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ABSTRACT
Multiparty private set intersection (mPSI) protocol is capable of

finding the intersection of multiple sets securely without revealing

any other information. However, its limitation lies in processing

only those elements present in every participant’s set, which proves

inadequate in scenarios where certain elements are common to

several, but not all, sets.

In this paper, we introduce an innovative variant of the mPSI

protocol named unbalanced quorum PSI to fill in the gaps of the

mPSI protocol. Unlike the previous quorum-PSI proposals which

detect elements present in at least 𝑘 out of 𝑛 equal sets, our protocol

is particularly tailored for unbalanced cases where the size of the

receiver’s set is much smaller than the size of the senders’ sets. Our

work achieves logarithmic communication complexity in the semi-

honest setting, significantly surpassing previous work in efficiency.

The benchmarks show that it takes 22.7 seconds in WAN and

14.7 seconds in LAN for online computation, and only 87.8 MB of

total communication to intersect 5535 elements across 15 sets, each

containing 2
24

elements. Compared to prior work, this is roughly

an 87× reduction in communication and a 31× reduction in online

time. Our protocols can be easily extended to the larger set with

2
28

elements which is nearly impractical for prior work.
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1 INTRODUCTION
This paper focuses on a specialized multiparty computation (MPC)

protocol known as Private Set Intersection (PSI). The PSI protocol

takes set 𝑋and set 𝑌 as inputs and outputs the intersection of the

two sets𝑋 ∩𝑌 . The party that receives the result gets nothing about
the set of another party except for the intersection. The PSI protocol

is widely used in many scenarios such as private contact discov-

ery (e.g. Signal or WhatsApp) [22, 33, 41] and private biometric

identification [6, 19, 40].

Most of previous work focused on two-party PSI protocols and

Freedman et al. [18] proposed the first multiparty PSI (mPSI). Fol-

lowing that, Kolesnikov et al. [24] proposed the first practical ef-

ficient multiparty PSI protocol relying on fast oblivious transfer

(OT). Our work is an extension of the multiparty PSI protocol.

We have deeply considered the existing multiparty PSI schemes

and raised two observations which are not well studied in the open

literature. First, the goal of the multiparty PSI protocol is to securely

detect the elements that are common to all sets. Secondly, we noted

∗
The corresponding author.

Figure 1: The client interacts with multiple servers with
query Item2. The threshold is 3 and Item2 is a match of quo-
rum PSI protocol.

that in practical applications, participants’ data sets often vary

significantly in size, ranging from a few hundred to several million

entries.

In this work, we propose an innovative mPSI variant called un-

balanced quorum PSI protocol. The goal of the quorum PSI protocol

is to find the elements that present in at least 𝑘 out of 𝑛 sets. In

some special applications, a particular client has only a small list of

data, but the server has a large database. Here the client acts as an

enquirer, interacting with 𝑛 servers to find out which elements its

set appears in at least 𝑘 servers’ databases.

Our protocol broadens the scope of multiparty PSI beyond the

standard computation of intersections. While conventional multi-

party PSI focuses on finding common elements across all parties’

sets, our protocol generalizes this approach. It specifically targets

identifying elements that appear in a portion of the parties’ sets.

For instance, if a certain entity appears several times in different

blacklists, we can say that the entity is a fraud with high probabil-

ity, but it is not in the output of the multiparty PSI protocol. As

is illustrated in Figure 1, where the client queries Item2 and the

threshold is set to 3, our protocol can find it but the multiparty PSI

protocol cannot since the last set doesn’t contain Item2. Here are

two interesting applications:

• Identifying possible bad creditors: An agency might wish to

figure out if individuals appear on multiple banks’ blacklists

or high-risk lists, or a lender may need to verify if a borrower

has simultaneous debts across different banks. Our protocol
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can help them find out these suspicious individuals without

revealing any other private information.

• Password leak check: Clients can verify if their passwords

have been compromised by running the unbalanced quo-

rum PSI protocol with multiple password databases. The

threshold is set to be 1 which means the password appears

in at least one database. Our protocol preserves the privacy

of these databases while informing the user if its password

appears in any of them.

Our protocol focuses on unbalanced applications. The state-of-

the-art quorum PSI [9] works well in the balanced setting, where

the size of each set is the same. Their protocol is mainly based

on generic multiparty communication and realized the balanced

quorum PSI with a communication complexity𝑂 (𝑛𝑚𝜅 (𝜆+𝜅 log𝑛))
where 𝑛 is the number of participants and𝑚 is the set size, 𝜅 and 𝜆

are the secure parameters. However, there is a limitation in their

protocol that the communication cost scales linearly with the size

of the larger set. This is a major concern, since in unbalanced

scenarios, the larger set is often much larger than the smaller set.

As a result, their protocol performs poorly when we extend it to

unbalanced scenarios while our protocol works well achieving a

logarithmic communication complexity with the size of the larger

set. The experiment results show that our new construction reduces

the communication costs and running time in WAN significantly.

1.1 Contribution
In this paper, we propose a new variant of quorum PSI protocol

that focuses on unbalanced cases. We suppose there are 𝑛 servers

of set size 𝑛𝑠 and one client of set size 𝑛𝑐 . The inputs of the client

are a few queries while the servers hold large sets such as databases

that contain millions or billions of data i.e. 𝑛𝑐 ≪ 𝑛𝑠 . Our protocol

has the lowest communication complexity 𝑂 (𝑛𝑐 log𝑛𝑠 ) compared

to previous work. Most of the previous related protocols [2, 9] only

consider the balanced case and the state-of-art work [9] has the

best communication complexity is 𝑂 (𝑛𝑐 + 𝑛𝑠 ). For example, when

𝑛𝑐 = 5535 and 𝑛𝑠 = 2
24

for 15 servers, [9] needs about 7.5 GB

communication and 714 seconds while our protocol only needs 87.8

MB total communication and 22.7 seconds in WAN which reduces

87× communication and 31× computation.

1.2 Related Work
Research on the PSI protocol has been going on for many years

and improved the performance of the PSI protocol dramatically.

The prevailing approaches include Diffie-Hellman(DH) [15] and

Oblivious Transfer(OT) [36]. The DH-based method [26] has a low

communication cost while the OT-based [23, 31] method has a low

computational cost. Most of the work focused on two-party PSI

protocols and Kolesnikov et al. [24] proposed the first practical

efficient multiparty PSI Protocol.

CLR17 [11] and CHLR18 [10] studied the PSI in the unbalanced

scenarios where one of the two sets is much smaller than the other

and Cong et al. [13] further reduced the concrete communication

and computation. They constructed the efficient protocols based on

fully homomorphic encryption (FHE) with the communication com-

plexity 𝑂 (𝑛𝑥 log𝑛𝑦) where 𝑛𝑥 ≪ 𝑛𝑦 . The FHE-based PSI protocol

is more efficient than the generic PSI protocol in terms of commu-

nication cost and computational cost when there is hundreds of

times difference in the set size. The generic PSI protocol is mainly

aimed at cases where the set of participants is of the same size. But

this is not applicable in unbalanced scenarios which is always at

a cost of 𝑂 (𝑛𝑥 + 𝑛𝑦). When the size of the larger set is huge, the

unbalanced PSI has a significant advantage over communication

cost.

Bay et al. [2] also studied the quorum PSI and realized their

protocol based on Paillier additive homomorphic encryption and

bloom filter. The communication cost of this protocol is𝑂 (𝑛 ·𝑚 · 𝑙)
where 𝑛 is the number of parties,𝑚 is the size of the largest set and 𝑙

is the threshold of dishonest parties. In the semi-honest and honest

majority setting, the maximum dishonest parties can be up to 𝑛/2,
which means the worst communication cost is 𝑂 (𝑛2 ·𝑚). Due to
the public-key encryption scheme, this protocol does not perform

well in practice, and it takes about 45s for the 8 participants and 2
6

set size case.

1.3 Organization
First, we provide some preliminaries in section 2. Then in section

3, we first review the previous HE-based unbalanced PSI protocol

and then, describe our unbalanced quorum PSI protocol. Finally,

we present evaluation results and comparisons in section 4. We

conclude the whole paper in section 5.

2 PRELIMINARIES
2.1 Notation
Throughout this paper, we will use the notations in Table 1.

Nation Description
𝑛𝑐 size of client’s set

𝑛𝑠 size of servers’ sets

𝑛 number of servers

𝑘 threshold

𝑇𝑖 cuckoo hash table or simple hash table

𝜅 statistical security parameter

𝜆 computational security parameter

⟦𝒙⟧ homomorphic encryption of a plaintext 𝑥

[𝑛] set of integers from 1 to 𝑛

[𝑎, 𝑏] set of integers from 𝑎 to 𝑏

|𝑋 | cardinality of set 𝑋

𝛼 number of partitions

𝑘𝑠 number of slices

𝜎 bit length of a slice

W base powers for DAG

⟨𝑥⟩𝐵 boolean share of 𝑥

⟨𝑥⟩𝐴 arithmetic share of 𝑥

[𝑥] threshold share of 𝑥

Table 1: Summary of frequent notations
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2.2 Fully Homomorphic Encryption
Fully homomorphic encryption (FHE) is a type of encryption that

allows users to evaluate arithmetic circuits directly on ciphertexts

without decryption. In consideration of performance, the encryp-

tion parameters are often chosen to support circuits with a bounded

multiplicative depth. Such schemes that only support circuits with

bounded multiplicative depth are also named leveled fully homo-

morphic encryption, as is used in our scheme.

In this work, we use RLWE-based cryptosystems BFV [17] im-

plemented in SEAL [38]. The scheme is defined over a plaintext

ringZ𝑡 [𝑋 ]/(𝑥𝑛 + 1) and ciphertext ringZ𝑝 [𝑋 ]/(𝑥𝑛 + 1), where
𝑛 is a power of 2 and 𝑡 ≪ 𝑞 are integers. It’s customary to define

𝑅 = Z[𝑋 ]/(𝑥𝑛 + 1) so the ciphertext ring and plaintext ring can

be denoted as 𝑅𝑞 = 𝑅/𝑞𝑅 and 𝑅𝑡 = 𝑅/𝑡𝑅. The ciphertext space is
𝑅2𝑞 = 𝑅/𝑞𝑅 × 𝑅/𝑞𝑅. Thus, the size of each ciphertext is 2𝑛 log(𝑞).
BFV is a noise-based scheme, which means that a ciphertext con-

tains noise and the noise grows as the circuit is evaluated. There

is a limited noise budget for each ciphertext, beyond which the

decryption will fail.

