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Abstract. The Fiat-Shamir with Aborts paradigm (FSwA) uses rejec-
tion sampling to remove a secret’s dependency on a given source distribu-
tion. Recent results revealed that unlike the uniform distribution in the
hypercube, both the continuous Gaussian and the uniform distribution
within the hypersphere minimise the rejection rate and the size of the
proof of knowledge. However, in practice both these distributions suffer
from the complexity of their sampler. So far, those three distributions
are the only available alternatives, but none of them offer the best of
all worlds: competitive proof of knowledge size and rejection rate with a
simple sampler.
We introduce a new generic framework for FSwA using polytope based
rejection sampling to enable a wider variety of constructions. As a matter
of fact, this framework is the first to generalise these results to integral
distributions. To complement the lack of alternatives, we also propose a
new polytope construction, whose uniform sampler approaches in sim-
plicity that of the hypercube. At the same time, it provides competitive
proof of knowledge size compared to that obtained from the Gaussian
distribution. Concurrently, we share some experimental improvements of
our construction to further reduce the proof size. Finally, we propose a
signature based on the FSwA paradigm using both our framework and
construction. We prove it to be competitive with Haetae in signature size
and with Dilithium on sampler simplicity.

Keywords: Zero-Knowledge Proofs · Lattice-based Cryptography · Fiat-Shamir
with Aborts · Rejection Sampling · Integral Polytope Uniform Sampling

1 Introduction

Lattice-based cryptography offers numerous advantages over traditional number-
theoretic public-key cryptography. These advantages span from conjectured re-
sistance to quantum attacks to the capability of performing arbitrary compu-
tations on encrypted data, all while maintaining comparable or even superior



efficiency. However, a notable challenge persists: the need to reduce the size of
transmittable elements, including zero-knowledge proofs of knowledge (ZKPoK).

Even when using algebraic lattices, zero-knowledge proofs still tend to be at
least an order of magnitude larger than their traditional counterparts. Conse-
quently, the transition towards this so-called post-quantum cryptography, driven
by the release of the first standards, presents a series of challenges. These chal-
lenges include a substantial increase in bandwidth consumption. Presently, these
issues serve as barriers to the widespread adoption of lattice-based cryptography.

Zero-knowledge. There exists a wide variety of lattice-based ZKPoK construc-
tions, starting with [KTX08] and seeing improvements in [LNSW13]. This evolu-
tion has led to multiple lines of work, in particular to the birth of the Fiat-Shamir
with Aborts [Lyu09] paradigm. In this paradigm, the crucial zero-knowledge step
is done through a rejection sampling algorithm in order to remove any sort of se-
cret dependency from the output distribution. This led to a plethora of different
improved constructions [BLNS20, LNS20, LNS21a, LNP22], from basic signa-
tures [DKL+21, CCD+23] to blind [BLNS23a] and group signatures [dLS18,
LNS21b] as well as anonymous credentials [BLNS23b].

Fiat-Shamir with aborts. We particularly focus on the recent [DFPS22] as a
foundational work in the study of FSwA, specifically regarding the rejection sam-
pling theorem from [Lyu12]. Informally, it studies the rejection rates and proof
of knowledge sizes obtained from the following existing distributions: Gaussian
distribution, bimodal distribution [DDLL13], uniform distribution inside a hy-
percube, and uniform distribution inside a hypersphere with its bimodal coun-
terpart [CCD+23]. The authors obtain generic optimal bounds for these two
metrics and prove that both the Gaussian and the hypersphere uniform distri-
butions achieve them, whereas the hypercube shows poor results in these aspects.
This raises a natural question regarding the widespread usage of uniform distri-
butions within the hypercube. The explanation of its attractiveness comes from
its simplicity and most notably the simplicity of its sampler. Which is, indeed,
another important metric for such primitives in their applications. In this as-
pect, both the Gaussian and the hypersphere uniform distributions suffer from
their respective samplers compared to the trivial sampler inside a hypercube.
Ensuring the secure generation of these crucial samples has proven to be sur-
prisingly challenging in an efficient and provably resistant against side-channel
attacks manner [BHLY16, EFGT17, PBY17, GMRR22, Pre23]. Moreover, the
analysis of [DFPS22] is conducted in the continuous setting, leaving a blurry
gap between the theory (studying volumes) and the application (restricting the
volume to its integral points). In most lattice-based cases, the primitives are
handled both with the samplers and the operations over integers.

By definition, at some point the need to restrict results to integers is neces-
sary, however it appears that generic constructions dealing with this restriction
part is missing in the literature.
We highlight the different missing parts in the literature as well as some existing
problem in the case of FSwA:
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Is it possible to have a generic approach on rejection sampling directly with the
restriction to integers? If yes, how?

Would it leads to overall practical constructions with few to no inconvenient?
In other words, is there a construction that lives in the best of both the
hypersphere and hypercube worlds (simple sampler, competitive proof of

knowledge size, simple characterisation)?

Contributions. In this paper, we address the aforementioned problems through
a comprehensive analysis of rejection sampling using integral uniform distribu-
tions for cryptographic applications. We provide an improvement in the trade-off
between the proof of knowledge size and the simplicity of the samplers using a
new construction.

Before diving into technical details, let’s review the main (although not ex-
haustive) choices for distributions with regards to rejection sampling in cryptog-
raphy: the Gaussian and uniform distributions. Due to the shortcomings of its
sampler and its rejection condition, we choose to exclude the Gaussian distribu-
tion from the scope of our study. Additionally, part of our results are generalisable
to Lp balls and in particular hold for L2 balls. However, the necessary bridge
between rejection sampling inside a continuous L2 ball and rejection sampling
inside its discrete restriction to integers appears to be false in general. Thus,
we make the choice to focus on more structured convex spaces, and deal only
with polytopes in order to obtain a main rejection sampling theorem on uniform
distributions over integral sets.

Our contributions can be summarised as follows:

• We provide a generic study over polytopes to describe the rejection sampling
procedure when source and target distributions are uniform distributions on
polytopes. Informally, for a fixed polytope P and chosen rejection rate M
(expected number of repetitions), we give a closed form to obtain the minimal
couple (R, r) such that: for any translation v ∈ Zn, with source distribution
U (R · P + v) and target distribution U (r · P), the average rejection rate is
M . More importantly, we prove that this result extends to its restriction to
integers (i.e. on P ∩Zn) under some specific constraints on P to answer the
first interrogation above.

• By summing-up previous remarks, a polytope is attractive for FSwA because
of its sampler simplicity and the estimation of its proof of knowledge size.
For the first part this can be done through a lot of sub-metrics (randomness
usage, running time ...) but for the latter, an appropriate way to measure
the size of the knowledge proof is to compute the ratio between the radius
of the circumscribed sphere to P with the radius of its inscribed sphere (in
L2 metric). For example if n is the dimension, this ratio for a hypercube
is equal to

√
n. In this part we introduce H, defined as the intersection

of a hypercube with its dual L1 ball. In comparison with the hypercube,
H has a ratio of 4

√
n which, for cryptographic parameters, varies between

approximately 33 for the hypercube to approximately 6 for H. Additionally,
we define a uniform and isochronous sampler in H ∩ Zn using only uniform
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sampling (to be compared with the hypersphere sampler that uses Gaussian
sampling).

• Lastly we share some applications to both our main theorem on rejection
sampling and our construction H. We start by introducing an experimental
improvement overH using an additional fine-tuned Euclidean norm bound to
go from a ratio of 6 using cryptographic parameters to 1.5. Then, we wrap up
our contributions by constructing a FSwA signature called Patronus which
is an attractive choice over existing FSwA schemes, as much for its signature
size as for its sampler simplicity.

Technical details. This work focuses on identifying sets of vectors that are
highly compatible with the Fiat-Shamir with Aborts (FSwA) paradigm, with
a particular emphasis on optimising vector sizes after rejection and facilitating
implementation. Within the FSwA paradigm, an element z = y+ cs is retained
only if it reveals no information regarding the possible values of y and cs; other-
wise, it is rejected, repeating the process. If we denote by VY the set of possible
y values (from which y is uniformly sampled) and Vcs as the set of possible cs
values, it is clear that z avoids information leakage if and only if:

VZ ⊆
⋂

x∈Vcs

(VY + x).

Furthermore, VZ minimises the number of rejects if and only if:

VZ =
⋂

x∈Vcs

(VY + x).

To achieve this, we must identify sets VY and Vcs that satisfy several essential
constraints:

1. Restriction to Zn: VY and Vcs must be subsets of Zn.
2. Simple membership test: We must have a straightforward way to de-

termine membership in VZ , as it is essential for characterising VZ and for
efficient implementation.

3. Minimising aborts: To minimise the occurrence of restarts, our objective
is to have VZ closely approximate the set encompassing all possible y + cs
values.

4. Hypersphere approximation: Given that the hypersphere offers optimal
proof of knowledge sizes, our objective is to identify a set VZ that closely
approximates it.

5. Efficient uniform sampling: Since y is uniformly sampled from VY , we
need an efficient method to sample from VY .

Interestingly, no existing solutions excel in addressing these five challenges:

– Hypersphere: The hypersphere approach, as presented in [CCD+23], in-
herently solves the hypersphere approximation and has been proved to min-
imise the number of aborts in [DFPS22]. Additionally, membership verifi-
cation only needs a computation of the L2 norm. However, sampling in the
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integral points of the hypersphere is complex. In [CCD+23], they manage to
avoid dealing with floating points contrarily to the Gaussian approach. But,
they still rely on a sub-procedure that uses Gaussian sampling with 128-bit
precision fixed-point arithmetic.

– Hypercube: In contrast, sampling within the hypercube, as in [DKL+21],
is straightforward and has been extensively studied for various rejection sam-
pling applications. Nevertheless, in high dimensions, the hypercube’s vertices
are distant from the inscribed sphere, resulting in a ratio of

√
n as mentioned

previously.
– Gaussian: The discrete Gaussian distribution, as in [Lyu12], is more or

less the opposite of the hypercube distribution. It offers the lowest proof
of knowledge size and minimises the number of aborts. However, it entails
the most complex rejection sampler: the rejection step involves computing a
transcendental function on input dependent on a secret, and as previously
noted, Gaussian samplers pose significant challenges in terms of efficiently
and provably resisting side-channel attacks. While Gaussian distributions are
ideal theoretical tools, their practical implementation remains more challeng-
ing compared to the previous distributions.

To answer these fives challenges we first build a generic framework for FSwA
proofs of knowledge using uniform distributions in polytopes. We use the fol-
lowing notation Pn

r,v,Z = (v + r · Pn) ∩ Zn for a polytope P and define R∞ as
the ∞-Rényi divergence. Then, by associating VY = Pn

R,Z and Vcs = Pn
β,Z, we

summarise our generic FSwA result with the following simplification of our main
theorem :

Theorem (Rejection sampling on polytopes). Let P be a polytope, M > 1,
β > 0 and h a probability distribution such that Supp (h) ⊆ Pn

β,Z. There exist
rM , R ∈ Z>0, with rM computable and R ≥ r + β. Let ϵn,rM , ϵn,R ∈ R>0 and
M ′ = 1+ϵn,R

1+ϵn,r
·M . Let v ∈ Pn

β and define ρnr,v := U
(
Pn
r,v,Z

)
. If M ′ > 1 then:

R∞
[
U
(
Pn
r,Z
)
∥ U

(
Pn
R,v,Z

) ]
=

(
R

r

)n

· 1 + ϵn,R
1 + ϵn,r

= M ′,

and the two algorithms A and F below have indistinguishable output distribu-
tions.

A
1 : v←$ h

2 : z←$ ρnR,v

3 : output (z,v) if z ∈ Pn
r,Z

else ⊥

F
1 : v←$ h

2 : z←$ ρnr

3 : output (z,v) with probability 1/M ′

else ⊥

Furthermore, A outputs (z,v) with probability 1/M ′.
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Theorem description. This theorem informally provides a lot of complementary
information. First, it allows to build a procedure such that algorithms A and
F are indistinguishable. This crucial part ensures the zero-knowledge property
induced by this rejection sampling. It implies that after executing A then the
output distribution induced by z is independent of v. In practice v depends on
a secret and therefore algorithm A must hide v and its associated secret from
the output distribution induced by z. Now, by itself this result is a pretty stan-
dard one. In addition our theorem proves two other things. First, contrarily to
the state-of-the-art, it uses generic polytopes (and uniform distributions inside
these polytopes), making it the first generalisation of the rejection sampling the-
orem to this setting. Then, in most cases the number of integral points inside a
polytope is hard to manipulate because its closed form can be complicated. Con-
sequently, instead of directly proving the rejection sampling over integral sets,
we first work with volumes to compute the Rényi divergence. Then we tweak
this result appropriately in order to obtain the necessary result over the restric-
tion to integers of the volume as well as being able to compute the appropriate
values of rM and R. Last but not least, behind it hides some nice properties such
as minimisation of the rejection rate. Alternatively, in most practical cases the
rejection rate is fixed beforehand and thus this theorem minimises the size of
rM . These two minimisations are dual depending on which parameter is fixed.

