
DARE to agree: Byzantine Agreement with Optimal

Resilience and Adaptive Communication
∗

PIERRE CIVIT, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
MUHAMMAD AYAZ DZULFIKAR, NUS Singapore, Singapore
SETH GILBERT, NUS Singapore, Singapore
RACHID GUERRAOUI, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
JOVAN KOMATOVIC, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
MANUEL VIDIGUEIRA, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Byzantine Agreement (BA) enables 𝑛 processes to reach consensus on a common valid 𝐿𝑜 -bit value,
even in the presence of up to 𝑡 < 𝑛 faulty processes that can deviate arbitrarily from their prescribed
protocol. Despite its significance, the optimal communication complexity for key variations of BA
has not been determined within the honest majority regime (𝑛 = 2𝑡 + 1), for both the worst-case
scenario and the adaptive scenario, which accounts for the actual number 𝑓 ≤ 𝑡 of failures. We
introduce ada-Dare (Adaptively Disperse, Agree, Retrieve), a novel universal approach to solve
BA efficiently. Let ^ represent the size of the cryptographic objects required to solve BA when
𝑡 > 𝑛/3. Different instantiations of ada-Dare achieve near-optimal adaptive bit complexity of
𝑂 (𝑛𝐿𝑜 +𝑛(𝑓 + 1)^) for both strong multi-valued validated BA (SMVBA) and interactive consistency
(IC). By definition, for IC, 𝐿𝑜 = 𝑛𝐿𝑖𝑛 , with 𝐿𝑖𝑛 representing the size of an input value. These results
achieve optimal 𝑂 (𝑛(𝐿𝑜 + 𝑓)) word complexity and significantly improve the previous best results
by up to a linear factor, depending on 𝐿𝑜 and 𝑓 .

1 INTRODUCTION

Byzantine Agreement (BA) is a core primitive of distributed computing [64]. It is indispensable to
state machine replication (SMR) [1, 18, 54, 60], blockchain systems [3, 15, 33, 34, 44], and various
other distributed protocols [7, 40, 45, 47]. In BA, 𝑛 processes propose an 𝐿𝑖𝑛-bit value and agree on
an 𝐿𝑜 -bit value, while tolerating up to 𝑡 arbitrary failures. If a process exhibits an arbitrary failure,
the process is said to be faulty; otherwise, the process is said to be correct. Formally, a Byzantine
Agreement protocol satisfies the following guarantees:

• Termination: All correct processes eventually decide.
• Agreement: No two correct processes decide different values.

To avoid trivial agreement on a pre-established value, BA necessitates an additional Validity
property, delineating permissible decisions.
• Interactive consistency (IC) requires that the output corresponds to a vector containing the
proposals of all (honest) processes.
• Strong Validity (SBA) dictates that, if all correct processes propose the same value, that
value must be decided.
• Validated BA (VBA) ensures External Validity, stipulating that a decided value must satisfy
a globally verifiable predicate.
• Weak Validity (WBA) ensures that if all processes are correct and unanimously propose the
same value, that value is the unique admissible decision.

∗This paper represents an extension of [27]. There are three crucial differences between [27] and this paper: (1) [27] solves
multi-valued Byzantine agreement with only strong validity (i.e., it does not tackle interactive consistency), (2) [27] focuses
only on constant-sized value and achieves𝑂

(
𝑛 (𝑓 + 1)

)
word complexity (or, equivalently,𝑂

(
𝑛 (𝑓 + 1)^

)
bit complexity),

and (3) [27] achieves only sub-optimal resilience (𝑛 = (2 + 𝜖)𝑡 + 1, where 𝑡 denotes the number of tolerated failures).

1

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

External validity is often implicitly associated with Weak Validity (WBA).
In general, the running time and the communication complexity of Byzantine Agreement depend

on the number of nodes 𝑛, the size of the values being agreed upon 𝐿𝑜 , and the number of failures
that the protocol can tolerate 𝑡 . In some executions, the real number of failures 𝑓 may be significantly
less than the maximum 𝑡 that the protocol can tolerate. In such cases, we can design protocols that
are significantly more efficient [71]. In this paper, we are primarily interested in adaptive protocols
where the complexity depends on 𝑓 ≤ 𝑡 , the actual number of failures in an execution.

What is the best communication complexity that can be achieved? Negative results, à la
Dolev and Reischuk, essentially show that a quadratic number of bits must be exchanged [24, 37, 71]
to deterministically solve BA. In fact, solving deterministic Strong Byzantine Agreement (SBA)
requires at the very least a resiliency threshold of 𝑡 < 𝑛/2, and the exchange of Ω(𝑛𝐿𝑜 + 𝑛𝑓) bits
[71], where 𝑓 ≤ 𝑡 is the actual number of failures that occur in the execution.

Positive results have demonstrated BA protocols that achieve (near-)optimality for some specific
validity properties and valuations of the parameters 𝑓 , 𝑡 , 𝐿𝑜 , 𝐿𝑖𝑛 [5, 21, 32, 38, 61, 62]. Nonetheless, it
has remained an open question whether there exists a protocol with optimal resilience and optimal
communication complexity that adapts to the actual number of failures.
Firstly, we are unaware of any adaptive Strong BA protocols with optimal 𝑛/2 resilience. In

a recent exciting result, Elsheimy, Tsimos, and Papamanthou developed the first adaptive SBA
protocol—with resilience 𝑡 < (1/2 − 𝜖)𝑛. Their result relies on a clever construction of reliable
voting and Weak Byzantine Agreement, and uses a strong crypto primitive: the SNARK. Our goal in
this paper is to provide a protocol with optimal resilience 𝑡 < 𝑛/2 (ideally without using SNARKs).
Second, existing adaptive BA algorithms are not efficient with respect to the size of the agreed

upon value 𝐿𝑜 . Elsheimy, Tsimos, and Papamanthou [38] provide an adaptive Strong BA protocol
with word complexity of 𝑂 (𝑛𝐿𝑜 (𝑓 + 1)); Cohen, Keidar, and Spiegelman [32] provide an adaptive
Weak BA protocol with word complexity 𝑂 (𝑛𝐿𝑜 (𝑓 + 1)). Our goal in this paper is to provide a
protocol with word complexity 𝑂 (𝑛𝐿𝑜 + 𝑛𝑓).

Third, the most efficient interactive consistency protocol to date is a recent paper [5] by Abraham,
Nayak, and Shrestha, which achieves𝑂 (𝑛𝐿𝑜+^𝑛3) communication (using an interesting new version
of gradecast). Our goal here is to provide an adaptive protocol with word complexity 𝑂 (𝑛𝐿𝑜 + 𝑛𝑓).

Protocol Problem Resiliency Words Crypto
[32]([61]) W+E 𝑛/2 𝑂 (𝑛𝐿𝑜 (𝑓 + 1)) TSS
This - 1 W+E 𝑛/2 𝑂 (𝑛𝐿𝑜 + 𝑛𝑓) TSS
[38] S 𝑛/(2 + 𝜖) 𝑂 (𝑛𝐿𝑜 (𝑓 + 1)) TSS, SNARK
[62]([61])+[5] S+E 𝑛/2 𝑂 (𝑛𝐿𝑜 + 𝑛𝑡) TSS
This - 2 S+E 𝑛/2 𝑂 (𝑛𝐿𝑜 + 𝑛𝑓) MTSS†

[5] IC 𝑛/2 𝑂 (𝑛𝐿𝑜 + 𝑛3) TSS
This - 3 IC 𝑛/2 𝑂 (𝑛𝐿𝑜 + 𝑛𝑓) TSS

Fig. 1. Performance of various consensus algorithms with 𝐿𝑜 -bit values and ^-bit size of cryptographic

objects. 𝜖 ∈ Ω(1) denotes an arbitrarily small constant. W, S, and E refer to weak, strong and

external-validity respectively, where 𝐿𝑜 = 𝐿𝑖 . IC refers to interactive consistency, where 𝐿𝑜 = 𝑛𝐿𝑖 by

definition. We assume that ^ > log(𝑛) to avoid an adversary with an exponential computational power, and

collision between cryptographic signatures. We define a word to be a string of 𝑂 (^) bits. †Multiverse

Threshold Signature Scheme (MTSS) [55] is a cryptographic scheme strictly lighter than a generic SNARK.

2

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

Our approach.We apply the DARE paradigm (Disperse-Agree-REtrieve) [23] to develop Byzantine
Agreement protocols with adaptive communication complexity, i.e., whose communication cost
depends on the number of faulty processes 𝑓 ≤ 𝑡 . The basic idea is to first disperse the value
to be agreed upon, deriving a digest of the value and a proof-of-dispersal; this guarantees that
the value is valid and that it is available to at least 𝑡 + 1 − 𝑓 processes. We then use an existing
consensus protocol to agree on a digest. Finally, each process retrieves the value associated with
the agreed-upon digest.

There are three main technical innovations involved in our results, namely (1) verifiable vector
collection, (2) persuasion via bucket certificates, and (3) adaptive retrieval.

First, we can only disperse valid values, and we can only determine if a value is valid if we have
enough information on the other inputs to the system. At the same time, it is too expensive for all 𝑛
processes to collect all 𝑛 inputs of size 𝐿𝑖𝑛 . Hence, we design a Verifiable Vector Collection protocol
that ensures that honest leaders will efficiently collect enough verifiable information to determine
validity; our protocol is based on the idea of “LearnOrExpose”: in every view with an honest leader,
either more (missing) information is collectively learned, or a malicious process is exposed.1
Second, we design a persuasion mechanism for proving that a digest is associated with a valid

value. This mechanism is based on a new type of “Bucket Certificate”—inspired by the idea of [67]
(which was designed for 𝑛/3 resilience). A bucket certificate can efficiently guarantee that a value
satisfies strong validity. The key challenge is to succinctly and efficiently prove a negative: that not
all honest processes input the same value even when we do not know which processes are honest.
Third, we develop a new adaptive retrieval protocol, based on fault-tolerant expander graphs

and Reed-Solomon codes, to ensure that all correct processes can retrieve the final agreed-upon
value. The problem is that only some honest processes (𝑡 + 1 − 𝑓) know the required value, and
yet it is too expensive for them to broadcast it directly to everyone. Thus a careful combination of
active dissemination (via an expander) and carefully requested Reed-Solomon shares ensures the
proper adaptive complexity.
Our results. Putting these pieces together yields the following, which are summarized in Table 1.

(1) For weak validity and external validity, we provide optimal word complexity: 𝑂 (𝑛𝐿𝑜 + 𝑛𝑓).
(2) For strong validity (and external validity), we provide optimal word complexity with optimal

resilience (𝑡 < 𝑛/2), without using SNARKs: 𝑂 (𝑛𝐿𝑜 + 𝑛𝑓).
(3) For interactive consistency, we provide optimal word complexity: 𝑂 (𝑛𝐿𝑜 + 𝑛𝑓).

(Note that a word is of size 𝑂 (^), where ^ is the size of the cryptographic elements.)

Related Work

We now discuss related work.
Deterministic Byzantine agreement. In their foundational work, Dolev and Reischuk [37]
demonstrated quadratic lower bounds on the communication complexity for deterministic Byzantine
broadcast (and by extension, strong consensus). In the authenticated setting (utilizing ideal digital
signatures [17]), Byzantine broadcast must exchange at least Ω(𝑛𝑡) signatures and Ω(𝑛 + 𝑡2)
messages in some failure-free execution (𝑓 = 0). Spiegelman [71] later extended this lower bound
to cover adaptive scenarios, showing Ω(𝑛 + 𝑡 (𝑓 + 1)) words are necessarily exchanged, regardless
of the employed cryptographic schemes.

This quadratic communication complexity has been proven optimal for 𝑓 = Θ(𝑡) across various
contexts [5, 8, 21, 28, 61, 62]. In some cases, using threshold signatures [70], which extend beyond

1This takes some inspiration from previous ideas of accountability [48].

3

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

the idealized authenticated model. Additionally, an amortized communication cost of𝑂 (𝑛) messages
has been achieved in multi-shot Byzantine broadcast [74].

However, the possibility of reducing word complexity to 𝑜 (𝑛3) for interactive consistency remains
an open question (1) under a dishonest majority and (2) against an unbounded adversary (assum-
ing 𝑡 < 𝑛/3 [39]). Deterministic quadratic BA protocols have also been developed for partially
synchronous environments [22, 23, 25, 56, 57, 75].
Circumventing the quadratic lower bound with randomization. Even with randomiza-
tion, no Byzantine broadcast algorithm can achieve sub-quadratic expected message complexity
against a strongly rushing adaptive adversary equipped with after-the-fact message removal ca-
pabilities [2]. Yet, it is feasible to construct randomized Byzantine agreement algorithms that
achieve sub-quadratic expected communication complexity when facing a weaker adversary
[2, 9, 13, 13, 14, 20, 42, 43, 51–53, 66]. This also extends to partial synchrony [2, 9, 20, 66, 69]
and even to complete asynchrony, assuming either a private setup [11] or a delayed adversary [31].
Moreover, fully-asynchronous quadratic BA is achievable with fewer assumptions [4, 59, 62].
In the dishonest majority regime (𝑡 > 𝑛/2), Blum et al. [10] delineated new lower bounds,

showing that a randomized Byzantine broadcast protocols with merely 𝑂 (1) correct processes,
necessarily exchange Ω(𝑛2) bits in expectation. Recent advancements approach this bound [19, 72].
Circumventing the quadratic lower bound with adaptiveness. Even with advanced cryptog-
raphy, an Ω(𝑛2𝐿𝑖𝑛) price must be paid in failure-free execution to achieve interactive consistency,
since every correct process must receive the input of every correct process.

However, using sophisticated cryptographic schemes, like threshold signatures [70], allows for
adaptive BA protocols. These protocols ensure a cheaper validity property, including external valid-
ity [32, 71], binary strong validity [38], and Byzantine broadcast [32]. Typically, these approaches
leverage the algorithm from [61] as a fallback for pessimistic scenarios.

Organization of the paper. We provide a technical overview in §2. We state the full formal
system model and preliminaries in §3. In §4, we present the main building blocks of our DARE-
style composition. §5 and §6 respectively detail our efficient retrieval and dispersal protocols. The
optional appendix contains omitted proofs.

2 TECHNICAL OVERVIEW

In this section, we give an overview of the technical details of ada-Dare.
Silent views. Most of our sub-protocols, along with existing adaptive BA protocols, adhere to
the silent views framework introduced by Spiegelman [71]. This framework takes the classical
view-based approach, while attempting to induce silent views to save message complexity once
agreement has been achieved. These protocol operate across up to 𝑛 views, with each view led by a
round-robin leader. The communication follows a “leader-to-all, all-to-leader” pattern. In each view,
the leader’s objective is to drive agreement on an admissible output. Within 𝑂 (𝑓) views, a correct
leader ensures that all honest parties have output an admissible value. Subsequent honest leaders
refrain from communicating in their views, thereby remaining ’silent’, leading to a word complexity
of 𝑂 (𝑛 · 𝑓). Recently, Cohen, Keidar, and Spiegelman [32] have used this paradigm to develop a
VBA protocol, called CKS in this paper2, achieving adaptive 𝑂 (𝑛𝐿𝑜 (𝑓 + 1)) word complexity.
Disperse/Agree/Retrieve. ada-Dare efficiently handles long inputs by adapting the classic
Disperse/Agree/Retrieve paradigm [30] (see Figure 2). In this approach: (1) a long input 𝑣 is

2The version of CKS used in this paper incorporates the correction of a technical issue proposed by [38], and minor
modifications, discussed herein, to ensure External Validity.

4

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

represented as a polynomial 𝑃𝑣 (·) of degree 𝑡 within a Galois field, where the polynomial’s
evaluations {𝑃𝑣 (𝑖)}𝑖∈[1:𝑛] (i.e., symbols or shares) are dispersed. A correct dispersion is attested

Fig. 2. ada-Dare for any validity property val with

the DAR paradigm.

by a proof-of-dispersal (PoD), guaranteeing that
the corresponding value is both (a) valid, and (b)
efficiently retrievable. In ada-Dare, efficient
retrievability is ensured if the corresponding
value has been observed by at least 𝑡 +1− 𝑓 cor-
rect processes. (2) Processes reach consensus
on a cryptographic digest 𝑑 = Digest(𝑣) of the
lengthy input, in which 𝑑 must be backed by a
corresponding PoD. (3) The original input 𝑣 is
recovered through the exchange of consistent
polynomial shares and subsequent polynomial interpolation.
Adaptive Agreement & Retrieval. Our first challenge is to ensure adaptive communication

...

...
...

...
...

Fig. 3. Retrieve. In the first phase, processes gossip over an

expander graph; if sufficient processes obtained 𝑣 , then all

but 𝑂 (𝑓) correct process will obtain 𝑣 . In the second phase,

each process that has not obtained 𝑣 attempts to recover 𝑣

by (1) obtaining its own share of 𝑣 and then (2) obtaining

𝑡 + 1 different shares.

complexity in agreement and retrieval.
Suppose that each correct process starts
with some digest 𝑑𝑖 , backed by a corre-
sponding PoD (𝑂 (^)-bits in total).

In the agreement phase, consensus is ex-
ecuted on a digest 𝑑 linked to its PoD. This
is achieved with 𝑛/2 resiliency and adap-
tive𝑂 (𝑛(𝑓 +1)^) communication complex-
ity via the CKS protocol.
Next, retrieval consists of two phases

(see Figure 3). In the to almost everywhere

phase, correct processes that have ob-
tained the value 𝑣 corresponding to digest
𝑑 gossip using an expander graph. Specif-
ically, we use the expander construction
from [73] with some nice properties: it has
a constant degree and, after enough time (proportional to the diameter of the graph), all but 𝑂 (𝑓)
correct processes will have obtained 𝑣 . Next, in the to everywhere phase, each correct process 𝑝𝑖
that has not yet obtained the value (𝑣) tries to obtain it in two steps. First, 𝑝𝑖 asks for its own share
(i.e., the 𝑖-th share, 𝑃𝑣 (𝑖)) from all other processes. Then, 𝑝𝑖 asks for the 𝑗-th share from process 𝑝 𝑗 .
Importantly, each share is accompanied by an accumulator witness, allowing a correct process to
verify the correctness of the share. By the end of the first step, every correct process 𝑝 𝑗 will know
their respective share. Therefore, at the end of the second phase, 𝑝𝑖 will be able to collect 𝑡 + 1
different shares, allowing it to recover 𝑣 . In total, the retrieval phase exchanges𝑂 (𝑛𝐿𝑜 + 𝑛(𝑓 + 1)^)
bits.

Verifiable vector collection & persuasion: key building block of efficient Dispersal. Let us
start by explaining why obtaining proof that a value is admissible can be difficult, using strong
validity as an example. Suppose that a correct process manages to collect proposals from 𝑛 = 2𝑡 + 1
processes. In this case, the collected proposals themselves easily serve as proof: if a majority value
𝑣 exists then the proposals serve as 𝑣 ’s proof, and if not, they also serve as proof that any value is
valid. However, suppose that even one proposal is missing. As it turns out, it might be that nothing
can be proven by these 𝑛 − 1 = 2𝑡 proposals. For example, suppose the 2𝑡 proposals consist of 𝑡
proposals for value 0 and 𝑡 proposals for value 1. We can then not distinguish the cases where 1)

5

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

the missing proposal corresponds to a faulty process, 2) the missing proposal corresponds to a
correct process that proposes 0 (and all correct processes propose 0), and 3) the missing proposal
corresponds to a correct process that proposes 1 (and all correct processes propose 1). In some
sense, missing even just one proposal makes it difficult to show that a value is indeed admissible.

...

Fig. 4. Disp
val

for any validity property val. The protocol is built

on top of an efficient verifiable vector collection (VVC) and an

efficient persuasion sub-protocol.

This is the main motivation be-
hind verifiable vector collection (VVC),
which enables a correct process to
collect a vector of 𝑛 “input materials”.
Here, an input material can either be
a signed message, containing an en-

try (a value or its digest, as desired, of
𝐿𝑒 -bits) from the corresponding pro-
cess, or a proof-of-misbehavior (PoM),
which proves that the corresponding
process is faulty. Importantly, a PoM
can only be formed for a faulty pro-
cess: a correct process can never be accused. Then, suppose a correct process has succeeded in
VVC. The next step would be to efficiently persuade other processes that a certain value 𝑣 is
indeed admissible, and obtain a PoD for its digest. This is done by a subprotocol named persuade,
which is tailored individually to specific validity properties (such as strong validity and interactive
consistency), whose goal is to efficiently form a PoD through the collected verifiable vector. Based
on these ideas, we devise ada-Disp, a dispersal protocol that works in a leader-based paradigm.
Within each view, a leader attempts to collect a verifiable vector and build a PoD. The protocol is
illustrated in Figure 4.
Adaptive verifiable vector collection (VVC). Recall that VVC is contained in our dispersal
protocol. Intuitively, each process sends its signed entry to the leader in every view. To tackle the
problem of uncooperative faulty processes, we introduce the LearnOrExpose primitive. In this
primitive all processes engage with an (allegedly faulty) process accused by a leader. Under a correct
leader, an accused process either (i) (Learn) has its signed entry forwarded to the leader, or (ii)
(Expose) is confronted with an undeniable PoM via a (𝑡 + 1)-threshold signature. Finally, the leader
broadcasts the indirect answer (or the PoM). After each unsuccessful view driven by a correct
leader, the number of accused Byzantine processes, linked with corresponding indirect answers (or
PoM), is incremented by one. Hence, a complete collection, and so a successful view, is reached
by view 2𝑓 + 1, after at most 𝑓 Byzantine leaders, and 𝑓 unsuccessful correct leaders.3 Through
careful bookkeeping of previous interactions, the primitive collectively exchanges 𝑂 (𝑛𝑓 (𝐿𝑒 + ^))
bits. Therefore, over 2𝑓 + 1 views, VVC exchanges 𝑂 (𝑛(𝑓 + 1) (𝐿𝑒 + ^)) ≤ 𝑂 (𝑛𝐿𝑜 + 𝑛(𝑓 + 1)^) bits.
Efficient persuasion for interactive consistency (IC). Suppose we have reached a correct leader
𝑝ℓ that has successfully obtained a verifiable vector. Observe that, under IC, the verifiable vector
is directly admissible as the decision. This leads to a trivial persuasion protocol for IC. First, 𝑝ℓ
broadcasts the verifiable vector. Upon receiving the vector, a correct process stores the vector and
sends back to 𝑝ℓ a partial signature for the digest 𝑑 of the vector. Then, 𝑝ℓ can aggregate the partial
signatures into a (𝑡 + 1)-threshold signature. Importantly, this threshold signature satisfies the
definition of a PoD for 𝑑 , as (1) it must be signed by at least 𝑡 + 1 − 𝑓 correct processes that have
stored the pre-image (the vector), and (2) the pre-image is admissible according to IC. Thus, 𝑝ℓ
can conclude the persuasion by distributing 𝑑 and its PoD to all processes. This eventually yields a
3Interestingly, this deviates from a common pattern in the leader-based paradigm in which success is guaranteed at the first
view with a correct leader.

6

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

dispersal protocol that exchanges𝑂 (𝑛𝐿𝑜 +𝑛(𝑓 + 1)^) bits. Furthermore, the full composition under
ada-Dare implies an IC protocol with the same communication complexity, which is word-optimal
as 𝐿𝑜 = 𝑛𝐿𝑖𝑛 and Ω(𝑛2𝐿𝑖𝑛) is inevitable for IC.

Efficient persuasion for strong & external validity (SMVBA). A keen reader might notice that,
if VVC with a value (and signature) as its entry is realized, we can use a SNARK [46] to build a
succinct proof of whether a value 𝑣 is admissible or not (using our example in the VVC intuition).
Thus, by distributing 𝑣 and this proof, a leader can persuade everyone to build a PoD on the digest
of 𝑣 . However, SNARK is known to be computationally costly to compute. Is it still possible to
efficiently perform persuasion with a weaker cryptographic tool? We answer this affirmatively
by combining the idea of Big Buckets ([67]) and Multiverse Threshold Signature Scheme (MTSS)
([6, 41]). In a nutshell, MTSS is a cryptographic primitive that is weaker than SNARK and has two
important features: (1) dynamic universe (set of processes) selection and (2) dynamic threshold.
Moreover, the choice of universe and threshold can be done without additional communication.

First, to avoid the Ω(𝑓 𝑛𝐿𝑜) factor in the communication complexity, VVC is executed over digests
as entries. Suppose that a correct leader 𝑝ℓ has successfully obtained a verifiable vector. If there
is a digest 𝑑 that is signed by 𝑡 + 1 processes, then 𝑝ℓ can make a trivial ‘positive certificate’ by
combining them into a (𝑡 + 1)-threshold signature. The positive certificate proves that (1) the
pre-image of 𝑑 has been observed by 𝑡 + 1 − 𝑓 correct processes, and (2) the pre-image is externally
valid. Using the positive certificate, 𝑝ℓ is able to persuade other processes to build a PoD for a digest
𝑑 , in a similar fashion to persuasion for IC.

However, what if no such digest exists? In this case, using the idea of Big Buckets, 𝑝ℓ can divide
the domain of the digest into a constant number (𝑂 (1)) of buckets (intervals) such that each bucket
contains at most 𝑛 − (𝑡 + 1) = 𝑡 entries from the vector. 𝑝ℓ then broadcasts the buckets, and upon
their reception, a correct process signs every bucket to which its entry does not belong. Then, using
MTSS and the verifiable vector, for each bucket, 𝑝ℓ will be able to build a ‘bucket negative certificate’
that proves that some correct processes’ digest is not included in that bucket. In a nutshell, it will
consist of (1) at most 𝑓1 ≤ 𝑓 PoM, (2) at most 𝑓2 ≤ 𝑓 − 𝑓1 entries (from faulty processes), and
(3) an (𝑡 + 1 − 𝑓1 − 𝑓2)-MTSS where the universe consists of all processes except those in (1) and
(2). Therefore, a bucket negative certificate consists of 𝑂 (𝑓 ^) bits. As there are 𝑂 (1) buckets, a
‘negative certificate’, testifying that there is no common proposal from the correct processes, can
be built using only 𝑂 (^𝑓) bits. Using this negative certificate, 𝑝ℓ can persuade all processes that
its input, which must be externally valid, is admissible. Similarly, 𝑝ℓ will be able to obtain and
distribute a digest 𝑑 along with a PoD for 𝑑 .

The idea eventually yields a dispersal protocol that exchanges𝑂 (𝑛𝐿𝑜+𝑛(𝑓 +1)^) bits. Furthermore,
the full composition under ada-Dare implies an SMVBA protocol with the same communication
complexity, which is word-optimal.

Summary. In brief, we propose ada-Dare: a new efficient generic technique to achieve BA for
any validity property in the honest majority regime (𝑛 = 2𝑡 + 1). The adaptive Retrieve phase
is achieved by a novel, though simple, use of an expander graph combined with erasure codes
and cryptographic accumulators. The Dispersion is reduced to two problems: (i) verifiable vector
collection (VVC) and (ii) persuasion. VCC is adaptively realized via an iterative use of the introduced
LearnOrExpose primitive, which forces a non-participating process to share its entry or be exposed.
Then, we provide an efficient persuasion protocol for both IC and SMVBA. The full composition
yields the optimal𝑂 (𝑛(𝐿𝑜 + 𝑓)) word complexity for both SMVBA and IC, arguably at the very top
of the hierarchy of the Byzantine Agreement problems.

7

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

3 SYSTEMMODEL & PRELIMINARIES

Processes.We consider a static system Π = {𝑝1, 𝑝2, ..., 𝑝𝑛} of 𝑛 = 2𝑡 +1 processes, for some 𝑡 > 0. At
most 𝑡 processes can be Byzantine: these processes can behave arbitrarily. If a process is Byzantine,
we say that the process is faulty; otherwise, we say that the process is correct (or honest). We denote
by 0 ≤ 𝑓 ≤ 𝑡 the actual number of faulty processes. Lastly, we assume that the faulty processes are
computationally bounded, i.e., they cannot forge signatures of correct processes.
Synchronous environment. Processes communicate by exchanging messages over a complete
authenticated synchronous network: (1) the receiver of a message is aware of the sender’s identity,
(2) every pair of correct processes can exchange messages directly, and (3) if a correct process
sends a message to a correct process, the message is received after at most Δ time units, where Δ is
known by every correct process. The existence of the known bound on message delays allows us to
design protocols in a round-based paradigm: if a correct process sends a message to another correct
process at the beginning of some round, the message is received by the end of the same round.
Values.We denote by Value𝐼 the set of 𝐿𝑖𝑛-bit values processes can propose to ada-Dare. Moreover,
Value𝑂 denotes the set of 𝐿𝑜 -bit values processes can decide from ada-Dare. Finally, for every
correct process 𝑝𝑖 , input(𝑝𝑖) denotes 𝑝𝑖 ’s proposal to ada-Dare.
Reed-Solomon codes [68]. ada-Dare relies on Reed-Solomon (RS) erasure codes (no error correc-
tion is required). We denote by encode(·) and decode(·) the RS’ encoding and decoding algorithms,
respectively. In a nutshell, encode(·) takes a value 𝑣 , chunks it into the coefficients of a polynomial
𝑃𝑣 (·) of degree 𝑡 (the maximum number of faults), and outputs 𝑛 (the total number of processes)
evaluations of the polynomial (RS symbols): encode(𝑣) = [𝑃𝑣 (1), ..., 𝑃𝑣 (𝑛)]. decode(·) takes a set
of 𝑡 + 1 RS symbols 𝑆 and interpolates them into a polynomial of degree 𝑡 , whose coefficients are
concatenated and output. The size of one RS symbol of an 𝐿-bit value is 𝑂

(
max(𝐿

𝑡+1 , log𝑛)
)
.