The plaintext modular 𝑡 is often chosen to be a prime number

that satisfies 𝑡 ≡ 1𝑚𝑜𝑑 2𝑛. Such 𝑡 enables us to obtain a ring iso-

morphism from the plaintext space 𝑅𝑡 to Z𝑛𝑡 . The isomorphism

translates polynomial additions and multiplications into slot-wise

additions and multiplications in each of the 𝑛 fieldsZ𝑡 . This tech-
nique is often referred to as SIMD(Single Instruction, Multiple Data).

We refer readers to [4, 20] for more details.

SIMD allows us to evaluate a circuit on a batch of inputs effi-

ciently. In practice, the selection of parameter (𝑛, 𝑞, 𝑡) determines

the security level and the maximum depth of the circuit being eval-

uated. The security level is estimated using the LWE estimator

[1].

In our scheme, we will be evaluating homomorphic addition and

multiplication on ciphertexts. The costs of one step of evaluation

can be viewed as the noise growth in the ciphertext and the com-

putation time. In BFV, the cost of homomorphic multiplication is

much greater than homomorphic addition, both in noise growth

and computation time. We refer readers to [17] for a detailed analy-

sis. In such consideration, it is vital to keep the multiplication gates

in the circuit as few as possible.

2.3 Estimation of the max load of hash table
When hashing elements into a hash table, there could be multiple

items hashed to the same table entry. Upon the procedure finishes,

the distribution of the elements may not be even. Denote the num-

ber of max elements in one entry as 𝐾 . For security, common PSI

protocols fill in dummy items in those entries with fewer elements

until they all contain 𝐾 element. It is vital to estimate the maxi-

mum load of the hash entries which determines the efficiency of a

scheme. For ease of estimation, we assume the hash function is a

random function. From a balls-into-bins arguments in [35], putting

𝑚 balls into 𝑛 bins (corresponding to hashing𝑚 elements into 𝑛

entries) when𝑚 ≫ 𝑛 log3 𝑛 yields the following result with high

probability:

𝐾 ≤ 𝑚
𝑛
+

√︂
2𝑚 log𝑛

𝑛

When𝑚 ≪ 𝑛 there is no concrete estimation of 𝐾 . The distribu-

tion of bound can be computed as follows:

Pr[maximum height > 𝐾] ≤ 𝑛
𝑚∑︁

𝑖=𝐾+1

(
𝑚

𝑖

) (
1

𝑛

)𝑖 (
1 − 1

𝑛

)𝑚−𝑖
(1)

2.4 Cuckoo Table
Cuckoo hashing [29] utilizes 𝐾 different hash functions ℎ1, . . . , ℎ𝐾 :

{0, 1}𝜎 → [𝐵] which map𝑚 elements into 𝐵 bins. The mapping is

done in the following way: For an element 𝑥 , if any of the bins with

index ℎ𝑖 (𝑥) is empty, the element 𝑥 is placed in that bin. If multiple

bins are empty, the one with the smallest index is chosen. If all

bins are occupied, a random 𝑖 ∈ [𝐾] is selected, and the element

in bin ℎ𝑖 (𝑥) is evicted and replaced by 𝑥 . The evicted element is

then reinserted using the same procedure. This process is repeated

until all elements are inserted or a predefined number of iterations

is reached.

In the case that an upper limit of iterations is reached and still

we cannot find a vacancy for the element, we say that the cuckoo

hashing fails. The probability of failure is analyzed by Pinkas et al.

[34], who show that choosing 𝐾 = 3 and 𝐵 = 1.27𝑚 yields a failure

probability of 2
−40

. The same parameter is adopted in this work.

2.5 Two-party Functionalities
Two two-party functionalities are utilized in our scheme.

Equality Test. The equality test functionality F 𝑙EQ takes as

private input one 𝑙-bit string 𝑎 and 𝑏 from each of the two parties

𝑃1, 𝑃2 respectively. The two parties receive boolean shares of bit 1

if 𝑎 = 𝑏, and bit 0 otherwise as output.

Boolean to Arithmetic Share Conversion. The boolean to

arithmetic share conversion functionality F F
B2A converts boolean

shares of a bit 𝑏 to additive arithmetic shares of 𝑏 over a field F.
Concretely speaking, the functionality takes as private input from

parties 𝑃1 and 𝑃2 boolean shares ⟨𝑏⟩𝑏
1
and ⟨𝑏⟩𝑏

2
of a bit𝑏 and outputs

additive arithmetic shares over F ⟨𝑏⟩𝑎
1
and ⟨𝑏⟩𝑎

2
of 𝑏. We implement

the functionality with CrypTFlow2 [37] using correlated OT.

2.6 Multiparty Functionalities
Our scheme assumes an honest majority setting. We utilize the fol-

lowing multiparty functionalities, implemented with the protocols

from [16, 25].

Let F(+, ·) be a finite field. Let 𝑛 be the number of parties and

𝑡 < 𝑛/2 be the corruption threshold. Abusing notations, we use [𝑎]
to denote an (𝑛, 𝑡)-linear secret sharing of element 𝑎 ∈ F where

the 𝑖-th party 𝑃𝑖 holds the share [𝑎]𝑖 . The linearity of the sharing

scheme enables each party to locally calculates the shares of any

linear combination of the shared elements.

• F𝑛,𝑡Random (𝑙): Generates [𝑟1], . . . , [𝑟𝑙 ] for uniform random 𝑟1, . . . , 𝑟𝑙 ∈
F.
• F𝑛,𝑡Mult ( [𝑎], [𝑏]): Takes as input [𝑎], [𝑏] and outputs [𝑎 · 𝑏].
• F𝑛,𝑡Reveal ( [𝑎]): Takes as input [𝑎] and outputs 𝑎.

• F𝑛Reshare (𝑑, ⟨𝑎⟩
𝑎): Takes additive shares ⟨𝑎⟩𝑎 where 𝑎 ∈ F

and outputs a (𝑛,𝑑)-sharing of 𝑎.
• F𝑛,𝑡DoubleRandom (𝑙): Generates [𝑟1], . . . , [𝑟𝑙 ] and ⟨𝑟1⟩

𝑎, . . . , ⟨𝑟𝑙 ⟩𝑎
for uniform random 𝑟1, . . . , 𝑟𝑙 ∈ F.
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Functionality Communication Rounds

F𝑛,𝑡Random ⌈ 𝑙
𝑛−𝑡 𝑛(𝑛 − 1) ⌈log |F|⌉ 1

F𝑛,𝑡Mult 2

(
2𝑛
𝑛−𝑡 + 3

)
(𝑛 − 1) ⌈log |F|⌉ 5

F𝑛,𝑡Reveal (𝑛 − 1) ⌈log |F|⌉ 1

F𝑛Reshare 2(𝑛 − 1) ⌈log |F|⌉ 2

F𝑛,𝑡DoubleRandom 2

⌈
𝑙
𝑛−𝑡

⌉
𝑛(𝑛 − 1) ⌈log |F|⌉ 1

Table 2: Communication costs of 𝑛-party functionalities.

The communication cost of each of the functionalities is listed in

Table 2. For simplicity, we assume in F𝑛,𝑡Random and F𝑛,𝑡DoubleRandom
that 𝑙 ≫ 𝑛. We let ⌈ 𝑗/(𝑛 − 𝑡)⌉ to be 𝑗/(𝑛 − 𝑡) and approximate 𝑡/𝑛
with 1/2.

3 PREVIOUS HE-BASED UNBALANCED PSI
In this section, we will review the previous HE-based PSI protocol

and then illustrate how to use it in our protocol.

CLR17 [11] focused on the PSI in unbalanced scenarios with

the communication complexity 𝑂 (𝑛𝑥 log𝑛𝑦) where 𝑛𝑥 ≪ 𝑛𝑦 . The

generic PSI protocol is mainly aimed at cases where the set of

participants is of the same size. Nevertheless, this is not applicable

in unbalanced scenarios which is always at a cost of 𝑂 (𝑛𝑥 + 𝑛𝑦).
When the size of the larger set is huge, the unbalanced PSI has a

significant advantage over communication cost.

The first step is data preprocessing, which is to map the ele-

ments to fixed-length bits. As mentioned in CLR17, we usually use

an OPRF approach instead of a naive hash to avoid the noise flood-

ing of homomorphic encryption. We denote 𝑋 ′ = {OPRF(𝑥)}𝑥∈𝑋
and 𝑌 ′ = {OPRF(𝑦)}𝑦∈𝑌 . Using a suitable collision-resistant hash
parameter, we can say that 𝑋 ∩ 𝑌 = 𝑋 ′ ∩ 𝑌 ′ with a false positive

probability of no more than 1 − 2−𝜅 . Following that, we use 𝑋 ′ to
replace the elements in 𝑋 .

Then they store the elements in the hash table. Let ℎ1, ℎ2, ℎ3
be the hash functions used in the mapping process since using

two hash functions is not friendly to stash-less cuckoo hash. The

client stores its elements into a cuckoo hash table C of size 𝛽 and

the server 𝑖 stores its elements 𝑦 ∈ 𝑌 into a simple hash table S
where each element will be stored in 3 bins S[ℎ 𝑗 (𝑥)] for 𝑗 = 1, 2, 3.

There is exactly one element in each slot of C and may be several

elements in each slot of S. For each element in the bin of C, all
possible matching elements can be found inside the corresponding

bin of 𝑇𝑖 because they are stored in the same bin. The intersection

can then be derived from all the bin-wise intersections of C and S:

𝑋 ′ ∩ 𝑌 ′ =
⋃
𝑘∈[𝛽 ]

(C[𝑘] ∩ S[𝑘])

The server represents its elements in S[𝑘] as a polynomial:

𝐹𝑘 (𝑥) =
∏

𝑦∈S[𝑘 ]
(𝑥 − 𝑦) =

∑︁
𝑎𝑖 · 𝑥𝑖

This polynomial equals zero only when 𝑥 ∈ S[𝑘] and random

number otherwise. The server evaluates the polynomial 𝐹𝑘 (𝑥) using

homomorphic encryption and the client receives 𝐹𝑘 (⟦𝒙⟧) for 𝑥 ∈
C[𝑘]. The client only knows the value of 𝐹𝑘 (𝑥) and nothing about

the server’s set. This is known as the private membership test

(PMT), which effectively determines whether an element belongs

to a set. We denote this functionality as:

PMT(𝑥,𝑌 ) =
{
1 if 𝑥 ∈ 𝑌
0 if 𝑥 ∉ 𝑌

where 𝑥 is an element and 𝑌 is a set.

