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Abstract

While classic results in the 1980s establish that one-way functions (OWFs) imply the existence
of pseudorandom generators (PRGs) which in turn imply pseudorandom functions (PRFs), the
constructions (most notably the one from OWFs to PRGs) is complicated and inefficient.

Consequently, researchers have developed alternative direct constructions of PRFs from various
different concrete hardness assumptions. In this work, we continue this thread of work and
demonstrate the first direct construction of PRFs from average-case hardness of the time-bounded
Kolmogorov complexity problem MKtP[s], where given a threshold, s(·), and a polynomial time-
bound, t(·), MKtP[s] denotes the language consisting of strings x with t-bounded Kolmogorov
complexity, Kt(x), bounded by s(|x|).

In more detail, we demonstrate a direct PRF construction with quasi-polynomial security
from mild average-case of hardness of MKtP[2O(

√
logn)] w.r.t the uniform distribution. We note

that by earlier results, this assumption is known to be equivalent to the existence of quasi-
polynomially secure OWFs; as such, our results yield the first direct (quasi-polynomially secure)
PRF construction from a natural hardness assumptions that also is known to be implied by
(quasi-polynomially secure) PRFs.

Perhaps surprisingly, we show how to make use of the Nisan-Wigderson PRG construction to
get a cryptographic, as opposed to a complexity-theoretic, PRG.
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1 Introduction

Pseudorandom functions (PRFs), introduced by Goldwasser, Goldreich, and Micali [GGM84] in
the 1980s are one of the most important cryptographic primitives. Roughly speaking, a PRF is
a family of efficiently computable functions {fz}z∈{0,1}∗ , where given a randomly sampled seed z,
the outputs of fz(x) on (adversarially-selected) inputs x is indistinguishable from the outputs of a
truly random function F (x) (with respect to a computationally bounded machine). Most notably
they are a central object in private-key cryptography: they give simple and direct constructions
of private-key encryption, message authentication, and identification (between parties with shared
keys) [GGM85, Gol01, Lub96]. In addition, they have also found many other applications in cryp-
tography, including resettable security [CGGM00], oblivious RAM [GO96] (and more), and also in
computational complexity [RR97] and computational learning theory [Val84]; the reader is referred
to a nice survey by Bogdanov and Rosen [BR17].

While classic results in the 1980s by Hastad, Impagliazzo, Levin and Luby [HILL99] and Goldre-
ich, Goldwasser and Micali [GGM84] established that one-way functions (OWFs) imply the existence
of pseudorandom generators (PRGs) [HILL99] which in turn imply pseudorandom functions (PRFs)
[GGM84], the constructions (most notably the one from OWFs to PRGs) is complicated and ineffi-
cient. Although there has been great progress over the last decades in improving the construction of
PRGs [Hol06, HHR06, HRV10, VZ12], the currently best constructions of [MP23] has a seed length
ω(n3/ log n) and requires calling the underlying OWFs ω(n3/ log2 n) times.

Direct Constructions of PRFs Consequently, towards the goal of developing practical and
provably secure PRF constructions, researchers have developed alternative direct constructions of
PRFs from various different concrete hardness assumptions—most notably based on the Decisional
Diffie-Hellman (DDH) assumption [NR99, NR04], the hardness of factoring Blum-integers [NRR00],
and the hardness of lattice problems [BPR12].

In this work, we continue this thread of work and demonstrate the first direct constructions
of PRFs from average-case hardness of the standard time-bounded Kolmogorov complexity prob-
lem MKtP[s] [Kol68, Ko86, Sip83, Har83, All01, ABK+06], where given a threshold, s(·), and a
polynomial time-bound, t(·), MKtP[s] denotes the language consisting of strings x with t-bounded
Kolmogorov complexity, Kt(x), bounded by s(|x|). In more detail, we demonstrate a direct PRF
construction with quasi-polynomial security from mild average-case of hardness of MKtP[2

√
logn] w.r.t

the uniform distribution.1 We note that by earlier results, this assumption is known to be equivalent
to the existence of quasi-polynomially secure OWFs; as such, our results yield the first direct (quasi-
polynomially secure) PRF construction from a natural hardness assumption that also is known to
be implied by PRFs.

To explain this result in more detail, let us first recall the notion of (time-bounded) Kolmogorov
complexity, and the notion of (mild) average-case hardness that we rely on.

The MKtP problem Given a truth table x ∈ {0, 1}n of a Boolean function, what is the size of
the smallest “program” that computes x? This problem has fascinated researchers since the 1950
[Tra84, Yab59a, Yab59b], and various variants of it have been considered depending on how the
notion of a program is formalized. For instance, when the notion of a program is taken to be circuits
(e.g., with AND,OR,NOT gates), then it corresponds to the Minimum Circuit Size problem (MCSP)
[KC00, Tra84], and when the notion of a program is taken to be a time-bounded Turing machine,
then it corresponds to the Minimum Time-Bounded Kolmogorov complexity problem (MKtP) [Kol68,

1The threshold 2
√

logn is the inverse of 2log2 n = nlogn.
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Ko86, Sip83, Har83, All01, ABK+06]. Our focus here is on the latter scenario. Given a string x
describing a truth table, let Kt(x) denote the t-bounded Kolmogorov complexity of x—that is, the
length of the shortest string Π such that for every i ∈ [n], U(Π, i) = xi within time t(|Π|), where U
is a fixed Universal Turing machine.2

Given a threshold, s(·), and a polynomial time-bound, t(·), let MKtP[s] denote the language
consisting of strings x such that Kt(x) ≤ s(|x|); MKtP[s] is clearly in NP, but it is unknown whether
it is NP-complete. In [LP20], Liu and Pass recently showed that when the threshold s(·) is “large”
(more precisely, when s(n) = n − c log n, for some constant c), then mild average-case hardness of
this language w.r.t. the uniform distribution of instances is equivalent to the existence of one-way
functions (OWF).3

Even more recently, a different work by Liu and Pass [LP21] demonstrated that when the thresh-
old is smaller then an appropriate notion of average-case hardness of the problem characterizes
quasi-polynomial or sub-exponential one-way functions (depending on the threshold). In more de-
tail, when the threshold s is small, MKtP[s] is a sparse language so it can never the average-case hard
w.r.t. the uniform distribution (simply saying NO succeeds with overwhelming probability). To deal
with this issue, [LP21] thus argued that the right notion of average-case case hardness of a sparse
language ought to condition on both YES and NO instances. In more detail, we refer to a language
L ⊂ {0, 1}∗ as D(·)-dense if for all n ∈ N, |Ln| = D(n), where Ln = L ∩ {0, 1}n. We say that a
D(·)-dense language L is α(·) hard-on-average∗ with respect to T (·)-time attackers ((T, α)-HoA∗) if
for all probabilistic T -time heuristics H, for all sufficiently large n, there exist µ ∈ {0, 1} such that,

Pr[x← {0, 1}n : H(x) = µ | L(x) = µ] < 1− α(n∗),

where n∗ = logD(n). n∗ is referred to as the normalized input length. In other words, there does
not exist a T -time “heuristic” that decides L with probability 1 − α(n∗) conditioned on YES (and
NO) instances.4

[LP21] showed that for any δ > 0, quasi-polynomially secure and subexponentially-secure OWFs
are characterized by (nδ, O(1/n3))-average-case∗ hardness of MKtP[s] where the threshold are s(n) =
2O(
√

logn) and s(n) = poly log n respectively. Intriguingly, their result—following a literature on so-
called hardness magnification [OS18, MMW19, CT19, OPS19, CMMW19, Oli19, CJW19, CHO+20]
shows that it suffices to assume sublinear hardness of these problems to provide those characteriza-
tions (when the threshold is sublinear). While the original result of [LP21] only showed equivalence
in the non-uniform regime, it was recently shown how to also establish an equivalence also in the uni-
form regime [LP23]; additionally, [LP23] also (implicitly) show that the equivalence still holds if the
error parameter becomes larger—it is (sufficient and) also necessary to assume (nδ, 1

nβ
)-average-case∗

hardness of MKtP[s] for any β > 0.
In more detail, focusing on quasi-polynomially secure OWFs, we have the following. We say that

a function f is a quasi-polynomially secure OWF if there exists a constant c > 0 such that f is

2There are many ways to define time-bounded Kolmogorov complexity. We here consider the “local compression”
version—which corresponds to the above truth table compression problem—and where the running-time bound is a
function of the length of the program. A different version of (time-bounded) Kolmogorov complexity instead considers
the size of the shortest program that outputs the whole string x. This other notion refers to a “global compression”
notion, but is less appealing from the point of view of truth table compression, as the running-time of the program can
never be smaller than the length of the truth table x.

3Strictly speaking, [LP20] considered the “global compression” version of Kolmogorov complexity, but when the
threshold is large, these notions are essentially equivalent, and the result from [LP20] directly applies also the “local
compression” notion of Kolmogorov complexity considered here.

4The reason the error probability, α is a function of the logarithm of the number of YES-instances (i.e., the
“normalized” input length, n∗, as opposed to just n (i.e., the logarithm of the number of instances) is to ensure that
this notion meaningfully relaxes the notion of a one-sided heuristic, also for very sparse languages. If it wasn’t, then a
1/n-heuristic∗ could not make any mistakes on YES instances when the languages contains less than n YES-instances.
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(T, 1/T )-one-way for T (n) = 2c log2 n.

Theorem 1.1 ([LP21, LP23]). For any polynomial t(n) ≥ (1 + ε)n, ε > 0, any β > 0, δ > 0, the
following are equivalent:

• Quasi-polynomially secure (resp non-uniformly quasi-polynomially secure) OWFs exist.

• There exists a constant c > 0, s(n) = 2c
√

logn, such that MKtP[s] is (nδ, 1
nβ

)-HoA∗ (resp non-
uniformly HoA∗).

Our Main Result Our main result is a direct construction of a quasi-polynomially secure PRF
(with input domain {0, 1}Ω(log2 k) where k is the seed length) from the average-case∗ of hardness of
MKtP[2O(

√
logn)] w.r.t the uniform distribution and with respect to attackers of size n3. (Formally

proved in Section 5.3.)

Theorem 1.2 (Main Theorem). Consider any threshold function s(n) = 2c
√

logn, c > 0, poly-
nomial t(n) ≥ (1 + ε)n, ε > 0, and any β > 0. Assume that MKtP[s] is (n3, 1

nβ
)-HoA∗ (resp.

non-uniformly (n3, 1
nβ

)-HoA∗). Then, there exists a quasi-polynomially secure (resp. non-uniformly

quasi-polynomially secure) PRF h : 1λ × {0, 1}Õ(λ1+β) × {0, 1}Ω(log2 λ) → {0, 1}.