Cryptographic accumulators [36, 50, 63]. Cryptographic accumulators are tools for aggregating
a set of values into a single accumulation value, while also generating a verifiable witness for each
value in the set. This procedure allows any process to validate the presence of a value in the set
using its corresponding witness and the accumulation value. The accumulator scheme is assumed
to be collision-resistant. Concretely, this paper utilizes the bilinear accumulator whose witness has
a size of𝑂 (^) bits. We relegate the formal definition of cryptographic accumulators to Appendix A.
Digests. We design a collision-resistant Digest function, where Digest(·) : Value𝐼 → Digest ≜
{0, 1}^ . Concretely, the Digest function takes a value 𝑣 as input and performs the following
steps: (1) It encodes 𝑣 into [𝑃𝑣 (1), 𝑃𝑣 (2), ..., 𝑃𝑣 (𝑛)] using Reed-Solomon codes. (2) It aggregates
[𝑃𝑣 (1), 𝑃𝑣 (2), ..., 𝑃𝑣 (𝑛)] into a value 𝑧𝑣 using the bilinear accumulator. (3) It returns 𝑧𝑣 . We order
all digests according to the lexicographic order; 𝑑min (resp., 𝑑max) denotes the minimum (resp.,
maximum) digest. The formal definition of digests can be found in Appendix A.
Threshold signatures [58, 70]. ada-Dare relies on a (𝑘, 𝑛)-threshold signature scheme [58, 70]
with 𝑘 = 𝑡 +1. In a (𝑘, 𝑛)-threshold signature scheme, each process holds a distinct private key; there
exists a single public key. Each process 𝑝𝑖 can use its private key to produce a partial signature of a
message𝑚 by invoking ShareSign

𝑘
𝑖 (𝑚). A partial signature psignature of a message𝑚 produced

by process 𝑝𝑖 can be verified by ShareVerify
𝑘
𝑖 (𝑚, psignature). Lastly, a set 𝑆 = {psignature𝑖 } of

partial signatures, where |𝑆 | = 𝑘 and, for each psignature𝑖 ∈ 𝑆 , psignature𝑖 = ShareSign
𝑘
𝑖 (𝑚), can

be combined into a single (threshold) signature by invoking Combine
𝑘 (𝑆); a threshold signature

tsignature of message 𝑚 can be verified with CombinedVerify
𝑘 (𝑚, tsignature). Where appropri-

ate, invocations of ShareVerify𝑘 (·) and CombinedVerify
𝑘 (·) are implicit in our descriptions. We

denote by P_Signature and T_Signature a partial signature and a (combined) threshold signature,
respectively. Importantly, under a security parameter ^, each signature is of size 𝑂 (^) bits.

8

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

Multiverse threshold signatures [6, 41]. In the persuade sub-protocol (Algorithm 8 analyzed in
Appendix C.6) used by the instance of ada-Dare dedicated to strong & external validity, we rely
on a modern implementation [55, 65] of a multiverse threshold signature scheme (MTSS) [6, 41].
Intuitively, the MTSS behaves as a classic TSS, but enjoys: (1) a transparent setup (i.e., an established
PKI and a common random string4, (2) a dynamic threshold, and (3) a communication-free universe
setup to dynamically choose the universe, i.e., the exact subset of processes allowed to contribute
to the threshold. We relegate the formal definition of MTSS to Appendix A.
Communication complexity of synchronous protocols Let P be any synchronous protocol
and let execs(P) denote the set of all possible executions of 𝑃 .5 Let 𝛼 ∈ execs(P) be an execution of
P. A word is a string of 𝑂 (^) bits. We define the bit (resp., word) complexity of 𝛼 as the number of
bits (resp., words) sent in messages by all correct processes in 𝛼 . The bit (resp., word) complexity of
P is then defined as the maximum bit (resp., word) complexity over execs(𝑃).

4 ADA-DARE

This section fixes some generic validity val, and presents ada-Dareval (ADAptively Disperse, Agree,
REtrieve), which is composed of three algorithms:

(1) ada-Dispval, which disperses the proposals, valid for the specific validity property val;
(2) CKS [32], which ensures agreement on the digest of a previously dispersed proposal; and
(3) ada-Retrieve, which rebuilds the proposal corresponding to the agreed-upon digest.
As explained in §2, ada-Dareval closely follows the structure of previous (and well-established)

“Disperse, Agree, Retrieve” compositions [23]. A full formal analysis of the composition itself, includ-
ing an algorithm and proofs of correctness and complexity, can be found in Appendix B. Here, we
present the interface, properties, and complexity of each of the threemain sub-components, of which
dispersal (ada-Dispval) and retrieval (ada-Retrieve) form the core challenge and contribution.

4.1 ada-Dispval

Interface & properties. In a nutshell, correct processes aim to collectively disperse some valid
value 𝑣 ∈ val(𝑐), for the specific validity property val and the input configuration6 𝑐 : eventually, all
correct processes acquire a digest along with a proof-of-dispersal (PoD), a threshold signature that
proves the pre-image value of the digest is valid and has been successfully dispersed. Concretely,
ada-Dispval exposes the following interface:

• request propose(𝑣 ∈ Value): a process proposes a value 𝑣 ; each correct process invokes
propose(𝑣) exactly with externallyValid(𝑣) = true

7.
• indication acquire(𝑑 ∈ Digest_Value, 𝜎𝑑 ∈ T_Signature): a process acquires a pair (𝑑, 𝜎𝑑).

We say that a correct process obtains a threshold signature (resp., a value) if and only if it stores the
signature (resp., the value) in its local memory. (Obtained values can later be retrieved by all correct
processes using ada-Retrieve; see §4.3 and Algorithm 3.) ada-Dispval ensures the following:
• Integrity: If a correct process triggers acquire(𝑑, 𝜎𝑑), thenCombinedVerify

𝑡+1 (⟨ack, 𝑑⟩, 𝜎𝑑))
= true.
• Termination: Every correct process eventually acquires at least one digest-signature pair.
• Redundancy: Let a correct process obtain (𝑑, 𝜎𝑑) such that CombinedVerify

𝑡+1 (⟨ack, 𝑑⟩, 𝜎𝑑)
= true, for some digest 𝑑 and some threshold signature 𝜎𝑑 . Then, (at least) 𝑡 + 1 − 𝑓 correct
processes have obtained a value 𝑣 such that (1) Digest(𝑣) = 𝑑 , and (2) 𝑣 ∈ val(𝑐) for the

4Different from a common reference string such that 𝑞-SDH public parameters [29, 35].
5We omit the negligible subset of executions where cryptographic properties are violated.
6See Appendix C.1 for the definition of input configuration.
7
externallyValid(·) is the globally verifiable predicate employed by external validity.

9

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

input configuration 𝑐 defined by the correct proposals. Let us remark that (2) might imply
externallyValid(𝑣) = true depending on val.

Note that it is not required for all correct processes to acquire the same digest value (nor the
same threshold signature). Moreover, the specification allows for multiple acquired pairs.

Complexity. Both ada-Dispvalic and ada-Dispvalsv exchange 𝑂 (𝑛𝐿𝑜 + 𝑛(𝑓 + 1)^) bits, where valic
and valsv stand for the validity properties of IC and SMVBA, respectively. Also, every correct
process acquires at least one digest-signature pair by 𝑂 (𝑓) rounds. Finally, all correct processes
halt simultaneously within 𝑂 (𝑛) rounds.
Implementation. The details on ada-Disp’s implementation are relegated to §6.

4.2 CKS

Interface & properties. CKS is a VBA algorithm for some generic validCKS (·) predicate.8 In
CKS, processes propose and decide pairs (𝑑 ∈ Digest_Value, 𝜎𝑑 ∈ T_Signature); moreover,
validCKS (𝑑, 𝜎𝑑) ≡ CombinedVerify

𝑡+1 (⟨ack, 𝑑⟩, 𝜎𝑑). In other words, a valid value must be in the
form of a digest accompanied by its PoD.

Complexity. CKS achieves𝑂 (^𝑛(𝑓 + 1)) bit complexity for𝑂 (^)-bits values and correct processes
decide in 𝑂 (𝑛) rounds.
Implementation. In a nutshell, CKS is a validated BA protocol that follows the silent views
paradigm. Under the hood, it employs a fallback protocol in a scenario when there are too many
faulty processes and thus, unable to decide in its optimistic path. Turning the fallback protocol
[61] into a validated BA protocol is straightforward, by ignoring each received message containing
a non-externally valid value (details are given in Appendix D). Moreover, CKS incorporates the
correction of a minor technical flaw in [32] addressed by [38].

4.3 ada-Retrieve

Interface & properties. In ada-Retrieve, each correct process starts with (1) a digest and (2)
either (a) some corresponding pre-image value, or (b) ⊥. Eventually, all correct processes output
the same value (the pre-image). Formally, ada-Retrieve exposes the following interface:
• request input(𝑑 ∈ Digest_Value, 𝑣 ∈ Value ∪ {⊥}): a process inputs a digest 𝑑 and either
⊥ or a value 𝑣 such that Digest(𝑣) = 𝑑 ; each correct process invokes input(·) exactly once9.
Moreover, the following is assumed:
– No two correct processes invoke input(𝑑1, 𝑣1) and input(𝑑2, 𝑣2) with 𝑑1 ≠ 𝑑2.
– At least 𝑡 + 1 − 𝑓 correct processes invoke input(𝑑, 𝑣) with 𝑣 ≠ ⊥ (i.e., Digest(𝑣) = 𝑑).

• indication output(𝑣 ′ ∈ Value): a process outputs a value 𝑣 ′.
The following properties are ensured:

• Agreement: No two correct processes output different values.
• Validity: Let a correct process input a value 𝑣 . No correct process outputs a value 𝑣 ′ ≠ 𝑣 .
• Termination: Every correct process eventually outputs a value.

Complexity. ada-Retrieve exchanges𝑂 (𝑛𝐿𝑜+𝑛(𝑓 +1)^) bits. Moreover, ada-Retrieve terminates
in 𝑂 (log𝑛) time.

Implementation. The details on ada-Retrieve’s implementation are relegated to §5.

8Recall that the interface and properties of Byzantine consensus algorithms are introduced in §1.
9We underline that 𝑑 ≠ ⊥ even if 𝑣 = ⊥.

10

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

5 ADA-RETRIEVE

This section presents ada-Retrieve, which improves upon the erasure code-based reconstruction
from [62] by adding a preceding phase that ensures only 𝑂 (𝑓) correct processes do not receive the
pre-image value (𝑣) yet. We present the implementation in §5.1 and its analysis in §5.2. Full details
are relegated to Appendix E.

5.1 Implementation

Algorithm 1 ada-Retrieve: Pseudocode for process 𝑝𝑖
1: Uses:
2: ExpanderGraph, instance𝐺 ⊲ see [73]
3: Input parameters:
4: Digest_Value digesti ← 𝑑 ⊲ the input 𝑑
5: Value vi ← 𝑣 ⊲ the input 𝑣. if 𝑣 ≠ ⊥, then 𝑑 = Digest(𝑣)
6: Local variables:
7: RS_Symbol symboli ← ⊥ ⊲ the 𝑖-th RS symbol from the pre-image
8: Witness witnessi ← ⊥ ⊲ witness for symboli

9: for Integer 𝑘 ← 1 to𝑂 (log𝑛) : ⊲ to almost everywhere
10: if vi ≠ ⊥ and has not gossiped:multicast ⟨gossip, vi ⟩ to 𝑖’s neighbour in𝐺
11: if received ⟨gossip,Value 𝑣′⟩, Digest(𝑣′) = digesti , and vi = ⊥: vi ← 𝑣′

12: if vi = ⊥: broadcast ⟨complain⟩ ⊲ to everywhere
13: else: symboli ← 𝑃vi (𝑖) ;witnessi ← CreateWit(𝑎𝑘, digesti, (𝑖, symboli))
14: if vi ≠ ⊥, upon receiving ⟨complain⟩ from 𝑝 𝑗 :
15: let 𝑠 𝑗 ← 𝑃𝑣𝑖 (𝑗) and 𝑤𝑗 ← CreateWit(𝑎𝑘, digesti, (𝑗, 𝑠 𝑗))
16: send ⟨your_symbol, 𝑠 𝑗 , 𝑤𝑗 ⟩ to 𝑝 𝑗

17: if vi = ⊥, upon receiving ⟨your_symbol,RS_Symbol 𝑠,Witness 𝑤 ⟩ and Verify(𝑎𝑘, digesti, 𝑤, (𝑖, 𝑠)) = 𝑡𝑟𝑢𝑒 :
18: symboli ← 𝑠 ;witnessi ← 𝑤

19: broadcast ⟨req_symbols⟩
20: upon receiving ⟨req_symbols⟩ from 𝑝 𝑗 : send ⟨my_symbol, symboli,witnessi ⟩ to 𝑝 𝑗

21: if vi ≠ ⊥: trigger output(vi)
22: else, upon receiving ⟨my_symbol,RS_Symbol 𝑠 𝑗 ,Witness 𝑤𝑗 ⟩ from 𝑡 + 1 different 𝑝 𝑗 with
23: Verify(𝑎𝑘, digesti, 𝑤𝑗 , (𝑗, 𝑠 𝑗)) = 𝑡𝑟𝑢𝑒 :
24: reconstruct 𝑣 from 𝑡 + 1 RS via decode(·)
25: trigger output(𝑣)

We present the pseudocode in Algorithm 1. At a high level, ada-Retrieve consists of two phases:
(1) to almost everywhere phase that ensures all but 𝑂 (𝑓) correct processes received the pre-image
value, and (2) to everywhere that ensures all correct processes received the pre-image value. Let
us explain the idea of the first phase. Under the hood, ada-Retrieve uses an expander graph
during the first phase. In a nutshell, an expander graph is a (typically, low-degree) graph with a
good expansion property. Roughly speaking, it means each vertex has a few neighbours, and any
“relatively small” set of vertices has many neighbours. In ada-Retrieve, we use a specific expander
graph from [73], which has some nice additional properties as shown in the following lemma.
Lemma 1. (Restated from [73]) For all 𝑛, there exists a constant 𝑑 > 0 that is independent of 𝑛
and some 𝑑-regular graph with 𝑛 vertices, where ∀𝑇 ⊂ 𝑉 with |𝑇 | ≤ 𝑛/72, there is a connected
component 𝑃 (𝑇) ∈ 𝑉 \𝑇 of size at least 𝑛 − 6|𝑇 |. Furthermore, the diameter of 𝑃 (𝑇) is 𝑂 (log𝑛).
We underline that the expander graph can be precomputed, given to all processes before the

protocol starts, and reused across multiple instances of the ada-Retrieve.
ada-Retrieve gossips the pre-image value for 𝑂 (log𝑛) rounds through the expander graph

from Lemma 1 (line 9). By the pre-condition that 𝑡 + 1 − 𝑓 correct processes input the pre-image

11

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

value to ada-Retrieve along with the guarantee from the graph, all but 𝑂 (𝑓) correct processes
will receive the pre-image value. Namely, it is ensured by the expander graph when 𝑓 ≤ 𝑛/72 while
when 𝑓 > 𝑛/72, 𝑓 ∈ Ω(𝑛) and therefore, the claim also holds even if 𝑂 (𝑛) correct processes fail to
obtain the pre-image during this phase. As a small note, unlike usual gossip, here a process only
forwards a value to its neighbours at most once (line 10). Importantly, each correct process can
validate the correctness of a value 𝑣 ′ by comparing Digest(𝑣 ′) with the input digest 𝑑 (line 11).

We now describe the to almost everywhere phase. Here, we exploit the fact that only𝑂 (𝑓) correct
processes have not obtained the pre-image yet. Such process 𝑝𝑖 first sends a broadcast to obtain the
𝑖-th RS symbol from encode(𝑣) (line 12). Notice that a correct process 𝑝 𝑗 that has obtained 𝑣 must
be able to compute the 𝑖-th RS symbol along with an accumulator witness, proving the correctness
of the RS symbol. Therefore, 𝑝 𝑗 will be able to reply 𝑝𝑖 with the RS symbol and its witness (line 16).
Importantly, 𝑝𝑖 can also verify the correctness of the symbol via the witness. 𝑝𝑖 then continue by
collecting the other RS symbols from encode(𝑣) through other processes (line 19). At this point,
all correct processes 𝑝 𝑗 must have the 𝑗-th RS symbol along with its witness (either computing
directly from the obtained 𝑣 or received during the previous step). All correct processes 𝑝 𝑗 help
𝑝𝑖 by sending their RS symbol share (line 20). Therefore, 𝑝𝑖 must be able to collect at least 𝑡 + 1
different RS symbols share, allowing reconstruction of 𝑣 (line 24). Thus, all correct processes can
output 𝑣 , either by obtaining it directly or via reconstruction.

5.2 Analysis

Here we summarize the analysis; proofs are relegated to Appendix E.2 (Theorem 8 and Theorem 9).
Correctness. Validity follows from the fact that each correct process can validate the correctness
of a value received during the to almost everywhere phase and is able to reconstruct 𝑣 during the to
everywhere phase. Agreement follows from the fact that each correct process can only output 𝑣 .
Finally, each correct process will output 𝑣 and therefore, termination is guaranteed.
Complexities. In the to almost everywhere phase, each correct process sends at most one message
containing 𝑂 (𝐿𝑜 + ^) bits to a constant number of processes. Then, in to everywhere phase, each
correct process sends to 𝑂 (𝑓) faulty processes and 𝑂 (𝑓) correct processes that do not have 𝑣 yet a
message of size 𝑂 (max(𝐿𝑜

𝑡+1 , log𝑛) + ^). Therefore, the total bits sent will be 𝑂 (𝑛𝐿𝑜 + 𝑛(𝑓 + 1)^).
The latency follows from the fact that to almost everywhere phase consists of 𝑂 (log𝑛) rounds and
to everywhere phase consists of 𝑂 (1) rounds.

6 ADA-DISP

In this section, we present ada-Dispval (see Algorithm 2), a dispersal protocol for a specified validity
property val. Recall that the goal of dispersion is to enable every correct process to produce a digest
𝑑 and a threshold signature 𝜎𝑑 proving that at least 𝑡 + 1 − 𝑓 correct processes have obtained a
valid value 𝑣 with Digest(𝑣) = 𝑑 . Thus, any such digest output by ada-Dispval can be decided upon
as the value that corresponds to that digest can be retrieved. The key challenge in solving the
dispersion problem is ensuring that the dispersed value satisfies the (stronger) validity condition.10
The full detail of ada-Dispval is relegated to Appendix C.

The dispersal protocol proceeds in views, each with a unique leader; each view contains a
constant number of rounds, and the entire ada-Dispval protocol terminates within 𝑂 (𝑓) rounds.
Each view consists of two phases: (i) catch-up: if a proof-of-dispersal (PoD) has already been created
in a previous view, the leader assists in its dissemination; (ii) attempt: the leader attempts to procure
sufficient information on input values to certify a valid value.

10For weak validity (resp., external) validity, the leader can propose its value (resp., any valid value).

12

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

The catch-up phase (invoked at line 9) unfolds as follows: any process that has not yet obtained
a PoD can request it from the leader, which shares its PoD (if previously obtained). An analysis
of the catch-up phase is relegated to Appendix C.2 (see Algorithm 4). In brief, (1) if a correct
process possesses a PoD and initiates the catch-up phase under a correct leader, every correct
process acquires a PoD within the same view (see Lemma 11), and (2) the total bit complexity of
all the views executed after all correct processes have obtained a PoD is 𝑂 (^𝑛𝑓) (see Lemma 14).
During the attempt phase (line 11), there are two possibilities: (a) if the leader detects a failure,
the LearnOrExpose protocol is executed (line 25); (b) if the leader signals a success, the persuade
protocol is executed (line 23), during which the (correct) leader constructs and disseminates a PoD.
The series of attempt phases before the first correct leader signals a success allows for the verifiable
vector collection, which we discuss further in the following subsection.

6.1 Verifiable Vector Collection

The goal of verifiable vector collection is for the leader to assemble a vector of entries for each
process, where an entry is either (i) the (digest of the) input value for that process, or (ii) a proof
that the process is malicious. For strong validity, the vector contains only digests; for interactive
consistency, it contains the values themselves—in this section, we will refer to the entry as the
(digest of the) input value to reflect this ambiguity.

The verifiable vector collection is executed over a series of views until some honest leader
succeeds. In each view with an honest leader, either (i) the protocol completes, (ii) at least one new
value (from a malicious process) is disclosed to every process, or (iii) a proof-of-misbehavior (PoM)
is produced for a new malicious process and distributed to everyone. After (at most) 𝑓 views with
honest leaders, every malicious process has either disclosed its value or been proved malicious.
When a view begins, each process that has not yet received a PoD sends the signed (digest of

their) input value to the leader. At this point, the leader has the required entry information for all
𝑛 − 𝑓 processes, along with any PoMs and disclosed values from previous views. If the leader has
all 𝑛 entries, then the verifiable vector collection completes.

Otherwise, the leader initiates the LearnOrExpose protocol (Algorithm 6 in Appendix C.3) target-
ing a single (malicious) process that did not send its (digest of its) input value. The LearnOrExpose
primitive compels a process under suspicion to either publicly disclose its signed entry, or face the
consequences of not doing so—the generation and dissemination of an undeniable PoM. First, the
leader disseminates the target identity. All processes then request the entry information from the
target. If any correct process receives such (signed) entry information from the target, it forwards
it to the leader. Otherwise, it sends a signed accusation message to the leader. If the leader receives
an entry signed by the target, it discloses this information to everyone. Otherwise, it assembles
𝑡 + 1 signed accusations using a threshold signature into a PoM, which is then broadcast.

Importantly, within 𝑂 (𝑓) views, some (correct) leader receives a verifiable vector. The following
lemma is proved in Appendix C.7.3 (see Lemma 30).

Lemma 2 (Verifiable Vector Collection). If not all the correct processes acquired a digest-signature
pair (𝑑, PoD(𝑑)) by view 2𝑓 , then ada-Dispval achieves verifiable vector collection at view ℓ = 2𝑓 +1
under (a correct leader) 𝑝ℓ .

proof sketch. If a correct process acquires a well-formed PoD in some view, this PoD is for-
warded to all processes by the first correct leader of a subsequent view. Assume that no correct
process acquires a well-formed PoD by view 2𝑓 . Then 𝑓 correct leaders successively led some views
without success. In each of these 𝑓 views, the size of the input materials related to faulty processes
is incremented by 1. Hence, by the end of 2𝑓 views, the size of the input materials related to faulty
processes equals at least 𝑓 . Thus, the next correct leader 𝑝ℓ≤2𝑓 +1 collects a verifiable vector. □

13

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

Algorithm 2 ada-Dispval (start_value𝑖): Simplified pseudocode (for process 𝑝𝑖)
(c.f., Algorithm 5 in Appendix C.2 and Algorithm 11 in Appendix C.7 for a detailed presentation)
1: Input Parameters:
2: Value start_value𝑖 ⊲ input(𝑝𝑖)
3: Variables:
4: Digest_Value certified_digest𝑖 ← ⊥
5: PoD pod𝑖 ← ⊥ ⊲ succinct proof of dispersal
6: Structure material𝑖 ← ∅ ⊲ (informal) includes entries and PoM indirectly obtained through LearnOrExpose
7: Entry entry𝑖 ← entry

val
(start_value𝑖) ⊲ The entry is either the proposal or its digest, depending on val

8: for ℓ = 1 to 𝑛:
9: certified_digest𝑖 , pod𝑖 ← catch_up(𝑝ℓ , certified_digest𝑖 , pod𝑖) ⊲ see Algorithm 4 in Appendix C.2 (4 rounds)
10: if pod𝑖 = ⊥: ⊲ pod𝑖 = ⊥ initiates the attempt phase
11: ⊲ Attempt Phase
12: Round 1:
13: send ⟨disclose, entry𝑖 , ShareSign𝑡+1𝑖 (disclose, entry𝑖) ⟩ to 𝑝ℓ ⊲ inform the leader of its entry
14: Round 2: ⊲ executed only by 𝑝ℓ
15: if 𝑝𝑖 = 𝑝ℓ :
16: update material𝑖 with the received disclose messages
17: if material𝑖 contains, for each process, a signed entry, or a PoM: ⊲ check if VCC has been achieved
18: broadcast ⟨success⟩
19: else: ⊲ Select a new process to accuse
20: broadcast ⟨Fail, 𝑝𝑎 ⟩ with 𝑝𝑎 absent from material𝑖

21: Round 3:
22: if ⟨success⟩ is received from 𝑝ℓ :
23: certified_digest𝑖 , pod𝑖 ← outputs of persuade

val
(start_value𝑖 , 𝑝ℓ ,material𝑖)

24: else if ⟨fail, 𝑝𝑎 ⟩ is received from 𝑝ℓ : ⊲ Collect one more disclose message for the next view
25: material𝑖 ← outputs of LearnOrExpose

val
(start_value𝑖 , pℓ , 𝑝𝑎,material𝑖)

26: if pod𝑖 ≠ ⊥: trigger acquire(certified_digest𝑖 , pod𝑖)

In each view, there are𝑂 (𝑛) messages sent to/from the leader, and𝑂 (𝑛) messages sent to/from the
LearnOrExpose target. (A correct process never sends its value more than once to any other process,
thus ensuring that malicious processes cannot yield more than 𝑂 (𝑛𝑓) messages via malicious
requests.) The following lemma is proved in Appendix C.9 (see Lemma 35).

Lemma 3. Let val be a validity property. Let 𝐿𝑒 be the maximum between an entry size (i.e., the
digest or the input value of a process depending on val) and ^ . Let the communication complexity
of persuade

val
under a Byzantine leader be𝑂 (^𝑛). Then, ada-Dispval exchanges𝑂 (𝑛𝑓 (𝐿𝑒 +^)) bits

to achieve verifiable vector collection.

proof sketch. The 𝑛(𝑓 + 1)𝐿𝑒 term comes from the sending of entries to(at most) 2𝑓 + 1 leaders
and (at most) 𝑓 Byzantine processes (via the LearnOrExpose primitive). The careful bookkeeping of
previous LearnOrExpose interactions limits the communication complexity related to the sending
of entries to 𝑂 (𝑛(𝑓 + 1)𝐿𝑒). The 𝑛(𝑓 + 1)^ term comes from (1) Lemma 2, (2) the leader-based
communication pattern, and (3) the 𝑂 (^)-bit size of the messages, excluding entry messages. □

6.2 Persuasion

Persuasion begins once a correct leader obtains a verifiable vector containing signed entires and
PoMs. The leader’s responsibility is to choose a value/digest to disperse and persuade enough
processes to accept that value/digest, concluding the dispersion problem. Any digest and signature
output by the persuasion subprotocol should satisfy the requirements of the dispersion problem.

14

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

Interactive Consistency. Here, persuasion is straightforward. The leader broadcasts the vector of
values, along with PoMs for the missing values. Each process responds with a signed acknowledge-
ment. The leader assembles 𝑡 + 1 of these signatures into a threshold signature, and broadcasts it
(and a digest of the vector) as a PoD. All (correct) processes can ascertain that the vector is correct
(via the signed values and PoMs) and has been obtained by at least 𝑡 + 1 − 𝑓 correct processes.
Strong Validity. For strong validity, the process of persuasion is more sophisticated as the validity
of a value must be proven. To this end, we introduce a new type of proof, a bucket certificate, which
is a new feature of our approach, adapting the idea of [67]. There are two cases to consider.

