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Abstract. A ranking function for permutations maps every permuta-
tion of length n to a unique integer between 0 and n!−1. For permutations
of size that are of interest in cryptographic applications, evaluating such
a function requires multiple-precision arithmetic. This work introduces
a quasi-optimal ranking technique that allows us to rank a permuta-
tion efficiently without needing a multiple-precision arithmetic library.
We present experiments that show the computational advantage of our
method compared to the standard lexicographic optimal permutation
ranking. As an application of our result, we show how this technique im-
proves the signature sizes and the efficiency of PERK digital signature
scheme.

Keywords: Efficient Compression · PERK · Permutation ranking · Post-
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1 Introduction

Permutations have been employed in Cryptography in various scenarios, includ-
ing the construction of block ciphers and hash functions. Some of the funda-
mental hard problems in Post-quantum Cryptography, e.g., Permutation Code
Equivalence [Leo82] and Permuted Kernel Problem [Sha90], guarantee a hard-
ness based on the application of a secret permutation on certain geometrical
or algebraic structures. Motivated by the ongoing standardization initiatives
led by the authorities of different countries, such as NIST [NIS17,NIS23] and
CACR [fCR20], several new cryptosystems featuring public-key encryption, key-
encapsulation mechanisms and digital signatures have been proposed. Some of
these introduced new technical and engineering challenges related to permuta-
tions such as efficient permutation sampling and composition. This work ad-
dresses the challenge of efficiently compressing a permutation.

The PERK signature scheme [ABB+23a] is a new digital signature whose
security relies on a variant of the Permuted Kernel Problem, and it is currently
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one of the candidates for round 1 of the NIST post-quantum competition for
additional signatures [NIS23]. Essentially, the signature scheme functions as a
zero-knowledge proof of knowledge, leveraging the Multi-Party Computation in-
the-Head (MPCitH) paradigm [IKOS07]. Subsequently, the Fiat-Shamir trans-
form [FS87], is employed to transition the interactive proof into a signature
within the random oracle model. PERK provides three sets of parameters, to
meet the different security levels I, III, and V defined by NIST [NIS23]. For each
security level, there are two trade-offs: the first involves parameters labeled short
aiming to reduce signature’s size, and the second involves parameters labeled fast
focusing on minimizing computational costs to achieve faster signature computa-
tion. The authors announced an updated version of the scheme [ABB+23b] a few
months after the first submission. Here, a novel compression technique was in-
troduced specifically for the short parameter sets based on a ranking/unranking
algorithm for permutations. While this strategy achieves optimal permutation
compression sizes, leading to an approximate 5% reduction in the overall size
of short PERK signatures, it comes with the trade-off of increased compres-
sion time and a requirement for a multiple-precision arithmetic library. Notice
that the percentage of PERK signatures occupied by compressed permutations
ranges from 15% to 25%. Hence, any substantial improvement in the compression
technique for permutations would translate into an improvement in the whole
signature sizes.

Contributions. In this work, we introduce a new permutation compression
technique that offers simultaneously three significant advantages with respect to
previously known compression techniques:

• it gives quasi-optimal compression sizes, that is, a few bits only larger than
the best compression possible,

• both compression and decompression routines are highly efficient to compute
and easily parallelizable,

• it does not require heap-memory allocations or a multiple-precision arith-
metic library, making it portable to resource-constrained devices.

We implement our novel compression method both in pure C and with AVX2
optimization.4 We show that, by applying it to the PERK signature scheme, we
obtain the following improvements:

• we reduce the signature sizes for the fast parameter sets by around 5%, at
the price of a negligible increase in execution time,

• while maintaining equivalent signature sizes for the short parameter sets, we
drop the dependency from heap-memory allocations and the GMP library for
multiple-precision arithmetic. Moreover, we obtain a speed-up of about 2%.

The above considerations significantly increase PERK’s code portability. Because
of the simplicity of our implementation, we expect our contribution to be even
more impactful on resource-constrained devices.

4 The implementation will be made available together with the final version of the
paper under an open-source licence.
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Paper Organization. We give in Section 2 the necessary background to under-
stand our work. We introduce our quasi-optimal ranking and unranking methods
in Section 3 and present the impact on PERK together with the results of our
experiments in Section 4. Finally we give our conclusions in Section 5.

