
Plover: Masking-Friendly Hash-and-Sign
Lattice Signatures

Muhammed F. Esgin1, Thomas Espitau2, Guilhem Niot2‹, Thomas Prest2,
Amin Sakzad1, and Ron Steinfeld1

1 Monash University
muhammed.esgin@monash.edu, amin.sakzad@monash.edu,

ron.steinfeld@monash.edu
2 PQShield

thomas@espitau.com, guilhem@gniot.fr, thomas.prest@pqshield.com

Abstract. We introduce a toolkit for transforming lattice-based hash-
and-sign signature schemes into masking-friendly signatures secure in the
t-probing model. Until now, efficiently masking lattice-based hash-and-
sign schemes has been an open problem, with unsuccessful attempts such
as Mitaka. A first breakthrough was made in 2023 with the NIST PQC
submission Raccoon, although it was not formally proven.
Our main conceptual contribution is to realize that the same principles
underlying Raccoon are very generic, and to find a systematic way to ap-
ply them within the hash-and-sign paradigm. Our main technical contri-
bution is to formalize, prove, instantiate and implement a hash-and-sign
scheme based on these techniques. Our toolkit includes noise flooding to
mitigate statistical leaks, and an extended Strong Non-Interfering prob-
ing security (SNIu) property to handle masked gadgets with unshared
inputs.
We showcase the efficiency of our techniques in a signature scheme,
Plover-RLWE, based on (hint) Ring-LWE. It is the first lattice-based
masked hash-and-sign scheme with quasi-linear complexity Opd log dq in
the number of shares d. Our performances are competitive with the state-
of-the-art masking-friendly signature, the Fiat-Shamir scheme Raccoon.

‹ Part of this project was conducted while Guilhem Niot was a student at EPFL and
ENS Lyon, interning at PQShield.

Table of Contents

1 Introduction . 2
1.1 Our Solution . 3
1.2 Technical Overview . 4

2 Preliminaries . 6
2.1 Notations . 6
2.2 Distributions . 7
2.3 Hardness Assumptions . 7
2.4 Masking . 8
2.5 Probing Model . 9

3 Plover-RLWE: Our RLWE-based Maskable Signature 12
3.1 Description of Unmasked Plover-RLWE . 12
3.2 EUF-CMA Security of Unmasked Plover-RLWE 14
3.3 Description of Masked Plover-RLWE . 17
3.4 Security of Masked Plover-RLWE . 18
3.5 Cryptanalysis and Parameter Selection . 24
3.6 Implementation . 27

A An NTRU-based Maskable Hash-and-Sign Scheme 34
A.1 Additional definitions . 34
A.2 Masked key generation . 35
A.3 Masked signing . 35
A.4 Cryptanalysis and parameter selection . 35
A.5 Implementation . 36

B Proof of Lemma 2 . 40
C Differences from the Proceedings Version . 41

1 Introduction

Post-quantum cryptography is currently one of the most dynamic fields of cryp-
tography, with numerous standardization processes launched in the last decade.
The most publicized is arguably the NIST PQC standardization process, which
recently selected [1] four schemes for standardization: Kyber [47], Dilithium [36],
Falcon [45] and SPHINCS+ [26].

Despite their strong mathematical foundations at an algorithmic level, recent
years have witnessed the introduction of various side-channel attacks against the
soon-to-be-standardized schemes: see for example the numerous power-analysis
attacks against ML-DSA (Dilithium) [30,20,37,9], FN-DSA (Falcon) [31,24,49]
or SLH-DSA (SPHINCS+) [29]. This motivates us to consider exploring sound
countermeasures allowing secure real-life implementations of mathematically
well-founded cryptographic approaches.

Masking post-quantum schemes. In general, the most robust countermea-
sure against side-channel attacks is masking [27]. It consists of splitting sensitive
information in d shares (concretely: x “ x0 ` ¨ ¨ ¨ `xd´1), and performing secure
computation using MPC-based techniques. Masking offers a trade-off : while it
increases computational efficiency by causing the running time to increase poly-
nomially in d, it also exponentially escalates the cost of a side-channel attack
with the number of shares d, see [16,38,28].

Unfortunately, masking incurs a significant computational overhead on the
future NIST standards. For example, the lattice-based signature Dilithium relies
on sampling elements in a small subset S Ĺ Zq of the native ring Zq, and
testing membership to a second subset S1 Ĺ Zq. The best-known approaches for
performing these operations in a masked setting rely on mask conversions [23].
These operations are extremely expensive, and despite several improvements in
the last few years [10,13,14], still constitute the efficiency bottlenecks of existing
masked implementations of Dilithium, see Coron et al. [15] and Azouaoui et al.
[4], and of many other lattice-based schemes, see the works of Coron et al. on
Kyber [13], and of Coron et al. on NTRU [14].

Falcon, based on the hash-and-sign paradigm, is even more challenging to
mask. The main reason is the widespread use of floating-point arithmetic; even
simple operations such as masked addition or multiplication are highly non-
trivial to mask. Another reason is a reliance on discrete Gaussian distributions
with secret centers and standard deviations, which also need to be masked. Even
without considering masking, these traits make Falcon difficult to implement and
to deploy on constrained devices.

More recent Hash-and-Sign schemes, such as Mitaka [18], Robin and Eagle
[48], also share both of these undesirable traits. Mitaka proposed novel tech-
niques in an attempt to make it efficiently maskable; however, Prest [44] showed
that these techniques were insecure and exhibited a practical key-recovery attack
in the t-probing model against Mitaka. As of today, it remains an open problem
to build hash-and-sign lattice signatures that can be masked efficiently.

1.1 Our Solution
In this work, we describe a general toolkit for converting hash-and-sign schemes
into their masking-friendly variants. The main idea is deceptively simple: instead
of using trapdoor sampling to generate a signature that leaks no information
about the secret key, using noise that is sufficiently large to hide the secret
on its own. While similar ideas were described in the Fiat-Shamir setting by
Raccoon [41], we show here that the underlying principles and techniques are
much more generic. In our case, we replace the canonical choice of Gaussian
distribution—which only depends on the (public) lattice and not on the short
secret key—with sums of uniform distributions. This allows us to remove all the
complications inherent to the sampler, as we now do not need a sampler more
complicated than a uniform one. Then since all the remaining operations are
linear in the underlying field, we can simply mask all the values in arithmetic
form and follow the usual flow of the algorithm.

3

The security of the scheme in this approach now relies on the hint vari-
ant of the underlying problem (namely, Ring-LWE) as the correlation between
the signature and the secret can be exploited when collecting sufficiently many
signatures. To showcase the versatility of our toolkit, we propose two possible in-
stantiations of our transform: starting from the recent Eagle proposal of [48], we
construct a masking-friendly hash-and-sign signature, Plover, based on the hard-
ness of Hint-RLWE. To provide a high-level view, we describe the transformation
in Fig. 1a and Fig. 1b. Differences between the two blueprints are highlighted .
Operations that need to be masked in the context of side channels are indicated
with comments: Easy when standard fast techniques apply to mask, or Hard
otherwise. We replace the two Gaussian samples (Eagle L. 3 and 6) by the noise
flooding (Plover L. 7, the mask being generated by the gadget AddRepNoise at
L.3) in masked form. The final signature z is eventually unmasked.

Eagle.Signpsk,msgq Ñ sig

In: A signing key sk, a message msg.
Out: A signature sig of msg under sk.
1: salt Ð t0, 1u320

2: u :“ Hpmsg, saltq

3: p Ð DRℓ,
?

s2I´r2TT˚ ▷ Hard
4: c :“ u ´ A ¨ p ▷ Easy
5: Decompose c as c “ β ¨ c1 ` c2
6: y Ð Dtq{βs¨Rℓ`c1,r

▷ Hard
7: z :“ p ` T ¨ y ▷ Easy
8: sig :“ psalt, zq

9: return sig

Plover.Signpsk,msgq Ñ sig

In: A signing key sk, a message msg.
Out: A signature sig of msg under sk.
1: salt Ð t0, 1u2κ

2: u :“ Hpmsg, salt, vkq

3: JpK Ð AddRepNoisepRℓ
q, d,D, repq

4: c :“ u ´ UnmaskpA ¨ JpKq

5: Decompose c as c “ β ¨ c1 ` c2
6: [This step is removed]
7: z :“ UnmaskpJpK ` JTK ¨ c1q

8: sig :“ psalt, zq

9: return sig

(a) Blueprint for Eagle [48]. (b) Blueprint for Plover.

Fig. 1: High-level comparison between Eagle [48] and our scheme Plover. In both
schemes, the signing key is a pair of matrices sk “ pT,Aq, the verification key
is vk “ T, and we have A ¨ T “ β ¨ Ik.
The verification procedure is also identical: in each case, we check that z and
c2 :“ A ¨ z ´ u are sufficiently short.

We also provide a similar approach using an NTRU-based signature. Our anal-
yses reveal that the NTRU-based approach, at the cost of introducing a stronger
assumption, sees its keygen becoming slower but signature and verification get
faster. However, as the signature size is slightly bigger and the techniques are
similar, we choose to present only the RLWE variant here and describe the NTRU
one in the supplementary materials.

1.2 Technical Overview
The main ingredients we introduce in this toolkit are the following:

4

1. Noise flooding. The main tool is the so-called noise flooding introduced by
Goldwasser et al. [22]: we “flood” the sensitive values with enough noise so
that the statistical leak becomes marginal. In contrast, other hash-then-sign
lattice signatures use trapdoor sampling make the output distribution sta-
tistically independent of the signing key. However, marginal does not mean
nonexistent and we need to quantify this leakage.
To achieve this in a tight manner, we leverage the recent reduction of Kim
et al. [32], which transitions Hint-MLWE to MLWE, providing a solid un-
derstanding of the leakage. Noise flooding has recently proved useful in the
NIST submission Raccoon [41] to analyze its leakage and optimize parame-
ters. Here also, the tightness of this reduction allows to reduce the relative
size of the noise while preserving security, compared to, e.g., using standard
Rényi arguments.

2. SNI with unmasked inputs. To get a scheme which is provably secure in the
t-probing model, we need to extend the usual definition of t Strong Non-
Interfering (SNI) Gadgets to allow the attacker to know “for free” up to
t unshared inputs of the gadgets (we call this extended property t-SNIu).
This is somehow the “dual” of the (S)NI with public outputs notion (NIo)
introduced by Barthe et al. [6].
In particular, we formally show that the AddRepNoise gadget, introduced
by Raccoon [41] to sample small secrets as a sum of small unshared inputs,
satisfies our t-SNIu definition and hence enjoys t probing security. This fills a
provable security gap left in [41], where the t-probing security of AddRepNoise
was only argued informally. Our new model is also sufficient to handle the
unmasking present in our signature proposal. We prove the security for the
t-probing EUF-CMA notion borrowed from [6].

3. Masked inversion. As a natural byproduct of the NTRU-based instantia-
tion, we propose a novel way to perform inversion in masked form. Our
proposal combines the NTT representation with Montgomery’s trick [40] to
speed up masked inversion. It is to the best of our knowledge the first time
Montgomery’s trick has been used for masking lattice cryptography. Our
technique offers an improved asymptotic complexity over previous proposals
from [14, Section 4.3 and 5]. Due to page limitation, more details are given
in Appendix A.2.

Advantages and limitations The first and main design principle of our toolkit
is of course its amenability to masking. In effect, we can mask at order d ´ 1
with an overhead of only Opd log dq. This allows masking of Plover at high orders
with a small impact on efficiency. High masking orders introduce a new efficiency
bottleneck in memory consumption, due to the storage requirements for highly
masked polynomials. Second, our proposal Plover relies on (variants of) lattice
assumptions that are well-understood (NTRU, LWE), or at least are classically
reducible from standard assumptions (Hint-LWE). We emphasize that the sim-
plicity allowed in the design leads to implementation portability. In particular,
our scheme enjoys good versatility in its parameter choices—allowing numerous

5

tradeoffs between module sizes, noise, and modulus–enabling target development
on various device types. For example, our error distributions can be based on
sums of uniform distributions; this makes implementation straightforward across
a wide range of platforms. Ultimately, since Plover is a hash-and-sign signature,
it does not require masked implementations of symmetric cryptographic com-
ponents, such as SHA-3/SHAKE. The number of distinct masking gadgets is
relatively small, which results in simpler and easier-to-verify firmware and hard-
ware.

As expected, our efficient masking approach comes at the cost of larger pa-
rameter sizes (mainly because of the large modulus required) compared to the
regular design of hash-and-sign schemes using Gaussian distributions and very
small modulus. Additionally, the security is now query dependant: as it is the
case for Raccoon or most threshold schemes, we can only tolerate a certain num-
ber (NIST recommendation being 264) of queries to the signing oracle with the
same private key.

2 Preliminaries

2.1 Notations

Sets, functions and distributions. For an integer N ą 0, we note rN s “ t0, . . . , N´

1u. To denote the assign operation, we use y :“ fpxq when f is a determinis-
tic and y Ð fpxq when randomized. When S is a finite set, we note UpSq the
uniform distribution over S, and shorthand x

$
Ð S for x Ð UpSq.

Given a distribution D of support included in an additive group G, we note
rT s ¨ D the convolution of T identical copies of D. For c P G, we may also note
D ` c the translation of the support of D by c. Finally, the notation P s

„ Q
indicates that the two distributions are statistically indistinguishable.

Linear algebra. Throughout the work, for a fixed power-of-two n, we note
K “ Qrxs{pxn ` 1q and R “ Zrxs{pxn ` 1q the associated cyclotomic field and
cyclotomic ring. We also note Rq “ R{pqRq. Given x P Kℓ, we abusively note
}x} the Euclidean norm of the pn ℓq-dimensional vector of the coefficients of x.
By default, vectors are treated as column vectors unless specified otherwise.

Rounding. Let β P N, β ě 2 be a power-of-two. Any integer x P Z can be
decomposed uniquely as x “ β ¨ x1 ` x2, where x2 P t´β{2, . . . , β{2´ 1u. In this
case, |x1| ď

Q

x
β

U

, where r¨s denote rounding up to the nearest integer. For odd
q, we note Decomposeβ : Zq Ñ Z ˆ Z the function which takes as input x P Zq,
takes its unique representative in x̄ P t´pq´1q{2, . . . , pq´1q{2u, and decomposes
x̄ “ β ¨ x1 ` x2 as described above and outputs px1, x2q. We extend Decomposeβ
to polynomials in Zqrxs, by applying the function to each of its coefficients. For
c

$
Ð Zq and pc1, c2q :“ Decomposeβpcq, we have |c1| ď

Q

q´1
2β

U

, Erc1s “ 0 and

Erc21s ď M2´1
12 for M “ 2

Q

q´1
2β

U

` 1.

6

2.2 Distributions

Definition 1 (Discrete Gaussians). Given a positive definite Σ P Rmˆm, we
note ρ?