In the easy case, the leader identifies at least 𝑡 + 1 processes that have identical (signed) digests
in the verifiable vector—and hence have the same input value. In this case, the leader can assemble
those 𝑡 + 1 signatures into a threshold signature, which we refer to as a positive bucket certificate;
the leader then broadcasts the digest along with the bucket certificate as a PoD. The 𝑡 + 1 signatures
prove that the value is valid (i.e., if all honest processes started with the same value, then this must
be that value), as well as show that the value is available to at least 𝑡 + 1 − 𝑓 correct processes.
In the harder case, there is no such single digest supported by 𝑡 + 1 processes. Thus, the leader

can choose any value to disperse (e.g., its proposal). However, the leader needs to prove that not all
correct processes proposed the same value (otherwise, strong validity could be violated). To this
end, we introduce the idea of a negative bucket certificate that proves that not all correct processes
started with the same value.
Concretely, the leader first examines the verifiable vector of entries and partitions the digests

into 𝑂 (1) groups such that: (i) each group contains a range of digests, (ii) each group includes
digests from at most 𝑡 processes, and (iii) any two consecutive groups contain digests from at least
𝑡 + 1 processes. These groups can be constructed greedily, and communicated by broadcasting𝑂 (1)
endpoints. Each process then sends to the leader a signed message indicating which groups its
value does not belong to. The leader combines the signatures for each group into a single threshold
signature certifying that a sufficient number of processes do not have their value in that range
of digests. For each group, the leader then constructs a negative bucket certificate containing: (1)
the (threshold) signature of processes that did not start with that range of digests; (2) the signed
digests of (malicious) processes that are included in the verifiable vector but did not send a (proper)
signature of a group; (3) the PoMs for the processes that did not have digests in the verifiable vector.

Notice that for each group, the total number of signatures plus the number of malicious signed
digests plus the number of proofs-of-misbehavior must be at least 𝑡 + 1 as no group contains
digests supported by 𝑡 + 1 processes in the verifiable vector. This proves that no digest in the group
represents a value that was the initial value for every honest process.

After the leader has constructed a negative bucket certificate, it chooses any value11, and dissem-
inates it along with the bucket certificate. Then, the leader collects 𝑡 + 1 signed acknowledgements
(from all correct processes) and assembles them into a threshold signature. It then disseminates
that signature (along with the digest) as a PoD.
One technical issue remains: unlike the “regular” threshold signatures used in this paper, the

aforementioned approach requires the universe for the threshold signatures to not be fixed–it
must exclude those processes that refuse to sign the groups or for which there exists a PoM (to
avoid double counting). Thus, we rely on Multiverse Threshold Signature Scheme (MTSS) [6, 41] to
construct the appropriate universe for the threshold signatures.
The following lemmas are proven in Appendix C.5, Appendix C.6, and Appendix C.9—see

Lemma 20, Lemma 25, Lemma 38, and Lemma 36.

11If we want to satisfy external validity, it chooses a valid value.

15

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

Lemma 4. If protocol persuade
valic

(Algorithm 7) (resp., persuade
valsv

(Algorithm 8)) is a sub-
routine of ada-Dispvalic (resp., ada-Dispvalsv), it solves the Persuasion problem parameterized with
val𝑖𝑐 and VerifyVector

valic
(resp., valsv and VerifyVector

valsv
).

Lemma 5. The execution of persuade
val𝑠𝑣

(Algorithm 8) (resp., persuade
valic

(Algorithm 7)) under
leader 𝑝ℓ incurs an exchange of (1) 𝑂 (^𝑛) bits if 𝑝ℓ is Byzantine, and (2) 𝑂 (𝑛𝐿𝑜 + 𝑛(𝑓 + 1)^) bits
(resp., 𝑂 (𝑛2 (𝐿𝑖 + ^))), otherwise.

Lemmas 2 to 5, alongside the exchange of at most𝑂 (^𝑛𝑓) bits following the attainment of a PoD
by all correct processes (refer to Lemma 14 in Appendix C.2), lead to the complexity claimed in §4.1.

7 CONCLUSION

We have introduced ada-Dare, a universal strategy for efficiently solving BA in the honest majority
regime (𝑛 > 2𝑡). Two specific instances achieve optimal word complexity for both SMVBA and IC.

REFERENCES

[1] Abd-El-Malek, M., Ganger, G. R., Goodson, G. R., Reiter, M. K., and Wylie, J. J. Fault-Scalable Byzantine Fault-
Tolerant sServices. In Proceedings of the 20th ACM Symposium on Operating Systems Principles 2005, SOSP 2005, Brighton,

UK, October 23-26, 2005 (2005), A. Herbert and K. P. Birman, Eds., ACM, pp. 59–74.
[2] Abraham, I., Chan, T. H., Dolev, D., Nayak, K., Pass, R., Ren, L., and Shi, E. Communication complexity of byzantine

agreement, revisited. Proceedings of the Annual ACM Symposium on Principles of Distributed Computing (2019), 317–326.
[3] Abraham, I., Malkhi, D., Nayak, K., Ren, L., and Spiegelman, A. Solida: A Blockchain Protocol Based on Reconfig-

urable Byzantine Consensus. In 21st International Conference on Principles of Distributed Systems, OPODIS 2017, Lisbon,

Portugal, December 18-20, 2017 (2017), J. Aspnes, A. Bessani, P. Felber, and J. Leitão, Eds., vol. 95 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, pp. 25:1–25:19.

[4] Abraham, I., Malkhi, D., and Spiegelman, A. Asymptotically Optimal Validated Asynchronous Byzantine Agreement.
In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (2019), pp. 337–346.

[5] Abraham, I., Nayak, K., and Shrestha, N. Communication and round efficient parallel broadcast protocols. IACR
Cryptol. ePrint Arch. (2023), 1172.

[6] Baird, L., Garg, S., Jain, A., Mukherjee, P., Sinha, R., Wang, M., and Zhang, Y. Threshold signatures in the
multiverse. In 44th IEEE Symposium on Security and Privacy, SP 2023, San Francisco, CA, USA, May 21-25, 2023 (2023),
IEEE, pp. 1454–1470.

[7] Ben-Or, M., Goldwasser, S., and Wigderson, A. Completeness Theorems for Non-Cryptographic Fault-Tolerant
Distributed Computation. In Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio

Micali, O. Goldreich, Ed. ACM, 2019, pp. 351–371.
[8] Berman, P., Garay, J. A., and Perry, K. J. Bit Optimal Distributed Consensus. In Computer science: research and

applications. Springer, 1992, pp. 313–321.
[9] Bhangale, A., Liu-Zhang, C. D., Loss, J., and Nayak, K. Efficient Adaptively-Secure Byzantine Agreement for Long

Messages. In Advances in Cryptology - ASIACRYPT - 28th International Conference on the Theory and Application of

Cryptology and Information Security (Taipei, Taiwan, 2022), vol. 13791 LNCS, pp. 504–525.
[10] Blum, E., Boyle, E., Cohen, R., and Liu-Zhang, C.-D. Communication Lower Bounds for Cryptographic Broadcast

Protocols. In 37th International Symposium on Distributed Computing (DISC) (L’Aquila, Italy, 2023), pp. 10:1—-10:19.
[11] Blum, E., Katz, J., Liu-Zhang, C., and Loss, J. Asynchronous byzantine agreement with subquadratic communica-

tion. In Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020,

Proceedings, Part I (2020), R. Pass and K. Pietrzak, Eds., vol. 12550 of Lecture Notes in Computer Science, Springer,
pp. 353–380.

[12] Boneh, D., Drijvers, M., and Neven, G. Compact multi-signatures for smaller blockchains. In Advances in Cryptology

- ASIACRYPT 2018 - 24th International Conference on the Theory and Application of Cryptology and Information Security,

Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II (2018), T. Peyrin and S. D. Galbraith, Eds., vol. 11273
of Lecture Notes in Computer Science, Springer, pp. 435–464.

[13] Boyle, E., Cohen, R., and Goel, A. Breaking the O(
√
n)-bit barrier: Byzantine agreement with polylog bits per party.

Proceedings of the Annual ACM Symposium on Principles of Distributed Computing (2021), 319–330.
[14] Boyle, E., Jain, A., Prabhakaran, M., and Yu, C. H. The bottleneck complexity of secure multiparty computation. In

45th International Colloquium on Automata, Languages, and Programming, (ICALP) (Prague, Czech Republic, 2018),
vol. 107, pp. 1–16.

16

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

[15] Buchman, E. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains. PhD thesis, University of Guelph, 2016.
[16] Buchman, E., Kwon, J., and Milosevic, Z. The latest gossip on bft consensus. Tech. Rep. 1807.04938, arXiv, 2019.
[17] Canetti, R. Universally composable signature, certification, and authentication. In 17th IEEE Computer Security

Foundations Workshop, (CSFW-17 2004), 28-30 June 2004, Pacific Grove, CA, USA (2004), IEEE Computer Society, p. 219.
[18] Castro, M., and Liskov, B. Practical Byzantine fault tolerance and proactive recovery. ACM Transactions on Computer

Systems 20, 4 (2002).
[19] Chan, T. H., Pass, R., and Shi, E. Sublinear-Round Byzantine Agreement Under Corrupt Majority. In Public-Key

Cryptography (Edinburgh, UK, 2020), vol. 12111 LNCS, pp. 246–265.
[20] Chen, J., and Micali, S. Algorand: A secure and efficient distributed ledger. Theoretical Computer Science 777 (2019),

155–183.
[21] Chlebus, B. S., Kowalski, D. R., and Olkowski, J. Deterministic fault-tolerant distributed computing in linear

time and communication. In Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing, PODC

2023, Orlando, FL, USA, June 19-23, 2023 (2023), R. Oshman, A. Nolin, M. M. Halldórsson, and A. Balliu, Eds., ACM,
pp. 344–354.

[22] Civit, P., Dzulfikar, M. A., Gilbert, S., Gramoli, V., Guerraoui, R., Komatovic, J., and Vidigueira, M. Byzantine
Consensus Is Θ (n2): The Dolev-Reischuk Bound Is Tight Even in Partial Synchrony! In 36th International Symposium

on Distributed Computing (DISC 2022) (2022), Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
[23] Civit, P., Gilbert, S., Guerraoui, R., Komatovic, J., Monti, M., and Vidigueira, M. Every bit counts in consensus.

In 37th International Symposium on Distributed Computing, DISC 2023, October 10-12, 2023, L’Aquila, Italy (2023),
R. Oshman, Ed., vol. 281 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 13:1–13:26.

[24] Civit, P., Gilbert, S., Guerraoui, R., Komatovic, J., Paramonov, A., and Vidigueira, M. All byzantine agreement
problems are expensive. CoRR abs/2311.08060 (2023).

[25] Civit, P., Gilbert, S., Guerraoui, R., Komatovic, J., and Vidigueira, M. On the Validity of Consensus. In Proceedings

of the 2023 ACM Symposium on Principles of Distributed Computing, PODC 2023, Orlando, FL, USA, June 19-23, 2023

(2023), R. Oshman, A. Nolin, M. M. Halldórsson, and A. Balliu, Eds., ACM, pp. 332–343.
[26] Civit, P., Gilbert, S., Guerraoui, R., Komatovic, J., and Vidigueira, M. On the validity of consensus. In Proceedings

of the 2023 ACM Symposium on Principles of Distributed Computing, PODC 2023, Orlando, FL, USA, June 19-23, 2023

(2023), R. Oshman, A. Nolin, M. M. Halldórsson, and A. Balliu, Eds., ACM, pp. 332–343.
[27] Civit, P., Gilbert, S., Guerraoui, R., Komatovic, J., and Vidigueira, M. Strong Byzantine Agreement with Adaptive

Word Complexity. arXiv preprint arXiv:2308.03524 (2023).
[28] Coan, B. A., and Welch, J. L. Modular Construction of a Byzantine Agreement Protocol with Optimal Message Bit

Complexity. Inf. Comput. 97, 1 (1992), 61–85.
[29] Cohen, R., Doerner, J., Kondi, Y., and Shelat, A. Guaranteed output in $o(\sqrt{n})$ rounds for round-robin

sampling protocols. In Advances in Cryptology - EUROCRYPT 2022 - 41st Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part I (2022),
O. Dunkelman and S. Dziembowski, Eds., vol. 13275 of Lecture Notes in Computer Science, Springer, pp. 241–271.

[30] Cohen, S., Goren, G., Kokoris-Kogias, L., Sonnino, A., and Spiegelman, A. Proof of availability and retrieval in a
modular blockchain architecture. In Financial Cryptography and Data Security - 27th International Conference, FC 2023,

Bol, Brač, Croatia, May 1-5, 2023, Revised Selected Papers, Part II (2023), F. Baldimtsi and C. Cachin, Eds., vol. 13951 of
Lecture Notes in Computer Science, Springer, pp. 36–53.

[31] Cohen, S., Keidar, I., and Spiegelman, A. Not a coincidence: Sub-quadratic asynchronous byzantine agreement
WHP. In 34th International Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference

(2020), H. Attiya, Ed., vol. 179 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 25:1–25:17.
[32] Cohen, S., Keidar, I., and Spiegelman, A. Make every word count: Adaptive byzantine agreement with fewer words.

In 26th International Conference on Principles of Distributed Systems (OPODIS 2022) (2023), Schloss Dagstuhl-Leibniz-
Zentrum für Informatik.

[33] Correia, M. From Byzantine Consensus to Blockchain Consensus. Essentials of Blockchain Technology 41 (2019), 2019.
[34] Crain, T., Gramoli, V., Larrea, M., and Raynal, M. DBFT: Efficient Leaderless Byzantine Consensus and its

Applications to Blockchains. In Proceedings of the 17th IEEE International Symposium on Network Computing and

Applications (NCA’18) (2018), IEEE.
[35] Das, S., Xiang, Z., and Ren, L. Powers of tau in asynchrony. IACR Cryptol. ePrint Arch. (2022), 1683.
[36] Derler, D., Hanser, C., and Slamanig, D. Revisiting cryptographic accumulators, additional properties and relations

to other primitives. In Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track at the RSA Conference 2015, San

Francisco, CA, USA, April 20-24, 2015. Proceedings (2015), K. Nyberg, Ed., vol. 9048 of Lecture Notes in Computer Science,
Springer, pp. 127–144.

[37] Dolev, D., and Reischuk, R. Bounds on information exchange for Byzantine agreement. Journal of the ACM (JACM)

32, 1 (1985), 191–204.

17

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

[38] Elsheimy, F., Tsimos, G., and Papamanthou, C. Deterministic byzantine agreement with adaptive o(n· f) communi-
cation. Symposium on Discrete Algorithms (SODA) (2024), 1723.

[39] Fischer, M. J., Lynch, N. A., and Merritt, M. Easy Impossibility Proofs for Distributed Consensus Problems. In
Proceedings of the Fourth Annual ACM Symposium on Principles of Distributed Computing, Minaki, Ontario, Canada,

August 5-7, 1985 (1985), M. A. Malcolm and H. R. Strong, Eds., ACM, pp. 59–70.
[40] Galil, Z., Haber, S., and Yung, M. Cryptographic Computation: Secure Fault-Tolerant Protocols and the Public-Key

Model. In Conference on the Theory and Application of Cryptographic Techniques (1987), Springer, pp. 135–155.
[41] Garg, S., Jain, A., Mukherjee, P., Sinha, R., Wang, M., and Zhang, Y. hints: Threshold signatures with silent setup.

IACR Cryptol. ePrint Arch. (2023), 567.
[42] Gelles, Y., and Komargodski, I. Brief Announcement: Scalable Agreement Protocols with Optimal Optimistic

Efficiency. 37th International Symposium on Distributed Computing, (DISC) (2023), 42:1—-42:6.
[43] Gelles, Y., and Komargodski, I. Optimal Load-Balanced Scalable Distributed Agreement. In IACR Cryptol. ePrint

Arch. (2023).
[44] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., and Zeldovich, N. Algorand: Scaling Byzantine Agreements for

Cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, China, October

28-31, 2017 (2017), ACM, pp. 51–68.
[45] Gilbert, S., Lynch, N. A., and Shvartsman, A. A. Rambo: A Robust, Reconfigurable Atomic Memory Service for

Dynamic Networks. Distributed Comput. 23, 4 (2010), 225–272.
[46] Groth, J. On the size of pairing-based non-interactive arguments. In Advances in Cryptology - EUROCRYPT 2016 -

35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May

8-12, 2016, Proceedings, Part II (2016), M. Fischlin and J. Coron, Eds., vol. 9666 of Lecture Notes in Computer Science,
Springer, pp. 305–326.

[47] Guerraoui, R., and Schiper, A. The Generic Consensus Service. IEEE Trans. Software Eng. 27, 1 (2001), 29–41.
[48] Haeberlen, A., Kouznetsov, P., and Druschel, P. Peerreview: practical accountability for distributed systems. In

Proceedings of the 21st ACM Symposium on Operating Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA,

October 14-17, 2007 (2007), T. C. Bressoud and M. F. Kaashoek, Eds., ACM, pp. 175–188.
[49] Helminger, L., Kales, D., Ramacher, S., and Walch, R. Multi-party revocation in sovrin: Performance through

distributed trust. In Topics in Cryptology - CT-RSA 2021 - Cryptographers’ Track at the RSA Conference 2021, Virtual

Event, May 17-20, 2021, Proceedings (2021), K. G. Paterson, Ed., vol. 12704 of Lecture Notes in Computer Science, Springer,
pp. 527–551.

[50] Kate, A., Zaverucha, G. M., and Goldberg, I. Constant-size commitments to polynomials and their applications. In
Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on the Theory and Application of Cryptology

and Information Security, Singapore, December 5-9, 2010. Proceedings (2010), M. Abe, Ed., vol. 6477 of Lecture Notes in
Computer Science, Springer, pp. 177–194.

[51] King, V., Lonargan, S., Saia, J., and Trehan, A. Load balanced scalable byzantine agreement through quorum
building, with full information. Distributed Computing and Networking - 12th International Conference (ICDCN) 6522

LNCS (2011), 203–214.
[52] King, V., and Saia, J. From almost everywhere to everywhere: Byzantine agreement with Õ (n3/2) bits. In Distributed

Computing, 23rd International Symposium (DISC) (2009), vol. 5805 LNCS, pp. 464–478.
[53] King, V., and Saia, J. Breaking the 𝑂 (𝑛2) bit barrier: Scalable byzantine agreement with an adaptive adversary.

Journal of the ACM 58, 4 (2011), 1–24.
[54] Kotla, R., Alvisi, L., Dahlin, M., Clement, A., and Wong, E. L. Zyzzyva: Speculative Byzantine Fault Tolerance. In

Proceedings of the 21st ACM Symposium on Operating Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA,

October 14-17, 2007 (2007), T. C. Bressoud and M. F. Kaashoek, Eds., ACM, pp. 45–58.
[55] Lee, K. Decentralized threshold signatures for blockchains with non-interactive and transparent setup. IACR Cryptol.

ePrint Arch. (2023), 1206.
[56] Lewis-Pye, A. Quadratic worst-case message complexity for State Machine Replication in the partial synchrony model.

arXiv preprint arXiv:2201.01107 (2022).
[57] Lewis-Pye, A., and Abraham, I. Fever: Optimal Responsive View Synchronisation. CoRR abs/2301.09881 (2023).
[58] Libert, B., Joye, M., and Yung, M. Born and Raised Distributively: Fully Distributed Non-Interactive Adaptively-Secure

Threshold Signatures with Short Shares. Theoretical Computer Science 645 (2016), 1–24.
[59] Lu, Y., Lu, Z., Tang, Q., and Wang, G. Dumbo-mvba: Optimal multi-valued validated asynchronous byzantine

agreement, revisited. In PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, August

3-7, 2020 (2020), Y. Emek and C. Cachin, Eds., ACM, pp. 129–138.
[60] Momose, A., and Ren, L. Multi-Threshold Byzantine Fault Tolerance. In CCS ’21: 2021 ACM SIGSAC Conference on

Computer and Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021 (2021), Y. Kim, J. Kim,
G. Vigna, and E. Shi, Eds., ACM, pp. 1686–1699.

18

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

[61] Momose, A., and Ren, L. Optimal Communication Complexity of Authenticated Byzantine Agreement. In 35th

International Symposium on Distributed Computing, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference)

(2021), S. Gilbert, Ed., vol. 209 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 32:1–32:16.
[62] Nayak, K., Ren, L., Shi, E., Vaidya, N. H., and Xiang, Z. Improved extension protocols for byzantine broadcast

and agreement. In 34th International Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual

Conference (2020), H. Attiya, Ed., vol. 179 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 28:1–28:17.
[63] Nguyen, L. Accumulators from bilinear pairings and applications. In Topics in Cryptology - CT-RSA 2005, The

Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings (2005),
A. Menezes, Ed., vol. 3376 of Lecture Notes in Computer Science, Springer, pp. 275–292.

[64] Pease, M. C., Shostak, R. E., and Lamport, L. Reaching agreement in the presence of faults. J. ACM 27, 2 (1980),
228–234.

[65] Qiu, T., and Tang, Q. Predicate aggregate signatures and applications. IACR Cryptol. ePrint Arch. (2023), 1694.
[66] Rambaud, M. Bootstrapping Message-Linear-Constant-Round Consensus from a Bare PKI Setup , and Separation

Bounds from the Idealized Message-Authentication Model. https://perso.telecom-paristech.fr/rambaud/articles/lower.
pdf, 2023.

[67] Rambaud, M., Tonkikh, A., and Abspoel, M. Linear View Change in Optimistically Fast BFT. In Proceedings of the

2022 ACM Workshop on Developments in Consensus (2022), pp. 67–78.
[68] Reed, I. S., and Solomon, G. Polynomial odes over certain finite fields. Journal of the society for industrial and applied

mathematics 8, 2 (1960), 300–304.
[69] Sheng, P., Wang, G., Nayak, K., Kannan, S., and Viswanath, P. Player-replaceability and forensic support are two

sides of the same (crypto) coin. IACR Cryptol. ePrint Arch. (2022), 1513.
[70] Shoup, V. Practical threshold signatures. In Advances in Cryptology - EUROCRYPT 2000, International Conference on

the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding (2000), B. Preneel,
Ed., vol. 1807 of Lecture Notes in Computer Science, Springer, pp. 207–220.

[71] Spiegelman, A. In search for an optimal authenticated byzantine agreement. In 35th International Symposium on

Distributed Computing, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference) (2021), S. Gilbert, Ed.,
vol. 209 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 38:1–38:19.

[72] Tsimos, G., Loss, J., and Papamanthou, C. Gossiping for Communication-Efficient Broadcast. Advances in Cryptology

- CRYPTO - 42nd Annual International Cryptology Conference 13509 LNCS (2022), 439–469.
[73] Upfal, E. Tolerating linear number of faults in networks of bounded degree. In Proceedings of the Eleventh Annual ACM

Symposium on Principles of Distributed Computing (New York, NY, USA, 1992), PODC ’92, Association for Computing
Machinery, p. 83–89.

[74] Wan, J., Momose, A., Ren, L., Shi, E., and Xiang, Z. On the Amortized Communication Complexity of Byzantine
Broadcast. In Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing (2023), pp. 253–261.

[75] Yin, M., Malkhi, D., Reiter, M. K., Golan-Gueta, G., and Abraham, I. HotStuff: BFT Consensus with Linearity and
Responsiveness. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (2019), pp. 347–356.

A CRYPTOGRAPHIC SCHEMES

This section provides the formal definition of cryptographic accumulator and digest primitives.

Cryptographic accumulators. We follow the presentation of [62]. Let^ denote a security parameter,
and let 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑛} be a set of 𝑛 values. An accumulator scheme consists of the following
four elements:
• 𝑎𝑘 ← Gen(1^ , 𝑛): An algorithm accepting a security parameter ^ in unary notation 1^ and
a limit 𝑛 on the set size, returns an accumulator key 𝑎𝑘12.
• 𝑧 ← Eval(𝑎𝑘, 𝐷): An algorithm that takes the accumulator key 𝑎𝑘 and a set 𝐷 of values,
returns an accumulation value 𝑧 for 𝐷 .
• 𝑤𝑖 ← CreateWit(𝑎𝑘, 𝑧, 𝑑𝑖): Given an accumulator key 𝑎𝑘 , an accumulation value 𝑧, and a
value 𝑑𝑖 ∈ 𝐷 , this algorithm returns a witness𝑤𝑖 .

12Classic Bilinear Accumulator [63] requires Strong Diffie-Hellman (q-SDH) public parameters that can be costly to share in
a secure manner for 𝑡 > 𝑛/3 [29, 35]. Some variants allows a more practical distributed key generation (Gen) protocol [49].

19

https://perso.telecom-paristech.fr/rambaud/articles/lower.pdf
https://perso.telecom-paristech.fr/rambaud/articles/lower.pdf

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

• true/false← Verify(𝑎𝑘, 𝑧,𝑤𝑖 , 𝑑𝑖): This algorithm takes an accumulator key 𝑎𝑘 , an accumu-
lation value 𝑧, a witness 𝑤𝑖 , and a value 𝑑𝑖 . It returns true if 𝑤𝑖 correctly corresponds to
𝑑𝑖 ∈ 𝐷 , and false otherwise, except with negligible probability 𝑛𝑒𝑔𝑙 (^).

This description deliberately leaves out auxiliary information 𝑎𝑢𝑥 typically included in cryp-
tographic accumulators, as the bilinear accumulator used in our approach does not require 𝑎𝑢𝑥 .
We assume Eval to be deterministic, which is the case with the bilinear accumulator we employ in
ada-Dare. Moreover, the accumulator scheme is assumed to be collision-free, i.e., for any accumu-
lator key 𝑎𝑘 ← Gen(1^ , 𝑛), it is computationally impossible to establish ({𝑑1, ..., 𝑑𝑛}, 𝑑 ′,𝑤 ′) such
that (1) 𝑑 ′ ∉ {𝑑1, ..., 𝑑𝑛}, (2) 𝑧 ← Eval(𝑎𝑘, {𝑑1, ..., 𝑑𝑛}), and (3) Verify(𝑎𝑘, 𝑧,𝑤 ′, 𝑑 ′) = true.

Digests. Concretely, Digest(𝑣) = Eval(𝑎𝑘, {(1, 𝑃𝑣 (1)), ..., (𝑛, 𝑃𝑣 (𝑛))}), where Eval is the accumu-
lator evaluation function (see above), 𝑎𝑘 is the accumulator key (see above), and [𝑃𝑣 (1), ..., 𝑃𝑣 (𝑛)] =
encode(𝑣) is the Reed-Solomon encoding of value 𝑣 (see Appendix C.1). The collision-resistance of
the Digest function reduces to the collision-resistance of the underlying cryptographic accumulator
scheme. We note that this construction is standard (see, e.g., [62]).

Multiverse threshold signatures. In ada-Dare, we rely on a modern implementation [55, 65] of
a multiverse threshold signature scheme (MTSS) [6, 41]. In such a scheme, each process 𝑃𝑖 holds
a distinct secret key 𝑠𝑘𝑖 ; there exists a single public key 𝑝𝑘𝑖 . The multiverse threshold signature
scheme (MTSS) is defined by the following primitives (with some potential public parameters
obtained by a transparent setup):

• (CK𝑈 ,VK𝑈) ← UniverseSetup(𝑈 ⊆ Π): Given a universe (subset of processes) 𝑈 ⊆ Π,
the algorithm computes a combine key CK𝑈 and a verification key VK𝑈 . Importantly, no
communication will be done by this algorithm.
• 𝜎 ← Sign(sk,msg): Upon receiving a secret key sk and a message msg, produces a partial
signature 𝜎 .
• true/false ← PartialVerify(msg, 𝜎, pk): This algorithm takes a message msg, a partial sig-
nature 𝜎 , and a public key pk, verifies the partial signature.
• 𝜎 ← Combine(CK𝑈 , {𝜎𝑖 }𝑖∈𝑆⊆𝑈): Given the combine key CK𝑈 , and a set of signatures
{𝜎𝑖 }𝑖∈𝑆⊆𝑈 , the algorithm outputs a succinct signature 𝜎 .
• true/false ← Verify(msg, 𝜎,𝑇 ,VK𝑈): This algorithm, upon receiving a message msg, a

signature 𝜎 , a (dynamic) threshold𝑇 , and the verification key VK𝑈 , verifies the signature iff
it is signed by 𝑇 different processes.

Similarly to the threshold signature schemes, each signature produced by the MTSS [55] has 𝑂 (^).
bits We define MTS partial signatures as the partial signatures produced under this scheme, and a
(𝑇,𝑈)-MTS as a succinct signature under this scheme over a universe𝑈 and threshold 𝑇 .
The Multiverse Threshold Signature scheme ensures the following:

• Correctness: Let 𝑈 ⊆ Π be a universe, (CK𝑈 ,VK𝑈) ← UniverseSetup(𝑈), and 𝑚 be a
message. If 𝜎 ← Combine(CK𝑈 , {𝜎𝑖 }𝑖∈𝑆⊆𝑈), with |𝑆 | = 𝑇 , where for each 𝑖 ∈ 𝑆 , 𝜎𝑖 ←
Sign(sk𝑖 ,𝑚), then Verify(𝑚,𝜎,𝑇 ,VK𝑈) returns true.
Intuitively, if 𝑇 valid signatures under different public keys from processes belonging to a
certain universe𝑈 are used to produce the signature 𝜎 on some message𝑚 with combine ,
then the verification referring to the message𝑚, the threshold 𝑇 , the signature 𝜎 , and the
universe𝑈 , returns true.
• Unforgeability: Let𝑈 ⊆ Π be a universe, (CK𝑈 ,VK𝑈) ← UniverseSetup(𝑈),𝑚 be amessage,
𝑇 be an integer, and 𝜎 be a signature. If Verify(𝑚,𝜎,𝑇 ,VK𝑈) returns true, then 𝜎𝑖 ←
Sign(sk𝑖 ,𝑚) has been computed for 𝑇 different process 𝑝𝑖 ∈ 𝑈 .