As noted above (see Theorem 1.1), the above assumption is equivalent to the existence of quasi-
polynomially secure OWFs. Thus, Theorem 1.2 follows from Theorem 1.1 and the results of [HILL99,
GGM84] (which show how to get a quasi-polynomially secure PRF from any quasi-polynomially
secure PRG, with an explicit reduction). The point here is that we present a direct proof of this result,
without passing through the result of [HILL99], and thus as a result the construction becomes much
simpler and more efficient. See the paragraph below discussing the efficiency of the construction.

As far as we know, our results thus yield the first direct PRF construction from a natural hardness
assumption that also is known to be implied by PRFs.

A Non-Black-Box Security Reduction We highlight that whereas we provide an explicit secu-
rity reduction when proving the security of our PRF, the reduction is non-black box. In particular, we
are relying on the fact that the PRF attacker is computationally bounded and has a small description.
For this reason, the proof for the uniform case does not directly imply security in the non-uniform
setting and we need to work a bit harder to demonstrate security also in the non-uniform setting.
Roughly speaking, the non-black box nature of the reduction stems from the fact that we will use
the attacker to “compress” the instance string x (in order to determine if its Kt complexity is small).

On the PRF Domain Size We highlight that our PRF only has a O(log2 λ) bit input domain
where λ is the security parameter. Such (small domain) PRFs suffices for typical applications of
PRFs [Gol01] (e.g., to CPA-secure private-key encryption [GM84]). Of course we can always extend
the domain using the standard tree construction [Gol01] (but at a loss in efficiency). Alternatively,
we note that if we consider hardness of MKtP[s] with an even smaller threshold s(n) = poly log(n)
(which is equivalent to subexponentially secure OWFs), then the construction directly extends to
give a PRF with a λε-bit input domain; see Theorem 5.6 for a generalized version of Theorem 1.2,
Corollary 5.7, and Corollary 5.8.

On the Efficiency on the PRFs We present an explicit reduction from an attacker that breaks
the security of our PRF to breaking MKtP[s] on a particular instance x ∈ {0, 1}n. The efficiency of
the PRF is a function of the time-bound t and the length of the threshold λ = s(n) (which roughly
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Seed Length Runtime Input Length

LWE [BPR12] Õ(λ2) Õ(λ2) log2 λ

R-LWE [BPR12] Õ(λ) Õ(λ) log2 λ

DDH [NR99], Factoring [NRR00] O(λ) Õ(λ) log2 λ

DDH [NR99], Factoring [NR99] O(λ) Õ(λ2) λ

Ours Õ(λ1+β) Õ(λ1+β) log2 λ

Table 1: Efficiency comparisons with existing PRFs. (All assumptions are quasi-polynomially hard,
β > 0 is an arbitrarily small constant.)

equals the “normalized input length” of MKtP[s]). In particular, its running time is Õ(λβ)·t(λ) where
β is any constant > 0, and the seed length is Õ(λ1+β). At first it would seem that the efficiency
of the construction is “too good to be true”—since λ = s(n) is sublinear in the length n of the
instance x ∈ {0, 1}n we reduce security from. The point, however, is that the MKtP[s] problem can
be trivially decided in time 2s(n) (and is generally conjectured to be hard for time 2Ω(s(n))—this is
referred to as the Perebor Conjecture [Tra84])—so the “fair” way to measure efficiency is in terms
of the threshold s (and not the instance length n), and this is why we let the security parameter be
defined as λ = s(n) (instead of defining it as n).

Comparisons with Existing PRFs Let us briefly compare our PRF with existing constructions.
We first focus our attention on a “baseline” PRF, in which we apply the generic transformation
of [HILL99, GGM84] (from OWFs to PRFs) to the OWF construction of [LP21]. Given that both
(our and the baseline) constructions base their security on the hardness of MKtP[s], we here consider
a linear running time bound t(n) = O(n), and (n3, 1

nβ
)-average-case∗ hardness of MKtP[s] for some

arbitrarily small constant β > 0. In this setting, the [LP21] OWF has both the running time and
the seed length of Õ(λ1+β). However, recall that even the start-of-the-art OWF-to-PRG construc-
tion [MP23] incurs a Õ(λ3) blow up in both the seed length and the running time, whereas our PRF
construction achieves runtime Õ(λ1+β) and seed length Õ(λ1+β).

We also provide comparisons with the PRFs constructed in [BPR12], [NR99], and [NRR00]. We
highlight that these constructions are based on hardness assumptions that are not known to be
also implied by PRFs. Nevertheless, we still give an efficiency comparison, the results of which are
summarized in Table 1. Notice that [BPR12] only gets PRF with input length log2 λ (rather than
λ), just as we do, from quasi-poly assumptions.

We, as well as [BPR12], can always use standard domain extension (incurring an overhead of λ
in terms of running time) to extend the domain to λ bits. In essence, all of the constructions (except
for the LWE one) have the same efficiency. Ours is β worse in the exponent for any arbitrary small
β > 0, and the LWE based construction is strictly worse, losing a factor of λ.

1.1 Construction Overview

We here provide a brief outline of the construction. Towards this, let us first briefly review the
Nisan-Wigderson PRG [NW94].

The NW construction The construction NW starts off with a function f that is assumed to be
average-case hard to compute (with probability better than 1/2 + δ) over random inputs ∈ {0, 1}`,
and is parameterized by a collection of sets of indexes I = {Ii}i∈[m] referred to as the designs; these
design sets Ii, |Ii| = ` are efficiently computable given i and in their simplest implementation involve
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y1 y2 y3 y4 y5 y6 y7 y8 y9

f( y1 y4 y7 ), f( y1 y5 y9 ), f(yI3), . . . , f(yIm)

Input y

Output NWf
I(y)

=

=

Figure 1: An illustrative example of the NW construction with function f : {0, 1}` → {0, 1} and
designs I. In this example, ` = q = 3. The design construction is based on polynomials, where
I1 = {1, 4, 7} corresponds to the polynomial p1(x) = 0, and I2 = {1, 5, 9} corresponds to the
polynomial p2(x) = x.

evaluating a polynomial “indexed” by i—more details on this construction below.5

Next, given a seed y, to compute the bit i of output of the PRG NW, we simply apply f to the
“projected” input yIi defined as y restricted to the indexes in Ii:

NWf
I(y) = f(yI1) . . . f(yIm)

See Figure 1 for an illustrative example of the NW construction (in which we will employ the design
construction that we describe in the next paragraph).

For concreteness, let us recall the design construction of [NW94] that we will rely on. Let `
denote the input length to f , and let q denote a prime (or the smallest power of 2) such that q ≥ `.
We consider designs with universe [d] where d = `q. The seed length of the NW generator, |y|, will
also be picked to be d. We interpret each number j ∈ [d] as a tuple in [`]× [q]. Each set Ii ⊆ [d] is
defined to be the set {jk = (k, p(k))}k∈[`] where p is the i-th polynomial of Fq (according to some
canonical enumeration of all polynomials in Fq, in a degree increasing order). Notice that each Ii
contains ` elements, and thus the length of the projected seed yIi is equal to the input length of f .

The NW reconstruction procedure It will be useful to review the security reduction of the NW
PRG. Roughly speaking, [NW94] show that any distinguisher D (of the output of the PRG and a
random string) with advantage ε, can be used to approximate f with probability 1/2+O(ε/m) using
a small (but larger than m ·m1/ log `) bits of non-uniform advice z. This is referred to as the NW
reconstruction procedure. (In particular, if f cannot be approximated by programs of size |D|+ |z|
this yields a contradiction.)

The NW construction as a PRF Let us highlight one particular feature of the NW PRG when
using the above design construction (based on polynomials). Given the seed y and the output index i,
we can efficiently—i.e., in time polynomial in (|i|, `) rather than in (i, `)—compute the set Ii. Besides
this, computing the ith output bit of the generator only needs one call to the underlying hard function
f . In other words, the output bits of the NW PRG are locally computable. As a consequence, if we
are able to show that the above generator actually is a PRG with superpolynomial stretch (and f is
efficient), then it actually also yields a PRF; this will be the approach that we will rely on.

Our PRF Consider some running time bound t(n) ≥ (1 + ε′)n, ε′ > 0, threshold function s(n) =

2
√

logn, and hardness parameter α(λ) = 1/λβ. We construct a PRF h : {0, 1}Õ(λ1+β)×{0, 1}Ω(log2 λ) →
5This polynomial-based design construction appeared in [NW94], and is used to obtain the so-called “low-end”

derandomization. There are many other constructions of designs, but, for our purposes, the polynomial-based one is
useful as it is efficient in |i|.

5



{0, 1} whose security can be based on α-average-case∗ hardness of MKtP[s] of input length n such
that s(n) = λ.6 To simplify notation, we here abuse the notation and specify h rather as a PRG of

the form h : {0, 1}Õ(λ1+β) → {0, 1}n=2log2 λ
, but note that due to our use of the NW PRG, each bit

of the output h is locally computable (i.e., efficiently as a function of the seed and the index i) so
this actually yields the desired PRF.

The construction of the (PRG-representation of) h proceeds in the following three steps.

• We start by appealing to the [LP20, LP21] OWF construction. Given a seed Π′ ∈ {0, 1}λ+1,
and an input i ∈ {0, 1}logn, the function f removes all ‘0’ from the end of Π′ (if any), and
removes an extra ‘1’ from the end.7 Let Π denote the remaining string. f simply outputs the
bit produced by Π after running on input i for t(|Π|) steps. In more detail,

f(Π′, i) = U(Π(i), 1t(|Π|))

where U is the universal Turing machine fixed in the definition of Kt.

• Next, relying on the Nisan-Wigderson generator, we define the function g(Π′, y) as

g(Π′, y) = NW
f(Π′,·)
I (y)

where Π′ ∈ {0, 1}λ+1, f(Π′, ·) is a function {0, 1}logn → {0, 1}, y ∈ {0, 1}d, d = O(log2 n) =
O(log4 λ), and I is the polynomial-based design as introduced above.8 The output size of the

NW generator is set to be m = nε = 2ε log2 λ (where ε = 1/8).

In more detail, g divides its seed into Π′ and y, instantiates the NW generator with hard
function f(Π′, ·), and simply computes the NW generator on seed y. The seed length of g is
|Π′|+ |y| = (λ+ 1) +O(log4 λ) = O(λ).

• Finally, we amplify the security of g, by considering the function h that takes the XOR of g on
many independent seed. In more detail, h is defined as

h(Π′1, y1, . . . ,Π
′
γ , yγ) = g(Π′1, y1)⊕ . . .⊕ g(Π′γ , yγ)

where γ = log n/α = λβ log2 λ.