Σ the Gaussian function defined over Rm as

ρ?
Σpxq “ exp

ˆ

´
xt ¨ Σ´1 ¨ x

2

˙

.

We may note ρ?
Σ,cpxq “ ρ?

Σpx ´ cq. When Σ is of the form σ ¨ Im, where
σ P K`` and Im is the identity matrix, we note ρσ,c as shorthand for ρ?

Σ,c.
For any countable set S Ă Km, we note ρ?

Σ,cpSq “
ř

xPKm ρ?
Σ,cpxq when-

ever this sum converges. Finally, when ρ?
Σ,cpSq converges, the discrete Gaussian

distribution DS,c,
?
Σ is defined over S by its probability distribution function:

DS,
?
Σ,cpxq “

ρ?
Σ,cpxq

ρ?
Σ,cpSq

. (1)

Definition 2 (Sum of uniforms). We note SUpu, T q :“ rT s¨Upt´2u´1, . . . , 2u´1´

1uq. In other words, SUpu, T q is the distribution of the sum X “
ř

iPrT s Xi, where
each Xi is sampled uniformly in the set t´2u´1, . . . , 2u´1 ´ 1u.

2.3 Hardness Assumptions

In a will of unification and clarification, we choose to present the lattice prob-
lems used in this work in their Hint-variants, that is to say with some additional
statistical information on the secret values. Of course, not adding any hint re-
covers the plain problems—here being RLWE, and NTRU in the appendix. The
Hint-RLWE problem was introduced recently in [32] and reduces (in an almost
dimension-preserving way) from RLWE.

Definition 3 (Hint-RLWE). Let q,Q be integers, Dsk,Dpert be probability distri-
butions over R2

q, and C be a distribution over Rq. The advantage AdvHint-RLWE
A pκq

of an adversary A against the Hint Ring Learning with Errors problem
Hint-RLWEq,Q,Dsk,Dpert,C is defined as:

ˇ

ˇPr
“

1 Ð A
`

a,
“

a 1
‰

¨ s, pci, ziqiPrQs

˘‰

´ Pr
“

1 Ð A
`

a, u, pci, ziqiPrQs

˘‰ˇ

ˇ ,

where pa, uq
$

Ð R2
q, s Ð Dsk and for i P rQs: ci Ð C, ri Ð Dpert, and zi “ ci ¨ s`

ri. The Hint-RLWEq,Q,Dsk,Dpert,C assumption states that any efficient adversary A
has a negligible advantage. We may write Hint-RLWEq,Q,σs,σr,C as a shorthand
when Dsk “ Dσs and Dpert “ Dσr are the Gaussian distributions of parameters
σs and σr, respectively. When Q “ 0, we recover the classical RLWE problem:
RLWEq,Dsk

“ Hint-RLWEq,Q“0,Dsk,Dpert,C.

The spectral norm s1pMq of a matrix M is defined as the value maxx‰0
}Mx}

}x}
.

We recall that if a matrix is symmetric, then its spectral norm is also its largest

7

eigenvalue. Given a polynomial c P R, we may abusively use the term “spectral
norm s1pcq of c” when referring to the spectral norm of the anti-circulant matrix
Mpcq associated to c. Finally, if cpxq “

ř

0ďiăn ci x
i, then the Hermitian adjoint

of c, which we denote by c˚, is defined as c˚pxq “ c0 ´
ř

0ăiăn cn´i x
i. Note that

Mpcqt “ Mpc˚q.
Theorem 1 (Hardness of Hint-RLWE, adapted from [32]). Let C be a
distribution over R, and let BHRLWE be a real number such that s1pDq ď BHRLWE

with overwhelming probability, where D “
ř

Q cic
˚
i . Let σ, σsk, σpert ą 0 such

that 1
σ2 “ 2

´

1
σ2
sk

` BHRLWE

σ2
pert

¯

. If σ ě
?
2ηεpZnq for 0 ă ε ď 1{2, where ηεpZnq

is the smoothing parameter of Zn, then there exists an efficient reduction from
RLWEq,σ to Hint-RLWEq,Q,σsk,σpert,C that reduces the advantage by at most 4ε.
For our scheme, concrete bounds for BHRLWE will be given in Lemma 2. Finally,
we recall the Ring-SIS (RSIS) assumption.
Definition 4 (RSIS). Let ℓ, q be integers and β ą 0 be a real number. The
advantage AdvRSISA pκq of an adversary A against the Ring Short Integer Solutions
problem RSISq,ℓ,β is defined as:

AdvRSISA pκq “ Pr
”

a
$

Ð Rℓ
q, z Ð Apaq : 0 ă }z} ď β ^

“

1 aJ
‰

z “ 0 mod q
ı

.

The RSISq,ℓ,β assumption states that any efficient adversary A has a negligible
advantage.

2.4 Masking
Definition 5. Let R be a finite commutative ring and d ě 1 be an integer.
Given x P R, a d-sharing of x is a d-tuple pxiqiPrds such that

ř

iPrds xi “ x. We
denote by JxKd any valid d-sharing of x; when d is clear from context, we may
omit it and simply write JxK. A probabilistic encoding of x is a distribution over
encodings of x.

– A d-shared circuit C is a randomized circuit working on d-shared vari-
ables. More specifically, a d-shared circuit takes a set of n input sharings
px1,iqiPrds, . . . , pxn,iqiPrds and computes a set of m output sharings py1,iqiPrds,
. . . , pym,iqiPrds such that py1, . . . , ymq “ fpx1, . . . , xnq for some deterministic
function f . The quantity pd ´ 1q is then referred to as the masking order.

– A probe on C or an intermediate variable of C refers to a wire index (for
some given indexing of C’s wires).

– An evaluation of C on input px1,iqiPrds, . . . , pxn,iqiPrds under a set of probes
P refers to the distribution of the tuple of wires pointed by the probes in P
when the circuit is evaluated on px1,iqiPrds, . . . , pxn,iqiPrds, which is denoted
by Cppx1,iqiPrds, . . . , pxn,iqiPrdsqP .

In the following, we focus on a special kind of shared circuits which are composed
of gadgets. A pu, vq-gadget is a randomized shared circuit as a building block
of a shared circuit that performs a given operation on its u input sharings and
produces v output sharings.

8

2.5 Probing Model
The most commonly used leakage model is the probing model, introduced by
Ishai, Sahai and Wagner in 2003 [27]. Informally, it states that during the eval-
uation of a circuit C, at most t wires (chosen by the adversary) leak the value
they carry. The circuit C is said to be t-probing secure if the exact values of any
set of t probes do not reveal any information about its inputs.
Definition 6 (t-probing security). A randomized shared arithmetic circuit
C equipped with an encoding E is t-probing secure if there exists a probabilistic
simulator S which, for any input x P Kℓ and every set of probes P such that
|P | ď t, satisfies SpC,P q “ CpEpxqqP .

Since the computation of distributions is expensive, the security proof relies on
stronger simulation-based properties, introduced by Barthe et al. [5], to demon-
strate the independence of the leaking wires from the input secrets. Informally,
the idea is to perfectly simulate each possible set of probes with the smallest set
of shares for each input. We recall the formal definitions of t-non-interference and
t-strong non-interference hereafter. These provide a framework for the composi-
tion of building blocks, which makes the security analysis easier when masking
entire schemes, as is the case here.
Definition 7 (t-non-interference). A randomized shared arithmetic circuit
C equipped with an encoding E is t-non-interferent (or t-NI) if there exists a
deterministic simulator S1 and a probabilistic simulator S2, such that, for any
input x P Kℓ, for every set of probes P of size t,

pI1, I2, . . . , Iℓq Ð S1pC,P q with |I1|, |I2|, . . . , |Iℓ| ď t

and S2ppx1,iqiPI1
, px2,iqiPI2

, . . . , pxℓ,iqiPIℓ
q “ CpEpxqqP .

If the input sharing is uniform, a t-non-interferent randomized arithmetic circuit
C is also t-probing secure. One step further, the strong non-interference benefits
from stopping the propagation of the probes between the outputs and the input
shares and additionally trivially implies t-NI.

We now introduce the notion of t-strong non-interference with unshared input
values (t-SNIu). The new notion is very much similar to that of t-SNI of Barthe
et al. [6] with a special additional unshared input values x1 along with the usual
shared input values x. In addition, there will be no unshared outputs in t-SNIu,
hence the interface with other gadgets is with the shared inputs only as with the
original definition.
Definition 8 (t-strong non-interference with unshared input values).
A randomized shared arithmetic circuit C equipped with an encoding E is t-
strong non-interferent with unshared input values (or t-SNIu) if there exists a
deterministic simulator S1 and a probabilistic simulator S2, such that, for any
shared inputs x P Kℓ and unshared input values x1 P Kℓ1 , for every set of probes
P of size t whose P1 target internal variables and P2 “ P zP1 target the output
shares,

pI1, I2, . . . , Iℓ, I 1q Ð S1pC,P q with |I1|, |I2|, . . . , |Iℓ|, |I 1| ď |P1|

9

and S2ppx1,iqiPI1
, px2,iqiPI2

, . . . , pxℓ,iqiPIℓ
, px1

iqiPI1 q “ CpEpx, x1qqP .

We remark that for usual gadgets with no unshared inputs, our above definition
of t-SNIu reduces to the usual t-SNI notion. Looking ahead, we will model our
AddRepNoise gadget’s internal small random values as unshared inputs to the
AddRepNoise gadget.

Common Operations Arithmetic masking, which we use in this paper, is
compatible with simpler arithmetic performed in time Opd2q and is shown to be
t-SNI by Barthe et al. [5, Proposition 2].

A t-SNI refresh gadget (Refresh), given in Algorithm 1, with complexity
Opd log dq has been proposed by Battistello et al. [7]. Its complexity has been
improved by a factor 2 by Mathieu-Mahias [39], which also proves that it is t-
SNI in [39, Section 2.2]. We use this improved variant as a building block of our
schemes. For completeness, it is reproduced in Algorithms 1 and 3.

Finally, a secure decoding algorithm Unmask is described in Algorithm 2. It
is shown by Barthe et al. [6] to be t-NIo [6, Definition 7] .

Refresh and Unmask take as a (subscript) parameter a finite abelian group
G. When G is clear from context, we may drop the subscript for concision.

Algorithm 1 RefreshGpJxKq Ñ JxK1

Require: A d-sharing JxK of x P G
Ensure: A fresh d-sharing JxK of x
1: JzK $

Ð ZeroEncodingpG, dq

2: return JxK1 :“ JxK ` JzK

Algorithm 2 UnmaskGpJxKq Ñ x

Require: A d-sharing JxK “ pxiqiPrds

of x P G
Ensure: The clear value x P G
1: JxK Ð RefreshpJxKq

2: return x :“
ř

iPrds xi

Algorithm 3 ZeroEncodingpG, dq Ñ JzKd
Require: A power-of-two integer d, a finite

abelian group G
Ensure: Uniform d-sharing JzK P Gd of 0 P G
1: if d “ 1 then
2: return JzK1 :“ p0q

3: Jz1Kd{2 Ð ZeroEncodingpG, d{2q

4: Jz2Kd{2 Ð ZeroEncodingpG, d{2q

5: JrKd{2
$

Ð Gd{2

6: Jz1Kd{2 :“ Jz1Kd{2 ` JrKd{2

7: Jz2Kd{2 :“ Jz2Kd{2 ´ JrKd{2

8: return JzKd :“
`Jz1Kd{2 } Jz2Kd{2

˘

▷ pu } vq denote shares concatenation.

AddRepNoise The AddRepNoise procedure (Algorithm 4) is one of the key build-
ing blocks of our scheme. It is an adaptation of the eponymous procedure from
the Raccoon signature scheme [41].

We prove that the AddRepNoise gadget satisfies the SNI with both shared and
unshared inputs notion (t-SNIu), as defined in Sec. 2.1. In particular, there exists
a simulator that can simulate ď t probed variables using ď t unshared input val-
ues and ď t shared input values. The underlying intuition (see Sec. 4.2 in [41] for

10

Algorithm 4 AddRepNoisepG, d,Dind, repq Ñ JvK
Require: A finite Abelian group G, the number of shares d, a noise distribution Dind,

a repetition count parameter rep
Ensure: A masked element JvK P Gd such that v „ rd ¨ reps ¨ Dind

1: JvK “ pvjqjPrds :“ p0Gqd ▷ JvK P Gd

2: for i P rreps do
3: for j P rds do
4: ri,j Ð Dind

5: vj :“ vj ` ri,j

6: JvK Ð RefreshpJvKq ▷ Refresh JvK on each repeat
7: return JvK

an informal discussion) is that the t-SNI property of the Refresh gadget inserted
between the rep MaskedAdd gadgets effectively isolates the MaskedAdd gadgets
and prevents the adversary from combining two probes in different MaskedAdd
gadgets to learn information about more than two unshared inputs, i.e. t probes
only reveal ď t unshared inputs. The formal statement is given in Lemma 1.
Lemma 1 (AddRepNoise probing security). Gadget AddRepNoise is t-SNIu,
considering that AddRepNoise has no shared inputs, and that it takes as unshared
input the values pri,jqi,j.

Proof. The AddRepNoise consists of rep repeats (over i P rreps) of the following
Add-Refresh subgadget: a MaskedAdd gadget (line 5) that adds sharewise the d
unshared inputs pri,jqjPrds to the internal sharing JvK, followed by a RefreshpJvKq

gadget (line 6). For i P rreps, we note:
1. t

piq
1,R the number of probed internal variables (not including outputs);

2. t
piq
2,R the number of simulated or probed output variables in i’th Refresh;

3. t
piq
A the total number of probed variables in the i’th MaskedAdd gadget (i.e.

including probed inputs and probed outputs that are not probed as inputs
of Refresh).

We construct a simulator for the t probed observation in AddRepNoise by com-
posing the outputs of the rreps simulators for probed observations in the Add-
Refresh subgadgets, proceeding from output to input. For i “ rep ´ 1 down to
0, the simulator for the i’th Add-Refresh subgadget works as follows.

The Refresh gadget is t-SNI according to [5]. Therefore, there exists a simula-
tor Spiq

R that can simulate t
piq
1,R`t

piq
2,R ď t variables using t

piq
in,R ď t

piq
1,R input shared

values JvK of the i’th Refresh gadget. The latter is also equal to the number of
outputs of MaskedAdd gadget that need to be simulated to input to Spiq

R .
Since the ith MaskedAdd gadget performs addition sharewise, we can now

construct a simulator Spiq
A that simulates the required ď t

piq
A ` t

piq
in,R ď t

piq
A ` t

piq
1,R

variables in the i’th MaskedAdd gadget using t
piq
in,A ď t

piq
A ` t

piq
1,R additions and

the corresponding summands: tpiq
in,A input shares of the first MaskedAdd gadget

in JvK and t
piq
in,A unshared inputs ri,j .

