
Modular Indexer: Fully User-Verified Execution
Layer for Meta-Protocols on Bitcoin

Hongbo Wen1,2, Hanzhi Liu1,2, Shuyang Tang1,3, Shuhan Cao1, Domo4, and
Yu Feng1,2

1 Riema Labs
{hongbo,hanzhi,htftsy,shuhan,yu}@riema.xyz

2 University of California, Santa Barbara
3 Shanghai Jiao Tong University

4 Layer 1 Foundation
domodata@proton.me

Abstract. Before the emergence of inscriptions and ordinal protocols,
Bitcoin was limited in its applications due to the Turing-incompleteness
of its script language. Fortunately, with recent advances in techniques,
Turing-complete off-chain execution layers are established via Bitcoin
indexers. Yet, existing indexers have their data integrity and availabil-
ity strongly dependent on the honesty of indexers. This violated the
trustlessness and decentralization principle of the cryptocurrency liter-
ature. To provide an alternative Bitcoin indexer scheme and overcome
the above limitations, we have reallocated the roles of committee index-
ers (for heavy computations), normal indexers, and light indexers (the
client end), and established a fully user-verified execution layer based on
our modular indexer protocol. For the trustless relay of data, we have
adopted Verkle trees to store and prove the states. Thus, data integrity
and availability are guaranteed even in the case of a majority of malicious
committee indexers. Ideally, our modular indexer would safely bridge the
gap between the Bitcoin layer-1 and applications from BRC-20, and con-
tribute to the further prosperity of the Bitcoin ecosystem.

Keywords: Bitcoin, Indexer, Ordinal, BRC-20, Execution Layer, Cryp-
tocurrency.

1 Introduction

Blockchain technology continues to captivate the financial and technological sec-
tors with its promise of decentralization, transparency, and security. The Bit-
coin [12] (BTC) ecosystem, a pioneer in this realm, has recently made impres-
sive strides, particularly with the advent of Layer-2 solutions like Stacks [3] and
CKB [2], which significantly alleviates scalability concerns by processing trans-
actions off the main blockchain, thus enabling faster and more cost-efficient
transactions. Furthermore, the introduction of inscriptions [13] and ordinal pro-
tocols [6] has opened new horizons for embedding data and creating unique,

2 Hongbo Wen, Hanzhi Liu, Shuyang Tang, Shuhan Cao, Domo, and Yu Feng

indivisible assets directly on the Bitcoin blockchain, fostering a new wave of
innovation and utility.

Due to the Turing-incompleteness of the Bitcoin script language, complex
program logic cannot be executed directly on Bitcoin, which restricts the func-
tionalities of Bitcoin applications. To overcome this shortage, developers leverage
Bitcoin indexers to establish an off-chain execution layer that is Turing-complete.
Specifically, an indexer first allows users to upload general data and contract
codes to Bitcoin, where the contract code is written in some Turing-complete
programming languages. Based on these codes and data, the indexers maintain
a set of states. For each generation of Bitcoin blocks according to the Bitcoin
transaction order, indexers execute the user codes on the data and update the
states accordingly. Indexers dramatically enhance the accessibility and usability
of blockchain data.

However, despite their utility, Bitcoin indexers face limitations such as data
integrity and availability. Specifically, for an off-chain execution layer, the indexer
could tamper with the data leading to bogus states for the user. To mitigate the
data integrity problem, the user could download and maintain up-to-date data
from the Bitcoin blockchain and verify the validity of the output by execut-
ing her indexer. However, doing so will include the need for substantial storage
capacity and processing power to manage the ever-expanding blockchain. Addi-
tionally, maintaining up-to-date and accurate indexing amidst the blockchain’s
decentralized and immutable nature poses ongoing challenges.

Due to the integrity and cost of maintenance concerns mentioned above, one
native solution is to leverage a decentralized indexer network to conduct the
computation [9]. However, since the network is completely permissionless, the
consensus mechanism of the existing decentralized indexer network is vulnerable
to Sybil attacks, which enable malicious indexer operators to provide users with
false states, such as asset ownership and spendable balance.

