
IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MARCH 2024 1

Breaking the DECT Standard Cipher with Lower
Time Cost

Lin Ding, Zhengting Li, Ziyu Guan, Xinhai Wang and Zheng Wu

Abstract—The DECT Standard Cipher (DSC) is a proprietary
stream cipher used for encryption in the Digital Enhanced
Cordless Telecommunications (DECT), which is a standard
for short range cordless communication and widely deployed
worldwide both in residential and enterprise environments. New
weaknesses of the DSC stream cipher which are not discovered in
previous works are explored and analyzed in this paper. Based
on these weaknesses, new practical key recovery attacks and
distinguishing attack on DSC with lower time cost are proposed.
The first cryptanalytic result show that DSC can be broken in
about 13.12 seconds in the known IV setting, when an offline
phase that takes about 58.33 minutes is completed. After then, a
distinguishing attack on DSC in the related key chosen IV setting
is given, which has a time complexity of only 2 encryptions
and a success probability of almost 1. Finally, based on the
slide property, a key recovery attack on DSC with practical
complexities is proposed. The experimental result shows that DSC
can be broken on a common PC within about 44.97 seconds in
the multiple related key setting. The attacks on DSC proposed
in this paper clearly show that a well-designed initialization is
absolutely necessary to design a secure stream cipher.

Index Terms—Cryptanalysis, DECT Standard Cipher, Time-
Memory-Data Trade-Off attack, Differential collision attack,
Slide attack.

I. INTRODUCTION

D IGITAL Enhanced Cordless Telecommunications (DEC-
T), created by the European Telecommunications Stan-

dards Institute (ETSI) in the late 1980s, is a digital wireless
technology for cordless telephony that is used for both do-
mestic and business purposes [1]. It is designed for short-
range which acts as an access method to major networks.
Due to the flexible nature of DECT, it is one of the most
commonly used systems for cordless phones besides Global
System for Wireless Communications (GSM), Universal Mo-
bile Telecommunications Service (UMTS) and Code Division
Multiple Access (CDMA) around the globe. The number of
DECT devices sold reaches 820 million with a proliferation of
100 million new devices per year. In the DECT standard, the

Manuscript received October 12, 2023, accepted January 14, 2024. This
work was supported by the National Natural Science Foundation of China
under Grant 61602514, 61802437, 61902428, 62202493. (Corresponding
authors: Lin Ding, Zhengting Li.)

Lin Ding is with the PLA SSF Information Engineering University,
Zhengzhou 450001, China (e-mail: dinglin cipher@163.com).

Zhengting Li is with the PLA SSF Information Engineering University,
Zhengzhou 450001, China (e-mail: lizhengting0225@163.com).

Ziyu Guan is with the PLA SSF Information Engineering University,
Zhengzhou 450001, China (e-mail: a1027495051@163.com).

Xinhai Wang is with the PLA SSF Information Engineering University,
Zhengzhou 450001, China (e-mail: wxh1066559569@126.com).

Zheng Wu is with the PLA SSF Information Engineering University,
Zhengzhou 450001, China (e-mail: g7001162@163.com).

DECT Standard Authentication Algorithm (DSAA) [2] is used
to provide mutual authentication of devices, and the DECT
Standard Cipher (DSC) [3] is used to provide encryption of
the payload. However both features are optional and need
not be implemented on a device. In 2009, two attacks on
DECT [2,4] were presented and showed that some devices
do not use encryption and authentication at all and can easily
be eavesdropped on. After then, more works on the security
of DECT voice communications were presented in [5]–[8]. It
should be noted that all these attacks are not cryptanalytic
attacks on the DSC stream cipher, since all of them are
irrelevant to the detailed design of DSC.

The DECT Standard Cipher (DSC) is an asynchronous
stream cipher used for encrypting payload of DECT trans-
missions such as cordless telephone calls. The stream cipher
was kept secret, until it was publicly disclosed by Nohl, Tews
and Weinmann [3] at FSE 2010. It was reverse-engineered
from a DECT device using a combination of firmware probing
and hardware reverse-engineering. As disclosed in [3], DSC is
similar to the A5/1 stream cipher in GSM, and takes a 64-bit
secret key and a 35-bit initialization vector (IV) to generate
a keystream of variable length. The DECT standard supports
frames of different lengths and formats. For common voice
calls, each key and IV pair is used to generate a keystream
of 720 bits which is split into two keystream segments of 360
bits each. The first 360 keystream bits are used to encrypt
traffic from the base station to the phone, and the remaining
360 keystream bits are used to encrypt the frames sent by the
phone. In each case, the first 40 keystream bits can be used
to encrypt the C-Channel data (that contains control data),
and the remaining 320 keystream bits are used to encrypt the
actual voice data (B-field). If a frame contains no C-channel
data, the first 40 bits are discarded. For more details, we refer
the readers to the ETSI DECT standard [1].

Related works. Since the DSC stream cipher is a standard
cipher used to provide confidentiality for cordless telephony
in the digital wireless technology DECT, it has attracted
a large amount of attention in the recent years due to its
importance. Up to now, several attacks on DSC [3,9-12] have
been proposed. In [3], beyond disclosing DSC, Nohl, Tews
and Weinmann proposed the first cryptanalytic attack on DSC,
often called NTW attack. The basic idea of NTW attack
is to guess some internal state bits to remove the irregular
clock control and then obtain a sufficiently large number of
linear equations over the key and IV bits. To obtain 30 linear
equations and reach a probability of success of 0.5, their attack
requires at least 215 available C-Channels generated by the
same key together with 215 different IVs. The NTW attack



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MARCH 2024 2

has to solve a system of 30 linear equations following an
exhaustive search over 34 key bits to recover the 64-bit secret
key of DSC, which leads to a time complexity of about 240.10

encryptions. Finally, the authors pointed out that an important
reason that the DSC stream cipher is vulnerable against their
attack is an insufficiently small number of initialization rounds
before producing the first keystream bit.

After then, Weiner et al. [9] presented an optimized NTW
attack and also an optimized FPGA implementation of their
optimized NTW attack. This attack is able to more than
double the success probability of the original NTW attack,
depending of the number of available keystreams. In [10,11],
Coisel and Sanchez presented an improved cryptanalysis of
NTW attack, often called CS attack. The CS attack is able
to quickly recover the secret key with a success rate of about
0.55 by analyzing 213 available C-Channels generated by the
same key together with 213 different IVs and performing an
exhaustive search over 231 keys. As estimated in [12], the
CS attack has a total time complexity of 237.10. Based on
an information collection method with unknown memory, Liu
and Jin [12] introduced two improved attacks of CS attack.
The one has the same time complexity with CS attack, while
the success probability is improved from 0.55 to 0.89. The
other has the same success probability with CS attack, while
the time complexity is reduced by a factor of 22.2. It should
be noted that all these attacks [9]–[12] are follow-up works
of NTW attack. If the number of initialization rounds of DSC
is sufficiently increased, all existing attacks on DSC will not
work anymore.

Our contributions. In this paper, new weaknesses of the
DSC stream cipher which are not discovered in previous
works are explored and analyzed. The comparisons of our
cryptanalytic results with the previous attacks are listed in
Table I. The contributions of this paper can be summarized
as follows.
• Firstly, a dedicated Time-Memory-Data Trade-Off (TMD-

TO) attack on DSC is proposed with an online time
complexity of 232.32 encryptions, which improves the
best cryptanalytic result of DSC by a factor of 22.58, and
an offline time complexity of 240.38 encryptions. By using
the optimized FPGA implementation of DSC in [9], the
online and offline phase of our attack can be done in
about 13.12 seconds and 58.33 minutes. Note that since
the offline phase requires to be performed only once, our
attack that has a low online time complexity is still very
effective, particularly when the attacker wants to recover
many secret keys in the online phase. The attack requires
a memory space of 28.64 TiB, which is obviously feasible
on a current PC. In addition, the attack requires 240.67

keystream bits, which can be generated by 231.18 known
IVs and each known IV generate a keystream no more
than 720 bits. Thus, the data complexity of our attack
is entirely possible, which makes the attack feasible in
practice. The attack has a success probability of 0.632.
It should be noted that both of the previous attacks and
the dedicated TMDTO attack on DSC are meaningful
in reality. Specifically, when the standard stream cipher
DSC is used to encrypt a short message that consists of

a small amount of frames, the previous attacks are valid.
In contrary, our dedicated TMDTO attack is clearly more
effective when a long message needs to be encrypted with
DSC.