11

Over all i P rreps, the composed simulator S for AddRepNoise can sim-
ulate all t probed observations in AddRepNoise using a total of tin,ARN,u ď
ř

iPrreps t
piq
in,A ď

ř

iPrreps t
piq
A ` t

piq
1,R ď t unshared input values ri,j of AddRepNoise,

where tin,ARN,u ď t since the above
ř

iPrreps t
piq
A ` t

piq
1,R variables are distinct

probed variables in AddRepNoise. [\

3 Plover-RLWE: Our RLWE-based Maskable Signature

This section presents a maskable hash-and-sign signature scheme based on RLWE.
It leverages the compact lattice gadget from Yu et al. [48], and its mostly lin-
ear operations to construct a maskable scheme relying on noise flooding, i.e.
Gaussian sampling is replaced by a large noise provably hiding a secret value.
We describe the unmasked scheme in Section 3.1, and the masked scheme in
Section 3.3. We introduce additional notations.

– ExpandA : t0, 1uκ Ñ Rq deterministically maps a uniform seed seed to a
uniformly pseudo-random element a P Rq.

– H : t0, 1u˚ ˆt0, 1u2κˆV Ñ Rq is a collision-resistant hash function mapping
a tuple pmsg, salt, vkq to an element u P Rq. We note that H is parameterized
by a salt salt for the security proof of Gentry et al. [21] to go through, and
by the verification key vk.

3.1 Description of Unmasked Plover-RLWE

Parameters. We sample RLWE trapdoors from a distribution Dsk, and noise in
the signature from a distribution Dpert. Additionally, we introduce an integer
parameter β; it is used as a divider in the signature generation to decompose
challenges in low/high order bits via Decomposeβ . Despite its name, we do not
require that β divides q; that was only required by the Gaussian sampler of [48].

Key generation. The key generation samples a public polynomial a, derived from
a seed. The second part of the public key is essentially an RLWE sample shifted
by β. A description of the key generation is given in Algorithm 5.

Algorithm 5 Plover-RLWE.Keygenp1κq Ñ pvk, skq

Require: The ring Rq, a divider β, a distribution Dsk over R2

Ensure: A verification key vk “ pseed, bq P t0, 1uκ ˆRq, a signing key sk “ ps, eq P R2

1: seed
$

Ð t0, 1uκ

2: a :“ ExpandApseedq ▷ ExpandA maps a seed to an element in R
3: ps, eq Ð Dsk

4: b :“ β ´ pas ` eq mod q
5: return vk :“ pseed, bq, :“ pvk, s, eq

12

Signing procedure. The signature generation is described in Algorithm 6. It first
hashes the given message msg to a target polynomial u. It then uses its trapdoor
to find a short pre-image z “ pz1, z2, z3q such that A ¨ z :“ z1 ` a z2 ` b z3 “

u ´ c2 mod q for a small c2 and A :“
“

1 a b
‰

. In order to prevent leaking the
trapdoor, a noise vector p is sampled and added to the pre-image z. As in [48],
the actual signature is pz2, z3q, since z1 ` c2 “ u ´ a z2 ´ b z3 can be recovered
in the verification procedure. Additionally, c1 is public and does not require to
be hidden by noise. Signature size is then dominated by sending z2.

Ahead of Section 3.3, we note that, except for Line 5, all operations in Al-
gorithm 6 either (i) are linear functions of sensitive data (T and p), and can
therefore be masked with overhead Õpdq, or (ii) can be performed unmasked.

Algorithm 6 Plover-RLWE.Signpmsg, skq Ñ sig

Require: A message msg, the secret key sk “ ppseed, bq, s, eq, a bound B2 ą 0
Ensure: A signature psalt, z2, z3q

1: a :“ ExpandApseedq

2: salt
$

Ð t0, 1u2κ

3: u :“ Hpmsg, salt, vkq

4: A :“
“

1 a b
‰

, T :“

»

–

e
s
1

fi

fl

5: p Ð Dpert ˆ t0u ▷ Recall Dpert is over R2
q

6: c :“ u ´ A ¨ p
7: pc1, c2q :“ Decomposeβpcq ▷ c “ β ¨ c1 ` c2
8: z Ð p ` T ¨ c1 ▷ z “ pz1, z2, z3q and z3 “ c1
9: return sig :“ psalt, z2, z3q, auxsig “ c2

▷ auxsig used in security proof, but not in verification.

Verification. The verification first recovers z1
1 :“ u´a z2 ´b z3 (equal to z1 `c2),

followed by checking the shortness of pz1
1, z2, z3q. A formal description is given

in Algorithm 7. Using notations from Algorithm 6, correctness follows from:

Az “ Ap ` AT c1 “ pu ´ cq ` β ¨ c1 “ u ´ c2

Algorithm 7 Plover-RLWE.Verifypvk,msg, sigq Ñ accept or reject
Require: sig “ psalt, z2, z3q, msg, vk “ pseed, bq, and a bound B2 ą 0
Ensure: Accept or reject.
1: a :“ ExpandApseedq,
2: u :“ Hpmsg, salt, vkq

3: z1
1 :“ pu ´ a z2 ´ b z3q mod q ▷ z1

1 “ z1 ` c2
4: accept if { }pz1

1, z2, z3q} ď B2 and }z3}8 ď q{p2βq ` 1{2 }, else reject

13

To provide a more modular exposition to our algorithms and security proofs,
we next prove the EUF-CMA security of our unmasked signature proposal. Later
in Section 3.4, we will reduce the t-probing security of our masked construction
from the EUF-CMA security of the unmasked construction. To facilitate the latter
reduction, we show the EUF-CMA security of the unmasked construction even
when the signing oracle outputs the auxiliary signature information auxsig “ c2
(see Algorithm 6) along with the signature sig.

3.2 EUF-CMA Security of Unmasked Plover-RLWE

For the Hint-RLWE reduction in Theorem 2, we introduce Definition 9. Note that
in the definition, if β divides q, then c1 and c2 are independent and uniformly
random in their supports but this is not necessary for our reduction.

Definition 9 (Distributions for Hint-RLWE). Let pc1, c2q be sampled from
the joint distribution induced by sampling c uniformly at random from Rq and
setting pc1, c2q :“ Decomposeβpcq. Then:

– We let C1 denote the marginal distribution of c1.
– For a fixed c1

1, we let C|c1
1

2 denote the conditional distribution of c2 conditioned
on the event c1 “ c1

1.

Before we move into the formal security statement, we emphasize that the secu-
rity of unmasked Plover reduces to the standard RLWE and RSIS problems when
the distributions Dsk,Dpert are chosen to be discrete Gaussians (with appropriate
parameter). This is due to the fact that Hint-RLWE reduces to RLWE as proven
in [33], see also Theorem 1.

Theorem 2. The Plover-RLWE scheme is EUF-CMA secure in the random
oracle model if RLWEq,Upr´B2{

?
2n,B2{

?
2nsnq2 , Hint-RLWEq,QSign,Dsk,Dpert,C1

and
RSISq,2,2B2

assumptions hold. Formally, let A be an adversary against the
EUF-CMA security game making at most QSign signing queries and at most
QH random oracle queries. Denote an adversary H’s advantage against
Hint-RLWEq,QSign,Dsk,Dpert,C1 by AdvHint-RLWE

H pκq, and an adversary D’s advantage
against RLWEq,Upr´B2{

?
2n,B2{

?
2nsnq2 by AdvRLWE

D pκq. Then, there exists an adver-
sary B running in time TB « TH « TD « TA against RSISq,2,2B2 with advantage
AdvRSISB pκq such that

AdvEUF-CMA
A ď pc ` QSign QH{22κ ` AdvHint-RLWE

H pκq ` QH ¨ AdvRLWE
D pκq ` AdvRSISB

for some pc ď 2´n¨p2 log2p2B2{
?
2nq´log2pqqq.

Proof. We prove the security of the above scheme with intermediary hybrid
games, starting from the EUF-CMA game against our signature scheme in the
ROM and then finally arriving at a game where we can build an adversary B
against RSISq,2,2B2

. Let A be an adversary against the EUF-CMA security game.

14

Game0. This is the original EUF-CMA security game. A key pair pvk, skq Ð

Plover-RLWE.Keygenp1κq is generated and A is given vk. A gets access to a
signing oracle OSignpmsgq that on input a message msg (chosen by A) out-
puts a signature, along with the auxiliary signature information psig, auxsigq Ð

Plover-RLWE.Signpmsg, skq and adds pmsg, sig, auxsigq to a table Ts. The calls to
the random oracle H are stored in a table TH and those to OSign are stored in
a table Ts.

Game1. Given a message msg, we replace the signing oracle OSign as follows :

1. Sample salt
$

Ð t0, 1u2κ. Abort if an entry matching the pmsg, salt, vkq tuple
exists in TH (Abort I).

2. Sample u1 $
Ð Rq and decompose it as pc1, c2q :“ Decomposeβpu1q (i.e., u1 “

β ¨ c1 ` c2).
3. Sample p Ð Dpert ˆ t0u.
4. Compute z1 :“ p`T ¨ c1 `

“

c2 0 0
‰

. Program the random oracle H such that
Hpmsg, salt, vkq :“ Az1. Store in TH the entry ppmsg, saltq, z1q.

5. Return sig :“ psalt, z1
2, z

1
3q and auxsig :“ c2, where z1 “ pz1

1, z
1
2, z

1
3q, and store

pmsg, sig, auxsigq in Ts.

Observe that Abort I happens with probability at most QSignQH{22κ. If it does
not, then the view of A in Game1 is distributed identically to their view in Game0.
Indeed, in Game1, the value u output by H for signed values is still uniform in Rq

and independent of p. This is due to the fact that u :“ Az1 “ Ap`AT¨c1`c2 “

Ap` βc1 ` c2 “ Ap` u1 and u1 is uniform in Rq and independent of p. Hence,
there is an advantage loss only if Abort I occurs; that is,

ˇ

ˇ

ˇ
AdvGame0

A ´ AdvGame1
A

ˇ

ˇ

ˇ
ď QSignQH{22κ.

Game2. In this game, we make a single change over Game1 and replace b “

β ´ pas ` eq by b “ β ´ b1 where b1 is a uniformly random polynomial in Rq.
This means that b also follows uniform distribution over Rq.
We can observe that this reduces to Hint-RLWE problem with QSign hints. In
particular, given Hint-RLWE instance pa, b1, tc1,i, ph1,i, h2,iquiPrQSignsq with c1,i Ð

C1, and h1,i :“ p1,i ` e ¨ c1,i and h2,i :“ p2,i ` s ¨ c1,i, adversary H runs A with
verification key pa, b1q and simulates the view of A as in Game1, computing the
values of z1

1,i, z
1
2,i in step 4 of the i’th query to OSign in Game1 using the hints

h1,i, h2,i as follows: z1
1,i “ h1,i ` c2,i, z1

2,i “ h2,i, with c2,i sampled from the
conditional distribution C|c1,i

2 . At the end of the game, H returns 1 if A wins the
game, and 0 otherwise. Observe that if b1 in the Hint-RLWE instance is from the
real RLWE (resp. uniform in Rq) distribution, then H simulates to A its view
in Game1 (resp. Game2), so H’s advantage is lower bounded as

ˇ

ˇ

ˇ
AdvGame1

A ´ AdvGame2
A

ˇ

ˇ

ˇ
ď AdvHint-RLWE

H pκq.

15

Game3. In this game, we replace the random oracle H as follows. If an entry has
not been queried before, H returns Az where z $

Ð t0uˆ
`

r´B2{
?
2n,B2{

?
2nsn

˘2

(observe that }z} ď B2). We store in TH the entry ppmsg, saltq, zq for an
input query pmsg, salt, vkq. Note that the result of Az is indistinguishable from a
uniformly random value in Rq by the RLWEq,Upr´B2{

?
2n,B2{

?
2nsnq2 assumption.

Hence, we have
ˇ

ˇ

ˇ
AdvGame2

A ´ AdvGame3
A

ˇ

ˇ

ˇ
ď QH ¨ AdvRLWE

D pκq.

Game4. Let sig˚ :“ psalt˚, z˚
2 , z

˚
3 q R Ts be the forged signature output by A for

a message msg˚. Define z˚
1 :“ u ´ az˚

2 ´ bc˚
1 and z˚ :“ pz˚

1 , z
˚
2 , z

˚
3 q. Without

loss of generality, we assume that the pair pmsg˚, salt˚
q has been queried to

the random oracle H. From TH , we retrieve pz “ ppz1, pz2, pz3q corresponding to
pmsg˚, salt˚

q. If pz “ z˚, then we abort (Abort II).

– Case 1: Suppose Hpmsg˚, salt˚, vkq was called by the signing oracle OSign.
Then, since sig˚ :“ psalt˚, z˚

2 , z
˚
3 q R Ts, we must have psalt˚, z˚

2 , z
˚
3 q ‰

psalt˚, pz2, pz3q, which implies pz ‰ z˚. Hence, Abort II never happens in this
case.

– Case 2: Suppose Hpmsg˚, salt˚, vkq was queried directly to H. Then, since
the first entry of pz (resp. z˚) is uniquely determined by the remaining entries
of pz (resp. z˚), Abort II happens with a probability

pc :“ max
u

Prrpz˚
2 , z

˚
3 q “ ppz2, pz3q | Hpmsg˚, salt˚, vkq “ u “ Apzs ď 2´H8pppz2,pz3q|uq

Since H8pppz2, pz3qq ě 2n log2p2B2{
?
2nq and H8puq ď n log2pqq, we have:

H8pppz2, pz3q|uq ě H8pppz2, pz3, uqq ´ H8puq

ě H8pppz2, pz3qq ´ H8puq

ě n ¨ p2 log2p2B2{
?
2nq ´ log2pqqq

Hence, we get
ˇ

ˇ

ˇ
AdvGame3

A ´ AdvGame4
A

ˇ

ˇ

ˇ
ď pc for pc ď 2´n¨p2 log2p2B2{

?
2nq´log2pqqq.