To solve this issue, we propose a modular indexer architecture that enables
a truly decentralized, fully user-verified indexer network. The key challenge here
is to design a mechanism that allows users to verify the validity of the states
provided by the indexers efficiently and cost-effectively. Our insight is based on
the following crucial observation: the expensive integrity checking of execution
over whole-state transitions can be reduced to checking the validity of a tiny
amount of checkpoints through the design of proper cryptography protocols.

Architecture of Our Design. In a fully user-verified modular indexer network,
Bitcoin remains the most basic trusted consensus and data layer. The indexer
obtains the protocol state corresponding to each Bitcoin block by reading data
on Bitcoin and performing computations. Specifically, the protocol state S =
{K0 : V0,K1 : V1, ...,Kn : Vn} is a hash table composed of many Key-Value
pairs. Users can obtain the protocol state S corresponding to the block height
H and block hash P through the following two methods:

– Users run a full Bitcoin node and operate an indexer that saves full states.
This is the most reliable method, but running a full Bitcoin node with a full-

Title Suppressed Due to Excessive Length 3

Fig. 1. Basic Architecture of Modular Indexer

state indexer requires significant storage resources, which are unaffordable
to normal users.

– Using the key, a user queries the value from the indexer in the decentralized
network. The indexer returns the result (i.e., QueryResult) to the user. This
is current common practice, but this method cannot prevent scenarios where
malicious nodes provide bogus data.

Currently, a decentralized network composed of indexers cannot prevent Sybil
attacks because its consensus layer lacks a penalty mechanism and cannot punish
these malicious indexers, i.e., it lacks economic security. However, when the in-
dexer network functions solely for the execution of data that has already reached
consensus on Bitcoin, based on predefined protocols, the need for an additional
consensus layer becomes unnecessary. Instead, it has to provide users with proofs
for each execution result, which is inefficient. To address this challenge, we pro-
pose the modular indexer architecture. It allows users to efficiently verify whether
the states and query results provided by the indexer are trustworthy under the
assumption that at least one honest indexer node is present (1-of-N trust as-
sumption).

As shown in Figure 1, the modular indexer architecture involves the following
roles:

– The committee indexer is responsible for reading each block of Bitcoin, cal-
culating protocol states, and summarizing these states as a polynomial com-
mitment namely checkpoint. Whenever the committee indexer obtains a new
Bitcoin block, it generates a new checkpoint for the protocol and publishes
it to the data availability layer for users to access.

– The data availability layer is responsible for data publication and ensuring
the availability of data at the checkpoints.

4 Hongbo Wen, Hanzhi Liu, Shuyang Tang, Shuhan Cao, Domo, and Yu Feng

– The indexer is responsible for sending the results and the corresponding
proofs to the queries of the users. Based on the checkpoint stored in the DA
layer, users can verify the validity of these results using the provided proofs.

– The light indexer is a lightweight client operated by users, which can query
the necessary parts of the protocol state from the indexer, verify the corre-
sponding proofs, and when the checkpoints provided by multiple committee
indexers are inconsistent, utilize stateless computation with minimal crit-
ical states to generate the correct checkpoint, thus identifying the honest
committee indexer.

In the modular indexer architecture, Bitcoin is responsible for transaction
ordering, consensus, and providing Bitcoin’s economic security for the DA layer.
The DA layer ensures that users have the availability to access checkpoints.

2 Checkpoints and Data Attestations

In the architecture of the modular indexer, both indexers and committee indexers
might act maliciously. Therefore, the difficulty of realizing our modular indexer
architecture lies in (1) the verification of checkpoints in the case of inconsistent
committee indexers; and (2) the attestation of each data queried by light indexers
in case of malicious indexer.

To begin with, we provide a strawman protocol in a simplified scenario in
which one ideal prover (to be realized by committee indexers) generates a new
checkpoint after one state transition and wishes to convince one verifier (light
indexer) that the new checkpoint is valid. We show that the minimal critical
states can be viewed as “proofs” for a checkpoint. In fact, the verifier is allowed
to locally build a critical subtree from the critical states and recover the correct
checkpoint based on it. Notably, minimal critical states can be obtained from
the Bitcoin network by light indexers. Therefore, the verification of a checkpoint
is practical for each light indexer.