Note that the seed length of h is O(λ)·γ ≤ O(λ1+β log2 λ), and the output size will be nε = 2ε log2 λ

(so its corresponding PRF has input domain {0, 1}Ω(log2 λ)). Also notice that the running time of
our PRF is O(t(λ) · λβ log2 λ). (The reader is refer to Section 5.2 for a more detailed presentation of
our PRF.)

We remark that there are two aspects of the construction that a-priori seem strange:

• In the derandomization literature, NW generators are used to fool attackers with smaller run-
ning time than the time needed to compute the hard function, whereas we are dealing with
attackers that are more powerful than what is required to run the construction;

6In this proof overview, we assume that n is a power of 2 for simplicity.
7The [LP20] construction was slightly different; the above modified version has a slightly tighter analysis and shaves

log λ bits in the input length.
8The O(log2 n) = O(log4 λ) seed length of the PRG comes from our choice of designs. We note that there are

explicitly computable designs that support our use of the NW PRG with only O(logn) seed length. See [HR03]
and [CT21, Lemma A.2]. It may be that those designs lead to a more practical construction.
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• The above PRG construction (without the amplification step), is very similar to the derandom-
ization-style PRG9 constructions based on the hardness of time-bounded Kolmogorov complex-
ity problems appearing in [LP22]. These constructions, however, just as most more recent NW
generators [IW97, STV01] are instantiated with a hard function encoded by error-correcting
codes (ECCs) in order to make sure the reconstruction procedure is able to actually compress
the input (since the “plain” NW reconstruction procedure only shows how the function can be
computed with non-trivial probability). Note that using ECCs would not work in our setting
as to get a PRF—we would need the ECC to be locally encodable, and such ECC cannot exist.

Both of the above differences mean that we cannot rely on simply the “standard” NW proof. However,
we shall show that since we are starting off with average-case hardness of a particular hard function
(i.e., based on MKtP[s]), we are able to overcome these issues.

1.2 Proof Overview

We briefly explain why the above construction is secure, assuming α-average-case∗ hardness of
MKtP[s] where α(λ) = 1/λβ and s(n) = 2

√
logn. The proof will proceed in two steps. First, we

will show that the function g above (i.e., applying just the plain NW generator on the sampled
function) satisfies a weak PRG property. Next, we show that the general XOR construction used in
the final PRG h amplifies such a weak PRG into a standard one. Finally, as noted above, since each
bit is locally computable, the PRG actually yields a PRF.

Let us start by describing the notion of a weak family of PRGs and how they can be amplified
into a standard PRG using the construction employed in function h.

Weak families of PRGs We refer to a family of functions {gj}j∈{0,1}λ as a α-weak family of PRGs
if for every efficient distinguisher D, it holds that with probability α(λ) over j ← Uλ, D distinguishes
gj(Ud) from uniform with at most negligible probability.

In essence, with reasonable probability over the index, we get a full-fledged (strong) PRG. We
remark that this notion is different from previous notions of weak PRGs [DIJK09, MT09] in the
aspect that we consider a family of functions, whereas these other definitions consider a single PRG
whose output is only weakly indistinguishable from random. A weak family of PRGs also yields
such a weak PRG when the expansion is long enough so as to recover the index (which indeed will
be the case for us). The issue is that the weak PRG it gives has indistinguishability gap of 1 − α,
but the results of [DIJK09, MT09] only apply when the indistinguishability gap is smaller than 1/2.
Consequently, we directly leverage the fact that the once a “good” index of the family has been
sampled, the PRG is actually fully indistinguishable from random. Relying on this, we next present
a general proof that such weak families of PRGs can be amplified into a standard PRG10 using
the XOR construction and while relying on proof techniques similar to those used in Yao’s classic
hardness amplification theorem [Yao82, GNW95].

Showing that g is a weak family of PRGs The central part of our paper is demonstrating that
the function g can be viewed as a Ω(α)-weak family of PRGs assuming α-average-case∗ hardness
of MKtP[s]. In more detail, we define a weak family of PRGs g′Π′(y) = g(Π′, y), and assume for
contradiction that there exists a distinguisher that breaks its security for 1 − α/O(1) fraction of
index Π′ of the family. We aim to use this distinguisher to decide MKtP[s] on average (conditioned
on both YES- and NO-instances). The general approach will combine ideas from [LP20, LP21,

9In fact, hitting set generators.
10For the ease of presentation, we only consider standard (polynomially secure) PRGs and negligible distinguishing

advantage. Our proof will also show that the PRG (after amplification) is quasi-polynomially secure, as desired.
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CIKK16, Hir18, LP22]. Roughly speaking, to decide an instance x, we view x as a hard function to
use in the NW generator (as in [Hir18, LP22], following [CIKK16]), except that we do not rely on an
ECC as done by [Hir18, LP22]), and feed the output of this generator to the attacker. If the attacker
succeeds in distinguishing, we answer YES and otherwise NO. The key point is that, intuitively, if
the distinguisher succeeds, then by the NW reconstruction argument, we can get a short description
of program that approximates x with non-trivial probability, and intuitively, most NO instances do
not have such short approximate description. Let us make two observations here: (1) the reason
we do not need to rely on an ECC is exactly the fact that NO instances do not have even short
approximate descriptions (as we shall soon argue), (2) the use of the NW reconstruction algorithm
(similar to its use in [CIKK16, Hir18, LP22]) is what makes the reduction non-black box since we
are relying on the fact that the distinguisher has a small description.

We next need to argue that on random YES instances, the distinguisher actually works; this will
rely on a probabilistic domination argument from [LP20, LP21] and it is here that we require the
original distinguisher (breaking the PRGs g′) to succeed for a large fraction of indices.

In more detail, assume for contradiction that there exists a distinguisher D that breaks the
(α/O(1))-weak family of PRGs g′; that is, over at least a 1 − α/O(1) fraction of the indices Π′,
D breaks gΠ′ with a non-negligible advantage. Notice that we can assume D breaks each such gΠ′

with advantage at least 1

2ε log2 λ
(which is negligible in λ) and also notice that 1

2ε log2 λ
= 1

nε . We will

use D to decide MKtP[s] with probability at least 1 − α conditioned on both YES instances and
NO instances. Let us assume for simplicity in this proof overview that D is a deterministic uniform
distinguisher. (In the actual proof, we will deal with probabilistic distinguishers, or even non-uniform
algorithms.)

First note that by the security (of the reconstruction procedure) of the Nisan-Wigderson gener-
ator [NW94] (see also [CIKK16, Hir18, LP22]), if x is a random NO instance, then with very high
probability (much larger than 1 − α) over x, D cannot succeed in distinguishing between Unε and
NWx(Ud)—the reason for this is that if D could do so, then the Nisan-Wigderson reconstruction pro-
cedure would approximate x over at least a 1/2 + 1/n2ε fraction of coordinates (but in a randomized
local fashion). In addition, the reconstruction procedure only requires O(n2ε) bits as advice, so we
have managed to approximately compress x. Observe that the distribution of a random NO instance
is statistically close to the uniform distribution, so it remains to show that such an approximate local
compression is impossible for almost all of random strings x ∈ {0, 1}n.

Random Strings cannot be Approximately Compressed It is well-known that by a stan-
dard counting argument, most of random strings cannot be exactly compressed (and thus have high
Kolmogorov-complexity). Proving that they cannot be locally (1/2 + 1/n2ε)-approximated (by ran-
domized programs of size n2ε) requires a slightly more delicate argument. We will show that a (fixed)
randomized program Π can only (1/2 + 1/n2ε)-approximate a uniform random string x with very
small probability; the proof is then concluded using a union bound over all programs (of size n2ε).

Let P denote the set of strings x ∈ {0, 1}n such that given x, the randomized program Π on
input a random index i ∈ [n] (with fresh randomness) computes xi with probability ≥ 1/2 + 1/n2ε.
Our goal is to show that |P | is very small.

Towards this, the key idea is to derandomize Π, and next simply argue that most random string
will be far from the output of the deterministic version of Π. At first it would seem that we can
simply fix the best random tape for Π; the issue, however, is that Π may succeed to compute different
bits i with different random tapes. To overcome this issue, we use an averaging argument to show
that for each x ∈ P , there exists at least a 1

2n2ε fraction of random tapes r such that the output of the
deterministic machine Πr (the program Π with its random tape fixed to r) is (1/2 + 1/(2n2ε))-close
to x. From this it follows that over random x, r, the probability that Πr produces a string that is
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(1/2 + 1/(2n2ε))-close to x is at least
1

2n2ε
· |P |

2n

We are now ready to derandomize Π. Observe that if we fix the random tape of Π to a string
r∗ that maximizes the above probability (over a random x), we have that the output of Πr∗ is
(1/2 + 1/(2n2ε))-close to x is at least

1

2n2ε
· |P |

2n

over random x ∈ {0, 1}n.
Next, notice that the deterministic program Πr∗ will output a fixed string, but by a Chernoff

bound, it follows that a random string is (1/2 + 1/n2ε)-close to it with probability at most

e−Ω(n1−4ε)

(To see this, note that each bit of the random string matches the fixed string independently with
probability 1/2, so the distance between them is simply the sum of n independent random variables
with expectation 1/2.) Therefore, we have that

|P |
2n
≤ 2n2εe−Ω(n1−4ε)

Finally, by taking a Union bound over all randomized program of size at most n2ε, we conclude
that the probability that a random string x can be approximately compressed is at most

2n
2ε · 2n2εe−Ω(n1−4ε) = 2n2ε · 2−Ω(n1−4ε)+n2ε

In addition, the above probability will be negligible when 2ε < 1−4ε (which will hold since ε = 1/8).

Why the distinguisher D works on YES instances On the other hand, when x is a random
YES instance of MKtP[s], we claim that D will manage to distinguish between NWx(Ud) and Unε ,
for at least a 1 − α faction of x. Observe that if x is a YES instance, then x will appear as the
truth table of the function f(Π′, ·) for some Π′ ∈ {0, 1}≤λ (e.g., the Kt-witness of x), and thus
NWx(Ud) will always be one PRG inside the family of PRGs that g′ defines. Since D has to break
a 1 − α/O(1) fraction of PRGs in the family, it would seem that D has to distinguish between
NWx(Ud) and Unε for at least a 1 − α fraction of x. However, the distribution of a random YES
instance is very different from how the truth table of f(Π′, ·) is distributed in our construction of
g. So we have no guarantee how the distinguisher D performs if we sample x from the random-
YES distribution. To deal with this issue, we rely on an argument in [LP20, LP21] to show that
the f(Π′, ·)-truth-table distribution “dominates” the random-YES distribution, and therefore if D
succeeds with probability 1− α/O(1) over the f(Π′, ·)-truth-table distribution, D must succeed also
with probability 1− (α/O(1)) ·O(1) ≥ 1−α over the random-YES distribution. This concludes that
we can always decide MKtP[s] with probability ≥ 1−α conditioned on both YES and NO instances,
and concludes the construction of a (α/O(1))-weak family of PRGs.