Observe from the verification algorithm (Alg. 7) that Az˚ “ u “

Hpmsg, salt, vkq and }z˚} ď B2. Also, by the construction of H, u “ Apz
with }pz} ď B2 (see Game3). Consequently, if Abort II does not happen, we
can construct an adversary B that solves the RSISq,2,2B2 problem for A since
Appz´z˚q “ 0 mod q for pz´z˚ ‰ 0 where A “

“

1 a b
‰

for a random a (modelling
ExpandA as a random oracle) and random b (as discussed in Game2). More con-
cretely, let A “

“

1 a b
‰

be the challenge RSIS vector given to B where a, b
$

Ð Rq.
The adversary B samples seed $

Ð t0, 1uκ and provides vk “ pseed, bq to A against

16

Game4 and programs ExpandApseedq “ a (modelling ExpandA as a random ora-
cle). Note that the distribution of pseed, bq matches perfectly the distribution of
vk produced in Game4 due to the change of b in Game2. Since OSign is run using
only with publicly computable values in Game4, B simulates OSign queries as
in Game4. B also simulates the queries to H as in Game4 and stores the corre-
sponding tables TH and Ts. As discussed above, provided that Abort II does not
happen, B can use A’s output forgery to create an RSISq,2,2B2

solution. Hence,
ˇ

ˇ

ˇ
AdvRSISB ´ AdvGame4

A

ˇ

ˇ

ˇ
ď pc and TB « TA. As a result, we get

ˇ

ˇ

ˇ
AdvRSISB ´ AdvEUF-CMA

A

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
AdvRSISB ´ AdvGame4

A ` AdvGame4
A ´ AdvEUF-CMA

A

ˇ

ˇ

ˇ

ď pc ` QSignQH{22κ ` AdvHint-RLWE
H pκq ` QH ¨ AdvRLWE

D pκq.

This concludes the proof. [\

3.3 Description of Masked Plover-RLWE

This section describes our main construction, the masked Plover-RLWE. Dsk

and Dpert are respectively replaced by sums of distributions rd repsks ¨ Dind
sk and

rd repperts ¨ Dind
pert to enable the masking, where repsk and reppert are newly intro-

duced parameters.

Key generation. The key generation generates d-sharings small secrets pJsK, JeKq

and the corresponding RLWE sample b “ a ¨ s ` e. As in Raccoon [41], a key
technique is the use of AddRepNoise for the generation of the small errors which
ensures that a t-probing adversary learns limited information about ps, eq.

Algorithm 8 Plover-RLWE.MaskKeygenp1κq Ñ pvk, skq

Require: The ring R, a modulus q
Ensure: A public key pseed, bq P t0, 1uκ ˆ R, a private key ps, eq P R2

1: seed
$

Ð t0, 1uκ

2: a :“ ExpandApseedq ▷ Map a seed to an element in R
3: Jps, eqK Ð AddRepNoise

`

R2
q, d,Dind

sk , repsk
˘

▷ Samples s, e from Dsk

4: JbK :“ β ´ pa ¨ JsK ` JeKq

5: b :“ UnmaskpJbKq

6: return pvk :“ pseed, bq, sk :“ pvk, JsKqq

Signature procedure. The signature procedure is adapted to remove the com-
putation of z1 and save on masking. It recovers z1

1 “ z1 ` c2 from unmasked
values as done in the verification Algorithm 7 from unmasked values. This also
allows to drop e from the private key and significantly reduces its size. A formal
description is given in Algorithm 9.

17

Algorithm 9 Plover-RLWE.MaskSignpmsg, skq Ñ sig

Require: A message msg, the secret key sk “ ppseed, bq, JsKq

Ensure: A signature psalt, z2, z3,msgq

1: salt
$

Ð t0, 1u2κ

2: u :“ Hpmsg, salt, vkq

3: a :“ ExpandApseedq

4: JpK Ð AddRepNoisepR2
q, d,Dind

pert, reppertq ▷ p “ pp1, p2q P D2
pert

5: JwK Ð Jp1K ` a ¨ Jp2K
6: w :“ UnmaskpJwKq

7: c :“ u ´ w
8: pc1, c2q :“ Decomposeβpcq ▷ c “ β ¨ c1 ` c2
9: JsK Ð RefreshpJsKq ▷ Refresh JsK before re-use

10: Jz2K :“ Jp2K ` c1 ¨ JsK
11: z2 :“ UnmaskpJz2Kq

12: z3 :“ c1
13: return sig :“ psalt, z2, z3q, auxsig “ c2

▷ auxsig is used in security proof, but not in verification.

Verification. The verification first recovers z1
1 :“ u´ az2 ´ bz3 “ z1 ` c2. It then

checks the shortness of pz1
1, z2, z3q.A formal description is given in Algorithm 7.

3.4 Security of Masked Plover-RLWE

We now turn to the security of the masked version of Plover, in the t-probing
model. Contrary to proofs for less efficient masking techniques, which have no
security loss even in the presence of the probes, we propose a fine-grained re-
sult where we quantify precisely the loss induced by the probes and show how
the security of this leaky scheme corresponds to the security of the leak-free
unmasked Plover, but with slightly smaller secret key parameters and slightly
larger verification norm bound.

Theorem 3. The masked Plover-RLWE scheme with parameters
pd,Dind

sk , repsk,Dind
pert, reppert, B2q is t-probing EUF-CMA secure in the ran-

dom oracle model if the unmasked Plover-RLWE scheme with parameters
pDsk,Dpert, B

1
2q is EUF-CMA secure in the random oracle model, with

$

’

&

’

%

Dsk :“ rd repsk ´ ts ¨ Dind
sk ,

Dpert :“ rd reppert ´ ts ¨ Dind
pert

B1
2 :“ B2 ` t ¨ pBpert ` npq{p2βq ` 1{2qBskq,

(2)

where Bpert and Bsk denote upper bounds on the ℓ2 norm of samples from Dind
pert

and Dind
sk , respectively. B1

2 is the norm bound used by the unmasked Plover-RLWE.
Formally, let A denote an adversary against the t-probing EUF-CMA security

game against masked Plover-RLWE making at most QSign signing queries and at
most QH random oracle queries and advantage Advpr-EUF-CMA

A . Then, there exists
an adversary A1 against EUF-CMA security of unmasked Plover-RLWE, running

18

in time TA1 « TA and making Q1
Sign “ QSign sign queries and QH1 “ QH random

oracle queries with advantage AdvEUF-CMA
A1 such that:

Advpr-EUF-CMA
A ď AdvEUF-CMA

A1 ` QSignQH{22κ.

Proof. We describe the reduction with several hybrid games starting from the
t-probing EUF-CMA game played with adversary A against the masked signature
with random oracle H and ending with a game where we can build an adversary
A1 against the EUF-CMA security for the unmasked signature with a random
oracle H 1. In this and the following games we let Si denote the event that A
wins the t-probing EUF-CMA game.

Game0. This corresponds to the t-probing EUF-CMA unforgeability game [6]
played with adversary A. At the beginning of the game, A outputs a key
gen. probing set PKG of size ď t, then a masked key generation oracle OKG
runs MaskKeygenp1κq to output pvk :“ pseed, bq, sk :“ pvk, JsKqq and A is given
pvk,LKGq, where LKG “ MaskKeygenPKG

denotes the observed values of the t
probed variables during the execution of Plover-RLWE.MaskKeygen with oracle
access to Algorithms 8 and 9 with adversary A . In addition, the adversary is
allowed to probe and learn the values of t variables during each execution of
Algorithms 8 and 9.

The adversary gets access to a (masked) signing oracle OSignpm,PSq, where
m is a message and PS is a signing probing set of size at most t. The oracle re-
turns psig,LSq where sig Ð Plover-RLWE.MaskSignpm, skq and LS is the observed
values of the t probed variables during the execution of Plover-RLWE.MaskSign.
Before each such OSign query, the RefreshpJsKq gadget is called by the challenger
to refresh the secret key shares (this challenger-run gadget is not probed by A).
The adversary can also query the random oracle H for the masked scheme. In
this game, queries to the masked random oracle H are answered using an inter-
nal random oracle H 1 (not accessible directly to A). The oracles in this game are
similar to those in Fig. 2 but without the highlighted lines that are introduced
in the following game. The adversary wins the game if it outputs a valid forgery
message/signature pair pmsg˚, sig˚q, where msg˚ has not been queried to OSign.

Game1 (Fig. 2). In this game, we change the computation of the probed ob-
servations pLKG,LSq given to A, from the actual values to the values sim-
ulated by probabilistic polynomial time algorithms SimKGpPKG, auxKGq and
SimSigpPS , auxMSq, respectively. The simulation algorithms simulate the probed
values using auxiliary information auxKG (resp. auxMS) consisting of public values
and certain leaked internal values as indicated in the highlighted lines of Fig. 2.
The main idea (see Section 4.2 of [41] for a similar proof) is that the internal
t-probed observations in all the gadgets except AddRepNoise can be simulated
without the secret shared inputs, whereas by SNI with unshared inputs property
of AddRepNoise in Lemma 1, only ď t unshared inputs (captured by the aux-
iliary values pqsi, qeiqiPrts and pqpiqiPrts in the masked key generation and signing

19

algorithms, respectively) suffice to simulate its t-probed observations. Note that
Game1 writes z1

1 as z1
1 “ p1 ` c1 e ` c2 instead of z1

1 “ u ´ a z2 ´ b z3; this is a
purely syntactic change, as the two expressions are equal and we assume that
the secret key includes the error e.

We construct the simulators SimKG and SimSig by composing the outputs of
the simulators for each gadget, going from the last gadget to the first gadget,
similar to the analysis in [6]. In the following description, we use the following
notations: For the i’th gadget in SimKG (resp.SimSig), we let ti denote the num-
ber of probed variables in this i’th gadget and by auxi the auxiliary (leaked)
information needed to simulate the internal view of the i’th gadget. Simulator
SimKG for the probed observations LKG works as follows:

1. The UnmaskpJbKq gadget (gadget 3) in Plover-RLWE.MaskKeygen is t-NIo (by
Lemma 8 in [6]) with public output b. Hence, the probed observations in
Unmask can be simulated by SimKG using ď t3 input shares in JbK and the
auxiliary information aux3 :“ b.

2. The multiplication gadget a¨JsK`JeK (gadget 2) in Plover-RLWE.MaskKeygen
is computed share-wise and therefore is t-NI. Hence, the probed observations
in this gadget can be simulated by SimKG using ď t2 ` t3 input shares inJsK, JeK.

3. The AddRepNoise gadget in Plover-RLWE.MaskKeygen is t-SNIu with d ¨

rep unshared inputs pri,jqiPrreps,jPrds :“ pppsk, pekqkPrd¨rep´ts, pqsk, qekqkPrtsq by
Lemma 1.
Hence, the probed observations in AddRepNoise can be simulated by SimKG
using ď t1`t2`t3 ď t leaked unshared inputs pqsk, qekqkPrts (i.e. the set of safe
(unleaked) unshared inputs of AddRepNoise are denoted by ppsk, pekqkPrd¨rep´ts).

Overall, SimKG can simulate the probed observations in PKG using auxiliary
information auxKG :“ pvk, pqsi, qeiqiPrtsq, as shown in Fig. 2.

Similarly, simulator SimSig for the probed observations LS works as follows:

1. The UnmaskpJz2Kq gadget (gadget 6) in Plover-RLWE.MaskSign is t-NIo (by
Lemma 8 in [6]) with public output z2. Hence, the probed observations in
Unmask can be simulated by SimSig using ď t6 input shares in Jz2K and the
auxiliary information aux6 :“ z2.

2. The multiplication gadget Jp2K`c1 ¨JsK (gadget 5) in Plover-RLWE.MaskSign
is t-NI. Hence, the probed observations in this gadget can be simulated by
SimSig using ď t5 ` t6 ď t input shares in Jp2K, JsK.

3. The RefreshpJsKq gadget (gadget 4) in Plover-RLWE.MaskSign is t-SNI (by
[39]). Hence, the probed observations in this gadget can be simulated by
SimSig using ď t4 ď t input shares in JsK (note that those t4 input shares
in JsK can be simulated by SimSig as independent uniformly random shares
due to the RefreshpJsKq called by the challenger before each OSign call).

4. The UnmaskpJwKq gadget (gadget 3) in Plover-RLWE.MaskSign is t-NIo (by
Lemma 8 in [6]) with public output w. Hence, the probed observations in
Unmask can be simulated by SimSig using ď t3 input shares in JwK and the
auxiliary information aux3 :“ w.

20

5. The multiplication gadget Jp1K`a ¨Jp2K (gadget 5) in Plover-RLWE.MaskSign
is t-NI. Hence, the probed observations in this gadget can be simulated by
SimSig using ď t2 ` t3 ď t input shares in Jp1K, Jp2K.

6. The AddRepNoise gadget (gadget 1) in Plover-RLWE.MaskSign is t-SNI with
d ¨ rep unshared inputs pppkqkPrd¨rep´ts, pqpkqkPrtsq by Lemma 4. Hence, the
probed observations in AddRepNoise can be simulated by SimSig using ď t1 ď

t leaked unshared inputs pqpkqkPrtsq (i.e. the set of safe (unleaked) unshared
inputs of AddRepNoise are denoted by pppkqkPrd¨rep´ts).

Overall, SimSig can simulate the probed observations in PS using auxiliary in-
formation auxMS :“ pmsg, vk, pqpiqiPrts, sig, auxsigq, as shown in Fig. 2. (note that
aux3 “ w can be computed from auxMS since w “ u ´ c, u “ Hpmsg, salt, vkq

with salt taken from sig, and c computed from c1 in sig and c2 in auxsig).

OKGp1κ, PKGq Ñ pvk, sk,LKGq

1: seed
$

Ð t0, 1uκ

2: a :“ ExpandApseedq

3: pps, peq Ð rd repsk ´ ts ¨ Dind
sk ▷ Safe

4: pqsi, qeiqiPrts Ð
`

Dind
sk

˘t ▷ Leaked
5: ps, eq :“ pps `

ř

iPrts qs, pe `
ř

iPrts qeiq
6: b :“ β ´ pa s ` eq

7: vk :“ pseed, bq

8: sk :“ pvk, sq

9: auxKG :“ pvk, pqsi, qeiqiPrtsq

10: LKG Ð SimKGpPKG, auxKGq

11: return vk, sk,LKG

Hpmsg, salt, vkq Ñ u

1: u :“ H 1pmsg, salt, vkq

2: return u

OSignpmsg, sk, PSq Ñ psig,LSq

1: salt
$

Ð t0, 1u2κ

2: u :“ Hpmsg, salt, vkq

3: a :“ ExpandApseedq

4: pp Ð rd reppert ´ ts ¨ Dind
pert ▷ Safe

5: pqpiqiPrts Ð
`

Dind
pert

˘t ▷ Leaked
6: p :“ pp `

ř

iPrts
qpi

7: w :“
“

1 a
‰

¨ p
8: c :“ u ´ w
9: pc1, c2q :“ Decomposeβpcq

10: z2 :“ p2 ` c1 s
11: z3 :“ c1
12: z1

1 :“ p1 ` c1 e ` c2

13: sig :“ psalt, z2, z3q

14: auxsig :“ c2

15: auxMS :“ pmsg, vk, pqpiqiPrts, sig, auxsigq

16: LS Ð SimSigpPS , auxMSq

17: return psig,LSq

Fig. 2: Algorithms in Game1

Since the view of A is perfectly simulated in this game as in the previous
game, we have PrrS1s “ PrrS0s.