3.1 Trade off of Computation and
Communication

The server needs to evaluate the PMT polynomials while the server

has the coefficients of the polynomials 𝑎𝑖 and the client has the

power 𝑥𝑖 . If the client computes all the powers needed by the poly-

nomials and sends to the server, the server only needs to perform

the scalar multiplication and addition without fully homomorphic

encryption but additive homomorphic encryption. In the other

case, the server computes all the power itself and then evaluates

the polynomials. The computation cost is relatively high, but the

communication cost is low. We need to find a trade-off between

computation and communication. Previous work [13] utilizes the

Directed Acyclic Graphs (DAG) and Paterson-Stockmeyer algo-

rithm [30] to reduce the computation and communication overhead.

As mentioned in the preliminaries, the cost of scalar multiplica-

tion is much less than non-scalar multiplication. For a polynomial

𝑓 (𝑥) =
𝑛∑
𝑖=0

𝑎𝑖 · 𝑥𝑖 , we need 𝑛 scalar multiplications and 𝑛 non-scalar

multiplications. However, we can use the Paterson-Stockmeyer al-

gorithm to reduce the cost to𝑂 (
√
𝑛) non-scalar multiplications. The

server chooses two parameters such that 𝑛 = 𝐿 ·𝐻 −1 and then com-

putes the powers 𝑦2, 𝑦3, · · · , 𝑦𝐿−1 and 𝑦𝐿, 𝑦2𝐿, · · · , 𝑦 (𝐻−1)𝐿 . The
server evaluates the polynomial in the following way:

𝑓 (𝑦) =
𝐻−1∑︁
𝑗=0

(
𝑦 𝑗∗𝐿 ·

𝐿−1∑︁
𝑖=0

𝑎 𝑗∗𝐿+𝑖 · 𝑦𝑖
)

where the total cost is 𝐿 + 2𝐻 − 4 non-scalar multiplications and

the minimum cost is 𝑂 (
√
𝑛) when 𝐿 ≈

√︁
2(𝑛 + 1).

Since we are using leveled fully homomorphic encryption, we

can only compute circuits of a limited depth. To compute powers

𝑦2, 𝑦3, · · · , 𝑦𝐿−1, we need a circuit of depth 𝑂 (log𝐿) which is still

unacceptable for a large 𝐿. One way to reduce the depth is that the

client computes base powers 𝑦2, 𝑦4, · · · , 𝑦 ⌈log2 𝐿⌉ in advance and

then sends to the server. Following that, the server just needs to

evaluate the polynomial at depth𝑂 (log log𝐿). However, this is not
enough, and we need to reduce the number of base powers. For

example, to compute a polynomial of degree 28 at a circuit depth of

3, the client has to send base powers 𝑦1, 𝑦2, 𝑦4. But we can use base

powers𝑦1, 𝑦5 instead which reduces about 33% communication cost.

This problem can be viewed as a variant of Global postage-stamp
problem [7, 8] and we refer to the parameter of [8] to optimize the

number of base powers.

3.2 PSI with Computation
The traditional private set interaction protocol, often referred to as

plain PSI, directly computes the intersection of sets and usually only
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one party will get the result. However, there is a need for additional

computation on the intersection[12, 14, 32], e.g., by transferring

them to an MPC circuit. The participants will only get a share of

the intersection result. So we call it PSI with computation or circuit

PSI. Similarly, our protocol ensures that the result is also secret

shared after the intersection

HE-base PSI protocol can also be turned into the circuit PSI

protocol. Instead of returning the result directly, the server sends the

value with a mask and the client decrypts it to get the secret sharing.

The server chooses a random number 𝑟 and sends the ciphertext

⟦𝑭𝒌 (𝒙) + 𝒓⟧ to the client. The client decrypts the ciphertext and

gets 𝐹𝑘 (𝑥) +𝑟 . The client gets the secret sharing of 𝐹𝑘 (𝑥) +𝑟 and the
server gets 𝑟 . Only when the element belongs to the set, 𝐹𝑘 (𝑥) will
be 0, that is 𝐹𝑘 (𝑥) + 𝑟 = 𝑟 . Following this, both client and servers

run the equality test protocol and get the secret sharing of 1 or 0.
The client and server can get the secret sharing of 1 if the element

𝑥 belongs to the server’s set and 0 otherwise.

4 UNBALANCED QUORUM PRIVATE SET
INTERSECTION

In this section, we elaborate on the details of our protocol, building

upon the foundational knowledge previously discussed. We begin

by formally defining the quorum PSI protocol and its objectives.

The goal of quorum PSI is to compute all the elements that

are present in the client’s set and at least 𝑘 times in the servers’

sets. In other words, an element appears in the quorum private set

intersection if and only if it is found in the client’s set and at least

𝑘 servers’ sets.

Suppose the sets of the𝑛 servers is 𝑆1, 𝑆2, · · · , 𝑆𝑛 . A trivial method

to compute the quorum private set intersection is to search all

subsets of {1, 2, · · · , 𝑛} whose size is 𝑘 and compute the multi-

party private set intersection of 𝐶 and 𝑆𝑑1 , 𝑆𝑑2 , · · · , 𝑆𝑑𝑘 where set

𝑑 = {𝑑1, 𝑑2, · · · , 𝑑𝑘 } ⊆ {1, 2, · · · , 𝑛}. We can get the result by

𝐼 =
⋃

|𝑑 |=𝑘,𝑑⊆[𝑛]

©­«𝐶 ∩ (
⋂
𝑗∈𝑑

𝑆 𝑗 )ª®¬
However, this method is neither efficient nor secure, as it requires

iterating through

(𝑛
𝑘

)
subsets, leading to exponential computational

complexity.

The ideal functionality of unbalanced quorum PSI is illustrated

in Figure 2. Our protocol is a multiparty protocol and it is not

allowed to reveal any partial intersection results. In essence, the

client is prohibited from disclosing any information regarding the

intersection between its set and the sets of other servers. To realize

our protocol, we need to protect the following private information:

• Can not reveal any additional information in the semi-honest

setting

• Can not reveal the total times an element appears in all sets

• Can not reveal which 𝑘 servers have the same element that

is in the intersection 𝐼

4.1 An Overview of Unbalanced Quorum PSI
Our building block is the unbalanced circuit PSI protocol and it is the
combination of unbalanced PSI protocol and circuit PSI protocol. A

key observation is that it is possible to turn unbalanced PSI protocol

There are 𝑛 servers S1,S2, · · · ,S𝑛 and a client C. The
threshold is 𝑘 ∈ [1, 𝑛].
Input: For each 𝑖 ∈ [𝑛], S𝑖 inputs a set 𝑆𝑖 of size 𝑛𝑠 . The
client inputs a set 𝐶 of size 𝑛𝑐 . Here 𝑛𝑐 ≪ 𝑛𝑠 .

Output: Denote the times that the element 𝐶 [ 𝑗] appears in
all servers’ sets as:

𝑐𝑛𝑡 𝑗 = |{𝑖 : 𝐶 [ 𝑗] ∈ 𝑆𝑖 for 𝑖 ∈ [𝑛]}|
then output

𝐼 = {𝐶 [ 𝑗] : 𝑐𝑛𝑡 𝑗 ≥ 𝑘 for 𝑗 ∈ [𝑛𝑐 ]}
to the client. Nothing to the servers.

Figure 2: Unbalanced Quorum PSI Functionality

into circuit PSI protocol. In our scenario, the size of the client’s set

is significantly smaller compared to the size of the servers’ sets.

Consequently, our protocol leverages the advantages offered by

the unbalanced PSI protocol such as CLR17 [11] and WT23 [41].

Based on previous work, we turn the unbalanced PSI protocol into

an unbalanced circuit PSI protocol. We illustrate our new idea by

providing a simpler example involving the interaction between

the client and a single server. As is mentioned in circuit PSI, we

shall not get the matching results directly but compute the secret

sharing of the intersection. Assume the elements in the client’s set

are {𝑥1, 𝑥2, · · · , 𝑥𝑛𝑐 }. The client and server will get a random vector

®𝑠1 and ®𝑠2 separately. It satisfies that

®𝑠1 [ 𝑗] ⊕ ®𝑠2 [ 𝑗] =
{
1 if 𝑥 𝑗 ∈ 𝑌
0 otherwise

After that, we will take the matching results as the inputs to a

MPC circuit. Here ®𝑠1 and ®𝑠2 are both boolean shares but it is not

friendly to arithmetic computations while most operations of our

MPC circuits are additions and multiplications.

To facilitate arithmetic operations in our MPC circuit, we convert

these boolean shares into arithmetic shares over a finite field F𝑝 .
That is:

®𝑠1 [ 𝑗] + ®𝑠2 [ 𝑗] =
{
1 if 𝑥 𝑗 ∈ 𝑌
0 otherwise

where the components of vector ®𝑠1 and ®𝑠2 are elements over a finite

field F𝑝 . Denote the elements-wise sum of the two vectors of client

and server 𝑖 as ®𝑣𝑖 , that is ®𝑠1 [ 𝑗] +®𝑠2 [ 𝑗] = ®𝑣𝑖 [ 𝑗] for 𝑗 ∈ [𝑛𝑐 ] and ®𝑠1 and
®𝑠2 is the arithmetic share of ®𝑣𝑖 . The client repeats the above process
for every server to obtain the shares of ®𝑣1, ®𝑣𝑖 , · · · , ®𝑣𝑛 . It is easily to

find that 𝑐𝑛𝑡 𝑗 =
∑𝑛
𝑖=1 ®𝑣𝑖 [ 𝑗] and if

∑𝑛
𝑖=1 ®𝑣𝑖 [ 𝑗] ≥ 𝑘 , the element 𝑥 𝑗

appears at least 𝑘 times in servers’ set and therefore 𝑥 𝑗 ∈ 𝐼 . So the

last step for us is to sum all the shares and perform a comparison

protocol to get the final result.