2 Preliminaries

For any two random variables X and Y defined over some set V, we let SD(X,Y ) = maxT⊆V |Pr[X ∈
T ] − Pr[Y ∈ T ]| = 1

2

∑
v∈V |Pr[X = v] − Pr[Y = v]| denote the statistical distance between X and

Y . It will be helpful to note that the expression is maximixed when the “distinguisher” T = {v :
Pr[X = v] > Pr[Y = v]}.

Let Un denote the uniform distribution over {0, 1}n, for any n ∈ N.
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2.1 Time-bounded Kolmogorov Complexity

We define the notion of t-time-bounded Kolmogorov complexity that we rely on. We consider some
universal Turing machine U that can emulate any Turing machine M with polynomial overhead. The
universal Turing machine U receives as input a description/program Π ∈ {0, 1}∗ = (M,w) where M
is a Turing machine and w ∈ {0, 1}∗ is an input to M ; we let U(Π(i), 1t(|Π|)) denote the output of
M(w, i) when emulated on U for t(|Π|) steps.

Definition 2.1. Let U be a universal Turing machine and t(·) be a polynomial. Define

Kt(x) = min
Π∈{0,1}∗

{|Π| : ∀i ∈ [|x|], U(Π(i), 1t(|Π|)) = xi}.

We remark that the notion of time-bounded Kolmogorov complexity has been defined in a lot
of different ways [Kol68, Sip83, Tra84, Ko86, ABK+06]; the definition we consider here is the “local
compression” version [LP21] where the program Π is required to efficiently output each individual
bit xi of the string x, given i as input.

Let MKtP[s(n)] be a language consisting of strings x with Kt-complexity at most s(|x|). We
recall the following fact about (time-bounded) Kolmogorov complexity.

Fact 2.2 ([LP21]). There exists a constant c such that for every polynomial t(n) ≥ (1 + ε)n, ε > 0,
the following holds:

(1) For every x ∈ {0, 1}∗, Kt(x) ≤ |x|+ c;

(2) For every integer n ∈ N, every function 0 < s(n) < n, 2bs(n)c−c ≤ |MKtP[s(n)] ∩ {0, 1}n| ≤
2bs(n)c+1.

2.2 Average-case∗ Hardness

We introduce the notion of average-case∗ hardness, defined in [LP21]. On a high-level, average-case∗

hardness provides a meaningful notion of average-case hardness w.r.t. two-sided error heuristics for
sparse languages. Before describing the definition, let us first define the density of a language: We
say that a language L ⊂ {0, 1}∗ is D(·)-dense if for all n ∈ N, |Ln| = D(n), where Ln = L ∩ {0, 1}n.
Now we are ready to define the notion of average-case∗ hardness.

Definition 2.3 (Average-case∗ Hardness). We say that a D(·)-dense language L is α(·) hard-on-
average∗ (resp non-uniformly α(·) hard-on-average∗) with respect to T (·)-time attackers ((T, α)-HoA∗

(resp non-uniformly (T, α)-HoA∗)) if for all probabilistic T -time (resp non-uniform T -time) heuristics
H, for all sufficiently large n, there exist µ ∈ {0, 1} such that,

Pr[x← {0, 1}n : H(x) = µ | L(x) = µ] < 1− α(n∗),

where n∗ = logD(n). n∗ is referred to as the normalized input length.

In other words, there does not exist a T -time “heuristic∗” that decides L with probability 1 −
α(n∗) conditioned on YES (and NO) instances. We refer the reader to [LP21] for how average-
case∗ hardness meaningfully generalizes (and lies between) the two standard notions of average-case
hardness (errorless and 2-sided error averagae-case hardness).

In this work, we are interested in the average-case∗ hardness of MKtP[s]. We note that the
normalized input length n∗ of MKtP[s] on input length n is roughly as large as the threshold s(n).

Claim 1. Let c be the constant as in Fact 2.2. For any polynomial t(·), any function 0 < s(n) < n,
for any input length n, it follows that s(n)− c ≤ n∗ ≤ s(n) + 1.

Proof: This claim immediately follows from Fact 2.2.
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2.3 One-way Functions and MKtP[s]

We recall the standard definitions of one-way functions.

Definition 2.4. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be a
(T, ε)-one-way function ((T, ε)-OWF) (resp non-uniformly secure (T, ε)-OWF) if for any probabilistic
T (n)-time (resp non-uniform T (n)-time) algorithm A, for all sufficiently large n ∈ N,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] < ε(n)

In addition, we say that f is quasi-polynomially secure if it is (T, 1/T )-one-way for some constant

c > 0 and some function T (n) = 2c log2 n. We say that f is subexponentially secure if it is (T, 1/T )-
one-way for some constant ε > 0 and some function T (n) = 2n

ε
.

As mentioned in the introduction, [LP21] showed that OWFs are characterized by average-case∗

hardness of MKtP[s] and how small the threshold is determines how hard (or secure) the OWF
we obtain. As also mentioned, while the original result of [LP21] only showed equivalence in the
non-uniform regime, it was recently shown how to also establish an equivalence also in the uniform
regime [LP23]; additionally, [LP23] also (implicitly) show that the equivalence still holds if the
error parameter becomes larger—it is (sufficient and) also necessary to assume (nδ, 1

nβ
)-average-case∗

hardness of MKtP[s] for any β > 0. We here formally state their results.

Theorem 2.5 ([LP21, LP23]). For any polynomial t(n) ≥ (1 + ε)n, ε > 0, any β > 0, any δ > 0,
the following statements hold:

• Quasi-polynomially-secure (resp non-uniformly quasi-polynomially-secure) OWFs exist iff there
exists a constant c > 0, s(n) = 2c

√
logn, such that MKtP[s] is (nδ, 1

nβ
)-HoA∗ (resp non-uniformly

HoA∗).

• Subexponentially-secure (resp non-uniformly subexponentially-secure) OWFs exist iff there ex-
ists a constant c > 0, s(n) = logc(n), such that MKtP[s] is (nδ, 1

nβ
)-HoA∗ (resp non-uniformly

HoA∗).

2.4 Pseudorandom Generators and Pseudorandom Functions

We recall the standard definitions of pseudorandom generators (PRGs).

Definition 2.6. Let g : 1λ × {0, 1}d(λ) → {0, 1}m(λ) be a function. g is said to be a (T (·), ε(·))-
pseudorandom generator ((T, ε)-PRG) (resp non-uniformly secure (T, ε)-PRG) if for any probabilistic
T (·)-time (resp non-uniform T (·)-time) algorithm A (whose running time is T (·) in the length of its
first input), for all sufficiently large λ,

|Pr[x← {0, 1}d(λ) : A(1λ, g(x)) = 1]− Pr[y ← {0, 1}m(λ) : A(1λ, y) = 1]| ≤ ε(λ).

In addition, we say that g is locally-computable if each bit of the output of g can be computed in
time poly(d(λ), logm(λ)).

We note that to simplify notations, we relax the efficiency requirement on g, since we also consider
locally computable PRGs that output quasi-polynomially (or sub-exponentially) many bits (where
it will be guaranteed that each bit of the output can be computed efficiently) (and such functions
are inherently inefficient due to its output length).

We turn to introducing pseudorandom functions.
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Definition 2.7. Let f : 1λ×{0, 1}d(λ)×{0, 1}k(λ) → {0, 1} be a polynomial-time computable function.
f is said to be a (T (·), ε(·))-pseudorandom function (T, ε)-PRF (resp non-uniformly secure (T, ε)-
PRF) if for any probabilistic T (·)-time (resp non-uniform T -time) algorithm A, for all sufficiently
large n,

|Pr[x← {0, 1}d(λ) : Af(x,·)(1λ) = 1]− Pr[f ′ ← F : Af ′(1λ) = 1]| ≤ ε(n)

where F = {f ′ : {0, 1}k(λ) → {0, 1}}.

In addition, we say that f is quasi-polynomially secure if there exists a constant c > 0, T (λ) =

2c log2 λ, f is a (T, 1/T )-PRF. We say that f is subexponentially secure if there exists a constant ε > 0,
T (λ) = 2λ

ε
, f is a (T, 1/T )-PRF.

3 Weak Family of PRGs and Security Amplification

In this section, we introduce the notion of weak family of PRGs and prove a security amplification
lemma for such PRGs.

Roughly speaking, a weak family of PRGs {g′j(1λ)}j∈{0,1}d1(λ) is a family of functions such that
for any distinguisher D, there is at least some fraction of functions in the family whose output is
pseudorandom. In addition, we say that the weak family has running time t(λ) if there exists a
function g such that g(1λ, j, y) = g′j(1

λ, y) and g(1λ, j, y) runs in time t(λ).

Definition 3.1. We say that a family of functions g′ : {g′j(1λ) : {0, 1}d2(λ) → {0, 1}m(λ)}j∈{0,1}d1(λ)

is a α-weak family of (T, ε)-pseudorandom generator (α-weak family of (T, ε)-PRGs) if for all T (λ)-
time distinguisher D (such that D runs in time T (λ) when its first input is 1λ), for all sufficiently
large n ∈ N, it holds that

Pr[j ← {0, 1}d1(λ) : AdvD,λ(g′j(Ud2(λ)), Um(λ)) ≤ ε(λ)] ≥ α(λ)

where for any random variables X,Y , AdvD,λ(X,Y ) is defined to be

AdvD,λ(X,Y )
def
= |Pr[r1 ← X : D(1λ, r1) = 1]− Pr[r2 ← Y : D(1λ, r2) = 1]|

We refer to j as the index and y as the seed.
We say that g′ is non-uniformly secure if the above holds for all non-uniform T (λ)-time distin-

guisher.

Notice that we will also consider PRGs whose output length is super polynomial in its seed length.
Although such PRGs are inherently not efficiently computable, we will require them to be locally
computable.

We show that weak family of PRGs can be amplified to obtain a full-fledged PRG (as long as
PRGs in the weak family are expanding enough).

