
Revisiting the May–Meurer–Thomae Algorithm
— Solving McEliece-1409 in One Day

Shintaro Narisada1, Shusaku Uemura1, Hiroki Okada1,2,
Hiroki Furue2, Yusuke Aikawa2, and Kazuhide Fukushima1

1 KDDI Research, Inc, Japan
{sh-narisada,su-uemura,ir-okada,ka-fukushima}@kddi.com

2 The University of Tokyo, Japan
furue-hiroki261@g.ecc.u-tokyo.ac.jp

aikawa@mist.i.u-tokyo.ac.jp

Abstract. As post-quantum cryptography transitions toward practi-
cal deployment, the significance of extensive cryptanalysis is on the
rise. Three out of the four NIST-PQC round 4 candidates are forms
of code-based cryptography. Analyses of asymptotic complexity in in-
formation set decoding (ISD) algorithms have been a central focus in
the field of code-based cryptography. Recently, Esser, May and Zwey-
dinger (Eurocrypt ’22) demonstrate the practicality of the May–Meurer–
Thomae (MMT) algorithm by decoding McEliece-1284. Esser and Zwey-
dinger (Eurocrypt ’23) propose the time-memory trade-off variant of
Becker–Joux–May–Meurer (BJMM) decoding, which solves QC-3138.
These works have paved the way for the cryptanalysis of ISD in real-
world scenarios.

In this work, we further advance the progress of the abovementioned
studies by performing a concrete analysis of MMT decoding. We improve
the list construction in MMT so that the number of both candidates and
representations in the enumeration phase is increased without the need
for additional time and memory. Our new algorithm is theoretically 5.1
times faster than the BJMM algorithm for Classic McEliece I instance.
We achieve the minimum time complexity across all categories of Clas-
sic McEliece among all ISD algorithms. Moreover, compared with the
BJMM algorithm, our MMT algorithm reduces the bit security by 1 to
3 bits for all code based NIST-PQC round 4 candidates. Practical secu-
rity estimates confirm that all the candidates have sufficiently strong bit
security, except for Classic McEliece III, with a 1-bit deficiency.

In addition, we implement our new MMT algorithm in a GPU environ-
ment and provide the new record of the McEliece-1409 instance, along
with implementation details and experimental analyses. Our study veri-
fies the practical reliability of the code-based candidates against current
ISD algorithms.

Keywords: Information Set Decoding · Representation Technique · McEliece

2 S. Narisada et al.

1 Introduction

Code-based cryptography is a historic public-key encryption scheme based on
coding theory. More than 40 years have passed since Robert McEliece first devel-
oped the McEliece cryptography in 1978 [27]. Despite its long history, code-based
cryptography is receiving renewed attention today with the advent of quantum
computers, as it is considered resistant to quantum attacks.

In the NIST post-quantum cryptography standardization project (NIST-
PQC), three code-based cryptographic schemes — Classic McEliece, Bit Flipping
Key Encapsulation (BIKE), and Hamming Quasi-Cyclic (HQC) — are undergo-
ing continuous evaluation in the fourth round [30]. Among the four submissions
in this round, Supersingular Isogeny Key Encapsulation (SIKE), an isogeny-
based cryptography, has been deprecated due to a (classical) polynomial-time
attack [9]. This situation emphasizes the urgent need for an extensive security
assessment of the remaining code-based candidates.

Cryptanalysis on code-based cryptography can be divided into two types:
structural attacks and non-structural attacks. The former exploits certain struc-
tures in a cryptography, such as information about the code used. Various attacks
and their countermeasures have been reported thus far [10,19,23].

For non-structural attacks, the most efficient approach is known as Infor-
mation Set Decoding (ISD), which solves the fundamental security assumption
of code-based cryptography known as the Syndrome Decoding Problem (SDP).
Such algorithms are built on the framework of Prange’s algorithm [32]. Thus
far, several ISD algorithms have been proposed (e.g., [4,7,12,18,25,26,35]), and
their asymptotic complexity has been thoroughly investigated (see Table 1). In
these papers, the majority of the focus is on full/half distance decoding set-
ting, where the weight w = O(n). In the full distance setting, we fix the relative
weight to be w/n = H−1(1−k/n), which is derived from the Gilbert–Varshamov
bound, and determine the worst-case complexity while varying the relative code
rate 0 ≤ k/n ≤ 1, where H(·) represents the binary entropy function. When
w = o(n), all the ISD algorithms exhibit the same asymptotic behavior [8].

Table 1. Asymptotic time complexity 2αn for major ISD algorithms in full distance
decoding setting. The exponent α for each algorithm is listed below. A newer algorithm
is located on the right.

Prange Dumer MMT BJMM May-Ozerov Both-May Sieving ISD

0.121 0.116 0.112 0.102 0.0953 0.0951 0.101

Accurate Bit security Assessments for Code-based Cryptography In addition to
asymptotic complexity, several contributions have been made to provide precise
security estimates for actual code-based cryptography [14,20,31]. In [15,17], the

Revisiting the May–Meurer–Thomae Algorithm 3

authors showed how to compute bit security estimates of code-based cryptog-
raphy from the actual decoding results of medium-sized instances, employing
an extrapolation technique. Recently, Esser et al. introduced a comprehensive
library for cryptographic hardness estimation [16], enabling us to estimate both
bit security and the optimal parameters for a specified difficulty level of an input
problem.

Real-world Cryptanalysis through Decoding Challenges Implementation-oriented
research is also crucial in this field. Decrypting higher-dimensional cryptogra-
phy provides more accurate security estimates, thus aiding in the determination
of the appropriate key lengths for a cryptography while balancing security and
efficiency. One known benchmark for code-based cryptography is Decoding Chal-
lenge [2].

In 2022, Esser and Zweydinger successfully solved a quasi-cyclic SDP resem-
bling BIKE and HQC with parameters n = 3138, k = 1569, w = 56. The above
authors employed the memory-optimized MMT/BJMM algorithm [17] along
with the Decoding-One-Out-of-Many (DOOM) strategy [34]. In 2023, Bernstein,
Lange, and Peters obtained an initial solution to a Classic McEliece-like SDP
with n = 1347, k = 1078, w = 25. They utilized an improved variant [6] of
Stern’s ISD [35]. Narisada, Fukushima and Kiyomoto found a solution to the
SDP for random binary linear codes for n = 570, k = 285, w = 70 using a GPU
implementation of the MMT algorithm [29].

Recent Asymptotic Improvements for ISD Algorithms Several studies have clar-
ified the asymptotic behavior of latest ISD algorithms. For example, Esser pro-
vided a corrected analysis for the Both–May algorithm [13]. In the case of full
distance decoding, the asymptotic time complexity was revised from 20.0885n

to 20.0951n. Additionally, Ducas et al. revealed the asymptotic complexities of
the Sieving ISD [11], while Esser and Zweydinger succeeded in reducing the
asymptotic space complexity of the MMT algorithm from 20.053n to 20.0375n by
demonstrating its time-memory trade-offs [17].

Contributions In this study, we focus on the MMT algorithm, the asymptotic
time complexity 20.112n of which is worse than that of recently proposed ISDs.
However, the former is often utilized in current decoding contest [15,17,29] due
to its comparatively better performance. We propose a new MMT algorithm
and rigorously examine the concrete computational complexity of the proposed
method with the parameters used in the NIST-PQC round 4 candidates. Our
contributions provide suggestions both theoretical and practical improvements.

New MMT Algorithm as a Generalization of BJMM Algorithm We conduct a
concrete analysis of the MMT algorithm, considering polynomial terms that
have been overlooked in asymptotic complexity. Specifically, we demonstrate a
reduction of 19 bits in the bit security of Category 1 Classic McEliece from the
original MMT algorithm. This reduction is achieved by appropriately analyzing

4 S. Narisada et al.

the behavior of the multiple weight distributions of binary vectors occurring in
the list construction phase.

Furthermore, we introduce a technical strategy to increase the number of enu-
merated candidates in the list construction without significantly increasing time
and memory complexities, resulting in an additional speedup of approximately
40%.

This precise analysis and technical improvement lead to a new variant of
the MMT algorithm, which we refer to as the revisited MMT algorithm. The
revisited MMT algorithm is theoretically 4.0 times faster than the time-memory
trade-off variant of the BJMM algorithm and 3.0 times faster than the Both–May
algorithm for Classic McEliece I. We demonstrate that this new MMT algorithm
is, in fact, a generalization of the depth-2 BJMM algorithm, contrary to the
notion that the BJMM algorithm is a generalization of the MMT algorithm.
This provides a new perspective for both algorithms and closes the gap between
MMT and BJMM decoding. Additionally, we illustrate that the revisited MMT
algorithm exhibits time-memory trade-offs, as observed in [17].

As asymptotic contributions, we provide detailed analysis for Dumer’s algo-
rithm and the time-memory trade-off MMT with the Shamir–Schroeppel tech-
nique. We derive new space complexities for Dumer’s algorithm as 20.0177n and
for the time-memory trade-off MMT as 20.0376n. Additionally, we present that
both depth-2 BJMM and the revisited MMT have the same asymptotic com-
plexity, with time 20.105n and memory 20.0659n.

Rigorous Cryptanalysis and Practical Results We implement bit-security estima-
tion for the revisited MMT algorithm on the CryptographicEstimators [16],
the most recent library for bit security estimation for code-based and multi-
variate cryptography. It is derived that the revisited MMT algorithm exhibits
a relatively small cost compared to other ISDs across all categories of Classic
McEliece, BIKE, and HQC.

Notably, in all categories of Classic McEliece, the revisited MMT algorithm
achieved the lowest time complexity among all ISD algorithms. Additionally, we
perform bit-security estimates for Classic McEliece, BIKE, and HQC under more
realistic memory constraints, i.e., with a logarithmic memory cost model, where
an ISD with time T and memory M incurs a cost of T log2 M , and a maximum of
one terabyte (M = 243) of memory capacity. The results, nevertheless, indicate
that only Category 3 of Classic McEliece falls slightly below the required security
level by just one bit. On the other hand, regarding the other categories of Classic
McEliece, as well as BIKE and HQC, there is a sufficient security margin even
considering the dispersion of runtime.