2.1 A Strawman Verification of Checkpoints

To simplify the descriptions, we assume that the state transition only involves the
modification of one value or the insertion of one key-value pair. In general, since
the checkpoint is the hash of a Verkle tree root, the proof is done by unfolding
every concerned node of the two trees (before and after the transition). Due to
the stateless nature of Verkle, the prover does not have to provide the sibling
nodes, and hence the communication complexity is bounded by O(log n).

Specifically, for the transition from a checkpoint Ci of block Bi to a check-
point Ci+1 of block Bi+1, ideal provers and a verifier interact as follows.

Prover. Each prover parses block Bi+1, and assembles a critical subtree T ′
i . This

is a subtree of the previous (Verkle) state tree Ti that contains the minimum
number of nodes such that each path from the root to any critical state (either

Title Suppressed Due to Excessive Length 5

as a leaf, extension node, or internal node) of Bi+1 (not Bi) is contained. Then,
it assembles the next state tree Ti+1 according to Bi+1. Finally, a tuple (i +
1, bi, Ci, T

′
i , bi+1, Ci+1, T

′
i+1) is sent to the verifier, where (1) bi and bi+1 are the

block hashes of Bi and Bi+1; and (2) Ci and Ci+1 are the commitments of the
roots of Ti and Ti+1.

Verifier. After receiving the tuple (i+ 1, bi, Ci, T
′
i , bi+1, Ci+1, T

′
i+1), the verifier

proceeds as follows.

(1) The verifier verifies that (bi, Ci) is equal to its local block hash and Verkle
root of height i. In addition, it verifies that Ci and Ci+1 are the hashes of
the roots of Ti and Ti+1.

(2) If it finds (bi+1, Ci+1) in the local dataset, it completes the verification and
halts. If Ci+1 is the first local Verkle root for Bi+1 of hash bi+1, it locally
stores (bi+1, Ci+1) and exits the verification.

(3) In the other case, there exists (bi+1, C̃i+1) locally and C̃i+1 ̸= Ci+1. To verify
that Ci+1 is correct, the verifier locally constructs T ′′

i+1 from T ′
i by modifying

the leafs (for existing keys) and structures (for data insertion) accordingly.
This is the direct application of the Verkle tree specification. However, the
only difficulty lies in the commitment of each node. Since the sibling nodes
are not provided in the subtree, node commitments could not be calculated
by the formulae defining them. Fortunately, the nature of the KZG-based
commitment scheme provides an alternative. Recall that we only discuss the
case of one modification. For any node p ∈ T ′′

i+1, if any slot of its commitment
(say, slot k) is changed by δ, then its commitment should be c0 + δ · Li(τ),
where c0 is its node commitment in T ′

i . Clearly, this calculation is possible
with gp. In the other case, this is an internal node newly generated from
an extension node q (by inserting a new value). In this case, this internal
has only two children. One of them already exists in T ′′

i+1 and the other one
is an extension node with the stem and children set equal to q. Hence, the
commitment can be calculated since the commitments of both are known.

(4) Compare T ′
i+1 with T ′′

i+1, accept if the two critical subtrees are equal.

(5) Replace (bi+1, C̃i+1) with (bi+1, Ci+1) in the local dataset.

In the event of a chain fork, or falsified block hashes, the verifier is allowed to
download the finalized block hash bi+1 after the finality of block Bi+1.

2.2 Checkpoint Verification

Intuition. For (light) indexers, the verification of a checkpoint after multiple
modifications is a simple generalization of the above protocol. (1) Since there is
more than one critical state, the critical path is extended to a critical subtree. (2)
The recovery algorithm of the transited Verkle tree is the same, but the iteration
of nodes is extended to all nodes of the critical subtree.

The difficulty lies in the fact that there are multiple committee indexers
(provers), and we wish to take merit of the fact that at least one committee

6 Hongbo Wen, Hanzhi Liu, Shuyang Tang, Shuhan Cao, Domo, and Yu Feng

Fig. 2. Generating Checkpoint and Verifying Checkpoint Provided by the Indexer

indexer is honest and lessen the verification overhead. Our goal is that the full
verification, which consists of the local reconstruction of a critical subtree, is only
triggered in case of inconsistent checkpoints are received from two committee
indexers. This is realized by the following method.