Lemma 3.2. Let {g′j(1λ) : {0, 1}d2(λ) → {0, 1}m(λ)}j∈{0,1}d1(λ) be a α-weak family of (T, ε)-PRG

with running time t(λ). Let γ(λ) be a (time-constructible) parallel repetition parameter, and let
h : 1λ × {0, 1}(d1(λ)+d2(λ))γ(λ) → {0, 1}m(λ) be the xor of γ-fold repetition of g′:

h(j1, y1, . . . , jγ , yγ) = g′j1(y1)⊕ . . .⊕ g′jγ (yγ)

It holds that h is a (T ′(λ), ε′(λ))-PRG where T ′(λ) = T (λ)− γ(λ)t(λ), ε′(λ) = 2 max{(1−α(λ))γ(λ),
ε(λ) · γ(λ)}. In addition, the lemma also holds in the non-uniform setting.
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Proof: Assume for contradiction that there exists a distinguisher D′ that breaks the pseudoran-
domness of h with advantage ≥ ε′(λ) for infinitely many security parameters λ. We assume without
loss of generality that for infinitely many λ, it holds that

Pr[D′(1λ, h(U(d1(λ)+d2(λ))γ(λ))) = 1]− Pr[D′(1λ,Um(λ)) = 1] ≥ ε′(λ) (1)

(If this is not the case, we can instead consider D′ ⊕ 1 (where the output of D′ is flipped) and the
above statement must hold w.r.t. the flipped D′.) We will build a distinguisher D that breaks the
weak family of PRGs g′.

Our distinguisher D, on input 1λ and z ∈ {0, 1}m(λ), samples uniformly at random indices
j′1, . . . , j

′
γ(λ)−1 ∈ {0, 1}

d1(λ) and random seeds y′1, . . . , y
′
γ(λ)−1 ∈ {0, 1}

d2(λ). D will simply output

D′(1λ, z ⊕ g′j′1(y′1)⊕ . . .⊕ g′j′
γ(λ)−1

(y′γ(λ)−1))

Note that D runs in time T ′(λ) + γt(λ) ≤ T (λ).
We proceed to proving that D distinguishes the output of g′j from random with advantage ≥ ε(λ)

for at least a 1 − α(λ) fraction of its indices j, for infinitely many λ. Fix some λ such that D′

succeeds w.r.t. security parameter λ, let d1 = d1(λ), d2 = d2(λ), γ = γ(λ), m = m(λ). Observe that
when D(1λ) takes as input the uniform distribution, it will also feed D′ the uniform distribution.
Therefore, it holds that

Pr[D(1λ,Um) = 1] = Pr[D′(1λ,Um) = 1] (2)

We turn to analyzing how the distinguisher D works on input a pseudorandom string. We define
the set G ⊆ {0, 1}d1 as the set of “good” indices, and an index j ∈ {0, 1}d1 is referred to as being
good if

Pr[D(1λ, g′j(Ud2)) = 1]− Pr[D(1λ,Um) = 1] ≥ ε′(λ)/(2γ)

We claim that
Pr[j ← Ud1 : j ∈ G] ≥ 1− α(λ)

If this is true, we have that D will break g′ with advantage ≥ ε′(λ)/(2γ) ≥ ε(λ) over at least a
1− α(λ) fraction of indices and conclude the proof. It remains to show that the claim holds.

Assume for contradiction that Pr[j ∈ G] < 1− α(λ). Our goal is to show that the distinguisher
D′ can never break the PRG h with advantage ≥ ε(λ), which is a contradiction. To simplify our
notations a bit, we define the random variable ρD′,λ as

ρD′,λ(j1, . . . , jγ) = D′(1λ, h(j1,Ud2 , . . . , jγ ,Ud2))

We also define the random variable θD′,λ as

θD′,λ = D′(1λ,Um)

Note that the distinguishing advantage of D′ w.r.t. h is at most

Pr[z ← {0, 1}(d1+d2)γ : D′(1λ, h(z)) = 1]− Pr[D′(1λ,Um) = 1]

=Ej1,...,jγ←{0,1}d1γ
[
E[ρD′,λ(j1, . . . , jγ)]− E[θD′,λ]

]
≤Pr[j1, . . . , jγ ← {0, 1}d1γ : ∀i ∈ [γ], ji ∈ G]

+ Ej1,...,jγ

[
E[ρD′,λ(j1, . . . , jγ)]− E[θD′,λ] | ∃i ∈ [γ], ji 6∈ G

]
<(1− α(λ))γ +

∑
i∈[γ]

Ej1,...,jγ

[
E[ρD′,λ(j1, . . . , jγ)]− E[θD′,λ] | ji 6∈ G

]
≤ε′(λ)/2

+ γ · Ej1,...,jγ
[
E[ρD′,λ(j1, . . . , jγ)]− E[θD′,λ] | j1 6∈ G

] (3)
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where the second (in)equality holds since the expectation is upper bounded by 1, and the last
inequality holds due to our choice of ε′(λ) and the symmetry of ρD′,λ (in essence, the symmetry of h)
in between j1, . . . , jγ . Thus, we only need to show that the distinguishing advantage of D′ conditioned

on j1 being bad (i.e., Ej1,...,jγ

[
E[ρD′,λ(j1, . . . , jγ)] − E[θD′,λ] | j1 6∈ G

]
) is at most ε′(λ)/(2γ). This

essentially follows from our definition of G: Notice that the distinguishing advantage of D (w.r.t.
the function g′ on random index j) conditioned on j 6∈ G is

Pr[j ← {0, 1}d1 : D(1λ, g′j(Ud2)) = 1 | j 6∈ G]− Pr[D(1λ,Um) = 1]

= Pr[j ← {0, 1}d1 : D′(1λ, h(j,Ud2 ,U(d1+d2)·(γ−1))) = 1 | j 6∈ G]− Pr[D′(1λ,Um) = 1]

=Ej1,...,jγ

[
E[ρD′,λ(j1, . . . , jγ) | j1 6∈ G

]
− E[θD′,λ]

which is at most ε′(λ)/(2γ) (where the first equation holds due to our construction of D and Equa-
tion 2). Combining this with Equation 3, we conclude that the distinguishing advantage of D′ w.r.t.
h is strictly smaller than

ε′(λ)/2 + γ · ε′(λ)/(2γ) = ε′(λ)

which contradicts to Equation 1 and completes the proof.
Note that the above proof is black-box in the attacker D′, and thus it directly generalizes to the

non-uniform setting.

4 Unapproximability of Random Strings for Small Programs

It is well known that most random strings cannot be (exactly) produced by small programs (and thus
have high Kolmogorov complexity). In this section, we show that most random strings cannot even
be approximated with slightly non-trivial probability by small programs. We say that a program
approximates a string with probability 1

2 + δ if over a random index i (and randomness of the
program), the program on input i outputs the bit on the i-th coordinate of the string with probability
1
2 + δ.

We are going to prove that most random strings of length n cannot be approximated with
probability ≥ 1/2 + 1/nε by programs of size nδ.

Lemma 4.1. For any constants ε, δ > 0, δ < 1 − 2ε, there exists constants n0 such that for all
n ≥ n0, with probability at least

1− nε · 2−n1−2ε/2+nδ+2

over a uniform random string x ∈ {0, 1}n, it holds that no (probabilistic) program Π (that always
terminates on every random tape) of description length ≤ nδ can approximate the string x with
probability 1/2 + 1/nε; that is

Pr[i← [n] : Π(i) = xi] ≥
1

2
+

1

nε

where the probability is also taken over the internal randomness of Π.

Proof: Let Πr denote the deterministic machine of Π with random tape fixed to be r. Since Π always
terminates, let tΠ denote the running time of the program Π. Fix any such program Π ∈ {0, 1}∗,
|Π| ≤ nδ, we claim that there is no more than a nε2−n

1−2ε/2+1 fraction of strings x ∈ {0, 1}n such
that Π approximates x with probability 1

2 + 1
nε . Formally, we claim that

Pr

[
x← {0, 1}n : Pr

r←{0,1}tΠ ,i←[n]
[Πr(i) = xi] ≥

1

2
+

1

nε

]
≤ nε2−n1−2ε/2+1 (4)
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If this holds, by taking a union bound over all Π, we have that

Pr

[
x← {0, 1}n : ∃Π, |Π| ≤ nδ, Pr

r←{0,1}tΠ ,i←[n]
[Πr(i) = xi] ≥

1

2
+

1

nε

]
≤ nε2−n1−2ε/2+nδ+2

since (by a standard counting argument) there are at most 2n
δ+1 such programs Π, which proves the

lemma.
We proceed to proving Inequality 4. Notice that if Π approximates x with probability 1

2 + 1
nε ,

by a standard averaging argument, there are at least a 1
2nε fraction of r such that the deterministic

machine Πr approximate x with probability 1
2 + 1

2nε . Thus, the LHS of Inequality 4 is at most

Pr

[
x← {0, 1}n : Pr

r←{0,1}tΠ

[
Pr
i←[n]

[Πr(i) = xi] ≥
1

2
+

1

2nε

]
≥ 1

2nε

]
≤2nε Pr

[
x← {0, 1}n, r ← {0, 1}tΠ : Pr

i←[n]
[Πr(i) = xi] ≥

1

2
+

1

2nε

]
≤2nε Pr

[
x← {0, 1}n : Pr

i←[n]
[Πr∗(i) = xi] ≥

1

2
+

1

2nε

]
(5)

where r∗ is picked to be the random tape that maximizes the probability. Notice that the determin-
istic program Πr∗ can output only a single string. Let zi be the random variable such that zi = 1 iff
Πr∗(i) = xi. Since x is a random string, the random variables zi are independently distributed with
mean 1/2. It follows that

Pr

[
x← {0, 1}n : Pr

i←[n]
[Πr∗(i) = xi] ≥

1

2
+

1

2nε

]

= Pr

x← {0, 1}n :
∑
i∈[n]

zi ≥
n

2
+

n

2nε


≤e−n1−2ε/2 ≤ 2−n

1−2ε/2

where the (second) last step follows from the Chernoff bound. Plugging this into the Inequality 5,
the claim follows.

5 PRF Construction from MKtP

In this section, we show how to construct a PRF from hardness of MKtP[s].

5.1 Tools

Let us briefly introduce the technical tools needed in our construction. We start by recalling the
construction of the Nisan-Wigderson (NW) PRG [NW94].

Definition 5.1 (NW generator [NW94]). Let I = (I1, . . . , Im) be a family of subsets of [d] with
each |Ij | = ` and let f : {0, 1}` → {0, 1} be a function. The (I, f)-NW generator is the function

NWf
I : {0, 1}d → {0, 1}m that takes any string y ∈ {0, 1}d as a seed and outputs

NWf
I(y) = f(yI1) . . . f(yIm)

where for any set Ij = {i1, . . . , i`} ⊆ [d], any y = y1y2 . . . yd, yIj
def
= yi1yi2 . . . yi` denotes the “projec-

tion” of string y onto coordinates in Ij.
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The core ingredient of the Nisan-Wigderson construction is a combinatorial design which will be
used as the family of subsets in a NW generator.