• Secondly, a differential collision attack on DSC is pro-
posed, based on the observation that the total size of the
Key and IV of DSC is bigger than the total size of all four
LFSRs. By solving the system of linear equations, a large
number of differential collisions of DSC are found. As
results, a distinguishing attack on DSC in the related key
chosen IV setting is given, which has a time complexity
of only 2 encryptions and requires 2 chosen IVs. The
success probability is almost 1.

• Finally, the slide property of DSC is discovered and
analyzed, and the result shows that two different Key-
IV pairs can generate 1-bit shifted keystreams with prob-
ability 2−2.35 when some condition is satisfied. Clear-
ly, this is a high probability compared with an ideal
stream cipher that generates random keystreams. Based
on the slide property, a key recovery attack on DSC
with practical complexities in the multiple related key
setting is proposed. We validate the cryptanalytic result
by simulating the whole attack process on a common
PC. The experimental result shows that the DSC stream
cipher can be broken on a common PC within about 44.97
seconds in the multiple related key setting.

It is important to note that unlike all previous cryptanalytic
attacks on DSC in [3,9-12], increasing the number of initializa-
tion rounds of DSC can not strengthen the resistance of DSC
against our attacks proposed in this paper. That is because all
attacks proposed in this paper are irrelevant to the number of
initialization rounds of DSC. Thus, the weaknesses of DSC
discovered in this paper are different from the ones pointed
out by previous works.

Feasibility and Impact of Our Attacks. In this paper,
new practical key recovery attacks and distinguishing attack on
DSC with lower time cost are proposed. In the following, we
briefly discuss the real-world attack feasibility and the attack
implications.

• To execute the attacks on DSC, the attacker needs to
collect enough keystreams. In other words, the attacker
needs to record the raw DECT data being sent over the
wireless interface. As stated in [9], this can be easily
achieved for the attacker by using a DECT PC-Card
with a modified firmware or a generic software radio.
Since the IV is generally used as an increasing counter
for each frame, it is entirely feasible for the attacker to
collect enough keystreams generated by the same key and
different IVs.

• Nowadays, the DECT standard has reinforced its position
as one of the main wireless communication protocols in
Smart Home ecosystems, despite the massive adoption
of mobile telephony [11]. The DSC stream cipher is
designed to provide an adequate level of security against
eavesdropping of DECT communications. Currently, the
privacy of the personal voice communications of hun-
dreds of millions of citizens depends on the security of



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MARCH 2024 3

TABLE I
NEW ATTACKS ON DSC AND COMPARISONS WITH PREVIOUS ATTACKS

Attacks Setting Online time com-
plexity

Data complexity Memory
complexity

Offline time
complexity

IVs Related
keys

Success
probability

Ref.

Key recovery attack Single key 240.10 encryptions 215 × 40 ≈ 220.32 bits - - 215 - 0.50 [3]
Key recovery attack Single key 240.10 encryptions 215 × 40 ≈ 220.32 bits - - 215 - 0.90 [9]
Key recovery attack Single key 237.10 encryptions 213 × 40 ≈ 218.32 bits - - 213 - 0.55 [10,11]
Key recovery attack Single key 237.10 encryptions 213 × 40 ≈ 218.32 bits - - 213 - 0.89 [12]
Key recovery attack Single key 234.90 encryptions 213 × 40 ≈ 218.32 bits - - 213 - 0.55 [12]
Key recovery attack Single key 232.32 encryptions 231.18×720 ≈ 240.67 bits 28.64 TiB 240.38

encryptions
231.18 - 0.632 Ours

Distinguishing attack Related key 2 encryptions 2× 40 = 80 bits - - 2 1 1 Ours
Key recovery attack Related key 222.01 encryptions 220.81 bits - - 211.81 111 1 Ours

Cryptanalysis of the DECT Standard Cipher 5

Fig. 1. The DSC keystream generator with LFSRs in Galois configuration. Bit positions
that are inverted (white on black) are used in clocking decisions.

To reverse-engineer the unspecified details of the cipher we proceed as follows:
Using the first mode allows us to determine the tap positions of the LFSRs.
After that, we are able to determine the clocking functions in the second mode
by loading a random vector of low Hamming weight into the internal state and
observing how single-bit changes affect the clocking decisions.

The most elaborate part to reverse-engineer is the output combiner function.
To do this, we set up one machine with a modified firmware to send out frames
containing zero-stuffed payloads. Another machine acting as the receiving side
then “decrypts” these using a chosen internal state (no key setup), yielding
keystream. Starting from random states, we sequentially flip single bit positions
of the state and inspect the first bit to see whether the bit flip affected the
output. If the output remains constant for a large number of random states, we
assume that the flipped bit is not used in the output combiner. Having identified
the bits that indeed are fed into the combiner, we recover the combiner function
by using multivariate interpolation for a number of keystreams.

Finally we determine the correct key loading by systematically trying different
bit and byte-orders for both key and IV combined with both different orders of
key and IV.

In parallel to having done the above, we also reverse-engineered the DSC
cipher including its output combiner from silicon applying the techniques previ-
ously used to discover the Crypto-1 function [8].

4 Attacking the DSC

For this section, we will assume that an adversary has access to a list of DSC
keystreams with matching initialization vectors, all of which were generated un-
der the same secret key. A tuple of keystream and IV is referred to as a session.

Fig. 1. An overview of the keystream generator of DSC

this encryption algorithm. Once the secret key of DSC is
recovered, the attacker can eavesdrop the actual DECT
communications arbitrarily, which is probably a serious
threat to the DECT communication users.

This paper is organized as follows. A brief description of
the DSC stream cipher is given in section II. In section III,
a dedicated Time-Memory-Data Trade-Off attack on DSC is
introduced. In section IV, the differential collision attack on
DSC is given. The slide attacks on DSC are presented in
section V. Concluding remarks are given in Section VI.

II. A BRIEF DESCRIPTION OF DSC

In this section, we introduce briefly the DECT Standard
Cipher (DSC). The full description is detailed in [3]. An
overview of the keystream generator of DSC is depicted in
Fig. 1.

The internal state of DSC consists of 4 Galois LFSRs
R1, R2, R3 and R4 of lengths 17, 19, 21 and 23 respec-
tively, as well as a single memory bit y for the output
combiner. The states of these four LFSRs at time t are
denoted as

(
a

(t)
0 , · · · , a(t)

16

)
,
(
b
(t)
0 , · · · , b(t)18

)
,
(
c
(t)
0 , · · · , c(t)20

)
and

(
d

(t)
0 , · · · , d(t)

22

)
, respectively. The update functions of

these four LFSRs are given as follows.

