
Notus: Dynamic Proofs of Liabilities from Zero-knowledge RSA Accumulators

Jiajun Xin Arman Haghighi Xiangan Tian Dimitrios Papadopoulos

The Hong Kong University of Science and Technology

Abstract
Proofs of Liabilities (PoL) allow an untrusted prover to com-
mit to its liabilities towards a set of users and then prove inde-
pendent users’ amounts or the total sum of liabilities, upon
queries by users or third-party auditors. This application set-
ting is highly dynamic. User liabilities may increase/decrease
arbitrarily and the prover needs to update proofs in epoch
increments (e.g., once a day for a crypto-asset exchange plat-
form). However, prior works mostly focus on the static case
and trivial extensions to the dynamic setting open the system
to windows of opportunity for the prover to under-report its
liabilities and rectify its books in time for the next check, un-
less all users check their liabilities at all epochs. In this work,
we develop Notus, the first dynamic PoL system for general
liability updates that avoids this issue. Moreover, it achieves
O(1) query proof size, verification time, and auditor overhead-
per-epoch. The core building blocks underlying Notus are a
novel zero-knowledge (and SNARK-friendly) RSA accumula-
tor and a corresponding zero-knowledge MultiSwap protocol,
which may be of independent interest. We then propose opti-
mizations to reduce the prover’s update overhead and make
Notus scale to large numbers of users (106 in our experiments).
Our results are very encouraging, e.g., it takes less than 2ms
to verify a user’s liability and the proof size is 256 Bytes. On
the prover side, deploying Notus on a cloud-based testbed
with eight 32-core machines and exploiting parallelism, it
takes∼3 minutes to perform the complete epoch update, after
which all proofs have already been computed.

1 Introduction

The emergence of the decentralized finance (DeFi) ecosys-
tem and cryptocurrency assets has led to increased demand for
auditing and regulation of involved markets [22,24,27,41,63].
For instance, cryptocurrency holders may store their assets in
exchange platforms lacking “traditional” financial regulation
and policies [1,5,28,50], which leaves them open to incidents
such as the recent collapse of the very popular exchange of

Figure 1: Model of a dynamic proof-of-liabilities system.

FTX due to malpractice [1]. This has led researchers and
industry to explore the design of mechanisms that can pro-
vide strong security guarantees, regarding the availability and
liquidity of funds in such systems. One particular such mech-
anism is proofs of liabilities (PoL), a cryptographic primitive
that allows a party to prove the amounts of funds it “owes” to
its customers to a third-party auditor—e.g., as part of proving
its financial solvency during an audit process.

In more detail, a PoL system (see Figure 1) consists of one
server that stores liability (or transaction) records associated
with its users and publishes a succinct digest of this dataset
(e.g., a short, binding, cryptographic representation) on a pub-
lic bulletin board, e.g., a blockchain platform. Users can query
the server to get their latest record and check it is up-to-date
and accurate with respect to the latest digest. The model also
includes a third-party auditor who can periodically request
the server to prove its total sum of liabilities with respect to
the public digest or ask for the liabilities of individual users.
From a security point of view, a dishonest server is clearly
motivated to under-report these values [41], but not the other
way around—artificially increasing liabilities offers no benefit
as it makes it appear to “owe more” (see also our threat model
discussion in Section 3.1). We also stress that a malicious
server operates in a very favorable setting as it can readily
tamper user records or even introduce artificial transactions
and the only entities that can “catch” such behavior are the af-
fected users themselves (we are not assuming any public-key
or certificate infrastructure for authenticating records).

PoL has been the focus of a growing line of works and

various systems have been proposed in the academic litera-
ture [22–24,27,30,36,39,41,56] and adopted in practice, e.g.,
by Binance [6] and OKX [52]. Focusing on academic pro-
posals, the state-of-the-art constructions include the DAPOL+
system [41], and the TAP system [56]. DAPOL+ proposed a
scheme based on a Merkle tree of Pedersen commitments [54],
with user liabilities stored at the leaves and the root published
as the digest. The homomorphic property of Pedersen com-
bined with efficient range proofs [13] makes it easy to prove
individual liabilities (as well as sums of liabilities) in a secure
and privacy-preserving manner (i.e., no “sibling” node infor-
mation is revealed when proving membership). TAP takes a
different approach, relying on append-only dictionaries [59]
based on Merkle sum trees [40] for proving sums of liabilities;
this is similar to DAPOL+’s Merkle tree with the additional
requirement of sorting all tree leaves in ascending order.

Focusing on PoLs that have been deployed in practice, two
highly-visible approaches come from exchange platforms Bi-
nance [6] and OKX [52]. Besides third-party auditability, they
aim for a comprehensive set of features to accommodate their
business model, including the ability to prove global sums
across multiple assets while considering varying exchange
rates. Binance [6] commits users’ liabilities in a Merkle tree
where each leaf is a hash digest of one user’s liability in-
formation. It then uses succinct non-interactive arguments
(SNARKs) to prove the sum of all users’ liabilities commit-
ted in the Merkle tree across multiple assets. Because of the
large number of users (45 million) they have, it is infeasible
to generate a single SNARK proof that checks all users in the
Merkle tree. Instead, Binance separates users into multiple
batches, with each batch containing several hundreds of users,
and constructs proofs for the entire set of users incrementally.
Starting from an empty tree, it builds the entire Merkle tree
with all users’ liability information gradually. OKX [52] also
commits users’ liability information with Merkle trees. How-
ever, it employs scalable transparent arguments of knowledge
(STARK) [3] as the proving system to achieve a faster prover
and a transparent setup. Unfortunately, this comes at the cost
of a much larger proof size. For ∼25 million users, the proof
that needs to be checked (either by a trusted auditor, or by
each user independently) is of size 1.2GB!

Challenges of Designing PoL in the Dynamic Setting. The
applications PoL target clearly operate in a dynamic setting
that can be expressed via a series of epochs during which
users can perform transactions (deposits, withdrawals, and
transfers) that will alter their liabilities. Correspondingly, the
server should be able to provide proofs that are “fresh” with re-
spect to the latest epoch (and the latest corresponding digest).
For instance, a cryptocurrency exchange could be required
by regulatory authorities to publish a new digest correspond-
ing to its state regularly, e.g., Binance and OKX currently
publish new digests and prove liabilities every month. This
epoch duration may vary greatly for different applications
from a few minutes (e.g., the time it takes to publish a new

Figure 2: This figure illustrates a window-of-opportunity at-
tack between the times a user checks her record. The user
updates her liability in Step 1 and checks again in epoch 7.
The malicious server reduces the user’s liabilities to 1 in Step
2, and restores to 1000 in epoch 6, leading to a temporary
decrease in its liability sum, without being caught.

blockchain block) to once a year (e.g., for financial tax audit-
ing). Despite this, most prior PoL works focus their security
analysis and their system design on the static case. While
this yields conceptually “simpler” schemes, one can argue
it does not provide the comprehensive auditing capabilities
that would be necessary to guarantee accountability. For in-
stance, the monthly digests provided by Binance and OKX
provide monthly independent snapshots to the auditor that
are not “linkable”, e.g., the auditing authority has no infor-
mation about what transactions took place from one month
to the next, in order to reach the new liabilities. Ideally, in
a dynamic PoL, the auditing process should “link” the prior
epoch’s digest to the new in a way that guarantees certain
properties. As we discuss next, such an extension of PoLs to
the dynamic case introduces subtle challenges.

Window-of-Opportunity for Attacks. In PoL systems, users
check and verify their corresponding records to avoid foul
play by the server. In the dynamic setting, this means that
to guarantee security all users must query for their records
at all epochs. If this does not happen, this gives a “window
of opportunity” for the server to perform an attack by first
lowering a user’s liabilities, producing a decreased sum to the
auditor that passes verification, and then increasing it again—
all this within the time interval between two checks by the
affected user (see Figure 2). To the best of our knowledge,
existing PoL works suffer from this “catastrophic” attack.
Indeed, [41] discussed the effect of users not verifying their
records. Therefore, trivially extending static PoL schemes
from the literature [6, 23, 24, 41, 52] would impose a very
stringent condition for users to remain largely online and
would incur massive communication cost to the system.

One exception to the above limitation is the recent TAP sys-
tem [56] which is also the only work that is explicitly focused
and designed for the dynamic case. However, by design, TAP
can only support positive monotonically increasing liabilities.
In practice, this is a limiting condition for several applica-
tions. E.g., in the Binance PoL [6], currency exchanges (say,

Dynamic Negative
Updates

Update Pattern
Privacy

Trusted
Setup

Prover
Overhead

Verifier Overhead
for m epochs

Auditor
Overhead

Proof of
Sum size

Cryptographic
Techniques

DAPOL+ [41] No N/A N/A No O(n logn) N/A N/A O(1) PedersenTree+RangeProof
TAP [56] Yes No No No O(n′ logn′) O(m logn′) O(n′) O(m) PedersenTree+RangeProof
OKX [52] No Yes N/A No O(n log2 n) O(m logn) O(log2 n) O(1) STARK+Mekle Tree

Binance [6] No Yes N/A Yes O(n logn) O(m logn) O(1) O(1) SNARK+Mekle Tree
Notus (Ours) Yes Yes Yes Yes O(n logn) O(1) O(1) O(1) SNARK+zkRSA Acc.

Table 1: Comparison of Notus with prior state-of-the-art PoL schemes. DAPOL+ is designed for the static case. TAP can only
support monotonically increasing liabilities. Notation: n is the number of users in the system, n′ the number of users whose
records changed in one epoch, m is the number of consecutive epochs for which a user did not check its record.

from ETH to BTC) are encoded as increases and decreases
in the respective currency accounts of the user, following the
specified exchange rate. As another example of an application
that requires both liability increases and decreases, consider
decentralized loans [63]. When a user gets a loan, she needs to
show her liabilities are less than her lending capacity. When
the loan is issued, her liabilities increase, but after the loan
is repaid, her liabilities should again decrease. Finally, with
TAP, if a user delays checking by m epochs, eventually, she
needs to perform an amount of work that is linear to m to
“catch up”, effectively checking her status for all intermediate
epochs. Ideally, we would like to make this process efficient,
e.g., it should only take a single check to catch up.

This Work. In this paper, we propose Notus, the first dynamic
proof-of-liabilities (DPoL) system that supports general li-
ability updates and achieves provable security and privacy
guarantees in the dynamic setting. In particular, Notus over-
comes the need for all users to check their records at all epochs.
Instead, users can verify their records at arbitrary times while:
(i) verification overhead and proof size is O(1), and (ii) they
have the guarantee that any (prior or ongoing) tampering of
their record by the server will be identified. Compared to
TAP [56], our system supports arbitrary (positive and neg-
ative) liability updates, m times faster verification after m
unchecked epochs, and much lower overhead for the auditor’s
check in every epoch—O(1) for Notus vs. linear in the num-
ber of transactions that took place in TAP. A side-effect of the
last property is that making the auditor so lightweight makes
it possible to instantiate it in a “trustless” manner, e.g., via a
smart contract [15,48,57]. Finally, compared to commercially
deployed systems [6, 52], our system supports dynamic up-
dates, shorter proof size, and concretely faster prover. Table 1
asymptotically compares Notus with prior works.

At a technical level, Notus combines a novel hidden-order-
group zero-knowledge accumulator [34] for individual user
queries, with an “accompanying” new zero-knowledge Multi-
Swap [53] protocol based on SNARKs for efficiently proving
and verifying the execution of updates between consecutive
epochs. To allow users to check their records at arbitrary times,
within the accumulator we encode and connect the liability
information of each user via a hash chain. Notably, updating
a private dataset while enforcing certain checks via SNARKs
is challenging from an efficiency perspective. To propose a
system with good practical performance, we designed our
accumulator to be “SNARK-friendly” to keep the prover over-

head low. At the same time, to keep the “online” overhead
for the server minimal, we adopt a massive pre-computation
strategy for the accumulator proofs. To scale this approach to
numerous users (as we expect to be the case for PoL applica-
tions) we introduce a series of important optimizations.