Definition 5.2 (Combinatorial designs [NW94]). A family of sets I = {I1, . . . , Im ⊆ [d]} is said to
be a (d, `, κ)-design if for every i ∈ [m], |Ii| = `, and for every j ∈ [m], j 6= i, |Ii ∩ Ij | ≤ κ.

We rely on the following explicit design generation algorithm.

Definition 5.3 (Explicit design generation [NW94]). Let DesignNWGen be the following algorithms.
On input `, κ, i ∈ N such that κ < `, 1 ≤ i ≤ `κ, let q be the smallest power of 2 such that q ≥ `.
The algorithm DesignNWGen will output a set I ⊆ [d] such that |I| = `, where d = `q. The algorithm
proceeds as follows:

• Let p(·) be the i-th polynomial on Fq of degree κ (with respect to the canonical enumeration of
all polynomials of degree κ on Fq).

• Consider each number in [d] = [`× q] as a pair of numbers in [`]× [q]. The set I will be defined
to be

I = {(a, p(a)) | a ∈ [`]}

where we abuse the notation and view a as also a field element in Fq.

Recall that the above construction gives us a good combinatorial design.

Lemma 5.4 ([NW94]). For any `, κ,m ∈ N, m ≤ `κ, let DesignNWGen be the algorithm and d ∈ N
as in Definition 5.3. Let I = {Ii = DesignNWGen(`, κ, i)}i∈[m]. It holds that I is a (d, `, κ)-design.

The following version of the reconstruction theorem will be useful for us.

Lemma 5.5 (Implicit in [NW94, IW97], explicit in [LP22]; see also [Vad12]). There exists a PPT
algorithm NWRecon such that the following conditions hold.

• Input: the truth table of a function f : {0, 1}` → {0, 1}, a (d, `, κ)-design I = {I1, . . . , Im}, and
a distinguishing gap parameter 1ε

−1
.

• Given oracle access to a (probabilistic) oracle D ⊆ {0, 1}m such that∣∣∣Pr[y ← {0, 1}d : D(NWf
I(y)) = 1]− Pr[w ← {0, 1}m : D(w) = 1]

∣∣∣ ≥ ε.
• Output: a (deterministic) program M of description length ≤ m · 2κ + m + d + O(log d) such

that

Pr[p← [2`] : Π(p) = f(p)] ≥ 1

2
+

ε

2m

where Π = MD(I) and the probability is also taken over the internal randomness of D.

5.2 The PRF Construction

We present our PRF construction from the average-case∗ hardness of MKtP. Consider any (mono-
tonically increasing) polynomial t(·), t(n) ≥ (1 + ε)n, ε > 0.

Let λ be a program size parameter (which will also serve as a security parameter in the construc-
tion), k = k(λ) denote the PRF input length parameter, and let γ = γ(λ) be a parallel repetition
parameter. To base the security of our construction on the α(·)-average-case∗ hardness of MKtP[s],
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we state the concrete choices of the parameters: We consider input length n such that s(n) = λ, and
we pick k = 1/8 log n, γ = O(log n/α(λ)).

Our goal is to construct a PRF with input domain {0, 1}k. (Towards this, we will be needing a
Nisan-Widgerson PRG of output lengthm = 2k.) The construction relies on the following ingredients.
(We refer the reader to Section 5.1 for definitions of the technical tools used in this construction.)

• We will rely on the following decoding procedure Dec that maps any string Π′ ∈ {0, 1}∗ to a
string Π ∈ {0, 1}<|Π′|. Π is obtained by removing all ‘0’ in the end of Π′ (if any), and then
removing an additional ‘1’.

• We define a function f that receives a seed Π′ ∈ {0, 1}λ+1 and an input i ∈ {0, 1}k′ , computes
Π = Dec(Π′) and interprets it as a program, runs the program Π on input i for t(|Π|) steps,
and outputs what the program outputs, where k′ is picked to be 8k. Formally,

f(Π′, i) = U(Π(i), 1t(|Π|))

where U is the universal Turing machine we fixed in the definition of Kt.

• We will be needing a combinatorial design to instantiate a Nisan-Wigderson PRG. Let ` = k′,
κ = k, m = 2k. For each i ∈ [2k], let Ii = DesignNWGen(`, κ, i) be the set generated by
DesignNWGen on input `, κ, i. Let

I = (I1, I2, . . . , Im)

And note that I will be a (d, `, κ)-design (by Lemma 5.4) where d = `q and q is the smallest
power of 2 such that q ≥ `. Also notice that DesignNWGen on input `, κ will be able to
generate at most `κ sets, and we here need 2k sets. Due to our choice of parameters, it holds
that `κ ≥ 2κ = 2k = m.

• Define g(Π′, y) as the Nisan-Wigderson generator instantiated with the function f(Π′, ·) and
the design I. In more detail, for any seed Π′ ∈ {0, 1}λ+1, y ∈ {0, 1}d, g(Π′, y) is defined as

g(Π′, y) = NW
f(Π′,·)
I (y)

And note that the output size is m. Moreover, we define a family of function {g′Π′
def
=

g(Π′, ·)}Π′∈{0,1}λ+1 where we simply view Π′ as an index (that indices a NW generator) and y
as the seed of g′Π′ .

Now we are ready to describe our PRF construction.

• The PRF construction h is defined as a function h : {0, 1}(λ+1+d)γ × {0, 1}k → {0, 1}.

• h receives as the seed a string z = (Π′1, y1, . . . ,Π
′
γ , yγ) of length (λ + 1 + d)γ, where for each

j ∈ [γ], Π′j is of length λ+ 1 and each yj is of length d.

• On input i ∈ {0, 1}k, the output of h is defined to be

h(z, i) = g(Π′1, y1)[i]⊕ . . .⊕ g(Π′γ , yγ)[i]

where g(Π′j , yj)[i] denote the i-th bit of g(Π′j , yj), for any j ∈ [γ].
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The seed length of the construction is (λ + 1 + d)γ ≤ (λ + O(k2)) · γ. We next analyze the
running time of our construction. fΠ emulates the program Π for t(|Π|) steps, so fΠ runs in time
O(t(|Π|)) ≤ O(t(λ)) (since t is monotonically increasing). To compute g(Π′, y), for each i ∈ [2k], we
need to invoke DesignNWGen on input (`, k, i), which runs in time O(`2) = O(k2), and we also need
to compute f(Π′, yIi), which runs in time O(t(λ)). Thus, g(Π′, y) takes O(2k(t(λ) + `2)).

In order to analyze the running time of h, we notice that g(Π′, y) can be computed locally – on
each index i ∈ [2k], g(Π′, y)[i] can be computed in time O(t(λ) + `2). h(z, i) will take the xor of γ
independent instances of g(Π′, y)[i]. Thus, the running time of h is O((t(λ) + `2)γ).

5.3 Security of the PRF Construction

Theorem 5.6. Consider any (monotonically increasing) polynomial t(n) ≥ (1 + ε)n, ε > 0, any
threshold function s(n) = no(1), and its inverse ns(·) = s−1(·), and any hardness parameter α(n) =
1
nβ

, β > 0. Assume MKtP[s(n)] is (n3, α)-HoA∗ (resp non-uniformly (n3, α)-HoA∗).
Then, there exist constants γ0 > 0, δ > 0 such that for parameters n′ = ns(λ), k(λ) = 1/8 log n′,

γ(λ) = γ0 · log n′/α(λ), the function h : 1λ × {0, 1}(λ+1+2 log2 n′)γ × {0, 1}k(λ) → {0, 1} (constructed
in Section 5.2) is a (n′δ, 1

n′δ
)-PRF (resp non-uniformly secure (n′δ, 1

n′δ
)-PRF).

Notice that there are two immediate corollaries of Theorem 5.6, by considering threshold s(n) =

2O(
√

logn) (from which we obtain Corollary 5.7, where n′ = 2Ω(log2 λ), and the assumption is equiv-

alent to quasi-polynomially secure OWFs; the PRF domain is {0, 1}Ω(log2 λ)) and threshold s(n) =

poly log(n) (from which we obtain Corollary 5.8, where n′ = 2λ
1/c

, and the assumption is equivalent to

subexponentially secure OWFs; the PRF domain is {0, 1}λ1/c
). The reader is referred to Section 2.3

for equivalence between OWFs and average-case hardness of MKtP[s].

Corollary 5.7 (PRF with input length Ω(log2 λ)). Consider a threshold function s(n) = 2δ
√

logn, δ >
0, polynomial t(n) ≥ (1 + ε)n, ε > 0, and any β > 0. Assume that MKtP[s] is (n3, 1

nβ
)-HoA∗ (resp.

non-uniformly (n3, 1
nβ

)-HoA∗).

Then, the function h : 1λ × {0, 1}Õ(λ1+β) × {0, 1}log2 λ/(8δ) → {0, 1} (constructed in Section 5.2)
is a quasi-polynomially secure (resp. non-uniformly quasi-polynomially secure) PRF.

Corollary 5.8 (PRF with input length Ω(λ1/c)). Consider a threshold function s(n) = logc n, c > 2,
polynomial t(n) ≥ (1 + ε)n, ε > 0, and any β > 0. Assume that MKtP[s] is (n3, 1

nβ
)-HoA∗ (resp.

non-uniformly (n3, 1
nβ

)-HoA∗).

Then, the function h : 1λ × {0, 1}Õ(λ1+β+1/c) × {0, 1}λ1/c/8 → {0, 1} (constructed in Section 5.2)
is a sub-exponentially secure (resp. non-uniformly sub-exponentially secure) PRF.

We proceed to proving the Theorem 5.6. In what follows, we consider any polynomial t(n) ≥
(1 + ε)n, ε > 0, any threshold function s(·) (with its inverse denoted by ns(·) = s−1(·)) such that
s(n) = no(1), and any hardness parameter α(n) = 1

nβ
, β > 0. We will show that h is a PRF assuming

hardness of MKtP[s].

Switching distributions. Recall that the α-average-case∗ hardness of MKtP[s] considers hardness
of MKtP[s] over the uniform distribution (conditioned on both YES and NO instances), whereas our
PRF security game concerns the performance of the distinguisher over the pseudorandom function
distribution vs. its performance over the random function distribution. We start by showing that
our hardness assumption implies hardness of MKtP[s] over distributions that are easier to work with.

18



Let us first introduce the distributions that are needed in our proof. We will be needing the
notion of (t, s)-universal distribution (ensemble) {Duniv,n}n∈N, defined as follows. 11 Duniv,n will pick
a uniform random string Π ∈ {{0, 1}≤s(n) ∪ ε}12, and interprets it as a program. Duniv,n will output
x ∈ {0, 1}n, where each xi, i ∈ [n], is the bit produced by running the program Π on input i after
t(|Π|) steps. Formally, xi = U(Π(i), 1t(|Π|)) where U is the universal Turing machine we consider.
The other distribution we need is the uniform distribution.