LFSR R1:

a
(t+1)
16 = a

(t)
0 , a(t+1)

5 = a
(t)
6 ⊕ a

(t)
0

a
(t+1)
i = a

(t)
i+1 for i ∈ {0, · · · , 4, 6, · · · , 15}

LFSR R2:

b
(t+1)
18 = b

(t)
0 , b(t+1)

3 = b
(t)
4 ⊕b

(t)
0 , b(t+1)

2 = b
(t)
3 ⊕b

(t)
0

b
(t+1)
i = b

(t)
i+1 for i ∈ {0, 1, 4, · · · , 17}

LFSR R3:

c
(t+1)
20 = c

(t)
0 , c(t+1)

1 = c
(t)
2 ⊕ c

(t)
0

c
(t+1)
i = c

(t)
i+1 for i ∈ {0, 2, · · · , 19}

LFSR R4:

d
(t+1)
22 = d

(t)
0 , d(t+1)

8 = d
(t)
9 ⊕ d

(t)
0

d
(t+1)
i = d

(t)
i+1 for i ∈ {0, · · · , 7, 9, · · · , 21}

The R4 is a regularly clocked LFSR, while the other three,
i.e., R1, R2, R3, are irregularly clocked LFSRs. For each
clock, R4 is clocked three times whereas each of R1, R2, R3
is clocked either two or three times. More specifically, the
number of times ei that the LFSR Ri (i = 1, 2, 3) is clocked
is calculated as follows.

e1 = 2 +
(
d

(t)
0 ⊕ b

(t)
9 ⊕ c

(t)
10

)
e2 = 2 +

(
d

(t)
1 ⊕ a

(t)
8 ⊕ c

(t)
10

)
e3 = 2 +

(
d

(t)
2 ⊕ a

(t)
8 ⊕ b

(t)
9

)
The output combiner function f is a cubic Boolean function

on seven variables, which consist of the rightmost two bits
of the LFSRs R1, R2, R3 as well as the memory bit y. The
specification of f is given in algebraic normal form as

f
(
a

(t)
0 , a

(t)
1 , b

(t)
0 , b

(t)
1 , c

(t)
0 , c

(t)
1 , y

)
= a

(t)
1 a

(t)
0 y ⊕ b(t)1 a

(t)
0 y ⊕ c(t)0 a

(t)
0 y ⊕ b(t)0 a

(t)
1 a

(t)
0

⊕b(t)1 b
(t)
0 a

(t)
0 ⊕ c

(t)
0 b

(t)
0 a

(t)
0 ⊕ a

(t)
1 y ⊕ c(t)0 y ⊕ c(t)1 y

⊕a(t)
1 a

(t)
0 ⊕ b

(t)
0 a

(t)
1 ⊕ c

(t)
1 a

(t)
0 ⊕ b

(t)
1 ⊕ c

(t)
1

The output of the output combiner function f gives a
keystream bit and is loaded into the memory bit for the next
clock.

Initialization. The DSC stream cipher takes a 64-bit key
and a 35-bit IV as input. At the beginning of initialization, all
four LFSRs and the memory bit y are filled with zeros. Then
each of four LFSRs is clocked 128 times. Here, the most sig-
nificant bit of each LFSR is generated by the bit that is shifted
out, XORed with one input bit. The 128 input bits are in-
troduced in the sequence k0, · · · , k63, iv0, · · · , iv34, 0, · · · , 0.
Note that the irregular clock control is not used, and each
LFSR is clocked once during this key and IV loading process.
When all input bits have been loaded, 40 pre-cipher rounds
are performed. In these pre-cipher rounds, the irregular clock
control is used, while the output is discarded. If one or more



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MARCH 2024 4

LFSRs become the all-zero state after executing 11 rounds, the
most significant bits of the corresponding LFSRs are forcibly
set to 1 before starting the next round.

III. A DEDICATED TIME-MEMORY-DATA TRADE-OFF
ATTACK ON DSC

Recall the brief description of DSC above. After the key and
IV loading process, the DSC stream cipher has to perform 40
pre-cipher rounds to complete the initialization. In these pre-
cipher rounds, the irregular clock control is used, while the
output is discarded. This means that each of 40 pre-cipher
rounds in the initialization is the same with one round of the
keystream generation apart from that the output is discarded
in the initialization. Based on this important observation, a
dedicated Time-Memory-Data Trade-Off (TMDTO) attack on
DSC will be proposed in this section. Introduced independent-
ly by Babbage [13] and Golić [14], TMDTO attack offers a
generic technique to reverse one-way functions, where one can
trade off time, memory and data costs and which are especially
effective against stream ciphers with small internal state size.

We start with constructing a Boolean function that the
attacker tries to invert. The function f takes the 81-bit internal
state which consists of the state of four LFSRs and the memory
bit as input, and performs 121 rounds of the keystream
generation, where a total of 121 keystream bits are generated.
The function f intercepts the latter 81 bits from the 121
keystream bits as output. Like a typical TMDTO attack, our
attack on DSC consists of two phases, i.e., the offline phase
and the online phase. In the offline phase, the attacker pre-
computes a table using the function f he is trying to invert.
In the online phase, the attacker captures enough keystreams
generated by the fixed key and different IVs, and checks if
one keystream fragment happens to be in the table constructed
in the offline phase. In the attack on DSC, we suppose that
the attacker is given a set of r keystream fragments, i.e.,
Z1, · · · , Zr, each of which is consecutive and consists of 81
bits, and he is asked to find a pre-image x of any one of these
r keystream fragments such that f (x) = Zl with 1 ≤ l ≤ r,
where the pre-image x denotes an 81-bit internal state of DSC.

In the offline phase, the attacker constructs a two-column
table, denoted as Q. The detailed process of the offline phase
can be described as an algorithm, called Algorithm 1, as
follows.

Algorithm 1 The offline phase

1. Randomly pick m different pre-images, i.e., x1, · · · , xm.
2. For i from 1 to m, do the following:
• For each pre-image xi, compute yi = f (xi);

3. Store the pairs (yi, xi) in the two-column table Q indexed
by the value of yi.

In Algorithm 1, the step 2 has to apply the function f to
each of m different pre-images, and thus it takes m evaluations
of the function f in time. Note that one evaluation of the
function f indicates the time cost of generating 121 keystream

bits. In step 3 of Algorithm 1, the pairs (yi, xi) are stored in
the two-column table Q indexed by the value of yi, and thus
this step takes about mlog2m simple comparisons in time.
When m is not large, it is easy to see that the time cost of
log2m simple comparisons is far less than the time cost of
one evaluation of the function f . Therefore, the offline phase
takes about P = m evaluations of the function f in time, and
requires a memory space of M = (81 + 81)m ≈ 27.34m bits.

In the online phase, the attacker wishes to find one pre-
image x such that f (x) = Zl with 1 ≤ l ≤ r, using the two-
column table Q constructed in the offline phase. The detailed
process of the online phase can be described as an algorithm,
called Algorithm 2, as follows.

Algorithm 2 The online phase

1. For l from 1 to r, do the following:
• Check whether Zl is in the first column of the two-column

table Q. If yes, read the corresponding x in the second
column of the two-column table Q and go to step 2;
otherwise, go back to try the next keystream fragment.

2. Output the found pre-image x.

In step 1 of Algorithm 2, it has to make a check for each
of r keystream fragments. Thus, the online phase takes T = r
table lookup operations in time.

Since there are r keystream fragments which are available
to the attacker and the offline phase covers P = m pre-
images of the function f , the probability that there is at least
one keystream fragment passing the check of Algorithm 2,
denoted as p, can be calculated as

p = 1−
(
1− m

N

)r ≈ 1− e−mrN

Where N = 281 denotes the total number of the pre-images
of the function f . Thus, mr ≥ N should be satisfied such
that at least one pre-image is found with a significant success
probability in the online phase.

Now, we have obtained a dedicated TMDTO attack on the
DSC stream cipher. The attack has an offline time complexity
of P = m evaluations of the function f , and an online time
complexity of T = r table lookup operations. It requires
a memory space of M = 27.34m bits and r keystream
fragments, each of which is consecutive and consists of 81 bits.
The attack succeeds with a probability of about p = 1−e−mrN .
Since each key and IV pair can only generate a keystream with
a limited length of 720 bits, and thus 720− 81 + 1 = 640 ≈
29.32 keystream fragments can be available to the attacker for
each known IV. It means that the r keystream fragments can
be generated by 2−9.32r known IVs. The IV size of DSC is 35,
and then it has 2−9.32r ≤ 235. Thus, the restriction r ≤ 244.32

must be satisfied in the attack. The data complexity of the
attack can be calculated as 2−9.32r · 720 ≈ 20.17r bits.