Our overall contributions can be summarized as follows:
1. We propose security and privacy definitions for DPoL and

the first scheme that satisfies them for general liabilities
called Notus. It achieves O(1) proof size, verification cost,
and auditor overhead (Section 3).

2. We propose the first zero-knowledge RSA accumulator,
which supports precomputing all zero-knowledge mem-
bership proofs in O(n logn) time. We also propose the
first zero-knowledge MultiSwap (ZK-MultiSwap) proto-
col based on our accumulator. Its overhead is similar to
that of prior (non-zero-knowledge) MultiSwaps [16]. (Sec-
tion 4). Finally, we propose optimization techniques for
our RSA accumulator and Notus. (Section 5).

3. We experimentally evaluate the performance of our con-
structions. Notus achieves the fastest update speed among
current PoL schemes (e.g., 3 mins to update 1 million
users) and achieves extremely fast verification cost (2ms
for user liabilities) and proof size 256Bytes (Section 6).

4. Our zero-knowledge RSA accumulator also works as a
zero-knowledge lookup system. Compared to the state-
of-the-art Caulk [67] system for zero-knowledge lookups,
our accumulator achieves up to three orders of magnitude
faster online prover time with similar offline time.

2 Preliminaries

Notation. Let λ denote a security parameter. A function
negl(λ): N→ R+ is negligible if for every positive polyno-
mial poly(λ) there exists a λ0 ∈ N, such that for all λ > λ0 :
ε(λ) < 1/poly(λ). Let [i, j] = {i, i+ 1, . . . , j− 1, j}. We de-

note by x $←− F sampling uniformly at random from domain
F . Hλ is a public function family, where every H ∈ Hλ is
modeled as a random oracle that maps an arbitrary string to a
random number with λ bits. Formally, H : {0,1}∗→{0,1}λ.

Proof of Exponentiation. Given a hidden order group G,
one integer x and two group elements g,y, a Proof of Ex-
ponentiation (PoE) protocol proves exponentiation relation
gx = y ∈ G. We follow the approach of Wesolowski [62],

generalized in [9]. It allows the verifier to check the expo-
nentiation in constant calculations, where the verifier first
sends a prime challenge l, the prover calculates q,r s.t.
x = ql+ r,r ∈ [0, l), and sends π = gq ∈G to the verifier. The

verifier computes r = x mod l and checks πlgr ?
= y. Boneh et

al. extended the above idea and provided a non-interactive
zero-knowledge proof of knowledge of exponentiation (NI-
ZKPoKE) in [9]. We refer to their protocol as (1) a prove
function π← NI-ZKPoKE.Prove (G,g;x) where π is the
proof, x is the witness and G = gx, and (2) a verification func-
tion 1/0← NI-ZKPoKE.Verify(G,g,π).

RSA Accumulators. An RSA accumulator [4, 9, 45] is a
cryptographic commitment to a set S = {e1, . . . ,en}. It has
pros/cons compared to Merkle tree-based accumulators and
bilinear accumulators as discussed in [59,60]. Its main advan-
tage is constant-sized membership proof for any set size.
Setup. An RSA accumulator can be set up by picking two
random large prime p′,q′, calculating N = p′q′, and finding
one large group G⊆ Z∗N and its generator g such that strong
RSA assumption [2] and adaptive root assumption [62] holds
in G. We additionally require that p′,q′ are two primes, i.e.,
p′ = 2p+1 and q′ = 2q+1, and that the group order is odd
(pq). The most commonly used such group is the quadratic
residue group of N (QR(N)). This setup process can either be
performed by a trusted party, or via a multi-party protocol [10,
14] to generate the group G. Alternatively, one can also rely
on class groups [12] which do not need a trusted setup but are
slower in performance and less studied.
Membership proofs. Let S = {e1,e2, . . . ,en} denote a set of
elements that are either prime numbers or output of Division
Intractable (DI) hashes [33]. acc(S) denotes the digest of com-
mitting set S using accumulator acc(S) = g∏ei∈S ei . To prove
one element e′ ∈ S, the prover calculates π = g∏ei∈S\{e′} ei . Ver-
ifier checks if πe′ ?

= acc(S). All such membership proofs can
be generated in batch (e.g., in pre-computation) in time n logn
using divide-and-conquer (e.g., see [60]).
MultiSwap. MultiSwap is a cryptographic primitive for prov-
ing the update state of an accumulator C after removing a set
X and adding a set Y is C′. It was introduced by Ozdemir et
al. [53] and improved by Campanelli et al. [16]. Both schemes
rely on SNARKs for this check, which we introduce next.

SNARKs. A Succinct Non-interactive ARgument of
Knowledge (SNARK) for a relation R comprises of three
algorithms as follows:
• Π.Setup(1λ,R)→ crs. crs is a common reference string.

• Π.Prove(crs,x;w)→ π. x is a statement and w is the wit-
ness such that R (x,w) holds. It outputs π as proof.

• Π.Verify(crs,x,π)→ {0,1}. It inputs the crs, statement x
and proof π. If the proof checks correctly, it outputs 1;
otherwise, it outputs 0.

A SNARK is complete, knowledge-sound, and succinct. Com-
pleteness means that if R (x,w) holds, an honest prover fails

to generate the proof π with probability less than negl(λ).
Knowledge soundness means that given a valid proof, there
exists an extractor to extract the witness for that statement.
Finally, a SNARK is succinct if the proof and verification time
are poly-logarithmic in the witness size. This property allows
the verifier to check any statement in R faster than checking
the statement and witness (if given) directly. If a SNARK is
also zero-knowledge, it leaks no information of the witness
and is called zkSNARK [8]. For our implementation, we use
a Groth16-type SNARK [38], which requires a trusted setup.

In this paper, we use a Commit-and-Prove SNARK (CP-
SNARK) [17] for the security and composition of differ-
ent SNARK proofs. Informally, the prover can commit the
inputs and witnesses of a SNARK through some commit-
ment scheme, e.g., extended Pedersen commitments which
are perfect hiding and computationally binding. We denote
cw1 the committed witness w1 for a CP-SNARK proof π←

Π.Prove(crs, cw1 ,x;w2) where w2 is the non-committed
part of the witness. As discussed in [17], CP-SNARK allows
the modular composition of SNARKs through the commit-
ted witness. For example, given two relations R1 and R2, the
prover can prove R1(cw1 ;w2) and R2(cw1 ;w3) hold with
two CP-SNARKs for the same committed witness cw1 .

Definitions of range proofs, universal accumulators, and
division intractable hashes can be found in Appendix A. Defi-
nitions of cryptographic assumptions and the generic group
model can be found in the extended version of our paper [65].

3 Definition of Dynamic Proofs of Liabilities

Here we propose our new definition for dynamic PoL.
Looking ahead, in our dynamic PoL, the server demonstrates
the “correct update” between successive epochs and their
respective digests. This is in contrast to relying on a static
PoL and simply publishing a series of unrelated digests, com-
puted from scratch each time. Note that, during consecutive
epochs, some users’ liabilities may remain unchanged. Any
modifications should be accurately captured in the updated
digest while also updating the total sum of liabilities. Next,
we first provide an overview of the DPoL system and explain
its data structures and threat model. Then we present function
definitions along with formal security and privacy definitions
for the DPoL. Finally, we discuss the limitations of current
works and why they do not satisfy such security requirements.

3.1 System overview and data structures

A DPoL system is a versioned ledger system, where time
is split into epochs, and each epoch bounds a unique ledger
digest. It involves three entities: users, a server, and an auditor
(Figure 1). We also assume a public bulletin board where
digests are published (e.g., a public blockchain). We denote
U = {u1, . . . ,ut} as the set of t users.

Figure 3: The ledger can be examined both vertically and
horizontally. Each row represents the transaction history of an
individual user, whereas each column represents the updated
users within a single epoch. As the epoch number increases,
the ledger naturally expands column-wise.

Users update their liabilities through transactions, which
are subsequently stored on the server. The server, denoted
by S , maintains the versioned ledger in an append-only way
for all transaction histories. It provides a digest of the whole
ledger, the sum of all liabilities, and the lookup proof for each
user’s transaction history. The server provides an updated
digest and corresponding proofs in each new epoch to show
the ledger is append-only. It publishes the digest and the
append-only proof on the bulletin board. Users retrieve the
latest digest from the public bulletin board and can check the
correctness of their records (full transaction histories) in the
ledger versus this digest. The auditor checks the correctness
of the updated digest in every epoch and the correctness of
the sum of liabilities and user histories when delegated.

Data structures. The ledger is a set of transactions (txs)
where each tx is a tuple of user ID, this user’s final liability
after the update, and the timestamp of the updated epoch. We
use tx.id, tx.lia and tx.upd to denote these values respectively.
Without loss of generality, we assume these have a fixed bit
length, and user IDs are unique. Within a single epoch, users
may perform multiple operations on their liabilities, but only
one transaction is needed to summarize the liability updates.
A user’s liability can increase or decrease across different
epochs but must always remain non-negative.

The ledger operates on an append-only basis, maintaining
a complete history of every transaction. Let Li represent the
state of the ledger at epoch i. Since each transaction includes
a timestamp indicating when it was added, it is easy to deduce
all previous versions of the ledger, denoted as L j, for all j < i,
given the current ledger state Li. For a user denoted by u, H i, j

u
represents the history of transactions (i.e., the complete set
of all transactions) occurring between epochs i and j. It is
evident that H1,i

u ⊆H1, j
u , for all instances where i≤ j. We use

H j
u to denote the transactions of user u in epoch j and H j

u .lia
to represent her final liability in epoch j. In cases where a user
does not update during epoch j, her final liability value H j

u .lia

will remain the same as her previous liability, H j−1
u .lia.

We denote Si as the set of transactions in epoch i. The nota-
tion u ∈ Si refers to a user who performed an update in epoch
i. Clearly, Si = Li \ Li−1 =

⋃
∀u∈Si

H i
u and L j =

⋃ j
i=1 Si =⋃

∀u∈U H1, j
u . We illustrate one example of such data struc-

ture in Figure 3. The sum of liabilities for ledger Li is the
sum of all users’ final liabilities in epoch i. For example, let’s
consider epoch 3 in Figure 3. In this epoch, one update hap-
pened for user ut . The sum of liabilities at epoch 3 equals to
H2

1 .lia+H2
2 .lia+H3

t .lia.

Threat Model. In the DPoL system, a malicious server tries
to opportunistically decrease the sum of all liabilities even
for brief periods [41]. We stress that artificially increasing the
amount of liabilities is not a valid attack vector as it would
make the adversary appear to have more debt (in practice
when used to prove the financial solvency of a party, a PoL
will typically be combined with a, conceptually simpler, proof
of reserves [6, 41, 52] that complements it by stopping the
adversary from over-reporting).

To achieve its goal, a malicious server may employ vari-
ous tactics, such as deleting transactions, modifying transac-
tions’ values or their order, intentionally delaying transaction
updates, and introducing counterfeit transactions (e.g., with
negative liabilities), including the possibility to fabricate and
manipulate any number of “virtual users” to further its objec-
tives. Honest users update their own transactions as they occur
and need to check their state “only occasionally” (as opposed
to mandatorily checking at every epoch) through membership
queries. Our auditor is assumed honest. For every epoch, it
receives the updated public digest and proof from the server
that allows it to check if the server has correctly updated the
system, according to the following properties: (1) the update
is append-only; (2) the update only appends transactions with
a timestamp of the current epoch number; (3) the update does
not cause any user’s liability to become negative; (4) the sum
of all liabilities is updated consistently with the transactions.
Finally, regarding the privacy of the ledger, we consider both
users and the auditor to be curious, i.e., they may try to infer
additional information about the data, besides what they know
(from their specific transactions and the sum of liabilities),
e.g., transactions of other users, update patterns of users, etc.
Users colluding with the server & fake accounts. We stress
that our threat model already considers the possibility of users
colluding with the server, to help under-report liabilities, triv-
ially since the latter can always “spawn” fake users anyway.
Looking ahead to our solution, as long as we ensure that the
liabilities of all user accounts in the system remain “positive”,
creating fake accounts or colluding with users can only in-
crease the server’s liability, and does not benefit the adversary.
Window-of-opportunity attacks & fake transactions. Since
we do not assume a public-key or certificate infrastructure
for authenticating records, neither do we require all users to
check their history at every epoch, “window-of-opportunity”

(Figure 2) attacks are always possible. Recall that this entails
the server issuing fake transactions to artificially lower
liabilities, pass the audit, and rectify the liabilities in time
before affected users perform their checks. Our threat model
addresses this by ensuring the ledger is append-only. If
the server artificially lowers liabilities by fake transactions,
evidence will remain “in perpetuity” (captured by subsequent
digests). Thus, affected users can eventually catch the
cheating server and have evidence of this malpractice.