Our scheme protects the privacy of the client and servers. All

of our intermediate computation data are secret-shared and only

the client will get the answers in the final phase. The client only

knows the interaction 𝐼 and does not know any additional informa-

tion about the sets of servers nor which servers’ sets contain the

elements in interaction.
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4.2 Revisit Polynomial Link (PoL)
We use the state-of-the-art unbalanced PSI protocol WT23 [41] as

our foundation. They proposed the polynomial link and reduced the

communication cost significantly. In the following, we describe how

PoL works and how we turn PoL into the unbalanced circuit-PSI

protocol.

Wu et al. [41] gave a novel insight to reduce the total commu-

nication cost of HE-base unbalanced PSI protocol. They mainly

optimized the communication from the client to the servers. They

found that the first slice of an element is enough to represent the

whole element and then construct special polynomials to build

the link between the first slice and the other slices. Suppose an

element is divided into 𝑘𝑠 slices and the 𝑖-th slice of 𝑥 is 𝑥 (𝑖 ) , which
is 𝑥 = 𝑥 (1) | |𝑥 (2) | | · · · | |𝑥 (𝑘𝑠 ) . We define the polynomials 𝑓𝑗 (𝑥) for
𝑗 ∈ [𝑘𝑠 ] which satisfy the property for each element 𝑥𝑖 ∈ 𝑋 :

𝑓1

(
𝑥
(1)
𝑖

)
= 0

𝑓2

(
𝑥
(1)
𝑖

)
= 𝑥

(2)
𝑖

.

.

.

𝑓𝑘𝑠

(
𝑥
(1)
𝑖

)
= 𝑥

(𝑘𝑠 )
𝑖

In other words, the polynomial 𝑓𝑗 (·) maps the first slice of each

element 𝑥
(1)
𝑖

onto the other slices 𝑥
( 𝑗 )
𝑖

for all 𝑥𝑖 ∈ 𝑋 and 𝑗 ∈ [2, 𝑘𝑠 ].
We take

(
𝑥
(1)
1
, 𝑥
( 𝑗 )
1

)
,

(
𝑥
(1)
2
, 𝑥
( 𝑗 )
2

)
, · · · for 𝑗 ∈ [2, 𝑘𝑠 ] as points to

build the polynomials 𝑓𝑗 (·) for 𝑗 ∈ [2, 𝑘𝑠 ]. And if the element 𝑦

belongs to 𝑋 which means there is an element 𝑥𝑘 ∈ 𝑋 and 𝑥
(1)
𝑘

=

𝑦 (1) , the client only receives the matching result if and only if

𝑓1

(
𝑦 (1)

)
= 0 and 𝑓𝑗

(
𝑦 (1)

)
= 𝑦 ( 𝑗 ) for 𝑗 ∈ [2, 𝑘𝑠 ].

If we find that there are two elements 𝑥𝑖 ≠ 𝑥 𝑗 but 𝑥
(1)
𝑖

= 𝑥
(1)
𝑗

,

PoL will fail. This leads to the polynomials 𝑓𝑗 (·) for 𝑗 ∈ [2, 𝑘𝑠 ]
mapping the same first slice of 𝑥𝑖 and 𝑥 𝑗 onto the different slices.

To avoid this problem, we need to split the set into smaller partitions

and run PoL for each partition.

Based on the observations above, the client only needs to send

the first slice of the element rather than the whole element. This

saves 𝑘𝑠 times the communication 𝐶𝑜𝑚𝑐→𝑠 but increases the com-

munication 𝐶𝑜𝑚𝑠→𝑐 by 𝑘𝑠 times because the server needs to reply

with more polynomial evaluation results. However, in practical

implementations like SEAL [38], usually use the modulus switch-

ing [5] to reduce the size of ciphertext after evaluation. Therefore,

𝐶𝑜𝑚𝑐→𝑠 is much bigger than 𝐶𝑜𝑚𝑠→𝑐 so that the total communi-

cation is even lower.

The false positive probability of PoL refers to the probability

that a client’s set element is incorrectly identified as an intersected

element. Suppose the size of set 𝑋 is 𝛽 and the binary length of the

slice is 𝜎 . So the collision probability of the first slice is 𝛽 · 1
2
𝜎 and the

collision probability of each of the rest 𝑘𝑠 −1 slice is 1

2
𝜎 since all the

first slices are mapped to the same value 0, but the remaining slices

are all mapped to different values. As a result, the final collision

probability of a mismatching element is 𝛽 · 1

2
𝜎 ·

(
1

2
𝜎

)𝑘𝑠−1
which is

the same as the naive normal polynomial without splitting elements.

We need to select appropriate 𝛽 and 𝜎 · 𝑘𝑠 such that the collision

probability is lower than a secure parameter.

4.3 PoL Extension for Unbalanced Circuit PSI
PoL is still a plain unbalanced PSI protocol and the client can directly

get the matching results. Here we propose a new PoL extension.

As mentioned above, we add the matching result sent by the server

with a random mask 𝑟 , and the server keeps the 𝑟 as its share.

Denote the DAG base powers isW and the degree of the poly-

nomials is 𝛽 . The client sends ⟦
(

𝒚 (1) )𝒋⟧ for 𝑗 ∈ W as the DAG

base powers. Upon receiving the base powers, the server expands

the base powers to get all the powers ⟦
(

𝒚 (1) )𝒋⟧ for 𝑗 ∈ [𝛽]. And
then the server evaluates the polynomials for 𝑖 ∈ [1, 𝑘𝑠 ]:

⟦𝒛𝒊⟧ = 𝑓𝑖 (⟦𝒚 (1)⟧)

Before sending it back to the client, the server masks the polyno-

mial evaluation results with random 𝑟𝑖 . The share of server is 𝑟𝑖 for

𝑖 ∈ [1, 𝑘𝑠 ]. Upon receiving the ciphertexts, the client decrypts the

ciphertext ⟦𝒛𝒊 + 𝒓 𝒊⟧ to get the plaintext 𝑧𝑖 +𝑟𝑖 and we denote it as 𝑧𝑖 .
Here the matching targets for the client are 0, 𝑦 (2) , 𝑦 (3) , · · · , 𝑦 (𝑑 ) ,
but the polynomial evaluation results received by the client are

masked with random value. Therefore, the client needs to compute

the difference of 𝑧𝑖 and 𝑦
( 𝑗 )

for 𝑗 ∈ [2, 𝑘𝑠 ] and 𝑧′𝑖 and 0. Then we

obtain 𝑧′
1
= 𝑧1−0 and 𝑧′𝑖 = 𝑧𝑖 −𝑦

(𝑖 )
for 𝑖 ∈ [2, 𝑘𝑠 ]. If𝑦 is a matching

result, i.e. all slices of 𝑦 will equal to all slices of an element in the

set, where 𝑧′
𝑖
= 𝑓𝑖 (𝑦 (1) ) + 𝑟𝑖 − 𝑦 (𝑖 ) = 𝑟𝑖 for all 𝑖 ∈ [1, 𝑘𝑠 ].

Notice that the binary length of each element’s slice is 𝜎 and the

predicate holds:

𝑦 ∈ 𝑋 ⇔ (𝑧′
1
== 𝑟1) ∧ (𝑧′2 == 𝑟2) ∧ · · · (𝑧

′
𝑘𝑠

== 𝑟𝑘𝑠 )

And we can further pack these 𝑘𝑠 slices together to check whether

𝑧′
1
| |𝑧′

2
| | · · · | |𝑧′

𝑘𝑠
equals to 𝑟1 | |𝑟2 | | · · · | |𝑟𝑘𝑠 which is both𝑘𝑠 ·𝜎 bits.We

denote the equality test result of 𝑧′
1
| |𝑧′

2
| | · · · | |𝑧′

𝑘𝑠
and 𝑟1 | |𝑟2 | | · · · | |𝑟𝑘𝑠

as 𝑒𝑞 and the client and the server will receive boolean shares ⟨𝑒𝑞⟩0
and ⟨𝑒𝑞⟩1 separately which satisfies ⟨𝑒𝑞⟩0 ⊕ ⟨𝑒𝑞⟩1 = 𝑒𝑞.

The above procedure simply checks whether an individual el-

ement 𝑦 belongs to set 𝑋 . Concretely, combined with SIMD and

cuckoo hash table, the matching process is always paralleled. We

need to deal with a vector instead of an element. In addition, we

split the set into 𝛼 partitions to make sure that all the duplications

are divided into different partitions. We are supposed to repeat

the above procedure for all the partitions of the same set. But the

element 𝑦 appears in at most one of the 𝛼 partitions such that par-

titioning will not affect the correctness of the protocol. Based on

the above analysis, our protocol works well in combination with

SIMD and partitioning. The detailed protocol will be described in

Section 4.6.

4.3.1 Optimization for unbalanced circuit PSI. The first step of the

PSI protocol is to hash the elements through OPRF instead of using

the original items directly. This approach has several advantages

against previous schemes. Firstly, it reduces the computational and

communication overhead of the protocol by compressing the length

of an element to a fixed length under some security parameter

when we are handling longer items. Secondly, it provides security
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against malicious client, even though the hash of an element not in

the intersection is leaked, the client can’t know any information

about the original element. This avoids the use of noise flooding in

homomorphic encryption. However, our protocol does not require

the use of OPRF.

As mentioned in protocol [39], the use of OPRF does not provide

the same benefits in our circuit PSI protocol and instead, we use

a universal hash function, which is agreed upon in advance, to

map the elements. In circuit PSI protocol, the client will not get

the intersection hence it is unnecessary to use OPRF to hide the

elements against malicious client and the simpler universal hashing

suffices to compress the elements.

4.4 Convert 2-PC share into multiparty share
After performing the extended PoL discussed in Section 4.3, the

client and the server have the boolean share of matching results.

The next step is to compute the multiparty comparison function

based on the boolean share. Notice that all the current shares are

two-party shares, which means that the secret is divided into two

parts. We use the additive secret sharing scheme to convert the two-

party shares into multiparty shares. And, the arithmetic share is

more suitable for the arithmetic circuits in the MPC, which consist

of multiplication and addition.