It is easy to see that the time complexity units of the offline
phase and online phase are different and should be unified to
facilitate comparison. Let δ1 denote the ratio of the time cost
of one evaluation of the function f to the time cost of one



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MARCH 2024 5

TABLE II
THE RESULTS OF TMDTO ATTACKS ON THE DSC STREAM CIPHER

m T M D P p
238.5 234.25 encryptions 7.16 TiB 242.67 bits 238.38 encryptions 0.632
240.5 232.32 encryptions 28.64 TiB 240.67 bits 240.38 encryptions 0.632
242.5 230.39 encryptions 114.56 TiB 238.67 bits 242.38 encryptions 0.632

encryption of DSC, and then the attack has an offline time
complexity of P = mδ1 encryptions. Since the two-column
table Q constructed in the offline phase consists of m entries,
thus one table lookup operation in the online phase consists of
about log2m simple bit operations. Let δ2 denote the ratio of
the time cost of one simple bit operation to the time cost of
one encryption of DSC, and then the attack has an online
time complexity of T = rδ2log2m encryptions. We have
made an experiment on a PC with 2.5 GHz Intel Pentium 4
processor. In this experiment, we first execute 224 evaluations
of the function f , and it takes about 161.842 seconds. We also
execute 224 simple bit operations, and it takes about 0.015
second. In the meantime, we execute 224 encryptions of DSC,
and it takes about 175.973 seconds. Thus, we have obtained
the experimental value of the ratios δ1 and δ2 as

δ1 = 161.842/175.973 ≈ 2−0.12

δ2 = 0.015/175.973 ≈ 2−13.52

Table II lists the results of TMDTO attacks on the DSC
stream cipher varying according to different values of m and
r. It is easy to see that there exists a trade-off between the
complexities of our attack on DSC. As shown in Table II,
m = r = 240.5 is a reasonable choice, which leads to a dedi-
cated TMDTO attack on DSC with an online time complexity
of 232.32 encryptions and an offline time complexity of 240.38

encryptions. As shown in the experiment above, executing 224

encryptions of DSC takes about 175.973 seconds on a PC.
If the attack is implemented on a PC, the online phase will
take about 15.62 hours, while the offline phase will take about
173.70 days, which is too large in time cost. In fact, the time
cost can be significantly reduced if a fast implementation is
used. According to the optimized FPGA implementation of
[9], about 408.8 million keys per second can be exhausted.
Thus, we can implement the online phase and offline phase
of our attack in about 232.32

/
408.8× 106 ≈ 13.12 seconds

and 240.38
/

408.8× 106 × 60 ≈ 58.33 minutes, when the opti-
mized FPGA implementation is used in our attack. In addition,
the attack requires a memory space of about 28.64 TiB which
is obviously feasible on a current PC and a data complexity
of 240.67 bits. It should be noted that the required 240.67 bits
can be generated by 2−9.32r = 2−9.32×240.5 = 231.18 known
IVs, as about 29.32 keystream fragments can be available to
the attacker for each known IV. Thus, the data complexity of
our attack is entirely possible, which makes the attack feasible
in practice. The attack has a success probability of 0.632.

IV. DIFFERENTIAL COLLISION ATTACK ON DSC

At the beginning of initialization, all four LFSRs are
filled with zeros, and then the 64-bit key and 35-bit IV are
loaded into the four LFSRs by clocking each of them 128

times. Note that the irregular clock control is not used, and
each LFSR is clocked once during this key and IV loading
process. For convenience of description, we call the state of
four LFSRs after this process initial state and denote as S(128) =(
a
(128)
0 , · · · , a(128)

16 , b
(128)
0 , · · · , b(128)

18 , c
(128)
0 , · · · , c(128)

20 , d
(128)
0 , · · · , d(128)

22

)
.

It is easy to see that the total size of all four LFSRs is 80,
which is smaller than the total size of the Key and IV, i.e.,
64 + 35 = 99. Thus, there must be collisions in the initial
state of DSC. More specifically, there must be different
Key-IV pairs which generate the same initial state and then
the same keystream.

Let ∆K = (∆k0, · · · ,∆k63) and ∆IV =
(∆iv0, · · · ,∆iv34) denote the key difference and
IV difference, respectively. Denote by ∆S(t) =(

∆a
(t)
0 , · · · ,∆a

(t)
16 ,∆b

(t)
0 , · · · ,∆b

(t)
18 ,∆c

(t)
0 , · · · ,∆c

(t)
20 ,∆d

(t)
0 , · · · ,∆d

(t)
22

)
the state difference of four LFSRs at time t. Clearly,
∆S(0) = (0, · · · , 0) always holds, since all four LFSRs are
filled with zeros at the beginning of initialization. After then,
the 64-bit key and 35-bit IV are loaded into the four LFSRs
by clocking each of them 128 times. Since the irregular clock
control is not used in this process, ∆S(128) can be certainly
linearly expressed by ∆K and ∆IV . Now, an algorithm is
given as follows, to iteratively compute the linear expression
of ∆S(128) over ∆K and ∆IV .

Algorithm 3 Computing the linear expression of ∆S(128)

over ∆K and ∆IV

1. Set (
∆λ(0), · · · ,∆λ(127)

)
← (∆k0, · · · ,∆k63,∆iv0, · · · ,∆iv34, 0, · · · , 0);

2. Set ∆S(0) ← (0, · · · , 0);
3. For t from 0 to 127, do the following:
• ∆a

(t+1)
16 ← ∆a

(t)
0 ⊕∆λ(t);

• ∆a
(t+1)
5 ← ∆a

(t)
6 ⊕∆a

(t)
0 ;

• ∆a
(t+1)
i ← ∆a

(t)
i+1 for i ∈ {0, · · · , 4, 6, · · · , 15};

• ∆b
(t+1)
18 ← ∆b

(t)
0 ⊕∆λ(t);

• ∆b
(t+1)
3 ← ∆b

(t)
4 ⊕∆b

(t)
0 ;

• ∆b
(t+1)
2 ← ∆b

(t)
3 ⊕∆b

(t)
0 ;

• ∆b
(t+1)
i ← ∆b

(t)
i+1 for i ∈ {0, 1, 4, · · · , 17};

• ∆c
(t+1)
20 ← ∆c

(t)
0 ⊕∆λ(t);

• ∆c
(t+1)
1 ← ∆c

(t)
2 ⊕∆c

(t)
0 ;

• ∆c
(t+1)
i ← ∆c

(t)
i+1 for i ∈ {0, 2, · · · , 19};

• ∆d
(t+1)
22 ← ∆d

(t)
0 ⊕∆λ(t);

• ∆d
(t+1)
8 ← ∆d

(t)
9 ⊕∆d

(t)
0 ;

• ∆d
(t+1)
i ← ∆d

(t)
i+1 for i ∈ {0, · · · , 7, 9, · · · , 21}.

By Algorithm 3, we can easily obtain the linear expression
of ∆S(128) over ∆K and ∆IV . More specifically, each of



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MARCH 2024 6

TABLE III
A DIFFERENTIAL COLLISION PAIR OF DSC

Key difference ∆K = (∆k0, · · · ,∆k63): 0,1,1,0,1,1,0,0,0,1,0,1,1,1,0,1,0,1,0,1,0,0,1,1,1,1,1,0,0,0,1,1,1,0,0,1,0,0,0,0,1,1,1,0,0,1,1,0,1,1,1,0,0,0,1,1,0,1,1,1,0,0,1,1
IV difference ∆IV = (∆iv0, · · · ,∆iv34): 0,1,0,1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
K1: 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
IV1: 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
K2: 1,1,1,0,1,1,0,0,0,1,0,1,1,1,0,1,0,1,0,1,0,0,1,1,1,1,1,0,0,0,1,1,1,0,0,1,0,0,0,0,1,1,1,0,0,1,1,0,1,1,1,0,0,0,1,1,0,1,1,1,0,0,1,1
IV2: 1,1,0,1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
Keystream: 1,0,0,1,0,1,0,1,1,0,1,1,1,1,1,1,1,0,1,0,0,1,0,1,0,1,1,1,1,0,1,0,1,1,1,0,0,0,0,0· · ·
K1: 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
IV1: 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
K2: 1,0,1,0,1,1,0,0,0,1,0,1,1,1,0,1,0,1,0,1,0,0,1,1,1,1,1,0,0,0,1,1,1,0,0,1,0,0,0,0,1,1,1,0,0,1,1,0,1,1,1,0,0,0,1,1,0,1,1,1,0,0,1,1
IV2: 1,0,0,1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
Keystream: 1,1,0,1,0,1,0,0,0,1,0,1,1,0,0,1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,1,0,0,1,0· · ·

80 state bit differences in ∆S(128) can be expressed by one
linear polynomial over ∆K and ∆IV . It is easy to see that the
condition ∆S(128) = 0 should be satisfied to find collisions in
the initial state of DSC. Once a nonzero key and IV difference
(i.e., (∆K,∆IV )) which makes ∆S(128) = 0 to be satisfied
is found, any two key-IV pairs satisfying the key and IV
difference (∆K,∆IV ) will generate the same initial state and
then the same keystream. For convenience of description, we
introduce a definition as follows.