3.2 DPoL API
In DPoL, the prover implements the following algorithms:

• (ek,vk)← Setup(1λ). Randomized algorithm that returns
evaluation key ek used by the prover and a verification key
vk used by users. Here, λ is the security parameter.

• di← Digest(ek,Li,auxi). Randomized algorithm that gen-
erates digest di. auxi is the auxiliary information (e.g., ran-
domness) needed to generate the digest up to epoch i.

• πmem← LookupProof(ek,Li,u,auxi). This algorithm pro-
vides a lookup proof for user u’s full history in epoch i with
a membership proof πmem.

• πsum← ProveSum(ek,Li,auxi). This algorithm proves the
sum of all liabilities with a sum proof πsum.

• πi ← ProveConsistent(ek,Li,auxi). Randomized algo-
rithm that proves the ledger committed in di is append-only
and consistent, resulting from the application of changes in
epoch i to the ledger committed in di−1.
The auditor implements the following algorithms:

• {1/0}← VerConsistent(vk, i,di−1,di,πi). This algorithm
ensures the transactions are append-only and consistent
after the changes in epoch i.
The auditor and users implement the following algorithms:

• {1/0} ← VerLookup(vk,di,H
1,i
u ,πmem). This algorithm

verifies proofs returned by LookupProof(·) against the
digest di for user u. It verifies the full history of user u is in
the set via the membership proof πmem.

• {1/0} ← VerSum(vk,di,sum,πsum). This algorithm veri-
fies proofs returned by ProveSum(·) against the digest di.
It verifies sum is the total final liabilities committed in di.

3.3 Correctness and Security of DPoL
We require that a Dynamic Proof of Liabilities (DPoL)

system satisfies the following properties: Completeness, Un-
deniability, Update Soundness, Sum Soundness, and Privacy.
We provide their intuitive explanations here and defer their
formal definitions to Appendix B.

Completeness ensures that when all participating entities
act honestly and adhere to the established protocol, verifica-
tion will always succeed. Note that this definition handles all
possible orders of appending elements.

Undeniability ensures the non-equivocation of the committed
ledger and the sum: for any digest di, it bounds a unique sum
and a unique ledger. It also implies collision-resistance: i.e.,
different ledgers and sums cannot have the same digest.

Update Soundness ensures that: 1) the update is append-only,
the ledger Li is a superset of ledger Li−1; 2) all transactions
updated in this epoch (tx ∈ Si) have the update epoch number
the same as the current epoch number i; 3) all updated users’
final liabilities are still positive; 4) the sum of all liabilities is
also updated accordingly and consistently. One special case
of this definition is inserting new users. For a new user u in Si,
H i−1

u does not exists, we set H i−1
u .lia = 0 as a special case.

Sum Soundness ensures that the sum of all liabilities of the
ledger is not smaller than the total sum of liabilities of those
honest users who have checked their own entries.

Privacy ensures the proofs do not reveal any additional infor-
mation about the DPoL system except for what is explicitly
provided by the server. We formulate this by a real/ideal sim-
ulation paradigm for an adversary that corrupts users and the
auditor, chooses the ledger, and makes lookup/sum queries.
We require that the view of this adversary throughout multiple
epochs can be simulated without access to the ledger.

Having defined these security properties, we now examine
why existing schemes fail to meet them, setting aside any func-
tional constraints they may have and the fact that some of them
are only set on the static setting. A common issue impacting
Soundness in static PoL systems is the necessity for users to
examine all intermediate states across every epoch to ascer-
tain their full history. DAPOL+ [41] does not satisfy DPoL’s
Update Soundness definition: for any epoch, the sum of total
liabilities is only “correct” when all users verify their mem-
bership proofs. In other words, DAPOL+’s soundness hinges
on all transactions being verified by some “entities” one by
one, either by the union of all honest users cooperatively, or
by a “powerful” auditor with access to all users’ information.
TAP [56] does not satisfy DPoL’s Privacy definition. In each
epoch, the TAP system’s server generates a tree consisting
of sorted leaves. The number of these leaves discloses the
number of updated users. When a user’s transaction is present
in the leaves, she can identify her transaction value’s position
within the sorted set, thereby obtaining additional information
about the distribution of other users’ transaction values. This
presents a privacy issue, as multiple colluding users could
merge their insights to deduce statistical information about
other participants in the system. Binance [6] does not satisfy
DPoL’s Update Soundness definition. In their system, the
auditor’s role is limited to ensuring that the sum is accurately
calculated based on all liabilities committed to the Merkle tree
without guaranteeing the ledger is strictly append-only. It also
does not satisfy DPoL’s Privacy definition. Binance employs
fixed user IDs to denote users’ positions within the Merkle
tree and relies on the Merkle path for membership proof, in-
advertently exposing information about each user’s neighbors.

Figure 4: HashChain used in Notus system. Each hash com-
bines the user ID, user’s liability, update epoch, and the previ-
ous hash as its input. The first hash in the chain uses all “0”s
as a special mark.

Likewise, OKX [52] does not satisfy DPoL’s Update Sound-
ness definition similar to Binance as it has no append-only
guarantees.

4 Notus Design

In this section, we present our instantiation of a DPoL sys-
tem, named Notus. Our objectives, in addition to the security
and privacy requirements of the DPoL system, include ensur-
ing constant-sized digests, membership proofs, and proof-of-
consistency. Moreover, we aim to improve server efficiency
by allowing membership proofs to be pre-computed in-batch.

To achieve these goals, Notus encodes each user’s history
using a HashChain, which results in a succinct representation
that makes it easier to verify the append-only property. Notus
stores the HashChain digests of all users in a zero-knowledge
RSA accumulator and employs zero-knowledge MultiSwaps
to confirm two consecutive epochs are updated correctly. The
remainder of this section is organized as follows. We first in-
troduce three building blocks of Notus, namely the HashChain,
zero-knowledge RSA accumulators, and zero-knowledge Mul-
tiSwaps. Next, we provide an in-depth explanation of the
Notus system, using the three building blocks as black boxes.

4.1 HashChain

HashChain is a fundamental data structure in the design of
secure and tamper-evident systems. It operates by incorporat-
ing a series of hash values and linking them in a sequential
manner to form a chain. Its key property is immutability, as
any attempt to alter the data or its sequence would result in
a different digest. This feature allows for the demonstration
and verification of the append-only nature of the HashChain.
Notus utilizes the HashChain data structure to encode users’
transaction histories to achieve the following goals:
1. Ensure the server can unambiguously demonstrate that

updates to users’ histories are strictly append-only, thus
maintaining the integrity of the transaction records.

2. Enable users and the auditor to inspect the most recent
HashChain outcome, which in turn facilitates the valida-
tion of all intermediate states in the transaction history.

3. Grant users and the auditor the capability to initiate sub-
sequent examinations from a checkpoint once they have
verified the transaction histories up until that specific point.

Notus commits each user’s transaction history into a
HashChain digest ki

u where u denotes the user and i de-
notes the epoch number. Notus builds the HashChain with
hash functions Hash(·) that are collision resistant and pre-
image hard. More specifically, ki

u = HashChain(H1,i
u) =

Hash(tx.id||tx.lia||tx.upd||previous Hash) where tx denotes
the latest transaction H i

u, || denotes the string concatenation
and previous Hash denotes ki−1

u . For the initial Hash where
the previous Hash does not exist, we use all “0” as a special
mark. We illustrate one example in Figure 4.

Because the hash function is collision resistant and
tx.id, tx.lia, tx.upd have fixed bit length, we summarize
HashChain’s properties as follow:
• Transitive. For H1,i+1

u = H1,i
u

⋃
tx(u, lia, i + 1), ki+1

u =

Hash(u||lia||i+1||ki
u) = HashChain(H1,i+1

u).

• Collision resistant. For any two different transactions histo-
ries H1,i

u , Ĥ1,i
u , Pr

[
HashChain(H1,i

u) = HashChain(Ĥ1,i
u)

]
is negligible in λ.
We denote the digest of the server for epoch i as di. For

one user u, a valid membership proof should convince her
that ki

u is summarized in di. Based on the transitive and colli-
sion resistant property of HashChain, once user u checks her
membership proof in epoch i, to check her membership proof
in epoch j > i, she only needs to hold her HashChain digest
ki

u and the transactions history since epoch i, which is H i+1, j
u .

In other words, once a user checks her membership proof in
epoch i, epoch i becomes a checkpoint for her.

4.2 Zero-knowledge RSA accumulator
Zero-knowledge accumulators enable a prover to efficiently

commit to a set of values while preserving binding (unde-
niability) and hiding (zero-knowledge) properties. Adver-
saries cannot obtain any information from the digest and
(non)membership proofs, apart from the information explic-
itly provided by the prover. The functional definitions of zero-
knowledge accumulators resemble those of Universal accu-
mulators in Appendix A. The primary distinction between the
two lies in the use of “blinding” random values while gener-
ating digests in zero-knowledge RSA accumulators, which is
essential for privacy, as demonstrated in [34].
Zero-knowledge RSA accumulator construction. To
achieve undeniability and zero-knowledge properties in RSA
accumulators, a straightforward strategy is to employ two
distinct generators, labeled g and h. Specifically, the gener-
ator g is dedicated to committing the product of elements,
represented by x, while h is designated for committing ran-
dom numbers, denoted by t, e.g., gxht mod N. This method
is similar to the classical Fujisaki-Okamoto integer commit-
ments [31]. However, the two-generator structure necessitates
additional overheads for membership-proof precomputation
(and, looking ahead, for the incorporation of the accumulator
checks into a SNARK). To avoid this, we choose to employ

RSA.KeyGen(1λ)

return: (ek,vk)

RSA.Acc(ek,X , t)

return: C

RSA.Witness(X ,x,C,ek)

return: (b,wx)

RSA.Verify(C,x,wx,b,vk)

return: 0/1

(a) Zero-knowledge RSA accumulator functionalities. Acc(·) function accumulates the set X and at least one random
number t, and outputs the digest C. Witness(·) function generates a (non)membership proof, while its output b denotes it

is a membership (when b = 1) or a non-membership (when b = 0) proof.

Π.Setup(1λ,R tent)

return: crs

Π.Prove(crs,C,C′,Cmid , cu⃗0 , cu⃗1 ;τ0,τ1,X ,Y)

return: π

Π.Verify(crs,C,C′,Cmid , cu⃗0 , cu⃗1 ,π)

return: 0/1

(b) ZK-MultiSwap functionalities. Proof of knowledge of set X ,Y s.t. removing X and inserting Y for C gets C′, and a
tentative relation R tent holds for (X ,Y). crs is the common reference string, C,C′,Cmid are zero-knowledge RSA

accumulators. Hash values of set X and τ0 are committed in cu⃗0 , and hash values of set Y and τ1 are committed in cu⃗1 .
Hash of τ0 and τ1 are used as randomizers.