At this point, we still have no improvement to resolve the five challenges
defined above. However, the above theorem allows to study a wider range of
constructions. Currently, in lattice-based cryptography the only distributions
used are: Gaussian distributions, uniform distributions over hypercube and newly
over hypersphere and to a lesser extent bimodal distributions. This phenomenon
is not due to the lack of practical distributions but the lack of a dedicated
framework. Now that we have given one, we propose a new construction defined
by the polytope Hn

r = Bn∞(r) ∩ Bn1 (
√
nr).

By definition, test of membership is trivial as it involves computing a max-
imum and a sum. Additionally, most of the work involved for restriction to Zn

and abort minimisation has been handled through the previous theorem. More
details are provided in Section 3.

The last two challenges remain: having an efficient sampler and accurately
approximating this hypersphere i.e for Hn

r having a circumradius close to r. We
provide a positive answer to both challenges. First, we prove that all the vertices
of Hn

r are at distance r 4
√
n of its centre, which implies that the circumradius is

exactly r 4
√
n. To compare with the hypercube, many lattice-based applications

use n ≈ 1024. As such we diminish the appropriate radius from 33r with the
hypercube to less than 6r with Hn

r .
We propose an isochronous uniform sampler onH. Informally, an isochronous

sampler is a sampler whose running time is independent of its inputs and out-
puts (see [HPRR20] for details). To achieve it we use two main tricks linked
to the L1 ball. First, we use the fact that the volume of an L1 ball is mostly
concentrated inside this inscribed H. Furthermore this result can be extended
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to restrictions to integral points, meaning that most points inside a L1 ball are
inside HZ. Therefore, at the cost of a negligible additional amount of rejection,
one can directly sample inside the integral points of an L1 ball. However, this
still remains a challenge as the quest for efficiency and practicality reduces the
number of possible approaches. To circumvent this, we use some link between an
L1 ball and L1 sphere. By denoting Bn1 (r) the L1 ball of radius r in dimension n
and Sn1 (r) its surface then there is a bijection between any 1-dimensional pro-
jection on the canonical basis of Sn+1

1 (r) with Bn1 (r). Since sampling on the L1

sphere is well-known and doable using solely basic uniform sampling, we build
and prove a variant that respects the isochronous property in order to sample
directly inside HZ at the cost of a negligible amount of restarts.

Experimentally it appears that H can be made even more compact. The first
intuition can be given when computing a θn such that Vol (Hn

r ) = Vol (Bn2 (θn · r)).
For large enough n we obtain θn ≈

√
2e
π ≈ 1.315, which is a small radius. How-

ever, when sampling in Hn
r,Z the number of vectors that have Euclidean norm

bigger than θn · r is non-negligible which leads to a high rejection rate. By care-
fully increasing a parameter θ from θn upwards, it appears that after θ = 1.5,
most vectors from Hn

r,Z have Euclidean norm less than θ · r. This leads to some
nice improvements in the approximation of the hypersphere. More formally this
boils down to directly working on Hn

r,Z ∩ Bn2,Z(θ · r). As this does not define a
polytope, only some results from the overall framework carry over, and others
remain to be adapted.

We wrap all our contributions into one possible application of FSwA by
giving birth to a new signature scheme: Patronus. We prove its basic properties
such as correctness and security properties such as UF-CMA in the QROM using
[KLS18, BBD+23, DFPS23]. This signature has non-negligibly shorter signatures
compared to Dilithium [DKL+21] (around 27% shorter). Regarding sampling,
since it is based on uniform distributions in integral intervals and not fixed-point
Gaussian distributions, firstly it uses less randomness and secondly it should
be much easier to protect against side-channel attacks than Haetae [CCD+23].
Given classical bit security targets 120, 180, and 260, we show in Table 1 a
comparison between our signature sizes with Dilithium and Haetae.

Table 1. Comparison of the signature size in bytes of Dilithium, Haetae, and Patronus.

Security target 120 180 260
Haetae 1463 2337 2908
Patronus

1885 2398 3519
(this work)
Dilithium 2420 3293 4595
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Overview. In Section 2 we introduce necessary preliminaries, including notations
and lemmas for the following parts. We then present our generic framework on
polytopes in Section 3. We complement it in Section 4 by a comprehensive study
of H. Lastly, in Section 5 we present experimental upgrades to H which further
improve the proof of knowledge size, and conclude Section 5 by introducing a
signature scheme based on this whole study of FSwA.

2 Preliminaries

The non-negative integers, integers and reals are respectively denoted N, Z, and
R. Matrices are written as bold capital letters and vectors as low-case bold let-
ters. Vectors should be understood as column vectors. Unless otherwise specified,
n will denote the dimension of the ambiant space and integral will mean ⊂ Zn.

The coordinates of a vector x ∈ Rn will be written x = (x1, · · · , xn). For
a, b ∈ R, we define Ja, bK = [a, b]∩Z and Ka, bK = (a, b]∩Z. For a predicate P, we
write JP K = 1 if P is true and 0 otherwise.

For D a distribution, we define z←$ D as z sampled according to distribution
D. In case D is not a distribution but a set, we use the convention that z←$ D
means uniformly sampling z inside D.

We provide additional reminders in Section A.4 of Appendix about signatures
and lattice assumptions.

Operations on sets. Given a set P ⊂ Rn we note Vol (P) ∈ R≥0 ∪ {∞}
its volume when appropriate, and |P| ∈ N ∪ {∞} its cardinality. For X ⊂ Rn,
XZ = X ∩ Zn denotes its restriction to the integers and conv (X) denotes its
convex hull, the smallest convex region containing X, which we define as:

conv (X) :=

{∑
x∈X

λxx

∣∣∣∣∣
∑

x∈X λx = 1,∀x ∈ X,λx ∈ [0, 1],
and only a finitely many λx are non-zero.

}
.

We specifically focus our study on convex spaces and in particular to their vol-
umes or to the cardinal of their restriction to integers. For this we use a common
result on the volume of a convex space homothety.

Lemma 1. Let S ⊂ Rn be a measurable set, and let r ≥ 0. Recall Sr = {rs :
s ∈ S}. Then, we have Vol (Sr) = rn · Vol (S).

Lp norms, balls and spheres. For x ∈ Rn and p ∈ R>0 ∪ {∞}, we denote
by ∥x∥p its Lp norm. The p-ball (resp. p-sphere) of radius r centred at c in
dimension n is denoted Bnp (r, c) (resp. Snp (r, c)) or Bnp (r) (resp. Snp (r)) for c = 0.
In Table 2 we provide a brief summary of closed forms for the volume of common
Lp balls as well as their number of integral points. 1

1Precise estimates are notoriously difficult to obtain in general. For r large enough we
refer to the estimates of [Ste17].
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Table 2. Volume and cardinality of L1, L2 and L∞ balls.

Bn
1 (r) Bn

2 (r) Bn
∞,Z(r)

Vol (B) (2r)n

n!
π

n
2 rn

Γ(1+n
2
)

(2r)n

Vol (BZ)
∑min(r,n)

i=0

(
n
i

)(
r
i

)
2i Vol (Bn

2 (r)) (2r + 1)n

Definition 1 (Polytope). Let n and v be integers, and let (xi)1≤i≤v ∈ (Rn)v

be a family of vectors. A subset P ⊂ Rn is a polytope in dimension n with v
vertices (xi)1≤i≤v if P is the convex hull of (xi)1≤i≤v and if no strict sub-family
of (xi)1≤i≤v has a convex hull equal to P. If in addition, the linear span of the
vertices is Rn, the polytope is referred to as full-rank. Lastly, a polytope P with
integral vertices is said integral.

Unless stated otherwise, in the rest of this paper, by polytope we mean full-
rank polytope. In Proposition 2, we show that the vertices of a polytope are
unique up to ordering, and we write V (P ) := {(xi)1≤i≤v} for the set of vertices
of P.

Definition 2 (Translation and dilation of polytopes). For a polytope (or
any subset of Rn) P ⊆ Rn, a centre c ∈ Rn, and a dilation factor r ∈ R, we
define Pr,c := {rx + c : x ∈ P}. We will omit r if r = 1 and c if c = 0. It
follows that V (Pr,c) = {rx+ c : x ∈ V (P)}.
Definition 3 (Symmetric and inscribed polytopes). A full-rank polytope
P is symmetric if P = P−1 (or equivalently if V (P) = −V (P)). A full-rank
polytope P is an inscribed polytope if for all x,y ∈ V (P ), ∥x∥2 = ∥y∥2. The
radius of an inscribed polytope is the L2 norm of its vertices.

The two following Propositions can be found in [Brø83].

Proposition 1 (Intersection of polytopes [Brø83, (Section 1)]). The in-
tersection of two (full-rank) polytopes is a (not always full-rank) polytope. If the
intersection contains a non-trivial open ball, then it is also full-rank.

Proposition 2 (Polytope vertices characterisation [Brø83, (Theorem
7.2)]). Let P be a polytope. Then, x is not a vertex of P if and only if there
exist vectors a and b in P such that x ∈ (a,b), where

(a,b) = [a,b]− {a,b} = {ta+ (1− t)b : t ∈ [0, 1]} − {a,b}.

Rényi divergence. We present the Rényi divergence, while it is defined for
any order between, we only focus on the relevant Rényi with a =∞.

Definition 4 (Rényi divergence). Let P,Q be two distributions such that
Supp(P) ⊆ Supp(Q). The Rényi divergence of order ∞ is defined as follows:

R∞(P ∥ Q) = max
x∈Supp(P)

P(x)
Q(x) .
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Remark 1. For a =∞, the Rényi divergence between two uniform distributions
on measurable sets Xs and Xt, Xt ⊆ Xs, with nonzero volume (resp. on finite
sets) is exactly the ratio of their volumes (resp. cardinalities).

Rejection sampling. Rejection sampling is a technique used to generate sam-
ples from a target distribution Dt based on samples from a source distribution
Ds under the condition that the support of Dt is (almost) contained within the
support of Ds.

Lemma 2 (Rejection sampling (from [Lyu12, (Lemma 4.7)])). Let Ds

be a source distribution and Dt be a target distribution with Supp(Dt) ⊆ Supp(Ds).
If there exists M > 1 such that R∞ [ Dt ∥ Ds ] ≤M then the output distribution
of the following algorithm A is statistically equivalent to the output distribution
of the following algorithm F .

A
1 : z←$ Ds

2 : with probability min

(
Dt(z)

M ·Ds(z)
, 1

)
:

3 : return z

F
1 : z←$ Dt

2 : with probability 1/M :

3 : return z

Notably, A outputs z with probability 1
M .

Modular arithmetic. For any p ∈ Z>0 and x ∈ Zp := Z/pZ, we write x mod p
the unique representative in J0, pJ. For any even (resp. odd) p ∈ Z>0 and any
x ∈ Zp, we will denote by x mod± p the unique representative in K − p/2, p/2K
(resp. J−(p− 1)/2, (p− 1)/2K).

We extend this definition to vectors entrywise. For x ∈ Zp, we define |x| :=∣∣x mod± p
∣∣. For any p, n ∈ Z>0 and x ∈ Zn

p , we define ∥x∥p as the Lp norm of
|x| ∈ Rn, where |·| is taken componentwise.

The ring Rq. We will work in R = Z[X]/(Xn+1) and Rq = Zq[X]/(Xn+1)
for q a prime and n a power of two that will be clear from context.

We extend the definition of Lp norms to Rq by identifying each x ∈ Rq

(seen as a polynomial of degree less than n) with the vector x ∈ Zn
q of its

coefficients. We will consider R2 the subset of R and Rq of binary polynomials,
with coefficients 0 or 1.

Support of a probability distribution. For D a probability distribution
with values in a set X, we define Supp (D) = {x ∈ X : Pr [D = x] ̸= 0}.
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3 Rejection sampling on polytopes

The authors of [DFPS22] formally prove and characterise optimal distributions
in the continuous setting for zero-knowledge proofs using the Fiat-Shamir with
Aborts (FSwA) paradigm. They define optimality through two notions: minimal
rejection rates, and compact distributions in the proof of knowledge. In practice,
this equates to sandwiching the support S of a uniform distribution between
its inscribed and circumscribed spheres as tightly as possible. However, these
distributions studies are done in the continuous setting instead of doing in their
restriction to Zn as it is done in practice.

On the broader front, uniform distributions appear to allow for overall simpler
sampling algorithms. This, however, is not always true as uniform distribution
does not rhyme with uniform sampling. In the case of the hypersphere, its state-
of-the-art uniform sampler [CCD+23] uses Gaussian samplers. That is why we
focus our study on uniform distributions over structured convex supports, i.e.
polytopes. We propose a different framework for FSwA that relies specifically
on those uniform distributions. We thereby translate the framework of distribu-
tion indistinguishability through its implications to intersections of volumes over
which probability densities are taken to be homogeneous. Although we restrict
the study to uniform distributions inside polytopes, results can be partially ex-
tended to other Lp norms in Section B.3, but this is not the main focus of our
article.