To validate the practicality of our algorithm, we implement the revisited
MMT algorithm in a GPU environment3, building on an openly accessible MMT
implementation [29]. With this implementation and 10 desktop PCs, we achieve
a notable milestone by successfully solving the McEliece-1409 instance. Finally,
we present the practical minimal/maximal time of an ISD algorithm with a

3 Our source code will be available on https://github.com.

https://github.com

Revisiting the May–Meurer–Thomae Algorithm 5

parameter α. We conclude that our decoding results, coupled with the mini-
mal/maximal time complexity analysis, steadfastly support and contribute to
reinforcing reliable security for code-based cryptography.

Organization The remainder of the paper is organized as follows. Section 2
describes the notation and Information Set Decoding. In Section 3, we discuss
MMT and BJMM decoding. Section 4 presents our proposed algorithm. Sec-
tion 5 conducts asymptotic complexity analyses for ISD algorithms using the
Shamir–Schroeppel technique. Section 6 presents cryptanalysis for code-based
NIST-PQC round 4 candidates against ISD algorithms. Experimental results
and analyses are provided in Section 7. Finally, Section 8 gives concluding re-
marks.

2 Preliminaries

2.1 Notation

Let F2 be the finite field with elements {0, 1}. An n-dimensional column vector
is denoted as x⊤ = (x1, . . . , xn) ∈ Fn

2 for a row vector x ∈ F1×n
2 . Henceforth,

we denote a column vector without the transposition symbol ⊤ for simplicity.
A concatenation of two vectors a ∈ Fm

2 and b ∈ Fn
2 is written as (a,b) ∈ Fm+n

2

unless otherwise specified. Thus, we regard the product of two vector spaces
Fm
2 × Fn

2 as the set of concatenated vectors Fm+n
2 . For more than two spaces,

we consider product similarly. Let the zero vector be 0. A matrix of size m× n
is denoted as A ∈ Fm×n

2 . Specifically, the identity matrix is represented as I
and the zero matrix as O. The Hamming weight for x is denoted by wt(x) :=
|{i | xi = 1}|. The SDP is defined as follows.

Definition 2.1 (Syndrome Decoding Problem: SDP). For positive inte-
gers n, k and w such that k ≤ n and w ≤ n, we consider a parity-check matrix

H ∈ F(n−k)×n
2 and a syndrome s ∈ Fn−k

2 . An SDP requires finding a vector
e ∈ Fn

2 of wt(e) = w such that He = s.

This problem has been shown to be in the NP-complete class [5], and code-based
cryptography relies on this problem for its security. In this paper, we assume that
an SDP has a unique solution, which is the case in the real use of code-based
cryptography. Code-based cryptography is believed to be quantum secure, as no
polynomial-time algorithm for solving the SDP has been found thus far.

2.2 Information Set Decoding

ISD is a probabilistic algorithm that can be used to solve an SDP in exponential
time, as originated in Prange [32]. In the following, we provide a brief overview
of a common framework for ISD algorithms.

Algorithm 1 below provides the pseudo-code for an ISD algorithm. Until Line
5, column permutation and Gaussian elimination are applied to the parity-check

6 S. Narisada et al.

matrix and syndrome, resulting in a systematic form H̄ and a corresponding
syndrome s̄. We denote a set of all permuted solutions as E0 = Bnw, and a set
of obtainable permuted solutions as E , which varies across ISD algorithm. A
matrix P is referred to as a good permutation when Pe is an element of E . For
q := Pr[P is good] = |E|/|E0|, we utilize a specific Search component for (H̄, s̄),
producing a permuted solution ē with probability q at Line 6. By repeating the
above procedure q−1 times, it is expected that one solution Pē is obtained.

Algorithm 1: Information Set Decoding

Input: H ∈ F(n−k)×n
2 , s ∈ Fn−k

2 , w ∈ N
Output: e ∈ Fn

2 s.t. He = s
1 q := Pr[P is good]
2 repeat /* q−1 times in expectation */

3 Pick random permutation matrix P

4 H̄ = [In−k | Ĥ] = GHP
5 s̄ = Gs
6 ē = Search(H̄, s̄)
7 if wt(ē) = w and H̄ē = s̄ then
8 return Pē

An ISD algorithm exhibits an average time complexity given by

q−1(Tge + Tsearch), (1)

where Tge is the time complexity for Gaussian elimination and Tsearch is the time
complexity required for the Search component.

For instance, in the case of Prange’s algorithm, the Search component

checks whether wt(s̄)
?
= w. If this equation is true, then it returns ē = (s̄,0). A

crucial observation regarding this algorithm is that when, fortunately, wt(s̄) = w,
we have that H̄(s̄,0) = s̄, which satisfies both conditions for a solution. It can
be stated that E = Bn−k

w × Bk
0 , and q is given by

q =

(
n−k
w

)(
n
w

) . (2)

Eq. (1) is instantiated with substitutions from Eq. (2), Tge = (n − k)2n and
Tsearch = 1.

To date, many efforts have been made to develop more efficient ISD algo-
rithms that minimize Eq. (1) from an asymptotic perspective. However, relying
solely on asymptotic analysis has resulted in a gap between theoretical results
and actual time complexity.

Revisiting the May–Meurer–Thomae Algorithm 7

3 May–Meurer–Thomae Algorithm

The MMT algorithm is a practical ISD algorithm that achieves a smaller time
complexity than Prange’s and Dumer’s algorithm. The inputs to the Search
component in the MMT algorithm are a semi-systematic form H̄ of the parity-
check matrix and the syndrome s̄:

H̄ =

(
In−k−ℓ H1

O H2

)
= GHP, s̄ = (s1, s2) = Gs ∈ Fn−k−ℓ

2 × Fℓ
2, (3)

where H1 ∈ F(n−k−ℓ)×(k+ℓ)
2 and H2 ∈ Fℓ×(k+ℓ)

2 . This transformation can be
achieved by applying a column permutation P and Gaussian elimination G with
early abort. In the Search component, it performs the merging and filtering of
several lists, each consisting of a fraction of the candidates for a solution ē. The

MMT algorithm outputs a permuted solution ē ∈
(
Bn−k−ℓ
w−2p × B

(k+ℓ)/2
p × B(k+ℓ)/2

p

)
.

3.1 Tree-based List Construction of the Depth-2 MMT Algorithm

L
(2)
1

n− k − ℓ

p/2

k+ℓ
2

0

k+ℓ
2

H1z
(2)
1 z

(2)
1

L
(2)
2

0 p/2

H1z
(2)
2 z

(2)
2

L
(2)
3

p/2 0

H1z
(2)
1 z

(2)
1

L
(2)
4

0 p/2

H1z
(2)
2 + s1 z

(2)
2

L
(1)
1

p/2 p/2

H1z
(1)
1 z

(1)
1

L
(1)
2

p/2 p/2

H1z
(1)
2 + s1 z

(1)
2

L(0) w − 2p p p

H1z
′ + s1 z′

Fig. 1. Tree-based list construction of the depth-2 MMT algorithm.

We describe the list construction process in the standard depth-2 MMT al-
gorithm, which has the minimal asymptotic time among all depths and has often
been employed in recent decoding challenge contests [15,17,29]. The output list
is L(2) consisting of z′, which satisfies wt(z′) = 2p and H2z

′ = s2. We tra-
verse seven lists from the bottom (depth-2) to the top (depth 0), as depicted in
Figure 1. First, four depth-2 base lists are prepared as follows:

L
(2)
1 = L

(2)
3 =

{
z
(2)
1 ∈ F

k+ℓ
2

2 × 0
k+ℓ
2

∣∣∣ wt(z(2)1) = p/2
}
,

L
(2)
2 = L

(2)
4 =

{
z
(2)
2 ∈ 0

k+ℓ
2 × F

k+ℓ
2

2

∣∣∣ wt(z(2)2) = p/2
}
.

8 S. Narisada et al.

Then, we merge L
(2)
1 with L

(2)
2 (L

(2)
3 with L

(2)
4) to yield a depth-1 list L

(1)
1 (L

(1)
2)

while filtering a pair (z
(2)
1 , z

(2)
2), based on the following condition with an integer

ℓ1 ≤ ℓ and a map πℓ1 : Fℓ
2 → Fℓ1

2 , πℓ1(x1, ..., xℓ) = (x1, ..., xℓ1):

L
(1)
1 =

{
z
(1)
1

∣∣∣ z(2)1 ∈ L
(2)
1 , z

(2)
2 ∈ L

(2)
2 , z

(1)
1 = z

(2)
1 + z

(2)
2 , πℓ1(H2z

(1)
1) = 0

}
,

L
(1)
2 =

{
z
(1)
2

∣∣∣ z(2)1 ∈ L
(2)
3 , z

(2)
2 ∈ L

(2)
4 , z

(1)
2 = z

(2)
1 + z

(2)
2 , πℓ1(H2z

(1)
2 + s2) = 0

}
.

Note that wt(z
(1)
1) = wt(z

(1)
2) = p, since there is no overlap at the 1’s position

between z
(2)
1 and z

(2)
2 . It may be helpful to consider that a filtering with proba-

bility 2−ℓ1 is applied to the Cartesian product L
(2)
1 × L

(2)
2 . Then, L

(1)
1 and L

(1)
2

are merged under a specific condition to yield a list L(0):

L(0) =
{
z′

∣∣∣ z(1)1 ∈ L
(1)
1 , z

(1)
2 ∈ L

(1)
2 , z′ = z

(1)
1 + z

(1)
2 ,H2z

′ = s2

}
. (4)

Since we already have that πℓ1(H2(z
(1)
1 + z

(1)
2)) = πℓ1(s2), we can consider per-

forming filtering with probability 2ℓ1−ℓ for L
(1)
1 × L

(1)
2 . Now, if we set z′′ =

H1z
′ + s1, then the first condition of a solution, H̄(z′′, z′) = (s1,H2z

′) = s̄ is
satisfied. To verify the weight condition, we need to examine the distribution of

1’s in (z′′, z′). Namely, (z′′, z′)
?
∈

(
Bn−k−ℓ
w−2p × B

(k+ℓ)/2
p × B(k+ℓ)/2

p

)
. Fortunately,

when wt(z′′) = w − 2p, we observe that wt(z̄) = w for z̄ = (z′′, z′). Thus, Pz̄ is
a solution to the SDP.