2 Preliminaries

Let N and Z denote the sets natural and integer numbers respectively. Let [n]
represent the set of integers {0, 1, . . . , n − 1} ⊂ Z, and Sn denote the group of
permutations of [n] with the operation of permutation composition. We write
permutations π ∈ Sn using the so-called one-line notation,

π = (π(0), π(1), . . . , π(n− 1)),

that is, as the resulting list of the elements of the ordered set [n] after the
permutation is applied.

We define the function that gives the minimum number of bits to represent
an integer as

bitlen : N → N x 7→ ⌈log2(x)⌉ .

2.1 Ranking/unranking of permutations

In the context of permutations, we call ranking a bijective function from Sn to
{0, 1, . . . , n!− 1}. The reverse function is called unranking. Ranking algorithms
typically rank permutations in lexicographic ordering [Leh60,Bon08], but others
using a different order also exist [MR01].

Ranking. The ranking of π ∈ Sn in lexicographic order is computed as follows.
Consider the list of integers (d0, d1, . . . , dn−1), where

dn−i−1 =

n−1∑
j=i+1

1π(j)<π(i), for i = 0, . . . , n− 2, d0 = 0, (1)

where 1π(j)<π(i) is the characteristic function that returns 1 if π(j) < π(i), 0
otherwise. The list of di is known as the factorial representation of the permuta-
tion. Notice that di ∈ {0, . . . , i}, for i = 0, . . . , n− 1. The ranking of π is defined
as

r : Sn → {0, . . . , n!− 1}, r(π) 7→
n∑

i=1

di · i!. (2)

An equivalent but recursive expression for r(π) is

r(π) = d0 + 1 · (d1 + · · ·+ (n− 2) · (dn−2 + (n− 1) · dn−1) · · · ) (3)

The sequence (d0, d1, . . . , dn−1) is different for every π ∈ Sn, and it is the
factorial base representation of r(π). It follows that r(·) is a bijection and so the
ranking of each permutation is unique.
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We report the complete ranking procedure in the variant using Equation 2 in
Algorithm 1. Note that Equation 1 has an asymptotic cost of O(n2). However,
Bonet provided an equivalent algorithm with an asymptotic cost of O(n log n)
[Bon08]. For permutations of length n > 20, computing r(π) requires, in practice,
a multiple-precision arithmetic library. Equation 3 comes with the practical ad-
vantage, w.r.t. Equation 2, of allowing computation of r(π) by performing multi-
plications by factors < n. Certain libraries (e.g., GMP [Pro23]) come with efficient
and dedicated bignum multiplications by 32-bit integer types (e.g., uint32 t),
and so this formula is preferred in this case. On the other hand, Equation 2,
paired with a look-up table for the precomputed factorials, might be a better
option when such an optimized function is not available.

Algorithm 1: Ranking of a permutation

Input: permutation π ∈ Sn
Output: Rank 0 ≤ r(π) < n!

1 R← 0;
2 for i← 0, . . . , n− 1 do
3 c← 0; // Equation 1

4 for j ← i+ 1, . . . , n− 1 do
5 if π(i) < π(j) then
6 c← c+ 1;

7 R← R+ c · i! ; // Equation 2

8 return R

Unranking. The unranking procedure is the inverse of ranking, i.e., from an
integer R ≤ n! − 1, one obtains the unique permutation π ∈ Sn such that
r(π) = R. We report this procedure as Algorithm 2. Similarly to Algorithm 1,
there exists a variant that makes use of a recursive formula to obtain the indexes
di. Furthermore, its asymptotic complexity is O(n2). However, also in this case,
Bonet proposed an equivalent algorithm that runs in time O(n log(n)) [Bon08].

2.2 Permutation compression in PERK

According to the specifications of PERK (see Table 2 [ABB+23b]), the signature
includes a set of τ compressed permutations of length n aimed at reducing the
overall size of the signature. There are two compression approaches optimized
for fast and short parameters, respectively. In the following sections, we detail
these techniques, starting with the compression tailored for fast parameters and
followed by the one designed for short parameters. Table 1 provides a breakdown
of the compressed permutation sizes within the signature for all PERK parameter
sets, and the relative percentage over the whole signature size.
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Algorithm 2: Unranking of a permutation

Input: rank 0 ≤ R < n!
Output: permutation π ∈ Sn

1 used← [false : for i← 0, . . . , n− 1];
2 for i← 0, . . . , n− 1 do

3 dn−i−1 =
⌊

R mod (i+1)!
i!