20

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

Intuitively, the adversary cannot generate a valid (𝑇,𝑈)-MTS signature for some message
𝑚 if it does not have 𝑇 signatures from different signers on𝑚, or the signer sets is not a
subset of the corresponding universe𝑈 .

B ADA-DARE

This section fixes some generic validity val, and presents ada-Dareval (ADAptively Disperse, Agree,
REtrieve), which is composed of three algorithms:

(1) ada-Dispval, which disperses the proposals, valid for the specific validity property val;
(2) CKS [32], which ensures agreement on the digest of a previously dispersed proposal; and
(3) ada-Retrieve, which rebuilds the proposal corresponding to the agreed-upon digest.

B.1 Building Blocks: Overview

In this subsection, we define the three building blocks of ada-Dareval. Concretely, we define their
interface and properties, as well as their complexity.

B.1.1 ada-Dispval.

Interface & properties. In a nutshell, correct processes aim to collectively disperse some valid
value 𝑣 ∈ val(𝑐), for the specific validity property val and the input configuration13 𝑐: eventually,
all correct processes acquire a digest along with a proof of dispersal (PoD), a threshold signature
that proves the pre-image value of the digest is valid and has been successfully dispersed.

Concretely, ada-Dispval exposes the following interface:
• request propose(𝑣 ∈ Value): a process proposes a value 𝑣 ; each correct process invokes
propose(𝑣) exactly with externallyValid(𝑣) = true.
• indication acquire(𝑑 ∈ Digest_Value, 𝜎𝑑 ∈ T_Signature): a process acquires a pair (𝑑, 𝜎𝑑).

We say that a correct process obtains a threshold signature (resp., a value) if and only if it stores
the signature (resp., the value) in its local memory. (Obtained values can later be retrieved by all
correct processes using ada-Retrieve; see Appendix B.1.3 and Algorithm 3.) ada-Dispval ensures
the following:
• Integrity: If a correct process triggers acquire(𝑑, 𝜎𝑑), thenCombinedVerify

𝑡+1 (⟨ack, 𝑑⟩, 𝜎𝑑))
= true.
• Termination: Every correct process eventually acquires at least one digest-signature pair.
• Redundancy: Let a correct process obtain (𝑑, 𝜎𝑑) such that CombinedVerify

𝑡+1 (⟨ack, 𝑑⟩, 𝜎𝑑)
= true, for some digest 𝑑 and some threshold signature 𝜎𝑑 . Then, (at least) 𝑡 + 1 − 𝑓 correct
processes have obtained a value 𝑣 such that (1) Digest(𝑣) = 𝑑 , and (2) 𝑣 ∈ val(𝑐) for the
input configuration 𝑐 defined by the correct proposals. Let us remark that (2) might imply
externallyValid(𝑣) = true depending on val.

Note that it is not required for all correct processes to acquire the same digest value (nor the
same threshold signature). Moreover, the specification allows for multiple acquired pairs.
Complexity. Both ada-Dispvalic and ada-Dispvalsv exchange 𝑂 (𝑛𝐿𝑜 + 𝑛(𝑓 + 1)^) bits, where valic
and valsv stand for the validity properties of IC and SMVBA, respectively. Also, every correct
process acquires at least one digest-signature pair by 𝑂 (𝑓) rounds. Finally, all correct processes
halt simultaneously within 𝑂 (𝑛) rounds.
Implementation. The details on ada-Disp’s implementation are relegated to §6.

B.1.2 CKS.
Interface & properties. CKS is a VBA algorithm for some generic validCKS (·) predicate.14

13See Appendix C.1 for the definition of input configuration.
14Recall that the interface and properties of Byzantine consensus algorithms are introduced in §1.

21

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

In CKS, processes propose and decide pairs (𝑑 ∈ Digest_Value, 𝜎𝑑 ∈ T_Signature); moreover,
validCKS (𝑑, 𝜎𝑑) ≡ CombinedVerify

𝑡+1 (⟨ack, 𝑑⟩, 𝜎𝑑). In other words, a valid value must be in the
form of a digest accompanied by its PoD.
Complexity. CKS achieves𝑂 (^𝑛(𝑓 + 1)) bit complexity for𝑂 (^)-bits values and correct processes
decide in 𝑂 (𝑛) rounds.
Implementation. In a nutshell, CKS is a validated BA protocol that follows the silent views
paradigm. Under the hood, it employs a fallback protocol in a scenario when there are too many
faulty processes and thus, unable to decide in its optimistic path. Turning the fallback protocol
[61] into a validated BA protocol is straightforward, by ignoring each received message containing
a non externally-valid value (details are given in Appendix D). Moreover, CKS incorporates the
correction of a minor technical flaw in [32] addressed by [38].

B.1.3 ada-Retrieve.

Interface & properties. In ada-Retrieve, each correct process starts with (1) a digest and (2)
either (a) some corresponding pre-image value, or (b) ⊥. Eventually, all correct processes output
the same value (the pre-image). Formally, ada-Retrieve exposes the following interface:
• request input(𝑑 ∈ Digest_Value, 𝑣 ∈ Value ∪ {⊥}): a process inputs a digest 𝑑 and either
⊥ or a value 𝑣 such that Digest(𝑣) = 𝑑 ; each correct process invokes input(·) exactly once.
Moreover, the following is assumed:
– No two correct processes invoke input(𝑑1, 𝑣1) and input(𝑑2, 𝑣2) with 𝑑1 ≠ 𝑑2.
– At least 𝑡 + 1 − 𝑓 correct processes invoke input(𝑑, 𝑣) with 𝑣 ≠ ⊥ (i.e., Digest(𝑣) = 𝑑).

• indication output(𝑣 ′ ∈ Value): a process outputs a value 𝑣 ′.
The following properties are ensured:

• Agreement: No two correct processes output different values.
• Validity: Let a correct process input a value 𝑣 . No correct process outputs a value 𝑣 ′ ≠ 𝑣 .
• Termination: Every correct process eventually outputs a value.

Complexity. ada-Retrieve exchanges𝑂 (𝑛𝐿𝑜+𝑛(𝑓 +1)^) bits. Moreover, ada-Retrieve terminates
in 𝑂 (log𝑛) rounds.
Implementation. The details on ada-Retrieve’s implementation are relegated to §5.

B.2 Pseudocode

Algorithm 3 gives ada-Dareval’s pseudocode. We explain it from the perspective of a correct
process 𝑝𝑖 . An execution of ada-Dareval consists of three phases (each of which corresponds to
one building block).
During the dispersal phase, 𝑝𝑖 executes ada-Dispval using its proposal 𝑣𝑖 (line 6). Eventually, 𝑝𝑖

acquires a digest-signature pair (𝑑𝑖 , 𝜎𝑑𝑖) (line 7) due to the termination property of ada-Dispval.
Moreover, validCKS (𝑑𝑖 , 𝜎𝑑𝑖) holds due to the validity property of ada-Dispval.

Next, in the agreement phase, 𝑝𝑖 proposes the previously acquired digest-signature pair (𝑑𝑖 , 𝜎𝑑𝑖)
to CKS (line 9). As CKS satisfies termination, agreement, and external validity, all correct processes
eventually agree on a digest-signature pair (𝑑, 𝜎𝑑) (line 10).

Finally, in the retrieval phase, once 𝑝𝑖 decides (𝑑, 𝜎𝑑) fromCKS, it checkswhether it has previously
obtained a value 𝑣 withDigest(𝑣) = 𝑑 (line 11). If it has, 𝑝𝑖 inputs (𝑑, 𝑣) to ada-Retrieve; otherwise,
𝑝𝑖 inputs (𝑑,⊥) (line 13). Observe that here, the pre-conditions of ada-Retrieve are met: all correct
processes input the same digest (due to the agreement property of CKS) and at least 𝑡 + 1 − 𝑓
correct processes input a value 𝑣 ≠ ⊥ with Digest(𝑣) = 𝑑 (due to the redundancy property of
ada-Dareval). Therefore, all correct processes (including 𝑝𝑖) eventually output the same value 𝑣
from ada-Retrieve (due to the termination and validity properties of ada-Retrieve; line 14),

22

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

Algorithm 3 ada-Dareval: Pseudocode (for process 𝑝𝑖)
1: Uses:
2: ada-Disp

val
, instance disperser ⊲ bits:𝑂 (𝑛𝐿𝑜 + 𝑛 (𝑓 + 1)^) , latency:𝑂 (𝑛) (see §6)

3: CKS, instance agreement ⊲ bits:𝑂 (^𝑛 (𝑓 + 1)) , latency:𝑂 (𝑛) (see Appendix D)
4: ada-Retrieve, instance retriever ⊲ bits:𝑂 (𝑛𝐿𝑜 + 𝑛 (𝑓 + 1)^) , latency:𝑂 (log𝑛) (see §5)
5: upon propose(𝑣𝑖 ∈ Value) :
6: invoke disperser .propose(𝑣𝑖)
7: upon disperser .acquire(𝑑𝑖 ∈ Digest_Value, 𝜎𝑑𝑖 ∈ T_Signature) :
8: wait until𝑂 (𝑛) rounds has passed since invoking disperser ⊲ so all processes invoke agreement simultaneously
9: invoke agreement .propose(𝑑𝑖 , 𝜎𝑑𝑖)
10: upon agreement .decide(𝑑 ∈ Digest_Value, 𝜎𝑑 ∈ T_Signature) :
11: 𝑣 ← an obtained value such that Digest(𝑣) = 𝑑 (if such a value was not obtained, 𝑣 = ⊥)
12: wait until𝑂 (𝑛) rounds has passed since invoking agreement ⊲ so all processes invoke retriever simultaneously
13: invoke retriever .input(𝑑, 𝑣)
14: upon retriever .output(Value 𝑣′) :
15: trigger decide(𝑣′)

which represents the decision of ada-Dareval (line 15). Note that 𝑣 is valid according to val due to
the redundancy of ada-Dispval and the external validity of CKS.

B.3 Analysis

We start by proving the correctness of ada-Dareval .

Theorem 1. ada-Dareval is correct.

Proof. Every correct process starts the dispersal phase with its proposal (line 6). Due to the
termination and integrity property of ada-Dispval, every correct process eventually acquires a
digest-signature pair (line 7). Hence, every correct process eventually proposes to CKS (line 9),
which implies that every correct process eventually decides the same digest-signature pair (𝑑, 𝜎𝑑)
from CKS (line 10) due to the agreement and termination properties of CKS. As (𝑑, 𝜎𝑑) is decided
by all correct processes, at least 𝑡 + 1 − 𝑓 correct processes 𝑝𝑖 have obtained a value 𝑣 such that (1)
Digest(𝑣) = 𝑑 , and (2) 𝑣 ∈ val(𝑐) (due to the redundancy property of ada-Dispval and validCKS (·)
predicate of CKS). Therefore, all of these correct processes input 𝑣 to ada-Retrieve (line 13).
Moreover, no correct process inputs a different digest. Thus, the conditions required by ada-
Retrieve are met, which implies that all correct processes eventually output the same valid value
(namely, 𝑣) from ada-Retrieve (line 14), and decide it (line 15). □

Next, we prove the complexity of ada-Dareval.

Theorem 2. ada-Dareval achieves 𝑂 (𝑛𝐿𝑜 + 𝑛(𝑓 + 1)^) bit complexity and 𝑂 (𝑛) latency if val ∈
{valic, valsv}.

Proof. As ada-Dareval is a sequential composition of its building blocks, its bit complexity
(resp. latency) is the sum of the bit complexity (resp. latency) of (1) ada-Dispval, (2) CKS, and (3)
ada-Retrieve. □

C ADA-DISP

This section proves that ada-Disp solves the dispersion problem (defined in Appendix B.1.1).
Moreover, this section shows that ada-Dispvalic and ada-Dispvalsv , two specific instances of ada-
Disp, achieve optimal word complexity of𝑂 (𝑛𝐿𝑜 +𝑛(𝑓 + 1)^) while solving the dispersion problem
related to interactive consistency and strong & external validity, respectively.

23

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

C.1 Preliminaries

Specific validity property of ada-Dare. To define a specific Byzantine agreement problem ada-
Dare solves, we need a generic definition of the validity property. To this end, we reuse existing
formalism and nomenclature [24, 26] revolving around the notion of input configurations. Roughly
speaking, an input configuration maps correct processes to their proposals, while a validity property
maps an input configuration into a set of admissible decisions.

Let a process-proposal pair be a pair (𝑝𝑖 , 𝑣), where 𝑝𝑖 ∈ Π is a process and 𝑣 ∈ Value𝐼 is a proposal.
Given any process-proposal pair pp = (𝑝𝑖 , 𝑣), we denote by proposal(pp) = 𝑣 the proposal associated
with the pair. An input configuration is a tuple

[
pp1, pp2, ..., pp𝑥

]
such that (1) 𝑛 − 𝑡 ≤ 𝑥 ≤ 𝑛, and (2)

every process-proposal pair is associated with a distinct process. In summary, an input configuration
is an assignment of proposals to (all) correct processes.
The set of all input configurations is denoted by I. Moreover, I𝑥 ⊊ I denotes the set of all

input configurations with exactly 𝑥 process-proposals pairs. Given any input configuration 𝑐 ∈ I,
𝑐 [𝑖] denotes the process-proposal pair associated with the process 𝑝𝑖 ; if such a process-proposal
pair does not exist, 𝑐 [𝑖] = ⊥. Moreover, 𝜋 (𝑐) = {𝑝𝑖 ∈ Π | 𝑐 [𝑖] ≠ ⊥} denotes the set of all correct
processes according to any input configuration 𝑐 ∈ I.

Let E be any execution of any distributed algorithmA, and let 𝑐 ∈ I be any input configuration.
We say that E corresponds to 𝑐 (in short, input_conf (E) = 𝑐) if and only if:

• CorrectA (E) = 𝜋 (𝑐); and
• for every process 𝑝𝑖 ∈ 𝜋 (𝑐), input(𝑝𝑖) = proposal(𝑐 [𝑖]).15

A validity property val is a function val : I → 2Value𝑂 such that val(𝑐) ≠ ∅, for every input con-
figuration 𝑐 ∈ I. Finally, we say that ada-Dare satisfies a validity property val if and only if, in any
execution E ∈ execs(ada-Dare), no correct process decides any value 𝑣 ′ ∉ val

(
input_conf (E)

)16.
Intuitively, ada-Dare satisfies a validity property if correct processes only decide admissible values.

Using the introduced formalism, interactive consistency can be defined as

valic (𝑐) = {𝑐 ′ ∈ I𝑛 | ∀𝑝𝑖 ∈ 𝜋 (𝑐), 𝑐 [𝑖] = 𝑐 ′[𝑖]},

while strong & external validity (for which Value𝐼 = Value𝑂) can be defined as

valsv (𝑐) =
{
𝑣 ∈ Value𝑂 , if ∃𝑣 ∈ Value𝐼 : ∀𝑝𝑖 ∈ 𝜋 (𝑐), proposal(𝑐 [𝑖]) = 𝑣
{𝑣 ′ ∈ Value𝑂 | externallyValid(𝑣 ′)}, otherwise.

Entries. To efficiently satisfy different validity properties, processes collect the entries of other
processes, where an entry can be either (1) a proposal, or (2) a digest of a proposal. Hence, for each
validity property val, we define Entry

val
∈ {Value,Digest_Value}. For example, Entry

valic
= Value,

while Entry
valsv

= Digest_Value. We denote by entry
val

: Value𝐼 → Entry
val

the function that
maps an input value to its corresponding entry depending on a specific validity property val.
For example, entry

val
(𝑣) = 𝑣 given that Entry

val
= Value, and entry

val
(𝑣) = Digest(𝑣) given that

Entry
val

= Digest_Value.

Verifiable entry vector. A key step of our concrete solution for the dispersion problem is achieving
verifiable vector collection. To define it, we need to define what an entry vector is, and what we
mean by “verifiable”. Let val be any fixed validity property. An entry vector for val is a vector
vec = (𝑒1, ..., 𝑒𝑛) ∈ (Entryval ∪ {⊥})𝑛 . We denote by EntryVector

val
the set of entry vectors for

validity property val.

15Observe that this definition does not apply only to ada-Dare.
16To be more formal, we should require that for every adversary Adv, for every input configuration 𝑐 , for every round
number 𝑟 , for every security number _, Prob(A,Adv,𝑐,𝑟 ,_) ({E𝑠𝑎𝑑 ∈ Execs(A,Adv,𝑐,𝑟 ,_) |E𝑠𝑎𝑑 violates val}) = 1 − neg (_) .

24

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

A vector predicate for val is a mapping EntryVector
val
× {0, 1}∗ → {true, false}. A vector proof

vec_proof for an entry vector vec = (𝑒1, ..., 𝑒𝑛), and a vector predicate vec_pred, is a string satisfying
vec_pred(vec, vec_proof) = true. When the vector predicate is clear in the context, we say vec_proof
is a vector proof for vec.
Let vec_pred be a vector predicate for val, and let A be any distributed algorithm. We say

that vec_pred is unforgeable for (val,A), if and only if, for every execution E ∈ execs(A) cor-
responding to some input configuration 𝑐 ∈ I, it is computationally infeasible to forge a pair
((𝑒 ′1, ..., 𝑒 ′𝑛) ∈ EntryVector

val
, proof ∈ {0, 1}∗) that satisfies the following two conditions: (1)

vec_pred
(
(𝑒 ′1, ..., 𝑒 ′𝑛), proof

)
= true, and (2) 𝑒 ′𝑗 ≠ entry

val

(
proposal(𝑐 [𝑗])

)
, for some correct pro-

cess 𝑝 𝑗 ∈ CorrectA (E).

Accuracy and vector verification predicate in our concrete implementation. The verifiability princi-
plementioned abovewill be realized via accuse and disclosemessages. Intuitively, an ⟨accuse, 𝑝𝑎, 𝜎𝑖⟩
message with ShareVerify

𝑡+1
𝑖 (⟨accuse, 𝑝𝑎⟩, 𝜎𝑖) = true means “I, 𝑝𝑖 , claim that 𝑝𝑎 is faulty”, while a

⟨disclose, 𝑒𝑖 , 𝜎𝑖⟩ message, with ShareVerify
𝑡+1
𝑖 (⟨disclose, 𝑒𝑖⟩, 𝜎𝑖) = true, means “I, 𝑝𝑖 , declare that

my entry is 𝑒𝑖”. These two categories of messages will be enough to define our security properties.
Next, we introduce the definition of local accuracy.17

Definition 1 (Local accuracy). Let val be any validity property. We say that any distributed
algorithm A satisfies val-local-accuracy if, for every execution E ∈ execs(A) corresponding to
some input configuration 𝑐 ∈ I, for every pair of correct processes (𝑝𝑖 , 𝑝 𝑗) ∈ (CorrectA (E))2:

(1) 𝑝𝑖 never partially-signs an ⟨accuse, 𝑝 𝑗 ⟩ message.
(2) 𝑝𝑖 never partially-signs a ⟨disclose, 𝑒 ′𝑖 ⟩ message for 𝑒 ′𝑖 ≠ entry

val
(proposal(𝑐 [𝑖])).

Intuitively, local accuracy ensures that no correct process is ever exposed by a correct process, or
provably associated with an entry different from its own. We next introduce the concept of global
accuracy.

Definition 2 (Global accuracy). Let val be any validity property. We say that any distributed
algorithm A satisfies val-global-accuracy if, for every execution E ∈ execs(A) corresponding to
some input configuration 𝑐 ∈ I, for every correct process 𝑝 𝑗 ∈ CorrectA (E), it is computationally
infeasible to obtain a signature 𝜎 such that either:

(1) CombinedVerify
𝑡+1 (⟨accuse, 𝑝 𝑗 ⟩, 𝜎) = true, or

(2) ShareVerify
𝑡+1
𝑗 (⟨disclose, 𝑒 𝑗 ⟩, 𝜎) = true, for 𝑒 ′𝑗 ≠ entry

val
(proposal(𝑐 [𝑗])).

The following lemma proves that local accuracy implies global accuracy.

Lemma 6 (From local accuracy to global accuracy). Let val be any validity property. Let A be any
distributed algorithm such thatA satisfies val-local-accuracy. Then,A satisfies val-global-accuracy.

Proof. By contradiction, suppose thatA does not satisfy val-global-accuracy. Hence, a signature
𝜎 is obtained such that (1) CombinedVerify

𝑡+1 (⟨accuse, 𝑝 𝑗 ⟩, 𝜎) = true, where 𝑝 𝑗 is any correct
process, or (2) ShareVerify𝑡+1𝑗

(
⟨disclose, 𝑒 𝑗 ⟩, 𝜎

)
= true, for 𝑒 𝑗 ≠ entry

val
(proposal(𝑐 [𝑗])). However,

this is impossible given that A satisfies val-local-accuracy. □

Moreover, we define the specific vector predicate of the algorithm ada-Disp.

Definition 3 (Vector predicate VerifyVector
val
). Let val be any validity property. VerifyVector

val

is defined as a vector predicate for val such that, for every entry vector vec = (𝑒1, ..., 𝑒𝑛) ∈
17The name comes from the ideal accuracy property of accountable protocols that states that no correct process is ever
exposed by a correct process [48].

25

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

EntryVector
val

for val, for every auxiliary string aux ∈ {0, 1}∗, VerifyVector
val
(vec, aux) returns

true if and only if:
• aux is of the form (𝜎1, ..., 𝜎𝑛) ∈ ({0, 1}^)𝑛 such that, for every 𝑗 ∈ [1 : 𝑛]:

– if 𝑒 𝑗 = ⊥, then CombinedVerify
𝑡+1 (⟨accuse, 𝑝 𝑗 ⟩, 𝜎 𝑗) = true

– if 𝑒 𝑗 ≠ ⊥, then ShareVerify
𝑡+1
𝑗 (⟨disclose, 𝑒 𝑗 ⟩, 𝜎 𝑗) = true

Intuitively, a proof is well-formed if for each process 𝑝 𝑗 associated to some entry 𝑒 𝑗 , if 𝑒 𝑗 is
a ⊥-value, then it is backed by an undeniable proof-of-misbehaviour against 𝑝 𝑗 (PoM(𝑝 𝑗)), and
otherwise, 𝑒 𝑗 is backed by a corresponding disclose message partially-signed by process 𝑝 𝑗 . We
can see the obvious connection between accuracy and unforgeability of VerifyVector

val
.

Lemma 7 (From global accuracy to VerifyVector
val
’s unforgeability). Let val be any validity prop-

erty. If ada-Dispval satisfies val-global-accuracy, thenVerifyVectorval is unforgeable for (val, ada-Dispval).

Proof. Let val be any validity property. Let E ∈ execs(ada-Dispval). Assume the computation
of (vec = (𝑒 ′1, ..., 𝑒 ′𝑛) ∈ EntryVector

val
, vec_proof = (𝜎1, ..., 𝜎𝑛) ∈ ({0, 1}^)𝑛) in E, such that (i)

VerifyVector
val
(vec, vec_proof) = true and (ii) 𝑒 ′𝑗 ≠ entry

val
(proposal(input_conf (E)[𝑗])) for

some correct process 𝑝 𝑗 ∈ CorrectA (E).
There are 2 cases: (1) 𝑒 ′𝑗 = ⊥ and CombinedVerify

𝑡+1 (⟨accuse, 𝑝 𝑗 ⟩, 𝜎 𝑗), and (2) 𝑒 ′𝑗 ≠ ⊥ and
ShareVerify

𝑡+1 (⟨disclose, 𝑒 ′𝑗 ⟩, 𝜎 𝑗). However, both are impossible as ada-Dispval satisfies val-global-
accuracy. □

It will be easy to show that all the components of ada-Disp, and thus ada-Disp itself, satisfy
accuracy. For presentation’s sake, we assume the valic-local-accuracy and the valsv-local-accuracy
of ada-Dispvalic and ada-Dispvalsv , respectively. The result will be proven in the later stages of the
appendix.

Lemma 8 (ada-Disp’s local accuracy). The following holds:
• ada-Dispvalic satisfies valic-local-accuracy.
• ada-Dispvalsv satisfies valsv-local-accuracy.

Proof. This lemma is proven later as Lemma 27. □

Consequently, we obtain the following two intermediate results.

Lemma 9 (ada-Disp’s global accuracy). The following holds:
• ada-Dispvalic satisfies valic-global-accuracy.
• ada-Dispvalsv satisfies valsv-global-accuracy.

Proof. Follows immediately from Lemma 8 and Lemma 6. □

Lemma 10 (VerifyVector
valic

’s and VerifyVector
valsv

’s unforgeability). The following holds:
• VerifyVector

valic
is unforgeable for (ada-Dispvalic , valic).

• VerifyVector
valsv

is unforgeable for (ada-Dispvalsv , valsv).

Proof. Follows immediately from Lemma 9 and Lemma 7. □

C.2 The Dispersion Problem

In this subsection, we recall the specification of the dispersion problem (Appendix C.2.1), and give
an overview of ada-Disp, our implementation of the problem (Appendix C.2.2).

26

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

C.2.1 Specification. Dispersion is a problem, parameterized by a specific validity property val, in
which every process starts with its input value and outputs a digest 𝑑 ∈ {0, 1}^ and an associated
proof-of-dispersal PoD(𝑑) proving that the corresponding pre-image value 𝑣 for which Digest(𝑣) =
𝑑 is (1) valid according to val, and (2) is previously observed by at least 𝑡+1− 𝑓 correct processes. Con-
cretely, the proof of dispersal is a (𝑡 + 1)-threshold signature of an acknowledgement message con-
firming both validity and observation: PoD(𝑑) = Combine

𝑡+1 ({ShareSign𝑡+1𝑖 (⟨ack, 𝑑⟩)}𝑖∈𝑆, |𝑆 |=𝑡+1
)
.

Formally, the dispersion problem exposes the following interface:
• request propose(𝑣 ∈ Value): a process proposes a value 𝑣 ; a correct process invokes
propose(𝑣) only if externallyValid(𝑣) = true.
• indication acquire(𝑑 ∈ Digest_Value, 𝜎𝑑 ∈ T_Signature): a process acquires a pair (𝑑, 𝜎𝑑).

We say that a correct process obtains a digest-signature pair (resp., a value) if and only if it stores the
digest-signature pair (resp., the value) in its local memory. (Obtained values can later be retrieved
by all correct processes using our retrieval algorithm ada-Retrieve; see §4.3 and Algorithm 3.)
The following properties are required by the dispersion problem:

• Integrity: If a correct process triggers acquire(𝑑, 𝜎𝑑), thenCombinedVerify
𝑡+1 (⟨ack, 𝑑⟩, 𝜎𝑑))

= true.
• Termination: Every correct process eventually acquires at least one digest-signature pair.
• Redundancy: Let a correct process obtain (𝑑, 𝜎𝑑) such that CombinedVerify

𝑡+1 (⟨ack, 𝑑⟩, 𝜎𝑑)
= true, for some digest 𝑑 and some threshold signature 𝜎𝑑 . Then, there exists a pre-image 𝑣
of 𝑑 , satisfying Digest(𝑣) = 𝑑 , such that the following holds:
– Observation: (at least) 𝑡 + 1 − 𝑓 correct processes have obtained 𝑣 ; and
– Validity: 𝑣 ∈ val(𝑐), where 𝑐 denotes the input configuration of the ongoing execution.

Note that it is not required for all correct processes to acquire the same digest value (nor the
same threshold signature). Moreover, the specification allows for multiple pairs to be acquired by
correct processes.

C.2.2 ada-Disp’s overview. ada-Disp (Algorithm 5) operates across𝑛 views, eachwith (1) a different
leader, and (2)𝑂 (1) rounds. The satisfaction of the dispersion problem’s properties is associated with
the delivery of some proof-of-dispersal (PoD) by each correct process (to ensure the termination
property). Each view of the ada-Disp protocol is separated into two phases: (1) the catch-up phase,
in which a correct leader disseminates an already-obtained PoD to processes that have not yet
acquired their PoD, and (2) the attempt phase, in which a correct leader that has not previously
obtained a PoD aims to enable all correct processes to acquire a PoD. Importantly, the attempt
phase of a view with a correct leader uses communication (i.e., is not silent) only if no correct
process has previously obtained a PoD.
Let us briefly explain the attempt phase of a view. The attempt phase consists of executing the

protocol pod_creation_attempt (Algorithm 11), where the leader expects to collect a vector of entries
of all potentially correct processes (i.e., processes that have not been previously provably detected).
If the leader fails to collect the aforementioned vector, it accuses a new process 𝑝𝑎 whose entry is
missing, and encourages other processes to initiate the LearnOrExpose procedure (Algorithm 6)
to ascertain 𝑝𝑎’s input value or announce 𝑝𝑎 faulty. If the leader succeeds in collecting the vector
(and is correct), the verifiable vector collection (VVC) succeeds. In this case, the leader is able to
construct and disseminate a PoD to all processes via the persuade protocol (see Algorithm 7 and
Algorithm 8). An overview of the aforementioned “verifiable vector collection (VVC) + persuasion”
structure of ada-Disp is depicted in Figure 5 and Figure 6. The following subsections provide full
details on all ada-Disp’s subprotocols (pod_creation_attempt, LearnOrExpose, persuade).