(a) For each pair of block height i and block hash t, the first checkpoint received
from any committee indexer is directly stored locally without verification.

(b) When a different checkpoint is received for an (i, t) pair, the verification
protocol is triggered, the light indexer obtains the critical states, locally
recovers the critical subtree T ′′

i , asks for the corresponding critical subtree
T ′
i from indexers, and compares them to identify its correctness. If it is

correct, replace the local checkpoint for (i, t).

Observably, the final checkpoint is correct if any one of the committee indexers
is honest.

The Protocol. When the Bitcoin block height is h, the block hash is p, and the
checkpoints at the height h − 1 of the committee indexers are consistent, the
checkpoint submitted by the committee indexer set selected by users at height
h, under the block hash p is inconsistent. In this case, without loss of generality,
we assume that there are only two inconsistent checkpoints. A malicious commit-
tee indexer provided the false checkpoint Ca, but at least one honest committee
indexer provided the true checkpoint Cb. Upon discovering the inconsistency, the
light indexer will undergo the following steps for stateless computation to gen-
erate the correct checkpoint, thereby identifying the honest committee indexer
and removing attackers from the committee indexer set. In a high-level view, the

Title Suppressed Due to Excessive Length 7

light indexer can request the state of the previous block Sh−1 from an indexer
and verify the legitimacy of the state provided with the known and consistent
previous checkpoint Ch−1. The light indexer then executes the current block’s
transactions Bh,p using the verified Sh−1 to derive the current state Sh and its
corresponding checkpoint Ch. Given the impracticality of handling the full state
due to its massive size, often in the hundreds of GB, the user only needs to
request a subset of the full state necessary for transaction execution. Using the
properties of Verkle Tree, it is possible to compute the full state’s checkpoint
from this subset of state changes.

As shown in Figure 2, the light indexer needs to request the following infor-
mation:

(1) Request from both committee indexers for the parent block’s state Sh−1.
The key of Sh−1 Key = {K0,K1, ...,Km} is a subset of all keys in the state,
containing only those keys read and written by transactions in the block. In
the parent block state Sh−1, these keys correspond to the set of V alues =
{V0, V1, ..., Vm}, and in the current block’s state Sh, these keys correspond
to the post-execution state of V alue′ = {V ′

0 , V
′
1 , ..., V

′
m}. Additionally, the

indexer also needs to send proof π = Proof(Key, V alue) that Keys and
V alues indeed exist in Sh−1.

(2) Request the parent block’s checkpoint Ch−1 from the DA layer, as the Com-
mittee submitted Ch−1 is consistent, it can be considered legitimate and
honest.

(3) Request the Block content at height h, under block hash p from Bitcoin
Blockh,p .

The light indexer needs to verify the following: Is the proof π correct? Is
the parent block state Sh−1 provided by the indexer legitimate? Among the two
checkpoints, Ca and Cb, which is correct? This involves the following steps:

(1) Verify Sh−1. The light Indexer needs to verify whether the proof π is correct,
which can be directly verified through V erify(Ch−1, π).

(2) Generate Sh. The light indexer parses the current block Blockh,p to obtain
the transactions that need to be executed and V alues from the parent block’s
state Sh−1 required for executing these transactions. Subsequently, the user
executes transactions through V alues, calculating the post-execution state
of V alues′. Note that the light indexer does not need to request the full
state (saving the full state requires hundreds of GB of storage space), but
calculates from a subset of the full state, containing only those read and
written by transactions in the block. Also, only one honest indexer needs to
provide Sh−1 as well as the proof π for the transaction execution.

(3) Verify Checkpoint Ch. After verifying the correctness of Sh−1 and calculat-
ing Sh, the light indexer can calculate the polynomial commitment of the
complete state, as well as the values of the leaves that need to be updated.
This means that the light indexer can recover the current block’s Verkle Tree
Th from Sh−1, Sh and the parent block’s checkpoint Ch−1, even though it
only knows a tiny part of the leaves of the tree, we can still generate the

8 Hongbo Wen, Hanzhi Liu, Shuyang Tang, Shuhan Cao, Domo, and Yu Feng

entire tree’s checkpoint Ch. Thereby, the light indexer can determine the
correctness of Ca and Cb by comparing these checkpoints with the gener-
ated checkpoint Ch, thus identifying the attacker and removing it from the
committee indexer set maintained by itself.