⌋
;

4 c← 0;
5 for j ← 0, . . . , n− 1 do
6 if not used[j] then
7 c← c+ 1;

8 if c == dn−i−1 + 1 then
9 π(i)← j;

10 used[j] = true;
11 break;

12 return π

Pack-in-pairs permutation compression. Let π ∈ Sn be a permutation.
Instead of representing π, with the one-line notation, as a list of elements of [n],
one packs its elements in pairs and represents it as a sequence of ⌈n/2⌉ elements
in [n2]. This is possible when⌈

log2(n
2)
⌉
< 2 ⌈log2(n)⌉ ,

which is true for n ≤ 181, covering all PERK’s parameters. More specifically, let
us denote by L the list of ∈ n ·τ coefficients of all permutations to compress. The
packing procedure works as follows. Let A = ⌊2b⌋, where b = 6.5 for Level I, b = 7
for Level III, and b = 7.5 for Level V. For any two consecutive coefficients L(i)
and L(i+1) of L, the compact representation cp is set as cp = A ·L(i)+L(i+1).
Subsequently, the resulting compact representations cp, comprising 2 · b bits
each, are concatenated and stored as a byte string. The aggregate size of the
compressed permutations within the signature, employing these techniques, is
(2 · b) · n·τ

2 bits. The unpacking procedure, is done by computing L(i) = ⌊ cp
A ⌋

and L(i+ 1) = cp mod A.

Optimal permutation compression via ranking For each permutation,
one computes its ranking r(π) in lexicographic order. Specifically, the algorithm
by Bonet [Bon08] is implemented using the gmp library for multiple-precision
computations. In the ranking procedure, the recursive formula from Equation 3
is used to exploit the fast multiplication times a uint32 t available in gmp. On
the other hand, when unranking, the standard unranking subroutine to obtain
the factorial base representation (line 3 of Algorithm 2) is used in pair with
a look-up table for storing the pre-computed factorials 0!, 1!, . . . , (n − 1)!. This
kind of permutation compression is optimal, i.e., each permutation is represented
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Parameter Set n τ size of permutations %

PERK-I-fast3 79 30 1926 B 23.0

PERK-I-fast5 83 28 1889 B 24.0

PERK-I-short3 79 20 980 B 15.7

PERK-I-short5 83 18 936 B 16.2

PERK-III-fast3 112 46 4508 B 24.0

PERK-III-fast5 116 43 4365 B 24.3

PERK-III-short3 112 31 2356 B 16.5

PERK-III-short5 116 28 2240 B 17.0

PERK-V-fast3 146 61 8350 B 25.0

PERK-V-fast5 150 57 8016 B 25.3

PERK-V-short3 146 41 4346 B 17.3

PERK-V-short5 150 37 4070 B 17.7

Table 1: The fourth column presents the sizes of permutations in bytes as com-
ponents of the overall signature for all parameter set. The fifth column gives the
percentage over the whole signature size covered by compressed permutations.

uniquely by the minimum number of bits possible, equal to bitlen(n!− 1), the
resulting size of compressed permutations in the signature is τ · bitlen(n!− 1)
bits.

3 Quasi-optimal Permutation Ranking

A major drawback of compressing permutations through ranking is that it re-
quires performing arithmetic operations between integers of up to bitlen(n!− 1)
bits. As already mentioned, the sizes of permutations in PERK make the use of
a library for multiple-precision integer operations necessary. Consequently, the
compression algorithm is relatively slow, and the portability of the implementa-
tion is reduced, especially when targeting resource-constrained devices.

This section, presents a quasi-optimal ranking approach for permutations
that extends the optimal ranking method outlined in Section 2.1. Specifically, we
map permutations uniquely to a set of integers with a maximum bit-size slightly
exceeding bitlen(n!− 1). This slight increase in size facilitates the ranking eval-
uation in one fundamental aspect: all computations are performed using only
32-bit words, eliminating the need for a multiple-precision arithmetic library.