27

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

ada-Disp’s pseudocode. We explain the pseudocode of ada-Disp (Algorithm 5) from the standpoint
of a correct process 𝑝𝑖 . Starting a certain view, process 𝑝𝑖 starts the catch-up phase (Algorithm 4)
at line 12; we fully explain the catch-up phase in the next paragraph. Then, process 𝑝𝑖 engages
in the pod_creation_attempt subprotocol (Algorithm 11) at line 16 if and only if 𝑝𝑖 has not ob-
tained a digest-PoD from the catch-up phase. In the final round, if 𝑝𝑖 has previously initiated the
pod_creation_attempt subprotocol and the leader of the view is correct, 𝑝𝑖 either (1) successfully
obtains a PoD that it retains (line 19), or (2) triggers a LearnOrExpose instance for a newly accused
process 𝑝𝑎 (we provide full details in Algorithm 11). If a new instance of LearnOrExpose is indeed
initiated, then every correct process either gains knowledge of 𝑝𝑎’s input or provably detects (i.e.,
exposes) 𝑝𝑎 . Upon completion of all 𝑛 views, 𝑝𝑖 concludes its participation in ada-Disp (line 22).

Let us now explain the catch-up protocol (Algorithm 4). In the first round, 𝑝𝑖 checks whether it
has already obtained a PoD (line 5). If it has not, 𝑝𝑖 either (1) broadcasts an aid_reqmessage (line 7)
if it is the current leader, or (2) sends an aid_req message to the current view’s leader (line 9). If 𝑝𝑖
has already obtained a PoD and it receives an aid_req message (1) from the leader, or (2) being the
leader itself (line 11), 𝑝𝑖 transmits the already-obtained PoD to the sender of the aid_req message
(line 12). In the third round, if 𝑝𝑖 receives a PoD (line 14), it checks if it already has a PoD (line 15).
If so, it moves on to the fourth round. If it does not, it obtains the freshly received PoD (line 16),
and if 𝑝𝑖 is the leader, it forwards the obtained PoD to every process (line 18). Finally, in the fourth
round, if 𝑝𝑖 receives a PoD from the leader (line 20), it obtains the received PoD (line 21).

Algorithm 4 catch_up𝑖 (𝑝ℓ , certified_digest𝑖 , pod𝑖): Pseudocode (for process 𝑝𝑖)
1: Input Parameters:
2: Digest_Value certified_digest𝑖
3: PoD pod𝑖

4: Round 1:
5: if pod𝑖 = ⊥:
6: if 𝑝𝑖 = 𝑝ℓ : ⊲ if 𝑝ℓ is the leader of this instance
7: broadcast ⟨aid_req⟩
8: else:
9: send ⟨aid_req⟩ to 𝑝ℓ
10: Round 2:
11: if pod𝑖 ≠ ⊥, and ⟨aid_req⟩ is received from 𝑝 𝑗 , such that 𝑝ℓ ∈ {𝑝𝑖 , 𝑝 𝑗 } :
12: send ⟨aid_reply, certified_digest𝑖 , pod𝑖 ⟩ to 𝑝 𝑗

13: Round 3:
14: if ⟨aid_reply,Digest_Value 𝑑′, PoD Σ′⟩ is received and CombinedVerify

𝑡+1 (⟨ack, 𝑑′⟩, Σ′) = true:
15: if pod𝑖 = ⊥:
16: certified_digest𝑖 ← 𝑑′; pod𝑖 ← Σ′

17: if 𝑝𝑖 = 𝑝ℓ :
18: broadcast ⟨aid_relay, certified_digest𝑖 , pod𝑖 ⟩
19: Round 4:
20: if ⟨aid_relay,Digest_Value 𝑑′, PoD Σ′⟩ is received from 𝑝ℓ and CombinedVerify

𝑡+1 (⟨ack, 𝑑′⟩, Σ′) = true:
21: certified_digest𝑖 ← 𝑑′; pod𝑖 ← Σ′

22: return (certified_digest𝑖 , pod𝑖)

Initial analysis of ada-Disp. We now provide an initial analysis of ada-Disp. First, we prove that,
if (1) a correct process starts the catch_up protocol with a well-formed digest-signature pair and
(2) the leader is correct, then every correct process returns a well-formed digest-signature pair at
the end of the catch_up protocol.

28

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

Algorithm 5 ada-Dispval (start_value𝑖): Pseudocode (for process 𝑝𝑖)
1: Input Parameters:
2: Value start_value𝑖 ← 𝑣, where 𝑝𝑖 has previously invoked start(𝑣)
3: Variables:
4: Digest_Value certified_digest𝑖 ← ⊥
5: PoD pod𝑖 ← ⊥ ⊲ succinct proof of dispersal
6: Map(Process→ Disclose_Msg) indirects𝑖 ← ∅ ⊲ values indirectly obtained through LearnOrExpose instances
7: Map(Process→ T_Signature) culprits𝑖 ← ∅ ⊲ PoM indirectly obtained through LearnOrExpose instances
8: Set(Process) contactin

𝑖
← ∅ ⊲ Processes that have requested the input of 𝑝𝑖 in some LearnOrExpose instance

9: Set(Process) contactout
𝑖
← ∅ ⊲ Processes whose input has been asked by 𝑝𝑖 in some LearnOrExpose instance

10: for 𝑗 = 1 to 𝑛:
11: Round 1:
12: invoke catch_up(𝑝 𝑗 , certified_digest𝑖 , pod𝑖)
13: Round 4:
14: certified_digest𝑖 , pod𝑖 ← outputs of catch_up(𝑝 𝑗 , certified_digest𝑖 , pod𝑖)
15: if pod𝑖 = ⊥:
16: invoke pod_creation_attempt

val
(start_value𝑖 , 𝑝 𝑗 , indirects𝑖 , culprits𝑖 , contact

in

𝑖
, contactout

𝑖
)

17: Round 4+𝑟 pca
val

: ⊲ 𝑟
pca

val
∈ 𝑂 (1) is the round complexity of pod_creation_attempt

val

18: if pod_creation_attempt
val

has been previously invoked:
19: certified_digest𝑖 , pod𝑖 , indirects𝑖 , culprits𝑖 , contactin𝑖 , contact

out

𝑖
← outputs of pod_creation_attempt

val

20: if pod𝑖 ≠ ⊥:
21: trigger acquire(certified_digest𝑖 , pod𝑖)
22: trigger stop

Lemma 11. Let (1) a correct process start the catch_up protocol (Algorithm 4) with a well-formed
digest-signature pair, and (2) the leader be correct. Then, by the end of the execution of catch_up
protocol, every correct process returns a well-formed digest-signature pair.

Proof. Let 𝑝ℓ , 𝑝 𝑗 be processes such that (1) 𝑝ℓ is the correct leader, and (2) 𝑝 𝑗 has previously
acquired a digest-signature pair (𝑑 𝑗 , PoD(𝑑 𝑗)). We consider two cases:
• Suppose that 𝑝ℓ has not previously obtained a digest-signature pair; note that 𝑝ℓ ≠ 𝑝 𝑗 . Then,
𝑝ℓ broadcasts an aid_req message (line 7). Upon the reception of this aid_req message
(line 11), process 𝑝 𝑗 replies with an aid_replymessage (line 12) holding its digest-signature
pair (𝑑 𝑗 , PoD(𝑑 𝑗)). Upon the reception of this aid_reply message (line 14), process 𝑝ℓ
acquires the digest-signature pair (𝑑 𝑗 , PoD(𝑑 𝑗)) and broadcasts an aid_relay message
(line 18) holding the digest-signature pair (𝑑 𝑗 , PoD(𝑑 𝑗)). This message is received by every
correct process (line 20), allowing the delivery (line 21) and return of (𝑑 𝑗 , PoD(𝑑 𝑗)) (line 22).
• Suppose that 𝑝ℓ has previously obtained a digest-signature pair; note that 𝑝ℓ might be 𝑝 𝑗 .
Then any correct process 𝑝𝑖 without a digest-signature pair sends an aid_req message
(line 9) to 𝑝ℓ . Upon the reception of this aid_req message (line 11), process 𝑝ℓ replies with
an aid_reply message (line 12) holding its digest-signature pair (𝑑 𝑗 , PoD(𝑑 𝑗)). Upon the
reception of this aid_reply message (line 14), process 𝑝𝑖 delivers and returns (line 22) the
digest-signature pair (𝑑 𝑗 , PoD(𝑑 𝑗)).

The lemma holds as it holds in both possible scenarios. □

We denote by I∗ the first iteration (i.e., view) such that all the correct processes output a PoD by
the end of I∗. If such an iteration does not exist, then I∗ = ∞.

Lemma 12. Let I > I∗ be an iteration of the for loop of ada-Disp (Algorithm 5) such that every
correct process has already acquired a digest-signature pair. Then, no correct process execute the
sub-protocol pod_creation_attempt (line 16 of Algorithm 5).

29

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

...

...

...

Fig. 5. Different instances of ada-Disp for some natural specific validity properties.

Fig. 6. VVC loop. When a correct leader drives the view, it either successfully obtains a vector of 2𝑡 + 1 input
materials, or triggers a LearnOrExpose instance for a newly accused process 𝑝𝑎 . After at most 2𝑓 + 1 views, a

successful collection must happen.

Proof. Let 𝑝𝑖 be a correct process that acquired a digest-signature pair. Trivially, pod𝑖 ≠ ⊥ is
preserved by the end of the catch_up protocol. Hence, the check at line 15 does not pass, which
implies that the protocol pod_creation_attempt is not invoked at line 16 of Algorithm 5. □

30

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

Next, we prove the communication cost of any iteration I > I∗.

Lemma 13. Let I > I∗ be an iteration of the for loop of ada-Disp (Algorithm 5) such that every
correct process has already acquired a digest-signature pair. Then, the communication complexity
of this iteration is either (1) 𝑂 (^𝑓) if the leader is correct, or (2) 𝑂 (^𝑛) if the leader is Byzantine.

Proof. By Lemma 12, the only communication to consider is the one of the catch-up phase.
The case where the leader is Byzantine is straightforward as the protocol follows a leader-based
paradigm, where each message has a size of at most 𝑂 (^) bits. Assume the leader is correct; let
𝑝ℓ be the leader. No correct process issues an aid_req message. Moreover, 𝑝ℓ responds to each
incoming aid_req message. Given that there are at most 𝑂 (𝑓) such messages (originating from
faulty processes), and considering that any PoD comprises one word of 𝑂 (^) bits, 𝑝ℓ transmits a
total of 𝑂 (^𝑓) bits. □

Finally, we analyze the collective cost of all iterations greater than I∗.

Lemma 14. The communication complexity of all the iterations in (I∗ : 𝑛] of the for loop of
ada-Disp (Algorithm 5) is at most 𝑂 (^𝑛𝑓).

Proof. Among 𝑛 iterations, there are (1) 𝑛− 𝑓 iterations with correct leaders, and (2) 𝑓 iterations
with faulty leaders. Hence, due to Lemma 13, the communication complexity can be expressed as

(𝑛 − 𝑓) ·𝑂 (^𝑓) + 𝑓 ·𝑂 (^𝑛) = 𝑂 (𝑛^𝑓) +𝑂 (𝑛^𝑓) = 𝑂 (𝑛^𝑓).
Therefore, the lemma holds. □

Lemma 14 allows us to focus on the cost of reaching the iteration I∗. This is exactly the problem
of verifiable vector collection. Before analyzing the protocol ada-Dispval, we define two helper
functions: extract_vector_proof and extract_vector.

Definition 4 ((Helper) vector extraction). We note extract_vector_proof and extract_vector the
two helper methods that both take discloses, culprits of Map(Process → {0, 1}∗) type as input,
where |discloses.Keys() ∪ culprits.Keys() | = 𝑛. extract_vector_proof returns (𝜎1, ..., 𝜎𝑛), while
extract_vector returns (𝑒1, ..., 𝑒𝑛) such that, for each process 𝑝 𝑗 , (disclose, 𝑒 𝑗 , 𝜎 𝑗) = discloses[𝑝 𝑗] if
𝑝 𝑗 ∈ discloses.Keys(), and (𝑒 𝑗 , 𝜎 𝑗) = (⊥, culprits[𝑝 𝑗]) otherwise.

C.3 LearnOrExpose

In this subsection, we present and analyze in detail the LearnOrExpose primitive (Algorithm 6)
that plays a crucial role in the dispersion. LearnOrExpose is designed to manage the collection of
missing entries and to enforce the participation of all processes.

C.3.1 LearnOrExpose’s Specification & Implementation. Each correct process 𝑝𝑖 has the following
read-only input parameters:
• the starting value, the proposal input(𝑝𝑖) to ada-Dare;
• the leader process 𝑝ℓ ;
• the accused process 𝑝𝑎 ,

and 𝑝𝑖 writes to the following variables:
• the indirectly collected disclose messages indirect𝑖 ;
• the collected proofs-of-misbehaviour culprits𝑖 ;
• the processes contact𝑖𝑛𝑖 that have already requested the input of process 𝑝𝑖 in some former
LearnOrExpose instance;
• the processes contact𝑜𝑢𝑡𝑖 whose input have been already asked by 𝑝𝑖 in some former LearnOr-
Expose instance.

31

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

The LearnOrExpose primitive guarantees the following properties:
• Unforgeability: For any correct process 𝑝 𝑗 with input 𝑣 𝑗 , no (correct or faulty) process obtains
(i) a partial signature of disclose message associated to some value 𝑣 ≠ 𝑣 𝑗 , or (ii) a proof-
of-misbehaviour against 𝑝 𝑗 (PoM(𝑝 𝑗), with CombinedVerify

𝑡+1 (⟨accuse, 𝑝 𝑗 ⟩, PoM(𝑝 𝑗)) =
true).
• Liveness: If 𝑝ℓ is correct and all correct processes accuse the same process 𝑝𝑎 , then, for every
correct process 𝑝𝑖 , 𝑝𝑎 ∈ indirects𝑖 .Keys() ∪ culprits𝑖 .Keys() such that:
– if 𝑝𝑎 ∈ indirects𝑖 .Keys(), then indirects𝑖 [𝑝𝑎] = ⟨disclose, 𝑒𝑎, 𝜎𝑎⟩ with

ShareVerify
𝑡+1
𝑎 (⟨disclose, 𝑒𝑎⟩, 𝜎𝑎) = true;

– if 𝑝𝑎 ∈ culprits𝑖 .Keys(), then culprits𝑖 [𝑝𝑎] = PoM(𝑝𝑎) with
CombinedVerify

𝑡+1 (⟨accuse, 𝑝𝑎⟩, PoM(𝑝𝑎)) = true.
• Moderation:

– Moderation-out: If 𝑝𝑎 ∈ contact𝑜𝑢𝑡𝑖 before the execution, then 𝑝𝑖 does not send message
to 𝑝𝑎 . Moreover, 𝑝𝑎 ∈ contact𝑜𝑢𝑡𝑖 by the end of the execution.

– Moderation-in: If 𝑝 𝑗 ∈ contact𝑖𝑛𝑖 before the execution, then 𝑝𝑖 does not send message to
𝑝 𝑗 . Moreover, if 𝑝𝑖 sends a message to 𝑝 𝑗 ∉ {𝑝ℓ , 𝑝𝑎} in an instance, then 𝑝 𝑗 ∈ contact𝑖𝑛𝑖
by the end of this instance.

Unforgeability means that it is impossible to prove that a correct process (1) is misbehaving,
or (2) started with an entry different from its own. Liveness means that under an honest
leader, and with a commonly accused process 𝑝𝑎 , by the end of the execution, every correct
process either learns an entry signed by 𝑝𝑎 or exposes 𝑝𝑎 by delivering a corresponding
undeniable proof-of-misbehaviour (PoM). Moderation allows an adaptive 𝑂 (𝑛𝑓) message
complexity for the sequential composition of𝑂 (𝑓) instances of the LearnOrExpose primitive.

Implementation’s description. As specified by the interface, processes start with a specific accused
process 𝑝𝑎 . In practice, the id of this process is communicated by the leader (see Algorithm 11),
where the leader 𝑝ℓ broadcasts (line 24) the id of the accused process 𝑝𝑎 in a fail message, whose
reception (line 28) triggers the invocation of line 29 of an instance of LearnOrExpose parameterized
by 𝑝ℓ and 𝑝𝑎 . Note that, under a faulty leader, correct processes can start with a different accused
process.

Essentially, the LearnOrExpose protocol (Algorithm 6) operates as follows:
• (Round 1) Request for Input: In the first round, all processes, except those that have previ-
ously contacted 𝑝𝑎 (checked at line 10), send a reqest_input message to 𝑝𝑎 (line 11) to
request 𝑝𝑎’s input and update their contactsout𝑖 list accordingly (line 12).
• (Round 2) Disclose Message: If a process receives a reqest_input message from another

process for the first time (checked at line 14), it sends back a disclose message containing
its input (line 17) and updates its contactsin𝑖 list (line 15).
• (Round 3) Accusation or Forwarding: Processes check if they have received a disclose
message from 𝑝𝑎 . If they have, the message is forwarded to the leader (line 22) and used
to update 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑠𝑖 accordingly. If not, and 𝑝𝑎’s message is not in indirects𝑖 , they send an
accusation message to the leader (line 24).
• (Round 4) Leader’s Broadcast: If the leader receives 𝑡 + 1 accuse messages against 𝑝𝑎 , it
combines these into a PoM (line 28) and broadcasts it (line 29). Alternatively, if a valid
disclose message from 𝑝𝑎 is received, the leader broadcasts this message for learning (line
31).
• (Round 5) Update Culprits or Indirects: Processes update their culprits𝑖 or indirects𝑖 maps

based on the leader’s broadcast, either by storing the PoM against 𝑝𝑎 (line 34) or by updating
their indirects𝑖 map with 𝑝𝑎’s disclose message (line 36).

32

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

Algorithm 6 LearnOrExpose
val
(𝑝ℓ , start_value𝑖 , 𝑝𝑎, indirects𝑖 , culprits𝑖 , contact𝑜𝑢𝑡𝑖 , contact𝑖𝑛𝑖): Pseu-

docode for process 𝑝𝑖
1: Input Parameters:
2: Process 𝑝ℓ ⊲ the leader
3: Process 𝑝𝑎 ⊲ the accused process
4: Value start_value𝑖 ⊲ The starting value
5: Map(Process→ Disclose_Msg) indirects𝑖
6: Map(Process→ T_Signature) culprits𝑖 ⊲ Processes proved guilty
7: Set(Process) contactout

𝑖

8: Set(Process) contactin
𝑖

9: Round 1: ⊲ In practice, 𝑝𝑎 has been broadcasted by the leader just before
10: if 𝑝𝑎 ∉ contact

out

𝑖
:

11: send ⟨reqest_input⟩ to 𝑝𝑎
12: contact

out

𝑖
← contact

out

𝑖
∪ {𝑝𝑎 }

13: Round 2:
14: if ⟨reqest_input⟩ is received from 𝑝 𝑗 ∉ contact

𝑖𝑛
𝑖
:

15: contact
in

𝑖
← contact

in

𝑖
∪ {𝑝 𝑗 }

16: let entry𝑖 = entry
val
(start_value𝑖) ⊲ either Digest(start_value𝑖) or start_value𝑖 depending on val

17: send ⟨disclose, entry𝑖 , ShareSign𝑡+1𝑖 (disclose, entry𝑖) ⟩ to 𝑝 𝑗

18: Round 3:
19: if𝑚𝑎 = ⟨disclose, entry𝑎, ShareSign𝑡+1𝑎 (disclose, entry𝑎) ⟩ is received from 𝑝𝑎 :
20: indirect𝑖 [𝑝𝑎] ←𝑚𝑎

21: if 𝑝𝑎 ∈ indirect𝑖 .Keys() :
22: send indirect𝑖 [𝑝𝑎] to 𝑝ℓ
23: else:
24: send ⟨accuse, 𝑝𝑎, ShareSign𝑡+1𝑖 (accuse, 𝑝𝑎) ⟩ to 𝑝ℓ
25: Round 4 (for leader 𝑝ℓ):
26: if 𝑝𝑖 = 𝑝ℓ :
27: if ⟨accuse, Process 𝑝𝑎, P_Signature 𝑝𝑠𝑖𝑔⟩ is received from 𝑡 + 1 processes:
28: let PoM(𝑝𝑎) ← Combine

𝑡+1 ({sig | sig is received in the 𝑡 + 1 received messages})
29: broadcast ⟨Expose, PoM(𝑝𝑎) ⟩
30: else if a message𝑚′𝑎 = ⟨disclose, entry𝑎, ShareSign𝑡+1𝑎 (disclose, entry𝑎) ⟩ is received:
31: broadcast ⟨Learn,𝑚′𝑎 ⟩
32: Round 5:
33: if ⟨Expose, T_Signature PoM(𝑝𝑎) ⟩ is received:
34: culprits𝑖 [𝑝𝑎] ← PoM(𝑝𝑎)
35: else if ⟨Learn,Disclose_Msg𝑚𝑎 ⟩ is received:
36: indirects𝑖 [𝑝𝑎] ←𝑚𝑎

C.3.2 LearnOrExpose’s Correctness. In this subsection, we prove the correctness of LearnOrExpose
(Algorithm 6). First, we prove val-local-accuracy of LearnOrExpose (Algorithm 6), which will be
crucial to prove Lemma 8.

Lemma 15 (LoE’s local accuracy). LearnOrExpose
val

(Algorithm 6) satisfies val-local-accuracy.

Proof. Item 2 follows directly as a correct process never signs a disclosemessage with an entry
𝑒 that is different from its actual entry, as established at line 17 of Algorithm 6. Consider item 1
for a correct process 𝑝𝑎 . Assume, for the sake of contradiction, that at least one correct process 𝑝 𝑗
partially signs an accuse message against 𝑝𝑎 . Necessarily, it does so at line 24 of some instance of
Algorithm 6. This implies that 𝑝𝑎 has been accused and is missing from indirects 𝑗 .Keys() by round
3, as per the check at line 21. This scenario occurs when process 𝑝 𝑗 has sent a reqest_input
message to 𝑝𝑎 (in this or a previous instance) but did not receive a disclose response from 𝑝𝑎 .
However, as 𝑝𝑎 is correct, it would have sent such a disclose message at line 17 of Algorithm 6

33

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

upon receiving the corresponding reqest_input message. This event is impossible if both 𝑝 𝑗 and
𝑝𝑎 are correct, leading to a contradiction. Hence, item 1 is satisfied as well. □

Second, we prove liveness of LearnOrExpose (Algorithm 6).

Lemma 16 (LoE’s liveness). When the leader 𝑝ℓ of LearnOrExposeval (Algorithm 6) is correct
and all correct processes accuse the same process 𝑝𝑎 , then, for each correct process 𝑝𝑖 , 𝑝𝑎 will be
included in either indirects𝑖 .Keys() or culprits𝑖 .Keys().

Proof. By the end of round 1, every correct process has issued a reqest_input message to 𝑝𝑎
(line 11). By the completion of round 3, it is determined whether 𝑝𝑎 belongs to indirects 𝑗 .Keys() for
any correct process 𝑝 𝑗 (as per the check at line 21).
If 𝑝𝑎 is absent from indirects 𝑗 .Keys() for every correct process 𝑝 𝑗 , each correct process then

sends a partially-signed accuse message against 𝑝𝑎 to the leader in round 3 (line 24). In round 4,
the leader combines these partial signatures into a (𝑡 + 1)-threshold signature (line 28) and then
broadcasts the resultant proof-of-misbehaviour to every correct process 𝑝 𝑗 . Subsequently, 𝑝 𝑗 maps
𝑝𝑎 with this proof-of-misbehaviour in culprits 𝑗 (line 34).
Conversely, if 𝑝𝑎 is found in indirects 𝑗 .Keys() for some correct process 𝑝 𝑗 , then 𝑝 𝑗 relays the

corresponding disclose message to the leader in round 3 (line 22). The leader, in turn, broadcasts
this information in a learn message in round 4 (line 31), enabling each correct process 𝑝 𝑗 to
associate 𝑝𝑎 with its disclose message in indirects 𝑗 (line 36). □

Finally, we prove two auxiliary lemmas to show the adaptive communication complexity of the
ada-Disp protocol.

Lemma 17 (Moderation-out). If 𝑝𝑎 ∈ contact𝑜𝑢𝑡𝑖 prior to executing LearnOrExpose
val

(Algorithm 6),
then 𝑝𝑖 does not send a reqest_input message to 𝑝𝑎 . Additionally, 𝑝𝑎 remains in contact

𝑜𝑢𝑡
𝑖 after

the execution of the algorithm.

Proof. A correct process potentially sends a reqest_inputmessage to 𝑝𝑎 only during round 1.
If 𝑝𝑎 is already in contact

𝑜𝑢𝑡
𝑖 before the algorithm starts, 𝑝𝑖 refrains from sending a reqest_input

message to 𝑝𝑎 in round 1, as per the condition at line 10. Furthermore, the execution of line 12
(contingent on passing the check at line 10) guarantees that 𝑝𝑎 is in contact

𝑜𝑢𝑡
𝑖 at the end of round

1, and thus, remains so after the algorithm’s execution. □

The aforementioned mechanism ensures that a correct process 𝑝𝑖 never sends a reqest_input
message to the same process more than once.

Lemma 18 (Moderation-in). If 𝑝 𝑗 ≠ 𝑝ℓ is in contact
𝑖𝑛
𝑖 before executing LearnOrExpose (Algo-

rithm 6), then 𝑝𝑖 will not send a disclose message to 𝑝 𝑗 . Furthermore, if 𝑝𝑖 sends a message to
𝑝 𝑗 ∉ {𝑝ℓ , 𝑝𝑎} during an instance of the algorithm, then 𝑝 𝑗 will be in contact

𝑖𝑛
𝑖 by the end of that

instance.

Proof. A correct process sends a disclose message to a process 𝑝 𝑗 ≠ 𝑝ℓ only in round 2. If 𝑝 𝑗 is
already a part of contact𝑖𝑛𝑖 before the algorithm commences, 𝑝𝑖 does not send a disclose message
to 𝑝 𝑗 in round 2, as dictated by the check at line 14.

If 𝑝𝑖 communicates with 𝑝 𝑗 ∉ {𝑝ℓ , 𝑝𝑎} during the algorithm, this is necessarily done via a disclose
message sent in round 2. This action triggers line 15, leading to 𝑝 𝑗 being included in contact

𝑖𝑛
𝑖 at

the end of round 2 and, consequently, at the end of that particular instance. □

The mechanism above ensures that a correct process 𝑝𝑖 never sends a disclose message to the
same process more than once.

34

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

C.4 Persuasion: Problem Definition

In this subsection, we briefly discuss the Persuasion problem. We present solutions for instances of
this problem parameterized with valic and valsv in Appendix C.5 and Appendix C.6, respectively.

Persuasion is a problem that effectively represents the final step to solve the dispersion problem
(after having achieved verifiable vector collection). Hence, it naturally shares strong similarities
with the dispersion problem.

Persuasion is a problem parameterized by (1) a validity property val, and (2) a vector predicate
vec_pred for val. In practice, we will only consider the vector predicate VerifyVector

val
. Moreover,

the persuasion problem is parameterized by a fixed leader 𝑝ℓ . In an ideal scenario, the leader 𝑝ℓ
starts with (1) a vector that matches the current (i.e., active) input configuration 𝑐 , i.e., entries of all
the correct processes, and (2) a vector proof for the vector. If the leader is correct and the required
preconditions are met, the postconditions of the dispersion problem are satisfied. Otherwise, the
safety properties of the dispersion problem are secured, i.e., the safety of dispersion is always
preserved.

The persuasion problem requires the following properties to hold except with negligible proba-
bility neg(^):
• Integrity: If a correct process triggers acquire(𝑑, 𝜎𝑑), thenCombinedVerify

𝑡+1 (⟨ack, 𝑑⟩, 𝜎𝑑))
= true.
• Redundancy: Let a correct process obtain (𝑑, 𝜎𝑑) such thatCombinedVerify

𝑡+1 (⟨ack, 𝑑⟩, 𝜎𝑑) =
true, for some digest 𝑑 and some threshold signature 𝜎𝑑 . Then, there exists a pre-image 𝑣 of
𝑑 , verifying Digest(𝑣) = 𝑑 , such that:
– Observation: (at least) 𝑡 + 1 − 𝑓 correct processes have obtained 𝑣 ;
– Validity: 𝑣 ∈ val(𝑐).