3.2 Computational Complexity of the MMT Algorithm

We provide an overview of the time and space complexity analysis of the MMT
algorithm conducted in [14,17,25]. The time complexity per iteration of the re-
peat in Algorithm 1 for the MMT algorithm is dominated by the time com-
plexity for Gaussian elimination Tge = (n − k)2n and Tsearch required for the
Search component. Tsearch is the sum of the time complexities for base list con-
struction and for the merging of lists at each depth. For |L(2)| =

(
(ℓ+k)/2

p/2

)
and

|L(1)| = max(1, 2−ℓ1 |L(2)|2), we obtain that

Tsearch = 2|L(2)|+ 2max(|L(2)|, 2−ℓ1 |L(2)|2 +max(|L(1)|, 2−ℓ+ℓ1 |L(1)|2). (5)

Note that we do not concern ourselves with space complexity for L(0), as we

can enumerate z′ directly from L
(1)
1 and L

(1)
2 without constructing an actual

list. In the MMT algorithm, the set of obtainable permuted solutions is E =

Bn−k−ℓ
w−2p × B

(k+ℓ)/2
p × B(k+ℓ)/2

p , and q is given by

q =

(
n−k−ℓ
w−2p

)(
(k+ℓ)/2

p

)2(
n
w

) . (6)

Revisiting the May–Meurer–Thomae Algorithm 9

Therefore, the average time complexity of the MMT algorithm is given by Eq. (1)
instantiated with Tge = (n− k)2n, Eq. (5) and Eq. (6). The space complexity of
the MMT algorithm is

(n− k)n+ 2|L(2)|+ 2max(1, 2−ℓ1 |L(2)|2). (7)

In practice, we search for a valid integer parameter set (p, ℓ, ℓ1) to minimize
the time complexity. To efficiently find it, several optimizers, referred to as ISD
Estimators, have been proposed (e.g., [14,16]). In particular, the parameter ℓ1
must be chosen carefully as it is related to the representations.

A (split) representation of a weight-ω1 vector z ∈ Fn
2 is a pair of vectors

(z1, z2) ∈ Fn
2 × Fn

2 , satisfying z = z1 + z2 and wt(z1) = wt(z2) = ω2 ≥ ω1/2. In
the MMT algorithm, the number of representations for a weight-2p z′ as a sum

of two weight-p vectors z
(1)
1 , z

(1)
2 is

R =

(
p

p/2

)2

. (8)

In [25], valid parameters are searched under the condition that at least a single
representation of a solution is expected to be contained in L(0), i.e., ℓ1 ≤ log2 R.
In [17], the authors consider the case where ℓ1 > log2 R. When ℓ1 > log2 R, the
probability ρrepr of at least one representation being included in L(0) is given by

ρrepr := 1− (1− 2−ℓ1)R ≈ 2−ℓ1R. (9)

They demonstrate that the decrease in the number of representations can be
compensated by repeating the Search component ρrepr

−1 times. To avoid ex-

ploring the same space for each round, the constraint in L
(1)
1 and L

(1)
2 are slightly

modified to πℓ1(H2z
(1)
1) = t and πℓ1(H2z

(1)
2 +s2) = t, respectively. Here, t ∈ Fℓ1

2

is a randomly chosen vector for each round. The time complexity for the MMT
algorithm in the case of ℓ1 > log2 R is given by

q−1(Tge + ρrepr
−1 Tsearch).

The advantage of setting ℓ1 > log2 R is to show a time-memory trade-off for
cases where ℓ1 ≤ log2 R, which implies that a portion of the space complexity
required in the Search component can be offset by additional time complexity.
Adopting a relatively large ℓ1 can also result in practical reductions in actual
runtime, as indicated in [17,29].

3.3 Becker–Joux–May–Meurer Algorithm

The BJMM algorithm is a generalization of the MMT algorithm. The algorithm
introduces an additional weight parameter, p′ ≥ p/2 ∈ N, for fine-grained anal-
ysis, which is utilized in the construction of base lists:

L
(2)
1 = L

(2)
3 =

{
z
(2)
1 ∈ F

k+ℓ
2

2 × 0
k+ℓ
2

∣∣∣ wt(z(2)1) = p′
}
,

L
(2)
2 = L

(2)
4 =

{
z
(2)
2 ∈ 0

k+ℓ
2 × F

k+ℓ
2

2

∣∣∣ wt(z(2)2) = p′
}
.

10 S. Narisada et al.

When merging depth-1 lists, we consider representations for a vector, z′ = z
(1)
1 +

z
(1)
2 , such that z′ ∈

(
B(k+ℓ)/2
p × B(k+ℓ)/2

p

)
. Now, both z

(1)
1 and z

(1)
2 have the

same 1 distributions, i.e., z
(1)
1 , z

(1)
2 ∈

(
B(k+ℓ)/2
p′ × B(k+ℓ)/2

p′

)
. Instead of Eq. (8),

the number of such representations is given by

R =

(
p

p/2

)2(
(k + ℓ)/2− p

p′ − p/2

)2

. (10)

Choosing p′ > p/2 increases the size of the base lists to
(
(k+ℓ/2)

p′

)
. However,

this approach significantly increases the number of representations, leading to
a reduction in time complexity compared to that of the MMT algorithm. In
practice, the MMT algorithm with p/2 = 1 has been used to solve McEliece-
1223 and McEliece-1284 as reported in [15]. While the BJMM algorithm with
p′ = 2, 3 > p/2 faces the challenge of large memory consumption, often reaching
several gigabytes, it is possible to reduce memory usage for the BJMM algorithm
by employing the time-memory trade-off technique described in the previous
subsection [17].

4 Revisited MMT Algorithm

In this section, we present a precise analysis of the MMT algorithm, with a
particular focus on the (disjoint) weight distribution of a vector z′ in the final
list L(0). Then, we show how to properly modify the algorithm and estimator to
increase the number of candidates enumerated in the search-tree construction
while not significantly increasing computational time and memory, resulting in a
reduction in overall runtime. Finally, we state that our enhanced MMT algorithm
is a generalization of the depth-2 BJMM algorithm.

4.1 Disjoint Weight Distribution for Solution Candidates

Previously, the MMT and BJMM algorithms considered a specific 1’s distribu-

tion of Pe, i.e., Bn−k−ℓ
w−2p × B

(k+ℓ)/2
p × B(k+ℓ)/2

p . However, we observe that unless

explicitly excluded, the final list L(0) may contain a fraction of a solution with
a weight distribution different from the specific 1’s distribution. The following
proposition shows the probability that a fraction of the solution e′ with a specific
distribution is included in L(0).

Proposition 4.1 (existence probability of a solution fraction in L(0)).
Assuming that a good permutation P permutes the solution as Pe = (e′′, e′),

where i, j be even integers between 0 ≤ i, j ≤ p and e′ ∈
(
B(k+ℓ)/2
i × B(k+ℓ)/2

j

)
.

Then, for the fraction of the permuted solution e′ and the final list L(0) defined
in Eq. (4), the following equation is satisfied:

Pr
[
e′ ∈ L(0)

]
= ρi,j , (11)

Revisiting the May–Meurer–Thomae Algorithm 11

k+ℓ
2

k+ℓ
2

z
(1)
1

p/2 p/2

z
(1)
2

p/2 p/2

z
(1)
1 + z

(1)
2

i/2 i/2 j/2 j/2ϵ1 ϵ2

Fig. 2. An example of a F2-addition of two vectors z
(1)
1 +z

(1)
2 ∈

(
B(k+ℓ)/2

i × B(k+ℓ)/2
j

)
,

where z
(1)
1 , z

(1)
2 ∈

(
B(k+ℓ)/2

p/2 × B(k+ℓ)/2

p/2

)
. The gray region represents a one vector, while

the white area represents a zero vector. There are ϵ1 (resp. ϵ2) duplicates of 1’s position

between z
(1)
1 and z

(1)
2 on the left (resp. right) interval.

where

ρi,j :=

{
1− (1− 2−2ℓ1)R

2
0 (i = j = 0),

1− (1− 2−ℓ1)RiRj (otherwise),

Ri :=

(
i

i/2

)(
(k + ℓ)/2− i

p/2− i/2

)
.

Proof. The idea behind this proof is to leverage a property of F2-addition, i.e.,
1 + 1 = 0, as previously described in the articles that address such extended
representations [3,4].

For z
(1)
1 ∈

(
B(k+ℓ)/2
p/2 × B(k+ℓ)/2

p/2

)
in L

(1)
1 and z

(1)
2 ∈

(
B(k+ℓ)/2
p/2 × B(k+ℓ)/2

p/2

)
in

L
(1)
2 , let ϵ1 (resp. ϵ2) be the number of duplicates in 1’s position between z

(1)
1 and

z
(1)
2 on the left (resp. right) interval. Now, z

(1)
1 +z

(1)
2 is in B(k+ℓ)/2

p−2ϵ1
×B(k+ℓ)/2

p−2ϵ2
, as

depicted in Figure 2. Given that 0 ≤ ϵ1, ϵ2 ≤ p/2, it is shown that z
(1)
1 + z

(1)
2 ∈(

B(k+ℓ)/2
i × B(k+ℓ)/2

j

)
, through substitutions i = p− 2ϵ1 and j = p− 2ϵ2. Note

that both i and j are even numbers satisfying 0 ≤ i, j ≤ p since p, 2ϵ1, 2ϵ2 are
all even numbers.

Next, we derive the value of the following conditional probability

Pr
[
e′ ∈ L(0)

∣∣∣ e′ = z
(1)
1 + z

(1)
2 , z

(1)
1 ∈ L

(1)
1 , z

(1)
2 ∈ L

(1)
2

]
(12)

for e′ ∈
(
B(k+ℓ)/2
i × B(k+ℓ)/2

j

)
by considering two cases: (i) i = j = 0 and (ii)

otherwise. For case (i), we have z
(1)
1 = z

(1)
2 since e′ = 0. From the constraints

in depth-1 lists, πℓ1(s2) = 0 is obtained. Hence, L(0) includes e′ only when both

X : πℓ1(H2z
(1)
1) = 0 and Y : πℓ1(s2) = 0 are satisfied. Given that Pr[X] = 2−ℓ1

and Pr[Y] = 2−ℓ1 , as both H2z
(1)
1 and s2 are randomly chosen, Eq. (12) is the

joint probability of X and Y , i.e., 2−2ℓ1 .