In this section we propose a study in the continuous and more importantly in
the discrete setting (restricting to Zn) that minimises the rejection rate given a
target uniform distribution over a polytope. For this, we first prove an important
characterisation of a special intersection of polytopes, and then we share our
main general theorem on rejection sampling using discrete uniform distributions.
Throughout this section, n ∈ N refers to the dimension of our ambient space.

3.1 Intersection of polytopes

In this section we study intersections of polytopes that will help us find the
largest volume the hides the secret. Proposition 3 is the main tool for our general
result on polytope rejection sampling. We prove it through a couple of lemmas.

Lemma 3. For any symmetric inscribed polytope P, let r,R ∈ R be two radii
such that R > r > 0. Then:

PR−r =
⋂

c∈Pr

PR,c.

Proof. We first prove the direct inclusion. Denote the vertices of P by {xi}1≤i≤v,
so for all η ̸= 0, the vertices of Pη are {ηxi}1≤i≤v. Additionally, for 1 ≤ i ≤ v we
define i∗ to be the unique index such that xi∗ = −xi. Let c ∈ Pr, and 1 ≤ j ≤ v.
We can express c =

∑v−1
i=1 λirxi with

∑v−1
i=1 λi = 1 and λi ∈ [0, 1] by convexity

11



of Pr. Then

(R− r)xj − c = (R− r)xj −
v∑

i=1

λi(rxi)

= (R− r)xj + r

v∑
i=1

λixi∗ by definition of i∗

=
(
1− r

R
(1− λj∗)

)
(Rxj) +

∑
i ̸=j∗

(
λi r

R

)
(Rxi∗)

∈ PR by convexity of PR.

This implies that {(R− r)xi}1≤i≤v ⊂
⋂

c∈Pr
PR,c. By convexity of the polytope

PR−r, we deduce that

PR−r ⊂
⋂

c∈Pr

PR,c.

We prove the reverse inclusion by contraposition. Namely, any vector not in
PR−r is not in

⋂
c∈Pr

PR,c. Let z /∈ PR−r. There exists unique ε > 0 and x ∈ P
of maximal L2 norm such that z = (R − r + ε)x. By taking c = −rx which
is in Pr by symmetry of P, we obtain z − c = (R + ε)x. By maximality of x,
z− c /∈ PR, and this concludes our proof. ⊓⊔

Lemma 3 is the starting point of the whole section. The focus of this subsection
is to extend it to integral restrictions.

Lemma 4. Let P be a convex region, and a ∈ Rn a vector. Then:

P ∩ (P + a) =
⋂

t∈[0,1]
(P + ta).

As a consequence, for any convex region P and polytope Q:⋂
c∈Q

(P + c) =
⋂

c∈δQ
(P + c) =

⋂
c∈V(Q)

(P + c).

Proof. We start with the first equation, ie P is convex. Let x ∈ P∩(P+a). Then
there exists y ∈ P such that x = y+a. Let t ∈ [0, 1]. Then x = (y+(1−t)a)+ta,
where y + (1 − t)a = (1 − t)x + ty and therefore lives in P by convexity. Thus
x ∈ P + ta and we have proved the direct inclusion. The reverse inclusion is
trivial. We now establish the second statement by induction on the number of
vertices of Q. The case |V (Q) |= 2 has been dealt with. Now let P be a convex
region and Q a polytope with m + 1 vertices a1, . . . ,am+1, and suppose the
result holds for convex hulls with fewer vertices. Let c =

∑m+1
i=1 tiai ∈ Q, then

c = (1−tm+1)c
′+tm+1am+1, where c′ ∈ Q′ and V (Q′) = (ai)i≤m. Reciprocally,

any point of c′ ∈ Q′ gives a segment [c′,am+1] ⊆ Q. Now using the first identity

12



multiple times,⋂
c∈Q

(P + c) =
⋂

c′∈Q′

⋂
t∈[0,1]

(P + (1− t)c′ + tam+1) =
⋂

c′∈Q′

(P + c′) ∩ (P + am+1)

= (P + am+1) ∩
⋂

c′∈Q′

(P + c′).

We conclude by our induction hypothesis. Note that the vertices are contained in
the boundary so we don’t bother with the middle term of the last statement. ⊓⊔

The following result remains true for integral polytopes.

Proposition 3 (P-ception: Intersection of polytopes). Let P be a sym-
metric inscribed polytope. Let r,R ∈ R such that R > r > 0. Then:⋂

c∈Pr

PR,c =
⋂

c∈δPr

PR,c =
⋂

c∈V(Pr)

PR,c = PR−r.

In particular, if V (Pr) ⊂ Zn,
⋂

c∈Pr,Z
PR,c,Z = PR−r,Z.

Proof. The proof follows immediately from the statements of Lemma 3 and
Lemma 4. ⊓⊔

3.2 Rejection sampling in the FSwA paradigm

Proposition 3 is a very useful tool for the study of rejection sampling, most
notably in the FSwA paradigm. Informally, it gives the exact characterisation of
the largest set of points that does not leak any information on the secret engaged
in the zero-knowledge proof. In this subsection, we propose a formalisation of
this idea using our framework.

This implies computing a Rényi divergence between uniform distributions
over a polytope. In practice, estimating the volume of a generic polytope can be
a delicate task, and precisely counting its integral points might be almost impos-
sible. Luckily, it is proven in [DF88] that it can be done in polynomial time on
integral polytopes with algorithms such as [CCF22]. We propose a step-by-step
approach that provides a path from the continuous setting to the desired theorem
on rejection sampling in the discrete setting. We use an ϵ-approximation of the
ratio between the cardinal of a set discretisation and its volume. Using lemma
from Appendix Section B.4, ϵ should be small for a cryptographic instance.

Lemma 5. Let P be a symmetric inscribed polytope, v ∈ Rn and let β, r,R > 0
such that R ≥ r + β, and v ∈ Pn

β . We have:

R∞
[
U (Pn

r ) ∥ U
(
Pn
R,v

) ]
=

(
R

r

)n

.

In particular if β = ∥v∥2 and R = r + β, then for any M > 1, the inequality(
R
r

)n ≤M holds if and only if r satisfies the condition r ≥ ∥v∥2
M

1
n−1

.

13



Proof. Let P be a symmetric inscribed polytope and v ∈ Pn
β , by applying Propo-

sition 3 we have: Pn
R−β =

⋂
c∈Pn

β
Pn
R,c ⊂ Pn

R,v. With r = R− β the Rényi diver-
gence is well-defined. The desired Rényi divergence is then obtained through a
direct application of Lemma 1. Finally, by fixing R = r + β we can derive the
following equivalences:(

R

r

)n

≤M ⇔ r + β ≤ r ·M 1
n ⇔ r ≥ β

M
1
n − 1

.

⊓⊔

Proposition 4. Let P be a symmetric inscribed polytope, v ∈ Rn and let M >
1, and v ∈ Pn

β,Z. For any s ∈ R, define ϵn,s ∈ R by ϵn,s =
∣∣Pn

s,Z
∣∣/Vol (Pn

s ) − 1.

If β = ∥v∥2, r ≥ β

M
1
n−1

, R = r + β, V
(
Pn
β

)
⊆ Zn and M ′ = 1+ϵn,r

1+ϵn,R
·M then:

R∞
[
U
(
Pn
r,Z
)
∥ U

(
Pn
R,v,Z

) ]
=

(
R

r

)n

· 1 + ϵn,R
1 + ϵn,r

≤M ′.

Proof. As P is a symmetric inscribed polytope, v ∈ Pn
β and Pn

β has integral ver-
tices, we can apply Proposition 3 to obtain Pn

R−β,Z =
⋂

c∈Pn
β,Z
Pn
R,c,Z ⊂ Pn

R,v,Z.

Thus the Rényi divergence in the statement is well-defined. It is then obtained
by simply rewriting:

R∞
[
U
(
Pn
r,Z
)
∥ U

(
Pn
R,v,Z

) ]
=

∣∣Pn
R,Z
∣∣∣∣∣Pn

r,Z

∣∣∣ =
Vol (Pn

R)

Vol (Pn
r )
·
∣∣Pn

R,Z
∣∣

Vol (Pn
R)
· Vol (P

n
r )∣∣∣Pn

r,Z

∣∣∣ .

The rest of the proof follows the one of Lemma 5. ⊓⊔

Proposition 3 contributes in two major ways to Proposition 4. First, it proves
the existence of our Rényi divergence. Second, it minimises M for fixed r and
R. Alternatively, for fixed M , it reduces the distance between r and R allowing
for shorter choices of polytope circumradii in practice. This leads to our main
generic theorem enabling FSwA rejection sampling using uniform distributions
over polytopes:

Theorem 1 (Rejection sampling for U (Pn
Z )). Let M > 1, β > 0 and h a

probability distribution such that Supp (h) ⊂ Pn
β,Z. Let r ≥ β

M
1
n−1

, R ≥ r + β,

and define ϵn,s =
∣∣Pn

s,Z
∣∣/Vol (Pn

s )−1 for s ∈ R and M ′ = 1+ϵn,R

1+ϵn,r
·M . Let v ∈ Pn

β

and define ρnr,v := U
(
Pn
r,v,Z

)
. If M ′ > 1 then:

R∞
[
U
(
Pn
r,Z
)
∥ U

(
Pn
R,v,Z

) ]
=

(
R

r

)n

· 1 + ϵn,R
1 + ϵn,r

= M ′,

and the two algorithms A and F below have indistinguishable output distribu-
tions:
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A
1 : v←$ h

2 : z←$ ρnR,v

3 : output (z,v) if z ∈ Pn
r,Z

else ⊥

F
1 : v←$ h

2 : z←$ ρnr

3 : output (z,v) with probability 1/M ′

else ⊥

Furthermore, A outputs (z,v) with probability 1/M ′.

Proof. Appart from its prerequisites, this proof follows the common approach of
the Rényi divergence applied to rejection sampling. We start by proving that,
given z ∈ Pn

R,v,Z, then min
(

ρn
r (z)

M ′·ρn
R,v(z)

, 1
)

is either equal to 0 if z ̸∈ Pn
r or 1

otherwise. Indeed, we know by Proposition 4 that:

ρnr (z)

M ′ · ρnR,v(z)
=

{
≥ 1 if ρnr (z) ̸= 0

= 0 if ρnr (z) = 0
.

Using distributions Ds = {(z,v) : v ←$ h ∧ z ←$ ρnR,v} and its counterpart
Dt = {(z,v) : v ←$ h ∧ z ←$ ρnr }, we aim to apply Lemma 2. First we verify
that they both satisfy conditions of this lemma.

We highlight that Supp (Dt) ⊂ Supp (Ds) as, in Proposition 3, we know that
for each v ∈ Supp (h) ⊂ Pn

β,Z, Supp (ρnr ) ⊂ Supp
(
ρnR,v

)
. By hypothesis M > 1

and as such given Proposition 4: r ≥ β

M
1
n−1

and R ≥ r + β. We compute that

R∞(Ds ∥ Dt) = max
z∈Supp(ρn

r ),v∈Supp(h)
Ds ((z,v))

Dt ((z,v))

= max
z∈Supp(ρn

r ),v∈Supp(h)
h(v) ρnr (z)

h(v) ρnR,v(z)

= max
v∈Supp(h)

(
max

z∈Supp(ρn
r )

ρnr (z)

ρnR,v(z)

)
= max

v∈Supp(h)
R∞

[
U
(
Pn
r,Z
)
∥ U

(
Pn
R,v,Z

) ]
≤
(
R

r

)n

· 1 + ϵn,R
1 + ϵn,r

By Proposition 4

≤M · 1 + ϵn,R
1 + ϵn,r

By construction of r and R

= M ′ By definition of M ′.

Now under the assumption that M ′ > 1, we can thus apply Lemma 2. ⊓⊔

4 One polytope to rule them all

We supplement Section 3 with a new construction. Before going into details,
we first recall existing distributions that are used in practice: the Gaussian dis-
tribution over the hypersphere, as well as the uniform distributions over the
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hypersphere or the hypercube. Both the Gaussian distribution and the uniform
distribution in an hypersphere are optimal with respect to two aspects: minimal
rejection rate and proof of knowledge size compactness (from [DFPS22] frame-
work). The fact that one can characterise optimality using the L2 norm comes
from the original purpose of FSwA: lattice-based zero-knowledge proofs. Most
lattice based security assumptions are linked to the Euclidean norm, making it
a good estimator of the quality of a distribution. In this respect, the uniform
distribution in an hypercube is a poor distribution: a hypercube of side length 2r
has an inscribed ball of radius only r, whereas its circumradius is n1/2r, a much
larger quantity. Why then has the FSwA signature Dilithium [DKL+21] gained
such attention and why has it been standardised by the NIST? The answer lies in
the impracticality of Gaussian and uniform samplers in the hypersphere. Both
need fixed-point arithmetic at best and use a lot of randomness. Meanwhile,
uniformly sampling in an hypercube is trivial and requires less randomness.