3.1 Quasi-optimal ranking routine

Let π ∈ Sn be a permutation and let (d0, d1, . . . , dn−1) be its factorial base rep-
resentation (see Equation 1). Let N be the target word-size for our computations
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(e.g., N = 32 bits). We split d0, d1, . . . , dn−1 into subsequences and see each one
of them as a factorial base representation relative to a different interval such
that, for each subsequence, the corresponding integer is not larger than 2N .

Let us assume that n < 2N and let j1 < j2 < ... < jℓ be the largest integers
possible such that

j0 = 0,
jk!

jk−1!
< 2N , jℓ = n, for every k = 1, . . . , ℓ. (4)

Define the following integers

sk =

jk−1∑
i=jk−1

di ·
i!

jk−1!
, k = 1, . . . , ℓ. (5)

Equivalently, analogously to Equation 3, the following recursive formula holds:

sk = djk−1
+ (jk−1 + 1) · (djk−1+1 + · · ·+ (jk − 2) · (djk−2 + (jk − 1) · djk−1) · · · ).

Notice that sk ≤ jk!/jk−1!− 1, an so sk < 2N for every k = 1, . . . , ℓ. Let

M =

ℓ∑
k=1

bitlen

(
jk!

jk−1!
− 1

)
,

and define the following function

s : Sn → {0, 1}M , s(π) 7→ (s1∥s2∥ · · · ∥sℓ).

Our compression method represents the permutation π as s(π), and is dis-
played as Algorithm 3. In general, the bit size of the compression M is (slightly)
larger than log2(n!), the size obtained with the compression via ranking. How-
ever, since every sk is bounded by 2N , each one of them can be computed using
only N -bit size registers. Choosing N = 16, 32, or 64 allows compressing per-
mutations of a certain length without requiring a multiple-precision arithmetic
library. In practice, to produce a code portable to several different architectures;
in this work, we consider N = 32.

3.2 Quasi-optimal unranking routine

To invert the quasi-optimal ranking procedure detailed in Section 3.1, one first
must obtain the factorial representation d1, . . . , dn−1 of the permutation π, as
follows.

djk−1+jk−i−1 =

⌊
sk mod (i+ 1)!/(jk−1)!

i!/(jk−1)!

⌋
, for i = jk−1, . . . , jk − 1, (6)

for k = 1 . . . , ℓ. Then, one obtains the one-line permutation representation from
the factorial representation using, for example, the sub-routine line 4-11 of Al-
gorithm 2, or Bonet unranking algorithm [Bon08, Figure 4]. We display this idea
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Algorithm 3: Quasi-optimal ranking of a permutation

Input: permutation π ∈ Sn; jk as in Equation 4
Output: Rank 0 ≤ r(π) < 2M

1 for i← 0, . . . , n− 1 do
2 for j ← i+ 1, . . . , n− 1 do
3 if π(i) < π(j) then
4 d[i]← d[i] + 1;

5 for k ← 0, . . . , ℓ− 1 do
6 s[k]← 0; // Equation 5

7 for i← jk+1 − 1, . . . , jk do
8 s[k]← s[k] · i+ d[i];

9 R← s[0] ∥ s[1] ∥ . . . ∥ s[ℓ− 1]; // pack compactly

10 return R

as Algorithm 4.

An additional advantage of our proposed method, when compared to optimal
ranking, lies in its facilitation of vectorization (SIMD instructions) in both rank-
ing and unranking processes. This is made possible by utilizing 32-bit registers
only for all computations.

3.3 Further improvements

One can obtain some further improvements in size thanks to the following idea.
Let us consider the factorial

n! = 1 · 2 · · · (n− 1) · n.

Then we have that

log2(n!) = log2(1) + log2(2) + · · ·+ log2(n− 1) + log2(n).