For case (ii), we have e′ = z
(1)
1 + z

(1)
2 and z

(1)
1 ̸= z

(1)
2 since e′ ̸= 0. We must

consider the joint probability of X : πℓ1(H2z
(1)
1) = 0 and Z : πℓ1(H2z

(1)
2 + s2) =

12 S. Narisada et al.

0. Since e′ is a fraction of the solution, if either X or Z holds true, the remaining
automatically holds true. Hence, Eq. (12) is 2−ℓ1 .

Recall that we have representations for e′ = z
(1)
1 +z

(1)
2 . Let Ri be the number

of representations of a vector a = b+ c, where a ∈ B(k+ℓ)/2
i and b, c ∈ B(k+ℓ)/2

p/2 .

The set of 1-coordinates in a can be split in
(

i
i/2

)
ways as 1 = 1+0 or 1 = 0+1. For

each split representation, the set of 0-coordinates can be split in
(
(k+ℓ)/2−i

ϵ1

)
ways

by 0 = 1+1. In total, a has
(

i
i/2

)(
(k+ℓ)/2−i

ϵ1

)
representations. For e′ = z

(1)
1 +z

(1)
2 ,

we have
(

i
i/2

)(
(k+ℓ)/2−i

ϵ1

)(
j

j/2

)(
(k+ℓ)/2−j

ϵ2

)
representations. Hence,

Pr
[
e′ ∈ L(0)

∣∣∣ e′ ̸= 0
]
= 1− (1− 2−ℓ1)RiRj .

Similarly, we can show that Pr
[
e′ ∈ L(0)

∣∣ e′ = 0
]
= 1 − (1 − 2−2ℓ1)R

2
0 , which

corresponds to Eq. (11). ⊓⊔

Assuming 2−ℓ1 ≪ 1, Eq. (12) is approximated by 1 − (1 − 2−ℓ1)RiRj ≈
min(1, 2−ℓ1RiRj) for i = j ̸= 0 by series expansion (analogously, for i = j = 0).
Now, we are almost ready to develop a fine-grained MMT algorithm designed to
handle multiple distributions. Before delving into this chapter, we show how we
allow the MMT algorithm to address odd weight distributions.

4.2 Multi-weight Initialization

We aim to generalize Proposition 4.1 from even distributions to encompass all
distributions. To achieve this, we introduce a technique called the multi-weight
initialization.

Now, we generalize the weight constraint for base lists by enumerating all
vectors whose weights are less than or equal to p/2, instead of specifically enu-
merating weight-p/2 vectors, as follows:

L̄
(2)
1 = L̄

(2)
3 =

{
z
(2)
1 ∈ F

k+ℓ
2

2 × 0
k+ℓ
2

∣∣∣ 0 ≤ wt(z
(2)
1) ≤ p/2

}
,

L̄
(2)
2 = L̄

(2)
4 =

{
z
(2)
2 ∈ 0

k+ℓ
2 × F

k+ℓ
2

2

∣∣∣ 0 ≤ wt(z
(2)
2) ≤ p/2

}
.

This approach leads to an increase in the base list size,

|L̄(2)| =
∑

0≤i≤p/2

(
(k + ℓ)/2

p/2− i

)
,

followed by the list L̄
(1)
1 , L̄

(1)
2 with a common length of |L̄(1)| = max(1, 2−ℓ1 |L̄(2)|2)

and L̄(0) with an actual length of 0. However, this approach provides practical
advantages for the MMT algorithm not only by increasing the number of odd-
weight candidates in the final list L̄(0), but also by expanding the representations
of even-weight candidates. By doing so, Proposition 4.1 is extended as follows.

Revisiting the May–Meurer–Thomae Algorithm 13

a p1 ≤ p/2

b p2 ≤ p/2

c = a+ b i− a a(p1 + p2 − i)/2

Fig. 3. An example of F2-addition that yields a weight-i vector c from a weight-p1
vector a and a weight-p2 vector b. We have (p1 + p2 − i)/2 positions of 1’s duplicated
between a and b. In this example, we have i− a ones on the left side of c and a ones
on the right side.

Proposition 4.2 (multi-weight initialization). Assuming that a good per-
mutation P permutes the solution as Pe = (e′′, e′), where i, j be integers between

0 ≤ i, j ≤ p and e′ ∈
(
B(k+ℓ)/2
i × B(k+ℓ)/2

j

)
. Then, for the fraction of the per-

muted solution e′ and the final list L̄(0), the following equation is satisfied:

Pr
[
e′ ∈ L̄(0)

]
= ρ̄i,j , (13)

where

ρ̄i,j :=

{
1− (1− 2−2ℓ1)R̄

2
0 (i = j = 0),

1− (1− 2−ℓ1)R̄iR̄j (otherwise),

R̄i :=
∑

(p1,p2)∈Pi

(
i

⌊i/2⌋

)(
(k + ℓ)/2− i

(p1 + p2 − i)/2

)
, (14)

Pi :=
{
(p1, p2)

∣∣∣ p1, p2 ≤ p

2
, |p1 − p2| ≤ i ≤ p1 + p2, p1 + p2 ≡ i mod 2

}
. (15)

Proof. Like Proposition 4.1, we enumerate the possible 1’s distributions of z
(1)
1 +

z
(1)
2 for z

(1)
1 ∈

(
B(k+ℓ)/2
p1 × B(k+ℓ)/2

p′
1

)
in L̄

(1)
1 and z

(1)
2 ∈

(
B(k+ℓ)/2
p2 × B(k+ℓ)/2

p′
2

)
in

L̄
(1)
2 , where 0 ≤ p1, p

′
1, p2, p

′
2 ≤ p/2. let ϵ1 (resp. ϵ2) be the number of duplicates

in 1’s position between z
(1)
1 and z

(1)
2 on the left (resp. right) interval. Now,

z
(1)
1 + z

(1)
2 lies in B(k+ℓ)/2

p1+p2−2ϵ1
× B(k+ℓ)/2

p′
1+p′

2−2ϵ2
. If we set i = p1 + p2 − 2ϵ1, a set of

valid pairs (p1, p2) for i is determined by solving the equation, i+ 2ϵ1 = p1 + p2
varying 0 ≤ ϵ1 ≤ min(p1, p2), which yields a set defined in Eq. (15). Similarly, we

obtain Pj for the case of j = p′1+p′2−2ϵ2. Hence, z
(1)
1 +z

(1)
2 is in B(k+ℓ)/2

i ×B(k+ℓ)/2
j

with (p1, p2) ∈ Pi and (p′1, p
′
2) ∈ Pj .

The following conditional probability is equivalent to Eq. (12):

Pr
[
e′ ∈ L̄(0)

∣∣∣ e′ = z
(1)
1 + z

(1)
2 , z

(1)
1 ∈ L̄

(1)
1 , z

(1)
2 ∈ L̄

(1)
2

]
.

Again, we need to count the number of representations for e′ = z
(1)
1 + z

(1)
2 .

Let Ri,p1,p2
be the number of representations of a vector a = b + c, where

14 S. Narisada et al.

a ∈ B(k+ℓ)/2
i , b ∈ B(k+ℓ)/2

p1 and c ∈ B(k+ℓ)/2
p2 , as depicted in Figure 3. The set of

1-coordinates in a can be split in
(

i
⌊i/2⌋

)
ways as 1 = 1 + 0 or 1 = 0 + 1, where

⌊i/2⌋ is obtained by considering the case in which i is an odd integer. For each

split representation, the set of 0-coordinates can be split in
(

(k+ℓ)/2−i
(p1+p2−i)/2

)
ways

by 0 = 1 + 1. In total, a has Ri,p1,p2
=

(
i

⌊i/2⌋
)(

(k+ℓ)/2−i
(p1+p2−i)/2

)
representations.

For the left interval of e′ = z
(1)
1 + z

(1)
2 , we need to consider representations

Ri,p1,p2 for each valid pair (p1, p2) ∈ Pi for a fixed i. Since these representations
are mutually exclusive, we can sum the representations Ri,p1,p2

for each pair
(p1, p2) ∈ Pi, which corresponds to Eq. (14). By considering the interval on the
right half, the total number of representation becomes R̄iR̄j . Hence, we can state
that

Pr
[
e′ ∈ L̄(0)

∣∣∣ e′ ̸= 0
]
= 1− (1− 2−ℓ1)R̄iR̄j .

Similarly, Pr
[
e′ ∈ L̄(0)

∣∣ e′ = 0
]
= 1−(1−2−2ℓ1)R̄

2
0 is satisfied, which concludes

the proof. ⊓⊔

Assuming 2−ℓ1 ≪ 1, Eq. (13) is approximated by 1 − (1 − 2−ℓ1)R̄iR̄j ≈
min(1, 2−ℓ1R̄iR̄j) for i = j ̸= 0 by series expansion (analogously, for i = j = 0).

4.3 Algorithm and Computational Complexity

We incorporate Proposition 4.2 into MMT decoding and propose our revisited
MMT algorithm. The revisited MMT algorithm is described in Algorithm 2
below.

First, we construct base lists using the multi-weight initialization. For these

lists, depth-1 lists L̄
(1)
1 and L̄

(1)
2 are computed. We then check the final list

L̄(0) ⊂ L̄
(1)
1 × L̄

(1)
2 to determine whether it contains a fraction of a permuted

solution e′ ∈
(
B(k+ℓ)/2
i × B(k+ℓ)/2

j

)
for each i and j. To check this condition for

each element in z′ ∈ L̄(0) in a constant time, we simply need to check wt(z̄)
?
= w,

instead of wt(z′′)
?
= w − 2p, where z̄ = (z′′, z′) and z′′ = H1z

′ + s1. If wt(z̄) =

w, then we can state that z̄ ∈
(
Bn−k−ℓ
w−i−j × B

(k+ℓ)/2
i × B(k+ℓ)/2

j

)
is a permuted

solution for certain i and j with 0 ≤ i, j ≤ p, as H̄z̄ = s̄ is satisfied. The
algorithm returns Pz̄ as the solution of the SDP.