Therefore, in the modular indexer architecture, as long as there is one honest
committee indexer, the light indexer can observe the inconsistency of checkpoints
and calculate the correct checkpoint, thereby identifying the attacker and avoid-
ing financial losses. It is worth noting that this verification process is different
from consensus and is not affected by the “51%” attack.

2.3 Proofs for Data Query

When the Bitcoin block height is h, the block hash is b, and the checkpoints of the
committee indexer set selected by users on the DA Layer are consistently honest,
the user’s query is a set of keys existing in the state Q = {K0,K1, ...,Km}.
A malicious indexer provides incorrect query responses R = {V0, V1, ..., Vm}
Therefore, proofs are expected for any value sending from an indexer to a light
indexer. For an indexer to attest a value p in a Verkle tree with root commitment
(i.e., a checkpoint) C, KZG openings of commitments for nodes of the path
(p0, p1, . . . , pℓ) (p ∈ pℓ.leaf) are sent along with the value. In this case, as shown in
Figure 2, the light indexer can verify the proof through the verification procedure
by reading the corresponding checkpoint Ch on the DA Layer, i.e., verifying the
KZG opening proofs. Since indexers cannot generate proof for incorrect query
results for the checkpoint, users can verify the validity of the query results. If
the query results are invalid, users can continue to query other indexers until
they receive the query results from an honest indexer.

3 Applications

In this section, we introduce how existing meta-protocols can be integrated into
the modular indexer architecture:

In this section, we introduce how existing meta-protocols can be integrated
into the modular indexer architecture:

– At the Modular Indexer Level. The indexer independently stores and indexes
each meta-protocol, thus calculating and publishing checkpoints for each
meta-protocol. For example, if an indexer chooses to serve both BRC-20 [5]
and Bitmap protocols [1], it needs to publish the current state commitment
tuple (consisting of a block height h, a block hash p, and a checkpoint C)
separately in the DA layer for BRC-20 and Bitmap.

– At the Meta-Protocol Level. On each block height h, block hash p, and check-
point C, the indexer maintains a Verkle Tree storing all the state variables
of the meta-protocol. This Verkle Tree uses a 32-byte Storage Identifier as
the Key and the current value of the state variable as the value. The meta-
protocol is responsible for defining how to generate the Storage Identifier and

Title Suppressed Due to Excessive Length 9

Fig. 3. Any change in the meta-protocol states leads to Checkpoint inconsistency

ensure its uniqueness. For example, in the BRC-20 meta-protocol, a state
variable that needs to be maintained is the user’s current available balance
under a certain instance. Therefore, the meta-protocol needs to define how
each user’s available balance under each BRC-20 instance is mapped/hashed
to a unique Storage Identifier.

In terms of state correctness, as shown in Figure 3, any changes in a state
variable will lead to a change in the meta-protocol checkpoint. Upon detecting
inconsistency in the meta-protocol checkpoints, the light indexer can verify and
determine the trustworthy committee indexer through the verification process
described in the previous chapter.

References

1. Bitmap tech. https://bitmap.tech. Last accessed on March 1, 2024.
2. Nervos network. https://www.nervos.org. Last accessed on March 1, 2024.
3. Stacks: Activate the bitcoin economy with the leading bitcoin l2. https://www.

stacks.co. Last accessed on March 1, 2024.
4. https://l1f.discourse.group/latest, 2023. Last accessed on March 1, 2024.
5. BRC-20 documentation. https://layer1.gitbook.io/layer1-foundation/

protocols/brc-20/documentation, 2023. Last accessed on March 1, 2024.
6. Ordinal theory handbook. https://docs.ordinals.com/, 2023. Last accessed on

March 1, 2024.
7. Verkle trees for statelessness. https://verkle.info, 2023. Last accessed on March

1, 2024.
8. V. Buterin. Verkle trees. https://vitalik.eth.limo/general/2021/06/18/

verkle.html, 2021. Last accessed on March 1, 2024.
9. JinseFinance. BRC20 indexer war: Will BRC20 be forked at the be-

ginning of the year? what happened. https://www.coinlive.com/news/

brc20-indexer-war-will-brc20-be-forked-at-the-beginning, 2024. Last ac-
cessed on March 1, 2024.