Definition 1. For the DSC stream cipher, a nonzero key and
IV difference (∆K,∆IV ) is called a differential collision of
DSC, if ∆S(128) = 0 satisfies.

To make ∆S(128) = 0 to be satisfied, a system
of 80 linear equations over ∆K and ∆IV can be ob-
tained, where a total of 64 + 35 = 99 variables, i.e.,
∆k0, · · · ,∆k63,∆iv0, · · · ,∆iv34, are involved in this system.
We have calculated the rank of the coefficient matrix of the
system obtained by Algorithm 3, and find that it is exactly
equal to 80. It indicates that for any nonzero key difference,
there exist 219 IV differences such that each IV difference
together with the given nonzero key difference is a differential
collision of DSC. A differential collision of DSC found by
solving the system is given in the first row of Table III. Two
collisions are also presented as examples. In each of these two
collisions, two different key-IV pairs which generate the same
keystream are listed in the table.

Based on the differential collision (∆K,∆IV ) in Table III,
a differential distinguishing attack on DSC can be proposed.
Specifically, when the differential collision in Table III is
satisfied, two different Key-IV pairs of DSC certainly generate
the same keystream, while an ideal stream cipher should
generate completely random keystreams when different Key-
IV pairs are inputted. Thus, a distinguishing attack can be
easily constructed using the differential collision property of
DSC. It should be noted that the distinguishing attack on
DSC is proposed in the related key chosen IV setting. Since
the IV is public and can be freely chosen by the attacker in
cryptanalysis of stream ciphers, thus the chosen IV setting can
be easily satisfied. As pointed out by Biham and Dunkelman
in [15], related-key attack is also a standard attack scenario in
cryptanalysis of symmetric ciphers. It has important practical
significance and can be implied to many stream ciphers. For
instance, related-key weaknesses of the RC4 stream cipher led
to a practical attack on the WEP protocol [16]. It is generally
known that in the related key setting [17]–[19], the encryption

can be performed using two different keys that have a linear
or nonlinear relationship known to the attacker, while the
values of these keys are unknown. The detailed process of
the differential distinguishing attack on DSC can be described
as an algorithm, called Algorithm 4, as follows.

Algorithm 4 A differential distinguishing attack on DSC

1. For the secret key K, do the following:
• Randomly choose an IV IV , generate a sequence by the

(K, IV ) pair;
• For the related key K′ satisfying K′ = K ⊕ ∆K, choose an

IV IV ′ satisfying IV ′ = IV ⊕∆IV , generate a sequence by
the (K′, IV ′) pair;

• Check whether the two sequences generated by (K, IV ) and
(K′, IV ′) are exactly the same, if yes, it concludes that the
two sequences are generated by DSC; otherwise, it concludes
that the two sequences are random.

2. Output “DSC” or “Random”.

In Algorithm 4 above, only two encryptions of DSC needs
to be executed: one for the (K, IV ) pair and one for the related
(K ′, IV ′) pair. Thus, the distinguishing attack on DSC has a
time complexity of only two encryptions, requiring two chosen
IVs and one related key. The attack has a success probability
of almost 1, when the length of keystreams generated by the
two different Key-IV pairs is large enough, e.g., 40.

V. SLIDE ATTACKS ON DSC
In this section, we explore the existence of slide property

in the DSC stream cipher, and propose related key attacks on
the cipher. The slide property is a general cryptanalytic tool
to exploit potential weaknesses of symmetric primitives and
has been applied to many well-known stream ciphers, e.g.,
Trivium [20], Salsa20 [20], Grain-like [21]–[24], Decim v2
[25], WG-like [26]–[28], SNOW 3G [29], GEA-1 [30] and
GEA-2 [30].

A. Slide Property of DSC

Denote by K0 = (k0, · · · , k63) and IV0 = (iv0, · · · , iv34)

the 64-bit key and 35-bit IV of DSC, respectively, and S
(t)
0

the state of four LFSRs generated by (K0, IV0) at time t.
Let (Ki, IVi) (i = 1, · · · , 7) be seven related key-IV pairs
of (K0, IV0). The relation of (Ki, IVi) (i = 1, · · · , 7) and
(K0, IV0) is defined as follows.



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MARCH 2024 7

K0 = (k0, k1, k2, · · · , k63) , IV0 = (iv0, · · · , iv34)

K1 = (k0 ⊕ 1, k1, k2, k3, · · · , k63) , IV1 = IV0

K2 = (k0, k1 ⊕ 1, k2, k3, · · · , k63) , IV2 = IV0

K3 = (k0 ⊕ 1, k1 ⊕ 1, k2, k3, · · · , k63) , IV3 = IV0

K4 = (k0, k1, k2 ⊕ 1, k3, · · · , k63) , IV4 = IV0

K5 = (k0 ⊕ 1, k1, k2 ⊕ 1, k3, · · · , k63) , IV5 = IV0

K6 = (k0, k1 ⊕ 1, k2 ⊕ 1, k3, · · · , k63) , IV6 = IV0

K7 = (k3, · · · , k63, k0, k1, k2) , IV7 = (iv3, · · · , iv34, 0, 0, 0)

Let S(t)
i be the state of four LFSRs generated by (Ki, IVi)

at time t, i = 1, · · · , 7. Since all four LFSRs and the memory
bit are filled with zeros at the beginning of initialization,
S

(0)
i = (0, · · · , 0) always holds for 0 ≤ i ≤ 7. Then each

of these four LFSRs is regularly clocked 128 times. In this
process, the memory bit y is fixed to be zero and the most
significant bit of each LFSR is generated by the bit that is
shifted out, XORed with one input bit. For (K0, IV0), if the
first three input bits are all equal to zero, i.e., k0 = 0, k1 = 0

and k2 = 0, then S
(3)
0 = 0 definitely holds. Now, an

observation can be obtained as follows.

Observation 1. For 0 ≤ i ≤ 6, the states S(3)
i and S

(0)
7

satisfy the following relation according to the values of k0, k1
and k2.
• S

(3)
0 = S

(0)
7 = 0 satisfies if k0 = 0, k1 = 0 and k2 = 0

simultaneously hold
• S

(3)
1 = S

(0)
7 = 0 satisfies if k0 = 1, k1 = 0 and k2 = 0

simultaneously hold
• S

(3)
2 = S

(0)
7 = 0 satisfies if k0 = 0, k1 = 1 and k2 = 0

simultaneously hold
• S

(3)
3 = S

(0)
7 = 0 satisfies if k0 = 1, k1 = 1 and k2 = 0

simultaneously hold
• S

(3)
4 = S

(0)
7 = 0 satisfies if k0 = 0, k1 = 0 and k2 = 1

simultaneously hold
• S

(3)
5 = S

(0)
7 = 0 satisfies if k0 = 1, k1 = 0 and k2 = 1

simultaneously hold
• S

(3)
6 = S

(0)
7 = 0 satisfies if k0 = 0, k1 = 1 and k2 = 1

simultaneously hold

Supposing S
(3)
i = S

(0)
7 = 0 satisfies for some i ∈

{0, · · · , 6}, it is easy to see that S(3+j)
i = S

(j)
7 directly holds

for 1 ≤ j ≤ 61. Since the input bits to generate S(65)
i and S(62)

7

are iv0 and k0, respectively, thus S(65)
i = S

(62)
7 satisfies if

k0 = iv0 holds. Similarly, S(66)
i = S

(63)
7 satisfies if k0 = iv0

and k1 = iv1 simultaneously hold, and then S
(67)
i = S

(64)
7

satisfies if k0 = iv0, k1 = iv1 and k2 = iv2 simultaneously
hold. Thus, a new observation can be obtained as follows.