The set of obtainable permuted solutions E for our proposed algorithm is
given by

E =
⋃

0≤i,j≤p

Ci,j ,

where Ci,j := Bn−k−ℓ
w−i−j×B

(k+ℓ)/2
i ×B(k+ℓ)/2

j and |Ci,j | =
(
n−k−ℓ
w−i−j

)(
(k+ℓ)/2

i

)(
(k+ℓ)/2

j

)
,

instead of |E| =
(
n−k−ℓ
w−2p

)(
(k+ℓ)/2

p

)2
in the MMT algorithm. From Proposition 4.2,

Revisiting the May–Meurer–Thomae Algorithm 15

Algorithm 2: MMT-Revisited

Input: H ∈ F(n−k)×n
2 , s ∈ Fn−k

2 , w ∈ N
Output: e ∈ Fn

2 s.t. He = s
1 Choose optimal ℓ, ℓ1, p
2 Pi :=

{
(p1, p2)

∣∣ p1, p2 ≤ p
2
, |p1 − p2| ≤ i ≤ p1 + p2, p1 + p2 ≡ i mod 2

}
3 R̄i :=

∑
(p1,p2)∈Pi

(
i

⌊i/2⌋

)(
(k+ℓ)/2−i

(p1+p2−i)/2

)
4 ρ̄i,j :=

{
1− (1− 2−2ℓ1)R̄

2
0 (i = j = 0)

1− (1− 2−ℓ1)R̄iR̄j (otherwise)

5 q :=
(
n
w

)−1 ∑
0≤i,j≤p

(
n−k−ℓ
w−i−j

)(
(k+ℓ)/2

i

)(
(k+ℓ)/2

j

)
ρ̄i,j

6 repeat /* q−1 times in expectation */

7 Pick random permutation matrix P

8 H̄ =

(
In−k−ℓ H1

O H2

)
= GHP

9 s̄ = (s1, s2) = Gs
10 Compute

L̄
(2)
1 = L̄

(2)
3 = {z(2)1 ∈ F

k+ℓ
2

2 × 0
k+ℓ
2 | 0 ≤ wt(z

(2)
1) ≤ p/2}

L̄
(2)
2 = L̄

(2)
4 = {z(2)2 ∈ 0

k+ℓ
2 × F

k+ℓ
2

2 | 0 ≤ wt(z
(2)
2) ≤ p/2}

11 Compute

L̄
(1)
1 = {z(1)1 = z

(2)
1 + z

(2)
2 | πℓ1(H2z

(1)
1) = 0} from L̄

(2)
1 and L̄

(2)
2

L̄
(1)
2 = {z(1)2 = z

(2)
1 + z

(2)
2 | πℓ1(H2z

(1)
1 + s2) = 0} from L̄

(2)
3 and L̄

(2)
4

12 Compute L̄(0) = {z′ = z
(1)
1 + z

(1)
2 | H2z

′ = 0} from L̄
(1)
1 and L̄

(1)
2

13 for z′ ∈ L̄(0) do
14 z̄ = (H1z

′ + s1, z
′)

15 if wt(z̄) = w then
16 return Pz̄

we expect to have

|Ci,j | · Pr
[
e′ ∈ L̄(0)

∣∣∣ e′ ∈ (
B(k+ℓ)/2
i × B(k+ℓ)/2

j

)]
obtainable permuted solutions for each pair (i, j). Hence, q := Pr[P is good] is
given by

q =

∑
0≤i,j≤p |Ci,j |ρ̄i,j(

n
w

) . (16)

For the time complexity, we obtain

Tsearch = 2|L̄(2)|+ 2max(|L̄(2)|, 2−ℓ1 |L̄(2)|2) + max(|L̄(1)|, 2−ℓ+ℓ1 |L̄(1)|2), (17)

where, |L̄(2)| =
∑

0≤i≤p/2

(
(ℓ+k)/2
p/2−i

)
and |L̄(1)| = max(1, 2−ℓ1 |L̄(2)|2). The average

time complexity of the revisited MMT algorithm is described by Eq. (1) with

16 S. Narisada et al.

instantiations of Eq. (16), Eq. (17) and Tge = (n − k)2n. Space complexity of
the algorithm is given by

(n− k)n+ 2|L̄(2)|+ 2max(1, 2−ℓ1 |L̄(2)|2). (18)

From Eq. (17) and Eq. (18), in practice, the increase ratios for both time
and space complexities from ogirinal MMT are dominated by |L̄(2)|, given that
|L̄(2)| ≈ |L̄(1)| is satisfied by setting ℓ1 ≈ log2 |L̄(2)|. The increase ratio of the
base list is given by

|L̄(2)|
|L(2)|

=
|L(2)|+

∑
1≤i≤p/2

(
(k+ℓ)/2
p/2−i

)
|L(2)|

= 1 +
p

k + ℓ− p+ 2
+O(p2k−2),

where |L(2)| =
(
(k+ℓ)/2

p/2

)
. Since p ≪ k, the increase ratio is dominated by pk−1.

Thus, the revisited MMT algorithm shows an increase in the number of obtain-

able solutions from
(
n−k−ℓ
w−2p

)(
(k+ℓ)/2

p

)2
to

∑
0≤i,j≤p |Ci,j |ρ̄i,j , with an increase in

time and space complexities by a factor of pk−1.
The revisited MMT algorithm also provides time-memory trade-offs by se-

lecting a large value for ℓ1. In other words, a larger ℓ1 reduces both the space
complexity required for |L̄(1)| and the expected number of obtainable solutions∑

0≤i,j≤p |Ci,j |ρ̄i,j , which is directly compensated for by increasing the number
of outer loops. Practical results show that choosing a larger ℓ1 is also effective for
the revisited MMT algorithm, not only for reducing memory consumption but
also for reducing total runtime, as in the original time-memory trade-off MMT
algorithm described in [17].

Relationship to BJMM Algorithm We show that Algorithm 2 is a gen-
eralization of the depth-2 BJMM algorithm. As shown in Proposition 4.1, the
revisited MMT algorithm includes extended representations in its list construc-
tion. Let pbjmm and p′ ≥ pbjmm/2 denote weight parameters used in the depth-2
BJMM algorithm. Let p, i, j be the weight parameters employed in the revisited
MMT algorithm. Assuming p′ ← p/2, pbjmm ← i and i = j, the revisited MMT
algorithm includes the set of extended representations in the BJMM algorithm.

This set comprises
(pbjmm

pbjmm/2

)2((k+ℓ)/2−pbjmm

p′−pbjmm/2

)2
elements.

If we do not use multi-weight initialization, then both the depth-2 BJMM
and revisited MMT algorithm have identical lengths for the depth-2 list, which

is
(
(k+ℓ)/2

p′

)
, and for the depth-1 list, which is max(1, 2−ℓ1

(
(k+ℓ)/2

p′

)2
). Conversely,

L(0) in the depth-2 BJMM algorithm inherently contains any vector x s.t.

x ∈
(
B(k+ℓ)/2
i × B(k+ℓ)/2

j

)
for any even integers 0 ≤ i, j ≤ 2p′, although this

approach has not been explicitly utilized to our knowledge. Hence, as long as
the depth is two, the revisited MMT algorithm can represent both MMT and
BJMM decoding. The reason why we refer to Algorithm 2 as MMT rather than
BJMM is that it is algorithmically MMT, as it no longer uses the BJMM weight
parameter p′.

Revisiting the May–Meurer–Thomae Algorithm 17

5 Asymptotic Analysis for Schroeppel–Shamir ISD

This section provides new asymptotic space complexities for Dumer’s algorithm
and the time-memory trade-off MMT algorithm, in conjunction with a detailed
application of the Shamir–Schroeppel technique to depth-1/depth-2 ISDs. Addi-
tionally, we state that the asymptotic complexity of the revisited MMT algorithm
is equivalent to that of the depth-2 BJMM algorithm.

5.1 The Schroeppel–Shamir Technique

The Schroeppel–Shamir technique [33] can reduce the memory complexity of a
standard meet-in-the-middle (MITM) attack for the 2-list matching problem.
Assuming we aim to find a pair (x1,x2) ∈ L1 × L2 such that x1 = x2 on
certain ℓ coordinates. This can be solved by the MITM in time O(|D|) and
memory O(|D|), where |D| = |L1| = |L2| and ℓ = log2 |D|. When employing
the Schroeppel–Shamir technique, it is known that this problem can be solved
with the same time complexity of O(|D|) and reduced memory complexity of
O(|D|1/2).

The algorithm decomposes L1 = L1,1 × L1,2 and L2 = L2,1 × L2,2, where

|Li,j | = |D|1/2. We set r = log2 |D|1/2 = ℓ/2. Then, we create a list L̃1 from L1,1

and L1,2, which is a 2−r-fraction of L1 consisting of x1 = x1,1+x1,2 s.t. πr(x1,1)+

πr(x1,2) = t for some t ∈ Fr
2, where x1,1 ∈ L1,1 and x1,2 ∈ L1,2. The list L̃1

is constructed in time and memory of |D|1/2. Analogously, L̃2 is constructed
from L2,1 and L2,2 consisting of x2 = x2,1 + x2,2, s.t. πr(x2,1) + πr(x2,2) = t.

We obtain a 2−r-fraction of solution pairs in time |L̃1||L̃2|/2ℓ−r = |D|1/2 and
memory |D|1/2. Note that for all pairs (x1,x2) ∈ L̃1 × L̃2, x1 = x2 is satisfied
on r coordinates. Therefore, we need to find a pair matching the remaining
ℓ− r = ℓ/2 coordinates.

The above procedure is iterated |D|1/2 times for all t ∈ Fr
2. In total, we

obtain all solution pairs (x1,x2) ∈ L1×L2 in time O(|D|1/2|D|1/2) = O(D) and
memory O(|D|1/2).