Following the approach outlined in Section 3.1, one could pack such number as
follows

1 · 2 · · · (j1 − 1)︸ ︷︷ ︸
s1

· j1 · · · (j2 − 1)︸ ︷︷ ︸
s2

· · · jℓ−1 · · ·n︸ ︷︷ ︸
sℓ

,

and so one has that

bitlen(n!) ≤ bitlen(s1) + bitlen(s2) + · · ·+ bitlen(sℓ). (7)

However, such an attempt to maximize s1, s2, . . . , sℓ (subject to bitlen(sk) <
N) in this order is unlikely to result in a minimal packing. Instead, we propose
using the well-known A* search algorithm [RN09][Sec. 3]. Given the small size
of n in the cases of our interest, and using the bit-size of the remaining factors
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Algorithm 4: Quasi-optimal unranking of a permutation

Input: rank R = s[0] ∥ s[1] ∥ . . . ∥ s[ℓ− 1] (0 ≤ R < 2M )
Output: permutation π ∈ Sn

1 for k ← 0, . . . , ℓ− 1 do
2 for i← jk + 1, . . . , jk+1 do
3 d[n− 1− i]← s[k] mod i; // Equation 6

4 s[k]← ⌊s[k]/i⌋;

5 for i← 0, . . . , n− 1 do
6 c← 0;
7 for j ← 0, . . . , n− 1 do
8 if not used[j] then
9 c← c+ 1;

10 if c == d[n− i− 1] + 1 then
11 π(i)← j;
12 used[j] = true;
13 break;

14 return π

to be packed as the heuristic in the A* search algorithm (which is easily seen to
be admissible), a packing of the factors that minimizes the overall size can be
quickly found. Nevertheless, we choose to introduce additional constraints that
lead to a faster implementation when using vectorization (and specifically the
AVX2 instruction set):

– the number of words is chosen as either 16, 24, or 32 depending on n, which
is a multiple of 8 (the 256-bit vector length of AVX2 divided by N = 32);

– we bound the minimum and maximum number of indexes per word and
introduce heuristic penalties to seek a balanced distribution between words,
especially within the natural 8-lane boundaries of AVX2.

A further generalization of this concept would be to dispense with the re-
quirement of consecutive indexes within each word. This would immensely in-
crease the search space, making it likely that packings that are either optimal
or within very few bits of it are found; however, non-consecutive indexes would
also complicate the implementation, and thus, we chose not to pursue this idea.

Example 1. Let us compute the compression size of a permutation π of length
n = 79, as in PERK-I-fast3 and PERK-I-short3. We choose the word length of
N = 32 bits. In Table 2, we report the values for the indexes jk and the size
in bits for each sk, for k = 1, . . . , 78. The total size in bits of our quasi-optimal
ranking is M = bitlen(s(π)) = 394. Note that the size in bits of the optimal
ranking is bitlen(r(π)) = 389. Therefore, our compression is only 5 bits larger
than the compression via optimal ranking, a small price to pay (≈ 1.3%) for the
benefit of being able to perform all computations more efficiently using 32-bit
registers only.
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k factorial base subsequence jk bitlen(sk)

1 d1, d2, d3, d4, d5 6 10

2 d6, d7, d8, d9, d10 11 16

3 d11, d12, d13, d14 15 15

4 d15, d16, d17, d18, d19 20 21

5 d20, d21, d22, d23 24 18

6 d24, d25, d26, d27, d28 29 24

7 d29, d30, d31, d32, d33 34 25

8 d34, d35, d36, d37, d38 39 27

9 d39, d40, d41, d42, d43 44 27

10 d44, d45, d46, d47, d48 49 28

11 d49, d50, d51, d52, d53 54 29

12 d54, d55, d56, d57, d58 59 30

13 d59, d60, d61, d62, d63 64 30

14 d64, d65, d66, d67, d68 69 31

15 d69, d70, d71, d72, d73 74 31

16 d74, d75, d76, d77, d78 79 32

Total 394

Table 2: Quasi-optimal permutation compression parameters and sizes for n =
79 and N = 32. Note that d0 = 0 always, hence there is no need to encode it.

3.4 Comparison

We report in Table 3 the comparison of our sub-optimal permutation against
the other two methods used in PERK, for the relevant values of n. One can
see that our method gives compression sizes very close to optimal, while beating
significantly pack-in-pairs.

4 Experiments and Applications to PERK

In this section, we give the details regarding the C implementation of our algo-
rithm, the results of our benchmark tests, and the impact of our work on PERK
signature both computationally and on the signature size. To start, we describe
our testing environment.