Observation 2. Supposing S
(3)
i = S

(0)
7 = 0 satisfies for

some i ∈ {0, · · · , 6}, then S
(67)
i = S

(64)
7 satisfies if k0 =

iv0, k1 = iv1 and k2 = iv2 simultaneously hold.

Again, supposing S
(67)
i = S

(64)
7 satisfies for some i ∈

{0, · · · , 6}, it is easy to see that S(67+j)
i = S

(64+j)
7 directly

holds for 1 ≤ j ≤ 61. However, the state S(129)
i is generated

by S(128)
i using one pre-cipher round, while S(128)

7 is generat-
ed by S(125)

7 using three regular clocks. Denote by y′ the value
of the memory bit generated by S

(128)
i after one pre-cipher

round. If S(129)
i = S

(128)
7 satisfies for some i ∈ {0, · · · , 6}

and y′ = 0 holds, the 81-bit internal state generated by
(Ki, IVi) will be the same with that generated by (K7, IV7).

It means that (Ki, IVi) will generate 1-bit shifted keystream
with respect to (K7, IV7). For convenience of description, we
introduce a definition as follows.

Definition 2. For the DSC stream cipher, the (K, IV ) and
related (K ′, IV ′) are called a slide pair of DSC, if (K ′, IV ′)
generate 1-bit shifted keystream with respect to (K, IV ).

Let p be the probability that (Ki, IVi) and (K7, IV7) are
a slide pair of DSC under the condition that S(67)

i = S
(64)
7

satisfies for some i ∈ {0, · · · , 6}. To calculate the value of
probability p, we have made an experiment. In this experiment,
we randomly choose 28 keys with (k0, k1, k2) = (0, 0, 0). For
each key, we choose 28 different IVs, where the values of
iv0, iv1 and iv2 are fixed to be zeros and the remaining 32
IV bits (i.e., iv3, · · · , iv34) are randomly chosen. The result
shows that a total of 12821 slide pairs are found in the 28

random keys and 28 different IVs. Thus, the probability p can
be calculated as p = 12821

/(
28 × 28

)
≈ 2−2.35. To further

strengthen the accuracy of the experimental result, we increase
the numbers of keys and IVs to be 210, and then the result
shows that a total of 206222 slide pairs are found in the 210

random keys and 210 different IVs. Now, the probability p can
be recalculated as p = 206222

/(
210 × 210

)
≈ 2−2.35, which

is the same with the former experimental result. Furthermore,
when the numbers of keys and IVs are further increased to be
212, a total of 3286619 slide pairs are found in the 212 random
keys and 212 different IVs, and thus the probability p can be
recalculated as p = 3286619

/(
212 × 212

)
≈ 2−2.35, which

confirms the accuracy of the former experimental result again.
Thus, when S

(67)
i = S

(64)
7 satisfies for some i ∈ {0, · · · , 6},

(Ki, IVi) and (K7, IV7) are a slide pair of DSC with proba-
bility 2−2.35. Table IV gives two slide pairs of DSC found in
this experiment as examples. As shown in this table, (K ′, IV ′)
generates 1-bit shifted keystream with respect to (K, IV ).

In the meanwhile, we have made another experiment. In this
experiment, we randomly choose 28 keys with (k0, k1, k2) 6=
(0, 0, 0). For each key, we choose 28 different IVs, where
(k0, k1, k2) = (iv0, iv1, iv2) are satisfied and the remaining 32
IV bits (i.e., iv3, · · · , iv34) are randomly chosen. The result
shows that none of slide pairs is found in the 28 random
keys and 28 different IVs. To further verify the experimental
result, we increase the numbers of keys and IVs to be 210.
Still, none of slide pairs is found in the 210 random keys and
210 different IVs. The experimental result remains unchanged
when the numbers of keys and IVs are further increased to be
212.

The two experiments above clearly show that if the con-
dition S

(67)
i = S

(64)
7 satisfies for some i ∈ {0, · · · , 6}, a

large number of slide pairs can be easily found. In contrary,
when the condition S

(67)
i = S

(64)
7 does not satisfy for any

i ∈ {0, · · · , 6}, the probability that there exists at least one
slide pair is extremely small. Thus, we can judge whether the
condition S

(67)
i = S

(64)
7 satisfies for some i ∈ {0, · · · , 6},

according to the number of found slide pairs. Considering the
results of the two experiments above, it is easy to see that the
judgement can succeed with an extremely high probability. Let
K0 = (k0, · · · , k63) be the 64-bit secret key of DSC. Now, we



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MARCH 2024 8

TABLE IV
TWO SLIDE PAIRS OF DSC FOUND IN THE EXPERIMENT

K: 0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,1,0,1,1,0,0,1,0,0,0,0,0,1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0,0,0,0,1,1,0,1,1,0,0,0
IV: 0,0,0,0,1,1,0,1,1,1,1,1,1,0,0,1,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,0,0,1
Keysteam: 1,1,1,0,1,0,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,1,0,1,0,1,1,1,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,1,1,0,1,1,1,0,1,1,0,1,0,1,0,0,1,0,0,0,1,0· · ·

K′: 1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,1,0,1,1,0,0,1,0,0,0,0,0,1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0,0
IV ′: 0,1,1,0,1,1,1,1,1,1,0,0,1,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,0,0,1,0,0,0
Keystream: 1,1,0,1,0,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,1,0,1,0,1,1,1,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,1,1,0,1,1,1,0,1,1,0,1,0,1,0,0,1,0,0,0,1,0,1· · ·
K: 0,0,0,1,0,0,1,1,1,0,1,1,0,0,1,1,1,1,1,1,0,0,1,1,1,1,1,0,1,1,1,0,1,1,0,0,1,1,0,0,1,0,0,1,1,1,0,0,0,1,1,0,1,0,0,1,1,0,0,0,0,0,0,1
IV: 0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,1,1,0,1,1,0,1,0,1,0,0,1,1,1,1,1,1,0,0
Keystream: 0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,0,1,1,1,0,1,0,1,0,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0,1· · ·

K′: 1,0,0,1,1,1,0,1,1,0,0,1,1,1,1,1,1,0,0,1,1,1,1,1,0,1,1,1,0,1,1,0,0,1,1,0,0,1,0,0,1,1,1,0,0,0,1,1,0,1,0,0,1,1,0,0,0,0,0,0,1,0,0,0
IV ′: 0,0,0,0,1,1,1,1,1,0,0,0,0,1,1,0,1,1,0,1,0,1,0,0,1,1,1,1,1,1,0,0,0,0,0
Keystream: 1,0,1,0,1,0,1,1,0,0,0,0,0,0,1,1,1,1,1,0,1,1,0,1,0,1,1,1,0,1,0,1,0,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0,1,0· · ·

aim at recovering the three key bits k0, k1, k2 of DSC by using
an algorithm, called Algorithm 5, as follows. This algorithm
utilizes seven related keys K1, · · · ,K7, as defined above.

Algorithm 5 Recovering the three key bits k0, k1, k2 of
DSC

1. Choose R different IVs IV i
0 =

(
ivi0, · · · , ivi34

)
, i = 1, · · · , R,

where the values of ivi0, iv
i
1 and ivi2 are fixed to be zeros and the

remaining 32 IV bits (i.e., ivi3, · · · , ivi34) are randomly chosen.
2. Set nj ← 0 for j = 0, · · · , 6.
3. For i from 1 to R, do the following:
• Set IV i

l ← IV i
0 for l = 1, · · · , 6;

• Set IV i
7 =

(
ivi3, · · · , ivi34, 0, 0, 0

)
;

• For j from 0 to 6, do the following:
– Check whether

(
K7, IV

i
7

)
and

(
Kj , IV

i
j

)
are a slide pair,

if yes, nj ← nj + 1; otherwise, go back to try the next
pair.