Figure 5: Zero-knowledge RSA accumulators and ZK-MultiSwaps functions we use to build Notus. We use RSA and Π as
prefixes to denote them, respectively.

a single generator to commit the product x of all elements
and at least one randomizer t to maintain privacy, e.g., gxt

mod N. This RSA accumulator configuration allows for easy
precomputation of all membership proofs and can be input
into SNARKs with a simple PoKE proof (as we will show
later). To further optimize our RSA accumulator for SNARK
compatibility, we construct it directly with DI hashes. For
ease of presentation, we defer the details of our construction
in Appendix C and prove its security and privacy in the ex-
tended version of our paper [65]. Here, we only provide the
API of zero-knowledge RSA accumulators in Figure 5.

Zero-knowledge Subset. Given two zero-knowledge RSA ac-
cumulators, where one is a subset of the other, we can provide
a zero-knowledge subset proof of constant size. This subset
proof enables efficient updates to zero-knowledge RSA accu-
mulators and serves as a building block for the ZK-MultiSwap
protocol, which will be discussed later. Boneh et al. [9] in-
troduced both PoKE and ZK-PoKE protocols for RSA accu-
mulators. It is possible to integrate a ZK-PoKE protocol into
our accumulator to prove zero-knowledge subsets. However,
the ZK-PoKE necessitates additional elements and incurs
increased proving/verifying overhead compared to a PoKE,
particularly when combined with SNARKs. Instead, we next
design an new zero-knowledge subset protocol for our accu-
mulator based on PoKE protocol and SNARKs.

The high-level idea of our zero-knowledge subset is putting
redundant randomizers into the zero-knowledge RSA accumu-
lator beforehand, and utilizing the randomizer to “hide” the
subset (exponent). In this way, the group elements and inte-
gers in the PoKE transcript become simulatable and therefore
the whole protocol achieves zero-knowledge. Due to space
limitations, we defer construction and proofs to Appendix D.
We also show that our zero-knowledge subset protocol im-
plies an efficient zero-knowledge set insertion protocol for
the relation R Ins(C, c⃗u ;τ,X) =C′ where the witness vector
u⃗ are hash outputs of τ and X , i.e., HK(·) is a secure DI hash
that can be modeled as a random oracle, HK(τ) = t and t is

the randomizer for accumulator C′.

4.3 ZK-MultiSwap

ZK-MultiSwap proves that removing a subset X from a
zero-knowledge RSA accumulator C and inserting a new
set Y leads to the new zero-knowledge RSA accumulator
C′. Tentative relations between (X ,Y) can be checked by
SNARKs and the transcript of the protocol needs to be zero-
knowledge. Based on the same analysis in [53], given two
zero-knowledge accumulators C, C′, a ZK-MultiSwap relation
R MSwap is equivalent to proving an intermediate accumulator
Cmid , and two set insertion proofs for inserting sets (X ,Y)
s.t. R Ins(Cmid , cu⃗0 ;τ0,X) = C ∧ R Ins(Cmid , cu⃗1 ;τ1,Y) =

C′, while maintaining zero-knowledge. Based on our zero-
knowledge RSA accumulator and zero-knowledge subset pro-
tocol, we construct a protocol for ZK-MultiSwap. The de-
tailed construction and proofs are in the extended version of
our paper [65], and we provide here its function interfaces
in Figure 5. Compared with Harisa [16], our ZK-MultiSwap
achieves zero-knowledge with the cost of verifying two HK(·)
inside a SNARK, instantiated with two SNARK-friendly
sponge hashes like [37].

Dynamic ZK-MultiSwap. We further prove in the dynamic
setting of ZK-MultiSwap, the above scheme is still complete,
sound, and zero-knowledge. In the dynamic setting, the prover
is required to demonstrate a series of chained MultiSwaps
where the updated accumulator becomes the original accu-
mulator in the subsequent epoch. Let’s represent the series of
accumulators as C0,C1,C2, . . . ,Cn and the sequence of accmid
as C0,1,C1,2, . . . ,Cn−1,n. We employ a “zig-zag” approach to
randomize the accumulators. This method ensures that at
least one random number is assigned to each accumulator.
We denote these random numbers as ti. Specifically, C0 is
randomized using t0 and t1, C1 is randomized using t1 and
t2, and so on. Similarly, C0,1 is randomized using t1, C1,2 is
randomized using t2, and so forth. In the dynamic setting, the

Detailed relation for R DPoL

Input: di−1,di,Cmid , i, cu⃗0 , cu⃗1 .

Witness: τ0,τ1, S̄i,Si,sumi−1,sumi,ri−1,ri.
1. Check the ZK-MultiSwap relation R MSwap holds for

(di−1.RSA,di.RSA,Cmid , cu⃗0 , cu⃗1 ;τ0,τ1, S̄i,Si)

2. Check |S̄i|
?
= |Si|, ∀s̄ j ∈ S̄i,∀s j ∈ Si, s̄i.id

?
= si.id

3. Check HashChain is valid: ∀s j ∈ Si, s j.PrevHash ?
=

HDI(s̄ j.id, s̄ j.lia, s̄ j.upd, s̄ j.PrevHash)

4. Check ∀s j ∈ Si,s j.upd ?
= i,s j.lia≥ 0

5. Check ∑ s̄ j.lia−∑s j.lia
?
= sumi−1− sumi

6. Check di−1.Ped ?
=Com(sumi−1,ri−1)

7. Check di.Ped ?
=Com(sumi,ri)

Figure 6: Detailed relation for DPoL. We denote transactions
in S̄i as s̄1, . . . , s̄ j and transactions in Si as s1, . . . ,s j.

relation R MSwap holds for all consecutive pairs, i.e., (C0,C1),
(C1,C2), . . . , and (Cn−1,Cn). The proof is in the extended
version of our paper [65].

4.4 Notus construction
Finally, we can provide details about the construction of

Notus. We construct the HashChain using a DI hash HDI ,
which is collision resistant, and division intractable. The
data structure we input into the DI hash is the concatenation
of (tx.id||tx.lia||tx.upd||previous Hash). For user u updated
in epoch i, her HashChain digest ki

u = HashChain(H1,i
u) =

HDI(tx.id||txi
t .lia||i||ki−

u) where ki−
u is the hash digest when

previous updated in epoch i−. Given a ledger Li, we denote
Di as the collection of all users’ latest HashChain digest. We
use Di← LedgerDigest(Li) as a helper function. Recall that
we denote Si the set of transactions accumulated in the accu-
mulator for epoch i. We denote S̄i as the set containing the
previous states of transactions that are updated in epoch i.
Transactions in S̄i and Si are pairwise, i.e. ∀u ∈ Si, u ∈ S̄i and
S̄i ∈ Li−1. During an update, updated users’ old digests are
removed, and corresponding new digests based on S̄i and Si
are generated and inserted. Li \Si is the set of transactions not
updated in epoch i. We use Dmid to denote the un-updated set
of users’ latest HashChain digest in epoch i.

We use the helper function sum ← GetSum(Li) to cal-
culate the sum based on the ledger Li for epoch i, denoted
as sumi. Additionally, we require a prime order group for
Pedersen commitments, which offers hiding, binding, and
compatibility with CP-SNARKs to commit the sum of all
liabilities. As our focus lies on the hidden order group, we
do not explicitly describe operations within the prime order
group. Instead, we consider the prime order group parame-
ters are included in the crs of the SNARKs, thus reducing
ambiguity. We represent a Pedersen commitment of value s

randomized by r (a uniform random number within the prime
field) as Com(s,r). The digest di for epoch i consists of two
parts: di.RSA represents the digest of the RSA accumulator;
di.Ped denotes the digest of the Pedersen commitment.

We construct the Notus system based on the ZK-MultiSwap
with the following relation:

R DPoL(di−1,di,Cmid , i, cu⃗0 , cu⃗1 ;

τ0,τ1, S̄i,Si,sumi−1,sumi,ri−1,ri).

The relation R DPoL needs to check that (i) the number of
deleted users is the same as the inserted users and all deleted
users are re-inserted in the HashChain; (ii) the update only
appends transactions with a timestamp of the current epoch
number i; (iii) the updated users’ liabilities are positive; (iv)
the sum of liabilities is correctly updated; (v) the Pedersen
commitments commit the sums. Figure 6 includes the details
of relation R DPoL. Our construction for Notus based on the
above components is shown in Figure 7. We refer to the formal
theorem statement and proof of its security in the extended
version of our paper [65] and details for membership proof
precomputation in Appendix E.

5 Performance Optimizations

In this section, we present optimizations aimed at improv-
ing the performance of both the RSA accumulator and Notus.
During every epoch, the server must perform membership
proof precomputation, which has been identified as a bottle-
neck in this system and other similar systems based on RSA
groups [59, 61]. Our goal is to enhance its efficiency.

5.1 User Grouping Strategy
Dividing users into different groups is a common approach

when dealing with a large number of users in PoL, e.g.,
OKX [52]. In our system, we partition users into smaller
groups, or subsystems, and provide a single proof of total
liabilities as in the original system. Users only need to query
their membership proof within their own subsystem, while the
auditor is responsible for verifying the correctness of all sub-
systems. This approach does not negatively impact users’ per-
formance, as each user only queries their membership within
their respective subsystem (but the auditor must check all
subsystems). For subsystems without updates, the server still
randomizes each RSA accumulator and provides SNARK
proofs. Thus, the server overhead is fully parallelizable; given
m groups, it can potentially become m times faster.

Note that, information about users’ subgroup participation
is potentially revealed in this way. However, we considered
this “benign” leakage since this partitioning may be based
on a random allocation or even on public information (e.g.,
user names or user ids). Furthermore, each RSA accumulator
remains zero-knowledge, preventing the parties from learning

Setup:(1λ):
(RSA.ek,RSA.vk)← RSA.KeyGen(1λ)
crs← Π.Setup(1λ,R DPoL)
return: ek = (RSA.ek,crs),vk = (RSA.vk,crs)

Digest:(ek,Li,auxi):
Di← LedgerDigest(Li)
acci← RSA.Acc(RSA.ek,Di, ti, ti+1)
sum←GetSum(Li)
return: (di.RSA = acci, di.Ped =Com(sum,ri))

LookupProof:(ek,Li,u,auxi):
ki

u = HashChain(H1,i
u)

(b,wx)← RSA.Witness(Di,ki
u,acci,RSA.ek)

If b = 0, return: ⊥
If b = 1, return: πmem

ProveSum:(ek,Li,auxi):
sum←GetSum(Li), πsum = ri
return: (sum,πsum)

ProveConsistency:(ek,Li,auxi):
Dmid ← LedgerDigest(Li \Si)
Cmid ← RSA.Acc(RSA.ek,Dmid , ti−1)

πi ← Π.Prove(crs,di−1,di,Cmid , i, cu⃗0 , cu⃗1 ;τ0,

τ1, S̄i,Si,sumi−1,sumi,ri−1,ri)
return: πi

VerConsistency:(vk, i,di−1,di,πi):
Check Π.Verify(crs,di−1,di,Cmid , i, cu⃗0 , cu⃗1 ,πi)

return: 0 if rejected and 1 otherwise
VerLookup:(vk,di,H

1,i
u ,πmem):

ki
u = HashChain(H1,i

u)

Check π
ki

u
mem

?
= di.RSA

return: 0 if rejected and 1 otherwise
VerSum:(vk,di,sum,πsum):

Check di.Ped ?
=Com(sum,πsum)

return: 0 if rejected and 1 otherwise

Figure 7: Description of Notus. For each epoch, the server
samples two random values, (τi,ri), where ti = HK(τi), ti is
used for zero-knowledge RSA accumulators and ri is used for
Pedersen commitment. auxi is the collection of all random
numbers used till epoch i.

any useful information within a given group. In practice, we
utilize Groth16 [38] with a public upper bound on the number
of updates that can be checked. To accommodate groups
with more active users or a surge of transactions, we raise
the upper bound as a safeguard, effectively concealing the
actual quantity of updates. It should be noted that raising the
upper bound could lead to increased overhead for the prover.
Nevertheless, the SNARK proving process accounts for only
a small fraction of the total runtime and does not introduce a
bottleneck in the overall system performance.

of bits=200,000 # of bits=2,000,000
Time(ms) Rate Time(ms) Rate

2×NaiveExponent 911.9 1 9443.7 1
DoubleExponent 646.4 70.9% 6640.3 70.3%

4×NaiveExponent 1827.6 1 18830.5 1
FourfoldExponent 733.9 40.2% 7482.0 39.7%

precomFourfoldExponent 359.7 19.7% 3596.5 19.1%

Table 2: Multi-output exponentiation function completion
time and performance gain rate (rate= optimized algorithm time

naive algorithm time).