Suppose that the secret share of PMT results for the client and

server 𝑖 is ⟨𝑒𝑞𝑖
𝑗
⟩𝐵
0
and ⟨𝑒𝑞𝑖

𝑗
⟩𝐵
1
for 𝑗 ∈ [1, 𝑛𝑐 ]. Here ⟨𝑒𝑞𝑖𝑗 ⟩

𝐵
0
⊕⟨𝑒𝑞𝑖

𝑗
⟩𝐵
1
=

𝑒𝑞𝑖
𝑗
is the PMT result of element𝐶 [ 𝑗]. We first convert it into arith-

metic shares using F F
B2A functionality, that is ⟨𝑒𝑞𝑖

𝑗
⟩𝐴
0
and ⟨𝑒𝑞𝑖

𝑗
⟩𝐴
1

for 𝑗 ∈ [1, 𝑛𝑐 ] and ⟨𝑒𝑞𝑖𝑗 ⟩
𝐴
0
+ ⟨𝑒𝑞𝑖

𝑗
⟩𝐴
1
= ⟨𝑒𝑞𝑖

𝑗
⟩𝐵
0
⊕ ⟨𝑒𝑞𝑖

𝑗
⟩𝐵
1
. We find that

the target 𝑐𝑛𝑡 𝑗 equals the sum of all the PMT results of the client

and servers for element 𝐶 [ 𝑗]. That is 𝑐𝑛𝑡 𝑗 =
∑𝑛
𝑖=1 PMT(𝐶 [ 𝑗], 𝑆𝑖 ).

So we can compute the sum of all the shares of 𝑒𝑞𝑖
𝑗
and get the

arithmetic share of 𝑐𝑛𝑡 𝑗 :

𝑐𝑛𝑡 𝑗 =

𝑛∑︁
𝑖=1

(
⟨𝑒𝑞𝑖𝑗 ⟩

𝐴
0
+ ⟨𝑒𝑞𝑖𝑗 ⟩

𝐴
1

)
=

(
𝑛∑︁
𝑖=1

⟨𝑒𝑞𝑖𝑗 ⟩
𝐴
0

)
+

𝑛∑︁
𝑖=1

⟨𝑒𝑞𝑖𝑗 ⟩
𝐴
1

Here the

∑𝑛
𝑖=1⟨𝑒𝑞𝑖𝑗 ⟩

𝐴
0
can be computed by the client and the server

𝑖 just keeps ⟨𝑒𝑞𝑖
𝑗
⟩𝐴
1
for its share of 𝑐𝑛𝑡 𝑗 . In this way, the client and

the servers can get the arithmetic share of 𝑐𝑛𝑡 𝑗 which is truly shared

between multiple parties.

Combined with partitioning. For the sake of simplicity, we did not

introduce additional subscripts to distinguish between different

partitions in the above scheme. However, the unbalanced PSI proto-

cols [11, 13, 41] always use partitioning to lower the degree of the

polynomials, and it’s more efficient in the existing homomorphic

encryption schemes such as SEAL [38]. Our scheme is also com-

patible with the partitioning technique. For a given element 𝐶 [ 𝑗],
we will get the PMT result for different partitions. We denote the

PMT result of the client and server 𝑖 for partition 𝑘 as ⟨𝑒𝑞𝑖
𝑗,𝑘
⟩𝐵
0
and

⟨𝑒𝑞𝑖
𝑗,𝑘
⟩𝐵
1
for 𝑗 ∈ [1, 𝑛𝑐 ] and 𝑘 ∈ [1, 𝑘𝑠 ].

We first convert it into arithmetic shares using F F
B2A function-

ality, that is ⟨𝑒𝑞𝑖
𝑗,𝑘
⟩𝐴
0
and ⟨𝑒𝑞𝑖

𝑗,𝑘
⟩𝐴
1
. Likewise, we can still add the

secret sharing of different partitions together due to the additive

secret sharing scheme. An element exists in at most one partition

Parameters: There are 𝑛 servers S1, · · · ,S𝑛 and a client C,
with threshold secret shares [𝑥]. The field is denoted as F𝑝
for a prime 𝑝 .

Define the polynomial (publicly known to all):

𝜓1 (𝑥) =

(𝑥 − 𝑘) · (𝑥 − (𝑘 + 1)) · · · (𝑥 − 𝑛) 𝑘 ≥ 𝑛

2

(𝑥 − 0) · (𝑥 − 1) · · · (𝑥 − (𝑘 − 1)) 𝑘 <
𝑛

2

Input: For each 𝑖 ∈ [𝑛], 𝑃𝑖 inputs its secret shares [𝑥]𝑖 𝑛𝑠 .
The client inputs its secret shares [𝑥]0.
Protocol:

(1) Pre-processing: C,S1, · · · ,S𝑛 run:

[𝑠1] , · · · ,
[
𝑠 𝐽

]
← Random(𝐽 )

(2) Evaluating the polynomial: C,S1, · · · ,S𝑛 run:

• invoke F𝑛,𝑡Mult to compute all the required powers

[𝑥]𝑖 and followed by local scalar multiplications and

additions to get [𝜓1 (𝑥)].
• for each 𝑗 ∈ [𝐽 ], compute

[𝑣 𝑗 ] ← F𝑛,𝑡Mult ( [𝜓1 (𝑥)], [𝑠 𝑗 ]) and send to the client

to recover 𝑣 𝑗 .

Output: When 𝑘 ≥ 𝑛
2
, if 𝑣 𝑗 = 0 holds for all 𝑗 ∈ [𝐽 ], output 1

otherwise 0. When 𝑘 < 𝑛
2
, if 𝑣 𝑗 = 0 holds for all 𝑗 ∈ [𝐽 ],

output 0 otherwise 1.

Figure 3: Comparison Protocol FCMP

simultaneously, so the sum of these secret shares is up to 1. If the
sum is 0, it means that the element is not contained in any partition,

i.e., it is not in the set. Both the servers and the client compute

⟨𝑒𝑞𝑖
𝑗
⟩𝐴
1
=

∑𝑘𝑠
𝑘=1
⟨𝑒𝑞𝑖

𝑗,𝑘
⟩𝐴
1
and ⟨𝑒𝑞𝑖

𝑗
⟩𝐴
0
=

∑𝑘𝑠
𝑘=1
⟨𝑒𝑞𝑖

𝑗,𝑘
⟩𝐴
0
. To conclude,

our scheme works even if the partitioning is applied.

4.5 Multiparty Comparison Protocol
The final step is to compare the 𝑐𝑛𝑡 𝑗 and the threshold 𝑘 . If 𝑐𝑛𝑡 𝑗 ≥ 𝑘
holds, the element𝐶 [ 𝑗] belongs to 𝐼 . Now the client and the servers

obtain its respective additive secret shares of 𝑐𝑛𝑡 𝑗 and the shares are

distributed to the client and 𝑛 servers. We employ the comparison

protocol proposed in [9] to execute the threshold comparison for

the secret shares distributed to the client and 𝑛 servers.

Our protocol follows the widely used honest majority security

which requires that most of the parties are not corrupted and keep

their shares secret. Consequently, using the threshold secret share to

replace the additive share is a better choice for the sake of efficiency.

Here we use the Shamir secret sharing scheme to perform the

comparison functionality in Figure 3.

The range of 𝑐𝑛𝑡 𝑗 is [0, 𝑛]. For 𝑘 ≥ 𝑛
2
, we consider the polyno-

mial𝜓1 (𝑥) = (𝑥 − 𝑘) · (𝑥 − (𝑘 + 1)) · · · (𝑥 − 𝑛) which satisfies the

following property𝜓1 (𝑥) = 0 if 𝑥 ≥ 𝑘 . Similarly, 𝑘 < 𝑛
2
, we use the

polynomial𝜓1 (𝑥) = (𝑥 − 0) · (𝑥 − 1) · · · (𝑥 − (𝑘 − 1)) which satisfies

the following property𝜓1 (𝑥) = 0 if 𝑥 < 𝑘 .

However, this polynomial will leak some additional information

when 𝑥 are not in the expected range. For example, when 𝑘 < 𝑛
2
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and 𝑥 ≥ 𝑘 , it is easy to find the value of 𝑥 from𝜓1 (𝑥). The client will
be able to know exactly how many times the element has appeared

which violates the security of our protocol. As is shown in Figure

3 step (1), we generate some secret value 𝑠𝑖 and multiply it with

𝜓1 (𝑥) to hide the original value of𝜓1 (𝑥). In this case, the client only
gets the value of 𝑠𝑖 ·𝜓1 (𝑥) and it is impossible to know the value of

𝜓1 (𝑥) without knowing 𝑠𝑖 . But this will not affect the correctness
of the protocol because the client can check whether 𝜓1 (𝑥) = 0

with a probability 1 − 2−𝜅 . Given that the 𝑠𝑖 is a random value in

the field F𝑝 , and the probability of 𝑠𝑖 = 0 is
1

𝑝 . This assertion will

be checked for 𝐽 times, and we need to choose an appreciate 𝐽 to

make sure ( 1𝑝 )
𝐽 < 2

−𝜅
which means 𝐽 = ⌈ 𝜅

log𝑝 ⌉.
We use the polynomial𝜓1 (𝑥) in our implementation. This con-

struction requires additional 𝐽 multiplications and reduces the de-

gree of polynomial to𝑚𝑖𝑛(𝑛 − 𝑘 + 1, 𝑘). However, this is not the
best choice for all cases such as when𝑚𝑖𝑛(𝑛 −𝑘 + 1, 𝑘) + 𝐽 > 𝑛. We

can use another polynomial𝜓2 (𝑥) to replace𝜓1 (𝑥) which is more

efficient for small 𝑛. The polynomial𝜓2 (𝑥) is defined as:

𝜓2 (𝑥) =
{
1 𝑥 ≥ 𝑘
0 𝑥 < 𝑘

which can be constructed using the polynomial interpolation al-

gorithm and its degree is 𝑛 + 1. This polynomial will not leak any

additional information because its value keeps the same for any

𝑥 ≥ 𝑘 and vice versa. The polynomial𝜓2 (𝑥) is more efficient when

the number of servers is relatively small. And the polynomial𝜓1 (𝑥)
is better in the case of a larger number of servers or smaller 𝑘 .

We use the comparison protocol to check whether 𝑐𝑛𝑡 𝑗 is beyond

the threshold. However, it can also be generalized to check between-

threshold and below-threshold. Therefore, we can just modify the

polynomial𝜓 and use our protocol to find the elements that present

in no more than 𝑘 sets and so on.