We proceed to introducing the notion of average-case∗ hardness with respect to two distributions,
DY and DN , defined similarly to Definition 2.3 but considering more general distributions. Roughly
speaking, this requires no attacker can simultaneously output 1 with high probability over DY and
output 0 over DN .

Definition 5.9 (Average-case∗ Hardness w.r.t. DY and DN ). We say that a D(·)-dense language L is
α(·) hard-on-average∗ for T -time attackers with respect to DY = {DY,n}n∈N and DN = {DN,n}n∈N
((T, α)-HoA∗ w.r.t. DY and DN ) (resp non-uniformly (T, α)-HoA∗ w.r.t. DY and DN ) if for all
probabilistic T -time (resp non-uniform T -time) heuristics H, for all sufficiently large n, it holds that
either

Pr[x← DY,n : H(x) = 1] < 1− α(n∗),

or
Pr[x← DN,n : H(x) = 0] < 1− α(n∗).

where n∗ = logD(n). n∗ is referred to as the normalized input length.

We will show that average-case∗ hardness of MKtP[s] over uniform distribution implies average-
case∗ hardness of MKtP[s] over the distributions that we are interested in.

Lemma 5.10. There exists a constant c′ > 0 such that for any threshold function s(n) ≤ n/10, any
polynomial t(n) ≥ (1 + ε)n, ε > 0, any hardness parameter α(λ) = 1

λβ
, β > 0, the following holds.

Assume that MKtP[s] is (T, α)-HoA∗. Then, MKtP[s] is (T, α′)-HoA∗ w.r.t. the (t, s)-universal
distribution and the uniform distribution where α′ = α/c′. Moreover, the lemma also holds in the
non-uniform setting.

Proof: Let c′ = 2c+1 be a constant where c is the constant as in Fact 2.2. Let α′(n) = α(n)/c′. For
any input length n of MKtP[s], let n∗ be the “normalized input length”. Assume for contradiction
that there exists a T -time heuristic∗ H such that H breaks the (T, α/c′)-HoA∗ of MKtP[s] w.r.t. the
universal distribution and the uniform distribution; that is, for infinitely many n ∈ N, the following
two conditions hold simultaneously: (1) H will output 1 with probability at least 1 − α′(n∗) over
Duniv,n and (2) H will output 0 with probability at least 1− α′(n∗) over Un. We will show that the
attacker H will also break the (T, α) average-case∗ hardness of MKtP[s]. Fix some sufficiently large
n ∈ N such that our heuristic∗ H succeeds on inputs of length n.

We first show that H will output 1 with probability at least 1 − α(n∗) over a uniform random
YES instance ∈ MKtP[s]. Suppose not, and we have that H fails (to output 1) with probability
> α(n∗). By Fact 2.2, there are at least 2s(n)−c YES instances in MKtP[s]. Therefore, for any
x ∈ MKtP[s] ∩ {0, 1}n, with probability at most

1

2s(n)−c

11Note that there are many ways of defining the universal distribution, and we here consider the definition that is
most relevant to us.

12For technical reason, we also consider the empty string ε.
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a random YES instance will hit x. On the other hand, since x ∈ MKtP[s], there exists a program Π,
|Π| ≤ s(n), such that on input i, Π will output xi within time t(|Π|), for each i ∈ [n]. It follows that
x will be sampled with probability at least

1

2s(n)+1

in the universal distribution (since the universal distribution will pick a random program of length
≤ s(n) and there are 2s(n)+1 such programs (including the empty string); x will be sampled from the
distribution when the program Π is picked). Thus, H must also fail over the universal distribution
with probability at least

Pr[x← Duniv,n : H(x) 6= 1]

=
∑

x∈MKtP[s]

Pr[Duniv,n = x] · Pr[H(x) 6= 1]

≥
∑

x∈MKtP[s]

1

2c+1

1

2s(n)−c Pr[H(x) 6= 1]

≥
∑

x∈MKtP[s]

1

2c+1
Pr[x′ ← {0, 1}n ∩MKtP[s] : x′ = x] · Pr[H(x) 6= 1]

>
1

2c+1
α(n∗)

=α′(n∗)

which contradicts to the condition (1).
We turn to proving that, on input a random NO instance of MKtP[s], H will output 0 with

probability at least 1 − α(n∗). This follows from the fact that the random NO distribution is
statistically close the the uniform distribution. In more detail, let

Z1 = Un

be the uniform distribution over n-bit strings. And let

Z2 = {x← {0, 1}n : x 6∈ MKtP[s]}

be the distribution of a random NO instance. Recall that by condition (2), the probability that H
outputs 1 over Z1 is at least

Pr[x← Z1 : H(x) = 1] ≤ 1

α′(n∗)
= α(n∗)/c′

We then show that the statistical distance between Z1 and Z2 is at most 2−n+s(n)+1. By Fact 2.2,
there are at most 2s(n)+1 n-bit strings that are YES-instances of MKtP[s], thus there are at most
2s(n)+1 points that have higher probability mass in Z1 than in Z2, and the difference in probability
mass for each such point is exactly 2−n. By the observation noted after the definition of statistical
distance13, it follows that the statistical distance is upper bounded by

1

2n−s(n)−1
≤ 1

2n∗+1
≤ α(n∗)

2
.

13That is, that the optimal distinguisher is T = {ω : Pr[Z1 = ω] > Pr[Z2 = ω]}.
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(The first inequality holds since (1) we are only considering threshold functions such that s(n) ≤ n/10,
and thus n−s(n)+1 ≥ n−n/10+1; (2) recall that n∗ ≤ s(n)+1 by Claim 1. The second inequality
holds since α(n) = 1

nβ
for any constant β > 0.) Thus, the probability that H outputs 1 over Z2 is at

most

Pr[x← Z2 : H(x) = 1] ≤ Pr[x← Z1 : H(x) = 1] + SD(Z1, Z2) ≤ α(n∗)/c′ + α(n∗)/2 < α(n∗)

Finally, notice that there are infinitely many such input lengths n, and we conclude that H also
breaks the (T, α) average-case∗ hardness of MKtP[s].

Note that our proof only makes black-box use of the heuristic∗ H, and we conclude that it also
holds in the non-uniform setting.

Constructing a weak family of PRGs. We turn to showing that the function g(Π′, y) (specifi-
cally, the family g′) we construct in Section 5.2 will be a weak family of PRGs.

Let us briefly recall the construction and introduce the parameters. We consider any polynomial
t(n) ≥ (1 + ε)n, ε > 0. Our security parameter is denoted by λ. (We will base the security of our
construction on the hardness of MKtP[s] with respect to input length n such that n = ns(λ).) We
will consider a PRF input length parameter k satisfying k = k(λ) = 1/8 log ns(λ). Let f be the
function, g′ be the family, k′ = k′(λ), ` = `(λ), d = d(λ),m = m(λ) be the parameters as defined in
Section 5.2. We are going to show that g′ is a weak family of PRGs.

Lemma 5.11. Let t, s, sn, k, k
′, `, d,m, f, g be as above, s(n) ≤ n/2. Let α′(λ) = 1

c′λβ
be a hardness

parameter (for some constant β > 0, c′ > 0).
Assume MKtP[s] is (n3, α′)-HoA∗ w.r.t. the (t, s)-universal distribution and the uniform distribu-

tion. Then, {g′Π′(1λ) : {0, 1}d(λ) → {0, 1}m(λ)}Π′∈{0,1}λ+1 is a (α′(λ)/4)-weak family of (T ′(λ), ε′(λ))-

PRGs where T ′(λ) = 22k(λ), ε′(λ) = 1
2k(λ) .

In addition, the lemma also holds in the non-uniform setting.

Proof: We suppose for contradiction that there exists a distinguisher D that breaks the weak family
of PRGs g′. Since D is a good distinguisher, it follows that there exist infinitely many λ ∈ N such
that for at least a 1− α′(λ)/4 fraction of its index Π′ ∈ {0, 1}λ+1,

|Pr[D(1λ, g′Π′(Ud)) = 1]− Pr[D(1λ,Um) = 1]| ≥ ε′(λ)

We will use this distinguisher D to construct an heuristic∗ H breaking the average-case∗ hardness of
MKtP[s].

Our heuristic∗ H, on input a string x ∈ {0, 1}n, will proceed as follows.

• H first computes the security parameter λ = s(n), the input length parameters k = k(λ) and
k′ = 8k, and the other parameters needed in the construction of g.

• Let x′ be the first 2k
′

bits of x, and H will view x′ as the truth table of a function fx′

{0, 1}k′ → {0, 1}.

• H will instantiate the NW generator NW with the function fx′ (and the design I as in Sec-
tion 5.2), and check whether the distinguisher D (on input the security parameter λ) will
distinguish NWx′

I (Ud) from random with advantage at least ε′(λ)/2.

• In more detail, let ρx denote the random variable D(1λ,NWx′
I (Ud)) and θ denote the random

variable D(1λ,Um). H will estimate E[ρx] by drawing 4 1
(ε′(λ)/8)2 log( 1

α′(λ)/8) samples from ρx
and take the average. Let ρ∗ be the random variable of the average value. (Note that by
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the Hoeffding’s Inequality, ρ∗ is guaranteed to be (additively) (ε′(λ)/8)-close to E[ρx] with
probability ≥ 1 − α′(λ)/8.) We repeat the above procedure to also estimate E[θ] and denote
the average by θ∗.

• Finally, H will output 1 if |ρ∗ − θ∗| ≥ ε′(λ)/2.

We turn to analyzing the running time of H. Drawing a sample from ρx requires to run NWx′
I (Ud).

Using the same analysis as in section 5.2 for g(Π′, y), we conclude that NWx′
I (Ud) runs in time

O(2k ·(n+`2)) ≤ O(n2). In addition, we need to evaluate the distinguisher D, which takes time T ′(λ).
Note that drawing a sample from θ takes at most as much time as sampling from ρx, we conclude
that H runs in time 4 1

(ε′(λ)/8)2 log( 1
α′(λ)/8) · 2(O(n2) + T ′(λ)) ≤ O(22k log 1

α′(λ)) ·O(22k + n2) ≤ n3.

We proceed to showing that H is a good heuristic∗: H will output 1 with probability at least
1 − α′(n∗) over the distribution for YES instances, H will output 0 also with probability at least
1− α′(n∗) over the distribution for NO instances, and this holds for infinitely many input lengths n
(where n∗ is the “normalized” input length as in Definition 5.9). Fix some sufficiently large security
parameter λ on which the distinguisher D breaks the weak family of PRGs g′, and consider an input
length n such that n = ns(λ).