5.2 Multi-output Exponentiations
When precomputing membership proofs using the divide-

and-conquer trick, at every layer, we calculate the following:
gx mod N and gy mod N where g is a new group element
in every layer except for the first layer, and x,y are two large
integers with similar bitlengths. The most advanced method
to calculate the modular exponent is Montgomery modular
multiplication [49] with a binary expression of exponents.
Informally, calculating gx mod N using left-to-right binary
exponentiation keeps squaring g, and based on the bit of x
to decide if the squared values should be multiplied into the
final result. We observe that to calculate gx mod N and gy

mod N, we can combine them using the same squaring of
g. Furthermore, we can extract the common “1" bits of x
and y as z and have x′ = x− z, y′ = y− z to save common
multiplications during the process.

Based on the same idea, we can further combine the process
of gx1 mod N, gx2 mod N, gx3 mod N, gx4 mod N by ex-
tracting all combinations of their common bits. We first extract
common bits for {x1,x2,x3,x4} and update the original val-
ues; then we extract common bits of {x1,x2,x3}, {x1,x2,x4},
{x1,x3,x4} and {x2,x3,x4} respectively and update the origi-
nal values; finally, we extract

(4
2

)
combinations for each pair

of values and update. In this way, we get four updated values
{x′1,x′2,x′3,x′4} that are sparse in terms of “1” bit, and their
original common “1” bits that can be calculated at once. This
is optimal for calculating the four exponents via two layers of
divide-and-conquer for membership precomputing. We show
in our experiments that this significantly improves efficiency
with 2 and 4 multi-output exponentiations. Besides, this works
with precomputation tables for even better speed-up.

In our implementation, we optimize multi-output exponen-
tiations till 4 numbers. For larger values, combining more
exponents becomes harder. For example, for the common bits
of k integers, the sum of all the combinations is O(2k), which
makes implementation much more complicated.

6 Experimental Evaluation

In this section, we evaluate the performance of Notus. We
implemented our scheme and optimizations discussed in Sec-
tion 5 and our code is available1 online. Our implementa-
tion is in Golang and we used gnark [11] for Groth16-type
SNARKs [38], optimized with DIZK [64]. The elliptic curve

1https://github.com/notus-project/rsa_accumulator

Figure 8: Subfigure (a) denotes the percentage of running time for membership precomputation in Notus with a single thread;
Subfigure (b) indicates the membership proof precomputation time under different set sizes with both single-thread and multi-
thread; Subfigure (c) and (d) compare our RSA accumulator with Caulk as a lookup argument for both the offline (precomputation)
time and online time. Caulk∗ denotes generating all membership proofs in the offline phase.

we use is bn254. Our experiments were conducted on an Ama-
zon EC2 M6a instance with 32 vCPUs and 128GB of memory.
We use DI-Hash with 1024 bits (achieving 80 bits of secu-
rity) based on Ozdemir et al. [53] as the representatives into
RSA accumulators. We use Poseidon hash [37] to make our
DI-Hash more SNARK-friendly. First, we evaluate our gen-
eral optimization applied to multiple output exponentiations.
Second, we evaluate our zero-knowledge RSA accumulator,
especially the performance of precomputation of member-
ship with different optimizations and parallelization. We also
run Caulk as a comparison for efficient lookup proofs for
single-element memberships. Finally, we evaluate Notus with
different optimizations and compare it with TAP and Binance.

6.1 Effect of Multi-output Exponentiations

Based on Golang’s official implementation for Mont-
gomery modular multiplication, we implement the Multi-
output exponentiation optimization. We generate a random
base g and an odd modulus N with 2048 bits. For consistency,
we use the same g and N in each run with randomly selected
exponents ranging from 200K to 2M bits. We report the aver-
age results across 10 runs. Our findings are summarized in Ta-
ble 2, which presents the function completion time and the per-
centage performance gain of our “optimized” execution over
the “naive” one. We examine specific functions as follows:
1) 2×NaiveExponent vs. DoubleExponent: We calculate gx1

mod N and gx2 mod N “naively” by determining each ex-
ponent separately and refer to this as the 2×NaiveExponent
function. We compare it against our optimized version, Dou-
bleExponent. 2) 4×NaiveExponent vs. FourfoldExponent:
For random values x1,x2,x3,x4, we “naively” calculate gx1

mod N, gx2 mod N, gx3 mod N, and gx4 mod N. We refer
to this function as 4×NaiveExponent and compare it against
our optimized FourfoldExponent function. Our optimizations
result in DoubleExponent being approximately 30% faster
and FourfoldExponent being approximately 60% faster than
their original counterparts. Furthermore, we evaluate the per-
formance of FourfoldExponent when combined with a pre-
computation table containing every single bit precomputed,

referred to as the precomFourfoldExponent function. More
elaborate precomputation table settings (e.g., including four
combinations of every two precomputed bits) lead to faster cal-
culations and larger table sizes. It is important to note that the
precomFourfoldExponent optimization is only effective for
fixed generators, allowing the exponents to be precomputed.
When applying precomFourfoldExponent to membership pre-
computations, we use it only for the first layer of the divide-
and-conquer algorithm, which is the most time-consuming
layer. For the remaining layers, we employ FourfoldExponent.

6.2 RSA Accumulator Performance
Next, we evaluate the performance of our zero-knowledge

RSA accumulator. A membership proof consists of one
RSA group element, which is 256 bytes in size, and veri-
fying a membership proof takes approximately 1 ms. A non-
membership proof contains 10 RSA group elements and 18
integers of varying lengths, resulting in a total length of 8960
bytes. The proof generation time depends on the set size.
Subsequently, we executed the Notus system with RSA pre-
computation for lookup proofs implemented using Fourfold
Exponent optimizations. We recorded the time taken for each
part of the system and the results are shown in Figure 8 (a).
The precomputation of membership proofs accounts for the
majority of the running time, while the remaining tasks (gen-
erating accumulators, ZKPoKE proofs, and SNARK proofs)
contribute to no more than 5% of the total running time. Next,
we focus more on membership precomputation.
Membership precomputations. In Figure 8 (b), we illustrate
the membership precomputations under different set sizes
with a single thread and with 32 threads. Note that, due to the
divide-and-conquer nature of our membership precomputa-
tion, it is not perfectly parallelizable; however, it is still around
9-10× faster than the single-thread version. E.g., for set size
218, the single-thread precomputation takes 3857 seconds,
whereas a multi-thread takes only 384 seconds.
Lookup arguments. We also assess the performance of No-
tus when used as a lookup argument [67]. We use the single-
threaded version of our implementation to directly compare

Figure 9: Subfigure (a) illustrates the number of constraints
and the prover’s time for the Notus SNARK circuit; Subfigure
(b) illustrates the running time required to execute Notus
under different set sizes with 32 cores and 128GB memory.

with the prior state-of-the-art Caulk [67]. We observe that the
offline time for Notus is similar to Caulk. However, unlike No-
tus, Caulk requires an online phase to “complete” the lookup
proof even after precomputation has taken place. In contrast,
with Notus, after precomputation, one simply needs to retrieve
proofs, which is almost instantaneous (e.g., < 20µsec). This
results in much faster performance, as shown in Figure 8 (c)
and (d). We also explore an alternative version of Caulk
which generates all membership proofs in an offline phase
(similar to Notus) with no additional online overhead, to guar-
antee full fairness in our comparison; we call this version
Caulk∗. As shown, the offline time of Caulk∗ (calculated as
offline time of Caulk + (Lookup size× online time)) is nearly
3 orders of magnitude slower than Caulk and Notus.

6.3 Notus Performance

Finally, we evaluate the performance of Notus and compare
it with other PoL approaches. We begin with a comparison
of the time it takes for the server to complete an update be-
tween epochs. Proving correct updates between consecutive
epochs can be a bottleneck for PoL systems when updates are
frequent and users are highly active. We compare the prov-
ing time, proof size, and verification of Notus with TAP and
Binance, as shown in Table 3. Among prior research in PoL,
we compare performance with TAP because it is the only
solution designed and implemented for the dynamic setting.
We also compare with the PoL deployed by Binance as it
uses the same gnark libary [11] implementation for SNARK
as Notus, facilitating direct comparison of the two system
designs. Moreover, as explained in our introduction, the ap-
proach of OKX produces a proof of size more than 1GB,
making comparisons unrealistic. Recall that TAP is based on
Merkle Sum trees, combined with Pedersen commitments and
range proofs. For fairness, we run TAP ignoring its increasing
proving overhead as epochs progress, and although its code
does not support parallelism, we assume it achieves “ideal”
perfect parallelization for comparison purposes. As shown,
TAP has a fast prover but its proof size grows linearly with
the number of updates, resulting in very large proofs.

Binance combines Merkle trees with SNARKs, consider-

Prover time (sec) Proof size (Byte) Verify time (sec)
TAP [56] 3.8 610K 2.0

Binance∗ [6] 124.4 256 0.001
SNARKed MT 15.0 256 0.001

Notus 3.7 256 0.001

Table 3: Comparison of proving correct update between TAP,
Binance, Merkle Insert, and Notus for 210 updates. Results of
Binance∗ come from its own benchmark with similar settings.

ing a SNARK-friendly hash [37]. Its code is developed for
production and currently considers a PoL for 350 different
cryptocurrencies, with all datasets stored in a Merkle tree of
depth 28. As we do not have access to the sample data re-
quired to run Binance, we first report their own benchmark,
also tested on a system with 32 cores and 128GB memory [7],
and normalize their results for 210 updates. To conduct a fair
comparison, we also ran SNARKed MerkleTree (MT). This is
a “simplified” version of the technique behind Binance where
we eliminated business-specific details, and built a Merkle tree
of depth 28 incrementally within the SNARK by verifying
the Merkle path for each newly inserted leaf.

Finally, our results show that Notus achieves the fastest
prover time, around 3× faster than SNARKed MT, and even
marginally outperforms the range-proof-based system while
maintaining succinct proof sizes and verification times.

Next, we turn our attention to the performance of Notus.
Having already discussed the zero-knowledge accumulator
part in section 6.2, we provide an evaluation for the SNARK
part of Notus in terms of its circuit size (number of constraints)
and prover time, for a variable number of updated transactions
Si (swap elements) in Figure 9 (a). Then, Figure 9 (b) provides
the total prover overhead for Notus run on an AWS server
with 32 cores and 128GB memory under different user sizes.
Clearly, the running time increases almost linearly with the
set size. On the verifier side, the auditor needs to spend 1ms
and the proof size is 256 bytes for SNARK and 1024 bytes for
MultiSwap, regardless of the set size. For users, membership
proofs are one RSA element (256 bytes). Verifying the trans-
action history from the last checkpoint requires generating a
hash chain and one membership proof in less than 2ms.
Super-efficient Auditing. Our auditor overhead per epoch is
O(1) and concretely so low that we can actually run it on a
smart contract, which no prior PoL system could achieve. This
is important as it makes auditing transparent and eliminates
the need to trust the auditor blindly [15, 55, 57]. We wrote a
Solidity smart contract for the auditor check, and the Gas cost
per epoch is only 750K (270K for verifying a Groth16 proof
and 480K for verifying two PoKEs).
Scaling to Larger User Sets. Increasing the user set size
becomes challenging according to Figure 8 (d) as the prover
time grows. Moreover, the precomputation table we maintain
for exponentiations will quickly cause memory issues as the
size increases. However, based on our user-grouping strategy
from Section 5, we can naturally scale the Notus prover as-
suming a setting with multiple machines handling separate

subgroups. E.g., let’s aim for 220 users (assuming probability
1/26 for users to update in an epoch), splitting them into just
8 groups, each one has 217 users, ∼211 of them update within
the epoch. (For comparison, OKX currently splits users into
∼2K groups [52]). We can use eight cloud servers, each with
32 cores, to run this in parallel in approximately 3 minutes
according to Figure 8 (d). The extremely favorable side-effect
of our design of Notus is that this approach only increases the
auditor’s overhead and not the users’ as each user only veri-
fies with respect to her own subgroup. Hence, if we split the
220 users into 32 groups of 215 users, and we utilize 32 servers
to run in parallel, the prover time would become merely ∼43
seconds, while the auditor’s overhead would still be in the
order of milliseconds and the proof a few hundred KB!