As for ISD algorithms, the Schroeppel–Shamir technique has previously been
used in quantum ISDs (Stern/Dumer) proposed by Kachigar and Tillich [21],
and later improved by Kirshanova [22], as it is also beneficial in reducing time
complexity when combined with Grover search. For classical ISDs, Esser and
Zweydinger apply this technique to MMT/BJMM decoding and achieve reduced
asymptotic space complexity for MMT with 20.0375n for full distance decod-
ing [17].

5.2 Dumer’s Algorithm with Schroeppel–Shamir Technique

We describe how to improve the asymptotic space complexity of Dumer’s algo-
rithm. Note that Kachigar and Tillich [21] were the first to utilize the Schroeppel–
Shamir technique in the quantum version of Dumer’s algorithm. In this study,

18 S. Narisada et al.

we provide detailed analysis and demonstrate the reduction of the space com-
plexity of (classical) Dumer’s algorithm using the Schroeppel–Shamir technique
through numerical optimization.

Assuming that we have the semi-systematic form H̄ and the syndrome s̄ as
shown in Eq. (3). In Dumer’s algorithm, we aim to find a permuted solution

ē ∈
(
Bn−k−ℓ
w−2p × B

(k+ℓ)/2
p × B(k+ℓ)/2

p

)
. To do so, we construct two base lists as

follows:

L
(1)
1 =

{
z
(1)
1 ∈ F

k+ℓ
2

2 × 0
k+ℓ
2

∣∣∣ wt(z(1)1) = p
}
,

L
(1)
2 =

{
z
(1)
2 ∈ 0

k+ℓ
2 × F

k+ℓ
2

2

∣∣∣ wt(z(1)2) = p
}
.

We then enumerate all pairs (z
(1)
1 , z

(1)
2) ∈ L

(1)
1 × L

(1)
2 s.t. H2z

′ = s2, where

z′ = z
(1)
1 + z

(1)
2 . For z′′ = H1z

′ + s1, if wt(z
′′) = w − 2p, then, P(z′′, z′) is the

solution. There is no representation in Dumer’s algorithm. The asymptotic time
complexity of Dumer’s algorithm is

q−1 max(|D|, 2−ℓ|D|2), (19)

where q =
(
k+ℓ
2p

)(
n−k−ℓ
w−2p

)(
n
w

)−1
and |D| =

(
(k+ℓ)/2

p

)
. For readability, we omit

Stirling’s approximation from the asymptotic complexity. We employ the ap-

proximation
(
k+ℓ
2p

)
≈

(
(k+ℓ)/2

p

)2
, which is equivalent asymptotically. The space

complexity is |D| when we ignore polynomial factors.
One can apply the Schroeppel–Shamir technique in Dumer’s algorithm by

decomposing L
(1)
1 = L

(2)
1 × L

(2)
2 and L

(1)
2 = L

(2)
3 × L

(2)
4 :

L
(2)
1 =

{
z
(2)
1 ∈ F

k+ℓ
4

2 × 0
3(k+ℓ)

4

∣∣∣ wt(z(2)1) = p/2
}
,

L
(2)
2 =

{
z
(2)
2 ∈ 0

k+ℓ
4 × F

(k+ℓ)
4

2 × 0
k+ℓ
2

∣∣∣∣ wt(z(2)2) = p/2

}
,

L
(2)
3 =

{
z
(2)
3 ∈ 0

k+ℓ
2 × F

(k+ℓ)
4

2 × 0
k+ℓ
4

∣∣∣∣ wt(z(2)3) = p/2

}
,

L
(2)
4 =

{
z
(2)
4 ∈ 0

3(k+ℓ)
4 × F

k+ℓ
4

2

∣∣∣ wt(z(2)4) = p/2
}
.

We create a 2−r-fraction list L̃
(2)
1 ⊂ L

(2)
1 ×L

(2)
2 , whose element is z

(1)
1 = z

(2)
1 +z

(2)
2 ,

s.t. πr(H2z
(2)
1)+πr(H2z

(2)
2) = t, where r = |D|1/2 ≤ ℓ is a parameter and t ∈ Fr

2

is some vector. The time and memory complexities required to construct L̃
(1)
1

are |D|1/2. Analogously, we create a 2−r-fraction list L̃
(1)
2 ⊂ L

(2)
3 × L

(2)
4 , whose

element is z
(1)
2 = z

(2)
3 + z

(2)
4 , s.t. πr(H2z

(2)
3) + πr(H2z

(2)
4) = πr(s2) + t.

We want to find 2−r-fraction of ℓ-matched pairs (z
(1)
1 , z

(1)
2) ∈ L

(1)
1 × L

(1)
2

s.t. H2z
(1)
1 + H2z

(1)
2 = s2. Since we already have a 2−r-fraction of r-matched

pairs (z
(1)
1 , z

(1)
2) ∈ L̃

(1)
1 × L̃

(1)
2 s.t. πr(H2z

(1)
1) + πr(H2z

(1)
2) = πr(s2), this can be

obtained in time max(|D|1/2, 2r−ℓ|D|1/2|D|1/2) and memory |D|1/2. We iterate

Revisiting the May–Meurer–Thomae Algorithm 19

the above procedure for all t. Therefore, the asymptotic time complexity of
Dumer’s algorithm with the Schroeppel–Shamir technique is

q−12r max(|D|1/2, 2r−ℓ|D|). (20)

When ℓ ≥ r/2, Eq. (20) is equivalent to Eq. (19). The asymptotic space com-
plexity is reduced to |D|1/2.

Numerical Optimization We implement Dumer’s ISD with the Schroeppel–
Shamir technique on the ISD optimizer developed by Esser [13]4, and conduct
numerical optimizations for the full distance decoding setting. In the optimiza-
tion, binomial coefficients are approximated by Stirling’s approximation. For
each parameters oi used in ISD algorithms, let oi = õi · n, where 0 ≤ õi ≤ 1. We
denote k̃ = k/n as the code rate. During optimization, we search for parameters

that yield minimal time complexity T k̃
min for each code rate k̃ and relative weight

w̃ = H−1(1− k̃). Finally, we obtain the asymptotic time complexity maxk̃ T
k̃
min

and corresponding parameters.
For full distance decoding, we obtain the asymptotic time and space com-

plexities of

T = 20.116n and S = 20.0177n,

at k̃ = 0.43 and w̃ = 0.1273, with optimal parameters of

p̃ = 0.005088, r̃ = 0.01766, ℓ̃ = 0.03532.

One can confirm that the Schroeppel–Shamir technique reduces the asymptotic
space complexity of Dumer’s algorithm from the original value S = 20.0353n to
its square root S = 20.0177n while maintaining the same time complexity, using
parameters r = |L(2)| and ℓ = 2r.

5.3 MMT Algorithm with Schroeppel–Shamir Technique

Let us provide a detailed analysis of the Schroeppel–Shamir technique in the
depth-2 ISD, exemplified by the time-memory trade-off MMT algorithm. Fol-

lowing the initial analysis [17], we attempt to create depth-1 lists L
(1)
1 and L

(1)
2

via Schroeppel–Shamir.

L
(1)
1 =

{
z
(1)
1

∣∣∣ z(2)1 ∈ L
(2)
1 , z

(2)
2 ∈ L

(2)
2 , z

(1)
1 = z

(2)
1 + z

(2)
2 , πℓ1(H2z

(1)
1) = 0

}
,

L
(1)
2 =

{
z
(1)
2

∣∣∣ z(2)3 ∈ L
(2)
3 , z

(2)
4 ∈ L

(2)
4 , z

(1)
2 = z

(2)
3 + z

(2)
4 , πℓ1(H2z

(1)
2 + s2) = 0

}
.

In the MMT algorithm, L
(1)
1 comprises all vectors z

(1)
1 ∈ B(k+ℓ)/2

p/2 × B(k+ℓ)/2
p/2

s.t. πℓ1(H2z
(1)
1) = 0 and L

(1)
2 contains all vectors z

(1)
2 ∈ B(k+ℓ)/2

p/2 × B(k+ℓ)/2
p/2 s.t.

4 Available at https://github.com/Memphisd/Revisiting-NN-ISD.

https://github.com/Memphisd/Revisiting-NN-ISD

20 S. Narisada et al.

πℓ1(H2z
(1)
2) = πℓ1(s2). Since z

(1)
1 is constructed from a pair (z

(2)
1 , z

(2)
2), where

z
(1)
1 = z

(2)
1 + z

(2)
2 , we can consider a 2−r fraction of the set of pairs by imposing

πr(H2z
(2)
1) = t1 and πr(H2z

(2)
2) = t1 for r ≤ ℓ1 and some t1 ∈ Fr

2. Analogously,

z
(1)
2 is formed from a pair (z

(2)
3 , z

(2)
4), where z

(1)
2 = z

(2)
3 + z

(2)
4 . A 2−r fraction

is obtained by imposing πr(H2z
(2)
3) = t2 and πr(H2z

(2)
4) = πr(s2) + t2 for some

t2 ∈ Fr
2. There are 2

2r combinations for a pair (t1, t2), as t1 is independent of t2.

Therefore, we have 2−2r fraction of (z
(1)
1 , z

(1)
2) ∈ L

(1)
1 ×L

(1)
2 for some pair (t1, t2),

i.e., for depth-2 Schroeppel–Shamir, we require 2−2r iterations as compensation
for reducing the list size to 2−r.

Algorithmically, we first create depth-3 eight lists by decomposing L
(2)
i =

L
(3)
2i−1 × L

(3)
2i for 1 ≤ i ≤ 4.