Back to our new construction, we propose a polytope with nearly the best of
both aforementioned worlds: better L2 norm compared to the hypercube (order
of n1/4r instead of n1/2r) and a sampler using only uniform distributions on
polytopes implying a friendlier sampler compared to both Gaussian and spherical
uniform distributions. We divide this section into three parts: we first define and
characterise our special polytope H, then we use Theorem 1 to successfully apply
the framework from Section 3 and last we share an efficient isochronous algorithm
for uniform sampling in H.

4.1 Characterisation of H

Definition 5. For n ∈ N∗ and r ∈ R>0, we define Hn
r by

Hn
r = Bn∞(r) ∩ Bn1 (r

√
n).

As H is defined as an intersection of full-rank polytopes that contains an open
ball, Proposition 1 tells us that H is also a full-rank polytope.

Remark 2. We use the simplified notation H when both the dimension n and
radius r can be omitted without ambiguity. Additionally and in practice, we
restrict r to the positive integers, as this will always be true in our setup; this
distinction will be useful for our application of Theorem 1.

Proposition 5. For n ∈ Z>0 and r ∈ R>0, Hn
r is a symmetric inscribed poly-

tope with radius:

r

√
⌊√n⌋+ (

√
n− ⌊√n⌋)2 ≤ r 4

√
n.

Equality is achieved when
√
n ∈ Z. The vertices of this polytope are all of the

form (r, . . . , r︸ ︷︷ ︸
⌊√n⌋

,∆nr, 0, . . . , 0) up to signed permutation, where ∆n = (
√
n−⌊√n⌋).
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Proof. From its definition, the polytope Hn
r is stable under signed permutation

of coordinates, in particular it is symmetric. Let v ∈ V (Hn
r ) be a vertex of Hn

r .
Without any loss of generality we can assume its coordinates are non-negative
and sorted in decreasing order. By Proposition 2, it is impossible that v has two
coordinates 0 < vj < vi < r for i < j. Indeed if that were the case, we could
then write v = v1+v2

2 , where v1 = v + ϵei − ϵej and v2 = v − ϵei + ϵej are
both in Hn

r for a small enough ϵ > 0 (here (e1, . . . , en) denotes the canonical
basis for Rn). Using the L1 norm condition, this shows that v is of the form
(r, . . . , r,∆nr, 0, . . . , 0), where ∆n = (

√
n−⌊√n⌋) and the first ⌊√n⌋ coordinates

are equal to r. This proves the first part of the statement, ie Hn
r is inscribed with

radius r
√
⌊√n⌋+∆2

n. The inequality follows from the fact that ∆2
n ≤ ∆n, with

equality if and only if ∆n = 0, exactly when n is a perfect square. A little extra
effort with Proposition 2 can also show that all points of the aforementioned form
are indeed vertices of Hn

r . By contradiction if wlog v = (r, . . . , r,∆nr, 0, . . . , 0)
is not a vertex, then there we can write v = tv1 + (1− t)v2 for a t ∈ (0, 1), and
v1,v2 ∈ Hn

r not equal to v. The first ⌊√n⌋ coordinates of both v1 and v2 must
be r, otherwise one would escape Bn∞(r). The (1 + ⌊√n⌋)-th coordinate of v1

and v2 must also be ∆nr, otherwise one of them escapes from Bn1 (r
√
n). This

forces the last coordinates to be 0, and v1 = v2 = v, this is a contradiction. ⊓⊔

In Proposition 5 we prove two different properties of Hn
r . First, its circum-

scribed circle has radius approximately r 4
√
n. Second, H is an inscribed and

symmetric polytope, as required by Proposition 3. One thing remains, for the
discrete restriction we need ∆nr to be an integer. This can be circumvented
because of how flexible the L1 norm is, using the following elementary Lemma.

Lemma 6. Let ϵ ∈ [0, 1), n, r ∈ N: Bn1,Z(r) = Bn1,Z(r + ϵ)

From Proposition 5, H is most of the time not an integral polytope. However,
we prove an equivalence between its restriction to Zn (HZ) and the restriction
to Zn of an integral polytope:

Corollary 1. Let n, r ∈ N, and ∆nr = (
√
n− ⌊√n⌋). Then

Hn
r,Z = Bn∞,Z(r) ∩ Bn1,Z(⌊

√
n⌋r + ⌊∆nr⌋).

In particular by Proposition 3, for positive integers R and β,
⋂

c∈Hn
β,Z
Hn

R,c,Z =

Hn
R−β,Z. Indeed, Bn1,Z(⌊

√
n⌋β + ⌊∆nβ⌋) is an integral polytope.

4.2 Rejection sampling on H ∩ Zn

We recall our main theorem Theorem 1 and apply it directly onHZ since we prove
its inscribed, symmetric and integral properties in Section 4.1. In this subsection
we focus on its practical implementation. we first discuss the magnitude of ϵH
in Corollary 2 meaning studying both the volume of H and the cardinal of HZ.
Then, we compare HZ to other existing constructions.

17



Corollary 2. Let M > 1, β > 0 and h a probability distribution such that
Supp (h) ⊂ Hn

β,Z. Let r ≥ β

M
1
n−1

, R ≥ r+β, and define ϵn,s =
∣∣Hn

s,Z
∣∣/Vol (Hn

s )−1
for s ∈ R and M ′ = 1+ϵn,R

1+ϵn,r
·M . Let v ∈ Hn

β and define ρnr,v := U
(
Hn

r,v,Z
)
. If

M ′ > 1 then:

R∞
[
U
(
Hn

r,Z
)
∥ U

(
Hn

R,v,Z
) ]

=

(
R

r

)n

· 1 + ϵn,R
1 + ϵn,r

= M ′,

and the two algorithms A and F below have indistinguishable output distribu-
tions:

A
1 : v←$ h

2 : z←$ ρnR,v

3 : output (z,v) if z ∈ Hn
r,Z

else ⊥

F
1 : v←$ h

2 : z←$ ρnr

3 : output (z,v) with probability 1/M ′

else ⊥

Furthermore, A outputs (z,v) with probability 1/M ′.

Theoretically we use the existence of M ′ in Corollary 2 zero-knowledge proof.
Yet, in practice, we estimate the number of reject using M to obtain r and R
then, given these two, we verify that M ′ > 1. This approach, detailed in the first
half of Corollary 2, let us compute the volume (resp. cardinal) of H (resp. HZ)
for both r and R. Then, we obtain ϵHn

r
and ϵHn

R
to get M ′. Directly trying to

find M ′, without using first a M coming from the Rényi study on the associated
volumes is not doable for two reasons: first, there are, at the moment, no closed
form for the cardinal of HZ. Then, using the Rényi study on volumes force us
to use the intermediate M in order to avoid cyclic definition as ϵ can not bet
defined if r and R are not defined and vice-versa.

Lemma 7 ([Fel71, I.9 Th.3]). Define αn as the probability that x belongs to
Hn

r given that x is uniformly sampled from Bn1 (r
√
n). Then

αn =

⌊√n⌋∑
i=0

(−1)i
(
n

i

)(
1− i

1√
n

)n+1

.

Corollary 3 (Volume of Hn
r ). For n ∈ N, r ∈ R>0 and αn as defined in

Lemma 7, Vol (Hn
r ) = αn · (2r

√
n)n

n! .

Proof. This follows directly from Pr [x ∈ Hn
r | x←$ Bn1 (r

√
n)] =

Vol(Hn
r )

Vol(Bn
1 (r
√
n))

and Lemma 7.

We now present a trick for counting the exact number of points inHZ. Similar
techniques have been used in other works ([DEP23], Section 3.3).
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Lemma 8. Let n, r ∈ N, and en,r = ⌊√n⌋r+⌊∆nr⌋ using notations from Corol-
lary 1. We define Ω ∈ Z[X] as Ω =

∑∞
i=0 ωiX

i =
(
1 +

∑r
i=1 2X

i
)n. Then :

∣∣Hn
r,Z
∣∣ = en,r∑

i=0

ωi.

Proof. If δi =
{
1 if i = 0
2 otherwise , then

(
1 + 2

r∑
i=0

Xi

)n

=

∞∑
l=0

∑
v∈Nn

∥v∥∞≤r

[
δv1

δv2 . . . δvnX
∥v∥1

]
with v = (v1, v2, . . . , vn)

=

∞∑
l=0

X l
∑
v∈Nn

∥v∥∞≤r
∥v∥1=l

δv1δv2 ..δvn =

∞∑
l=0

∑
v∈Zn

∥v∥∞≤r
∥v∥1=l

1 ·X l =

∞∑
l=0

|Ir,l|X l,

where Ir,l = {v ∈ Zn : ∥v∥∞ ≤ r and ∥v∥1 = l}. ⊓⊔

Lemma 8 does not give a closed form for the cardinality of HZ but only an
algorithm to compute it. As foreshadowing for the next section, we use Lemma 8
to estimate the magnitude of ϵHn

r
for explicit choices of parameters (n, r), and

expose our results in Table 3.

Table 3. Explicit log-computations of: the volume induced by Hn
r , the cardinality of

Hn
r,Z, and the ratio ϵH,n,r.

(n, r) log (Vol (Hn
r )) log

(∣∣Hn
r,Z

∣∣) log (ϵH,n,r)

(1024, 165907) 1.71756029770040 1.71756012540027 −1.723001301634497e− 07
(1280, 252748) 1.72347943010027 1.72339927759822 −8.015250204995716e− 05

To link Table 3 with Corollary 2, we compute the difference between M
and M ′ in the case where M = 6 and n = 1280. With Corollary 2, we obtain
r = 252, 748 and R = 252, 984. According to Table 3, log(ϵHn

r
) is approximately

equal to 10−4 for this couple (n, r). This leads to a value of M ′ that is very close
to M (a difference of approximately 10−5). This enables us to conclude as M is
a good approximation of M ′ in practice.

Lastly, in Table 4 we compare our construction to other well-used ones in zero-
knowledge proofs in the FSwA paradigm (specifically for uniform distributions),
namely : the hypersphere, the hypercube and the support of the bimodal setting
on hyperspheres. We compare the estimation of proof of knowledge using the
ratio of the circumradius and the inscribed radius.
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Table 4. Comparative table between the existing construction on uniform distribution
on rejection sampling with Bn

2 (r, c) ∪ Bn
2 (r,−c) highlighting the bimodal approach of

Haetae.

Bn
2 (r) Hn

r Bn
∞(r) Bn

2 (r, c) ∪ Bn
2 (r,−c)

maxx∥x∥2 r 4
√
n · r

√
n · r

√
r2 + ∥c∥22

r
∥c∥2

M1/n−1

∥c∥2·
4
√
n

M1/n−1

∥c∥2·
√
n

M1/n−1

∥c∥2√
(M/2)2/n−1

R r + ∥c∥2 r + ∥c∥2 r + ∥c∥2
√

r2 + ∥c∥22

4.3 An isochronous sampler on H ∩ Zn

Recall our aim is to strike a balance between simplicity and optimality. In this
subsection, we present an isochronous uniform sampling algorithm for Hn

r,Z (as
detailed in Figure 1), which relies solely on uniform sampling without replace-
ment. This approach eliminates the need for Gaussian sampling, albeit at the
cost of a low rejection rate.

A sampler is considered isochronous [HPRR20] when the outcomes it pro-
duces are entirely independent of the specific timing or execution of the sampling
process. We establish our main claim in Theorem 2, demonstrating that our sam-
pler is both uniform in Hn

r,Z and isochronous.
Our sampler forHn

r,Z is based on a uniform sampler in the discrete L1-ball. We
explain how to extend this approach to obtain an isochronous uniform sampler
for the discrete L1-ball of dimension n when we already have one for the discrete
L1-sphere of dimension n+ 1.

Theorem 2. For r ∈ N∗, SamplePsinf(n, r) is isochronous and uniformly sam-
ples from the set Hn

r,Z.

Proof. Direct consequence of Proposition 6, Lemma 9, and Proposition 7.

Furthermore, the probabilities of restarting at step 11 of SampleL1Sphr(n, r)
and step 7 of SamplePsinf are provided in Proposition 6 and Proposition 7,
respectively.

To achieve uniform sampling on Hn
r,Z, we can rely on Lemma 7, which shows

that a significant portion of samples from the L1-ball with an appropriate radius
already belong to Hn

r,Z. Hence, we only need to reject samples that are not in
the corresponding L∞-ball.