https://bitmap.tech
https://www.nervos.org
https://www.stacks.co
https://www.stacks.co
https://l1f.discourse.group/latest
https://layer1.gitbook.io/layer1-foundation/protocols/brc-20/documentation
https://layer1.gitbook.io/layer1-foundation/protocols/brc-20/documentation
https://docs.ordinals.com/
https://verkle.info
https://vitalik.eth.limo/general/2021/06/18/verkle.html
https://vitalik.eth.limo/general/2021/06/18/verkle.html
https://www.coinlive.com/news/brc20-indexer-war-will-brc20-be-forked-at-the-beginning
https://www.coinlive.com/news/brc20-indexer-war-will-brc20-be-forked-at-the-beginning

10 Hongbo Wen, Hanzhi Liu, Shuyang Tang, Shuhan Cao, Domo, and Yu Feng

10. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to poly-
nomials and their applications. In Advances in Cryptology - ASIACRYPT 2010
- 16th International Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 5-9, 2010. Proceedings, pages 177–194.
Springer, 2010.

11. D. R. Morrison. PATRICIA - practical algorithm to retrieve information coded in
alphanumeric. J. ACM, 15(4):514–534, 1968.

12. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

13. P. Wuille, J. Nick, and A. Towns. Taproot: SegWit version 1 spending rules. https:
//github.com/bitcoin/bips/blob/master/bip-0341.mediawiki, 2020. Last ac-
cessed on March 1, 2024.

A Frequently Asked Questions

– Q: Is there a consensus mechanism among committee indexers?

A: No, within the committee indexer, only one honest indexer needs to be
available in the network to satisfy the 1-of-N trust assumption, allowing the
light indexer to detect checkpoint inconsistencies and thus proceed with the
verification process.

– Q: How is the set of committee indexers determined?

A: Committee indexers must publish checkpoints to the DA Layer for access
by other participants. Users can maintain their list of committee indexers.
Since the user’s light indexer can verify the correctness of checkpoints, at-
tackers can be removed from the committee indexer set upon detection of
malicious behavior; the judgment of malicious behavior is not based on a
51% vote but on a challenge-proof mechanism. Even if the vast majority
of committee indexers are malicious, if there is one honest committee in-
dexer, the correct checkpoint can be calculated/verified, allowing the service
to continue.

– Q: Why do users need to verify data through checkpoints instead of looking
at the simple majority of the indexer network?

A: This would lead to Sybil attacks: joining the indexer network is permis-
sionless, without a staking model or proof of work, so the economic cost of
setting up an indexer attacker cluster is very low, requiring only the cost
of server resources. This allows attackers to achieve a simple majority at a
low economic cost; even by introducing historical reputation proof, without
a slashing mechanism, attackers can still achieve a 51% attack at a very low
cost.

– Q: Why are there no attacks like double-spending in the Modular Indexer
architecture?

A: Bitcoin itself provides transaction ordering and finality for meta-protocols
(such as BRC-20). It is only necessary to ensure the correctness of the in-
dexer’s state transition rules and execution to avoid double-spending attacks
(there might be block reorganizations, but indexers can correctly handle
them).

https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki

Title Suppressed Due to Excessive Length 11

– Q: Why upload checkpoints to the DA Layer instead of a centralized server
or Bitcoin?
A: For a centralized server, if checkpoints are stored on a centralized network,
the service loses availability in the event of downtime, and there is also the
situation where the centralized server withholds checkpoints submitted by
honest indexers, invalidating the 1-of-N trust assumption.
For indexers, checkpoints are frequently updated, time-sensitive data:

• The state of the Indexer updates with block height and block hash,
leading to frequent updates of checkpoints (10 minutes).

• The cost of publishing data on Bitcoin in terms of transaction fees is
very high.

• The data throughput demand for hundreds or even thousands of meta-
protocol indexers storing checkpoints is huge, and the throughput of
Bitcoin cannot support it.

– Q: What are the mainstream meta-protocols on Bitcoin currently?
A: The mainstream meta-protocols are all based on the Ordinals proto-
col, which allows users to store raw data on Bitcoin. BRC-20, Bitmap, Sat-
sNames, etc., are mainstream meta-protocols. More meta-protocols and in-
formation can be found in [4].