L
(3)
1 = L

(3)
5 =

{
z
(3)
1 ∈ F

k+ℓ
4

2 × 0
3(k+ℓ)

4

∣∣∣ wt(z(3)1) = p/4
}
,

L
(3)
2 = L

(3)
6 =

{
z
(3)
2 ∈ 0

k+ℓ
4 × F

(k+ℓ)
4

2 × 0
k+ℓ
2

∣∣∣∣ wt(z(3)2) = p/4

}
,

L
(3)
3 = L

(3)
7 =

{
z
(3)
3 ∈ 0

k+ℓ
2 × F

(k+ℓ)
4

2 × 0
k+ℓ
4

∣∣∣∣ wt(z(3)3) = p/4

}
,

L
(3)
4 = L

(3)
8 =

{
z
(3)
4 ∈ 0

3(k+ℓ)
4 × F

k+ℓ
4

2

∣∣∣ wt(z(3)4) = p/4
}
,

where |L(3)
i | =

(
(k+ℓ)/4

p/4

)
≈ |D|1/2 for |D| =

(
(k+ℓ)/2

p/2

)
. For a parameter r ≤ ℓ1, we

create 2−r-fraction lists L̃
(2)
i ⊂ L

(3)
2i−1 × L

(3)
2i for 1 ≤ i ≤ 4, where each element

is defined as follows:

z
(2)
1 = z

(3)
1 + z

(3)
2 s.t. πr(H2z

(3)
1) + πr(H2z

(3)
2) = t1,

z
(2)
2 = z

(3)
3 + z

(3)
4 s.t. πr(H2z

(3)
3) + πr(H2z

(3)
4) = t1,

z
(2)
3 = z

(3)
1 + z

(3)
2 s.t. πr(H2z

(3)
1) + πr(H2z

(3)
2) = t2,

z
(2)
4 = z

(3)
3 + z

(3)
4 s.t. πr(H2z

(3)
3) + πr(H2z

(3)
4) = πr(s2) + t2,

where t1, t2 ∈ Fr
2. The time complexity for depth-2 lists is max(|D|1/2, 2−r|D|).

The size of a depth-2 list is |L̃(2)| = max(1, 2−r|D|). For depth 1-lists, we obtain

2−r-fraction lists L̃
(1)
i ⊂ L̃

(2)
2i−1×L̃

(2)
2i for i = 1, 2 with time max(|L̃(2)|, 2r−ℓ1 |L̃(2)|2)

and space |L̃(1)| = max(1, 2r−ℓ1 |L̃(2)|2). Finally, we merge L̃
(1)
1 and L̃

(1)
2 in

time max(|L̃(1)|, 2ℓ1−ℓ|L̃(1)|2) and obtain a fraction of the permuted solution

with probability ρrepr = min(1, 2−ℓ1−2rR), where, R =
(
2p
p

)
≈

(
p

p/2

)2
, instead

of Eq. (9). When 2−ℓ1−2rR < 1, we need to iterate the Search component
2ℓ1+2rR−1 times to yield one permuted solution expectedly under a good per-
mutation. The asymptotic time complexity of the time-memory trade-off MMT
algorithm with Schroeppel–Shamir is given by

q−1 ρrepr
−1 max(|L(3)|, |L̃(2)|, |L̃(1)|, 2ℓ1−ℓ|L̃(1)|2),

Revisiting the May–Meurer–Thomae Algorithm 21

where q =
(
k+ℓ
2p

)(
n−k−ℓ
w−2p

)(
n
w

)−1
. The asymptotic space complexity is given by

max(|L(3)|, |L̃(2)|, |L̃(1)|).

Numerical Optimization Similar to Dumer’s algorithm, we calculated the
asymptotic complexity of the time-memory trade-off MMT algorithm with the
ISD optimizer. For full distance decoding, we obtain the asymptotic time and
space complexities of

T = 20.111n and S = 20.0376n,

at k̃ = 0.44 and w̃ = 0.1273, with optimal parameters of

p̃ = 0.01073, r̃ = 0, ℓ̃1 = 0.03764, ℓ̃ = 0.07527.

For MMT decoding, we confirm that the Schroeppel–Shamir technique does not
contribute to reducing memory without sacrificing time complexity. Neverthe-
less, it still results in almost the same space complexity as 20.0375n, as derived
in [17], which is significantly smaller than the original value 20.54n [25]. This im-
plies that ρrepr, the time-memory trade-off term introduced in [17], plays a crucial
role in reducing memory complexity in the MMT algorithm. Additionally, we ob-
serve that T is minimized when ℓ1 = log2

(
(k+ℓ)/2

p/2

)
, leading to S = |L(2)| = |L(1)|.

Consequently, there is no longer a need to optimize the parameter ℓ1.
When we set r = log2 |D|1/2 and ℓ1 = 2r, we obtain S = |L(3)| = |L̃(2)| =

|L̃(1)| = |D|1/2. In this setting, we observe a reduction in space complexity with
an increase in time complexity:

T = 20.119n and S = 20.00588n,

at k̃ = 0.45 and w̃ = 0.1273, we obtain

p̃ = 0.002639, ℓ̃ = 0.01763.

The time complexity falls between Prange’s complexity of 20.121n and Dumer’s
complexity of 20.116n. We defer to future work the exploration of how to leverage
the Schroeppel–Shamir technique for depth-2 ISDs.

Asymptotic Complexity for BJMM and Revisited MMT Algorithm
For BJMM decoding, it was shown that the time-memory trade-off technique
can decrease asymptotic time complexity when memory capacity is limited [17],
particularly for depth-3 BJMM. This holds true as well for the depth-2 time-
memory trade-off BJMM with unlimited memory, which achieves the following
asymptotic complexity:

T = 20.105n and S = 20.0659n,

at k̃ = 0.43 and w̃ = 0.1273, with optimal parameters

p̃′ = 0.01076, p̃ = 0.01812, ℓ̃1 = 0.06588, ℓ̃ = 0.1318.

22 S. Narisada et al.

This is as the same as original BJMM algorithm [3]. We observe that T is min-

imized when 2ℓ1 = S = |L(2)| = |L(1)| = R, where |L(2)| =
(
(k+ℓ)/2

p′

)
and

R ≈
(
2p
p

)(
k+ℓ−2p
2p′−p

)
. We state that the the revisited MMT algorithm has the

same asymptotic complexity as the depth-2 time-memory trade-off BJMM, un-
der the assumption that a specific weight distribution pair (i, j), which max-
imizes |Ci,j |ρ̄i,j in Eq. (16), emerges as the dominant term among all weight
distributions.

6 Cryptanalysis

In this section, we present security estimates for Classic McEliece, BIKE, and
HQC with the revised MMT and other ISD algorithms. To calculate the bit
security for each cryptosystem, we use CryptographicEstimators5, which is the
latest cryptanalysis library developed by Esser et al. [16]. The SDP parameter
sets we target are listed in Table 2.

Table 2. Parameter sets for Classic McEliece, BIKE and HQC proposals.

Scheme Category n k w

1 3488 2720 64
3 4608 3360 96

Classic McEliece 5 6688 5024 128
5 6960 5413 119
5 8192 6528 128

1 24646 12323 134
BIKE (message) 3 49318 24659 199

5 81946 40973 264

1 24646 12323 142
BIKE (key) 3 49318 24659 206

5 81946 40973 274

1 35338 17669 132
HQC 3 71702 35851 200

5 115274 57637 262

6.1 Cryptanalysis for Classic McEliece

First, we present the estimated bit time complexity and its corresponding space
complexity for all parameter sets of Classic McEliece in Table 3.

In addition to our revised MMT algorithm and various modern ISD algo-
rithms, we incorporate MMT-tmto and BJMM-tmto, time-memory trade-off

5 https://github.com/Crypto-TII/CryptographicEstimators

https://github.com/Crypto-TII/CryptographicEstimators

Revisiting the May–Meurer–Thomae Algorithm 23

Table 3. Estimated bit security and bit space complexity for Classic McEliece. Un-
derlines indicate a deficiency in meeting the specified security requirements (128 bits
for Category 1, 192 bits for Category 3, and 256 bits for Category 5).

Category 1 3 5a 5b 5c
(n = 3488) (n = 4608) (n = 6688) (n = 6960) (n = 8192)

T M T M T M T M T M

MMT-rev 140 98 179 116 245 146 245 169 275 174
Prange 173 22 217 23 296 24 297 24 334 24
Dumer 151 58 193 60 268 89 268 90 303 109

MMT-tmto 148 59 190 70 261 90 261 91 294 102
BJMM-tmto 142 98 182 122 248 162 248 160 277 189
May-Ozerov 141 87 180 115 246 165 246 160 276 194
Both-May 142 88 181 113 248 143 247 145 279 149
Sieving ISD 143 58 184 65 257 91 257 92 291 95

MMT-rev
log2 M
M≤43 147 43 191 43 267 43 268 43 304 43

variants of the MMT/BJMM decoding [17], and Sieving ISD, the latest ISD
proposed by Guo, Johansson, and Nguyen [18]. To derive the estimated complex-
ity for Sieving ISD, we use open-source code provided by the authors6. The
bold font indicates the minimal bit time complexity (T) or bit space complex-
ity (M). Among these ISD algorithms, MMT-rev achieves the smallest time
complexity across all categories when assuming unlimited memory capacity and
constant memory access cost. Compared to MMT and BJMM decoding, MMT-
rev reduced bit security for Classic McEliece III by 11 bits from MMT-tmto,
and 3 bits from BJMM-tmto.

In [15], the authors confirm that the assumption of the logarithmic memory
access cost model aligns well with actual implementation. We also verify the va-
lidity of this assumption for our Compute Unified Device Architecture (CUDA)
MMT implementation described in [29]. Previous papers [14,24,18] also enforce
a maximum memory capacity of M ≤ 60 as a low-memory setting, implying that
one can utilize memory up to approximately 144 petabytes, which may appear
somewhat excessive. In this paper, we also evaluate the security of NIST-PQC
candidates with the revisited MMT algorithm under more realistic memory con-
straints, taking into account both the logarithmic access model and a maximal

memory capacity of 243 bits (1 terabyte), denoted as MMT-rev
log2 M
M≤43 in each

table.
As a result, it is observed that the security levels of Classic McEliece for

Categories 1, 5a, 5b, and 5c have sufficiently large security margins from the
security requirements (128 bits for Category 1, 192 bits for Category 3, and 256
bits for Category 5) when practical memory constraints are assumed. However,
for Category 3, the security level remains below the desired security level for the
MMT-rev algorithm, albeit by a mere 1 bit.

6 https://github.com/vunguyen95/Review-ISD-Sieving

https://github.com/vunguyen95/Review-ISD-Sieving

24 S. Narisada et al.

6.2 Cryptanalysis for BIKE and HQC

Since both BIKE and HQC use a quasi cyclic code, it is known that the time
complexities of several ISD algorithms can be decreased by leveraging the cyclic
nature of the code. We present the results of our security estimations for BIKE
and HQC in Table 4 and 5, respectively.