Proposition 6. For r ∈ N∗, the sampler SamplePsinf(n, r) is isochronous and
provides uniform samples in Hn

r,Z if SampleL1ball(n, r) is isochronous and uni-
form. Additionally, the probability of Y ̸= ⊥ in Step 7 of SamplePsinf is given
by:

⌊√n⌋∑
i=0

(−1)i
(
n

i

)(
1− i

1√
n

)n+1

.
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SampleL1Sphr(n, r)

1 : x0 ← 0, xn ← r + n

2 : // S = {X ⊂ J1, r + n− 1K : #X = n− 2}

3 : X←$ U (S)
4 : X← X ∪ {x0, xn}
5 : X.sort()

6 : // x0, · · · , xn the ordered elements of X

7 : for i ∈ J1, nK :
8 : b←$ {0, 1}
9 : yi ← (xi − xi−1 − 1)

10 : if yi + b = 0 then

11 : goto 3

12 : yi ← (−1)byi
13 : return Y := (yi)1≤i≤n

SampleL1Ball(n, r)

1 : (yi)n+1 ←$

SampleL1Sphr(n+ 1, r)

2 : return (y1, · · · , yn)

SamplePsinf(n, r)

1 : ∆n ← (
√
n− ⌊

√
n⌋)

2 : r′ ← ⌊
√
n⌋r + ⌊∆nr⌋

3 : Y ← ⊥
4 : while Y = ⊥ do

5 : Y ← SampleL1Ball(n, r′)

6 : if ∥Y∥∞ > r then

7 : Y ← ⊥
8 : return Y

Fig. 1. Sampling algorithm on HZ using intermediate samplers on the L1 ball and
sphere for r ∈ N.

Proof. Given r′ in step 2 of SamplePsinf(n, r), we know that Hn
r,Z ⊂ Bn1,Z(r′).

If SampleL1ball(n, r) is called again due to an abort (Y = ⊥ in step 7), we
can conclude that SamplePsinf(n, r) is uniform and isochronous, provided that
SampleL1Ball(n, r) is uniform and isochronous.

Using Lemma 7, we find that its acceptance rate is:
n∑

i=0

(−1)i
(
n

i

)(
1− i

1√
n

)n+1

+

.

⊓⊔
In Figure 4.3 we share some simulations on the rejection rate for vectors

in Hn
r,Z when they have been uniformly sampled in Bn1,Z(r). Additionally the

evolution of αn can be found in Section B.1. To sample in the discrete ball in
dimension n using a sampler on the discrete sphere in dimension n+1, we claim
that there is a direct bijection between Sn+1

1,Z (r
√
n) and Bn1,Z(r

√
n) by using a

projection on the canonical basis in lower dimension.

Lemma 9. Let r ∈ Z>0. For all i ≤ n, let x = (xi)1≤i≤n ∈ Zn
>0 and r > 0

such that ∥x∥1 = r. If pi(x1, x2, ..., xn) = (x1, ..., xi−1, xi+1, ..., xn) defines the
i-th projection, then pi is bijective, i.e. |Sn+1

1,Z (r)|= |Bn1,Z(r)|. Additionally, if X

is a random variable with distribution U
(
Sn+1
1,Z (r)

)
, then pi(X) has distribution

U
(
Bn1,Z(r)

)
.

This shows that SampleL1Ball(n, r) is both uniform and isochronous, because
SampleL1Sphr(n+ 1, r) is also uniform and isochronous.
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Proposition 7. For any integer r ∈ Z>0, the SampleL1(n, r) algorithm of Fig-
ure 1 is both isochronous and uniform in Bn1,Z(r). Furthermore, the probability
of an abort (triggering the goto instruction) is equal to:∑n

k=1

∑k
l=1

(
n
k

)(
k
l

)∣∣∣Sn−k1,Z (r)
∣∣∣

2n|SimplexnZ(r)|
≤ n

∣∣Simplexn−1Z (r)
∣∣

|SimplexnZ(r)|
,

where, for m ∈ Z>0, SimplexmZ (r) = {x ∈ Nm : ∥x∥1 = r}.

Proof. All operations within this algorithm, including the uniform selection of
X, can be completed in constant time except the sorting algorithm. We claim
trivially that even knowing the order of each unknown variable does not help
recovering them. The number of aborts is independent of the outputted value
since X is resampled at each restart.

Let’s demonstrate that output follows the uniform distribution in Sn1,Z(r).
We define:

Ssource := {((b1, y1), (b1, y1), · · · , (bn, yn)) ∈ ({0, 1} × J0, rK)n :
∑
i

yi = r};

Starget := {((b1, y1), (b1, y1), · · · , (bn, yn)) ∈ Ssource : yi = 0⇒ bi = 1}.

A direct analysis reveals that SampleL1Sphr(n, r) can be reformulated as follows:

SampleL1Sphr(n, r)

1 : A = ((b0, y0), · · · , (bn, yn))←$ U (Ssource)

2 : if A ̸∈ Starget then

3 : goto 1

4 : return
(
(−1)b1y1, · · · , (−1)bnyn)

)
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Here, the (bi, yi) of the step 1 correspond to the b and yi values computed in
steps 8 and 9 of SampleL1Sphr(n, r) in Figure 1.

Furthermore, we can observe that the mapping:

((b0, y0), (b1, y1), · · · , (bn, yn))→
(
(−1)b0y0, · · · , (−1)bnyn

)
is a bijection between Starget and Sn1,Z(r). This establishes the uniformity of the
sampler.

Finally, the probability of abort is equal to the probability of sampling an
element from Ssource − Starget, which can be expressed as:

Pr [∃i ∈ J1, nK with yi = 0 ∧ bi = 0 : ((b0, y0), · · · , (bn, yn))←$ U (Ssource)]

=

∑n
k=1

∑k
l=1

(
n
k

)(
k
l

)∣∣∣Sn−k1,Z (r)
∣∣∣

2n|SimplexnZ(r)|
.

Here, k represents the number of indices i for which yi = 0, and l represents
the number of indices i for which yi = 0 ∧ bi = 0. We also note that it can be
bounded by:

Pr [∃i ∈ J1, nK : yi = 0 : ((b0, y0), · · · , (bn, yn))←$ U (Ssource)]

= Pr [∃i ∈ J1, nK : yi = 0 : (y0, · · · , yn)←$ U (SimplexnZ(r))]

=
n
∣∣Simplexn−1Z (r)

∣∣
|SimplexnZ(r)|

.

⊓⊔

We end this section with brief note on samplers for the hypercube and the
hypersphere. The randomness necessary to sample in the hypercube can be ob-
tained directly (n log(2R + 1) with (n,R) as in Theorem 1). In this case, the
sampling mechanism is easy and direct, without rejections. On the contrary,
state-of-the-art samplers in the hypersphere are based on Corollary 4 and use
continuous Gaussian samplers. However, simulating continuous Gaussian sam-
pling with discrete Gaussian sampling leads to a large overhead in randomness
usage. In addition, to sample inside the integer restriction of the ball, one needs
to add specific constraints which lead to rejection (see [CCD+23] for more in-
sight). Our algorithm to uniformly sample in HZ only uses uniform samplers
and has a negligible rejection rate for practical parameters. Combined with the
result of Table 4, this makes H an ideal candidate for zero-knowledge proofs in
the FSwA paradigm.

5 The wizardry of polytopes in application

In this last section we describe applications of Section 3 and Section 4. Firstly,
we give an experimental improvement of H by highlighting that for practical
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parameters most points in HZ have limited Euclidean norm: this further im-
proves its attractiveness. Secondly, we propose an example application to zero-
knowledge proofs in the FSwA paradigm using Lyubashevsky-like signatures.
Our construction improves on Dilithium [DKL+21] by a large margin while be-
ing more practical than its counterpart Haetae [CCD+23] thanks to the sampler.

5.1 Experimental improvement over H

Definition 6. For an integer n ∈ Z>0 and reals r, θ ∈ R>0, we define Cnθ,r :=
Hn

r ∩ Bn2 (θ · r). Furthermore, for any u > 0 and vector w ∈ Rn, recall Cnθ,u,w =
uCnθ +w.

Remark 3. Sampling on CZ (with the usual abuse of notation) is done by sam-
pling in HZ using Figure 1 and reject if the Euclidean norm is out of bound. In
our application, r is at least 2 and an integer.

Before going further we emphasis an important part of this construction
with respect to rejection sampling in the FSwA paradigm. As a brief informal
reminder, in this paradigm we sample a base vector y and translate it by another
vector s to obtain z. The goal of this procedure is to reject z until its distribu-
tion is independent of s. It is necessary to understand the implications of this
procedure. Namely if y is taken from CZ then the rejection sampling theorem
has to be done using CZ. Meanwhile, if we take y in HZ and force z to be in CZ
then we only need to apply Corollary 2 with HZ.
Why use y ∈ CZ from the get go? The gains depends solely on the choice of
θ for CZ. If θ is chosen aggressively, so as to lower the radius of the circum-
scribed sphere of CZ, then some additional rejections are bound to happen. In
this particular case, it is more attractive to sample directly on CZ to avoid redoing
computations.

Lemma 10. Let S ⊂ Rn be a convex region. Define v ∈ Zn and R, r, c > 0 such
that R ≥ r + c and 0,−v/c ∈ S, then Sr ⊂ SR,v.

Proof. In Section A.2 ⊓⊔

Because C is convex, the inclusion from Lemma 10 is central to define the Rényi
divergence from Theorem 1. What remains to do is to estimate ϵC . However both
the volume of C and the cardinality of CZ are non-trivial to obtain. As a matter of
fact for most polytope just getting a closed form for the volume is difficult [DF88].
Our approach is twofold. We first give a volumetric argument that explains why
intersecting with a Euclidean ball doesn’t lose too many points. Secondly, we use
experimentation to get an approximation of this ϵ factor as we only need it to
be sufficiently small to not drastically change the rejection rate of our sampler.

The next proposition formalises the intuition that because the L1 ball con-
centrates towards its center, so cutting the corners of H with a L2 ball with
radius a constant times larger will not affect its volume too much.
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Proposition 8. Let n ∈ Z>0 be a positive integer, and r ∈ R>0 be a positive
real number. Then there exists an absolute constant c > 0 such that for any real
number θ > 1/c,

1− α−1n exp(−cθ√n) ≤
Vol
(
Cnθ,r

)
Vol (Hn

r )
≤ 1.

Proof. The upper bound is clear by definition of Cnθ,r. The lower bound is more
involved. First note that

Hn
r = (Bn∞(r) ∩ Bn1 (r

√
n)− Bn2 (θr)) ∪ Cnθ,r ⊂ (Bn1 (r

√
n)− Bn2 (θr)) ∪ Cnθ,r.

Therefore with volumes,

Vol
(
Cnθ,r

)
≥ Vol (Hn

r )− Vol
(
Bn1 (r

√
n)− Bn2 (θr)

)
≥ Vol (Hn

r )− Vol
(
Bn1 (r

√
n)
)
+ Vol

(
Bn1 (r

√
n) ∩ Bn2 (θr)

)
.

The last volume is computed by direct application of a theorem by Schechtman
and Zinn [SZ90] restated as theorem 5.1 in [PTT18]. Taking p = 1 and q = 2,
we obtain

Vol
(
Bn1 (r

√
n) ∩ Bn2 (θr)

)
≥ (1− exp(−cθ√n))Vol

(
Bn1 (r

√
n)
)
.

Using the fact that Vol (Hn
r ) = αnVol (Bn1 (r

√
n)), we conclude. ⊓⊔

For an exact count of |CZ|, one can try to use the procedure shown in Sec-
tion A.2, but this approach is not memory-efficient. We provide nonetheless a
graph using this point counting algorithm for small parameters in the associated
appendix.

We now comment on the choice of the parameter θ. One natural choice
would be to take θ = θn where we define θn in such a way that we obtain
Vol (Bn2 (θnr)) = Vol (Hn

r ). Using Stirling’s approximation, this amounts to tak-
ing

θn = (αn/
√
2)1/n

√
2e
π ≈ 1.315. More precisely, our experiments in Figure 3

from Section A.2 show that there is a range of possible θ from 1.35 to 1.5 that
enable a trade-off between aggressiveness (smaller proof of knowledge) and addi-
tional rejection cost (as the Euclidean norm filter gets tighter). In the following
parts we use θ = 1.5 as it seems a conservative choice that still leads to major
improvements. We give in Figure 3 an estimation of the proportion of rejects
added by using CZ over HZ at fixed dimension with differents θ.

5.2 An improved signature scheme: Patronus

This subsection highlights a concrete application of our contributions from Sec-
tion 3, Section 4 and Section 5.1 through a signature scheme, Patronus, using
the FSwA paradigm. We further compare it to Dilithium and Haetae [DKL+21,
CCD+23], two FSwA signatures. In order to do so, we compare them practi-
cally using signature sizes. However, we can study them with framework from
Section 3 using:
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Fig. 3. Estimation of appropriate θ through experimentation using our sampler defined
in Figure 1

– the hypercube for Dilithium,
– the hypersphere with a slight tweak for Lp balls (defined in Section B.3) in

the case of Haetae.

We divide this subsection in four different parts: first, we introduce signature
security notions as well as necessary lattice-based assumptions. We describe Pa-
tronus and verify its correctness to then prove its security. Lastly, we present the
cost of known attacks to propose different sets of parameters for 120, 180 and
260 classical bits of targeted security.