These results show the practicality of Notus and indicate
its potential as a good candidate for real-world applications.
Binance currently operates a static PoL system with 45 mil-
lion users, proving its solvency every month. Assuming one
server with 32 cores and 64G memory, for 45 million users,
it takes 68 days for Binance to generate the proof. Even with
100 servers, it would still take 16 hours [7]. If we extrapolate
our results, Notus could build a DPoL system for 45 million
users for the same configuration, proving its solvency every
43×45= 1935 seconds! This is an over-simplified estimation
but it clearly shows the potential qualitative difference.

7 Related Work

As discussed in Section 1, prior works on PoL mostly fo-
cus on the static case and cannot be readily extended to up-
dates. The authors of [41] briefly mention the possibility of
extending their construction to handle updates of liabilities.
Identifying the privacy issues that arise from proofs across dif-
ferent epochs, they theoretically discuss relying on oblivious
RAM [35] to hide update patterns. However, this introduces
the problem of proving statements involving this ORAM [21],
either via expensive zero-knowledge proofs, or via relying on
trusted hardware, such as Intel SGX, which we consider too
strong a security assumption for PoL applications (e.g., due to
known attacks such as [43,47]). One could consider extending
TAP [56] to handle general liability modifications, e.g., by
maintaining one data structure for increasing liabilities and a
“dual” one solely for decreasing modifications. Queries would
then involve requesting proofs from both instances and com-
puting the joint result. However, this hypothetical approach
would require some sort of consistency checking between
the two instances during updates, most likely via a SNARK,
which would significantly blow up the overhead. Considering
DAPOL+, Buterin suggested in a blogpost [15] replacing the
Merkle tree with KZG polynomial commitments [42] com-
bined with a “large” SNARK to prove all values are positive.
Again, moving to the dynamic case, it is not clear how much
this would blow up the overhead. In very recent independent
work, Falzon et al. [32] designed a static PoL system that im-

proved DAPOL+ by offering a shorter membership proof size
at the cost of increased computation overhead for the prover.
However, it still operates in static setting and compared to
Notus, its proof size grows logarithmically with the number
of users (concretely, it appears to be larger than ours, which
is constant 256 bytes).

Finally, besides proving financial solvency, PoL has also
been considered for other applications, e.g., disapproval vot-
ing, decentralized lending, taxing, reports of public data, and
dynamic pricing based on public data [22, 41, 56].

Relation to Append-only Authenticated Dictionaries
(AADs). A relevant research area to PoL is that of AADs [25,
40, 51, 56, 59, 61] that have found use cases in Certificate and
Key Transparency [44]. Like PoLs, these schemes consider
an untrusted server maintaining a dataset, however, in that
setting, the server only resolves key-lookup queries (e.g., a
user’s public certificate). Due to this, prior AADs cannot be di-
rectly converted to a PoL. TAP [56] extends this line of work
and it essentially provides an AAD with added functionalities
beyond lookups, which it then uses to build a PoL. Another
line of work uses this approach to build append-only rela-
tional databases [66]. While supporting more general queries,
existing works for verifiable database queries either do not
consider privacy [68] (which is crucial for PoLs) or require
the auditor to essentially replicate the server’s workload [66].

Zero-knowledge Accumulators and Vector Commitments.
Zero-knowledge accumulators allow a prover to succinctly
commit to a set of values with hiding and binding proper-
ties. Zero-knowledge (commonly referred to as hiding) vec-
tor commitments (VCs) further require commitments to be
position-binding. There are limited zero-knowledge accumu-
lators in the literature [18,34,69]. Ours is the first such scheme
that is SNARK-friendly, supports efficient membership pre-
computations, and has constant-sized membership proofs. On
the other hand, there are a number of choices for several
zero-knowledge VCs [17, 19, 20, 42] and zero-knowledge
sets [26, 69]. When designing Notus, we also considered a
VC approach. However, there are limited candidates that are
simultaneously zero-knowledge, SNARK-friendly, and sup-
port efficient lookups. The state-of-the-art candidate for such
a VC approach is Caulk [67]. In our experimental evaluation
for lookups, we show that our lookup can significantly out-
perform Caulk by more than 1000 times depending on the
set size. To make Caulk support instant online responses like
ours, we mimic Caulk∗ by precomputing all the membership
proof offline. Caulk∗’s offline line time becomes extremely
heavy, almost 3 orders of magnitude slower than Caulk and
our zero-knowledge RSA accumulator.

Zero-knowledge Membership Proofs. Zero-knowledge
membership proofs allow a party to convince a verifier that
it “knows” (e.g., as a commitment pre-image) an element or
set of elements belonging to a committed set, without nec-
essarily revealing the element(s). This primitive has been

built as an additional feature for RSA [9, 16] and bilinear
accumulators [58], and Merkle trees combined with verifi-
able random functions [25]. This is different than the privacy
property of our zero-knowledge accumulator whose goal is
to also hide the committed set. For instance, zero-knowledge
membership proofs are also meaningful when the set itself
is public, e.g., when designing anonymous credentials and
decentralized identities, and they can usually be adapted to
hide the element itself (e.g., as the pre-image of a separate
commitment). Boneh et al. [9] gave the state-of-the-art RSA
accumulator with zero-knowledge membership proofs for
a public set. Campanelli et al. [16] extends [9] by provid-
ing zero-knowledge subset proofs also for a publicly com-
mitted set. Our zero-knowledge RSA accumulator shares a
similar basis with [16] but has orthogonal aims. We focus
on protecting the privacy of the whole set while providing
zero-knowledge membership/subset proofs. Besides, our sub-
set proof is statistically zero-knowledge while subset proof
in [16] is computationally zero-knowledge.
MultiSwap. First proposed in [53] for efficient batch “off-
chain” verification of blockchain transaction, MultiSwap al-
lows proving the correct updated status of a set after removals
and insertions, usually by relying on a SNARK to check the
validity of the removed and added subsets. More recently,
Harisa [16] improved [53] in efficiency. We improve Multi-
Swap by making it zero-knowledge with minimal overhead.

8 Conclusion

We presented Notus, the first PoL system that supports
general liability updates without requiring users to check their
transactions at every epoch. Our system achieves O(1) proof
size, and verification and auditing overhead. Contrary to prior
attempts, users in Notus can verify their status by checking
just one proof, despite how many epochs they were absent.
Notus utilizes as building blocks our novel zero-knowledge
RSA accumulator and the first zero-knowledge MultiSwap
protocol that may find other applications. Our experimental
evaluation shows that Notus can scale to large numbers of
users while maintaining good overall performance. One future
direction in this line of work is to potentially reduce the
prover’s overhead to linear in the number of transactions in
an epoch (as in [56] but for arbitrary updates).

Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd for their constructive feedback. This work was par-
tially supported by Hong Kong RGC under grant 16200721.

References
[1] “Bankruptcy of ftx,” https://en.wikipedia.org/wiki/Bankruptcy_of_FT

X/, accessed: 2023-04-19.

[2] N. Barić and B. Pfitzmann, “Collision-free accumulators and fail-stop
signature schemes without trees,” in International conference on the
theory and applications of cryptographic techniques, 1997.

[3] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, trans-
parent, and post-quantum secure computational integrity,” Cryptology
ePrint Archive, 2018.

[4] J. Benaloh and M. De Mare, “One-way accumulators: A decentralized
alternative to digital signatures,” in EUROCRYPT, 1993.

[5] “Binance exchange,” https://www.binance.com/.

[6] “Binance proof-of-reserves,” https://www.binance.com/en/proof-of-r
eserves/.

[7] “Binance proof-of-reserves code,” https://github.com/binance/zkmerkl
e-proof-of-solvency/.

[8] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in Innovations in Theoretical Computer Science, 2012.

[9] D. Boneh, B. Bünz, and B. Fisch, “Batching techniques for accumula-
tors with applications to iops and stateless blockchains,” in CRYPTO,
2019.

[10] D. Boneh and M. Franklin, “Efficient generation of shared rsa keys,” in
CRYPTO, 1997.

[11] G. Botrel, T. Piellard, Y. E. Housni, I. Kubjas, and A. Tabaie,
“Consensys/gnark: v0.8.0,” Feb. 2023. [Online]. Available: https:
//doi.org/10.5281/zenodo.5819104

[12] J. Buchmann and H. C. Williams, “A key-exchange system based on
imaginary quadratic fields,” Journal of Cryptology, 1988.

[13] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,” in
IEEE symposium on security and privacy (SP), 2018.

[14] J. Burkhardt, I. Damgård, T. Frederiksen, S. Ghosh, and C. Orlandi,
“Improved distributed rsa key generation using the miller-rabin test,” in
Proceedings of the ACM CCS, 2023.

[15] V. Buterin, “Having a safe cex: proof of solvency and beyond,” https:
//vitalik.ca/general/2022/11/19/proof_of_solvency.html, accessed:
2023-05-10.

[16] M. Campanelli, D. Fiore, S. Han, J. Kim, D. Kolonelos, and H. Oh,
“Succinct zero-knowledge batch proofs for set accumulators,” in Pro-
ceedings of the ACM CCS, 2022.

[17] M. Campanelli, D. Fiore, and A. Querol, “Legosnark: Modular design
and composition of succinct zero-knowledge proofs,” in Proceedings
of the ACM CCS, 2019.

[18] M. Campanelli, M. Hall-Andersen, and S. H. Kamp, “Curve trees: Prac-
tical and transparent {Zero-Knowledge} accumulators,” in USENIX
Security Symposium, 2023.

[19] D. Catalano and D. Fiore, “Vector commitments and their applications,”
in PKC, 2013.

[20] D. Catalano, D. Fiore, and M. Messina, “Zero-knowledge sets with
short proofs,” in EUROCRYPT, 2008.

[21] E. Cecchetti, F. Zhang, Y. Ji, A. E. Kosba, A. Juels, and E. Shi, “Solidus:
Confidential distributed ledger transactions via PVORM,” in Proceed-
ings of the ACM CCS, 2017.

[22] K. Chalkias, P. Chatzigiannis, and Y. Ji, “Broken proofs of solvency
in blockchain custodial wallets and exchanges,” IACR Cryptol. ePrint
Arch., p. 43, 2022.

[23] K. Chalkias, K. Lewi, P. Mohassel, and V. Nikolaenko, “Practical pri-
vacy preserving proofs of solvency,” Amsterdam ZKProof Community
Event, 2019.

[24] ——, “Distributed auditing proofs of liabilities,” Cryptology ePrint
Archive, 2020.

https://en.wikipedia.org/wiki/Bankruptcy_of_FTX/
https://en.wikipedia.org/wiki/Bankruptcy_of_FTX/
https://www.binance.com/
https://www.binance.com/en/proof-of-reserves/
https://www.binance.com/en/proof-of-reserves/
https://github.com/binance/zkmerkle-proof-of-solvency/
https://github.com/binance/zkmerkle-proof-of-solvency/
https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.5281/zenodo.5819104
https://vitalik.ca/general/2022/11/19/proof_of_solvency.html
https://vitalik.ca/general/2022/11/19/proof_of_solvency.html

[25] M. Chase, A. Deshpande, E. Ghosh, and H. Malvai, “Seemless: Secure
end-to-end encrypted messaging with less trust,” in Proceedings of the
ACM CCS, 2019.