4.6 Full Protocol
The main techniques used in this work are the unbalanced circuit

PSI protocol, two-party protocol, andmultiparty protocol. As shown

in Figure 4, we first the unbalanced circuit PSI protocol to obtain

the matching results of the client and servers. Then we perform the

two-party protocol to convert the matching results into the equality

test results. Finally, we invoke the multiparty protocol to compute

the multiparty comparison function. Our protocol is separated into

two phases. The first phase is offline and preprocessing the data.

The second phase is online and the client interacts with servers.

We detail the full protocol in the following.

First phase is to pre-process the data, where all participants

hash the data using an appropriate universal hash functionH . And

then they store the elements in the hash table. The pre-process

is offline and can be done before interacting. Let ℎ1, ℎ2, ℎ3 be the

hash functions used in the mapping process. The client stores its

elements into a cuckoo hash table𝑇0 of size 𝐵 and the server 𝑖 stores

its elements into a simple hash table 𝑇𝑖 where each element will

be stored in 3 bins. There is at most one element in each slot of 𝑇0
and there may be several elements in each slot of𝑇𝑖 . For empty slot

in the cuckoo hash table, the client places a dummy element. For

each element in the bin of 𝑇0, all possible matching elements can

be found inside the corresponding bin of𝑇𝑖 because they are stored

in the same bin. The intersection can then be derived from all the

bin-wise intersections of 𝑇0 and 𝑇𝑖 . not solved

Second phase is to perform the unbalanced circuit PSI proto-

cols. However, we can not obtain the PMT result directly because

the bin size in 𝑇𝑖 is quite big and also we need to divide a bin

into several partitions to avoid the duplication of the first slice.

The servers 𝑖 divide a bin 𝑇𝑖 [ 𝑗] into 𝛼 partitions and the result of

PMT(𝑇0 [ 𝑗],𝑇𝑖 [ 𝑗] [𝑘]) is ⟨𝑒𝑞𝑖𝑗,𝑘 ⟩
𝐵
0
and ⟨𝑒𝑞𝑖

𝑗,𝑘
⟩𝐵
1
.

An element belongs to at most one of the 𝛼 partitions. The

PMT(𝑇0 [ 𝑗],𝑇𝑖 [ 𝑗] [𝑘]) for𝑘 ∈ [𝛼] is either all 0 or a 1 and the rest are
0. So the sum

∑𝛼
𝑘=1

PMT(𝑇0 [ 𝑗],𝑇𝑖 [ 𝑗] [𝑘]) can determine whether

element 𝑇0 [ 𝑗] belongs to partition 𝑇𝑖 [ 𝑗] [𝑘], i.e., 0 for presence and

1 for absence.

However, we just get the boolean secret sharing which is not

friendly with addition.We have twoways to solve this problem. One

is to use AND gate to aggregate these boolean shares together and

another is using F F
𝐵2𝐴

to convert boolean share to arithmetic share

and then addition can be applied. Considering that our subsequent

circuits are all arithmetic circuits, we choose the second method of

converting boolean share to arithmetic share. Here we get:

⟨𝑒𝑞𝑖
𝑗,𝑘
⟩𝐵
0
⊕ ⟨𝑒𝑞𝑖

𝑗,𝑘
⟩𝐵
0
= ⟨𝑒𝑞𝑖

𝑗,𝑘
⟩𝐴
0
+ ⟨𝑒𝑞𝑖

𝑗,𝑘
⟩𝐴
0

. And then both the client and server sum the result of each partition

⟨𝑒𝑞𝑖
𝑗
⟩𝐴
0
=

𝛼∑
𝑘=1

⟨𝑒𝑞𝑖
𝑗,𝑘
⟩𝐴
0
and ⟨𝑒𝑞𝑖

𝑗
⟩𝐴
1
=

𝛼∑
𝑘=1

⟨𝑒𝑞𝑖
𝑗,𝑘
⟩𝐴
1
which satisfies:

⟨𝑒𝑞𝑖𝑗 ⟩
𝐴
0
+ ⟨𝑒𝑞𝑖𝑗 ⟩

𝐴
1
=

𝛼∑︁
𝑘=1

(
⟨𝑒𝑞𝑖

𝑗,𝑘
⟩𝐴
0
+ ⟨𝑒𝑞𝑖

𝑗,𝑘
⟩𝐴
1

)
=

𝛼∑︁
𝑘=1

𝑒𝑞𝑖
𝑗,𝑘

= 𝑒𝑞𝑖𝑗

Here the equality test result 𝑒𝑞𝑖
𝑗
indicates whether element 𝑇0 [ 𝑗]

belongs to the set𝑇𝑖 . It will be 1 if element𝑇0 [ 𝑗] is in the set𝑇𝑖 and

0 otherwise. Once obtaining the equality test results, we just need

one step to compute the 𝑐𝑛𝑡 𝑗 that is 𝑐𝑛𝑡 𝑗 =
𝑛∑
𝑖=1

𝑒𝑞𝑖
𝑗
. The client sums

all the share of 𝑘-th bin and gets ⟨𝑐𝑛𝑡 𝑗 ⟩𝐴
0
=

𝑛∑
𝑖=1
⟨𝑒𝑞𝑖

𝑗
⟩𝐴
0
. The server 𝑖

sets ⟨𝑐𝑛𝑡 𝑗 ⟩𝐴𝑖 = ⟨𝑒𝑞𝑖
𝑗
⟩𝐴
1
. This fact holds because:

𝑐𝑛𝑡 𝑗 =

𝑛∑︁
𝑖=1

𝑒𝑞𝑖𝑗

=

𝑛∑︁
𝑖=1

(
⟨𝑒𝑞𝑖𝑗 ⟩

𝐴
0
+ ⟨𝑒𝑞𝑖𝑗 ⟩

𝐴
1

)
=

(
𝑛∑︁
𝑖=1

⟨𝑒𝑞𝑖𝑗 ⟩
𝐴
0

)
+ ⟨𝑒𝑞1𝑗 ⟩

𝐴
1
+ · · · + ⟨𝑒𝑞𝑛𝑗 ⟩

𝐴
1

= ⟨𝑐𝑛𝑡 𝑗 ⟩𝐴0 + ⟨𝑐𝑛𝑡 𝑗 ⟩
𝐴
1
+ · · · + ⟨𝑐𝑛𝑡 𝑗 ⟩𝐴𝑛

4.7 Security Analysis
We prove security in the standard semi-honest simulation-based

paradigm.

Theorem 4.1. The protocol described in Figure 4 is a correct and
secure protocol against at most 𝑡 corrupted parties among the senders
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Parameters: There are 𝑛 servers S1, · · · ,S𝑛 and a client C, with threshold 𝑘 . The client and servers have agreed on hash functionsH
and ℎ1, ℎ2, ℎ3.W is the DAG base powers index negotiated in advance hereW = {𝑤1,𝑤2, · · · } and𝑤1 = 1. The number of partitions is

𝛼 is and the size of the cuckoo hash table is 𝛽 .

Input: Client inputs set 𝐶 ⊂ {0, 1}𝑏 of size 𝑛𝑐 ; Server 𝑖 inputs set 𝑆𝑖 ⊂ {0, 1}𝑏 of size 𝑛𝑠 .

Protocol:
(1) Pre-processing:
• Hashing: The client and servers hash their elements using a universal hash functionH . Denote 𝐶′ = {H (𝑥) | for 𝑥 ∈ 𝐶} and
𝑆 ′
𝑖
= {H (𝑥) | for 𝑥 ∈ 𝑆𝑖 }. Perform the rest of the protocol with 𝐶′ and 𝑆 ′

𝑖
replacing 𝐶 and 𝑆𝑖 , and output the original items in

𝐶 and 𝑆𝑖 as the result.

• Hash to bins: The client stores its elements in cuckoo hash table 𝑻0 using hash functions ℎ1, ℎ2, ℎ3 and the server 𝑖 stores its

elements in simple hash table 𝑻𝒊 using the same hash functions ℎ1, ℎ2, ℎ3. Both the size of the cuckoo hash table and the

simple hash table is 𝛽 .

• Prepare polynomial: The client and servers break their elements into 𝑘𝑠 slices and for an element we denote it as

𝑥 = 𝑥 (1) | |𝑥 (2) | | · | |𝑥 (𝑘𝑠 ) . Additionally, for each server, they need to cut the bins in the table into 𝛼 partitions such the first

slice of all elements in a bin has no duplicates. The table can be viewed as a 3-dimensional vector and 𝑻𝒊 [ 𝑗] [𝑘]
( 𝑗 ∈ [𝛽], 𝑘 ∈ [𝛼]) denotes the 𝑘-th sub-bins of the 𝑗-th bin in the table 𝑻𝒊 . Here the server constructs a polynomial through

interpolation algorithm for every sub-bins in its table such that 𝑓 𝑖
𝑗,𝑘,𝑙
(𝑥 (1) ) = 𝑥 (𝑙 ) for each

𝑥 ∈ 𝑻𝒊 [ 𝑗] [𝑘], 𝑗 ∈ [𝛽], 𝑘 ∈ [𝛼], 𝑙 ∈ [𝑘𝑠 ]. The server stores the coefficients of the polynomials ®𝒄𝑖
𝑗,𝑘,𝑙

as the cache for its set.

(2) Invoking PoL-based unbalanced PSI protocol: The client prepares all the DAG base powers ⟦(𝒚 (1) )𝑝⟧ for 𝑝 ∈ W and sends

to all servers. Each server first expands the based powers using DAG to get all the powers needed by 𝑓 𝑖
𝑗,𝑘,𝑙
(·) and then evaluates

the polynomial ⟦𝒛𝑖
𝑗,𝑘,𝑙
⟧ = 𝑓 𝑖

𝑗,𝑘,𝑙
(⟦𝒚 (1)⟧) using fully homomorphic encryption scheme. The last step before sending back

ciphertexts is masking the result ⟦𝒛𝑖
𝑗,𝑘,𝑙
⟧ by a random value 𝑟 𝑖

𝑗,𝑘,𝑙
and the server holds 𝑟 𝑖

𝑗,𝑘,𝑙
as its share. Upon receiving the

ciphertexts, the client decrypts the ciphertexts to compute its share �̂�𝑖
𝑗,𝑘,𝑙

= 𝒛𝑖
𝑗,𝑘,𝑙
+ 𝑟 𝑖

𝑗,𝑘,𝑙
− 𝑦 (𝑙 )

𝑗
.