4.1 Testing environment

We preformed all experiments presented in this section on a machine with 96GB
of memory and an Intel® Core™ i7-13700K CPU @ 3.40GHz. As a compiler, we
used clang (version 17.0.2), and the version of the GMP multiple-precision library
installed on the machine is 6.3.0. Especially when testing the integration of our
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n pack-in-pairs optimal ranking sub-optimal ranking

79 514 389 394

83 540 414 421

112 784 606 615

116 812 633 643

146 1095 845 860

150 1125 873 889

Table 3: Amount in bits required to compress a permutation. The second and
third columns are the values resulting in PERK’s fast and short parameter
sets respectively. The last column represent the values of our novel compression
method.

algorithms on the full PERK scheme, we expect the impact to be relatively small
and hard to detect if the testing environment is not adequately set. Hence, we
took the following countermeasure to reduce possible noise in benchmarks, not
only due to hardware and OS factors but also because of issues such as code and
data layout [MDHS09], as this noise is of similar magnitude to the improvements
we are trying to measure on full scheme benchmarks.

On the hardware and OS side, we disabled HyperThreading and TurboBoost
CPU features, installed Ubuntu’s low-latency Linux kernel, set the scaling gov-
ernor to performance mode, isolated a CPU and pinned our benchmarks to run
on it while masking interrupts to avoid running on that CPU, used Linux’s NOHZ
feature to reduce tick interrupts and disabled address space layout randomiza-
tion. Before running the benchmarks, we turned off WiFi and Bluetooth and
removed the Ethernet cable. The machine is placed in a temperature-controlled
room, and its cooling system is adequate to ensure clock speed is not throttled.

On the software side, we employed a feature of the lld link, which randomizes
the order of functions in the binary, one of the factors explicitly pointed out
by [MDHS09]. We also renamed the binary before each run with a differently-
sized name (varying this over a range of 64 consecutive sizes), which has the
effect of realigning the stack memory for the process, another effect discussed
by [MDHS09]. We set code alignment to 64 bytes to match the cache line size
of the CPU. We ran each test with 8 different randomized linking orders and 64
consecutive alignments; for the full-scheme benchmarks, each routine was run
12 times, discarding the first 2 results, which serve as a warm-up for the CPU’s
branch predictor and its caches.

We also perform a statistical hypothesis test (Student’s independent two
sample t-test) to determine whether speedups/slowdowns between the baseline
and our proposed implementation are statistically significant at the p = 0.05
level.
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4.2 Implementation of our compression/decompression algorithms

We implemented the compression and decompression algorithms presented in
Section 3 in pure C without any external library dependency. In addition, we
have developed an AVX2-optimized implementation, the details of which are
provided below in this section. The code will be made available together with
the final version of this paper under an open-source license.

We report in Table 4 the results of our experiment that compares the quasi-
optimal ranking implementation against the compression from PERK version
1.1. To do so, we imported the compression and decompression algorithms from
the official repository of PERK [ABB+23b]. The code has been compiled with
compilation flags -O3 -funroll-loops -march=native -mavx2 to make the
comparison fair against our AVX2 implementation, and to highlight that this
achieves vectorizations undetected by the compiler. Looking at Table 4, the first
consideration is that our approach is always considerably faster than the optimal
ranking method. Then, one can notice that, due to its simplicity, pack-in-pairs is
still the fastest compression method in general. The pack-in-pairs implementa-
tion displays non-linear scaling for compression and decompression for the cases
n = 112, 116, and as such, our AVX2 compression implementation is actually
faster in these cases. The reason for such scaling is unclear, but may be related
to code alignment issues or compiler heuristics not being satisfied for these par-
ticular values. For the other cases, our AVX2 implementation gives timings quite
close to pack-in-pairs while providing much shorter compression sizes. Finally,
our AVX2 code gives a speed-up against our pure C implementation of 5.6-6.9×
in compression and 9.6-13.3× in decompression.

Details of our AVX2 optimization At a high level, our AVX2 implementa-
tion is a straightforward translation of the C code, exploiting the considerable
parallelization opportunities presented by the algorithm itself within a single
compression or decompression. We wrote compact and manually unrolled ver-
sions of the code, but as the latter performed consistently better, we choose to
present performance results only for it.