Game2 (Fig. 3). In this game, we re-arrange the computation in OKG to first
compute a ‘safe’ verification key pb :“ β ´ paps ` peq using the ‘safe’ part pps, peq of
the secret key, and only later sample the ‘leaked’ part pqs, qeq :“

ř

iPrtspqsi, qeiq of

21

the secret key and use this leaked secret and pb to compute the full verification
key b :“ pb ´ paqs ` qeq. The above change to OKG is just a re-ordering of the
computation and thus does not change the view of A.

In this game, we also similarly re-arrange the computation in OSign to first
compute a ‘safe’ part of the signature xsig with pz2 “ pp2 ` pc1ps, using the ‘safe’
perturbation part pp2 and ‘safe secret key part ps, and later compute the full
signature sig from the pz2 by adding the ‘leaked’ signature part to get z2 “

pz2 `
ř

iPrts qpi,2 ` c1 p

ř

iPrtsqsi
“ ppp2 ` qp2q ` pc1ps ` c1qs “ ppp2 ` qp2q ` c1pps ` qsq,

where the last equality holds if pc “ c. Hence, for this re-arranged computation
to preserve the correctness of the final signature (in particular z2) as in the
previous game (and thus preserve A’s view), we need to ensure that pc :“ pu ´ pw
in the top ‘safe’ part of the computation, is equal to c :“ u´w used in the bottom
‘leaked’ part of the computation. To achieve this, we use the random oracle H 1

(not directly accessible to A) to compute pu :“ H 1pmsg, salt, vkq in the ‘safe’
part of the computation, and we change the simulation of the random oracle H
accessible to A by programming H so that u “ Hpmsg, salt, vkq :“ pu `

“

1 a
‰

¨ qp,
where qp is sampled by the simulation and stored in the table TH for H. Defining
qw :“

“

1 a
‰

¨ qp, we have c “ u ´ w “ ppu ` qwq ´ p pw ` qwq “ pu ´ pw “ pc, as required.
Since pu :“ H 1pmsg, salt, vkq is uniformly random in Rq and independent of

“

1 a
‰

¨ qp, the simulation of H is identical to the previous game from A’s view,
except if an abort happens in OSign line 18 (we say then that the event B2 oc-
curs). However, since salt is uniformly random in t0, 1u2κ for each sign query, the
event B2 occurs with negligible probability PrrB2s ď QSignQH{22κ. Therefore,
overall we have PrrS2s ě PrrS1s ´ PrrB2s ě PrrS1s ´ QSignQH{22κ.

We now construct an adversary A1 against the EUF-CMA of the unmasked
signature scheme Sign with random oracle H 1, secret key distribution Dsk :“
rd repsk ´ ts ¨ Dind

sk , and perturbation distribution Dpert :“ rd reppert ´ ts ¨ Dind
pert

that simulates view of A in Game2, such that A1 wins its game with probability
ě PrrS2s. The challenger for A1 generates a challenge key pair p pvk, pskq by running
lines 1-6 of OKG in Game2 (this corresponds exactly to the key gen. algorithm
for the unmasked scheme) and runs A1 on input vk1. Then A1 runs as follows.

1. It first runs A to get PKG and then runs lines 7-12 of OKG in Game2 to get
pvk, sk,LKGq and runs A on input pvk,LKGq.

2. Similarly, to respond to each OSign query pmsg, PSq of A, A1 calls its Sign
algorithm on input msg (this corresponds to running lines 1-11 of OKG in
Game2), and using the returned xsig and yauxsig, A1 runs lines 12-26 of OSign
in Game2 to compute and return psig,LSq to A (note that pw “ pu ´ pc is
computed by A1 from pu “ H 1pmsg, salt, pvkq and pc obtained from c1 in xsig and
c2 in yauxsig).

3. A1 also runs the H simulator in Game2 to respond to A’s H queries, where
H 1 is the random oracle provided to A1 by its challenger.

Consequently, the view of A is perfectly simulated as in Game2, so with prob-
ability PrrS2s, A outputs a valid forgery pmsg˚, sig˚ “ psalt˚, z˚

2 , c
˚
1 qq such that

22

OKGp1κq Ñ pvk, sk,LKGq

1: seed
$

Ð t0, 1uκ

2: a :“ ExpandApseedq

3: pps, peq Ð rd repsk ´ ts ¨ Dind
sk ▷ Safe

4: pb :“ β ´ pa ps ` peq

5: pvk :“ pa,pbq

6: psk :“ p pvk, psq

7: pqsi, qeiqiPrts Ð
`

Dind
sk

˘t ▷ Leaked

8: b :“ pb ´ pa
ř

iPrts qs `
ř

iPrts qeiq

9: ps, eq :“ pps `
ř

iPrts qs, pe `
ř

iPrts qeiq
10: vk :“ pa, bq

11: sk :“ pvk, sq

12: auxKG :“ pvk, pqsi, qeiqiPrtsq

13: LKG :“ SimKGpPKG, auxKGq

14: return vk, sk,LKG

Hpmsg, salt, vkq Ñ u

1: pu :“ H 1pmsg, salt, pvkq

2: if Dpqp, uq : ppmsg, salt, vkq, u, qpq P TH

then return pu `
“

1 a
‰

¨ qp

3: qp Ð rts ¨ Dind
pert

4: u :“ pu `
“

1 a
‰

¨ qp

5: Add ppmsg, salt, vkq, u, qpq to TH

6: return u

OSignpmsg, sk, PSq Ñ psig,LSq

1: salt
$

Ð t0, 1u2κ

2: pu :“ H 1pmsg, salt, pvkq

3: a :“ ExpandApseedq

4: pp Ð rd reppert ´ ts ¨ Dind
pert ▷ Safe

5: pw Ð
“

1 a
‰

¨ pp

6: pc Ð pu ´ pw

7: ppc1, pc2q :“ Decomposeβppcq

8: pz2 :“ pp2 ` pc1 ps

9: pz3 :“ pc1

10: pz1
1 :“ pp1 ` pc1 pe ` pc2

11: xsig :“ psalt, pz2, pz3q

12: {auxsig :“ pc2

13: pqpiqiPrts Ð
`

Dind
pert

˘t ▷ Leaked

14: qp “
ř

iPrts
qpi

15: u :“ pu `
“

1 a
‰

¨ qp

16: w :“ pw `
“

1 a
‰

¨ qp

17: pc1, c2q :“ Decomposeβpu ´ wq

18: if ppmsg, salt, vkq, u, qpq P TH then
return K ▷ Abort

19: Add ppmsg, salt, vkq, u, qpq to TH

20: z2 :“ pz2 `
ř

iPrts qpi,2 ` c1 p

ř

iPrtsqsi

21: z3 :“ c1

22: z1
1 :“ pz1

1 `
ř

iPrts qpi,1 ` c1 p

ř

iPrtsqei

23: sig :“ psalt, z2, z3q

24: auxsig :“ c2
25: auxMS :“ pvk, pqpiqiPrts, sig, auxsigq

26: LS :“ SimSigpPS , auxMSq

27: return psig,LSq

Fig. 3: Algorithms in Game2

}pz1˚
1 , z˚

2 , z
˚
3 q} ď B2, and }c˚

1 }8 ď q{p2βq ` 1{2 and z1˚
1 ` az˚

2 ` bc˚
1 “ u˚ “

Hpmsg˚, salt˚, vkq where msg˚ has not been queried by A to OSign. Then, A1

23

computes pqz1˚
1 , qz˚

2 q “ qp ` c˚
1 pqe, qsq with pqs, qeq “ p

ř

iPrts qsiq and returns its forgery
pmsg˚, xsig

˚
“ psalt˚, pz˚

2 , c
˚
1 qq, where ppz1˚

1 , pz˚
2 q :“ pz1˚

1 , z˚
2 q ´ pqz1˚

1 , qz˚
2 q.

Note that, defining qw˚ :“
“

1 a
‰

¨qp˚ and qb :“ aqs`qe (where qp˚ is obtained from
TH entry for the forgery H-query pmsg˚, salt˚, vkq), we have qz1˚

1 `aqz˚
2 ´qbc˚

1 “ qw˚

and so forgery xsig
˚

satisfies the unmasked scheme validity relation pz1˚
1 ` apz˚

2 `
pbc˚

1 “ pz1˚
1 ` az˚

2 ` bc˚
1 q ´ pqz1˚

1 ` aqz˚
2 ´ qbc˚

1 q “ u˚ ´ qw˚ “ H 1pmsg˚, salt˚, pvkq, as
required. Also, }ppz1˚

1 , pz˚
2 , c

˚
1 q} ď }pz1˚

1 , z˚
2 , c

˚
1 q} ` }pqz1˚

1 , qz˚
2 , 0q} ď B2 ` t ¨ pBpert `

n q
2ηBskq :“ B1

2, since }pqz1˚
1 , qz˚

2 q} ď }qp} ` n}c˚
1 }8}pqe, qsq} ď ptBpert ` npq{p2βq `

1{2qtBskq. Finally, msg˚ has not been queried by A1 to its unmasked signing
oracle. It follows that A1 wins with probability ě PrrS2s ě PrrS0s´QSignQH{22κ.
This concludes the proof. [\

3.5 Cryptanalysis and Parameter Selection
Now that the security of our scheme is formally proven in unmasked form for
general distributions Dsk,Dpert and the security of the masked form reduces to its
unmasked form, we wish to demonstrate concrete parameter selection for masked
Plover-RLWE. We evaluate the concrete security of our scheme against RSIS for
forgery, and against Hint-RLWE for key-indistinguishability using the reduction
from Hint-RLWE to RLWE (Theorem 1) and standard evaluation heuristics.

Optimizations. For our implementation, we use these standard optimizations:
– Norm check. We add a norm check in MaskSign against B2, allowing to

reject with low probability some large signatures, and making forgery harder.
Note that this is not rejection sampling, and it can be done unmasked.

– Bit-dropping. We can drop the ν least significant bits of b. More formally,
let us note pb1, b2q “ Decomposet2νupbq where ν is the number of bits dropped
in each coefficient of b. We can set 2ν ¨ b1 as a public key.
As long as ν “ O

´

log
´

σ2
pert

q
?
n

¯¯

, we can show that breaking inhomogeneous
RSIS for

“

1 a 2ν ¨ b1
‰

implies breaking it for
“

1 a b
‰

with comparable param-
eters. This reduces the size of vk, while preserving the security reduction.

Forgery Attacks and Practical RSIS Security Let σsk, σpert denote the
standard deviation of the (unmasked) secret key and perturbation, respectively.
In a legitimate signature:

E
”

›

›z1
›

›

2
ı

“ E
”

}p1 ` e ¨ c1 ` c2 ` b2 ¨ c1}
2
ı

` E
”

}p2 ` s ¨ c1}
2
ı

` E
”

}c1}
2
ı

« n

ˆ

2σ2
pert `

β2

12
`

q2 n

6β2
σ2
sk ` n

22ν

12

q2

12β2

˙

Based on this analysis, we set B2 “ 1.2

c

n
´

2σ2
pert `

β2

12 `
q2 n
6 β2 σ2

sk ` n 22ν

12
q2

12β2

¯

.
The “slack” factor 1.2 allows an extremely large number of generated signatures
to satisfy }z1} ď B2, which means that the restart rate will be very low.

24

Solving Inhomogeneous RSIS. To forge a message, an adversary must either break
the collision resistance of H or solve the equation:

`“

1 a β ¨ b1
‰

¨ z1 “ u
˘

^
`›

›z1
›

› ď B2

˘

(3)

Note that
“

1 a β ¨ b1
‰

¨ z1 “
“

1 a b
‰

¨ z2, where z2 “ z1 ´ pz3 ¨ b2, 0, 0q, and that
}z3 ¨ b2} ď }c1}1 ¨ }b2} ď n3{2 ¨

q 2ν´2

β . Then Eq. (3) is an instance of the inhomo-
geneous RSIS problem, with a bound BRSIS “ B2 ` n3{2 ¨

q 2ν´2

β .
We estimate its hardness based on Chuengsatiansup et al. [12] and Espitau

and Kirchner [19]. Under the geometric series assumption, [19, Theorem 3.3]
states that Eq. (3) can be solved in polypnq calls to a CVP oracle in dimension
BBKZ, as long as:

BRSIS ď

´

δ3nBRSIS
q1{3

¯

, where δBRSIS
“

ˆ

pπ ¨ BBKZq1{BBKZ ¨ BBKZ

2πe

˙1{p2pBBKZ´1qq

.

(4)
This attack has been optimized in [12] by omitting x ď n of the first columns
of A (when considered as a n ˆ 3n matrix). The dimension is reduced by x,
however, the co-volume of the lattice is increased to q

n
3n´x . This strengthens

Eq. (4) to the more stringent condition BRSIS ď minxďn

´

δ3n´x
BRSIS

q
n

3n´x

¯

.

Key-Indistinguishability and Hint-RLWE In order to apply Theorem 1, we
need quantitative bounds on BHRLWE. These are given in Lemma 2, which is a
minor adaptation of [42, Lemma B.2]. A proof is provided in Appendix B for
completeness.

Lemma 2. For j P rQSigns, let crjs Ð C1, where C1 is defined as in Defini-
tion 9. Let D “

ř

jPrQSigns c
rjs pcrjsq˚. Let M “ 2

Q

q´1
2β

U

` 1. We then have

Pr rs1pDq ě BHRLWEs ď 2´κ, where BHRLWE “
QSign nM2

12

ˆ

1 `
Opκn log nq?

QSign

˙

. Specif-

ically, when QSign “ ωpκn log nq2, then s1pDq is equivalent to QSign nM2

12 .

Advantage against Hint-RLWE. An adversary breaking the key-indistinguishability
of vk is also able to break Hint-RLWE

q,QSign,yDsk,zDpert,C . In the Gaussian case,
Dsk

s
„ D

pσsk
and Dpert

s
„ D

pσpert
, where pσsk

σsk,ind
“

pσpert

σpert,ind
“

?
d rep ´ t.

Theorem 1 and Lemma 2 state that such an adversary is also able to break
RLWEq,Dσred

, where 1
σ2
red

“ 2
´

1
pσ2
sk

` BHRLWE

pσ2
pert

¯

and BHRLWE is as in Lemma 2. For

the parameters we choose in practice, this entails: σred

pσpert
«

β
q

b

6
nQSign

Estimat-
ing the concrete hardness of RLWE is well-documented. We rely on the lat-
tice estimator [3], an open-source tool available at https://github.com/malb/
lattice-estimator.

25

https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator

Parameter Selection Despite the many variables involved, parameter selection
is fairly straightforward. We set β “ Θpσpertq, ν “ Θ

´

log
´

σ2
pert

q
?
n

¯¯

and σsk “

o
´

β σpert

q
?
n

¯

. This guarantees efficiency while ensuring that BRSIS “ Opσpert
?
nq.

σred
a

n{6
a

QSign q{β q{β

RLWE Hint-RLWE ě RLWE reduction RSIS

q

Fig. 4: Illustration of the constraints on q (in log scale): RSIS and RLWE must
be hard, and the Hint-RLWE ě RLWE reduction must be non-vacuous.