Let us remark that Validity might imply externallyValid(𝑣) = true depending on val.
• Optimistic termination: If the leader is correct and starts with a pair (vec, vec_proof) such
that vec_pred(vec, vec_proof) = true, then every correct process acquires at least one
digest-signature pair.

C.5 Persuasion for Interactive Consistency

In this subsection, we present persuade
valic

(Algorithm 7) that solves the persuasion problem
parameterized with valic and VerifyVector

valic
.

Let us explain our approach. Assume the leader 𝑝ℓ is correct and stores (disclosesℓ , culpritsℓ) such
that VerifyVector

valic
(vec, proof) = true with vec = (𝑒1, ..., 𝑒𝑛) = extract_vector(disclosesℓ , culpritsℓ)

and proof = extract_vector_proof (disclosesℓ , culpritsℓ). In such a situation, 𝑝ℓ extracts the pair
(vec, proof) (line 8), and broadcasts it (line 9). Upon reception of the pair (line 11), every correct
process acknowledges the pair (line 12), thus allowing the leader to (1) receive 𝑡 + 1 partially signed
ack messages (line 14), and (2) generate a PoD (line 15) that is then disseminated to every process
(line 16), delivered (line 18), and returned by every correct process (line 19). In the event that the
leader is faulty, the process may not receive any PoD and returns ⊥ instead (line 21).
We now prove the local accuracy property of persuade

valic
, which will be used later to prove

the local accuracy property of ada-Dispvalic and, thus, the global accuracy of ada-Dispvalic and
unforgeability of VerifyVector

valic
.

Lemma 19. persuade
valic

(Algorithm 7) satisfies val𝑖𝑐 -local-accuracy.

Proof. Items 1 and 2 are trivially verified since no correct process signs an accuse message or
a disclose message in persuade

valic
. □

35

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

Algorithm 7 persuade
valic
(start_value𝑖 , 𝑝ℓ , dicloses𝑖 , culprits𝑖): Pseudocode (for process 𝑝𝑖)

1: Input Parameters:
2: Value start_value𝑖 ⊲ the input value; first parameter
3: Process 𝑝ℓ ⊲ the leader; second parameter
4: Map(Process→ Disclose_Msg) discloses𝑖 ⊲ storing values directly or indirectly obtained
5: Map(Process→ T_Signature) culprits𝑖 ⊲ storing PoM indirectly obtained
6: Round 1: ⊲ executed only by 𝑝ℓ
7: if 𝑝𝑖 = 𝑝ℓ :
8: let vec ← extract_vector(disclosesℓ , culpritsℓ) , proof ← extract_vector_proof (disclosesℓ , culpritsℓ)) .
9: broadcast ⟨vector, vec, proof ⟩
10: Round 2:
11: if a ⟨vector, vec, proof ⟩ message is received from 𝑝ℓ such that VerifyVector

valic
(vec, proof) :

12: send ⟨Vec_Ack, ShareSign𝑡+1𝑖 (Ack,Digest(vec)) ⟩ to 𝑝ℓ ⊲ allow the leader to create a succinct PoD
13: Round 3:
14: if 𝑝𝑖 = 𝑝ℓ and ⟨vec_ack, P_Signature sig⟩ is received from 𝑡 + 1 processes: ⊲ the leader creates a succinct PoD
15: let pod ← Combine

𝑡+1 ({sig | sig is received in the 𝑡 + 1 received vec_ack messages})
16: broadcast ⟨Compact_Cert,Digest(vec), pod ⟩
17: Round 4:
18: if ⟨compact_cert,Digest 𝑑, PoD 𝜎 ⟩ is received from 𝑝ℓ such that CombinedVerify

𝑡+1 (⟨Ack, 𝑑 ⟩, 𝜎) :
19: return 𝑑, 𝜎

20: else:
21: return ⊥,⊥

Lemma 20. If protocol persuade
valic

(Algorithm 7) is a sub-routine of ada-Dispvalic , then it solves
the Persuasion problem parameterized with val𝑖𝑐 and VerifyVector

valic
.

Proof. Assume some correct process outputs a pair (𝑑𝑖 , PoD(𝑑𝑖)). Necessarily the check at
line 18 has passed, which implies CombinedVerify

𝑡+1 (⟨ack, 𝑑𝑖⟩, PoD(𝑑𝑖)) = true, and thus the
integrity property is satisfied. Moreover, it implies that a set 𝑆 of at least 𝑡 + 1 − 𝑓 correct processes
partially signed the message ⟨ack, 𝑑𝑖⟩. It means all the members of 𝑆 partially-signed the message
⟨ack, 𝑑𝑖⟩ at line 12, upon the reception of a vector vec and a corresponding valid vector proof at
line 11. This implies the observation property. This also implies the validity property, since such a
proof is unforgeable by Lemma 10.

Let us prove optimistic termination. Suppose that the leader 𝑝ℓ is correct and 𝑝ℓ initially stores the
pair (disclosesℓ , culpritsℓ) such thatVerifyVectorvalic (vec, proof) = truewith vec = extract_vector(disclosesℓ ,
culpritsℓ) = (𝑒1, ..., 𝑒𝑛) and proof = extract_vector_proof (disclosesℓ , culpritsℓ). The pair (vec, proof)
is computed (line 8), and then broadcast (line 9). Upon its reception (line 11), every correct process
acknowledges it (line 12), allowing the reception of 𝑡 + 1 partially signed ack messages by the
leader (line 14). The leader then generate a PoD (line 15), which is then broadcast (line 16) and
delivered by every correct process (line 18) and returned by each of them (line 19). □

C.6 Persuasion for Strong Validity

This subsection presents persuade
val𝑠𝑣

(Algorithm 8), an efficient solution for the persuasion problem
parameterized with valic and VerifyVector

valic
, where val𝑠𝑣 = strong&external_validity. This proto-

col relies on two sub-protocols: partition (Algorithm 9) and construct_strong_negative_certificate
(Algorithm 10). Recall that in this validity, an entry is in the form of digest (i.e. Entry

valsv
= Digest).

Algorithm 8 handles two types of certificates (inspired from Big Buckets [67]):
• Positive certificates: Positive certificates vouch that one specific value is safe. Namely, a
certificate Σ+ is said to be a positive bucket certificate for a digest 𝑑 if and only if Σ+ is a
(𝑡 +1)-threshold signature for 𝑑 where 𝑑 is a digest of some processes’ input value. Formally,

36

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

CombinedVerify
𝑡+1 (⟨disclose, 𝑑⟩, Σ+) = true. Since each correct process starts with an

externally valid value 𝑣 and a positive bucket certificate is a (𝑡 + 1)-threshold signature
for some input value’s digest, the digest 𝑑 associated with a positive bucket certificate
necessarily has an externally valid pre-image 𝑣 that has been obtained by 𝑡 + 1 − 𝑓 correct
processes. Hence, a positive bucket certificate acts as a special PoD.
• Negative certificates: Negative certificates (see figure 7) prove that not all correct processes

have started with the same value. However, a negative bucket certificates involves additional
cryptographic materials compared to its counterpart in [67]. In order to properly define
negative bucket certificates, we introduce extended groups. Intuitively, an extended group
𝑔 = (𝑥,𝑦, _) is a cryptographic object that allows to convince that 𝑇 +𝑇 ≥ 𝑡 + 1 processes
startedwith a valuewhose digest is outside a certain segment [𝑥,𝑦]. Thus, a tuple of extended
groups whose associated segments form a partition of the entire domain of possible digests
constitutes a proof that the correct processes did not start with the same value. In the
description, 𝑇 represents a contribution obtained from bona fide processes, with a compact
representation, while𝑇 represents a contribution obtained indirectly via the LearnOrExpose
primitive. More formally, an extended group 𝑔 is a tuple (𝑥,𝑦,𝑇 , 𝜎, indirects, culprits), such
that:
(1) 𝑥,𝑦 ∈ Digest_Value with 𝑥 ≤ 𝑦,
(2) indirects is a dictionary mapping process ids to a dicslose message, and for each

𝑝 𝑗 ∈ indirects.Keys(), indirects[𝑝 𝑗] = ⟨disclose, 𝑒 𝑗 , ShareSign𝑡+1𝑗 (disclose, 𝑒 𝑗)⟩ with
𝑒 𝑗 ∉ [𝑥,𝑦],

(3) culprits is a dictionary mapping process ids to a proof-of-misbehaviour, and for each
𝑝 𝑗 ∈ culprits.Keys(), culprits[𝑝 𝑗] = PoM(𝑝 𝑗).

(4) 𝑈 ≜ (Π \ indirects.Keys()) \ culprits.Keys() (𝑈 is a universe),
(5) 𝑇 ∈ [1, 𝑡 + 1] is a threshold,
(6) 𝜎 is a (𝑇,𝑈)-MTS of (𝑥,𝑦), i.e.

Verify((𝑥,𝑦), 𝜎,𝑇 ,VK𝑈) = 𝑡𝑟𝑢𝑒 with (𝐶𝐾𝑈 ,𝑉𝐾𝑈) = UniverseSetup(𝑈),
(7) (indirects.Keys() ∪ culprits.Keys()) ∩𝑈 = ∅,
(8) |indirects.Keys() ∪ culprits.Keys() | = 𝑇 such that 𝑇 +𝑇 ≥ 𝑡 + 1,
Lastly, a negative bucket certificate is a tuple

(
𝑔1 = (𝑥1, 𝑦1, _) , ... , 𝑔𝑘 = (𝑥𝑘 , 𝑦𝑘 , _)

)
of 𝑘 ≤ 3

extended groups, such that:
– 𝑥𝑘′+1 = 𝑦𝑘′ + 1 for each 𝑘 ′ ∈ [1 : 𝑘 − 1]18,
– 𝑥1 = 𝑑min (the first digest in the lexicographic order), and
– 𝑦𝑘 = 𝑑max (the last digest in the lexicographic order)

Note that for each 𝑑 ∈ Digest_Value, there is exactly one 𝑖 such that 𝑥𝑖 ≤ 𝑑 ≤ 𝑦𝑖 .
We now explain Algorithm 8 in more details.
When a correct leader 𝑝ℓ engages in persuade

valsv
with val𝑠𝑣 = strong&external_validity, it

verifies whether it has received a common digest from at least 𝑡 + 1 processes (line 12). If affirmative,
𝑝ℓ builds a positive bucket certificate by combining the received partial signatures into a (𝑡 + 1)-
threshold signature (line 14). Otherwise, it partitions the received digests into groups via Algorithm 9
(line 18) such that:

• Each constructed group 𝑔 = (𝑥,𝑦, ·, ·, ·, ·) includes the digests of at most 𝑡 processes.
• For any two contiguous groups, the digests of at least 𝑡 + 1 processes are included in their
union.

Crucially, 𝑝ℓ manages to partition all received digests into at most 3 ∈ 𝑂 (1) groups. Upon finalizing
the groups, 𝑝ℓ communicates them to all processes (line 19). Receiving these groups, 𝑝𝑖 responds

18+1 returns the next value in lexicographic order

37

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

Fig. 7. Negative bucket certificate. The entries partitioned by the leader (line 18) into at most 3 ∈ 𝑂 (1)
extended groups are represented in red, yellow and blue on the figure. Processes that consistently reply

(line 25), with a (multiverse) partial signature (line 24) for each extended group to which processes do not

belong to (see the check at line 23) contribute to the (multiverse) threshold 𝑇 ∉𝑔
for the different extended

groups. Byzantine processes that do not consistently reply, will indirectly contribute to 𝑇 ∉𝑔
, either by a

proof-of-misbehaviour or by a corresponding disclose message, potentially indirectly obtained via a

LearnOrExpose instance. For each extended group 𝑔, 𝑇 ∉𝑔 +𝑇 ∉𝑔 ≥ 𝑡 + 1 proves that some correct process did

not start with an entry in 𝑔.

with MTS partial signatures for each group to which it does not belong (lines 24 and 25). Notice
that here, 𝑝𝑖 can sign an MTS partial signature without any knowledge of what the universe and
threshold would be.
After accumulating MTS partial signatures from other processes (line 28), 𝑝ℓ builds a negative

bucket certificate via Algorithm 10 (line 29). If the leader 𝑝ℓ has previously created a positive bucket
certificate, this segment is bypassed. If 𝑝ℓ has accounted for 2𝑡 + 1 processes at line 16, the boolean
variable negative_cert_ready is set to true at line 17, allowing the check at line 27 to pass. This is
followed by the generation of a negative certificate at line 29, which is then broadcast at line 31.
On receiving a certificate, 𝑝𝑖 engages in two additional rounds (rounds 4 and 5) to construct

a succinct PoD, in the form of a simple (𝑡 + 1)-threshold signature. Finally, if 𝑝𝑖 acquires a valid
succinct PoD from 𝑝ℓ (line 42), it returns that PoD (line 43). In the absence of such a PoD, 𝑝𝑖 returns
⊥ (line 45) instead.
For completeness, we will explain the partitioning logic in Algorithm 9. In a nutshell, the

algorithm will first sort the digests (line 9). It then iterates through the sorted digests and greedily

38

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

forms the groups (line 17). If the current digest can be added to the last created group such that
the group still contain at most 𝑡 digests (line 18), then the current digest will be added to that
group. Otherwise, a new group will be created, containing the current digest (line 21). Finally, the
algorithm returns the formed groups (line 28).

We now prove that the partitioning done in Algorithm 9 will produce at most 3 ∈ 𝑂 (1) groups.

Lemma 21. Consider a correct process 𝑝ℓ which has received at most 2𝑡 + 1 entries and no entry
is received more than 𝑡 times. The execution of partition (Algorithm 9) by process 𝑝ℓ returns a
partition of Entry

val
of at most 3 ∈ 𝑂 (1) groups such that (1) each group contains at most 𝑡 received

values, and (2) any two adjacent groups contain at least 𝑡 + 1 received values.

Proof. To prove the lemma, we reuse the argument from [67]. As any two adjacent groups
contain (collectively) at least 𝑡 + 1 values, and there are 2𝑡 + 1 values, there can be at most 3 ∈ 𝑂 (1)
groups. Indeed, the first two groups contain (at least) 𝑡 + 1 values. Assuming there are at least 4
groups, the same would also hold for the third and fourth groups. This contradicts the fact that
𝑙 received at most 2𝑡 + 1 values. Hence, there are at most 3 ∈ 𝑂 (1) groups, which concludes the
lemma. □

We need to prove the accuracy of persuade
valsv

, which later will be used to prove the accuracy of
ada-Dispvalsv .

Lemma 22. persuade
valsv

(Algorithm 8) satisfies val𝑠𝑣-local-accuracy.

Proof. Items 1 and 2 are trivially verified since no correct process ever signs an accusemessage
or a disclose message in persuade

val𝑠𝑣
. □

Lemma 23 (Unforgeability of negative certificate). If protocol persuade
valsv

(Algorithm 8) is a sub-
routine ofada-Dispvalsv , Then no negative bucket certificate can be forged inE ′ ∈ execs(persuadeval𝑠𝑣)
such that E ′ corresponds to some input configuration 𝑐 , where there exists 𝑣 ∈ Value𝐼 : ∀𝑝𝑖 ∈
𝜋 (𝑐), proposal(𝑐 [𝑖]) = 𝑣 .

Proof. By contradiction, suppose all correct processes start with the same value 𝑣 . Assume Σ− =
(𝑔1, . . . , 𝑔𝑚) is a negative bucket certificate where𝑚 ≤ 3 and each 𝑔𝑘 = (𝑥𝑘 , 𝑦𝑘 ,𝑇𝑘 , 𝜎𝑘 , indirects𝑔𝑘
, culprits) for 1 ≤ 𝑘 ≤ 𝑚. It follows that for some 𝑘 ∈ [1 :𝑚], 𝑒 ≜ entry

val𝑠𝑣
(𝑣) falls within [𝑥𝑘 , 𝑦𝑘].

Hence, a correct process 𝑝 𝑗 must either (i) be in indirect
𝑔𝑘 .Keys() and have signed (disclose, 𝑒 𝑗)

with 𝑒 𝑗 ∉ [𝑥𝑘 , 𝑦𝑘], or (ii) be in culprits.Keys(), or (iii) be part of 𝑈 𝑔𝑘 ≜ (Π \ indirect𝑔𝑘 .Keys()) \
culprits.Keys() and have signed (𝑥𝑘 , 𝑦𝑘). Scenario (i) is not possible because 𝑒 ≜ entry

val𝑠𝑣
(𝑣) ∈

[𝑥𝑘 , 𝑦𝑘] and item 2 of Definition 1 of val𝑠𝑣-local-accuracy, ensured by Lemma 8. Scenario (ii) cannot
occur as it would contradict the item 1 of Definition 2 of val𝑠𝑣-global-accuracy, ensured by Lemma 9.
Scenario (iii) is also not possible because 𝑝 𝑗 started with entry 𝑒 ∈ [𝑥𝑘 , 𝑦𝑘], and a correct process
only signs groups that it does not belong to (see lines 23 and 24 of Algorithm 8). □

We will prove the ’correctness’ of Algorithm 10.

Lemma 24. Assume a correct process executes Algorithm 10 with parameters satisfying the
following conditions:

(1) VerifyVector
valsv
(vec, proof) where vec = (𝑒1, ..., 𝑒𝑛), with

(vec, proof) = (extract_vector(discloses, culprits), extract_vector_proof (discloses, culprits))
(2) groups = partition(discloses),
(3) For each 𝑝𝑖 ∈ replies.Keys(), replies[𝑝𝑖] = ⟨partition_reply, {(𝑥𝑔, 𝑦𝑔, _), Sign𝑖 (𝑥𝑔, 𝑦𝑔)}𝑔∈𝐺𝑖

⟩,
where𝐺𝑖 is a proper subset of groups with |𝐺𝑖 | = |groups | − 1 and for all 𝑔 ∈ 𝐺𝑖 , 𝑒𝑖 ∉ [𝑥𝑔, 𝑦𝑔].

Under these conditions, Algorithm 10 outputs a negative bucket certificate.

39

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

Proof. Given that initially, groups = partition(discloses), every 𝑔 in groups satisfies item 1, and
collectively, these members form a partition.

Consider an extended group𝑔 = (𝑥𝑔, 𝑦𝑔, |𝐽𝑔 |, 𝜎𝑔, indirect𝑔, culprit) in groups. Item 2 is satisfied due
to the check at line 10 in algorithm 10. Item 3 is inherently met by definition. Item 4 is a definition.
The integer |𝐽𝑔 |meets the requirement in item 5. All signers in 𝐽𝑔 are in𝑈 𝑔 ≜ (Π\indirects𝑔 .Keys())\
culprits.Keys(), so 𝜎𝑔 = Combine(CK𝑈𝑔 , 𝑆

𝑔

𝐽 𝑔
) with (CK𝑈𝑔 ,VK𝑈𝑔) ← UniverseSetup(𝑈 𝑔) fulfills

item 6.
Item 7 is fulfilled through the construction of𝑈 𝑔 , which excludes indirects𝑔 .Keys() and culprits.Keys().

What remains is to demonstrate that item 8 is fulfilled. As initially, groups = partition(discloses),
discloses includes at least 𝑡 + 1 − |culprits.Keys() | discloses messages of the form discloses[𝑝 𝑗] =
⟨disclose, 𝑒 𝑗 , ShareSign𝑡+1𝑗 (Disclose, 𝑒 𝑗)⟩ with 𝑒 𝑗 ∉ [𝑥𝑔, 𝑦𝑔]. Coupling this with line 11, preceded
by the check at line 10, item 8 is verified. □

Lemma 25. If protocol persuade
valsv

(Algorithm 8) is a sub-routine of ada-Dispvalsv , then it solves
the Persuasion problem parameterized with valsv and VerifyVector

valsv
.

Proof. Assume some correct process outputs the pair (𝑑𝑖 , PoD(𝑑𝑖)). The check at line 42 must
have passed, whichmeansCombinedVerify

𝑡+1 (⟨ack, 𝑑𝑖⟩, PoD(𝑑𝑖)) = true. Thus, integrity is verified.
Moreover, it implies that a set 𝑆 of at least 𝑡 + 1 − 𝑓 correct processes partially signed the message
⟨ack, 𝑑𝑖⟩. It must have been done either at line 36 upon the reception of a valid positive bucket
certificate, or at line 34, upon the reception of a negative bucket certificate. Assume one member of
𝑆 signed the message ⟨ack, 𝑑𝑖⟩ at line 36 upon the reception of a valid positive bucket certificate.
Then, a set 𝑆 ′ of at least 𝑡 + 1− 𝑓 correct processes have partially-signed the message ⟨disclose, 𝑑⟩,
where 𝑑 is necessarily their common entry. By Lemma 8, this implies observation and validity (and
thus, redundancy). Assume no member of 𝑆 partially-signed the message ⟨ack, 𝑑𝑖⟩ at line 36 upon
the reception of valid positive bucket certificate. It means all the members of 𝑆 partially-signed
the message ⟨ack, 𝑑⟩ at line 34 upon the reception of a negative bucket certificate, associated with
some value 𝑣 such that Digest(𝑣) = 𝑑 . This implies observation. Strong validity is guaranteed by
Lemma 23. Moreover, 𝑣 is externally valid since the check line 33 passes for at least one correct
process. Thus, validity is also ensured in this case and thus, redundancy is also ensured.

Let us prove optimistic termination. Assume the leader 𝑝ℓ is correct and initially stores disclosesℓ
and culpritsℓ such thatVerifyVectorvalsv (vec, proof)with vec = (𝑒1, ..., 𝑒𝑛) = extract_vector(disclosesℓ ,
culpritsℓ) and proof = (𝜎1, ..., 𝜎𝑛) = extract_vector_proof (disclosesℓ , culpritsℓ). If the same entry 𝑒
appears 𝑡 + 1 times, a positive bucket certificate is built at line 14 and broadcast at line 15. Upon its
reception at line 35, every correct process replies with an acknowledgement at line 36, allowing the
reception of 𝑡 + 1 partially signed ack messages by the leader (line 38). The leader then combines
them into a PoD using (𝑡 + 1)-threshold signature (line 39), which is then broadcast at line 40. Every
correct process will receive the PoD at line 42 and use it as the return value (line 43). Hence, in this
case, optimistic termination holds.
If no entry 𝑒 appears 𝑡 + 1 times, using Algorithm 9, 𝑝ℓ organizes all received values into

𝑂 (1) groups (line 18), and then communicates these groups to all processes via partition_req
messages (line 19). Upon the reception of a partition_req message (line 21), each correct process
replies with a consistent partition_reply message (line 25). Upon the reception of 2𝑡 + 1 − 𝑓
partition_reply messages (line 28), the necessary pre-conditions of Lemma 24 for generating a
negative bucket certificate via Algorithm 10 are met. The generated negative bucket certificate
(line 29) is then broadcast at line 31. Upon its reception (line 33), every correct process replies with
an acknowledgement at line 34. This ensures the reception of 𝑡 + 1 partially-signed ack message by
the leader at line 38. The leader then combines them into a PoD using (𝑡 + 1)-threshold signature

40

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

Algorithm 8 persuade
val𝑠𝑣
(start_value𝑖 , 𝑝ℓ , dicloses𝑖 , culprits𝑖): Pseudocode (for process 𝑝𝑖)

1: Input Parameters:
2: Process 𝑝ℓ ⊲ the leader; first parameter
3: Value start_value𝑖 ⊲ the input value; second parameter
4: Map(Process→ Disclose_Msg) discloses𝑖 ⊲ storing values directly or indirectly obtained
5: Map(Process→ T_Signature) culprits𝑖 ⊲ storing PoM indirectly obtained
6: Variables:
7: Set(Extended_Group) groups𝑖 ← ⊥ ⊲ partitioning groups
8: Boolean negative_cert_ready ← false ⊲ attest if the leader will have to produce a negative certificate
9: Digest_Value certified_digest𝑖 ← ⊥ ⊲ the certified digest
10: Round 1:
11: if 𝑝𝑖 = 𝑝ℓ :
12: if exists Digest_Value 𝑑 such that | { 𝑗 ∈ [1 : 𝑛] |discloses𝑖 [𝑝 𝑗] = ⟨disclose, 𝑑, P_Signature sig⟩ } | ≥ 𝑡 + 1:
13: certified_digest𝑖 ← 𝑑

14: let positive_cert ← Combine
𝑡+1 ({sig | sig is received in the 𝑡 + 1 received disclose messages})

15: broadcast ⟨pos_Cert, 𝑑, positive_cert ⟩ ⊲ a positive certificate has been built and broadcasted
16: else if |discloses𝑖 .Keys() ∪ culprits𝑖 .Keys() | = 2𝑡 + 1: ⊲ a precondition if honestly triggered
17: negative_cert_ready ← true

18: groups𝑖 ← partition(discloses𝑖)
19: broadcast ⟨partition_req, groupsi ⟩
20: Round 2:
21: if ⟨partition_req, Set(Extended_Group) groups⟩ is received from 𝑝ℓ such that |groups | ∈ 𝑂 (1) :
22: let negatives← ∅
23: for each

(
𝑔 = (𝑥, 𝑦, ·, ·, ·, ·)

)
∈ groups such that ¬(𝑥 ≤ Digest(start_value𝑖) ≤ 𝑦) :

24: negatives← negatives ∪ (𝑔, Sign𝑖 (𝑥, 𝑦)) ⊲ attest its digest is not included in 𝑔
25: send ⟨partition_reply, negatives⟩ to 𝑝ℓ
26: Round 3:
27: if 𝑝𝑖 = 𝑝ℓ and negative_cert_ready = true:
28: let replies be the set of received partition_reply messages that are consistent with the sender’s disclose
29: let neg_cert ← construct_strong_negative_certificate(replies, groups𝑖 , discloses𝑖 , culprits𝑖)
30: certified_digest𝑖 ← Digest(start_value𝑖)
31: broadcast ⟨neg_cert, start_value𝑖 , neg_cert ⟩
32: Round 4:
33: if a valid ⟨neg_cert,Value value,Certificate Σ⟩ message is received from 𝑝ℓ such that externallyValid(value) :
34: send ⟨Ack, ShareSign𝑡+1𝑖 (Ack,Digest(value)) ⟩ to 𝑝ℓ ⊲ allows the leader to create a succinct PoD
35: else if a valid ⟨pos_cert,Digest 𝑑, PC 𝜎 ⟩ message is received from 𝑝ℓ s.t. CombineVerify

𝑡+1 (⟨disclose, 𝑑 ⟩, 𝜎) :
36: send ⟨Ack, ShareSign𝑡+1𝑖 (Ack, 𝑑) ⟩ to 𝑝ℓ ⊲ positive certificate proves correct observation of Digest−1 (𝑑)
37: Round 5:
38: if 𝑝𝑖 = 𝑝ℓ and ⟨ack, P_Signature sig⟩ is received from 𝑡 + 1 processes: ⊲ The leader creates a succinct PoD
39: let pod ← Combine

𝑡+1 ({sig | sig is received in the 𝑡 + 1 received ack messages})
40: broadcast ⟨Compact_Cert, certified_digest𝑖 , pod ⟩
41: Round 6:
42: if ⟨compact_cert,Digest_Value 𝑑, PoD 𝜎 ⟩ is received from 𝑝ℓ such that CombineVerify

𝑡+1 (⟨Ack, 𝑑 ⟩, 𝜎) :
43: return 𝑑, 𝜎

44: else:
45: return ⊥,⊥

(line 39), which is then broadacast at line 40 . Every correct process will receive the PoD at line 42
and use it as the return value at line 43. Thus, optimistic termination also holds in this case and
therefore, optimistic termination always holds. □

41

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

Algorithm 9 partition(discloses): Revised Partitioning Algorithm
1: Input Parameter:
2: Map(Process→ Digest_Value) discloses ⊲ map of process to its disclosed entry
3: Variables:
4: List(Extended_Group) groups← [] ⊲ list of groups for partitioning
5: SortedList(Digest_Value) digests← [] ⊲ sorted list of digests
6: Map(Digest_Value→ Integer) frequency ← 𝑒𝑚𝑝𝑡𝑦 ⊲ frequency of each digest
7: Preparation:
8: for each ⟨disclose, 𝑒 𝑗 , ShareSign𝑡+1𝑗 (disclose, 𝑒 𝑗) ⟩ in discloses.Values() :
9: digests.insert(𝑒 𝑗) ⊲ Keep the list sorted
10: if 𝑒 𝑗 ∉ frequency.Keys() :
11: frequency [𝑒 𝑗] = 1
12: else:
13: frequency [𝑒 𝑗] = frequency [𝑒 𝑗] + 1 ⊲ Map each digest to its frequency among the disclose messages
14: Partitioning Logic:
15: initialize current group as 𝑔← (𝑑𝑚𝑖𝑛, 𝑑𝑚𝑖𝑛, _)
16: initialize value count for the current group as 𝑐𝑜𝑢𝑛𝑡 ← 0
17: for each 𝑑 in digests:
18: if 𝑐𝑜𝑢𝑛𝑡 + frequency [𝑑] ≤ 𝑡 :
19: update the upper bound 𝑔 [2] to 𝑑
20: increment 𝑐𝑜𝑢𝑛𝑡 by frequency [𝑑]
21: else:
22: let 𝑑′ ← 𝑔 [2] + 1
23: add 𝑔 to groups

24: reset 𝑔← (𝑑′, 𝑑, _)
25: reset 𝑐𝑜𝑢𝑛𝑡 ← frequency [𝑑]
26: update the upper bound 𝑔 [2] with dmax

27: add 𝑔 to groups

28: return groups

C.7 Verifiable Vector Collection

In this subsection, we present how the composition of pod_creation_attempt (Algorithm 11) and
ada-Disp (Algorithm 5) solves verifiable vector collection.

