ys−1, 1) =

0, 2s−3 times.
Case 8. If wH(y1, . . . , ys−1) is odd,
f(1, y1, . . . , ys−1, 1) = 1 · 0⊕ ge(y1, . . . , ys−1, 1) = 0⊕ ge0(y1, . . . , ys−1, 1) =

0, 2s−3 + 2
s−3
2 times.

The elements with even Hamming weight in Fs+1
2 are in: Case 1, Case 4,

Case 6, Case 7. Hence,

|f−1

|{(x,ȳ)∈Fs+1
2 |wH(x) even}(0)| = (2s−3)+(2s−3+2

s−3
2 )+(2s−3−2

s−3
2 )+(2s−3) = 2s−1.

Therefore, f|{(x,ȳ)|wH((x,ȳ)) even} is balanced.

Similarly,

When g|{x̄∈Fs−1
2 |wH(x̄) even} is balanced and Ŵg(0) = −2

s−1
2 :

f|{(x,ȳ)∈Fs+1
2 |wH((x,ȳ)) even} is balanced.

When g|{x̄∈Fs−1
2 |wH(x̄) odd} is balanced and Ŵg(0) = 2

s−1
2 :

f|{(x,ȳ)∈Fs+1
2 |wH((x,ȳ)) even} is balanced.

When g|{x̄∈Fs−1
2 |wH(x̄) odd} is balanced and Ŵg(0) = −2

s−1
2 :

f|{(x,ȳ)∈Fs+1
2 |wH((x,ȳ)) even} is balanced.

⊓⊔
The additional cases, from the above theorem, with odd Hamming weight

in Fs+1
2 will be necessary for the development of the subsequent algorithm, to

obtain f from g.

Now, we consider the addition of a linear function.

Theorem 10 Let g : Fs−1
2 → F2 be a bent function and f : Fs+1

2 → F2, (x, ȳ) 7→
xϕ(ȳ) ⊕ ge(ȳ) be a Maiorana-McFarland bent function. The function f ⊕ lb,
lb̄(x̄, ȳ) = b̄ · (x̄, ȳ), ȳ = (x̄, ys), x̄ ∈ Fs−1

2 , b̄ = (a0, ā, as), a0, as ∈ F2, ā ∈ Fs−1
2

is as follows:

If a0 = 1, (f ⊕ lb̄)|{(x,ȳ)|wH((x,ȳ)) odd} is balanced.

If a0 = 0, (f ⊕ lb̄)|{(x,ȳ)|wH((x,ȳ)) even} is balanced.



Bent functions construction using extended Maiorana-McFarland’s class 11

Proof Let x̄ = (y1, . . . , ys−1). Given g a bent function, then (ge ⊕ l(ā,as))|{(x̄,ys)|x̄∈Fs−1
2 ,wH(x̄) even}

is balanced or (ge ⊕ l(ā,as))|{(x̄,ys)|x̄∈Fs−1
2 ,wH(x̄) odd} is balanced.

Suppose w.l.o.g. that (ge ⊕ l(ā,as))|{(x̄,ys)|x̄∈Fs−1
2 ,wH(x̄) even} is balanced and

Ŵge(ā, as) = 2
s−1
2 .

We can write f ⊕ lb̄ as,

f(x, y1, . . . , ys−1, ys)⊕lb̄ = xϕ(y1, . . . , ys−1, ys)⊕ge(y1, . . . , ys−1, ys)⊕a0x⊕(ā, as)·ȳ, ȳ = (y1, . . . , ys).

Let a0 = 1. The elements with odd Hamming weight in Fs+1
2 are in the

following cases:

Case 1. Let x = 0, ys = 0, and wH(y1, . . . , ys−1) odd. Then
f(0, y1, . . . , ys−1, 0)⊕lb̄ = 0·1⊕ge(y1, . . . , ys−1, 0)⊕l(ā,as) = ge1(y1, . . . , ys−1, 0)⊕

l(ā,as) = 0, 2s−3 + 2
s−3
2 times.