– Q: What kind of ecosystem support has this proposal received?
A: The proposal is put forward by Nubit as a long-term supporter and builder
of the Bitcoin ecosystem. We have also exchanged ideas with many ecosystem
partners and hope to jointly promote the progress and improvement of the
modular indexer architecture.

B Preliminaries

B.1 Vector Commitment

In the cryptocurrency literature, vector commitments are often realized by in-
terpolating the vector into a polynomial and committing this polynomial by the
KZG commitment [10]. It involves the following algorithms.

– setup(1κ) → gp. The setup algorithm samples a random τ and returns gp =
(G, τ ·G, τ2 ·G, . . . , τd ·G).

– commit(gp,v = (v1, v2, . . . , vℓ)) → comv. For a vector v, this algorithm halts
if ℓ > 256. In the other case, the commitment algorithm first interpolates a
polynomial as f(X) =

∑ℓ
i=1 vi · Li(X), where Li(X) is the Lagrange base of

the index i. Then, it returns comv := f(τ) · G. Notably, although τ is not
contained in gp, this value can be calculated since τ i ·G is contained for each
i ∈ [ℓ].

– open(gp,v, i) → (vi, πi). To open a value of index i, the opening algorithm

returns vi and πi =
f(τ)−vi

τ−i ·G, where f is the interpolation of v.
– verif(gp, comv, i, vi, πi) → 0/1. The verification algorithm succeeds only if

e ((τ − i) ·G, πi) = e ((f(τ)− vi) ·G,G).

12 Hongbo Wen, Hanzhi Liu, Shuyang Tang, Shuhan Cao, Domo, and Yu Feng

B.2 Verkle Tree

The modular indexer architecture utilizes the Verkle tree [7, 8] (a variant of
Merkle Patrica tree [11]) as the data structure for state storage. The Verkle Tree
is a variant of the Merkle Tree, featuring more branching and shallower depth.
Its nodes use polynomial commitments instead of the results of cryptographic
hash functions as summaries of the child nodes. The Verkle Tree treats the root
node as the commitment for the entire tree (also referred to as the checkpoint
mentioned earlier), meaning the prover, unlike with a Merkle Tree, does not need
to provide all the “sibling nodes” hash values from the root to the leaf node. It
only needs to provide all the nodes on the path from the root to the leaf node.
Thus, the proof size of the Verkle Tree is smaller than that of the Merkle Tree,
especially when users query multiple leaf nodes.

Verkle tree contains three types of nodes, i.e., internal nodes, extension nodes,
and leafs (suffixes). The children of internal nodes can be internal or extensional.
However, the children of extension nodes can only be leafs. In other words, for
each path from the Verkle tree root to any leaf, it always bypasses several internal
nodes, one extension node, and one leaf, in sequence.

We model a Verkle tree as a set T . For each tree node p ∈ T , it is an
extension node if p.type = 0. In this case, its key p.key = (u1, u2, . . . , uℓ) is a
sequence and its commitment is Cp = commit(gp, 1, stem, C1, C2). Here, stem is
the concatenation of all the keys of its ancestor nodes and its key,

C1 = commit(gp, vl0, v
u
0 , v

l
1, v

u
1 , . . . , v

l
127, v

u
127),

and
C2 = commit(gp, vl128, v

u
128, v

l
129, v

u
129, . . . , v

l
255, v

u
255).

Here, each value vi is separated into two values (vli, v
u
i). See details in the Verkle

tree documentation. Since each leaf is a value, we do not model them as tree
nodes and the values are stored as part of its parent extension node p.leaf[0..255].
For an internal node p, its type is p.type = 1 and its commitment is

Cp = commit(gp, C0, C1, . . . , C255),

where each Ci is the commitment of one child.

	Modular Indexer: Fully User-Verified Execution Layer for Meta-Protocols on Bitcoin
	Introduction
	Checkpoints and Data Attestations
	A Strawman Verification of Checkpoints
	Checkpoint Verification
	Proofs for Data Query

	Applications
	Frequently Asked Questions
	Preliminaries
	Vector Commitment
	Verkle Tree