C.7.1 Pseudocode of pod_creation_attempt. First, we present pod_creation_attempt (Algorithm 11)
that corresponds to the attempt phase of a view of ada-Disp. The input parameters for the
protocol pod_creation_attempt include: (1) start_value𝑖 , the value with which a process 𝑝𝑖 ini-
tiates ada-Disp.propose(·); (2) 𝑝ℓ , the leader of the particular pod_creation_attempt invocation; (3)
indirects𝑖 , the disclose messages indirectly gathered through LearnOrExpose instances; (4) culprits𝑖 ,
the processes identified as guilty with associated proofs-of-misbehaviour from LearnOrExpose;
(5) contact𝑖𝑛𝑖 , the processes that have previously requested 𝑝𝑖 ’s entry in LearnOrExpose; and (6)
contact

𝑜𝑢𝑡
𝑖 , processes whose input 𝑝𝑖 has inquired about in earlier LearnOrExpose instances.

When a correct process 𝑝𝑖 engages in pod_creation_attempt, it initially informs the leader 𝑝ℓ
of its entry entry𝑖 (either start_value𝑖 or Digest(start_value𝑖), depending on the validity property)
by sending a disclose message to 𝑝ℓ (line 15). This message contains its partially signed entry
entry𝑖 . Upon receiving the disclose messages, including those indirectly acquired through past
LearnOrExpose instances, 𝑝ℓ (if correct) verifies whether it can link 2𝑡 + 1 processes to a disclose
message or a proof-of-misbehaviour (line 20), by also considering messages indirectly obtained
via LearnOrExpose. If this cannot be achieved, 𝑝ℓ must be able to identify a process 𝑝𝑎 that it can
accuse. 𝑝ℓ then indicates 𝑝𝑎 for accusation (line 24), suggesting processes to initiate LearnOrExpose
(line 29) to ascertain 𝑝𝑎’s input or expose 𝑝𝑎 .

42

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

Algorithm 10 construct_strong_negative_certificate(replies, groups, discloses, culprits): Strong
Negative Certificate Construction
1: Input Parameters:
2: List(Partition_Reply_Msg) replies ⊲ replies containing partial signatures
3: List(Extended_Group) groups ⊲ list of extended groups from partitioning
4: Map(Process→ Disclose_Msg) discloses ⊲ direct and indirect disclose messages
5: Map(Process→ T_Signature) culprits ⊲ A PoM for each culprit
6: Let 𝐼 be the set of processes in disclose.Keys() who did not reply consistently
7: for each extended group 𝑔 = (𝑥, 𝑦, ·, ·, ·, ·) in groups do
8: Map(Process→ Disclose_Msg) indirects𝑔 ← empty

9: for each 𝑝 𝑗 ∈ 𝐼 do
10: if discloses [𝑝 𝑗] = ⟨disclose, 𝑒 𝑗 , ShareSign𝑡+1𝑗 (Disclose, 𝑒 𝑗) ⟩ with 𝑒 𝑗 ∉ [𝑥, 𝑦] then
11: indirects

𝑔 [𝑝 𝑗] ← discloses [𝑝 𝑗]
12: end if
13: end for
14: 𝑈𝑔 ← (Π \ indirects𝑔 .Keys()) \ culprits.Keys()
15: (CK𝑈𝑔 ,VK𝑈𝑔) ← UniverseSetup(𝑈𝑔)
16: Collect from replies the maximum (limiting by at most 𝑡 + 1) set of MTS partial signatures 𝑆𝑔

𝐽 𝑔
= {Sign𝑗 (𝑥, 𝑦) } 𝑗∈𝐽 𝑔

from 𝐽 𝑔 ⊆ 𝑈𝑔 .
17: 𝑔← (𝑥, 𝑦, | 𝐽 𝑔 |,Combine(CK𝑈𝑔 , 𝑆

𝑔

𝐽 𝑔
), indirects𝑔, culprit)

18: end for
19: return groups

If it is achieved, 𝑝ℓ indicates verifiable vector collection has been successfully achieved, and
invites processes to participate in the persuasion protocol. At this very moment, 𝑝ℓ (if correct)
knows it will able to build and broadcast a proof-of-dispersal by the end of the persuasion protocol.

C.7.2 Security of Verifiable Vector Collection. Weprove that ada-Dispval satisfies val-local-accuracy
as long as the sub-routine persuade

val
satisfies val-local-accuracy.

Lemma 26 (val-local-accuracy of ada-Dispval). Let val be a validity property. If persuadeval satisfies
val-local-accuracy, then ada-Dispval satisfies val-local-accuracy.

Proof. No accuse or disclose message is signed outside the sub-routines LearnOrExpose
val

and persuade
val

except at line 15 of Algorithm 11, where the entry is consistent with the starting
value of Algorithm 5 (see line 16 of Algorithm 5). Sub-protocol persuade

val
is assumed to satisfy

val-local-accuracy, while Lemma 15 proves that LearnOrExpose
val

satisfies val-local-accuracy as
well. Here again, the entry is consistent with the starting value (see line 29 of Algorithm 11).
Therefore, the lemma holds.

□

We are finally able to prove Lemma 8 of accuracy.

Lemma 27 (ada-Disp’s local accuracy). The following holds:
• ada-Dispvalic satisfies valic-local-accuracy.
• ada-Dispvalsv satisfies valsv-local-accuracy.

Proof. valic-local-accuracy is ensured by Lemma 26 and Lemma 19, whereas valsv-local-accuracy
is guaranteed by Lemma 26 and Lemma 22. □

We recall that Lemma 27 (identical to Lemma 8) implies Lemma 10, i.e., the following holds:
• VerifyVector

valic
is unforgeable for (ada-Dispvalic , valic).

• VerifyVector
valsv

is unforgeable for (ada-Dispvalsv , valsv).
Next, we explain how the liveness of Verifiable Vector Collection is achieved.

43

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

Algorithm 11 pod_creation_attempt
val
(start_value𝑖 , 𝑝ℓ , indirects𝑖 , culprits𝑖 , contactin𝑖 , contactout𝑖):

Pseudocode (for process 𝑝𝑖)
1: Input Parameters:
2: Value start_value𝑖 ⊲ the input value; first parameter
3: Process 𝑝ℓ ⊲ the leader; second parameter
4: Map(Process→ Disclose_Msg) indirects𝑖 ⊲ storing values indirectly obtained in former instances
5: Map(Process→ T_Signature) culprits𝑖 ⊲ storing PoM indirectly obtained in former instances
6: Set(Process) contactin

𝑖
⊲ Processes that have requested the input of 𝑝𝑖 in a former LearnOrExpose instance

7: Set(Process) contactout
𝑖

⊲ Processes whose input has been asked by 𝑝𝑖 in a former LearnOrExpose instance
8: Variables:
9: Digest_Value certified_digest𝑖 ← ⊥
10: PoD pod𝑖 ← ⊥ ⊲ succinct proof of dispersal
11: Map(Process→ Disclose_Msg) discloses𝑖 ← empty ⊲ storing input entries
12: Entry ≜ Digest_Value ∪ Value entry𝑖 ← ⊥ ⊲ the entry is either the proposal or its digest, depending on val

13: Round 1:
14: entry𝑖 ← entry

val
(start_value𝑖) ⊲ either Digest(start_value𝑖) or start_value𝑖 depending on val

15: send ⟨disclose, entry𝑖 , ShareSign𝑡+1𝑖 (disclose, entry𝑖) ⟩ to 𝑝ℓ ⊲ inform the leader of the starting entry
16: Round 2: ⊲ executed only by 𝑝ℓ
17: if 𝑝𝑖 = 𝑝ℓ :
18: let discloses𝑖 [𝑝 𝑗] ←𝑚 𝑗 ≜ ⟨disclose, 𝑒 𝑗 , ShareSign𝑡+1𝑗 (disclose, 𝑒 𝑗) ⟩ if𝑚 𝑗 is received
19: for each process 𝑝 𝑗 , discloses𝑖 [𝑝 𝑗] ← indirects𝑖 [𝑝 𝑗] ⊲ complete with LearnOrExpose’s messages
20: if |discloses𝑖 .Keys() ∪ culprits𝑖 .Keys() | = 2𝑡 + 1: ⊲ check if VCC has been achieved
21: ⊲ reaching this point ensures the pre-condition of optimistic termination of the Persua-

sion problem, that is VerifyVector
val
(vec, proof) with vec = extract_vector(discloses, culprits) , and proof =

extract_vector_proof (discloses, culprits))
22: broadcast ⟨success⟩
23: else: ⊲ Select a new process to accuse
24: broadcast ⟨Fail, 𝑝𝑎 ⟩ with 𝑝𝑎 ∉ (discloses𝑖 .Keys() ∪ culprits𝑖 .Keys())
25: Round 3:
26: if ⟨success⟩ is received from 𝑝ℓ :
27: invoke persuade

val
(start_value𝑖 , 𝑝ℓ , discloses𝑖 , culprits𝑖)

28: else if ⟨fail, 𝑝𝑎 ⟩ is received from 𝑝ℓ : ⊲ collect one more disclose message or PoM for the next view
29: invoke LearnOrExpose

val
(pℓ , start_value𝑖 , 𝑝𝑎, indirects𝑖 , culprits𝑖 , contactin𝑖 , contact

out

𝑖
)

30: Round 3+𝑟
val
: ⊲ 𝑟

val
∈ 𝑂 (1) is the maximum number of rounds between persuasion

val
and LearnOrExpose

31: (certified_digest𝑖 , pod𝑖) ← outputs of persuasion
val

(if previously invoked)
32: (indirects𝑖 , culprits𝑖 , contactin𝑖 , contact

out

𝑖
) ← outputs of LearnOrExpose (if previously invoked)

33: return certified_digest𝑖 , pod𝑖 , indirects𝑖 , culprits𝑖 , contactin𝑖 , contact
out

𝑖

C.7.3 Liveness of Verifiable Vector Collection. We now prove that the verifiable vector collection
(VCC) is adaptively achieved.

Definition 5. [Achieving verifiable vector collection (VCC)] An iteration I of the protocol
pod_creation_attempt

val
(Algorithm 11) invoked by ada-Dispval (Algorithm 5) is said to achieve ver-

ifiable vector collection (VCC) under 𝑝ℓ if persuadeval (·, 𝑝ℓ , ·, ·) is triggered in the same round by all the
correct processes at line 27 of Algorithm 11 for a correct leader 𝑝ℓ that has collected (vec, proof), with
VerifyVector

val
(vec, proof) = true, where vec = extract_vector(disclosesℓ , culpritsℓ), and proof =

extract_vector_proof (disclosesℓ , culpritsℓ).
ada-Dispval (Algorithm 5) is said to achieve verifiable vector collection (VCC) at view ℓ under

a (correct) leader 𝑝ℓ if the corresponding ℓ-th iteration of the protocol pod_creation_attempt
val

(Algorithm 11) called by ada-Dispval achieves verifiable vector collection under (correct) leader 𝑝ℓ .

For a persuade
val

protocol solving the Persuasion problem, its execution upon verifiable vec-
tor collection will terminate the dispersion. We aim to establish the liveness of the verifiable

44

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

vector collection. The entry of process 𝑝𝑖 is said to be reported if, for every correct process 𝑝 𝑗 ,
𝑝𝑖 is included in either indirect 𝑗 .Keys() or culprits 𝑗 .Keys(). Furthermore, an iteration I of the
pod_creation_attempt subprotocol is considered unsuccessful if it is led by a correct leader that
fails to produce a PoD by the end of the instance.
To prove liveness, we first establish that an unsuccessful iteration leads to an increase in the

number of reported Byzantine entries.

Lemma 28. Consider a specific iterationI of the pod_creation_attempt subprotocol (Algorithm 11)
with the following conditions: (1) all correct processes participate in I, (2) the leader 𝑝ℓ of I is
correct, and (3) the leader does not reach line 27. Then, the count of reported Byzantine entries
increments by one.

Proof. All correct processes transmit their entry values to 𝑝ℓ (line 15). Since the leader does not
reach line 27, 𝑝ℓ accuses a process 𝑝𝑎 (line 24) in a LearnOrExpose instance initiated at line 29. As
stated in line 24, 𝑝𝑎’s entry is not yet reported. All correct processes participate in this instance
with a commonly accused process 𝑝𝑎 . By Lemma 16, the entry of 𝑝𝑎 becomes reported by the end
of the LearnOrExpose instance. □

Second, we show that when all Byzantine entries are reported, a correct leader will necessarily
be successful in its iteration.

Lemma 29. Consider a specific iteration I of the pod_creation_attempt sub-protocol (Algo-
rithm 11) assuming that (1) all correct processes are participating in I, (2) the leader 𝑝ℓ of I
is correct, and (3) all Byzantine entries have been reported. Then, I achieves verifiable vector
collection (VCC) under 𝑝ℓ .

Proof. The check at line 20 passes since all Byzantine entries have been reported, while all
correct processes send their entry to 𝑝ℓ at line 15. □

Lemma 30 (Verifiable Vector Collection). If not all the correct processes acquired a pair (𝑑, PoD(𝑑))
by view 2𝑓 , then ada-Dispval achieves verifiable vector collection (VCC) at view ℓ = 2𝑓 + 1 under
(an honest leader) 𝑝ℓ .

Proof. For each iteration overseen by a correct leader 𝑝ℓ , if one correct process already has a
PoD, all correct processes obtain a PoD in the view driven by this leader by Lemma 11.

Otherwise, every correct process initiates the pod_creation_attempt sub-protocol (line 16). If an
iteration is unsuccessful, Lemma 28 guarantees that the count of reported entries increases by one.
Consequently, there can be at most 𝑓 unsuccessful iterations driven by an honest leader, as the
complete reporting of the at most 𝑓 Byzantine entries results in a successful iteration according
to Lemma 29. Therefore, after a maximum of 2𝑓 iterations (comprising at most 𝑓 iterations led
by Byzantine leaders and at most 𝑓 unsuccessful iterations led by correct leaders), a successful
iteration under a correct leader is ensured. □

C.8 Proof of Correctness of ada-Disp

Lemma 31. Let val be a validity property. Let persuade
val

be a protocol that solves the Persuasion
problem for val and VerifyVector

val
. Then, ada-Dispval solves the Dispersion problem referring to

the validity property val.

Proof. Observe that an ackmessage can only be partially-signed in the persuade
val

sub-routine.
Hence, integrity, validity, and observation are ensured by the specification of the Persuasion
problem solved by persuade

val
. Let us prove termination. By Lemma 30, if not all the correct

processes acquired a pair (𝑑, PoD(𝑑)) by view 2𝑓 + 1, then an iteration of pod_creation_attempt

45

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

Entries
Collection

Learn Or
Expose

Persuasion

Catch-up

......

Leaders

++

Fig. 8. Disperse. 𝐿𝑒 denotes the maximum between ^ and the size of the entry (𝐿𝑖𝑛 or ^ depending on the

validity property). The 𝑂 (·)∗ notation means the average over all the views driven by a Byzantine leader. The

green view represents the successful leader if the delivery of the proof-of-dispersal (PoD) has not been

achieved under a Byzantine leader before. There are at most 2𝑓 views preceding the successful one, with at

most 𝑓 Byzantine leaders and at most 𝑓 unsuccessful correct leaders. Each unsuccessful leader drives a

LearnOrExpose instance, where the number of reported entries is incremented by one. These successive

LearnOrExpose instances will allow the successful leader to collect for each process either a signed entry or

an undeniable proof-of-misbehaviour. This will be enough to build and broadcast a PoD in a persuasion

instance. The correct processes are silent in the remaining views, except when forwarding a PoD to

complainers.

achieves verifiable vector collection (VCC) under (an honest leader) 𝑝ℓ≤2𝑓 +1. By definition, it means
persuade

val
(·, 𝑝ℓ , ·, ·) is triggered in the same round by all the correct processes at line 27 for a

correct leader 𝑝ℓ≤2𝑓 +1 that has collected (vec, proof) with VerifyVector
val
(vec, proof) = true, where

vec = extract_vector(disclosesℓ , culpritsℓ), proof = extract_vector_proof (disclosesℓ , culpritsℓ). By
optimistic termination of the Persuasion problem solved by persuade

val
, every correct process

obtains a pair (𝑑, PoD(𝑑)) at line 31 of Algorithm 11, passed on by line 33 of Algorithm 11 to line 19
of Algorithm 5, and finally acquired at line 21 of Algorithm 5. Hence, termination is also satisfied,
which concludes the proof. □

Theorem 3. Let val𝑖𝑐 = interactive_consistency. Then ada-Dispval𝑖𝑐
solves the Dispersion problem

referring to the validity property val𝑖𝑐 .

Proof. By Lemma 31 and Lemma 20. □

Theorem 4. Let val𝑣𝑠 = strong&external_validity. Then ada-Dispval𝑣𝑠
solves the Dispersion prob-

lem referring to the validity property val𝑣𝑠 .

Proof. By Lemma 31 and Lemma 25. □

C.9 Proof of Complexity of ada-Disp

The communication complexity of ada-Disp is illustrated in Figure 8. We will devote this whole
subsection to formally proving the complexity.

Proof of VCC’s complexity. We recall that we denote by I∗ the first iteration such that all the
correct processes output a PoD by the end of I∗. Moreover, we recall Lemma 14 that states that the
communication complexity of all the iterations in (I∗ : 𝑛] of the for loop of ada-Disp (Algorithm 5)
is at most 𝑂 (^𝑛𝑓). This is why we focus on iterations in [1 : I∗].
We establish that the total exchange of disclose messages is limited to 𝑂 (𝑛(𝑓 + 1)) across all

iterations.

46

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

Lemma 32. In all iterations of the pod_creation_attempt subprotocol (Algorithm 11) (initiated at
line 16 of Algorithm 5), all correct processes send at most 𝑂 (𝑛(𝑓 + 1)) disclose messages in total.

Proof. According to Lemma 18, no process sends a disclose message to the same process more
than once via the LearnOrExpose primitive. Consequently, the total number of disclose messages
directed to Byzantine processes is at most 𝑂 (𝑛(𝑓 + 1)). Moreover, a correct process issues at most
one reqest_input message in a single LearnOrExpose instance, and a disclose message is sent
only in response to such a reqest_inputmessage. Therefore, the exchange of disclosemessages
between correct processes is limited to 𝑂 (𝑛) in a single LearnOrExpose instance, and by extension,
in a single pod_creation_attempt subprotocol instance (Algorithm 11). Given that the final iteration
I∗ is preceded by no more than 2𝑓 iterations (including at most 𝑓 unsuccessful iterations led by
correct leaders and at most 𝑓 iterations led by Byzantine leaders), the total exchange of disclose
messages in ada-Dispval (Algorithm 5) does not exceed 𝑂 (𝑛(𝑓 + 1)). □

We now aim to demonstrate that the number of bits transmitted in a specific iteration before
iteration I∗ is limited to 𝑂 (^𝑛) if we focus on non-disclose messages outside the persuade

val

protocol.

Lemma 33. Consider I, an iteration of the for loop in the ada-Dispval protocol (Algorithm 5). The
number of bits sent in I that do not belong to either a disclose message or a message sent in the
persuade

val
protocol is then 𝑂 (^𝑛).

Proof. Excluding disclose messages and persuade
val
’s messages, the communication necessar-

ily includes the leader. Disregarding (a) persuade
val
’s messages, (b) disclose messages (sent at line

17 of Algorithm 6), and (c) fail messages (sent at line 24 of Algorithm 11) with a process id of size
log(𝑛)), each remaining message comprises at most 𝑂 (^) bits words. These messages include:
• Messages in Algorithm 4: aid_req messages (line 7 or line 9), aid_reply messages (sent

at line 12 with an attached succinct PoD) and aid_relay messages (sent at line 18 with an
attached succinct PoD).
• Messages in Algorithm 6: reqest_input messages (sent at line 11), accuse messages
(sent at line 24 with a partial signature), expose messages (sent at line 29 with a threshold
signature), and learn messages (sent line 31 with a partial signature).
• Messages in Algorithm 11 excluding Algorithm 6, persuade

val
’s messages, disclose, and

fail messages: success messages (sent at line 22).
All these messages account for 𝑂 (𝑛) messages with 𝑂 (^) bits each in iteration I. Furthermore,

fail messages (broadcasted at line 24 of Algorithm 11 with a process id of size log(𝑛)) contribute
𝑂 (𝑛 log(𝑛)) bits.

Finally, recall that we assume ^ > log(𝑛). Therefore, the total bits will be 𝑂 (^𝑛). □

Lemma 34. Excluding persuade
val
’s messages, ada-Dispval exchanges 𝑂 (𝑛(𝑓 + 1)) disclose mes-

sages and 𝑂 (^𝑛(𝑓 + 1)) bits. Moreover, persuade
val

is executed at most 𝑓 times under a Byzantine
leader and at most once under a correct leader.

Proof. We categorize all iterations of the for loop into three distinct classes: (1) Iteration I∗,
(2) the set of iterations J ≤ preceding I∗ (included), and (3) the set of iterations J> following
I∗ (excluded). Observe that |J ≤ | ≤ 2𝑓 + 1, accounting for at most 𝑓 iterations led by Byzantine
leaders and at most 𝑓 unsuccessful iterations led by honest leaders.Obviously, |J> | < 𝑛, given
there are no more than 𝑛 iterations.
First, a maximum of 𝑂 (𝑛(𝑓 + 1)) disclose messages is exchanged in total, as established by

Lemma 32. We now focus on non-disclose messages and non-persuade
val
’s messages:

47

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

• J ≤ : By Lemma 33, no more than 𝑂 (^𝑛(𝑓 + 1)) bits are exchanged in J ≤ .
• J>: Following Lemma 14, a maximum of 𝑂 (𝑛(𝑓 + 1)^) bits are exchanged for iterations
succeeding I∗.

Thus, in total, excluding persuade
val
’s messages, no more than 𝑂 (^𝑛(𝑓 + 1)) bits and 𝑂 (𝑛(𝑓 + 1))

disclose messages are exchanged between correct processes in ada-Dispval.
By Lemma 30, if not all the correct processes acquired a pair (𝑑, PoD(𝑑)) by view 2𝑓 + 1, then

an iteration of pod_creation_attempt achieves verifiable vector collection (VCC) under (a correct
leader) 𝑝ℓ≤2𝑓 +1, which means until I∗, persuade

val
is executed at most 𝑓 times under a Byzantine

leader. After I∗, persuade
val

is not executed by correct processes. Therefore, it will be executed at
most once under a correct leader. □

Lemma 35. Let val be a validity property. Let 𝐿𝑒 be the maximum between ^ and the size of an
entry (𝐿𝑖𝑛 or ^ depending on val). Assume the communication complexity of persuade

val
under

a Byzantine leader is 𝑂 (^𝑛). Then, ada-Dispval exchanges 𝑂 (𝑛(𝑓 + 1) (𝐿𝑒 + ^)) bits to achieve
verifiable vector collection.

Proof. Follows from Lemma 34. □

We now focus on the communication complexity of persuade
val
.

Proof of persuasion complexity for interactive consistency.

Lemma 36. The execution of persuade
val𝑖𝑐

(Algorithm 7) under a leader 𝑝ℓ incurs an exchange of
(1) 𝑂 (^𝑛) bits if 𝑝ℓ is Byzantine, and 𝑂 (𝑛2 (𝐿𝑖𝑛 + ^)) bits otherwise.

Proof. First, it is important to note that only a leader can send a vector message with 𝑂 (𝑛)
entries and 𝑂 (𝑛) signatures. Every non-vector message represents at most 𝑂 (^) bits, and in each
invocation, a non-leader only sends 𝑂 (1) such messages. Thus, the lemma. □

Proof of persuasion complexity for strong validity. First, let us recall Lemma 21, which establishes
that a correct process can partition up to 2𝑡 + 1 values into a maximum of 3 ∈ 𝑂 (1) groups. This
partitioning ensures that (1) each group contains no more than 𝑡 values, and (2) any two adjacent
groups collectively contain at least 𝑡 + 1 values.
A direct implication of Lemma 21 is that any bucket certificate produced by a correct leader

comprises 𝑂 (^ (𝑓 + 1)) bits.

Lemma 37. Any bucket certificate (positive or negative) generated by a correct leader contains at
most 𝑂 (^ (𝑓 + 1)) bits.

Proof. A positive bucket certificate contains 𝑂 (^) bits, as it is merely a threshold signature.
On the other hand, a negative bucket certificate contains 𝑂 (^ + 𝑓 (^ + log(𝑛))) bits. Recall that the
negative bucket certificate comprises a set of at most 3 ∈ 𝑂 (1) extended groups (by Lemma 21).
Each extended group includes (a) an 𝑂 (^)-sized universe threshold signature, (b) 𝑂 (𝑓) proofs-of-
misbehaviour, each of size𝑂 (^), and (c) as many as 𝑓 disclosemessages from Byzantine processes
along with their process id description, each of size𝑂 (^ + log𝑛). Finally, we recall that it is assumed
that ^ > log(𝑛). Therefore, a negative bucket certificate contains 𝑂 (^ (𝑓 + 1)) bits. □

We now establish that the communication cost associated with persuade
val

is linear except for
the leader that can send a certificate of 𝑂 (^ (𝑓 + 1)) bits.

Lemma 38. The execution of persuade
val𝑠𝑣

(Algorithm 8) under a leader 𝑝ℓ incurs an exchange of
(1) 𝑂 (^𝑛) bits if 𝑝ℓ is Byzantine, and 𝑂 (𝑛𝐿𝑜 + 𝑛(𝑓 + 1)^) bits otherwise.

48

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

Proof. First, it is important to note that only a leader can send a neg_cert message with a
negative certificate Σ (as specified at line 31). In such a situation, the leader must send its input
value as a default externally valid value. This implies the 𝑛𝐿𝑜 bits will be sent in this scenario. If
the leader is correct, Σ contains at most 𝑂 (^𝑛(𝑓 + 1)) bits, by Lemma 37. Every non-neg_cert
message represents 𝑂 (^) bits and in each invocation, a non-leader only sends 𝑂 (1) such messages.
Thus, the lemma. □

Proof of dispersion complexity. Finally, we are ready to demonstrate the complexity of ada-Dispval.

Theorem 5. ada-Dispval𝑖𝑐 exchanges 𝑂 (𝑛2 (𝐿𝑖𝑛 + ^)) bits.

Proof. Follows from lemmas 35 and 36. □

Theorem 6. ada-Dispval𝑠𝑣 exchanges 𝑂 (𝑛𝐿𝑜 + 𝑛(𝑓 + 1)^) bits.

Proof. Follows from lemmas 35 and 38. □

C.10 ada-Dispval𝑖𝑐
with 𝑂 (𝑛2𝐿𝑖𝑛 + ^𝑓 𝑛) bit-complexity instead of 𝑂 (𝑛2𝐿𝑖𝑛 + ^𝑛2)

In this section, we explain how to achieve Dispersion with𝑂 (𝑛2𝐿𝑖𝑛 +^𝑓 𝑛) bit-complexity instead of
𝑂 (𝑛2𝐿𝑖𝑛 + ^𝑛2) bit-complexity, via a non-interactive 𝑛-aggregate signature scheme. Such a scheme
lets each of the 𝑛 processes sign a different message, but all these signatures can be aggregated into
a single short signature of 𝑂 (^) bits. This short signature can convince the verifier (equipped with
a description of the signers) that all signers signed their designated message.