(3) Invoking two party computation protocol:
• Invoking EQ test protocol: For each server 𝑖 , the clients runs the equality test protocol FEQ by inputting bits pack

�̂�𝑖
𝑗,𝑘,1
| |�̂�𝑖
𝑗,𝑘,2
| | · · · | |�̂�𝑖

𝑗,𝑘,𝑙
and 𝑟 𝑖

𝑗,𝑘,1
| |𝑟 𝑖
𝑗,𝑘,2
| | · · · | |𝑟 𝑖

𝑗,𝑘,𝑙
to get the boolean share ⟨𝑒𝑞𝑖

𝑗,𝑘
⟩𝐵
0
and ⟨𝑒𝑞𝑖

𝑗,𝑘
⟩𝐵
1
.

• Convert boolean share to arithmetic share: For each server 𝑖 , the clients runs the boolean share to arithmetic share

protocol FEQ with inputs ⟨𝑒𝑞𝑖
𝑗,𝑘
⟩𝐵
0
and ⟨𝑒𝑞𝑖

𝑗,𝑘
⟩𝐵
1
to get the arithmetic share ⟨𝑒𝑞𝑖

𝑗,𝑘
⟩𝐴
0
and ⟨𝑒𝑞𝑖

𝑗,𝑘
⟩𝐴
1
.

(4) Invoking multiparty computation protocol:
• Convert arithmetic share to threshold share: The client and servers sum up all the share of equality test results for the

same element to get ⟨cnt𝑖
𝑗
⟩𝐴
0
=

∑𝛼
𝑘=1
⟨𝑒𝑞𝑖

𝑗,𝑘
⟩𝐴
0
. The server 𝑖 computes ⟨𝑐𝑛𝑡𝑖

𝑗
⟩𝐴
1
=

∑𝛼
𝑘=1
⟨𝑒𝑞𝑖

𝑗,𝑘
⟩𝐴
1
. And similarly, the client sums

up all the share of different servers to get ⟨𝑐𝑛𝑡 𝑗 ⟩𝐴
0
=

∑𝑛
𝑖=1⟨𝑐𝑛𝑡𝑖𝑗 ⟩

𝐴
0
. The server 𝑖 sets ⟨𝑐𝑛𝑡 𝑗 ⟩𝐴𝑖 = ⟨𝑐𝑛𝑡𝑖

𝑗
⟩𝐴
1
. The client and servers

together run the resharing protocol FReshare with inputs ⟨𝑐𝑛𝑡 𝑗 ⟩𝐴
0
and ⟨𝑐𝑛𝑡 𝑗 ⟩𝐴𝑖 to get the threshold share [𝑐𝑛𝑡 𝑗 ]0 and [𝑐𝑛𝑡 𝑗 ]𝑖

separately.

• Comparison with the threshold: The client and servers run the comparison protocol FCMP with inputs [𝑐𝑛𝑡 𝑗 ]0 and [𝑐𝑛𝑡 𝑗 ]𝑖
to get the threshold share [𝑐𝑚𝑝 𝑗 ]0 and [𝑐𝑚𝑝 𝑗 ]𝑖 .

Output: The servers send their shares to the client and the client reveals 𝑐𝑚𝑝 𝑗 . Compute 𝐼 = { 𝑻0 [ 𝑗] | 𝑐𝑚𝑝 𝑗 = 1}.

Figure 4: Unbalanced Quorum PSI

and the receiver, with correctness error negligible in 𝜅 and security
error negligible in 𝜆.

Proof. For ease of analysis, we divide our protocol into two parts.
The first part is composed of a PSI protocol and the two-party

computation (step (1), (2) and (3) in Figure 4). The second part is

the multi-party computation (step (4) in Figure 4) that occurs after

the two-party computation.

Correctness. The protocol correctly computes the quorum PSI

result, iff the following conditions hold:

(1) The cuckoo hash table procedure of the client does not

abort.

(2) The unbalanced PSI protocol does not yield a false positive.
(3) The comparison with the threshold procedure does not

yield a false positive.

By the analysis in the previous sections, all the above conditions

hold with probability at least 1− 2𝜅 . By a union bound, the protocol

is correct with probability at least 1 − 3 ∗ 2𝜅 .
Security.Most of the transcripts in one instance of our protocol

are secret shares. From the security of the secret sharing scheme,

these shares are indistinguishable from random as long as the size
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of the colluding party is no larger than 𝑡 . Thus, these shares are

simulatable without any auxiliary information. Hereafter, our focus

is on the remaining transcripts, specifically the input from the

receiver ⟦(𝒚 (1) )𝑝⟧ and the input set of the sender 𝑆𝑖 during the

execution of our protocol.

We discuss the simulation in two scenarios. The difference be-

tween them is whether the receiver is a member of the corrupted

parties or not. We name the simulator in these two scenarios 𝑆𝑖𝑚𝑅
and 𝑆𝑖𝑚𝑆 respectively. Aside from all input from corrupted senders,

𝑆𝑖𝑚𝑅 has extra access to the input of the receiver and the result

of the protocol. Denote the set of honest senders as HS and the

corrupted senders CS.
In the first scenario, the receiver is corrupted. Denote the result

of the protocol as 𝐼 . For each element 𝑒 in the receiver’s set 𝐶 , the

simulator 𝑆𝑖𝑚𝑅 counts the occurrences 𝑐𝑛𝑡𝑒 for all elements 𝑒 that

occur in the corrupted senders’ sets 𝑆𝑖 , 𝑖 ∈ CS and 𝐶 . The input of

the honest senders is then simulated in the following way:

(1) For all honest sender 𝑗 ∈ HS, denote the set of their input
as {𝑆 𝑗 }. Initialize all these sets to be empty.

(2) For each element 𝑒 ∈ 𝐶, 𝑒 ∈ 𝐼 , the simulator 𝑆𝑖𝑚𝑅 select

𝑚𝑎𝑥 (0, 𝑘 − 𝑐𝑛𝑡𝑒 ) sets from {𝑆 𝑗 } and add 𝑒 to each of them.

This does not cause any set to have more than 𝑛𝑠 elements

because |𝐼 | ≤ 𝑛𝑐 < 𝑛𝑠
(3) Fill the rest of the sets with random elements until all these

sets have 𝑛𝑠 elements. It could be done in such way: Sample a

random element and add it to a random set. When a random

element 𝑒 in 𝐶 is sampled, if 𝑒 ∉ 𝐼 and the occurrence of 𝑒 in

{𝑆 𝑗 } is no less than 𝑘 − 𝑐𝑛𝑡𝑒 − 1, resample 𝑒 . There is no risk

that no such 𝑒 can be sampled since the element domain |𝐹 |
is much larger than |𝐶 |.

For 𝑆𝑖𝑚𝑆 , as the honest senders have no interaction (aside from

secret shares) with the corrupted ones, the only thing 𝑆𝑖𝑚𝑆 has to

simulate is the input from the receiver to corrupted senders. By

the CPA-security of homomorphic encryption schemes, 𝑆𝑖𝑚𝑆 can

simulate the input of the receiver by sending the encryption of a

random vector to the corrupted senders.

5 IMPLEMENTATION AND EVALUATION
We implement our protocol based on Microsoft APSI library [13].

We first realize the PoL based on APSI and then convert it to circuit-

PSI protocol. For the 2PC phase, we utilize the EQ test in Cheetah

[21] and B2A in Cryptflow2 [37]. Additionally, we make use of the

multiparty computation functionalities available in CryptFlow2.

We carried out our experiments on a single machine with Intel(R)

Xeon(R) Platinum 8255C CPU @2.50GHz and 256 GB RAM. For

communication, we simulate the network via the localhost network

as APSI
1
. The bandwidth is controlled by wondershaper

2
and and

we set the bandwidth of LAN and WAN to 30 Gbps and 100 Mbps

respectively.

5.1 Optimization of PoL
In the Homomorphic Encryption (HE)-based Unbalanced PSI pro-

tocol, the total communication cost is a summation of client-to-

server and server-to-client communications, denoted as 𝐶𝑜𝑚𝑐→𝑠
1
https://github.com/microsoft/APSI

2
https://github.com/magnific0/wondershaper

and 𝐶𝑜𝑚𝑠→𝑐 respectively. To leverage homomorphic encryption,

the data is always processed in chunks. A chunk can be viewed

as a vector and all the operations are vectorized. Combined with

SIMD, we encode the data in a plaintext and then encrypt it to get

a ciphertext. The communication cost is related to the number of

ciphertexts transferred and the concrete communication cost is:

𝑤 × 𝑆𝑖𝑧𝑒𝑐→𝑠 + 𝛼 × 𝑆𝑖𝑧𝑒𝑠→𝑐
Here 𝑤 is the size of DAG base powersW and 𝛼 is the number

of slices. 𝑆𝑖𝑧𝑒𝑐→𝑠 is the size of ciphertext from client to server and

𝑆𝑖𝑧𝑒𝑠→𝑐 is the size of ciphertext from server to client. Combined

with the modulus switching [5], 𝑆𝑖𝑧𝑒𝑠→𝑐 is several times smaller

than 𝑆𝑖𝑧𝑒𝑐→𝑠 , highlighting the importance of minimizing the num-

ber of client-to-server ciphertexts to reduce overall communication

costs. This is a key aspect addressed by the PoL.

Reduce the offline time. We also optimized the polynomial in-

terpolation process of [41]. The author used the MB algorithm

proposed by Moenck and Borodin [28] with 𝑂 (𝑏 log𝑏) to interpo-

late a polynomial of degree 𝑏. When 𝑏 < 500, the Newton method

[3] has a better performance. However, We notice that PoL needs to

interpolate 𝑘𝑠 polynomials use the same x-coordinate of the points.

This process can be optimized to use batch processing. Here we use

the Lagrange interpolation algorithm and NTT method to reduce

the offline time. Recall the Lagrange interpolation algorithm that

constructs a polynomial passing through (𝑥1, 𝑦1), · · · , (𝑥𝑛, 𝑦𝑛), the
polynomial is:

𝑓 (𝑥) =
𝑛∑︁
𝑖=1

𝑦𝑖

𝑛∏
𝑗=1, 𝑗≠𝑖

𝑥 − 𝑥 𝑗
𝑥𝑖 − 𝑥 𝑗

where we denote 𝐿𝑖 (𝑥) =
𝑛∏

𝑗=1, 𝑗≠𝑖

𝑥−𝑥 𝑗
𝑥𝑖−𝑥 𝑗 as the Lagrange basis poly-

nomial and 𝑓 (𝑥) =
𝑛∑
𝑖=1
𝑦𝑖 · 𝐿𝑖 (𝑥).