These parameters also guarantee an efficient reduction in Theorem 1. We
estimate the number of queries, QSign, by increasing it for as long as the RLWE
instance entailed by the reduction of Theorem 1 and Lemma 2 remains secure
according to the state-of-the-art. Q1

Sign corresponds to the number of queries
allowed when the condition σ ě

?
2ηεpZnq is dropped in Theorem 1.

rlog qs 35 37 39 41 43 45 47 49
log β 31 33 35 37 38 39 40 41
log σpert 30 32 34 36 37 38 39 40
log σsk 21 23 25 27 27 27 27 27
ν 15 17 19 21 21 21 21 21
QSign 240 244 248 252 252 250 248 246

Q1
Sign 246 248 252 254 252 250 248 246

|vk| 5136 5136 5136 5136 5648 6160 6672 7184
|sig| 11488 12198 12908 13617 13972 14327 14682 15037

Table 1: Parameter sets for κ “ 128. All parameter sets feature n “ 2048.

35 40 45 50
20

220

240

260

log q

Queries

35 40 45 50
0

5

10

15

20
Sizes (kB)

Fig. 5: Number of signing queries (con-
servative: , standard:) and
bytesizes (|vk|: , |sig|:) as func-
tions of q. Parameter sets as in Sec-
tion 3.5.

2 4 8 16 32
0

10

20

30

40

d

Time (ms)

Fig. 6: Timings of Plover-RLWE
(Keygen: , Sign:) as functions
of d. Parameter set from Section 3.5
with rlog qs “ 41, and concrete pa-
rameters from Table 2.

26

3.6 Implementation

We provide both a Python and a C reference implementation for Plover-RLWE,
available at https://github.com/GuilhemN/masksign-plover. They are de-
signed to match the high-level pseudo-code from Subsection 3.3 and allows one
to read a concrete implementation of each of the functions we introduced. The
Python implementation aims for simplicity and is not constant-time, while the C
implementation is constant-time and uses optimization techniques. We include
scripts for parameters selection under the folder params based on the lattice
estimator [3].

These reference implementations re-use several components of Raccoon ref-
erence implementations [41] for the NTT, Montgomery modular reduction, and
randomness generators. They are portable and can target various masking orders
d´1. Note however that they suffer from the same issues as Raccoon reference im-
plementations. Specifically, a deterministic portable code written in a high-level
language cannot realistically be considered to be fully resistant to side-channel
attacks, and notably due to the use of the randombytes function defined by
NIST, which represents an abstract RBG (Random Bit Generator), but is only
suitable to ease reproducibility and generation of test vectors. Additionally, our
reference implementations are severely limited in their key management as the
NIST API does not allow for a refresh of the secret key, which is required for
t-probing security. We argue that these implementations still provide evidence
that Plover-RLWE is easy to mask at high masking orders.

General Implementation Characteristics Plover-RLWE has building blocks
resembling those of Raccoon [41], as well as a modulus q of same magnitude and
format (product of two Solinas primes). In particular we reuse part of their code-
base and of their implementation tricks. The C reference implementation uses
Montgomery modular reduction to implement efficient constant-time modular
operations. In this case, the table of pre-computed roots of unity is multiplied
by the Montgomery factor r in order to remove half of the Montgomery reduc-
tions that would otherwise be required by the NTT transform algorithm. For
sampling random shares, we reuse the placeholder generator based on 127-bit
LFSR packaged with Raccoon’s code. This generator is completely deterministic
and is only provided for evaluation purposes.

Signature Encoding. We encode low-order bits using binary encoding, and high-
order bits using Huffman/unary-type encoding. This encoding is similar to the
ones in Falcon and Raccoon. We chose this technique over ANS encoding –
although ANS could compress signatures further – as the latter proved hard to
implement securely in NIST Call for Additional Digital Signature Schemes, with
vulnerabilities discovered in the HuFu and HAETAE proposals3.

3 See https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Hq-wRFDbIaU.

27

https://github.com/GuilhemN/masksign-plover
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Hq-wRFDbIaU

Mask Compression Technique. Our implementation uses the mask compression
technique introduced in [46,41] in order to reduce the size of the stored secret
key, which contains the masked polynomial JsK. A masked polynomial at order
d can be compressed into one polynomial and d ´ 1 seeds which can be later
expanded into full polynomial masking shares. We refer to [41, Algorithms 14
and 15] and [46] for a detailed specification of this technique.

This technique could also be used to to drastically reduce the memory re-
quirements of Plover-RLWE. Our masking gadgets can be adapted to do runtime
computations on compressed masked polynomials to limit the impact of a larger
d on memory requirements. For reference, Raccoon [41, section 3.3.2] reduced
memory usage for a masking order d “ 32 by a factor of 15 using this technique.

Hardware. Plover-RLWE could be implemented on hardware in a similar man-
ner to Raccoon. Several versions of Raccoon were implemented on FPGA ar-
chitecture, one is reported in [43]. These implementations contain a RISC-V
controller, a Keccak accelerator, and a lattice unit with direct memory access
via a 64-bit interface, using hard-coded support for Raccoon’s arithmetic mod-
ulus q. Plover-RLWE can share a large part of these implementations.

As for Raccoon [41, section 3.3.1] the usage of SHAKE as hash function in
the implementation of ExpandA and AddRepNoise can be highly optimized in
hardware, and the hardware XOF (eXtendable-Output Functions) sampler can
implement a full Keccak round and produce output at a very high rate.

Performance. We evaluated the performance of Plover-RLWE on a Ryzen Pro
7 5850U (16CPU threads at 3GHz), boost disabled, and running Manjaro 22.1.
The results are provided in Table 2 and Fig. 6. The reference implementation in-
stantiates the parameter set from Table 1 such that rlog qs “ 41, as it is optimal
for the number of possible queries for n “ 2048 and κ “ 128. Other param-
eter sets perform very similarly since – performance-wise – only the encoding
differs between them. The implementation packages parameters for d shares,
d P t1, 2, 4, 8, 16, 32u, and the distributions Dsk and Dpert are sums of uniforms
SUpusk, d ¨ repskq and SUpupert, d ¨ reppertq with rep :“ repsk “ reppert P t2, 4, 8u a
function of d. usk and upert are chosen as to achieve a standard deviation close to
σsk and σpert. Plover-RLWE has performance very similar to Raccoon; in particu-
lar, we observe a (quasi-)linear increase in the execution times and stack usage
of our functions with d, which makes the use of a high masking order practical.
For instance, Plover-RLWE masked with a number of shares d “ 8 still performs
better than Dilithium masked with d “ 2 [41, Table 6].

References
1. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger, J.,

Miller, C., Moody, D., Peralta, R., Perlner, R., Robinson, A., Smith-Tone, D.,
Liu, Y.K.: NISTIR 8413 – Status Report on the Third Round of the NIST Post-
Quantum Cryptography Standardization Process (2022), https://doi.org/10.
6028/NIST.IR.8413

28

https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.6028/NIST.IR.8413

Variant Parameters Keygen Sign Verify
κ ´ d rep usk upert ms Mclk stack ms Mclk stack ms Mclk stack
128-1 8 27 36 1.341 2.546 49312 1.989 3.788 164128 0.432 0.820 32864
128-2 4 27 36 1.595 3.030 114848 2.272 4.316 246048 = = =
128-4 2 27 36 2.045 3.885 213184 2.835 5.386 410016 = = =
128-8 4 26 35 6.887 13.083 409856 8.732 16.588 737760 = = =
128-16 2 26 35 8.832 16.782 803200 11.288 21.460 1393248 = = =
128-32 4 25 34 30.213 57.404 1589888 37.350 70.959 2704224 = = =

Table 2: Performance of the Plover-RLWE reference implementation for different
masking orders on our reference platform. Across all parameter sets, we have
pκ, n, rlog qs , log β, νq “ p128, 2048, 41, 37, 21q, and we set repsk “ reppert “ rep.

2. Albrecht, M.R., Bai, S., Ducas, L.: A subfield lattice attack on overstretched
NTRU assumptions - cryptanalysis of some FHE and graded encoding schemes.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814,
pp. 153–178. Springer, Heidelberg (Aug 2016). https://doi.org/10.1007/
978-3-662-53018-4_6

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015), http://www.degruyter.com/view/
j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml

4. Azouaoui, M., Bronchain, O., Cassiers, G., Hoffmann, C., Kuzovkova, Y., Renes,
J., Schneider, T., Schönauer, M., Standaert, F., van Vredendaal, C.: Protecting
dilithium against leakage revisited sensitivity analysis and improved implemen-
tations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(4), 58–79 (2023).
https://doi.org/10.46586/tches.v2023.i4.58-79

5. Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.,
Zucchini, R.: Strong non-interference and type-directed higher-order masking.
In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
ACM CCS 2016. pp. 116–129. ACM Press (Oct 2016). https://doi.org/10.1145/
2976749.2978427

6. Barthe, G., Belaïd, S., Espitau, T., Fouque, P.A., Grégoire, B., Rossi, M., Ti-
bouchi, M.: Masking the GLP lattice-based signature scheme at any order. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821,
pp. 354–384. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/
978-3-319-78375-8_12

7. Battistello, A., Coron, J.S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23–39. Springer, Heidelberg (Aug
2016). https://doi.org/10.1007/978-3-662-53140-2_2

8. Bernstein, D.J., Brumley, B.B., Chen, M.S., Tuveri, N.: OpenSSLNTRU: Faster
post-quantum TLS key exchange. In: Butler, K.R.B., Thomas, K. (eds.) USENIX
Security 2022. pp. 845–862. USENIX Association (Aug 2022)

9. Berzati, A., Viera, A.C., Chartouny, M., Madec, S., Vergnaud, D., Vigilant, D.:
Exploiting intermediate value leakage in dilithium: A template-based approach.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(4), 188–210 (2023). https:
//doi.org/10.46586/tches.v2023.i4.188-210

29

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://doi.org/10.46586/tches.v2023.i4.58-79
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.46586/tches.v2023.i4.188-210
https://doi.org/10.46586/tches.v2023.i4.188-210

10. Bronchain, O., Cassiers, G.: Bitslicing arithmetic/boolean masking conversions for
fun and profit with application to lattice-based KEMs. IACR TCHES 2022(4),
553–588 (2022). https://doi.org/10.46586/tches.v2022.i4.553-588

11. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for ntru problems and cryptanalysis
of the ggh multilinear map without a low-level encoding of zero. LMS Journal
of Computation and Mathematics 19(A), 255–266 (2016). https://doi.org/10.
1112/S1461157016000371

12. Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: ModFalcon:
Compact signatures based on module-NTRU lattices. In: Sun, H.M., Shieh, S.P.,
Gu, G., Ateniese, G. (eds.) ASIACCS 20. pp. 853–866. ACM Press (Oct 2020).
https://doi.org/10.1145/3320269.3384758

13. Coron, J., Gérard, F., Montoya, S., Zeitoun, R.: High-order polynomial compar-
ison and masking lattice-based encryption. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. 2023(1), 153–192 (2023). https://doi.org/10.46586/tches.v2023.
i1.153-192

14. Coron, J., Gérard, F., Trannoy, M., Zeitoun, R.: High-order masking of NTRU.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(2), 180–211 (2023). https:
//doi.org/10.46586/tches.v2023.i2.180-211

15. Coron, J., Gérard, F., Trannoy, M., Zeitoun, R.: Improved gadgets for the high-
order masking of dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(4),
110–145 (2023). https://doi.org/10.46586/tches.v2023.i4.110-145

16. Duc, A., Faust, S., Standaert, F.X.: Making masking security proofs concrete
(or how to evaluate the security of any leaking device), extended version. Jour-
nal of Cryptology 32(4), 1263–1297 (Oct 2019). https://doi.org/10.1007/
s00145-018-9277-0

17. Ducas, L., van Woerden, W.P.J.: NTRU fatigue: How stretched is overstretched?
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol.
13093, pp. 3–32. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/
978-3-030-92068-5_1

18. Espitau, T., Fouque, P.A., Gérard, F., Rossi, M., Takahashi, A., Tibouchi, M.,
Wallet, A., Yu, Y.: Mitaka: A simpler, parallelizable, maskable variant of falcon.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS,
vol. 13277, pp. 222–253. Springer, Heidelberg (May / Jun 2022). https://doi.
org/10.1007/978-3-031-07082-2_9

19. Espitau, T., Kirchner, P.: The nearest-colattice algorithm. Cryptology ePrint
Archive, Report 2020/694 (2020), https://eprint.iacr.org/2020/694

20. Fournaris, A.P., Dimopoulos, C., Koufopavlou, O.G.: Profiling Dilithium Digital
Signature Traces for Correlation Differential Side Channel Attacks. In: Orailoglu,
A., Jung, M., Reichenbach, M. (eds.) Embedded Computer Systems: Architectures,
Modeling, and Simulation - 20th International Conference, SAMOS 2020, Samos,
Greece, July 5-9, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12471,
pp. 281–294. Springer (2020). https://doi.org/10.1007/978-3-030-60939-9_
19, https://doi.org/10.1007/978-3-030-60939-9_19

21. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and
new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th
ACM STOC. pp. 197–206. ACM Press (May 2008). https://doi.org/10.1145/
1374376.1374407

22. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: Yao, A.C. (ed.) Innovations in Computer Sci-
ence - ICS 2010, Tsinghua University, Beijing, China, January 5-7, 2010. Proceed-

30

https://doi.org/10.46586/tches.v2022.i4.553-588
https://doi.org/10.1112/S1461157016000371
https://doi.org/10.1112/S1461157016000371
https://doi.org/10.1145/3320269.3384758
https://doi.org/10.46586/tches.v2023.i1.153-192
https://doi.org/10.46586/tches.v2023.i1.153-192
https://doi.org/10.46586/tches.v2023.i2.180-211
https://doi.org/10.46586/tches.v2023.i2.180-211
https://doi.org/10.46586/tches.v2023.i4.110-145
https://doi.org/10.1007/s00145-018-9277-0
https://doi.org/10.1007/s00145-018-9277-0
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-031-07082-2_9
https://eprint.iacr.org/2020/694
https://doi.org/10.1007/978-3-030-60939-9_19
https://doi.org/10.1007/978-3-030-60939-9_19
https://doi.org/10.1007/978-3-030-60939-9_19
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407

ings. pp. 230–240. Tsinghua University Press (2010), http://conference.iiis.
tsinghua.edu.cn/ICS2010/content/papers/19.html

23. Goubin, L.: A sound method for switching between Boolean and arithmetic mask-
ing. In: Koç, Çetin Kaya., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 3–15. Springer, Heidelberg (May 2001). https://doi.org/10.1007/
3-540-44709-1_2