Aggregate signature scheme. A non-interactive 𝑛-aggregate signature scheme is a tuple of ef-
ficient (local) protocols (Keys, ShareSign, ShareVerify,Verify,Aggregate), where Keys =

(
SK =

(sk1, ..., sk𝑛),VK = (vk1, ..., vk𝑛)
)
, with:

• VK: a vector of verification keys stored by every correct process.
• SK: a vector of private key shares such that, for every correct process 𝑝𝑖 , 𝑝𝑖 stores its private
key share sk𝑖 ; sk𝑖 is hidden from the adversary.
• ShareSign(𝑚, sk𝑖): a (potentially probabilistic) algorithm that takes (1) a string𝑚 ∈ String,
and (2) a private key share sk𝑖 as the input. The algorithm outputs a signature share 𝜎𝑆𝑖 of
(at most) ^ bits.
• ShareVerify(𝑚, vk 𝑗 , 𝜎𝑆𝑗): a deterministic algorithm that takes (1) a string𝑚 ∈ String, (2) the
verification key vk 𝑗 of a process 𝑝 𝑗 , and (3) a signature share 𝜎𝑆𝑗 as the input. The algorithm
outputs ⊤ or ⊥ depending on whether 𝜎𝑆𝑗 is deemed as a valid signature.
• Aggregate({(𝑚𝑖 , 𝜎𝑖)}𝑖∈𝑆∧𝑆⊆[1,𝑛]}): an algorithm that takes (1) a subset 𝑆 of any size of
message-signature share pairs. The algorithm outputs an aggregate signature 𝜎𝐴.
• Verify({𝑚𝑖 }𝑖∈𝑆∧𝑆⊆[1,𝑛], 𝜎𝐴, 𝐵): a deterministic algorithm that takes (1) an ordered subset
𝑆 of any size of strings {𝑚𝑖 }𝑖∈𝑆∧𝑆⊆[1,𝑛] , (2) an aggregate signature 𝜎𝐴, and (3) a bit-mask
𝐵 ∈ {0, 1}𝑛 . The algorithm outputs ⊤ or ⊥ depending on whether 𝜎𝐴 is deemed as a valid
aggregate signature with reference to 𝐵.

The following properties hold:
• Correctness of signature shares: For every 𝑖 ∈ [1, 𝑛], ShareVerify

(
𝑚, vk𝑖 , ShareSign(𝑚, sk𝑖)

)
returns ⊤.
• Unforgeability of signature shares: If ShareVerify(𝑚, vk 𝑗 , 𝜎𝑆𝑗) returns ⊤, then (1) 𝜎𝑆𝑗 ←
ShareSign(𝑚, sk 𝑗) has been executed by 𝑝 𝑗 , or (2) 𝑝 𝑗 is faulty.
• Correctness of aggregate signatures: Consider any (ordered) set of strings {𝑚𝑖 }𝑖∈𝑆∧𝑆⊆[1,𝑛] ⊂
String and any bit-mask 𝐵 ∈ {0, 1}𝑛 . The following holds:
Verify

(
{𝑚𝑖 }𝑖∈𝑆∧𝑆⊆[1,𝑛],Aggregate({ShareSign(𝑚 𝑗 , sk 𝑗)}𝐵 [𝑗]=1), 𝐵

)
returns ⊤.

49

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

• Unforgeability of aggregate signatures: If Verify({𝑚𝑖 }𝑖∈𝑆∧𝑆⊆[1,𝑛], 𝜎𝐴, 𝐵) returns ⊤, then, for
every 𝑗 ∈ [1, 𝑛] such that 𝐵 [𝑗] = 1, (1) 𝜎𝑆𝑗 ← ShareSign(𝑚 𝑗 , sk 𝑗) has been executed by 𝑝 𝑗 ,
or (2) 𝑝 𝑗 is faulty.

There exist transparent aggregate signature schemes such that the aggregate signatures have
a size of 𝑂 (^) bits (e.g., [12]). The interface of an aggregate signature scheme is similar to the
interface of the non-transparent threshold signature schemes. We emphasize that an aggregate
signature 𝜎𝐴 has to be associated with a bit-mask 𝐵 of 𝑛 bits (representing the subset of signers).
Indeed, this bit-mask is an argument of the associated Verify protocol. Thus, proving that a group
of a linear number of processes have signed a certain set of messages requires 𝑂 (^ + 𝑛) bits.
Also, the setup is transparent. Indeed, the secret keys can be generated independently, and the

correct processes have to agree on the associated verification keys (exactly as in a PKI).

A minor modification to ada-Dispvalic
. Now we explain how to modify ada-Dispvalic to achieve

𝑂 (𝑛2𝐿𝑖𝑛 + ^𝑓 𝑛) bit-complexity instead of 𝑂 (𝑛2𝐿𝑖𝑛 + ^𝑛2) bit-complexity.
We apply the following modifications:
• Each disclose message is backed by a corresponding aggregate signature share.
• The leader of persuade

valic
(Algorithm 8) broadcasts (1) vec, (2) up to 𝑓 PoMs of size ^ , and

(3) an aggregate signature of the remaining disclosemessages in vec (instead of up to 𝑛 − 𝑓
signature shares).

This yields a version of ada-Dispvalic achieves𝑂 (𝑛𝐿𝑜 +^𝑛(𝑓 + 1)) bit-complexity with 𝐿𝑜 = 𝑛𝐿𝑖𝑛 ,
and so bit-optimality if 𝐿𝑖𝑛 = Ω(^𝑓 /𝑛) instead of 𝐿𝑖𝑛 = Ω(^).

Theorem 7. ada-Dispval𝑖𝑐 with additional aggregate signatures exchanges 𝑂 (𝑛2𝐿𝑖𝑛 + ^𝑓 𝑛) bits.
Proof. The proof follows that of Theorem 5, where the bit complexity of persuade

valic
under a

correct process is 𝑂 (^ (𝑓 + 1)𝑛). □

D ADAPTIVE VALIDATED BYZANTINE AGREEMENT

In this section, we present a modification to CKS19 [32] so it satisfies external validity. Therefore,
making CKS a VBA protocol. We first explain the outline of CKS in Appendix D.1. We then explain
the reason why CKS does not satisfy external validity in Appendix D.2. Based on that, we propose
some modifications to CKS to make it satisfy external validity in Appendix D.3. Finally, we prove
the correctness of the modification and the complexity of CKS after applying the modifications in
Appendix D.4.

D.1 Outline of CKS
Essentially, CKS adheres to the silent views paradigm (see §2 and [71]) and leverages the key
observation that setting an optimistic threshold 𝑡𝑜 at 𝑛 − ⌈𝑛+𝑡+12 ⌉ enables quorum intersection
even if 𝑛 = 2𝑡 + 1. Classical “locking” mechanism guaranteeing safety across multiple views, as
employed in [16, 18, 75], can be derived from the quorum intersection. When 𝑓 ≤ 𝑡𝑜 , the first correct
leader ensures that all correct parties agree on an admissible value (if it is not already the case).
Subsequent honest leaders refrain from “wasting” communication in their views, thereby remaining
“silent”. This results in 𝑓 views to reach a correct leader, after which no further communication
occurs between correct processes, leading to an adaptive (^𝑛(𝑓 + 1)) bit complexity for 𝑂 (^)-bits
values. In cases where 𝑓 > 𝑡𝑜 , a fallback mechanism is activated to achieve agreement using the
optimally-resilient protocol proposed by Momose and Ren (which we refer to as MR) with 𝑂 (^𝑛2)
bit complexity for𝑂 (^)-bits values [61]. We note that the adaptiveness is maintained by the fallback
protocol as 𝑓 ∈ Ω(𝑛) whenever the fallback protocol is employed.
19CKS incorporates the correction of a minor technical flaw in [32] addressed by [38].

50

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

D.2 Why Does CKS Not Satisfy External Validity?

By itself, CKS does not satisfy external validity. To be precise, CKS has the following guarantees:
• If 𝑓 ≤ 𝑡𝑜 , all correct processes decide a valid (satisfying validCKS (·)) value 𝑣 .
• If 𝑓 > 𝑡𝑜 , all correct process either decide a valid value 𝑣 or ⊥. If ⊥ is decided, it must be the
case that correct processes have started with different inputs.

When ⊥ is decided, it must be because CKS is unable to decide in its optimistic path due to
𝑓 > 𝑡𝑜 . In this case, CKS employsMR as its fallback protocol.MR itself is a Byzantine agreement
protocol tolerating 𝑡 < 𝑛/2 faulty processes. MR provides strong validity, but not external validity.
Namely, it is possible for MR to decide any value if correct processes start with different inputs. In
CKS, whenMR is executed, it has to check the output ofMR. If the output is a valid value then it
will be the decision, otherwise ⊥ will be the decision. Meanwhile, ⊥ does not necessarily satisfy
external validity.

D.3 Obtaining External Validity with CKS
Here, we propose some modifications to MR so it satisfies external validity. By plugging this
modifiedMR to CKS, we obtain a Byzantine Agreement protocol satisfying external validity.
We first describe howMR works. In a nutshell,MR is a recursive algorithm.MR partition the

processes into two halves with roughly equal size, where each half runsMR (among themselves).
When the number of processes is small (i.e., constant) , MR executes any Byzantine Agreement
protocol satisfying strong validity, whose detail is left as a black box. Finally, when a recursion
unrolls, there are some technicalities to merge the result of MR from the two partitions. For
interested readers, we defer all the details of MR to [61].

We now provide the modifications to makeMR satisfy external validity.
(1) Correct processes ignore any messages containing an invalid value.
(2) Set the constant threshold for recursion to be 1. Then, in the base case of the recursion, a

process simply outputs its input value as the decision.
For simplicity, let us denote the MR protocol after applying the modifications as “modified MR”.

D.4 Analysis

We now prove that modified MR is a BA protocol that satisfies both strong validity and exter-
nal validity. Moreover, similarly to MR, modified MR terminates in 𝑂 (𝑛) rounds and exchanges
𝑂 (𝑛2 (𝐿𝑜 + ^)) bits.

Lemma 39. The modified MR is a BA protocol that satisfies both strong and external validity.

Proof. If there is only 1 process, all properties are trivially satisfied. Otherwise, observe that,
under the first modification, a correct process will only send messages containing a valid value.
Hence, each execution E in the modifiedMR is equivalent to an execution E ′ inMR where each
message containing an invalid value (which must be sent by a faulty process) is omitted instead.
Therefore, termination, agreement, and strong validity are satisfied. Finally, each correct process
only decides a valid value, so external validity is also satisfied. □

Lemma 40. The round complexity of the modifiedMR is𝑂 (𝑛), and its bit complexity is𝑂 (𝑛2 (𝐿𝑜 +
^)).

Proof. The modifications do not add nor remove any rounds or messages from the correct
processes. Hence, the complexities of the modifiedMR follow the complexities ofMR which are:
(1) 𝑂 (𝑛) round complexity, and (2) 𝑂 (𝑛2 (𝐿𝑜 + ^)) bit complexity. □

51

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

Finally, by replacing the fallback protocol employed by CKS with the modified MR, we obtain a
BA protocol satisfying external validity (i.e., we obtain a VBA protocol). Moreover, the protocol
terminates in 𝑂 (𝑛) rounds and exchanges 𝑂 (𝑛(𝑓 + 1) (𝐿𝑜 + ^)) bits.

Lemma 41 (Adaptive VBA exists). There exists a VBA protocol that terminates in 𝑂 (𝑛) rounds
and exchanges 𝑂 (𝑛(𝑓 + 1) (𝐿𝑜 + ^)) bits.

E ADA-RETRIEVE

In this section, we present the retrieval problem along with the complete implementation and
proofs of ada-Retrieve, our implementation for the aforementioned problem. We first describe the
retrieval problem along with our implementation in Appendix E.1. We then prove its correctness
and complexity in Appendix E.2.

E.1 The Retrieval Problem

In this subsection, we recall the specification of the retrieval problem (Appendix E.1.1) and give an
overview of ada-Retrieve, our implementation of the problem (Appendix E.1.2).

E.1.1 Specification. In a nutshell, the goal of the retrieval problem is to ensure that, given a
common digest where some correct processes have the pre-image of the digest, all correct processes
output (retrieve) the pre-image. Formally, the retrieval problem exposes the following interface:
• request input(𝑑 ∈ Digest_Value, 𝑣 ∈ Value∪ {⊥}): a process inputs a digest 𝑑 and either ⊥
or a value 𝑣 such that Digest(𝑣) = 𝑑 ; each correct process invokes input(·) exactly once.20
Moreover, the following is assumed:
– No two correct processes invoke input(𝑑1, 𝑣1) and input(𝑑2, 𝑣2) with 𝑑1 ≠ 𝑑2.
– At least 𝑡 + 1 − 𝑓 correct processes invoke input(𝑑, 𝑣) with 𝑣 ≠ ⊥ (i.e., Digest(𝑣) = 𝑑).

• indication output(𝑣 ′ ∈ Value): a process outputs a value 𝑣 ′.
The following properties are ensured:

• Agreement: No two correct processes output different values.
• Validity: Let a correct process input a value 𝑣 . No correct process outputs a value 𝑣 ′ ≠ 𝑣 .
• Termination: Every correct process eventually outputs a value.

E.1.2 Implementation. Here, we will describe the implementation of ada-Retrieve (see Algo-
rithm 12). At a high level, ada-Retrieve consists of two phases: 1) to almost everywhere phase
that ensures all but 𝑂 (𝑓) correct processes receive the pre-image, and 2) to everywhere phase that
ensures all correct process receive the pre-image value.
The first phase consists of gossiping the pre-image value through an expander graph. In short,

an expander graph is a graph (of a low degree, typically) with a good expansion property. Roughly
speaking, it means each vertex has a few neighbours, and any “relatively small” set of vertices
has many neighbours. In ada-Retrieve, we use a specific expander graph from [73], which has
some nice additional properties: after 𝑂 (log𝑛) rounds of gossip, all but 𝑂 (𝑓) correct processes
must have received the pre-image. Importantly, when a correct process received a value 𝑣 ′ from the
gossip, it can verify whether the 𝑣 ′ is indeed the pre-image by comparing Digest(𝑣 ′) with the the
common digest. Next, the second phase ensures that those remaining correct processes that have
not obtained any pre-image in the first phase eventually do obtain the pre-image. This is done in
two steps: (1) we ensure that each correct process 𝑝𝑖 knows the 𝑖-th RS symbol of the pre-image,
and (2) we ensure that any correct process that is left behind in the first phase obtains 𝑡 + 1 different
RS symbols. Importantly, each RS symbol is accompanied by an accumulator witness, allowing a
correct process to verify its validity (i.e., that the RS symbol is correctly-encoded).
20We underline that 𝑑 ≠ ⊥ even if 𝑣 = ⊥.

52

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

ada-Retrieve’s description. We present the algorithm in Algorithm 12. Immediately, each process
starts the “to almost everywhere” phase by gossipping via the expander graph for 𝑂 (log𝑛) rounds
(line 9). Notably, unlike the standard notion of gossip, here a correct process only forwards a value
to its neighbours at most once (line 10). Upon receiving the pre-image value during the gossip, a
correct process stores it in vi (line 11).

Upon finishing the to almost everywhere phase, each process continues to the to everywhere phase.
The phase unfolds in several rounds. In the first round, a correct process 𝑝𝑖 checks whether it has
obtained the pre-image (vi ≠ ⊥). If yes, it computes the 𝑖-th RS symbol and the witness, then stores
them in symboli and witnessi (line 13). Otherwise, 𝑝𝑖 sends a broadcast as an attempt to obtain
them (line 12). In the second round, suppose a correct process 𝑝 𝑗 already has the pre-image. It then
responds to each message sent at the first round, in which a message sent by a process 𝑝𝑖 will be
replied with the 𝑖-th RS symbol and its witness (line 16). In the third round, upon receiving the
reply from 𝑝 𝑗 , 𝑝𝑖 then updates symboli and witnessi accordingly (line 18). Then, 𝑝𝑖 sends a broadcast
to obtain at least 𝑡 + 1 RS symbols, which will allow it to recover the pre-image. Observe that at this
point, each correct process 𝑝 𝑗 must have obtained the 𝑗-th RS symbol and its witness. Therefore, at
the fourth round, each correct process 𝑝 𝑗 will be able to reply the requests sent at the third round
(line 20). In the final, fifth round, there are two cases. If a correct process 𝑝𝑖 starts to everywhere
phase with vi , it can simply trigger output(vi) (line 21). Otherwise, 𝑝𝑖 must have collected 𝑡 + 1 RS
symbols, allowing it to recover the pre-image and thus, output the recovered value (line 25).

Algorithm 12 ada-Retrieve: Pseudocode for process 𝑝𝑖
1: Uses:
2: ExpanderGraph, instance𝐺 ⊲ see [73]
3: Input parameters:
4: Digest_Value digesti ← 𝑑 ⊲ the input 𝑑
5: Value vi ← 𝑣 ⊲ the input 𝑣. if 𝑣 ≠ ⊥, then 𝑑 = Digest(𝑣)
6: Local variables:
7: RS_Symbol symboli ← ⊥ ⊲ the 𝑖-th RS symbol from the pre-image
8: Witness witnessi ← ⊥ ⊲ witness for symboli

9: for Integer 𝑘 ← 1 to𝑂 (log𝑛) : ⊲ to almost everywhere
10: if vi ≠ ⊥ and has not gossiped:multicast ⟨gossip, vi ⟩ to 𝑖’s neighbour in𝐺
11: if received ⟨gossip,Value 𝑣′⟩, Digest(𝑣′) = digesti , and vi = ⊥: vi ← 𝑣′

12: if vi = ⊥: broadcast ⟨complain⟩ ⊲ to everywhere
13: else: symboli ← 𝑃vi (𝑖) ;witnessi ← CreateWit(𝑎𝑘, digesti, (𝑖, symboli))
14: if vi ≠ ⊥, upon receiving ⟨complain⟩ from 𝑝 𝑗 :
15: let 𝑠 𝑗 ← 𝑃𝑣𝑖 (𝑗) and 𝑤𝑗 ← CreateWit(𝑎𝑘, digesti, (𝑗, 𝑠 𝑗))
16: send ⟨your_symbol, 𝑠 𝑗 , 𝑤𝑗 ⟩ to 𝑝 𝑗

17: if vi = ⊥, upon receiving ⟨your_symbol,RS_Symbol 𝑠,Witness 𝑤 ⟩ and Verify(𝑎𝑘, digesti, 𝑤, (𝑖, 𝑠)) = 𝑡𝑟𝑢𝑒 :
18: symboli ← 𝑠 ;witnessi ← 𝑤

19: broadcast ⟨req_symbols⟩
20: upon receiving ⟨req_symbols⟩ from 𝑝 𝑗 : send ⟨my_symbol, symboli,witnessi ⟩ to 𝑝 𝑗

21: if vi ≠ ⊥: trigger output(vi)
22: else, upon receiving ⟨my_symbol,RS_Symbol 𝑠 𝑗 ,Witness 𝑤𝑗 ⟩ from 𝑡 + 1 different 𝑝 𝑗 with
23: Verify(𝑎𝑘, digesti, 𝑤𝑗 , (𝑗, 𝑠 𝑗)) = 𝑡𝑟𝑢𝑒 :
24: reconstruct 𝑣 from 𝑡 + 1 RS via decode(·)
25: trigger output(𝑣)

E.2 Proof of Correctness & Complexity

Proof of correctness. We first prove that ada-Retrieve satisfies the specification stated in Appen-
dix E.1.1. We start with a lemma related to the “to almost everywhere” phase.

53

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

Lemma 42. At the end of the “to almost everywhere” phase (after the loop at line 9 terminates),
either vi = ⊥ or Digest(vi) = digesti.

Proof. First, vi is initialized as ⊥ or such that Digest(vi) = digesti. Then, within the “to almost

everywhere” phase, it can only be updated at line 11. Here, it can only be updated into a value 𝑣 ′
such that Digest(𝑣 ′) = digesti. □

We continue with several lemmas related to the “to everywhere” phase.

Lemma 43. At least 𝑡 + 1 − 𝑓 correct process starts the “to everywhere” phase with vi ≠ ⊥.

Proof. Follows from the pre-condition and Lemma 42 which implies a correct process cannot
update vi into ⊥. □

Lemma 44. By the end of round 2 of the “to everywhere” phase (line 16), each correct process 𝑝𝑖
updates its symboli to be the 𝑖-th RS symbol of Digest−1 (digesti) and witnessi to be the witness for
symboli.

Proof. When a correct process 𝑝𝑖 starts the “to everywhere” phase, if vi ≠ ⊥, symboli andwitnessi
will be updated at line 13 into the 𝑖-th RS symbol of Digest−1 (digesti) and its witness, respectively.
Otherwise, 𝑝𝑖 will request for the 𝑖-th RS symbol (line 12). As at least 𝑡 − 𝑓 + 1 > 0 correct processes
start the “to everywhere” phase with vi ≠ ⊥ (Lemma 43), some correct process enters line 16. There,
the correct process replies with the 𝑖-th RS symbol along with a witness that testifies that the reply
is indeed the 𝑖-th RS symbol. Finally, upon receiving an RS symbol and a witness testifying that it
is indeed the 𝑖-th RS symbol, 𝑝𝑖 updates its symboli and witnessi with the received RS symbol and
witness (line 18). □

Lemma 45. At the end of the “to everywhere” phase, each correct process 𝑝𝑖 which starts this
phase with vi = ⊥ will be able to collect 𝑡 + 1 different RS symbols of Digest−1 (digesti).

Proof. At the third round, 𝑝𝑖 will send a request for all correct RS symbols. By Lemma 44, by the
end of the second round, each correct process 𝑝 𝑗 has updated its 𝑠𝑦𝑚𝑏𝑜𝑙 𝑗 to be the 𝑗-th RS symbol of
Digest

−1 (digesti). Therefore, each correct 𝑝 𝑗 will send a reply to 𝑝𝑖 at the fourth round, containing
the 𝑗-th RS symbol. Hence, at least 𝑛 − 𝑓 ≥ 𝑡 + 1 different RS symbols will be collected. □

We are now ready to prove the correctness of ada-Retrieve.

Lemma 46. ada-Retrieve satisfies validity.

Proof. If output(·) is triggered at line 21, validity follows from the pre-condition and Lemma 42.
Otherwise, output(·) will be triggered at line 25, in which validity follows from Lemma 45. □

Lemma 47. ada-Retrieve satisfies agreement.

Proof. Follows from Lemma 46. As at least 𝑡 − 𝑓 + 1 > 0 correct processes input a value 𝑣 , all
correct processes will output 𝑣 . □

Lemma 48. ada-Retrieve satisfies termination.

Proof. There are finitely many rounds in ada-Retrieve, and all correct processes eventually
trigger output(·). □

As ada-Retrieve satisfies validity (Lemma 46), agreement (Lemma 47), and termination (Lemma 48),
ada-Retrieve is correct.

Theorem 8. ada-Retrieve is correct.

54

DARE to agree: Byzantine Agreement with Optimal Resilience and Adaptive Communication

Proof of complexity. We first focus on the complexity of the “to almost everywhere” phase. We
begin by restating the properties of the expander graph from [73].

Lemma 49. (Restated from [73]) For all 𝑛, there exists a constant 𝑑 > 0 that is independent of 𝑛
and some 𝑑-regular graph with 𝑛 vertices, where ∀𝑇 ⊂ 𝑉 with |𝑇 | ≤ 𝑛/72, there is a connected
component 𝑃 (𝑇) ∈ 𝑉 \𝑇 of size at least 𝑛 − 6|𝑇 |. Furthermore, the diameter of 𝑃 (𝑇) is 𝑂 (log𝑛).
The lemma above allows us to upper-bound the number of correct processes that exit the “to

almost everywhere” phase with outputi ≠ ⊥.
Lemma 50 (All but 𝑂 (𝑓)). All but 𝑂 (𝑓) correct processes will set their vi ≠ ⊥ by the end of the
“to almost everywhere” phase.

Proof. Suppose 𝑓 ≤ 𝑛/72. Observe that Lemma 49 states that, if 𝑓 ≤ 𝑛/72, there exists a
connected component in the graph𝐺 excluding the faulty processes which contains at least 𝑛 − 6𝑓
correct processes. Moreover, this connected component has a diameter of 𝑂 (log𝑛). Recall that
correct processes gossip for 𝑂 (log𝑛) rounds (line 9). If there is at least one correct process in that
connected component which starts with 𝑣 ≠ ⊥, then all correct processes in this component will
receive 𝑣 by the end of the to almost everywhere phase. Hence, all but 𝑂 (𝑓) correct processes will
receive 𝑣 and update their vi ← 𝑣 . This is ensured if at least 6𝑓 + 1 correct processes start with
𝑣 ≠ ⊥. As 𝑓 ≤ 𝑛/72, 𝑡 − 𝑓 + 1 ≥ 6𝑓 + 1 and therefore, all but 𝑂 (𝑓) correct processes will set their
vi ≠ ⊥. Now, let us consider 𝑓 > 𝑛/72. In this case, up to 𝑂 (𝑛) correct processes may still have
vi = ⊥ by the end of the to almost everywhere phase. However, as 𝑓 ∈ Ω(𝑛), it can also be treated
as all but𝑂 (𝑓) correct processes have set their vi ≠ ⊥. Therefore, in all cases, the lemma statement
holds. □

We now prove the communication of each phase.

Lemma 51. The “to almost everywhere” phase exchanges 𝑂 (𝑛𝐿𝑜 + ^𝑛) bits.
Proof. A correct process can only send messages to its neighbours in the expander graph at

line 10, notably one message with 𝑂 (𝐿𝑜 + ^) bits per neighbour. As the graph has a constant
degree, 𝑝𝑖 will only send messages to a constant number of processes. Moreover, 𝑝𝑖 will only send
a message to its neighbours at most once. Summing from all processes, we get that 𝑂 (𝑛𝐿𝑜 + ^𝑛)
bits are exchanged. □

Lemma 52. The “to everywhere” phase exchanges 𝑂 (𝑓 𝐿𝑜 + ^𝑛𝑓) bits.
Proof. By Lemma 50, 𝑂 (𝑓) correct processes will start the “to everywhere” phase with vi = ⊥.

Next, recall that the size of an RS symbol will be 𝑂 (max(𝐿𝑜
𝑡+1 , log𝑛)) and the size of a witness is

𝑂 (^). We break down on each line where a correct process may send some messages:
• Line 12. This line will be executed by 𝑂 (𝑓) correct processes. As the message size is 𝑂 (^)
bits, the bits exchanged are 𝑂 (^𝑛𝑓).
• Line 16. Up to 𝑂 (𝑛) correct process 𝑝𝑖 with vi ≠ ⊥ must reply to 𝑂 (𝑓) processes (including
faulty processes). As the message size is 𝑂 (max(𝐿𝑜

𝑡+1 , log𝑛) + ^), the bits exchanged are
𝑂 (𝑓 𝑛 · (max(𝐿𝑜

𝑡+1 , log𝑛) + ^)) = 𝑂 (𝑓 𝐿𝑜 + ^𝑛𝑓).
• Line 19. As there are 𝑂 (𝑓) correct processes which will enter this line and the message size
is 𝑂 (^) bits, the bits exchanged are 𝑂 (^𝑛𝑓).
• Line 20. Each correct process 𝑝𝑖 has to send the 𝑖-th RS symbol and its witness to 𝑂 (𝑓)
processes (including faulty processes). As the message size is 𝑂 (max(𝐿𝑜

𝑡+1 , log𝑛) + ^), the
bits exchanged are 𝑂 (𝑓 𝑛 · (max(𝐿𝑜

𝑡+1 , log𝑛) + ^)) = 𝑂 (𝑓 𝐿𝑜 + ^𝑛𝑓).
Summing everything together, we get that 𝑂 (𝑓 𝐿𝑜 + ^𝑛𝑓) bits are exchanged. □

55

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

Finally, we are now ready to prove the complexity of the ada-Retrieve.

Theorem 9. ada-Retrieve exchanges 𝑂 (𝑛𝐿𝑜 + 𝑛(𝑓 + 1)^) bits and terminates in 𝑂 (log𝑛) rounds.

Proof. As ada-Retrieve is a sequential composition of the “to almost everywhere” and “to

everywhere” phases, its communication complexity (resp., latency) is the sum of the bits exchanged
in (resp., latency of) each phase. The number of exchanged bits follows from Lemma 51 and
Lemma 52. The latency follows from the fact that the “to almost everywhere” phase consists of
𝑂 (log𝑛) rounds and the “to everywhere” phase consists of 𝑂 (1) rounds. □

56

	1 Introduction
	2 Technical overview
	3 System Model & Preliminaries
	4 ada-Dare
	4.1 ada-Dispval
	4.2 CKS
	4.3 ada-Retrieve

	5 ada-Retrieve
	5.1 Implementation
	5.2 Analysis

	6 ada-Disp
	6.1 Verifiable Vector Collection
	6.2 Persuasion

	7 conclusion
	References
	A Cryptographic Schemes
	B ada-Dare
	B.1 Building Blocks: Overview
	B.2 Pseudocode
	B.3 Analysis

	C ada-Disp
	C.1 Preliminaries
	C.2 The Dispersion Problem
	C.3 LearnOrExpose
	C.4 Persuasion: Problem Definition
	C.5 Persuasion for Interactive Consistency
	C.6 Persuasion for Strong Validity
	C.7 Verifiable Vector Collection
	C.8 Proof of Correctness of ada-Disp
	C.9 Proof of Complexity of ada-Disp
	C.10 ada-Dispvalic with O(n2Lin + f n) bit-complexity instead of O(n2Lin + n2)

	D Adaptive Validated Byzantine Agreement
	D.1 Outline of CKS
	D.2 Why Does CKS Not Satisfy External Validity?
	D.3 Obtaining External Validity with CKS
	D.4 Analysis

	E ada-Retrieve
	E.1 The Retrieval Problem
	E.2 Proof of Correctness & Complexity