Case 2. Let x = 0, ys = 1, and wH(y1, . . . , ys−1) even. Then,
f(0, y1, . . . , ys−1, 1)⊕lb̄ = 0·1⊕ge(y1, . . . , ys−1, 1)⊕l(ā,as) = ge1(y1, . . . , ys−1, 1)⊕

l(ā,as) = 0, 2s−3 times.

Case 3. Let x = 1, ys = 0, and wH(y1, . . . , ys−1) even. Then,
f(1, y1, . . . , ys−1, 0)⊕lb̄ = 1·0⊕ge(y1, . . . , ys−1, 0)⊕l(ā,as)⊕1 = ge0(y1, . . . , ys−1, 0)⊕

l(ā,as) ⊕ 1 = 0, 2s−3 times.

Case 4. Let x = 1, ys = 1, and wH(y1, . . . , ys−1) odd. Then,
f(1, y1, . . . , ys−1, 1) ⊕ lb̄ = 1 · 0 ⊕ ge(y1, . . . , ys−1, 1) ⊕ l(ā,as) ⊕ 1 = 0 ⊕

ge0(y1, . . . , ys−1, 1)⊕ l(ā,as) ⊕ 1 = 0, 2s−3 − 2
s−3
2 times.

Hence,

|f−1

|{(x,ȳ)∈Fs+1
2 |wH(x,ȳ) odd}(0)| = (2s−3+2

s−3
2 )+(2s−3)+(2s−3)+(2s−3−2

s−3
2 ) = 2s−1.

Therefore, (f ⊕ lb̄)|{(x,ȳ)|wH((x,ȳ)) odd} is balanced.

The demonstration when a0 = 0 is similar to Case 1, Case 4, Case 6
and Case 7 of Theorem 9, and we obtain that (f ⊕ lb̄)|{(x,ȳ)|wH((x,ȳ)) even} is
balanced.

Similarly,

When (ge ⊕ l(ā,as))|{x̄∈Fs−1
2 |wH(x̄) even} is balanced and Ŵge(ā, as) = −2

s−1
2 :

If a0 = 1,
(f ⊕ lb̄)|{(x,ȳ)|wH((x,ȳ)) odd} is balanced.
If a0 = 0,
(f ⊕ lb̄)|{(x,ȳ)|wH((x,ȳ)) even} is balanced.
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When (ge ⊕ l(ā,as))|{x̄∈Fs−1
2 |wH(x̄) odd} is balanced and Ŵge(ā, as) = 2

s−1
2 :

If a0 = 1,
(f ⊕ lb̄)|{(x,ȳ)|wH((x,ȳ)) odd} is balanced.
If a0 = 0,
(f ⊕ lb̄)|{(x,ȳ)|wH((x,ȳ)) even} is balanced.

When (ge ⊕ l(ā,as))|{x̄∈Fs−1
2 |wH(x̄) odd} is balanced and Ŵge(ā, as) = −2

s−1
2 :

If a0 = 1,
(f ⊕ lb̄)|{(x,ȳ)|wH((x,ȳ)) odd} is balanced.
If a0 = 0,
(f ⊕ lb̄)|{(x,ȳ)|wH((x,ȳ)) even} is balanced.

⊓⊔

We can use the demonstration of Theorem 10 to have a simple way to obtain
bent functions of any even dimension in its domain, greater than dimension
of given the bent function. These new functions are specifically balanced for
even Hamming weight in its domain.

In Algorithms 1 and 2 we are considering A := {x̄ ∈ Fs−1
2 |wH(x̄) even},

B := {x̄ ∈ Fs−1
2 |wH(x̄) odd}.

Algorithm 1 Extended Maiorana-McFarland r = 1

Input: s − 1 ≥ 2 odd, gs−1(ȳ), gs−1 : Fs−1
2 → F2 be a bent function, {(x, ȳ, y) ∈

Fs+1
2 | x, y ∈ F2, ȳ ∈ Fs−1

2 }
Output: gnew(x, ȳ, y) a bent function, gnew|A balanced
1: Integer end;
2: new := s− 1
3: while new ̸= end do
4: for x, y from 0 to 1 do
5: if ȳ is even, x = 1, y = 1 or ȳ is odd, x = 1, y = 0 then
6: gnew+2(x, ȳ, y) = 1⊕ gnew(ȳ);
7: else
8: gnew+2(x, ȳ, y) = gnew(ȳ);
9: new := new + 2;
10: ȳ = (x, ȳ, y);
11: end if
12: end for
13: end while
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5 Conclusions