Security properties and hardness assumptions. To prove Patronus secure,
we prove that no adversary can forge signatures even when choosing messages.
This notion is called Unforgeability under Chosen Message Attacks or alterna-
tively UF-CMA.

Definition 7 (Unforgeability under chosen message attack (UF-CMA)).
Let S = (KeyGen,Sign,Verify) be a signature scheme that uses a quantum random
oracle H and Osign(sk) an oracle which on input m computes σ ← Sign(sk,m)
and returns (m,σ).

We define the advantage Advufcma
S,qH,qS (A) of a quantum adversary that uses at

most qH quantum queries to H and qS signatures queries to Osign(sk) against the
UF-CMA security game as

Advufcma
S,qH,qS (A,S) =

[
Verify(vk,m, σ) = 1
∧(m,σ) not given by Osign(sk)

:
(sk, vk)← KeyGen()
∧ (m,σ)← AOsign(vk),|H⟩

]
.
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While proving UF-CMA is fairly standard for FSwA signatures in the Random
Oracle Model (ROM), its proof counterpart in the Quantum Random Ora-
cle Model (QROM) is not trivial to obtain. This gave birth to a nice line of
work [KLS18, DFPS23, BBD+23] to prove UF-CMA with QROM specifically for
signatures based in the FSwA paradigm. For this, they prove that an alternative
version of UF-CMA for the specific case of No Message Attack (UF-NMA) in the
QROM implies UF-CMA in the QROM.

Definition 8 (Unforgeability under no message attack (UF-NMA)). Let
S = (KeyGen,Sign,Verify) a signature scheme that uses a quantum random oracle
H.

We define the advantage Advufnma
S,qH (A) of a quantum adversary that uses at

most qH quantum queries to H against the UF-NMA security game as

Advufcma
S,qH,qS (A,S) =

[
Verify(vk,m, σ) = 1 :

(sk, vk)← KeyGen()
∧ (m,σ)← A|H⟩

]
.

Both UF-CMA and UF-NMA are proven accordingly to the signature structure
and more specifically on underlying hardness assumptions given the signature
design. In our case, Patronus use lattice-based hardness assumptions (MLWE,
MSIS and SelfTargetMSIS). We first define MLWE and MSIS as they are common
assumptions in lattice-based cryptography. For the sake of readability, we omit
the explicit mention of the modulus q and the dimension n associated with Rq

when defining the parameters of the problems.
For m, k ∈ Z>0 and a distribution χ with Supp (χ) ⊆ Rq, we define the

distribution Dmlwe
m,k,χ on Rm×k

q ×Rm
q as follows:

(A,b)←$ Dmlwe
m,k,χ ⇔ A←$Rm×k

q ,b = As+ e for (s, e)←$ χk+m.

Definition 9 (Decisional MLWE problem). Given a set of parameters m, k ∈
Z>0 and a distribution χ with Supp (χ) ⊆ Rq, the advantage Advd-mlwe

m,k,χ (A) of
any probabilistic polynomial time algorithm A in solving the decisional d-MLWE
problem over Rq is:∣∣∣∣ Pr[A(A,b) = 1 : (A,b)← Dmlwe

m,k,χ]

−Pr[A(A,b) = 1 : (A,b)←$Rm×k
q ×Rm

q ]

∣∣∣∣ .
Definition 10 (Search MLWE problem). Given a set of parameters m, k ∈
Z>0 and a distribution χ with Supp (χ) ⊆ Rq, the advantage Advs−mlwe

m,k,χ (A) of any
probabilistic polynomial time algorithm A in solving the search s-MLWE problem
over Rq is:

Pr[A(A,A · s+ e) = s : s←$ χk,A←$Rm×k
q , e←$ χm].

Definition 11 (MSIS problem). Given a set of parameters l, k ∈ Z>0 and
β > 0, the advantage Advmsis

l,k,β (A) of any probabilistic polynomial algorithm A in
solving the MSIS problem over Rq is:

Pr
[
( A | Ik)y = 0 ∧ 0 < ∥y∥∞ < β : A← Rk×l

q ∧ y ∈ Rk+l
q ← A(A)

]
.
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To prove our signature Patronus secure, we nevertheless need one more com-
mon assumption for the specific case of FSwA signatures called Self-Target MSIS
(SelfTargetMSIS). We use the same SelfTargetMSIS as Dilithium ([DKL+21, (Sec-
tion 4.1)]), except that we consider the L2 norm instead of the L1 norm:

Definition 12 (SelfTargetMSIS problem). Suppose that H : {0, 1}∗ ×M →
SetChall = {c ∈ Rq : ∥c∥1 = τ ∧∥c∥∞ = τ} is a quantum random hash oracle for
some τ ∈ N. For positive integers k, l and a positive real number β, the advantage
Advstmsis

H,k,l,β,qH (A) against the SelfTargetMSIS problem of an adversary making at
most qH quantum queries to |H⟩ is:

Pr

 0 < ∥y∥2 < β
∧H ((Id | A)y,M) = c

:

A← Rk×l
q

(y = (r, c),M)← A|H(·)⟩(A)
(y = (r, c),M) ∈ Rl+k−1

q × SetChall× {0, 1}∗

 .

In the classical setup, there exists a classical reduction from SelfTargetMSIS to

MSIS that exhibits an adversary B such that Advstmsis
H,k,l,β,qH (A) ≈

√
Advmsis

k,l,2β(B)
qH

.

More details are given in [KLS18, (Section 4.5.1)].

Patronus scheme. We give a high level description of the different element
of the signature from Figure 4 and a proof of its correctness. (e, s) coefficients
are taken in centred binomials of parameter (2, 0.5), an analysis of the entropy
is given in Section A.4 in appendix. η is a bound on the norm of s to tailor the
Euclidean norm of sc such that ∥sc∥2 ≤ β =

√
(τη)/n with τ the number

of ±1 in the challenge c. We assert that ∥sc∥2 ≤ β thanks to the detailed
analysis of [CCD+23, (Section 3.1)], this bound ensures that our main theorem
on rejection sampling works on r+β with r the radius for the target distribution
after the rejection step. The parameter r is defined as in Theorem 1 but with
an additional factor θ = 1.5 chosen from Section 5.1. ξ in step 5 of Sign is
an artificial sample to get sufficient entropy in the challenge c. In step 14 of
Sign, we separate z into its lowbits and highbits part, the lowbits part follows
approximately a uniform distribution therefore we do not apply any compression,
however we apply the compression from [Dud09] on the highbit part to obtain a
compressed signature. Due to the cut constraints we need q > 2γ and γ|(q− k).
Parameter w is to the one of Dilithium, it represents the maximum number of 1
in the hint h.

We first define necessary primitives to build Patronus.

Definition 13. Let r ∈ Z, d ∈ N∗ and γ a power of two. We define Highbits,
Lowbits and Power2round as:

Power2round(r, d)

1 : r := r mod+ q

2 : r0 := r mod± 2d

3 : return ((r − r0)/2
d, r0)

Highbits(r, γ)

1 : return

⌊
r

γ
+

1

2

⌋ Lowbits(r, γ)

1 : return r mod± γ
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Definition 14. Let r ∈ Z. Let q be a prime number and γ|(q − k) a power of
two. Let m = (q − k)/γ. Finally, we define MakeHintm and UseHintm and the
subroutines Highbitsm, Lowbitsm as:

Highbitsm(r, γ)

r1 ← Highbits(r mod+ q, γ)

r0 ← Lowbits(r mod+ q, γ)

if r1 = m then

return 0

return r1

Lowbitsm(r, γ)

r1 ← Highbits(r mod+ q, γ)

r0 ← Lowbits(r mod+ q, γ)

if r1 = m then

return r0 − k mod± γ

return r0

MakeHintm(z, r, γ)

r1 ← Highbitsm(r, γ)

v1 ← Highbitsm(r + z, γ)

return Jr1 ̸= v1K

UseHintm(h, r, γ)

r1 ← Highbitsm(r, γ)

r0 ← Lowbitsm(r, γ)

if h = 1 and r0 > 0 then

return (r1 + 1) mod+ m

if h = 1 and r0 ≤ 0 then

return (r1 − 1) mod+ m

return r1

To prove correctness of Patronus, some relation needs to be fine-tuned using
the different algorihtms from Definition 14. The proofs of these lemmas are
postponed to Section A.4 in appendix.

Lemma 11. Let a, b ∈ Z such that a ≥ 0 and b > 0. It holds that:

a =

⌊
a

b
+

1

2

⌋
· b+ (a mod± b),

this form is the unique a = bq + r with r ∈
(
− b

2 ,
b
2

]
.

Lemma 11 ensures the well definition of Definition 14 with its existence and
unicity. As for the remaining lemmas, they are mandatory milestones to prove
Patronus correctness.

Lemma 12. Let r ∈ Z. Let q a prime, γ|(q − k) a power of two. Let m =
(q − k)/γ. It holds that:

r = Highbitsm(r, γ) · γ + Lowbitsm(r, γ) mod q

Lowbitsm(r, γ) ∈ [−γ/2, γ/2]
Highbitsm(r) ∈ [0,m− 1].

Lemma 13. Let r, z ∈ Zq and ∥z∥∞ ≤ γ/2:

UseHintm(MakeHintm(z, r, γ), r, γ) = Highbitsm(r + z, γ).
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KeyGen()

1 : A←$Rk×l
q

2 : (s, e)←$ Binomnl × Binomnk

3 : b← A · s+ e ∈ Rk
q

4 : (bH,bL)← Power2round(b, d)

5 : if ∥s∥1 > η then

6 : goto 1

7 : pk← (A,bH)

8 : sk← (s,bL)

9 : return (pk, sk)

Verify (pk := (A,bH), µ, σ := (c,v))

1 : (z̄H, zL, h̄, ξ)← v

2 : z← αz · Decode(z̄H) + zL

3 : h← Decode(h̄)

4 : wH ← UseHintm(h,Az− cbH · 2d, 2γ)
5 : return Jc = H(wH, ξ, µ) ∧ ∥h∥1 ≤ ω

∧ z ∈ Cnl
θ,r,ZK

Sign(sk := (s,bL), µ)

1 : v← ⊥
2 : while v = ⊥ do

3 : y←$ Hnl
r+β,Z Cnl

θ,r+β,Z

4 : ξ ←$ {0, 1}n

5 : w← Ay

6 : wH ← Highbits(w, 2γ)

7 : c← H(wH, ξ, µ)

// c ∈ {x ∈ R3 : ∥x∥1 = τ}

8 : z← y + sc

9 : r0 ← Lowbitsm(w − ce, 2γ)

10 : if z ∈ Cnl
θ,r+β,Z and ∥r0∥∞ < γ − β then

11 : h← MakeHintm(−cbL,w − ce+ bL, 2γ)

12 : if ∥cbL∥∞ < γ and ∥h∥1 < ω then

13 : v1 ← Encode(Highbits(z, αz))

14 : v2 ← Lowbits(z, αz)

15 : v3 ← Encode(h)

16 : v← (v1,v2,v3, ξ)

17 : return σ := (c,v)

Fig. 4. Two variants of the Patronus signature. The more conservative variant is defined
by using H in the full box while the more aggressive one uses C in the dashed box.

Lemma 14. If ∥s∥∞ ≤ β, ∥Lowbitsm(r, γ)∥∞ < γ/2− β then:

Highbitsm(r, γ) = Highbitsm(r+ s, γ).

Lastly we use Lemma 12, Lemma 13 and Lemma 14 to obtain the following
correctness proof for Patronus.

Proposition 9 (Correctness). Let (pk, sk) ← KeyGen(), m ∈ {0, 1}∗ and
σ ← Sign(sk,M). Then, Verify(pk,M, σ) = 1.

Proof. Let’s consider the elements z, w, wH, c, ξ, and v = (Encode(Highbits(z)),
Lowbits(z),Encode(h), ξ) computed by Sign.

It is clear by definition of Encode,Decode,Highbits and Lowbits that z =
αz ·Decode (Encode (Highbits(z)))+Lowbits(z) and h = Decode (Encode(h)). We
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thus only need to show that:

wH = UseHintm(h,Az− cbH · γ, 2γ) ∧ ∥h∥p ≤ ω ∧ z ∈ Hnl
r,Z.

The two last conditions are trivially verified by definition of the signature algo-
rithm that abort is they are not verified.

Let’s show the first equation. The fact, provided by the signature algorithm,
that ∥cbL∥∞ < γ, and h = MakeHintm(−cbL,w − ce + bL, 2γ) implies by
Lemma 13 that:

UseHintm(h,Az− cbH · γ, 2γ) = Az− c (bH · γ + bL)

= Az− cb By Lemma 12
= w − ce by definition of z and b.