24. Guerreau, M., Martinelli, A., Ricosset, T., Rossi, M.: The hidden parallelepiped
is back again: Power analysis attacks on falcon. IACR TCHES 2022(3), 141–164
(2022). https://doi.org/10.46586/tches.v2022.i3.141-164

25. Hough, P., Sandsbråten, C., Silde, T.: Concrete ntru security and advances in prac-
tical lattice-based electronic voting. Cryptology ePrint Archive, Paper 2023/933
(2023), https://eprint.iacr.org/2023/933, https://eprint.iacr.org/2023/
933

26. Hülsing, A., Bernstein, D.J., Dobraunig, C., Eichlseder, M., Fluhrer, S., Gazdag,
S.L., Kampanakis, P., Kölbl, S., Lange, T., Lauridsen, M.M., Mendel, F., Nieder-
hagen, R., Rechberger, C., Rijneveld, J., Schwabe, P., Aumasson, J.P., West-
erbaan, B., Beullens, W.: SPHINCS+. Tech. rep., National Institute of Stan-
dards and Technology (2022), available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022

27. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 463–481. Springer, Heidelberg (Aug 2003). https://doi.org/10.1007/
978-3-540-45146-4_27

28. Ito, A., Ueno, R., Homma, N.: On the success rate of side-channel attacks on
masked implementations: Information-theoretical bounds and their practical usage.
In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022. pp. 1521–1535.
ACM Press (Nov 2022). https://doi.org/10.1145/3548606.3560579

29. Kannwischer, M.J., Genêt, A., Butin, D., Krämer, J., Buchmann, J.: Differential
power analysis of XMSS and SPHINCS. In: Fan, J., Gierlichs, B. (eds.) COSADE
2018. LNCS, vol. 10815, pp. 168–188. Springer, Heidelberg (Apr 2018). https:
//doi.org/10.1007/978-3-319-89641-0_10

30. Karabulut, E., Alkim, E., Aysu, A.: Single-Trace Side-Channel Attacks on ω-
Small Polynomial Sampling: With Applications to NTRU, NTRU Prime, and
CRYSTALS-DILITHIUM. In: IEEE International Symposium on Hardware Ori-
ented Security and Trust, HOST 2021, Tysons Corner, VA, USA, December 12-
15, 2021. pp. 35–45. IEEE (2021). https://doi.org/10.1109/HOST49136.2021.
9702284

31. Karabulut, E., Aysu, A.: FALCON Down: Breaking FALCON Post-Quantum Sig-
nature Scheme through Side-Channel Attacks. In: 58th ACM/IEEE Design Au-
tomation Conference, DAC 2021, San Francisco, CA, USA, December 5-9, 2021.
pp. 691–696. IEEE (2021). https://doi.org/10.1109/DAC18074.2021.9586131,
https://doi.org/10.1109/DAC18074.2021.9586131

32. Kim, D., Lee, D., Seo, J., Song, Y.: Toward practical lattice-based proof of knowl-
edge from hint-MLWE. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023,
Part V. LNCS, vol. 14085, pp. 549–580. Springer, Heidelberg (Aug 2023). https:
//doi.org/10.1007/978-3-031-38554-4_18

33. Kim, M., Lee, D., Seo, J., Song, Y.: Accelerating HE operations from key de-
composition technique. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023,
Part IV. LNCS, vol. 14084, pp. 70–92. Springer, Heidelberg (Aug 2023). https:
//doi.org/10.1007/978-3-031-38551-3_3

31

http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/19.html
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/19.html
https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.46586/tches.v2022.i3.141-164
https://eprint.iacr.org/2023/933
https://eprint.iacr.org/2023/933
https://eprint.iacr.org/2023/933
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1145/3548606.3560579
https://doi.org/10.1007/978-3-319-89641-0_10
https://doi.org/10.1007/978-3-319-89641-0_10
https://doi.org/10.1109/HOST49136.2021.9702284
https://doi.org/10.1109/HOST49136.2021.9702284
https://doi.org/10.1109/DAC18074.2021.9586131
https://doi.org/10.1109/DAC18074.2021.9586131
https://doi.org/10.1007/978-3-031-38554-4_18
https://doi.org/10.1007/978-3-031-38554-4_18
https://doi.org/10.1007/978-3-031-38551-3_3
https://doi.org/10.1007/978-3-031-38551-3_3

34. Kirchner, P., Fouque, P.A.: Revisiting lattice attacks on overstretched NTRU
parameters. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I.
LNCS, vol. 10210, pp. 3–26. Springer, Heidelberg (Apr / May 2017). https:
//doi.org/10.1007/978-3-319-56620-7_1

35. Krausz, M., Land, G., Richter-Brockmann, J., Güneysu, T.: Efficiently masking
polynomial inversion at arbitrary order. In: Cheon, J.H., Johansson, T. (eds.)
Post-Quantum Cryptography - 13th International Workshop, PQCrypto 2022,
Virtual Event, September 28-30, 2022, Proceedings. Lecture Notes in Computer
Science, vol. 13512, pp. 309–326. Springer (2022). https://doi.org/10.1007/
978-3-031-17234-2_15, https://doi.org/10.1007/978-3-031-17234-2_15

36. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., Stehlé,
D., Bai, S.: CRYSTALS-DILITHIUM. Tech. rep., National Institute of Stan-
dards and Technology (2022), available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022

37. Marzougui, S., Ulitzsch, V., Tibouchi, M., Seifert, J.P.: Profiling side-channel
attacks on Dilithium: A small bit-fiddling leak breaks it all. Cryptology ePrint
Archive, Report 2022/106 (2022), https://eprint.iacr.org/2022/106

38. Masure, L., Rioul, O., Standaert, F.: A nearly tight proof of duc et al.’s conjectured
security bound for masked implementations. In: Buhan, I., Schneider, T. (eds.)
Smart Card Research and Advanced Applications - 21st International Conference,
CARDIS 2022, Birmingham, UK, November 7-9, 2022, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 13820, pp. 69–81. Springer (2022). https:
//doi.org/10.1007/978-3-031-25319-5_4

39. Mathieu-Mahias, A.: Securisation of implementations of cryptographic algorithms
in the context of embedded systems. Theses, Université Paris-Saclay (Dec 2021),
https://theses.hal.science/tel-03537322

40. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factoriza-
tion. Mathematics of Computation 48(177), 243–264 (1987). https://doi.org/
10.1090/s0025-5718-1987-0866113-7

41. del Pino, R., Espitau, T., Katsumata, S., Maller, M., Mouhartem, F.,
Prest, T., Rossi, M., Saarinen, M.J.: Raccoon, A Side-Channel Secure
Signature Scheme. Tech. rep., National Institute of Standards and Tech-
nology (2023), available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures

42. del Pino, R., Katsumata, S., Maller, M., Mouhartem, F., Prest, T., Saarinen, M.J.:
Threshold raccoon: Practical threshold signatures from standard lattice assump-
tions. Cryptology ePrint Archive, Paper 2024/184 (2024), https://eprint.iacr.
org/2024/184, https://eprint.iacr.org/2024/184

43. del Pino, R., Prest, T., Rossi, M., Saarinen, M.O.: High-order masking of lattice
signatures in quasilinear time. In: 44th IEEE Symposium on Security and Privacy,
SP 2023, San Francisco, CA, USA, May 21-25, 2023. pp. 1168–1185. IEEE (2023).
https://doi.org/10.1109/SP46215.2023.10179342

44. Prest, T.: A key-recovery attack against mitaka in the t-probing model. In:
Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part I. LNCS, vol. 13940,
pp. 205–220. Springer, Heidelberg (May 2023). https://doi.org/10.1007/
978-3-031-31368-4_8

45. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National
Institute of Standards and Technology (2022), available at https://csrc.nist.
gov/Projects/post-quantum-cryptography/selected-algorithms-2022

32

https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-031-17234-2_15
https://doi.org/10.1007/978-3-031-17234-2_15
https://doi.org/10.1007/978-3-031-17234-2_15
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2022/106
https://doi.org/10.1007/978-3-031-25319-5_4
https://doi.org/10.1007/978-3-031-25319-5_4
https://theses.hal.science/tel-03537322
https://doi.org/10.1090/s0025-5718-1987-0866113-7
https://doi.org/10.1090/s0025-5718-1987-0866113-7
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://eprint.iacr.org/2024/184
https://eprint.iacr.org/2024/184
https://eprint.iacr.org/2024/184
https://doi.org/10.1109/SP46215.2023.10179342
https://doi.org/10.1007/978-3-031-31368-4_8
https://doi.org/10.1007/978-3-031-31368-4_8
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

46. Saarinen, M.J.O., Rossi, M.: Mask compression: High-order masking on memory-
constrained devices. Cryptology ePrint Archive, Paper 2023/1117 (2023), https:
//eprint.iacr.org/2023/1117

47. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J.M., Seiler, G., Stehlé, D., Ding, J.: CRYSTALS-KYBER. Tech. rep.,
National Institute of Standards and Technology (2022), available at https://csrc.
nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

48. Yu, Y., Jia, H., Wang, X.: Compact lattice gadget and its applications to hash-
and-sign signatures. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023,
Part V. LNCS, vol. 14085, pp. 390–420. Springer, Heidelberg (Aug 2023). https:
//doi.org/10.1007/978-3-031-38554-4_13

49. Zhang, S., Lin, X., Yu, Y., Wang, W.: Improved power analysis attacks on fal-
con. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part IV. LNCS, vol.
14007, pp. 565–595. Springer, Heidelberg (Apr 2023). https://doi.org/10.1007/
978-3-031-30634-1_19

33

https://eprint.iacr.org/2023/1117
https://eprint.iacr.org/2023/1117
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-031-38554-4_13
https://doi.org/10.1007/978-3-031-38554-4_13
https://doi.org/10.1007/978-3-031-30634-1_19
https://doi.org/10.1007/978-3-031-30634-1_19

A An NTRU-based Maskable Hash-and-Sign Scheme

This section additionally introduces Plover-NTRU, which consists in applying
our transform to Robin [48].

A.1 Additional definitions

Definition 10 (Hint-NTRU). Let q,Q be integers, Dsk,Dpert be probability dis-
tributions over Rq ˆ Rˆ

q and R2
q respectively, and C be a set over Rq. The

advantage AdvHint-NTRUA pκq of an adversary A against the Hint NTRU problem
Hint-NTRUq,Q,Dsk,Dpert,C is defined as:

ˇ

ˇPr
“

1 Ð A
`

g{f, pci, zi, qiPrQs

˘‰

´ Pr
“

1 Ð A
`

u, pci, ziqiPrQs

˘‰ˇ

ˇ ,

where u
$

Ð Rq, s “ pf, gq Ð Dsk and for i P rQs: ci Ð C, ri Ð Dpert, and zi “ ci ¨

s`ri. The Hint-NTRUq,Q,Dsk,Dpert,C assumption states that any efficient adversary
A has negligible advantage. We may write Hint-NTRUq,Q,σs,σr,C as a shorthand
when Dsk and Dpert are the Gaussian distributions of standard deviation σr

and σr, respectively. When Q “ 0, we recover the classical NTRU problem:
NTRUq,Dsk

“ Hint-NTRUq,Q“0,Dsk,Dpert,C.

Algorithm 10 Plover-NTRU.Keygenp1κq Ñ vk, sk

Require: The ring R, a modulus q
Ensure: A public key h P Rq, a private key pf, gq P R2

1: pf, gq Ð Dsk

2: h :“ pβ ´ fq{g mod q
3: return vk :“ h, sk :“ pvk, gq

Algorithm 11 Plover-NTRU.Signpmsg, vk, skq Ñ sig

Require: A message msg, the keypair ph, pf, gqq, a divider β, a bound B2 ą 0
Ensure: A signature psalt, zq

1: salt
$

Ð t0, 1u2κ

2: u :“ Hpmsg, salt, vkq

3: A :“
“

1 h
‰

, T :“

„

f
g

ȷ

4: p Ð Dpert ▷ p P R2

5: c :“ u ´ Ap
6: pc1, c2q :“ Decomposeβpcq ▷ c “ β ¨ c1 ` c2
7: z2 :“ p2 ` g ¨ c1
8: z1

1 :“ pu ´ hz2q mod q ▷ z1
1 “ z1 ` c2 “ p1 ` f ¨ c1 ` c2

9: if
›

›pz1
1, z2q

›

› ě B2 then ▷ Approximation of z “ p ` T ¨ c1
10: restart
11: return sig :“ psalt, z2q

34

Algorithm 12 Plover-NTRU.Verifypvk,msg, sigq Ñ accept or reject
Require: A signature psalt, z2q of a message msg, the public key h, a bound B2 ą 0
Ensure: accept or reject.
1: u :“ Hpmsg, salt, vkq

2: z1
1 :“ pu ´ hz2q mod q

3: accept if {
›

›pz1
1, z2q

›

› ď B2 }, else reject

A.2 Masked key generation

Plover-NTRU key generation requires inverting the masked polynomial JgK. We
introduce a novel efficient algorithm PseudoInverse to perform this masked op-
eration in Section A.5.

Algorithm 13 Plover-NTRU.MaskKeygenpHq Ñ pvk, skq

Require: The ring R
Ensure: A public key h P R, a private key pf, gq P R2

1: e :“ 0
2: JfK Ð AddRepNoise

`

Rq, d,Dind
sk , repsk

˘

3: while (e “ 0) do
4: JgK Ð AddRepNoise

`

Rq, d,Dind
sk , repsk

˘

5: pe, JgˆKq Ð PseudoInversepJgKq ▷ If g is invertible, compute JgˆK such that
gˆ “ g´1 and e “ 1, else e “ 0

6: JhK Ð pβ ´ JfKq ¨ JgˆK
7: h :“ UnmaskpJhKq

8: return pvk :“ h, sk :“ pvk, JgKq

A.3 Masked signing

We describe the masked signing procedure of Plover-NTRU in Algorithm 14.

A.4 Cryptanalysis and parameter selection

Forgery and RSIS Let σsk, σpert denote the standard deviation of the (un-
masked) secret key and perturbation, respectively. In a legitimate signature:

E
”

›

›z1
›

›

2
ı

“ E
”

›

›z1
1

›

›

2
ı

` E
”

}z2}
2
ı

“ E
”

}p1 ` g ¨ c1}
2
ı

` E
”

}p2 ` f ¨ c1 ` c2}
2
ı

« n

ˆ

2σ2
pert `

β2

12
`

q2 n

6β2
σ2
sk

˙

We can therefore select B2 as in Section 3.5. The rest of our analysis is also
identical to Section 3.5, except that we need to solve RSIS for a 1 ˆ 2 NTRU
matrix

“

1 h
‰

, instead of a 1 ˆ 3 matrix
“

1 a b
‰

. This makes the RSIS problem
much harder in the NTRU case.