[26] M. Chase, A. Healy, A. Lysyanskaya, T. Malkin, and L. Reyzin, “Mer-
curial commitments with applications to zero-knowledge sets.” in EU-
ROCRYPT, 2005.

[27] P. Chatzigiannis, F. Baldimtsi, and K. Chalkias, “Sok: auditability and
accountability in distributed payment systems,” in ACNS, 2021.

[28] “Coinbase exchange,” https://www.coinbase.com/.

[29] G. Couteau, T. Peters, and D. Pointcheval, “Removing the strong RSA
assumption from arguments over the integers,” in EUROCRYPT, 2017.

[30] G. G. Dagher, B. Bünz, J. Bonneau, J. Clark, and D. Boneh, “Provi-
sions: Privacy-preserving proofs of solvency for bitcoin exchanges,” in
Proceedings of the ACM CCS, 2015.

[31] I. Damgård and E. Fujisaki, “A statistically-hiding integer commitment
scheme based on groups with hidden order,” in ASIACRYPT, 2002.

[32] F. Falzon, K. Elkhiyaoui, Y. Manevich, and A. D. Caro, “Short privacy-
preserving proofs of liabilities,” in Proceedings of the ACM CCS, 2023.

[33] R. Gennaro, S. Halevi, and T. Rabin, “Secure hash-and-sign signatures
without the random oracle,” in EUROCRYPT, 1999.

[34] E. Ghosh, O. Ohrimenko, D. Papadopoulos, R. Tamassia, and N. Trian-
dopoulos, “Zero-knowledge accumulators and set algebra,” in ASI-
ACRYPT 2016, 2016.

[35] O. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious rams,” Journal of the ACM (JACM), vol. 43, no. 3, pp.
431–473, 1996.

[36] S. Gorbunov, L. Reyzin, H. Wee, and Z. Zhang, “Pointproofs: Aggre-
gating proofs for multiple vector commitments,” in Proceedings of the
ACM CCS, 2020.

[37] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger,
“Poseidon: A new hash function for zero-knowledge proof systems,” in
USENIX Security Symposium, 2021.

[38] J. Groth, “On the size of pairing-based non-interactive arguments,” in
EUROCRYPT, 2016.

[39] K. Hu, Z. Zhang, and K. Guo, “Breaking the binding: Attacks on the
merkle approach to prove liabilities and its applications,” Computers &
Security, 2019.

[40] Y. Hu, K. Hooshmand, H. Kalidhindi, S. J. Yang, and R. A. Popa,
“Merkle2: A low-latency transparency log system,” in 2021 IEEE Sym-
posium on Security and Privacy (SP). IEEE, 2021.

[41] Y. Ji and K. Chalkias, “Generalized proof of liabilities,” in Proceedings
of the ACM CCS, 2021.

[42] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commit-
ments to polynomials and their applications,” in ASIACRYPT, 2010.

[43] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” Communications of the ACM, 2020.

[44] B. Laurie, A. Langley, and E. Kasper, “Rfc 6962: Certificate trans-
parency,” 2013.

[45] J. Li, N. Li, and R. Xue, “Universal accumulators with efficient non-
membership proofs,” in ACNS, 2007.

[46] H. Lipmaa, “On diophantine complexity and statistical zero-knowledge
arguments,” in ASIACRYPT, 2003.

[47] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” arXiv
preprint arXiv:1801.01207, 2018.

[48] A. Luthra, J. Cavanaugh, H. R. Olcese, R. M. Hirsch, and X. Fu, “Ze-
roaudit,” in Annual Computer Security Applications Conference, 2020,
pp. 798–812.

[49] C. McIvor, M. McLoone, and J. V. McCanny, “Modified mont-
gomery modular multiplication and rsa exponentiation techniques,”
IEE Proceedings-Computers and Digital Techniques, vol. 151, no. 6,
pp. 402–408, 2004.

[50] R. McMillan, “The inside story of mt. gox, bitcoin’s $460 million
disaster,” https://www.wired.com/2014/03/bitcoin-exchange/, accessed:
2023-01-02.

[51] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J. Freed-
man, “Coniks: Bringing key transparency to end users,” in USENIX
Security Symposium, 2015.

[52] “OKX proof-of-reserves,” www.okx.com/proof-of-reserves/.

[53] A. Ozdemir, R. Wahby, B. Whitehat, and D. Boneh, “Scaling verifiable
computation using efficient set accumulators,” in USENIX Security
Symposium, 2020.

[54] T. P. Pedersen, “Non-interactive and information-theoretic secure veri-
fiable secret sharing,” in CRYPTO, 1992.

[55] Y. Peng, M. Du, F. Li, R. Cheng, and D. Song, “Falcondb: Blockchain-
based collaborative database,” in Proceedings of the 2020 ACM SIG-
MOD international conference on management of data, 2020.

[56] D. Reijsbergen, A. Maw, Z. Yang, T. T. A. Dinh, and J. Zhou, “TAP:
transparent and privacy-preserving data services,” in USENIX Security
Symposium, 2023.

[57] A. M. Rozario and M. A. Vasarhelyi, “Auditing with smart contracts.”
International Journal of Digital Accounting Research, vol. 18, 2018.

[58] S. Srinivasan, I. Karantaidou, F. Baldimtsi, and C. Papamanthou,
“Batching, aggregation, and zero-knowledge proofs in bilinear accumu-
lators,” in Proceedings of the 2022 ACM CCS, 2022.

[59] A. Tomescu, V. Bhupatiraju, D. Papadopoulos, C. Papamanthou,
N. Triandopoulos, and S. Devadas, “Transparency logs via append-only
authenticated dictionaries,” in Proceedings of the ACM CCS, 2019.

[60] I. A. Tomescu Nicolescu, “How to keep a secret and share a public key
(using polynomial commitments),” Ph.D. dissertation, Massachusetts
Institute of Technology, 2020.

[61] N. Tyagi, B. Fisch, A. Zitek, J. Bonneau, and S. Tessaro, “VeRSA:
Verifiable registries with efficient client audits from rsa authenticated
dictionaries,” in Proceedings of the ACM CCS, 2022.

[62] B. Wesolowski, “Efficient verifiable delay functions,” in EUROCRYPT,
2019.

[63] E. G. Weyl, P. Ohlhaver, and V. Buterin, “Decentralized society: Finding
web3’s soul,” Available at SSRN 4105763, 2022.

[64] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica, “DIZK: A
distributed zero knowledge proof system,” in USENIX Security Sympo-
sium, 2018.

[65] J. Xin, A. Haghighi, X. Tian, and D. Papadopoulos, “Notus:
Dynamic proofs of liabilities from zero-knowledge RSA accumulators,”
Cryptology ePrint Archive, Paper 2024/395, 2024. [Online]. Available:
https://eprint.iacr.org/2024/395

[66] C. Yue, T. T. A. Dinh, Z. Xie, M. Zhang, G. Chen, B. C. Ooi, and
X. Xiao, “Glassdb: An efficient verifiable ledger database system
through transparency,” Proceedings of the VLDB Endowment, 2023.

[67] A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Nitulescu, and
M. Simkin, “Caulk: Lookup arguments in sublinear time,” in Proceed-
ings of the ACM CCS, 2022.

[68] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou,
“vSQL: Verifying Arbitrary SQL Queries over Dynamic Outsourced
Databases,” in IEEE Symposium on Security and Privacy, SP, 2017.

[69] Y. Zhang, J. Katz, and C. Papamanthou, “An expressive (zero-
knowledge) set accumulator,” in 2017 IEEE European Symposium
on Security and Privacy, EuroS&P, 2017.

https://www.coinbase.com/
https://www.wired.com/2014/03/bitcoin-exchange/
www.okx.com/proof-of-reserves/
https://eprint.iacr.org/2024/395

A Extended Preliminaries

A.1 Range proof

Range proofs are zero-knowledge proofs where the prover
convinces the verifier that the committed values are in specific
ranges. For hidden order group-based commitments, range
proofs are usually [29, 46] composed by zero-knowledge ar-
gument of positivity (ZKAoP): in order to prove x ∈ [a,b], the
prover proves x−a > 0 and b− x > 0. In this work, we use
the ZKAoP provided in [29], based on the RSA assumption.
In their protocol, the statement is the integer commitment [31]
in the format gxhr where x is the committed value, and r is a
randomness. We modify the statement to the format gx. We
can consider the statement as a special case where r = 0. We
denote the non-interactive version as NI-ZKAoP. We denote
the protocol as (1) π← NI-ZKAoP.Prove(G,g;x) where π

is the proof, x is the witness such that x > 0 and G = gx;
(2) 1/0← NI-ZKAoP.Verify(G,g,π). Besides, the authors
in [29] also proved its knowledge extractability.

A.2 Universal Accumulators

We follow the universal accumulator definitions provided
by [34].

Definition 1. Given security parameter λ, a universal ac-
cumulator is a tuple of four PPT algorithms (KeyGen, Acc,
Witness, Verify):

• (ek,vk)←KeyGen(1λ). This algorithm takes as input
the security parameter and outputs a public evaluation
key ek that will be used to generate witnesses and a pub-
lic verification key vk that will be used to verify witness.

• C ← Acc(ek,X). This algorithm takes as input a set
X ⊂ Xλ where Xλ is the input domain for the elements to
be accumulated and the evaluation key ek and outputs
one accumulation of the set C ∈ Gλ where Gλ is the
output domain for Acc.

• (b,wx)←Witness(X ,x,C,ek). This algorithm takes as
input a set X ⊂ Xλ, one element x ∈ Xλ, the evaluation
key ek and the accumulation of the set C. It outputs a
boolean value b indicating whether the element is in the
set and a witness wx for the answer. b = 1 indicates the
element is in the set and this witness is a membership
witness. Otherwise, b = 0 and this witness is a non-
membership witness.

• 0/1← Verify(C,x,wx,b,vk). This algorithm takes as
input the accumulation value C∈Gλ, one element x∈Xλ,
the witness wx, a bit b and the public verification key vk.
It outputs 1 if it accepts the proof and 0 otherwise.

A.3 Division Intractable Hash
Division Intractable (DI) hash is a special kind of hash

function where it is hard to find any set of distinct preimages
such that one hash result divides the product of the remaining
hash results. It can be formally defined as follows.

Definition 2. Division intractable. A function family H is
called division intractable (DI) if given security parameter λ,
finding H ∈H and distinct inputs X1, . . . ,Xm,Y , m < poly(λ)
such that

Pr[H(Y)|H(X1) . . .H(Xm)]< negl(λ).

Clearly, all Hash-to-prime hash functions are DI. However,
most Hash-to-prime functions are time-consuming. Accord-
ing to Lemma 6 in [33], a random oracle with λ2-bit output
is also DI. Informally, random numbers with large bit-length
tend to have large prime factors. A large prime factor makes
the random number hard to divide from other random num-
bers with different large prime factors.

In particular, Ozdemir et al. [53] conjectured that the den-
sity of integers in [1,α] with small factors also holds for a
large interval around α, more specifically, [α,α+α1/8]. Based
on this conjecture, we can construct a DI-hash more efficiently
in computation. Let ∆ be a large integer with λ2-bit, and H(x)
be a collision resistant and preimage-hard hash function with
α1/8 bits output. H∆(x) = ∆+H(x), H∆(x) is also DI.