We employ vectors with 8 elements of 32 bits each for ranking and unranking.
Referring to the example of Table 2, we operate first on k = 1, . . . , 8, processing
each “column” in sequence, and then k = 9, . . . , 16. As can be seen, our A* search
strategy ensures that vectors are fully utilized due to the choice of the number
of words as 16, 24, or 32 depending on n. On the other hand, since, in general,
8 ∤ n, it is inevitable that there will be some gaps in the distribution of indices,
as seen in the cases k = 3 and 5 in Table 2. In these cases, we still process the
full vector (therefore using invalid data for the gaps) but use the AVX2 blend

instruction to choose whether to include the result (in the example, for the cases
k = 1, 2, 4, 6, 7, 8) or not (for k = 3 and 5).

We note that the loads in the ranking algorithm map well to the gather in-
structions of AVX2, whereas the stores in the unranking algorithm are a clear use
case for scatter instructions, which, unfortunately, are unavailable on AVX2,
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only AVX-512. Thus, we expect that an AVX-512 implementation of decompres-
sion could perform even better.

For computing the factorial representation, we employ vectors with 32 el-
ements of 8 bits each, which is sufficient as n ≤ 150. For the first iteration
of the algorithm, the number of vectors required varies from ⌈79/32⌉ = 3 to
⌈150/32⌉ = 5 across PERK parameter sets. This number decreases as the algo-
rithm restricts itself to progressively shorter ranges of the full array of indexes.
We ensure that computations are performed only on the minimum number of
vectors required at each iteration. If the length of the current range is k, then
we use ⌊k/32⌋ full vectors and a partially masked vector, using only k mod 32
out of the 32 available lanes. As with ranking and unranking, we still process
the entire vector and conditionally select only the lanes performing useful work,
this time using masks and the bitwise AND operator.

We expect that a batched implementation, compressing or decompressing
multiple permutations at once, opens up possibilities for further instruction-level
parallelism and better utilization of 32-byte vectors for computing the factorial
representation. This should lead to more considerable speedups in exchange for
more complex code. We leave such an investigation to future work.

n Pack-in-pairs Optimal Quasi-optimal Quasi-optimal AVX2

Compression

79 309 11307 2606 411

83 330 11995 2792 419

112 887 17775 4271 623

116 920 18582 4508 649

146 652 25772 6172 1086

150 694 26552 6408 1130

Decompression

79 280 30586 7172 743

83 292 33048 7838 773

112 824 54572 13219 1104

116 873 58013 14101 1140

146 601 89232 21226 1670

150 606 93817 22902 1718

Table 4: Comparison in CPU cycles of the compression and decompression
routines from PERK version 1.1 and the one introduced in Section 3. The results
of each parameter set were obtained by computing the mean from 64·64·10, 000 =
40, 960, 000 random instances.
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4.3 On the impact of our work on PERK signature scheme

To assess the impact of the compression technique presented in Section 3 to
PERK [ABB+23b], we have integrated it into PERK’s official implementation
and conducted experiments. In order to not introduce any vulnerability to PERK,
we included in our decompression algorithm (Algorithm 4) a check that each
s[k] ≤ jk!

jk−1!
, for k = 1 · · · , ℓ, to ensure that the compression is bijective and one

cannot easily generate another valid signature. If the bound does not hold, the
signature gets rejected. Note that constant-time code is not required in our case,
as we compress and decompress public data.

We start by reporting in Table 5 a comparison of the signature sizes of PERK
when using the compression explained in Section 3 compared to PERK version
1.1. One can see that our quasi-optimal ranking increases the signature sizes of
PERK by a negligible fraction (never more than 0.25%) for the short parameter
sets. On the other hand, it always reduces the sizes of PERK’s fast parameter
sets by more than 5%.