We found, using the Maiorana-McFarland class, a new subclass of bent func-
tions such that it is uniquely balanced on the set {x ∈ Fn

2 |wH((x) even}. For
this, we see, first, that all bent functions in Bn satisfy {x ∈ Fn

2 |wH(x) even}
is balanced or {x ∈ Fn

2 |wH(x) even} is balanced. Also, if we have a bent func-
tion f obtained by the Maiorana-McFarland construction, to see the behaviour
when we consider the addition of a linear function lb, b = (a0, ā, a), we now
know that, if a0 = 0, (f ⊕ lb)||{(x,ȳ)|wH((x,ȳ)) even} is balanced and if a0 = 1,
(f ⊕ lb)||{(x,ȳ)|wH((x,ȳ)) odd} is balanced.
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Algorithm 2 Extended Maiorana-McFarland ⊕lb r = 1

Input: s − 1 ≥ 2 odd, gs−1(x̄), gs−1 : Fs−1
2 → F2 a bent function, b = (a0, ā, a) ∈ Fs+1

2 ,

{(x, x̄, y) ∈ Fs+1
2 | x, y ∈ F2, x̄ ∈ Fs−1

2 }
Output: (gnew ⊕ l0,ā,a)(x, x̄, y) a bent function, (gnew ⊕ l0,ā,a)|A balanced (gnew ⊕

l1,ā,a)(x, x̄, y) a bent function, (gnew ⊕ l1,ā,a)|B balanced
1: Integer end;
2: new := s− 1
3: while new ̸= end do
4: if a0 = 0 and a = 0 then
5: for x, y from 0 to 1 do
6: if (ȳ is even, x = 1, y = 1) or (ȳ is odd, x = 1, y = 0) then
7: (gnew+2 ⊕ l0,a,0)(x, x̄, y) = 1⊕ (gnew ⊕ la)(x̄);
8: else
9: (gnew+2 ⊕ l0,a,0)(x, x̄, y) = (gnew ⊕ la)(x̄);
10: end if
11: new := new + 2; ȳ = (x, ȳ, y);
12: end for
13: end if
14: if a0 = 0 and a = 1 then
15: for x, y from 0 to 1 do
16: if (ȳ is even, x = 0, y = 1) or {(ȳ is odd, [(x = 0, y = 1) or (x = 1, y = 0) or

(x = 1, y = 1)]} then
17: (gnew+2 ⊕ l0,a,0)(x, x̄, y) = 1⊕ (gnew ⊕ la)(x̄);
18: else
19: (gnew+2 ⊕ l0,a,0)(x, x̄, y) = (gnew ⊕ la)(x̄);
20: end if
21: new := new + 2; ȳ = (x, ȳ, y);
22: end for
23: end if
24: if a0 = 1 and a = 0 then
25: for x, y from 0 to 1 do
26: if (ȳ is even, x = 1, y = 0) or (ȳ is odd, x = 1, y = 1) then
27: (gnew+2 ⊕ l0,a,0)(x, x̄, y) = 1⊕ (gnew ⊕ la)(x̄);
28: else
29: (gnew+2 ⊕ l0,a,0)(x, x̄, y) = (gnew ⊕ la)(x̄);
30: end if
31: new := new + 2; ȳ = (x, ȳ, y);
32: end for
33: end if
34: if a0 = 1 and a = 1 then
35: for x, y from 0 to 1 do
36: if {(ȳ is even, [(x = 0, y = 1) or (x = 1, y = 0) or (x = 1, y = 1)]} or (ȳ is

odd, x = 0, y = 1) then
37: (gnew+2 ⊕ l0,a,0)(x, x̄, y) = 1⊕ (gnew ⊕ la)(x̄);
38: else
39: (gnew+2 ⊕ l0,a,0)(x, x̄, y) = (gnew ⊕ la)(x̄);
40: end if
41: new := new + 2; ȳ = (x, ȳ, y);
42: end for
43: end if
44: end while