Finally, the fact that ∥Lowbits(w − ce, 2γ)∥∞ < γ − β (provided by the signa-
ture algorithm), and lemma Lemma 14 allow us to conclude. By assumption
∥cbL∥∞ ≤ γ, by Lemma 13:

UseHintm(MakeHintm(cbL,w−ce+cbL, γ),Az−cbH ·γ, γ) = Highbits(w−ce, γ),

by construction of e ≤ β and Lowbits(w − ce, γ) < γ − β. ⊓⊔

Security of Patronus. We apply [BBD+23, (Theorem 2)] to reduce UF-CMA
security to UF-NMA security. This theorem relies on an analysis of the com-
mitment min-entropy, the property of accepting honest-verifier zero knowledge,
and the abort probability inherent in the associated identification protocol, as
described in Figure 5.

Com(sk)

s← sk

v← ⊥

y←$ Cnl
θ,r+β,Z

ξ ←$ {0, 1}n

w← Ay

wH ← Highbits(w, 2γ)

com← (wH, ξ)

st← y

return (com, st)

Resp(com, c, st)

y← st
(wH, ξ)← com
z← y + sc

r0 ← Lowbits(w − ce, 2γ)

v← ⊥

if z ∈ Cnl
θ,r and ∥r0∥∞ < γ − β then

h← MakeHintm(−cbL,w − ce+ bL, 2γ)

if ∥cbL∥∞ < γ or ∥h∥1 < ω then

v = (Encode(Highbits(z)), Lowbits(z),Encode(h), ξ)

return (c,v)

Fig. 5. Identification scheme associated to the signature algorithm.
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Zero-knowledge. The underlying identification protocol has ϵ bits of min-entropy
when the following condition is met for any (pk, sk)← KeyGen and y← Hrs :

∀(w, ξ),Pr
y
[(Highbits(Ay, 2γ), ϵ) = (w, ξ)] ≤ 2−ϵ.

Since ξ represents a uniformly random binary vector of length n, the proba-
bility is bounded by 2−n, regardless of the chosen (pk, sk). Consequently, there
is a minimum of 256 bits of entropy.
We must now demonstrate that the underlying Σ-protocol of the signature
scheme, in Figure 5, satisfies the naHVZK property [BBD+23, definition 1]. This
property stipulates that non-aborting transcripts generated by the simulator
must have a minimal statistical distance from real transcripts. In this context,
Theorem 1 implies that the statistical distance is 0, the simulator being described
in Figure 6.

Sim(A, c)

ξ ←$ {0, 1}n

flag← ⊤
z←$ Cnl

θ,r

with probability
M − 1

M
return ⊥

r0 ← Lowbits(Az− cb, 2γ)

// We use the fact that in the signature

// algorithm ,w − ce = Az− cb

if ∥r0∥∞ ≥ γ − β then return ⊥
h← MakeHintm(−cbL,Az− cb+ bL, 2γ)

if ∥cbL∥∞ ≥ γ and ∥h∥1 ≥ ω :

return ⊥
v = (Encode(Highbits(z)), Lowbits(z),

Encode(h), ξ)

wH ← UseHintm(h,Az− cbH · α, 2γ)
return ((wH, ξ), c,v)

Fig. 6. Simulator for the naHVZK property.

For a given key pair (pk, sk), the underlying identification protocol has an
abort probability associated to (pk, sk) equal to

ppk,sk = Pr
(com,st)←Com(sk),c←SetChall

[Resp(com, c, st = ⊥)] .

It is imperative to upper-bound every ppk,sk with a constant p, except possibly for
a negligible number of key pairs. Following the approach outlined in [BBD+23,
(Theorem 2)], we do not rigorously prove this bound but rather estimate it
using a heuristic. We follow the methodology detailed in [DKL+21, (Section
3.2)]. There are three distinct reasons to abort:

– When z ̸∈ Hnl
r , which happens with probability M−1

M , as derived from The-
orem 1.

– When ∥Lowbits(w − ce, 2γ)∥∞ < γ − β. In [DKL+21, (Section 3.2)], it is
heuristically assumed that Lowbits(w−ce, 2γ) is uniformly distributed, lead-
ing to an estimation of the abort probability as 1− e−256

βk
γ .
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– When ∥cbL∥∞ < γ or ∥h∥1 < ω. According to [DKL+21, (Section 3.2)], the
parameters suggest an abort probability of less than 0.01 for this scenario.
To be more conservative on abort due to ω, we set ω = 100 for slightly longer
signature size but with stronger insurance that aborts are led by ∥cbL∥∞ ≥ γ.

Based on these considerations, we can estimate that p ≤ M−1
M +1−e−256 βk

γ + 1
100 .

UF-NMA security. The UF-NMA security is established following a procedure
analogous to that of Dilithium or Haetae. The only distinction lies in our usage
of a different LWE distribution and a variant of the SelfTargetMSIS problem used
in Haetae.

Proposition 10. For any quantum adversary A targeting the UF-NMA secu-
rity with at most qH queries to the random oracle |H(·)⟩, we can establish the
existence of quantum adversaries B and C such that:

Advufnma
Patronus (A) ≤ Advd-mlwe

k,l,U(Binomn) (B) + Advstmsis
H,k,l,BNMA,qH (C) ,

where BNMA = τ + θnlr +
√
n
(
2γ + 1 + 2dτ

)
.

Proof. We call PatronumUnif the signature scheme Patronus where the vector b
computed in KeyGen is uniformly taken on Rk

q .
We can directly see that there exists an adversary B such that∣∣∣Advufnma

Patronus,qH (A)− Advufnma
PatronumUnif,qH (A)

∣∣∣ ≤ Advd-mlwe
k,l,U(Binomn) (B) .

We now study the UF-NMA security of PatronumUnif.
Let’s consider a matrix M = (A | b) uniformly taken in Rk×(l+1)

q for the
MSIS problem. We compute (bH,bL)← Power2round(b, d) and set pk = (a,bH).
This pk is indistinguishable from a real public key of PatronumUnif.

Suppose that A finds a valid signature
(
c,v = (z̄H, zL, h̄, ξ)

)
of a message m.

We define z = αz · Decode(z̄H) + zL and h = Decode(h̄). By definition of Verify,
we have z ∈ CZ[nl]r and

c = H (UseHintm(h,Az− cbH · γ, 2γ), ξ,m) .

We set u = UseHintm(h,Az− cbH · γ, 2γ)−Az− cb, so we have

c = H ((A | b | Idk+1) (z, c,u), ξ,m)

⇔ c = H ((M | Idk+1) (z, c,u), ξ,m) .

Moreover, using Lemma 18 and

∥u∥2 ≤ ∥UseHintm(h,Az− cbH · γ, 2γ)−Az− cbH · γ∥2 + ∥c (b− bH · γ)∥2
= ∥UseHintm(h,Az− cbH · γ, 2γ)−Az− cbH · γ∥2 + ∥cbL∥2
≤ √n (2γ + 1) + τ∥bL∥2 by Lemma 18 and ∥c∥∞ = 1 ∧ ∥c∥1 = τ

≤ √n
(
2γ + 1 + 2dτ

)
by definition of Power2round.
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Thus, we have:

∥(z, c,u)∥2 ≤ ∥z∥2 + ∥c∥2 + ∥u∥2
≤ θnlr + τ +

√
n
(
2γ + 1 + 2dτ

)
≤ θnlr + τ +

√
n
(
2γ + 1 + 2dτ

)
= BNMA,

where ∥z∥2 ≤ θnlr is implied by z ∈ Cnlθ,r,Z. ⊓⊔

Parameters and cost of known attacks. To provide concrete parameters
and estimate the cost of the best-known attacks against our signature scheme,
we adapt the concrete security analysis conduced in Haetae [CCD+23] and use
an adapted version of the scripts [DS21] and HAETAE-helper-scripts/HAETAE_
security_estimates.py, included in the Haetae reference implementation ver-
sion 2023.05.02.v1.0, accessible at
https://www.kpqc.cryptolab.co.kr/haetae. Lastly, to obtain shorter signa-
tures we use [Dud09] as compression algorithm.

In Table 5, we propose concrete parameters for Patronus and present es-
timated security levels and sizes. Then, in Table 1, we compare Patronus to
Dilithium and Haetae, demonstrating that it offers a compelling trade-off in
terms of signature size between these two constructions. In Table 5 we exhibit
competitive signature sizes. Nevertheless, our public keys are far from optimal.
This is explained by the transition from ∥·∥∞ to

√
n∥·∥2, as well as the con-

straints imposed by the signature cuts. Interestingly, it appears that Haetae, in
its current design, overlooks this aspect, even though it theoretically should ac-
knowledge it. This oversight could potentially diminish the appeal of their public
key construction.

We follow the established core-SVP methodology as in Haetae [CCD+23] to
estimate the number of gates required to solve MLWE, MSIS and SelfTargetM-
SIS. Since we do not currently know of any way of exploiting the ring structure to
solve MLWE and MSIS problems, we are simply viewing these problems as LWE
and SIS problems. We consider the primal attack and the dual attack against
LWE, and the plain BKZ attack for SIS and SelfTargetSIS. Replacing vectors v
with vec(v) the vector obtained by concatenating the coefficients of its coordi-
nates, and matrix entries aij ∈ Rq by the 256 × 256 matrix whose i-th column
is vec(xi−1 · aij).

The security of SelfTargetMSISH,k,l,BNMA,qH is estimated based on the security
of MSISk,l,BNMA

with the same bound BNMA, following the analysis in [DKL+21,
(Section 6.2.1)]. While it could have been possible to use the non-tight reduction
from SelfTargetMSISH,k,l,BNMA,qH to MSISk,l,2BNMA

, as described under the defini-
tion of SelfTargetMSIS, we note that this choice aligns with neither Dilithium
nor Haetae’s approaches for the security property UF-CMA that we consider.
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Table 5. Parameters of Patronus.

Security target 120 180 260
q 524,287 1,047,041 2,091,521

(k, l) (3,4) (4,5) (6,7)
η 31 34 37
τ 39 49 60
r 165,908 252,748 701,656
M 6 7 5
β 193 236 286
αz 3,120 4,188 19,013
γ ≈ q/2 ≈ q/2 ≈ q/2
d 5 5 8

Forgery
BKZ block-size b 411 617 892
Classical hardness 120 180 260
Quantum hardness 105 158 229

Key Recovery
BKZ block-size b 515 636 907
Classical hardness 150 186 265
Quantum hardness 132 163 233

Size
vk (with seed) 1,376 1,952 2,528

sign 1,885 2,398 3,519
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A Supplementary materials

A.1 Volume of a measurable set.

Lemma 1. Let S ⊂ Rn be a measurable set, and let r ≥ 0. Recall Sr = {rs :
s ∈ S}. Then, we have Vol (Sr) = rn · Vol (S).
Proof. For a set A ⊂ Rn and x ∈ Rn, we define 1A(x) := 1 if x ∈ A and 0 else.
It is clear that 1S is positive and Lebesgue integrable because S is measurable.
The function f : Rn → Rn defined by f(x) = rx is clearly a C1 diffeomorphism
with determinant of the Jacobian equal to rn. We thus compute by change of
variable that

Vol (Sr) =

∫
Rn

1Sr
(x) by definition of volume

=

∫
Rn

rn1Sr (f(x)) by change of variable

=

∫
Rn

rn1S(x) because 1Sr
(f(x)) = 1S(s)

= rnVol (S) by definition of volume

A.2 Exact point-counting algorithm for CZ

Section 5.1 We prove a point-counting algorithm for CZ, however we emphasise
that on ordinary computers this is highly inefficient and we could not apply it
for cryptographic parameters.

Lemma 15. Let n, r ∈ N, and en,r = ⌊√n⌋r + ⌊∆nr⌋. We define W ∈ Z[X] as

W =
∑∞

i=0,k=0 wi,kX
iY k2

=
(
1 +

∑r
i=1 2X

iY i2
)n

. Then :

∣∣Cnθ,r,Z∣∣ = en,r∑
i=0

⌊(θ·r)2⌋∑
k=0

wi,k.

Proof. Define δi =

{
1 if i = 0
2 otherwise , then :

(
1 + 2

r∑
i=0

XiY i2

)n

=

∞∑
l=0

∑
v∈Nn

∥v∥∞≤r

[
δv1δv2 . . . δvnX

∥v∥1Y ∥v∥2
]

with v = (v1, v2, . . . , vn)

=

∞∑
l=0,k=0

∑
v∈Zn,∥v∥∞≤r
∥v∥1=l,∥v∥22=k

1 ·X lY k. =

∞∑
l=0,k=0

|Yr,l,k| ·X lY k,

With Yr,l,k = {v ∈ Zn; ∥v∥∞ ≤ r ∧ ∥v∥1 = l ∧ ∥v∥22 = k}. ⊓⊔
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A.3 Inclusion constraints for the Rényi divergence study of
Section 5.1.

In order to use CZ in Theorem 1 we need to prove the following elementary
inclusion lemma.