4. For j from 0 to 6, check whether the value of nj is
close to 2−2.35R, if yes, return the value of j; otherwise,
if nj = 0 always holds for j = 0, · · · , 6, return 7.

In Algorithm 5, the parameter nj is a counter, and it
indicates the number of slide pairs formed by

(
K7, IV

i
7

)
and(

Kj , IV
i
j

)
with 1 ≤ i ≤ R. If the algorithm outputs the

value of j with 0 ≤ j ≤ 6, it means that the first three
keys bits of Kj are all equal to zero, then the attacker can
easily recover the three key bits k0, k1, k2. For example, if the
algorithm outputs 3, it has k0 ⊕ 1 = 0, k1 ⊕ 1 = 0, k2 = 0,
and thus k0 = 1, k1 = 1, k2 = 0. If the algorithm outputs 7, it
means that k0 = k1 = k2 = 1 holds. Thus, the three key bits
k0, k1, k2 of DSC can be recovered by Algorithm 5.

In this algorithm, for each of R different IVs, it has to
check whether

(
K7, IV

i
7

)
and

(
Kj , IV

i
j

)
are a slide pair for

0 ≤ j ≤ 6. Thus, Algorithm 5 has a time complexity of
R·8 = 23R encryptions, requiring 7 related keys and R chosen
IVs. It should be noted that the size of keystream required for
each

(
K7, IV

i
7

)
and

(
Kj , IV

i
j

)
is quite small and far less than

720 bits, since we only utilize the keystream to make a check
whether

(
K7, IV

i
7

)
and

(
Kj , IV

i
j

)
are a slide pair. To ensure

that the 64-bit secret key of DSC can be uniquely recovered,
each

(
K7, IV

i
7

)
and

(
Kj , IV

i
j

)
in this algorithm generates a

keystream of size 64 which is certainly large enough to make
this check. Therefore, Algorithm 5 requires R · 8 · 64 = 29R

keystream bits.
By considering the experimental results above, it is easy to

see that R = 28 is obviously enough such that Algorithm
5 succeeds in recovering the three key bits k0, k1, k2 with
probability almost 1. To verify this, we make an experiment. In
this experiment, a total of 1000 keys are randomly chosen, and
for each random key we execute Algorithm 5 with R = 28.
The result show that Algorithm 5 succeeds for each of these
1000 keys. Thus, it has a success probability of almost 1.
Up to now, a key recovery attack on DSC has been proposed
based on Algorithm 5. The attack has a time complexity of
about 23R + 264−3 = 23 · 28 + 261 ≈ 261 encryptions, since
the remaining 61 key bits should be exhausted after the three
key bits k0, k1, k2 are recovered by Algorithm 5. It requires 7
related keys, 28 chosen IVs and 29 · 28 = 217 keystream bits.
The attack can recover all 64 key bits of DSC with a success
probability of almost 1.

It should be noted that there certainly exist other slide pairs
for longer shifts, but much more related keys are required to
find the useful slide pair, which will weaken the practicality
of proposed key recovery attack on DSC. Therefore, we no
longer consider the slide properties with longer shifts.

B. A Practical Related Key Attack on DSC

Clearly, the time complexity of the key recovery attack on
DSC above is better than exhaustive key search, but it is
still too time-consuming to be practical on a common PC. In
fact, the time complexity can be reduced significantly using
more related keys. In this subsection, we give a practical key
recovery attack on DSC in the multiple related key setting.

The practical key recovery attack on DSC utilizes 8h keys,
i.e., K0, · · · ,K7, · · · ,K8h−8, · · · ,K8h−7, and consists of h
steps. In the i-th step with 0 ≤ i < h, the attack utilizes
8 keys K8i, · · · ,K8i+7. The relation of K8i and K8i+8 is
defined as K8i+8 = K8i ≪ 3, where ≪ 3 is the left cyclic
shift operator by 3 bits. The relation of K8i+j (j = 1, · · · , 7)
and K8i is defined as the same in the first subsection of
section V. In the i-th step, the attacker executes Algorithm
5 once using 8 keys K8i, · · · ,K8i+7, and then recovers three
key bits k3i, k3i+1, k3i+2 of the 64-bit key of DSC. Since
the attack consists of h steps, thus a total of 3h key bits
can be recovered, which leads to a time complexity of 211h
encryptions. After this process, the remaining 64−3h key bits
can be recovered by making an exhaustive search. Thus, the



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MARCH 2024 9

TABLE V
THE CRYPTANALYTIC RESULTS OF DSC IN THE MULTIPLE RELATED KEY SETTING

h Time complexity Data complexity Required chosen IVs Required related keys
13 211 × 13 + 264−3×13 ≈ 225 217 × 13 ≈ 220.70 28 × 13 ≈ 211.70 103
14 211 × 14 + 264−3×14 ≈ 222.01 217 × 14 ≈ 220.81 28 × 14 ≈ 211.81 111
15 211 × 15 + 264−3×15 ≈ 219.08 217 × 15 ≈ 220.91 28 × 15 ≈ 211.91 119
16 215 + 216 ≈ 216.58 217 × 16 = 221 28 × 16 = 212 127

total time complexity of the attack on DSC can be calculated
as 211h + 264−3h encryptions. This attack requires 8h − 1
related keys, 28h chosen IVs and 217h keystream bits. Table
V lists the cryptanalytic results of DSC in the multiple related
key setting varying according to different values of h.

As shown in Table V, it is easy to see that there exists a
trade-off between the complexities and the number of required
related keys. To make the attack practical on a common PC
with as less required related keys as possible, h = 14 is
a reasonable choice, which leads to a key recovery attack
on DSC with a time complexity of about 222.01 encryptions.
We have validated the result by simulating the whole attack
process. The results show that the attacker can recover 42
key bits by executing Algorithm 5 fourteen times within
0.54 second on average, and the remaining 22 bits can be
recovered by making an exhaustive search, which can be
done within 44.43 seconds on average. The simulation was
implemented on a PC with 2.5 GHz Intel Pentium 4 processor.
The experimental result shows that the DSC stream cipher can
be broken within about 44.97 seconds in the multiple related
key setting.

VI. CONCLUSIONS

As a standard stream cipher used to provide confidential-
ity for cordless telephony in the digital wireless technology
DECT, the DSC stream cipher has attracted a large amount of
attention in the recent years due to its importance. In this pa-
per, we have discovered some new weaknesses of DSC which
are not found in previous works. Based on these weaknesses,
new practical key recovery attacks and distinguishing attack
on DSC with lower time cost are proposed. The cryptanalytic
results show that the DSC stream cipher can be broken in the
known IV setting or related key setting. It is worth mentioning
that all attacks proposed in this paper are irrelevant to the
number of initialization rounds of DSC, and thus increasing
the number of initialization rounds can not strengthen the
resistance of DSC against our attacks. This is different from
the previous cryptanalytic attacks on DSC. Our attacks on DSC
clearly show that a well-designed initialization is absolutely
necessary to design a secure stream cipher.

In 2011, an improved version of DSC called DSC2 was
published and standardized by ETSI in [31]. It is built based
on the block cipher AES and completely different from the
stream cipher DSC. To meet current security requirements,
ETSI followed the long-term goal to remove the support of
DSC from DECT devices. However, algorithm change in the
massive devices usually requires the consent of several parties
and takes a long time. Thus, the new attacks on DSC are still
realistic and meaningful, as DSC2 is not completely deployed
in all DECT devices.

Furthermore, to strengthen the DSC stream cipher to provide
an adequate level of security, some countermeasures can be
adopted. On the one hand, the number of pre-cipher rounds
must be increased, e.g., from 40 to 80, to avoid the previous
cryptanalytic attacks on DSC. On the other hand, the key size
and internal state size of DSC need to be extended, and the
key/IV loading should be modified to avoid our attacks on
DSC. Since DSC2 is built based on the block cipher AES
and completely different from the stream cipher DSC, it is
an interesting open problem how to design a DSC-like stream
cipher that can be immune to all known attacks on DSC. We
leave it as a future work.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
and the associate editor for their valuable comments and
suggestions.