35

Algorithm 14 Plover-NTRU.MaskSignpmsg, vk, skq Ñ sig

Require: A message msg, the keypair ph, JgKq

Ensure: A signature psalt, zq

1: salt
$

Ð t0, 1u2κ

2: u :“ Hpmsg, salt, vkq

3: JpK Ð AddRepNoisepR2
q, d,Dind

pert, reppertq ▷ p “ pp1, p2q

4: JwK :“ “

1 h
‰

¨ JpK
5: w :“ UnmaskpJwKq

6: c :“ u ´ w
7: pc1, c2q :“ Decomposeβpcq ▷ c “ β ¨ c1 ` c2
8: JgK Ð RefreshpJgKq ▷ Refresh JgK before re-use
9: Jz2K :“ Jp2K ` JgK ¨ c1

10: z2 :“ UnmaskpJz2Kq

11: z1
1 :“ pu ´ hz2q mod q ▷ z1

1 “ z1 ` c2 “ p1 ` f ¨ c1 ` c2
12: if }pz1

1, z2q} ě B2 then
13: restart
14: return sig :“ psalt, z2q

Key-indistinguishability and Hint-NTRU An adversary breaking the key-
indistinguishability of vk is also able to break Hint-RLWE

q,QSign,yDsk,zDpert,C . In the
Gaussian case, yDsk

s
„ D

pσsk
and zDpert

s
„ D

pσpert
, where pσsk

σsk,ind
“

a

d repsk ´ t and
“

pσpert

σpert,ind
“

a

d reppert ´ t.
In the Hint-NTRU case, we don’t have a reduction similar to Theorem 1. We

assume that an adversary against Hint-NTRU is able to break the indistinguisha-
bility of an inhomogeneous NTRU instance:

fred
gred

where pf, gq „ DR,Rˆ,σred,pf0,g0q (5)

We assume that inhomogeneous NTRU is as hard as homogeneous NTRU for
the same parameters pq, n, σredq.

When q is large, the class of attacks known as overstretched NTRU attacks
[2,11,34] becomes relevant. According to the most recent analyses [17,25], these
attack become relevant when q ą qfatigue, where qfatigue “ 0.0058 ¨ σ2

red ¨ n2.484.
We rely on the script by van Woerden (https://github.com/WvanWoerden/
NTRUFatigue) to precisely estimate the impact of overstretched NTRU attacks
on our scheme.

Parameter selection Selected parameters for different values of rlog qs are
summarized in Table 3.

A.5 Implementation

Plover-NTRU shares a significant portion of its implementation code with Plover-RLWE.
We also provide both a C and Python reference implementations for Plover-NTRU,

36

https://github.com/WvanWoerden/NTRUFatigue
https://github.com/WvanWoerden/NTRUFatigue

rlog qs 35 37 39 41 43 45 47 49
log β 31 33 35 37 38 38 39 40

log σpert 30 32 34 36 37 38 39 40
log σsk 21 23 25 27 27 27 27 27
QSign 37 39 42 44 42 40 38 36
|vk| 8960 9472 9984 10496 11008 11520 12032 12544
|sig| 11488 12198 12908 13617 13972 14327 14682 15037

Table 3: Parameter sets of Plover-NTRU for κ “ 128. All parameter sets feature
n “ 2048, and B2 defined as in Appendix A.4.

36 38 40 42 44 46 48
20

220

240

log q

Queries

36 38 40 42 44 46 48
0

5

10

15

20
Sizes (kB)

Fig. 7: Number of signing queries () and bytesizes (|vk|: , |sig|:) as
functions of q. Parameter sets as in Appendix A.4.

available at https://github.com/GuilhemN/masksign-plover. Polynomial mul-
tiplications and modular reduction are implemented in the same way as Raccoon
and Plover-RLWE.

Plover-NTRU additionally packages the ISW masked multiplication algorithm
[5]. This algorithm is used in the key generation Algorithm 13. As an extra
optimization of our scheme, we present a novel optimization technique with
PseudoInverse to compute the inverse of a masked polynomial efficiently when
the underlying ring supports number theoretic transform (NTT).

Masking complexity. The usage of masked multiplications in the key generation
increases its masking complexity to Opd2q in the masking order d. The signature
procedure however keeps a quasi-linear masking complexity Opd log dq. However,
the performance of Plover-NTRU remains competitive with Plover-RLWE, notably
due to the optimization of the polynomial inversion introduced in Section A.5.

Plover-NTRU has the same general characteristics, and randomness imple-
mentation as Plover-RLWE, which are detailed in Section 3.6. Encoding tech-
niques are also analogous to Plover-RLWE.

37

https://github.com/GuilhemN/masksign-plover

Efficient masked polynomial inversion. We recall that the number theoretic
transform (NTT) is a linear operation and can thus be performed in masked
form in linear overhead Opdq, for a total cost Opdn log nq. We also recall that
for x P Zq, xφpqq P t0, 1u, and xφpqq “ 1 if and only if x is invertible. xφpqq can
be computed in tlog qu squarings and at most as many products. Note that φpqq

is public so the exponentiation algorithm can safely leak information about the
exponent.

Algorithm 15 PseudoInverse

Require: JfK P Rd
q

Ensure: e P t0, 1u, JfˆKRd
q such that, if e “ 1, then fˆ “ f´1

1: JaK :“ NTTpJfKq ▷ a “ paiqiPrns P Zn
q

2: Jb´1K :“ J0K
3: for i P t0, . . . , n ´ 1u do
4: JbiK Ð JaiK ¨ Jbi´1K
5: Jtn´1K Ð Jbn´1Kφpqq´1 ▷ Done via the square-and-multiply algorithm
6: Jbn´1K Ð RefreshZq pJbn´1Kq ▷ Refresh before re-use
7: JeK :“ Jtn´1K ¨ Jbn´1K
8: e Ð UnmaskpJeKq ▷ e P t0, 1u, and e “ 0 if and only if f is not invertible
9: JaK Ð RefreshZn

q
pJaKq ▷ Refresh JaK before re-use

10: for pi “ n ´ 1, . . . , 0q do
11: JciK Ð JtiK ¨ Jbi´1K ▷ ci “ a´1

i

12: JtiK Ð RefreshZq pJtiKq ▷ Refresh before re-use
13: Jti´1K Ð JtiK ¨ JaiK ▷ ti “

´

ś

jďi ai

¯´1

14: JcK :“ pJciKqiPrns ▷ c P Zn
q

15: JfˆK :“ NTT´1pJcKq

16: return e, JfˆK
Complexity. We count the complexity in the number of arithmetic operations
(additions, multiplications) over Z. Two NTTs: Opdn log nq. Computing the
Montgomery “chains” and e: 3n ` 1 multiplications, hence Opnd2q. Comput-
ing the exponentiation: Opd2 log qq. The total complexity is:

O pd pn log n ` nd ` d log qqq (6)

Use cases. Polynomial inversion is a useful operation in many lattice-based
schemes based on NTRU and its variants. It is especially useful during key gen-
eration of these schemes when the operation f{g is performed in masked form.

Related works To the best of our knowledge, our work is the first time Mont-
gomery’s trick has been used for masking lattice-based cryptography.

Masked inversion. Algorithms for performing masked inversion have been pro-
posed in [14, Sections 4.3 and 5] and [35]. The complexity of these algorithms
is at least in the order of magnitude of d2 multiplications in Rq. Since known

38

methods for multiplying two elements in Rq cost at least Opn log nq arithmetic
operations in Zq, the running time of these algorithms is at least Opd2n log nq,
which is higher than the complexity we claim in Eq. (6).

Montgomery’s trick. Integral to the efficiency of our method is the use of the
so-called Montgomery’s trick, which allows to perform n inversions in Zq for the
cost of 3n multiplications in Zq and one inversion in Zq. This algorithm has been
described in [40]. It has been used in cryptographic contexts.

[8] uses Montgomery’s trick for inverting several values in f1, . . . , fm P Rq at
the same time, whereas our method already provides benefits when inverting one
single value f P Rq. We note that the work of [8] does not mention masking, and
many of their subroutines (for example, the subroutine isInvertible described
in [8, Section 3.1.1]) do not immediately seem easy to mask efficiently.

Performance. We performed a performance evaluation of Plover-NTRU on
a 2022 Lenovo Thinkpad P14s equipped with a Ryzen Pro 7 5850U (16CPU
threads at 3GHz), boost disabled, and running Manjaro 22.1. We provide as for
Plover-RLWE results in milliseconds, millions of cycles, and the peak memory
usage of each function in bytes. Concrete parameters are also defined from the
optimal set in the number of queries rlog qs “ 41 from Table 3, which leads to
the same concrete parameters used for Plover-RLWE evaluation given in Table 1.

Results are summarized in Table 4, and plotted in Figure 8 for Keygen and
Sign. The performance of the key generation degrades quadratically with d –
as expected, but they remain practical even at order d “ 32 with one key gen-
eration taking about 1{4 second on our evaluation machine. Furthermore, the
signature generation is slightly faster than the one of Plover-RLWE, and its ver-
ification is even about 30% faster, which makes Plover-NTRU very competitive
with both Raccoon and Plover-RLWE for applications where performance of sig-
nature generation and verification are more important than the efficiency of the
key generation.

Variant Keygen Sign Verify
κ ´ d ms Mclk stack ms Mclk stack ms Mclk stack
128-1 1.302 2.479 65712 1.829 3.473 180512 0.281 0.534 65616
128-2 1.791 3.415 131488 2.118 4.023 262432 = = =
128-4 3.759 7.141 262752 2.658 5.051 426400 = = =
128-8 16.260 30.898 525184 8.502 16.151 754144 = = =
128-16 54.571 103.759 1050080 10.914 20.734 1409632 = = =
128-32 248.506 471.994 2099296 36.725 69.775 2720608 = = =

Table 4: Performance of the Plover-NTRU reference implementation on an AMD
PC. Units: ms = milliseconds, Mclk = millions of clock cycles, stack = stack
usage in bytes.

39

2 4 8 16 32
0

100

200

d

Time (ms)

5 10 15 20 25 30
0

1,000

2,000

d

Stack (kB)

Fig. 8: Timing of Plover-NTRU (Keygen: , Sign:) and memory usage
(Keygen: , Sign:) as functions of d. Parameter set from Section 3.5 such
that rlog qs “ 41, with concrete parameters from Table 1.

B Proof of Lemma 2

Proof. Recall that for c Ð Zq and pc1, c2q :“ Decomposeβpcq, we have |c1| ď
Q

q´1
2β

U

, Erc1s “ 0 and Erc21s ď M2´1
12 for M “ 2

Q

q´1
2β

U

` 1. First, let us consider
a single c Ð C1. Let dpxq “ c c˚ “

ř

0ďiăn di x
i. For each k P t0, . . . , n ´ 1u, dk

can be expressed explicitly as:

dk “
ÿ

0ďiăn´k

ci ci`k ´
ÿ

n´kďiăn

ci ci`k´n. (7)

From Eq. (7), it is clear that:

1. d0 “ }c}22
2. If k ‰ 0, dk is a random variable satisfying:

}dk} ď }c}22 (8)
Erdks “ 0. (9)

While Eq. (8) is immediate from Eq. (7), Eq. (9) is a bit more subtle. The
mapping pk, iq P t0, . . . , n ´ 1u2 ÞÑ pi ` k mod nq is a group action. As such,
its orbits form a partition of t0, . . . , n ´ 1u, and we note that each orbit has
an even number of elements. Each orbit can be written as ti0`k x mod n|x P

n{ gcdpk, nqu, where i0 is (say) the smallest element in this orbit. We define
the function δk : t0, . . . , n ´ 1u Ñ t´1, 1u as follows: for each 0 ď i ă n, we
determine its orbit, write i “ i0 ` k x in this orbit, and set δkpiq “ p´1qx.
Now consider the mapping φk : C1 Ñ C1 defined as

φk :

˜

c “
ÿ

0ďiăn

ci x
i

¸

ÝÑ

˜

c1 “
ÿ

0ďiăn

δkpiq ci x
i

¸

. (10)

40

φk maps c P SupppC1q to a new c1 P SupppC1q such that C1pcq “ C1pc1q, and
one can check from Eqs. (7) and (10) that pc c˚qk “ ´pc1 c1˚qk. Since φk is
an involution over its support, this implies that Erdks “ 0.

Let us note drjs “ crjs pcrjsq˚. For k ‰ 0, we can bound the sum Dk “
ř

jPrQSigns d
rjs

k

by combining Hoeffding’s inequality with Eqs. (8) and (9):

|Dk| ď max
cÐC1

}c}
2

a

2QSign ppκ ` 1q logp2q ` logpnqq

ď n

R

q ´ 1

2β

V2
a

2QSign ppκ ` 1q logp2q ` logpnqq

except with probability at most 2´κ{n. From the union bound, the above in-
equality is true for all k ‰ 0, except with probability ď 2´κ. We can now bound
the spectral norm of D. Since D is self-adjoint, s1pDq is the largest eigenvalue
of D, that is Dpζq for some primitive root of unity ζ, |ζ| “ 1. By applying
Hoeffding’s inequality on

ř

QSign

›

›crjs
›

›

2, with probability ě 1 ´ 2´κ, we have:

s1pDq “ Dpζq ď D0 `
ÿ

k‰0

|Dk|

ď
ÿ

QSign

›

›

›
crjs

›

›

›

2

` pn ´ 1qn

R

q ´ 1

2β

V2
a

2QSign ppκ ` 1q logp2q ` logpnqq

ď
QSign nM2

12
`

a

κ ¨ QSign ¨ n

R

q ´ 1

2β

V

` pn ´ 1qn

R

q ´ 1

2β

V2
a

2QSign ppκ ` 1q logp2q ` logpnqq

Setting QSign “ ωpκ2 log2 nq concludes the proof. [\

C Differences from the Proceedings Version

In this full version, we include additional material to present:

– Plover-NTRU, our NTRU based version of Plover in Appendix A. We recall
that it achieves slightly larger sizes than the RLWE-based approach used for
Plover-RLWE, and has a complexity increasing in Opd2q with the masking
order d. It remains of interest as an additional proof of the amenability of
our framework.

– A masked inversion technique coined PseudoInverse in Appendix A.5. We
leverage it in Plover-NTRU, and we believe it is of general interest as it
asymptotically outperforms previous masked polynomial inversion algorithms.

41

	Introduction
	Our Solution
	Technical Overview

	Preliminaries
	Notations
	Distributions
	Hardness Assumptions
	Masking
	Probing Model

	Plover-RLWE : Our RLWE-based Maskable Signature
	Description of Unmasked Plover-RLWE
	EUF-CMA Security of Unmasked Plover-RLWE
	Description of Masked Plover-RLWE
	Security of Masked Plover-RLWE
	Cryptanalysis and Parameter Selection
	Implementation

	An NTRU-based Maskable Hash-and-Sign Scheme
	Additional definitions
	Masked key generation
	Masked signing
	Cryptanalysis and parameter selection
	Implementation

	Proof of lem:randomchallengesn
	Differences from the Proceedings Version