The Lagrange basis polynomial is independent of the value 𝑦𝑖
and only depends on the x-coordinate of the points. We can reuse

the Lagrange basis polynomial and then interpolate the polynomial

with different 𝑦𝑖 in batch, which saves the time for duplicate com-

putation. We combined this optimization with the NTT method

and the offline time is reduced by 49% ∼ 73%. The benchmarks are

shown in Figure 5 suggesting that it works better when the set size

is 16 million.

Reduce the first polynomial. We find the first polynomial of

PoL is redundant. Like the permutation-based hash, we can save

the storage for the first slice of an element. If we find 𝑓2 (𝑥 (1) ) =
𝑦 (2) and 𝑓2 (𝑦 (1) ) = 𝑦 (2) and we can say that 𝑦 (1) = 𝑥 (1) with
probability 1− 1

2
𝜎 . In our implementation, we set 𝑘𝑠 = 4 and 𝜎 = 20

for PoL where a slice can be placed into a slot of SIMD. By removing

the first polynomial, we effectively reduce the communication cost

by 1/4. The false positive probability is

(
1

2
20

)
3

and still satisfies the

statistical secure parameter.

Estimation of the number of partitions. We compute the num-

ber of slices needed by PoL in advance. We observe that the number

of slices corresponds to the maximum potential duplication of the

first partition of elements within the same bin, and this number is

https://github.com/microsoft/APSI
https://github.com/magnific0/wondershaper
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𝑛𝑠 𝑛𝑐 Protocol Comm. (MB)

Online time

Offline time (s)

WAN (s) LAN (s)

2
28

11041

Quorum PSI — — — —

Ours 174.6 28.14 10.95 1908

5535

Quorum PSI — — — —

Ours 114.8 20.74 10.49 2307

2
24

11041

Quorum PSI 7802.68 725.42 63.25 205

Ours 131.7 30.11 16.22 967

5535

Quorum PSI 7691.4 714.05 54.44 210

Ours 87.8 22.72 14.69 1024

2
20

11041

Quorum PSI 728.7 67.29 3.50 10

Ours 118.6 17.29 4.64 58

5535

Quorum PSI 617.4 55.99 3.41 10

Ours 79.9 10.75 3.90 59

2
16

11041

Quorum PSI 286.6 26.99 1.80 1.20

Ours 106.86 15.78 4.20 2.7

5535

Quorum PSI 175.3 15.76 1.29 1.44

Ours 66.6 8.45 2.72 2.8

Table 3: The communication cost and running time of our protocol and Quorum PSI [9] inWAN and LAN settings. The statistical
parameter 𝜅 = 40 and computational parameters 𝜆 = 128. Offline time refers to the running time of servers manipulating the
sets before connecting with the client. Online time refers to the running time of the interacting process of the servers and
client. All experiments are with a single thread except 𝑛𝑠 = 2

28. — indicates out of memory or too long time.

Figure 5: The offline time costs for different set sizes of
batched and single interpolation.

related to the size of the bin. Suppose the number of elements in

a bin is 𝑛 and the bit-length of the first slice is 𝜎 . This question is

equivalent to the hash-to-bins problem where we throw 𝑛 balls into

2
𝜎
bins and observe the distribution of the balls. We can find that

the maximum duplication equals the maximum height of the balls

stored in the same bin. Therefore, we can compute the number of

slices in advance as the formula in Section 2.3 Equation 1 such that

the elements are distributed as evenly as possible in each slice.

5.2 Comparison to Quorum PSI in [9]
We compare our protocol with [9] which focuses on balanced quo-

rum PSI. The protocol has a theoretical communication complexity

𝑂 (𝑛𝑚𝜅 (𝜆 + 𝜅 log𝑛)) where 𝑛 is the number of servers, and 𝑚 is

the set size. Their communication cost is linear with the size of the

set which is unacceptable in practice when the larger set grows.

We analyzed their protocol and found that it can be extended to

the unbalanced setting. Their protocol needs a communication

cost 𝑂 (𝑛𝑠 + 𝑛𝑐 ) and the main cost is the obviously programmable

pseudo-random function (OPPRF).

They use an oblivious programmable pseudorandom function

(OPPRF) [24] to realize the private membership test. They give

three constructions: polynomial-based OPPRF, table-based OPPRF,

and relaxed-batch OPPRF, each of which offers a different trade-off

in parameters. The polynomial-based method is communication

efficient but costs more time and performs well in the WAN setting

due to its least concrete communication cost. And the table-based

method is time efficient but costs more communication. The relaxed

batch-OPPRF is a trade-off between the two methods and is adopted

to implement OPPRF. The concrete communication of this case is

(8𝜆 + 4𝜎)𝛽 + 1.31𝑁𝜎

where the 𝑁 is three times the size of the server’s set and 𝛽 is the

batch size as known as the size of the cuckoo hash table. In the

unbalanced setting, the theoretical communication complexity is

1.27𝑛𝑐 (8𝜆 + 4𝜎) + 3.93𝑛𝑠𝜎

and the communication cost of 2PC and MPC circuits which is

linear with the size of the client set. So the total communication

cost of this protocol is 𝑂 (𝑛𝑠 + 𝑛𝑐 ).
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𝑛𝑠 𝑛𝑐 Protocol Offline (s)

Online

Comm. (MB) LAN (s) WAN (s)

Total HE 2PC Total HE 2PC Total HE 2PC

2
24

11041

Construction 1 320 16.4 14.6 1.76 24 25.8 1.85 30.4 25.9 4.56

Construction 2 62.8 62.5 61.1 1.38 7.7 5.53 2.15 16.3 12.0 4.29

Ours 861 6.24 4.99 1.25 13.92 12.92 1.00 13.85 12.78 1.07

5535

Construction 1 351 11.7 10.3 1.45 20.92 18.9 2.02 22.2 17.8 4.39

Construction 2 61.1 40.3 39.6 0.69 6.53 4.75 1.78 13.6 10.1 3.49

Ours 890 4.22 3.34 0.88 12.39 11.47 0.92 12.44 11.49 0.95

2
20

11041

Construction 1 4.07 10.89 9.51 1.38 5.04 3.13 1.91 8.60 4.55 4.05

Construction 2 4.27 19.27 17.43 1.84 3.44 1.39 2.1 9.48 5.14 4.34

Ours 53 5.37 4.12 1.25 3.51 2.51 1.00 3.64 2.57 1.07

5535

Construction 1 5.42 8.06 6.75 1.31 4.85 3.07 1.78 8.45 4.18 4.27

Construction 2 3.79 12.15 11.23 0.92 2.59 0.98 1.61 9.28 4.30 3.98

Ours 51 3.69 2.81 0.88 3.13 2.21 0.92 3.01 2.06 0.95

Table 4: The comparison of our unbalanced circuit PSI and [39] in WAN and LAN settings and the best results are marked with
blue. The statistical parameter 𝜅 = 40 and computational parameters 𝜆 = 128. All executions are executed with a single thread.

We give the comparison results in Table 3 where we slightly

modify their implementation to support unbalanced sets and com-

pare with our protocol in different settings of set size and network.

We set the size of servers’ sets from 2
16

to 2
28

and the size of the

client’s set is 5535 and 11041. The max number of client’s input in a

ciphertext is 5535 so we always pad the set size to the multiples of

5535. The results show that our protocol is more efficient than [9] in

the case of unbalanced set size. When 𝑛𝑐 = 5535 and 𝑛𝑠 = 2
24

for 15

servers, our protocol roughly achieves a 87× reduction in commu-

nication and 31× reduction in online time. Our protocol works well

when 𝑛𝑠 = 2
28

while [9] needs more than 100 GB communication.

While our protocol demonstrates significant improvements in

communication and online computation time, it does present one

limitation: the requirement for can not outperform for total time

substantial offline computation, predominantly due to polynomial

interpolation. However, this drawback is mitigated in practical

applications. The sender’s offline computation is a one-time process

and can be performed independently by the sender. Once this initial

computation is completed, the server can store the resulting data

locally. This capability to retain precomputed data significantly

reduces the overall computational burden in subsequent operations.

Therefore, while the offline computational cost is relatively high, it

can always be completed in advance and does not affect the online

computation time. We believe it is an acceptable trade-off giving

the protocol’s practical efficiency in real-world scenarios.

5.3 Comparison to Unbalanced Circuit PSI in
[39]

Furthermore, we also compare our protocol with the recent work

[39] who introduced the first unbalanced circuit PSI protocol based

on FHE. Their protocol is based on unbalanced PSI [13] and GMW

protocol [27].

[39] includes two different constructions, referred to as Construc-

tion 1 and Construction 2 in Table 4. Construct 1 is communication

efficient while Construction 2 is computation efficient. We compare

our protocol with their protocol in different settings of set size

and network. The implementation of [39] is not publicized, and

we take some results in the original paper. To keep consistency

with the experimental environment of [39], we ran our unbalanced

circuit PSI protocol on a single machine with Intel Xeon Platinum

(Cascade Lake) 8269 CPU@3.50GHz and 256G RAM.We found that

our communication cost is 2 ∼ 10× better than their protocol. And

our protocol will be more efficient in the multiparty setting where

the client needs to interact with multiple servers. At this time, the

bottleneck of a protocol is the bandwidth of the client. The online

computation cost of our protocol is less than the Construction 1

in LAN and Construction 2 in WAN. The offline computation cost

of our protocol is higher than their protocol. They utilize a larger

𝛼 to reduce the size of the partitions, thereby decreasing the time

required for polynomial interpolation. However, this comes at the

cost of increased communication. The offline computation is a one-

time process and does not impact the online phase, making it an

acceptable trade-off for many practical applications.

6 CONCLUSION
In this paper, we propose the first unbalanced quorum PSI protocol

which aims to compute the elements that appear at least 𝑘 times in

𝑛 sets. The core techniques are unbalanced PSI protocol and MPC

functionalities protocols. We implemented our protocol based on

Microsoft APSI library and the experimental results show that our

protocol is more efficient than the previous work in the unbalanced

setting. Compared to previous work, we reduce the communication

and computation cost greatly in WAN and LAN settings.
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