Lemma 10. Let S ⊂ Rn be a convex region. Define v ∈ Zn and R, r, c > 0 such
that R ≥ r + c and 0,−v/c ∈ S, then Sr ⊂ SR,v.

Proof. Let x ∈ Sr. We want to show that x ∈ SR,v. We have:

x− v =
r

R
x̄+

c

R
ṽ +

R− r − c

R
· 0 with x̄ =

R

r
x ∈ SR and ṽ = −R

c
v ∈ SR

∈ SR since R− c− r ≥ 0 and x̄,0, v̄ ∈ S.

⊓⊔

A.4 Signature preliminaries

In this section we provide some additional but not core preliminaries as well as
some additional lemmas in order to prove the correctness of Patronus.

Entropy of a discrete distribution. Let X be a discrete random variable over
a discrete distributionD with probability mass function P (X) = {p1, p2, . . . , pn},
where pi represents the probability of outcome xi for i = 1, 2, . . . , n. The entropy
of the distribution P (X) is defined as:

H(X) = −
n∑

i=1

pi log(pi).

Centred Binomial. We denote by Binom the probability distribution of the
centred binomial of parameter (2, 0.5) on {−1, 0, 1} such that Pr[Binom = 0] =
1/2 and Pr[Binom = −1] = Pr[Binom = 1] = 1/4. A brief entropy computation
gives: H(B̄2) = log2(4)

2 + log2(2)
2 ≈ 0.452. We use vectors of dimension 768 as

baseline for the entropy of this distribution. We obtain: H(B̄768
2 ) = 768·H(B̄2) ≈

346 which is larger than what is required by all proposed security parameters of
our signature scheme Patronus.

Properties of the decomposition functions

Lemma 16. Let γ a power of two. Let q > 2 a prime and k such that k < γ
2 +1

and γ|q − k and r ∈ Z. Then:

r = γ · Highbits(r, γ) + Lowbits(r, γ);

Lowbits(r, γ) ∈
(
−γ

2
,
γ

2

]
;

r ∈ [0, q − 1]⇒ Highbits(r, γ) ∈
[
0,

q − k

γ

]
.
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Proof. The first two claim are direct by definition of both Highbits and Lowbits
with Lemma 11. Then by definition of Highbits, it is a non-decreasing function
in r. We therefore only need to verify the case r = q − 1:

Highbits(q − 1, γ) =

⌊
q − 1

γ
+

1

2

⌋
=

⌊
q − k

γ
+

k − 1

γ
+

1

2

⌋
=

q − k

γ
, since k <

γ

2
+ 1 and γ|q − k .

⊓⊔

Lemma 12. Let r ∈ Z. Let q a prime, γ|(q − k) a power of two. Let m =
(q − k)/γ. It holds that:

r = Highbitsm(r, γ) · γ + Lowbitsm(r, γ) mod q

Lowbitsm(r, γ) ∈ [−γ/2, γ/2]
Highbitsm(r) ∈ [0,m− 1].

Proof. If r′0 = r0 and r′1 = r1 then the equality holds, if not r′0 = r0 − k and
r′1 = r1− (q− k)/γ which leads to r′1 · γ+ r′0 = r1 ·αh + r0− q implying the first
equality with Lemma 16.
The belonging of Lowbitsm(r) in [−γ/2, γ/2] and of Highbitsm(r) in [0,m − 1]
are a direct implication of the same Lemma 16. ⊓⊔

Lemma 13. Let r, z ∈ Zq and ∥z∥∞ ≤ γ/2:

UseHintm(MakeHintm(z, r, γ), r, γ) = Highbitsm(r + z, γ).

Proof. Let (r1, r0) = (Highbitsm(r, γ), Lowbitsm(r, γ)).
By Lemma 12, r1 ∈ [0, q−k

γ ) and ∥r0∥∞ ≤ γ/2. Since ∥z∥∞ ≤ γ/2:{
r0 + z ∈ [−γ, γ/2] if r ≤ 0
r0 + z ∈ (−γ/2, γ] if r > 0

⇒
{
v1 = r1 modm ∨ v1 = r1 − 1 modm
v1 = r1 modm ∨ v1 = r1 + 1 modm

Then depending on h = MakeHintm(z, r, γ) either v1 = r1 modm or v1 = r1 ±
1 modm. ⊓⊔

Lemma 17 (Lemma 4.1 of [KLS18]). If ∥s∥∞ ≤ β and ∥Lowbits(r, γ)∥∞ <
γ/2− β then

Highbits(r, γ) = Highbits(r+ s, γ)

Lemma 18. Let (h, r) ∈ {0, 1} × Zq and v1 = UseHintm(h, r, γ), if h = 0, then
∥r − v1 · γ∥∞ ≤ γ/2 else ∥r − v1 · γ∥∞ ≤ γ + 1

41



Proof. We define and prove it comparatively to [DKL+21]. Let (r1, r0) :=
(Highbitsm(r, γ), Lowbitsm(r, γ)).
If h = 0: then v1 · γ − r1 = r0 ≤ γ/2 using Lemma 12.
If h = 1 and r0 > 0, v1 = r1 +1 mod q−1

γ therefore r− v1 · γ = r0− γ mod q− 1.
Since r0 > 0 by Lemma 12, r − v1 · γ ≤ γ.
If h = 1 and r0 < 0, the result is the same as above by changing signs.
Finally, the case r0 = 0 is direct. ⊓⊔
Lemma 14. If ∥s∥∞ ≤ β, ∥Lowbitsm(r, γ)∥∞ < γ/2− β then:

Highbitsm(r, γ) = Highbitsm(r+ s, γ).

Proof. By supposing that ∥Lowbitsm(r, γ)∥∞ < γ/2 − β, then by definition we
have r0 ∈ [−γ/2 + β, γ/2 + β] which implies r0 + s ∈ [−γ/2, γ/2] and leads to
Highbitsm(r, γ) = Highbitsm(r+ s, γ). ⊓⊔

B Additional supplementary materials

B.1 Evolution of αn

In this subsection we show the evolution of αn. As can be seen in Figure 7, it
converges swiftly to 1, indicating that most of the volume of a L1 ball is actually
inside its inscribed H.

B.2 General results about projections from Sn+p
p (r) to Bn

p (r)

In our sampler, we used a bijection between a discrete L1 sphere of dimension n+
1 and a discrete L1 ball or dimension n and the fact that a uniform distribution
on the first set implies a uniform distribution on the second. We describe the
situation for a general p ∈ Z>0, in the case of continuous balls. It is a particularly
interesting result because it allows to reduce some problems such as sampling in
a Lp ball to sampling on the Lp sphere of higher dimension (or vice versa).

Lemma 19 ([BGMN05]). Let n,m ∈ Z be dimensions and p ∈ Z>0 the norm
indicator, then the orthogonal projection of the uniform distribution on Snp (n+m)
on the first n coordinates has density:

p(x) =
Γ(n+m

p )

Γ(mp )
[
2Γ( 1p + 1)

]n · (1− ∥x∥pp)m
p −1.

Corollary 4. Let n, p ∈ Z. The orthogonal projection of the uniform distribu-
tion on Snp (n+ p) on the first n coordinates has density:

p(x) =
Γ(n+p

p )[
2Γ( 1p + 1)

]n ,
which corresponds exactly to the uniform distribution in Bnp (n).
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Fig. 7. Evolution of αn.

While the discretisation for L1 works fine as it is just a projection, it does
not seem to hold for more general Lp balls with p > 1. Particularly in the
interesting case of the L2 ball, this theorem can not be extended to facilitate
uniform sampling on a discretised L2 ball.

B.3 Intersection of Lp balls

Proposition 11 (B-ception: intersection of Lp balls). Let r, c ∈ R≥0 two
radii with r > c. Then ⋂

c∈Bn
p (c)

Bnp (r, c) = Bnp (r − c).

To prove this result, we first present and prove an auxilliary lemma.

Lemma 20. Let r ∈ R≥0 be a radius, and c ∈ Rn a centre such that r > ∥c∥.
Then the following two items are true:

1. Bnp (r − ∥c∥p) ⊆ Bnp (r, c) ∩ Bnp (r,−c);
2. ∀R > r − ∥c∥p,Bnp (R) ̸⊂ Bnp (r, c) ∩ Bnp (r,−c).

Proof. We address both items seperately.
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1. Let x ∈ Bnp (r − ∥c∥p), then ∥x∥p ≤ r − ∥c∥p. By the triangle inequality,
∥x− c∥p ≤ ∥x∥p + ∥c∥p and ∥x+ c∥p ≤ ∥x∥p + ∥c∥p which directly implies
that x ∈ Bnp (r, c) ∩ Bnp (r,−c).

2. Let R > r − ∥c∥p. By introducing x = R · c
∥c∥p

∈ Bnp (R), we notice that

x+ c = c ·
(
1 + R

∥c∥p

)
, and therefore ∥x+ c∥p = ∥c∥p ·

(
1 + R

∥c∥p

)
> r,

which in turn implies x /∈ Bnp (r,−c).
⊓⊔

This lemma allows us to write the proof of the B-ception identity.
Proof of Proposition 11. Let c < r be non-negative reals, and x ∈ ⋂c∈Bn

p (c) Bnp (r, c)
a vector. We let u = c

∥x∥p
· x. By construction u ∈ Bnp (c), hence x ∈ Bnp (r,u).

Therefore, ∥x− u∥p ≤ r. Additionally, ∥x− u∥p =
∥∥∥x · (1 + c

∥x∥p

)∥∥∥
p
= ∥x∥p+c.

This leads to ∥x∥p + c ≤ r, which is exactly x ∈ Bnp (r − c).
The other inclusion is direct by Lemma 20 and thus:⋂

c∈Bn
p (c)

Bnp (r, c) = Bnp (r − c).

⊓⊔

B.4 Convergence of the cardinal of a set

This last section bounds the number of integral points in Hn
r and Cnθ,r using their

volumes. In some sense, this translates the fact that for a large enough radius,
the Gaussian heuristic holds. Our bounds are not tight.

We denote by P(x, 1/2) the elementary hypercube of radius 1 centered on
an arbitrary vector x.

Lemma 21. Let r ∈ R>0, then Hn
r−√n/2

⊆ ∪y∈Hn
r,Z
P(y, 1/2).

Proof. Let x be a vector of Hn
r−√n/2

, we denote y = ⌊x⌉. Then, there exists
α ∈ P(0, 1/2) such that x = y + α. By definition of the rounding operator ⌊·⌉,
∥y∥∞ ≤ ∥x∥∞+1/2 and ∥y∥1 ≤ ∥x∥1+n/2, which implies by definition ofHn

r−√n

that y ∈ Hn
r . Additionally, α ∈ P(0, 1/2) directly implies x ∈ y + P(0, 1/2) ∈

∪y∈Hn
r,Z
P(y, 1/2). ⊓⊔

Lemma 22. Let r ∈ R>0, then ∪y∈Hn
r,Z
P(y, 1/2) ⊆ Hn

r+
√
n/2

.

Proof. Let x ∈ ∪y∈Hn
r,Z
P(y, 1/2). There exists y ∈ Hn

r,Z and α ∈ P(0, 1/2) such
that x = y+α. By the triangle inequality, ∥x∥∞ ≤ r+1/2 and ∥x∥1 ≤ r

√
n+n/2

which implies that x ∈ Hn
r+
√
n/2

. ⊓⊔

Proposition 12. If r >
√
n/2, then Vol

(
Hn

r−√n/2

)
≤
∣∣Hn

r,Z
∣∣ ≤ Vol

(
Hn

r+
√
n/2

)
.

44



Proof. Direct using Lemma 21 and Lemma 22 and the fact that
∣∣Hn

r,Z
∣∣ = Vol

(
∪y∈Hn

r,Z
P(y, 1/2)

)
.

Corollary 5. If r >
√
n/2, then Vol

(
Cn
θ,r−√n

)
≤
∣∣∣Cnθ,r,Z∣∣∣ ≤ Vol

(
Cn
θ,r+

√
n

)
.

Proof. We use the same proof as that of proposition 12 and verify the additional
necessary constraints on the L2 norm.

Lemma 23. If r ≫ √n then:∣∣Hn
r,Z
∣∣ ≈ Vol (Hn

r ) and
∣∣Cnθ,r,Z∣∣ ≈ Vol

(
Cnθ,r

)
.

Proof. Using Proposition 12 (or similarly Corollary 5 for C) we have:

Vol
(
Hn

r−√n/2

)
≤
∣∣Hn

r,Z
∣∣ ≤ Vol

(
Hn

r+
√
n/2

)
.

By dividing the above inequalities by Vol
(
Hn

r+
√
n/2

)
, we compute:

Vol
(
Hn

r−√n/2

)
Vol
(
Hn

r+
√
n/2

) =
(r −√n/2)n
(r +

√
n/2)n

=
(1−

√
n

2r )
n

(1 +
√
n

2r )
n

∼ e−
n
√

n
2r

e
n
√

n
2r

since r ≫ √n

∼ e−
n
√

n
r .

⊓⊔
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