We first analyze how our algorithm performs over the (t, s)-universal distribution Duniv,n on input
length n. It is helpful here to introduce a new notation tt(·): For any binary function f , let tt(f)
denote its truth table, and let ttn(f) denote the n-bit prefix of the truth table. Consider the following
two distribution:

• {x′ = [x]2k′ : x← Duniv,n}, and

• {tt2k′ (f(Π′, ·)) : Π′ ← {0, 1}λ+1}

where [x]2k′ denotes the (2k
′
)-bit of x. Observe that (1) the above two distributions are identically

distributed, (2) g′Π′(Ud) will be identical to NWx′
I (Ud) as long as tt2k′ (f(Π, ·)) = x′, and (3) over a

random program Π′ sampled from the second distribution, with probability at least 1−α′(λ)/4, the
distinguisher will distinguish g′Π′(Ud) from random with advantage at least ε′(λ) (which follows from
the fact that D is a good distinguisher breaking g′). We conclude that (3) will still hold if we replace
f(Π′, ·) by fx′ , and thus with probability at least 1 − α′(λ)/4 over x ← Duniv,n, D will distinguish

NWx′
I (Ud) from random and it holds that

|E[ρx]− E[θ]| ≥ ε′(λ) (6)

Recall that ρ∗ (resp θ∗) is our empirical estimation of E[ρx] (resp E[θ]). As argued before, using
Hoeffding’s Inequality (and taking a Union Bound), we can show that except for probability α′(λ)/4,
the two estimations will be close to their expectations with difference ≤ ε′(λ)/8. If so, it follows from
Equation 6 that the difference between their estimations should be at least

|ρ∗ − θ∗| ≥ |E[ρx]− E[θ]| − ε′(λ)/4 ≥ ε′(λ)/2 (7)

By applying the Union Bound again (taking into account that Equation 6 holds with high probability
and our estimations are accurate with high probability), it follows Equation 7 holds with probability
at least

1− α′(λ)/4− α′(λ)/4 = 1− 1

2λβc′
≥ 1− 1

(n∗)βc′
= 1− α(n∗)

where the first inequality holds since recall that α′(λ) = 1
λβc′

for some constants β, c′, and the second
inequality holds since, by Claim 1, λ = s(n) ≤ n∗ − 1. Finally, note that if Equation 7 holds, our
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algorithm H will output 1, which concludes that H outputs 1 with probability ≥ 1−α(n∗) over the
YES distribution.

We move on to proving that our algorithm H will output 0 with probability at least 1 − α′(n∗)
over the uniform distribution over x ∈ {0, 1}n. We refer to a string x ∈ {0, 1}n as being bad if our
distinguisher D distinguishes NWx′

I (Ud) (where x′ is the first 2k
′

bits of x) from random with at least
ε′(λ)/4; that is,

|E[ρx]− E[θ]| ≥ ε′(λ)/4 (8)

Notice that if a string x is not bad, using the same Chernoff/Hoeffding-type argument we did for YES
instances, it follows that H(x) will output 0 with probability at least 1−α′(λ)/4 = 1−α′(s(n))/4 ≥
1−α′(n∗)/2, as desired. Thus, we will show that the faction of bad strings over {0, 1}n is very small.
We consider any bad string x ∈ {0, 1}n. It follows from Equation 8 that D(1λ) will distinguish
NWx′

I (Ud) from random with advantage

|Pr[D(1λ,NWx′
I (Ud)) = 1]− Pr[D(1λ,Um) = 1]| ≥ ε′(λ)/4

Recall from Lemma 5.4 that I is a (d, `, κ)-design. By Lemma 5.5, the Nisan-Wigderson reconstruc-

tion algorithm NWReconD(1λ,·)(x′) will output (with high probability) a program M that given oracle
access to D approximates the function fx′ where tt(fx′) = x′ (and therefore, approximates the prefix
of the string x). In more detail, the program M is of description length ≤ m2κ +m+ d+O(log d),

and the oracle-aided program M ′ = MD(1λ,·)(I) will satisfy that

Pr[p← [2k
′
] : M ′(p) = xp]

= Pr[p← [2k
′
] : M ′(p) = fx′(p)]

≥1

2
+
ε′(λ)

8m
=

1

2
+

1

8 · 2k · 2k
≥ 1

2
+

1

2(5/16)k′

where the last inequality holds when k′ = 8k, k = 1/8 log n is sufficiently large. We will further argue
that M ′ has a small description length: Consider an implementation of M ′ with the program M ,
the code of D, parameters λ, `, k hardwired in it. It first invokes the design generation algorithm
to generate the design I. It will then simulate MD(1λ,·)(I) and will output whatever M outputs.
Notice that hardwiring the code of D takes either O(1) bits (when D is a uniform attacker), or
O(22k) bits (when D is a non-uniform attacker since D runs in time 22k), and storing the parameters
takes O(log λ) +O(log d) bits. So when k is sufficiently large, the description length of M ′ is at most

m2κ +m+ d+O(22k) +O(log d) +O(log λ)

=2k · 2k + 2k +O(k2) +O(22k) +O(log k2) +O(log s(n))

≤O(22k) + 2k +O(k2) ≤ 2(5/16)k′

due to our choice of parameters (where d = O(`2) = O(k2) and k′ = 8k). Thus, we conclude that for
any bad x ∈ {0, 1}n, its (2k

′
)-bit prefix can be approximated by a program (i.e., M ′) of description

length ≤ 2(5/16)k′ with probability at least 1
2 + 1

2(5/16)k′ . By Lemma 4.1, a random string x is bad
with probability at most

2(5/16)k′ · exp(−2(1−2(5/16))k′/2 + 2(5/16)k′ + 2)

=2(5/16)k′ · exp(−2(6/16)k′/2 + 2(5/16)k′ + 2)

=n5/16 · exp(−n6/16/2 + n5/16 + 2)

≤2−n
5/16 ≤ α′(n∗)/2
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where exp(·) denotes 2(·) and the last inequality holds when n is sufficiently large since n∗ ≤ n and
α′(n∗) = 1

(n∗)βc′
for some constants β, c′ > 0. Taken this together with the fact that H will output

0 with probability at least 1− α′(n∗)/2 when the input string x is not bad, we conclude that H(x)
outputs 0 over the uniform distribution with probability at least 1−α′(n∗), which finishes the proof
for the NO instances.

Remark 5.12 (A note on non-black box nature of the reduction). We remark that the proof of
Lemma 5.11 implicitly defines a reduction R that breaks the average-case∗ hardness of MKtP[s] given
any “efficient” machine D that breaks the weak family of PRGs. Although the reduction only accesses
D as a black-box, the reduction is actually non-black box because in the analysis of the reduction, we
are relying on the fact that D has a relatively short description—this is instrumental on argue that
we succeed on NO instances (where D is used to approximately compress the instance x).

Amplifying weak families of PRGs. We proceed to proving that the construction h in Sec-
tion 5.2 will be a PRF assuming that g′ is a weak family of PRGs. In section 3, we have shown that
weak families of PRGs can be amplified by taking the xor of the independent outputs. Notice that
if we consider the function h′ that takes as input a seed z and outputs the truth table of h(z, ·), this
function is the xor of the function g′. By Lemma 3.2, we conclude that h′ is a PRG, and it follows
that h will be a PRF since each bit on the truth table of h(z, ·) can be computed explicitly (as argued
in Section 5.2).

Returning to proving Theorem 5.6. We here present a formal proof of Theorem 5.6.
Proof: [of Theorem 5.6] Let t, s, ns, k, γ as in the theorem statement. Let c′ be the constant as
in Lemma 5.10. We first show that h will be a PRF with desired security if we assume MKtP[s] is
(n3, α)-HoA∗, and we will argue that this proof implicitly defines a security reduction we need.

We pick the constant γ0 to be 4c′ and the constant δ = 1/16. It follows (from Lemma 5.10)
that MKtP[s] is (n3, α/c′)-HoA∗ w.r.t. the (t, s)-universal distribution and the uniform distribution.
Let n′ = ns(λ). Then by Lemma 5.11, g′ is a (α(λ)/(4c′))-weak family of (T ′(λ), ε′(λ))-PRG where

T ′(λ) = 22k = n′1/4 and ε′(λ) = 1
2k

= 1
n′1/8

. Recall that g′ runs in time t′(λ)
def
= 2k(t(λ) + O(`2)) =

O(2kt(λ)).
We will rely on Lemma 3.2 to show that h is a PRF. However, Lemma 3.2 is only stated with

respect to PRGs (instead of PRFs). As mentioned before, it suffices to show that h, being viewed as
a PRG (by considering the function outputting the truth table of h on each seed as a pseudorandom
string), is a PRG. If so, it follows that h will be a PRF since the pseudorandom string can be computed
locally (as argued in Section 5.2). By Lemma 3.2, we have that h is a (T ′′(λ), ε′′(λ))-PRG (when
being viewed as a PRG) where T ′′(λ) = T ′(λ)− γt′(λ) and ε′′(λ) = 2 max{(1−α(λ)/(4c′))γ , γε′(λ)}.
Notice that

T ′′(λ) ≥ n′1/4 − γO(2kt(λ)) ≥ n′1/4 − γ0 log n′/α(λ) ·O(2kt(λ)) ≥ n′δ

since (1) we only consider α(λ) = 1/λβ, β > 0, and λ = s(n′) = n′o(1) (taken together, this implies
that 1/α(λ) = n′o(1)), and (2) t(λ) = n′o(1) since t is a polynomial. We turn to prove that ε′′(λ) is
also small. ε′′(λ) is the maximal of the two values, and we will prove that each of the values will be
upper bounded by 1

n′1/16 = 1
n′δ

. Observe that on one hand,

2(1− α(λ)/(4c′))γ = 2(1− α(λ)/(4c′))4c′/α(λ)·logn′ ≤ 2(1/e)logn′ ≤ 1

n′1/16

And on the other hand,

2γ
1

n′1/8
= 2(4c′/α(λ) log n′)

1

n′1/8
≤ 1

n′1/16
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since as argued above, 1/α(λ) = no(1). This concludes that h is a (n′δ, 1
n′δ

)-PRG.
Notice that our security proof (presented above, going through Lemma 5.10, Lemma 5.11, and

Lemma 3.2) defines a security reduction that, given an attacker A that breaks the PRF h on security
parameter 1λ, breaks the hardness of MKtP[s] on input length λ = s(n).

Also notice that the proof also works in the non-uniform setting since the lemmas needed in the
proof all hold in the non-uniform setting.
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