B Correctness and Security Definitions of
DPoL

Definition 3 (DPoL Completeness). ∀ ordered sequences of
appends Si, for all users u ∈U and 1≤ i≤ m epochs,

Pr



(ek,vk)← Setup(1λ),
di← Digest(ek,Li,auxi)

+,
∀u ∈U,πmem← LookupProof(ek,Li,u,auxi),

πsum← ProveSum(ek,Li,auxi),
∀i ∈ [1,m],πi← ProveConsistent(ek,Li,auxi) :
∀u ∈U,VerLookup(vk,di,H

1,i
u ,πmem) = 1,

VerSum(vk,di,sum,πsum) = 1,
∀i ∈ [1,m],VerConsistent(vk, i,di−1,di,πi) = 1


≥ 1−negl(λ)

Definition 4 (DPoL Undeniability). ∀ adversaries A running
in time poly(λ), for any user u ∈U and any epoch i ∈ [1,m],

Pr



(ek,vk)← Setup(1λ),
(di,sum,sum′,πsum,π

′
sum,Li,L′i,

auxi,aux′i)← A(1λ,ek,vk) : (sum ̸= sum′

∧VerSum(vk,di,sum,πsum) = 1
∧VerSum(vk,di,sum′,π′sum) = 1) ∨
(Li ̸= L′i∧di← Digest(ek,Li,auxi)∧

di← Digest(ek,L′i,aux′i))


≤ negl(λ)

Definition 5 (DPoL Update Soundness). ∀ adversaries A
running in time poly(λ),

Pr



(ek,vk)← Setup(1λ),
(Li−1,Li,di−1,di,πi,auxi,auxi−1,sumi−1,

sumi,π
i−1
sum,π

i
sum)← A(1λ,ek,vk) :

di← Digest(ek,Li,auxi),
di−1← Digest(ek,Li−1,auxi−1),

Li−1 ⊂ Li, Si = Li \Li−1,
VerConsistency(vk, i,di−1,di,πi) = 1,
VerSum(vk,di−1,sumi−1,π

i−1
sum) = 1,

VerSum(vk,di,sumi,π
i
sum) = 1,

(∃tx ∈ Si : tx.upd ̸= i∨ tx.lia < 0)∨
sumi− sumi−1 ̸= ∑

u∈Si

(H i
u.lia−H i−1

u .lia)



≤ negl(λ)

Definition 6 (DPoL Sum Soundness). ∀ adversaries A run-
ning in time poly(λ),

Pr



(ek,vk)← Setup(1λ),

(di,sumi,π
i
sum,H

1,i
u0 , . . . ,H

1,i
u j ,

πmem0 , . . . ,πmem j)← A(1λ,ek,vk) :
VerSum(vk,di,sumi,π

i
sum) = 1∧

∀ j,VerLookup(vk,di,H
1,i
u j ,πmem j) = 1∧

sumi < ∑
∀u

H1,i
u j .lia∧∀H

1,i
u j .lia > 0


≤ negl(λ)

Additional discussions for these definitions can be found
in the extended version of our paper [65].

Definition 7 (DPoL Privacy). Let F1 be a function checking
user u’s history for a given ledger Li, H1,i

u ← F1(Li,u). Let
F2 be a function checking the sum of liabilities for a given
ledger Li, sum← F2(Li). Let RealAdv(1λ), IdealAdv,Sim(1λ)
be games between a challenger, an adversary A and a simu-
lator Sim=(Sim1,Sim2), defined as follows:
RealAdv(1λ):

• Setup. The challenger runs (ek,vk)← Setup(1λ) and for-
wards (ek,vk) to A , A chooses S1 with |S1| ≤ poly(λ)
and sends to the challenger. The challenger runs d1 ←
Digest(ek,L1 = S1,aux1) and sends d1 to A .

• Query. For i = 1, . . . ,ζ where ζ ≤ poly(λ), the A outputs
op = (lookup,u), op=sum or op = (update,Si+1).

− If op = (lookup,u), the challenger runs πmem ←
LookupProof(ek,Li,u,auxi) if user u has transaction his-
tory in the ledger in epoch i and returns πmem to A .

− If op = sum, the challenger runs πsum ←
ProveSum(ek,Li,auxi), returns (sum,πsum) to A .

− If op = (update,Si+1), the challenger runs
Li+1 = Li

⋃
Si+1, di+1 ← Digest(ek,Li+1,auxi+1), πi+1

← ProveConsistency(ek,Li+1,auxi+1) and returns
(di+1,πi+1) to A .

• Respond. A outputs a bit b = 0/1.

IdealAdv,Sim(1λ):

• Setup. The simulator Sim1 inputs (1λ) and forwards vk
to A , A chooses S1 with |S1| ≤ poly(λ). The simulator
(without seeing S1) responds with d1 to A and maintains
state StateS.

• Query. For i = 1, . . . ,ζ where ζ≤ poly(λ), A outputs op =
(lookup,u), op=sum or op = (update,Si+1).

− If op = (lookup,u), the simulator runs πmem ←
Sim2(ek,StateS,F1(Li,u)) if F1(Li,u) outputs history H1,i

u
and returns πmem to A .

− If op = sum, the simulator runs πsum← Sim2(ek,StateS,
F2(Li)) and returns (sum,πsum) to A .

− If op = (update,Si+1), the simulator runs (di+1,πi+1)←
Sim2(ek,StateS,di) and returns (di+1,πi+1) to A .

• Respond. A outputs a bit b = 0/1.
A DPoL scheme is zero-knowledge if there exists a proba-

bilistic polynomial time (PPT) simulator Sim=(Sim1,Sim2)
such that for all Adv,

|Pr[RealAdv(1λ) = 1]−Pr[IdealAdv,Sim(1λ) = 1]| ≤ negl(λ).

If the above probabilities are equivalent, the DPoL scheme is
perfect zero-knowledge. If the inequality only holds for PPT
Adv, the DPoL scheme is computational zero-knowledge.

C Zero-knowledge RSA accumulator

Let λ be the security parameter. We set Xλ = Z2λ2 . Xλ is
the input domain for the elements to be accumulated. Denote
by X = {x1, . . . ,xm} the set of m elements to be accumulated.
HDI is a DI-hash family.

We use QRN to denote the subgroup of Z∗N of squares
(quadratic residues modulo N). In order to let adaptive root
assumption hold in Z∗N , we usually eliminate elements with
trivial roots, {1,−1}. We use G= QRN \{1,−1} to denote
excluding the use of {1,−1} in challenges and proofs so that
strong RSA assumption, adaptive root assumption hold in G.
Denote K >max{maxord(G)2λ+2,2λ2}where maxord(G) is
the upper bound for the group order and 2λ2

is the lower bound
to make random numbers DI as discussed in Appendix A.

We use (a,b) ← EEA(x,y) to denote the extended Eu-
clidean algorithm that calculates Bézout coefficients (a,b)
s.t. ax+ by = gcd(x,y) = z. We present our construction in
Figure 10. In the KeyGen, we generate two generators g,h.
h is not explicitly used in the construction and is only used
for the NI-ZKAoP for the non-membership proof. For the

function Acc, it inputs at least one random number t $←− [1,K].
As shown in our security proofs, one random number uniform
in [1,K] is enough to achieve statistically zero knowledge,
and random numbers in [1,K] also satisfy the DI property. We
generalize to multiple random numbers for dynamic cases,
which are used in the dynamic MultiSwap.

KeyGen(1λ):

p,q $←− Primes(λ), p′ = 2p+1, q′ = 2q+1, s.t.
p′,q′ are prime, N = p′q′, G= QRN \{1,−1}
g,h $←−G
return: ek = vk = (N,g,h)

Acc(ek,X , t):
u = ∏

m
i=1 HDI(xi), C = gut mod N

return: C
Witness(X ,x,C,ek):
-When x ∈ X , ξ = ∏xi∈X/x HDI(xi), wx = gξt mod N
return: b = 1,wx

-When x /∈ X , ξ = HDI(x), a,b← EEA(ut,ξ)

γ
$←− [1,K], A = g(a+γξ)ut mod N, B = gb−γut mod N

D = (A×Bξ)−1×gξ = gξ−z mod N
π1← NI-ZKPoKE.Prove(A,C;a− γξ)
π2← NI-ZKAoP.Prove(D,g;ξ− z),
π3← NI-ZKAoP.Prove(A×Bξ,g;z)
return: b = 0,wx = (A,B,π1,π2,π3)

Verify(C,x,wx,b,vk):
-When b = 1,
Reject if (wx)

HDI(x) ̸=C mod N
-When b = 0,
Parse wx as (A,B,π1,π2,π3)
D = (A×Bξ)−1×gξ mod N
Reject if 0← NI-ZKPoKE.Verify(A,C,π1),
Reject if 0← NI-ZKAoP.Verify(D,g,π2)
Reject if 0← NI-ZKAoP.Verify(A×Bξ,g,π3)
return: 0 if rejected and 1 otherwise

Figure 10: Our zero-knowledge RSA accumulator. Acc inputs

at least one random number t $←− [1,K]. If Acc inputs more
than one random, then accumulate all of them. For example,
if the inputs include t1, t2, then C = gut1t2 mod N.

D Zero-knowledge Subset

We construct our zero-knowledge subset protocol using
two basic CP-SNARKs: R Hash and R mod .

R Hash(c⃗u ;τ,S) = 1 ⇔ ∀si ∈ S,ui = HDI(si),ui+1 =

HK(τ), which proves the committed values are perspective
hash outputs of S and τ, i.e., HDI for each si and HK for τ.

R mod(c⃗u , l,r) = 1⇔∏∀i ui = r mod l, which proves the
product of committed values modulo l equals r.

We describe the construction of our zero-knowledge subset
accumulator in Figure 11.

E Membership proof precomputation

Our zero-knowledge RSA accumulator, similar to gen-
eral RSA accumulators, supports precomputing all mem-
bership proofs in O(n logn) time using the divide-and-
conquer method [60] with minor modifications. Consider

Protocol zero-knowledge subset

Setup(1λ): N,G= QRN \{1,−1}, g $←−G;
crs1←Π.Setup(1λ,R Hash);
crs2←Π.Setup(1λ,R mod).
Input: C,C′ ∈G, c⃗u .

Witness: (τ,S) s.t. x = ∏si∈S HDI(si), τ
$←− [K], t =

HK(τ), C′ =Cxt .
Claim: Proof of knowledge of set S s.t. accumulating S
into C and randomized with t gets C′, and hash values
of set S and τ are committed in c⃗u.

1. Verifier sends l $←− Primes(λ) to the prover.

2. Prover computes the quotient q = ⌊xt/l⌋ ∈ Z and
residue r = xt mod l s.t. xt = ql + r. Q = gq

mod N.

3. π1←Π.Prove(crs1, c⃗u ; τ,S).

4. π2←Π.Prove(crs2, c⃗u , l,r).

5. Prover sends π = (c⃗u ,Q,r,π1,π2) to the verifier.

6. Verifier accepts if r ∈ [l] and QlCr = C′

holds in G, Π.Verify(crs1, c⃗u ,π1) = 1 and
Π.Verify(crs2, c⃗u , l,r,π2) = 1.

Figure 11: Our protocol for zero-knowledge subset accumula-
tor while the complementary set is committed.

an accumulator gx1x2x3x4t1t2 mod N containing four elements
(x1,x2,x3,x4) and two randomizers (t1, t2). The membership
for x1 is represented by the element gx2x3x4t1t2 mod N, which
includes all elements and randomizers except x1.

In the first round of the divide-and-conquer approach, our
method diverges slightly from the general method by com-
puting gx1x2t1t2 mod N and gx3x4t1t2 mod N. For subsequent
rounds, the membership precomputation remains the same,
with each branch accumulating half of the remaining elements
to generate membership proofs. For instance, in the second
round, we compute (gx1x2t1t2)x3 ,(gx1x2t1t2)x4 mod N to obtain
the membership proofs for x3 and x4, respectively.

	Introduction
	Preliminaries
	Definition of Dynamic Proofs of Liabilities
	System overview and data structures
	DPoL API
	Correctness and Security of DPoL

	Notus Design
	HashChain
	Zero-knowledge RSA accumulator
	ZK-MultiSwap
	Notus construction

	Performance Optimizations
	User Grouping Strategy
	Multi-output Exponentiations

	Experimental Evaluation
	Effect of Multi-output Exponentiations
	RSA Accumulator Performance
	Notus Performance

	Related Work
	Conclusion
	Extended Preliminaries
	Range proof
	Universal Accumulators
	Division Intractable Hash

	Correctness and Security Definitions of DPoL
	Zero-knowledge RSA accumulator
	Zero-knowledge Subset
	Membership proof precomputation