Parameter Set PERK v. 1.1 PERK + Section 3 gain/loss

Signature Size Signature Size %

PERK-I-fast3 8345 B 7897 B −5.37
PERK-I-fast5 8026 B 7611 B −5.17
PERK-I-short3 6251 B 6256 B +0.08

PERK-I-short5 5780 B 5792 B +0.21

PERK-III-fast3 18820 B 17849 B −5.16
PERK-III-fast5 17968 B 17060 B −5.05
PERK-III-short3 14280 B 14308 B +0.20

PERK-III-short5 13164 B 13175 B +0.08

PERK-V-fast3 33339 B 31547 B −5.37
PERK-V-fast5 31664 B 29983 B −5.30
PERK-V-short3 25141 B 25203 B +0.25

PERK-V-short5 23040 B 23082 B +0.18

Table 5: Signature size gain and loss using quasi-optimal ranking for compress-
ing permutations compared to PERK version 1.1 [ABB+23b]. For each row, we
write in bold the compression that gives the shortest signatures. The last column
reports the gain/loss in percentage of our method against PERK version 1.1.

In Tables 6 and 7, we present the CPU-cycle performance on the aforemen-
tioned benchmark platform when utilizing various compression methods for each
parameter set of PERK across both reference and optimized (AVX2) implemen-
tations. For the reference version, there are generally small slowdowns for the
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fast parameters and small speedups for the short parameters, on the order of
< 1% for signing and < 3% for verification. The optimized version compares
better: there are a few slowdowns, most of which are negligible (≤ 0.35%, with
the exception of verification for PERK-V-fast5 at 0.88%). On the other hand,
there are speedups for all short parameters, and even for some fast parameters,
of up to 2.9%.

Summarizing the results of Tables 5 to 7, PERK would get the following
impact from our compression:

– significantly smaller signature sizes for fast parameter sets, for a negligible
computational cost increase,

– equivalent signature sizes for the short parameter sets, with either equivalent
or slightly faster signature and verification algorithms,

– more straightforward and more portable code, free of any dependency from
a multiple-precision arithmetic library. In addition, our compression drops
the need for any heap-memory allocation required by GMP, which is a critical
issue for resource-constrained devices; indeed, the pqm4 project [KKPY24],
mirroring best practices in the embedded industry, excludes any implemen-
tations that perform dynamic memory allocations.

One additional benefit is that PERK could use the same compression algo-
rithm (and code) for both short and fast parameter sets.

5 Conclusions

We introduced a quasi-optimal permutation ranking that, unlike its optimal
counterpart, allows it to be computed without using a multiple-precision arith-
metic library. This allowed us to define a new permutation compression tech-
nique. Our experiments suggest that our technique achieves the best trade-off
of efficiency and compression size for the permutation sizes considered in this
work. We applied our result to the digital signature PERK, obtaining a consid-
erable improvement in the signature size for the fast versions of the scheme and
an overall more straightforward and more portable code. Moreover, we expect
our code to yield significant improvements in efficiency for implementations of
PERK on resource-constrained devices since the GMP library cannot be ported
there.

Additionally, we believe that our result might be useful also outside the
realm of Cryptography, in applications such as heuristic search, combinatorial
optimization and data structure indexing.
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Parameter PERK v. 1.1 PERK + Sec. 3 Speedup

set Sign Verify Sign Verify Sign Verify

I-fast3 20.7 10.2 20.8 10.5 −0.65% −2.46%
I-fast5 20.4 9.90 20.5 10.2 −0.76% −2.81%
I-short3 111 55.6 110 54.6 0.53% 1.91%

I-short5 106 52.2 105 51.2 0.85% 1.98%

III-fast3 49.9 25.2 50.1 25.9 −0.50% −2.45%
III-fast5 48.5 24.2 48.8 24.8 −0.45% −2.48%
III-short3 268 136 268 135 0.09% 0.68%

III-short5 252 127 252 125 0.22% 1.51%

V-fast3 104 54.9 104 55.9 −0.16% −1.79%
V-fast5 99.9 52.4 100 53.7 −0.43% −2.35%
V-short3 556 297 557 296 −0.03% 0.63%

V-short5 519 274 517 271 0.31% 1.03%

Table 6: Performance in millions of CPU-cycles of the quasi-optimal ranking for
compressing permutations compared to the reference implementation of PERK
version 1.1 [ABB+23b]. The results of each parameter set were obtained by
computing the mean from 8 · 64 · 10 = 5120 random instances. Speedups in bold
indicate statistically significant results at the p = 0.05 significance level.
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