REFERENCES

[1] ETSI. ETSI DECT Official Website [Online].
http://www.etsi.org/technologies-clusters/technologies/dect/.

[2] S. Lucks, A. Schuler, E. Tews, R.P. Weinmann, and M. Wenzel,
“Attacks on the DECT authentication mechanisms,”, in Proceedings of
the Cryptographers’ Track at RSA Conference, San Francisco, CA, USA,
Apr. 2009, pp. 48-65.

[3] K. Nohl, E. Tews, and R.P. Weinmann, “Cryptanalysis of the DECT
standard cipher,” in Proceedings of the 17th International Workshop on
Fast Software Encryption, Seoul, Korea, Feb. 2010, pp. 1-18.

[4] H.G. Molter, K. Ogata, E. Tews, and R.P. Weinmann, “An Efficient
FPGA Implementation for an DECT Brute-Force Attacking Scenario,”
in Proceedings of the Fifth International Conference on Wireless and
Mobile Communications, Cannes, France, Aug. 2009, pp. 82-86.

[5] P. McHardy, A. Schuler, and E. Tews, “Interactive decryption of DECT
phone calls,” in Proceedings of the Fourth ACM Conference on Wireless
Network Security, Hamburg, Germany, Jun. 2011, pp. 71-78.

[6] I. Sanchez, G. Baldini, D. Shaw, and R. Giuliani, “Experimental Passive
Eavesdropping of Digital enhanced cordless telecommunication voice
communications through lowcost software defined radios,” Security and
Communication Networks, vol. 8, no. 3, pp. 403-417, Mar. 2014.

[7] I. Coisel, and I. Sanchez, “Practical interception of DECT encrypted
voice communication in unified communications environments,” in Pro-
ceedings of the 2014 IEEE Joint Intelligence and Security Informatics
Conference, The Hague, Netherlands, Sep. 2014, pp. 115-122.

[8] I. Coisel, I. Sanchez, and D. Shaw, “Physical attacks against the lack
of perfect forward secrecy in DECT encrypted communications and
possible countermeasures,” in Proceedings of the 11th International
Conference on Wireless and Mobile Communications, Dubrovnik, Croa-
tia, Aug. 2015, pp. 594-599.

[9] M. Weiner, E. Tews, B. Heinz, and J. Heyszl, “FPGA implementation of
an improved attack against the DECT standard cipher,” in Proceedings
of the 13th International Conference on Information Security and
Cryptology, Seoul, Korea, Dec. 2010, pp. 177-188.

[10] I. Coisel, and I. Sanchez, “Improved cryptanalysis of the DECT standard
cipher,” in Proceedings of the 17th International Workshop on Crypto-
graphic Hardware and Embedded Systems, Saint-Malo, France, Sep.
2015, pp. 269-286.

[11] I. Coisel, and I. Sanchez, “Improved cryptanalysis of the DECT standard
cipher,” Journal of Cryptographic Engineering, vol. 6, no. 2, pp. 155-
169, Mar. 2016.



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MARCH 2024 10

[12] H. Liu, and C. Jin, “An Improvement of the CS Attack to DSC Cipher,”
The Computer Journal, vol. 62, no. 8, pp. 1158-1165, Aug. 2019.

[13] S. Babbage, “Improved exhaustive search attacks on stream ciphers,” in
Proceedings of European Convention on Security and Detection 1995,
Brighton, UK, May. 1995, pp. 161-166.

[14] J. Golić, “Cryptanalysis of alleged A5 stream cipher,” in Proceedings
of International Conference on the Theory and Application of Crypto-
graphic Techniques 1997, Konstanz, Germany, May. 1997, pp. 239-255.

[15] E. Biham and O. Dunkelman, “Differential cryptanalysis in stream
ciphers,” Cryptology ePrint Archive, Report 2007/218, 2007 [Online].
http://eprint.iacr.org/.

[16] S. Fluhrer, I. Mantin, A. Shamir, “Weaknesses in the Key Scheduling
Algorithm of RC4,” in Proceedings of the 8th Annual International
Workshop on Selected Areas in Cryptography, Toronto, Ontario, Canada,
Aug. 16-17, 2001, pp. 1-24.

[17] E. Biham, “New Types of Cryptanalytic Attacks Using Related Keys,”
in Proceedings of Workshop on the Theory and Application of of
Cryptographic Techniques 1993, Lofthus, Norway, May. 1993, pp. 398-
409.

[18] S. Lucks, “Ciphers Secure against Related-Key Attacks,” in Proceedings
of the 11th International Workshop on Fast Software Encryption, Delhi,
India, Feb. 2004, pp. 359-370.

[19] M. Ciet, G. Piret, and J. Quisquater, “Related-key and slide attacks:
Analysis, connections, and improvements,” in Proceedings of 2002 IEEE
International Symposium on Information Theory, Lausanne, Switzerland,
Jun. 2002, pp. 315-325.

[20] D. Priemuth-Schmid and A. Biryukov, “Slid Pairs in Salsa20 and Trivi-
um,” in Proceedings of the 9th International Conference on Cryptology
in India, Kharagpur, India, Dec. 2008, pp. 1-14.

[21] C. D. Cannière, Ö. Kücük, and B. Preneel, “Analysis of Grain’s initial-
ization algorithm,” in Proceedings of the First International Conference
on Cryptology in Africa, Casablanca, Morocco, Jun. 2008, pp. 276-289.

[22] L. Yuseop, J. Kitae, S. Jaechul, and H. Seokhie, “Related-key chosen
IV attacks on Grain-v1 and Grain-128,” in Proceedings of the 13th Aus-
tralasian Conference on Information Security and Privacy, Wollongong,
Australia, Jul. 2008, pp. 321-335.

[23] L. Ding and J. Guan, “Related key chosen IV attack on Grain-128a
stream cipher,” IEEE Transactions on Information Forensics and Secu-
rity, vol. 8, no. 5, pp. 803-809, May. 2013.

[24] S. Banik, S. Maitra, S. Sarkar, and S. T. Meltem, “A chosen IV related
key attack on Grain-128a,” in Proceedings of the 18th Australasian Con-
ference on Information Security and Privacy, Brisbane, QLD, Australia,
Jul. 2013, pp. 13-26.

[25] L. Ding and J. Guan, “Related-key chosen IV attack on Decim v2 and
Decim-128,” Mathematical and Computer Modelling, vol. 55, no. 1-2,
pp. 123-133, Jan. 2012.

[26] L. Ding, C. Jin, J. Guan, S. Zhang, T. Cui, D. Han, and W. Zhao,
“Cryptanalysis of WG family of stream ciphers,” The Computer Journal,
vol. 58, no. 10, pp. 2677-2685, Oct. 2015.

[27] L. Ding, C. Jin, J. Guan, and Q. Wang, “Cryptanalysis of lightweight
WG-8 stream cipher,” IEEE Transactions on Information Forensics and
Security, vol. 9, no. 4, pp. 645-652, Apr. 2014.

[28] L. Ding, D. Gu, L. Wang, C. Jin, and J. Guan, “A real-time related key
attack on the WG-16 stream cipher for securing 4G-LTE networks,”
Journal of Information Security and Applications, vol. 63, Dec. 2021,
103015.

[29] A. Kircanski and A. Youssef, “On the sliding property of SNOW 3G
and SNOW 2.0,” IET Information Security, vol. 5, no. 4, pp. 199-206,
Dec. 2011.

[30] L. Ding, Z. Wu, X. Wang, Z. Guan and J. LI, “New Attacks on the
GPRS Encryption Algorithms GEA-1 and GEA-2,” IEEE Transactions
on Information Forensics and Security, vol. 17, pp. 2878-2889, Aug.
2022.

[31] ETSI. Digital Enhanced Cordless Telecommunications (DECT); Com-
mon Interface (CI); Part 7: Security features. Final draft ETSI EN 300
175-7 V2.4.0 (2011-12). ETSI DECT Official Website [Online]. http-
s://www.etsi.org/deliver/etsi en/300100 300199/30017507/02.04.00 40/
en 30017507v020400o.pdf.