Table 4. Estimated bit security and bit space complexity for BIKE.

Category 1 3 5
(n = 24646) (n = 49318) (n = 81946)

T M T M T M

k
ey

se
cu

ri
ty

MMT-rev 146 54 210 59 277 62
Prange 168 28 234 30 304 32
Dumer 148 40 211 43 279 45

MMT-tmto 148 38 211 40 279 41
BJMM-tmto 147 55 211 57 278 61
May-Ozerov 147 55 210 57 278 61
Both-May 147 55 210 57 278 61
Sieving ISD 141 46 204 50 271 53

MMT-rev
log2 M
M≤43 146 42 211 43 280 41

m
es
sa
g
e
se
cu

ri
ty

MMT-rev 145 46 210 59 275 63
Prange 174 28 242 30 309 32
Dumer 146 41 211 44 276 46

MMT-tmto 146 38 211 40 276 41
BJMM-tmto 146 38 211 40 276 61
May-Ozerov 146 55 211 57 276 61
Both-May 146 55 211 57 276 61
Sieving ISD 135 46 198 50 262 53

MMT-rev
log2 M
M≤43 145 42 212 40 278 41

For the key security of BIKE, the time complexities of all ISD algorithms
are reduced by a factor of k without any additional effort. To attack the secret
key of BIKE, we need to solve the quasi cyclic SDP, where the syndrome is the
zero vector. This SDP contains k different solutions, which decrease the expected
number of loops required for any ISD by a factor of k. For the bit security, we
present the results with log2 k subtracted from the estimations.

In the case of message security for BIKE and HQC, several ISD algorithms
can reduce time complexity by implementing the Decoding-One-Out-of-Many
(DOOM) strategy, as described in [34]. For Dumer, MMT-tmto, BJMM-
tmto, and MMT-rev, we can reduce the time complexity by Ω(

√
k), where

k = n/2, by utilizing the asymmetrical base list construction technique, as shown
in [15].

Revisiting the May–Meurer–Thomae Algorithm 25

Table 5. Estimated bit security and bit space complexity for HQC.

Category 1 3 5
(n = 35338) (n = 71702) (n = 115274)

T M T M T M

MMT-rev 145 48 213 52 275 55
Prange 173 29 244 31 308 33
Dumer 145 43 213 46 275 48

MMT-tmto 145 38 213 40 275 42
BJMM-tmto 145 38 213 40 275 42
May-Ozerov 146 39 214 42 276 44
Both-May 146 39 214 42 276 44
Sieving ISD 141 46 204 50 271 53

MMT-rev
log2 M
M≤43 145 43 214 40 276 42

We cannot achieve DOOM speedups for Prange, since the i-th rotation of
the permuted syndrome s̄, denoted by roti(s̄), satisfies wt(s̄) = wt(roti(s̄)). This
result implies that there is no way to exploit the rotations of the syndrome in
the Search component of the Prange algorithm, where only the weights of the
(rotated) syndromes are checked.

For May-Ozerov and Both-May, concrete algorithms for realizing DOOM
speedups have not yet been developed. In this paper, a common assumption of√
k speedup is applied to them, as in [14]. For Sieving ISD, the authors show

k times speedups by leveraging the rotations of the syndrome while enlarging
vectors in the search phase.

From Tables 4 and 5, we can confirm that both BIKE and HQC meet the
desired level of bit security across all categories. The difference in time complex-
ity between sieving ISD and other ISDs for quasi-cyclic codes stems mainly from
discrepancies in the speedup gains of DOOM. To our knowledge, there is cur-
rently no practical evidence for the sieving ISD for quasi-cyclic SDP instances.
Hence, in this paper, we also employ the revisited MMT algorithm for memory-
constrained bit-security estimations for BIKE and HQC. The verification of the
practicality of the sieving ISD for quasi-cyclic codes remains a future challenge.

When assuming a logarithmic memory access cost and M ≤ 43 for the revis-
ited MMT algorithm, BIKE and HQC of Category 3 achieve 212-bit and 214-bit
security, respectively. Compared to Classic McEliece of Category 3 under the
same memory constraints, the security level of Classic McEliece for this cate-
gory is approximately 21 bits lower than BIKE and 23 bits lower than HQC.

7 Experimental Results

In this section, we provide details about our GPU implementation of the revis-
ited MMT algorithm, its performance on a PC equipped with a consumer-grade
GPU, and a practical runtime analysis based on actual decoding results. In

26 S. Narisada et al.

our experiments, we use a desktop PC with an Intel Core i9-12900 CPU and a
GeForce RTX 4080 GPU unless otherwise specified.

7.1 GPU Implementation of the Revisited MMT Algorithm

We implement the revisited MMT algorithm by modifying the open-source CUDA
MMT implementation, cuMMT7. In cuMMT, a depth-2 MMT with p = 4 is imple-

mented in a streaming fashion. In summary, the depth 2 list L
(2)
1 and the depth

1 list L
(1)
1 are represented as one-dimensional integer lists, effectively function-

ing as hash maps when indexed by H2e for each element e in these lists. List
merging is performed in a parallel manner on a GPU with asynchronous concur-
rent writing. Please refer to the original paper and reference implementation for
further details [29].

We replace the MMT algorithm in cuMMT with the revisited MMT algorithm.
Additionally, several modifications are implemented, as listed below:

1. We replaced naive Gaussian elimination in cuMMT with an optimized imple-
mentation of the Method of Four Russians for Inversion (M4RI) [1], im-
proved by Esser, May and Zweydinger8.

2. The outer loop in the revisited MMT algorithm is parallelized using CPU
threads, while the list construction phase is parallelized using GPU threads
simultaneously.

3. Using the constexpr feature in C++, we transform the non-variable values
into constants, reducing memory access costs.

With these implementation modifications, cuMMT achieved a practical speedup of
23.4 times compared to the reference implementation for McEliece-1409 under
the same experimental conditions.

Notably, replacing the original MMT algorithm with the revisited MMT al-
gorithm alone reduces the runtime to by a factor of 3 for McEliece-1409, and
this optimization can be applied to any MMT/BJMM implementation as well.

7.2 Decoding McEliece-1409 Challenge

We estimated the bit complexities and optimal parameters for McEliece-1409 us-
ing CryptographicEstimators, under constraints of M ≤ 33 (1 gigabyte) and
the logarithmic access model in Table 6. From the results, MMT-rev is theoret-
ically shown to be 3.3 times faster than BJMM-tmto and still 1.9 times faster
than May-Ozerov, which yields the smallest time complexity for McEliece in-
stances among the ISD algorithms in [14]. Note that for May-Ozerov and
Both-May, currently there is no practical implementation due to the low effi-
ciency of the local sensitive hashing (LSH) technique, which is the core proce-
dure in both types of ISD. In this memory constrained setting, BJMM-tmto is
equivalent to MMT-tmto, as it uses p′ = p/2.

7 The reference implementation for cuMMT is available at https://www.jstage.jst.g
o.jp/article/transfun/E106.A/3/E106.A_2022CIP0023/_pdf/

8 Available at https://github.com/FloydZ/cryptanalysislib.

https://www.jstage.jst.go.jp/article/transfun/E106.A/3/E106.A_2022CIP0023/_pdf/
https://www.jstage.jst.go.jp/article/transfun/E106.A/3/E106.A_2022CIP0023/_pdf/
https://github.com/FloydZ/cryptanalysislib

Revisiting the May–Meurer–Thomae Algorithm 27

Table 6. Estimated complexities and optimal parameters for McEliece-1409 with M ≤
33 (1 gigabyte) and the logarithmic memory access cost model.

Algorithm T M p′ p ℓ1 ℓ w1 w2 depth

MMT-rev 70.1 31.5 – 4 14 36 – – 2
Prange 88.6 18.6 – – – – – – –
Dumer 72.4 28.8 – 2 – 19 – – 2

MMT-tmto 71.8 32.3 2 4 13 36 – – 2
BJMM-tmto 71.8 32.3 2 4 13 36 – – 2
May-Ozerov 71.0 32.2 2 4 – 13 – – 2
Both-May 71.1 32.2 2 4 – 13 0 0 2

1 5 10 15 20 24
0

200

400

600

800

1,000

1,200

1,400

Number of CPU threads

E
st
im

a
te
d
R
u
n
ti
m
e
[d
ay

s]

0

200

400

600

800

1,000

1,200

1,400

M
em

o
ry

C
o
n
su
m
p
ti
o
n
[M

B
]

estimated runtime

memory consumption

Fig. 4. Estimated runtime and memory consumption of our cuMMT implementation for
McEliece-1409 with varying the number of CPU threads on the desktop PC.

In practice, we use p = 4, ℓ1 = 14, ℓ = 35 for our cuMMT implementation to
solve the McEliece-1409 instance, as it requires two large integer arrays of sizes
2ℓ1 and 2ℓ−ℓ1 . As a result, we obtain the expected runtime and the memory
consumption under our experimental environment with varying CPU thread
counts, as illustrated in Figure 4. The estimated runtime is given by Tloopq

−1,
where q is the probability of success of one iteration obtained by the estimator,
and Tloop is the measured runtime for one iteration with the execution of the
cuMMT.

Based on the results, we observe that the decrease in runtime saturates as the
number of threads increases. We parallelized 16 CPU threads in our experiments,
requiring an expected 563 days and 822 megabytes (232.6 bits) on our desktop
PC to solve McEliece-1409. The maximal number of GPU threads is set to

28 S. Narisada et al.

2−ℓ1 |L(2)|2 = 1, 684, 900 per CPU thread, resulting in a total of 26, 958, 400
GPU threads per PC.

With 10 desktop PCs (5 each equipped with an RTX 4080 GPU and an Intel
Core i9-12900 CPU, and 5 with an RTX 3090 GPU and the same CPU), we
achieve an expected runtime of 65.3 days for McEliece-1409. As a result, we
solved the McEliece-1409 instance in 29.6 hours.

7.3 Comparison with Latest Implementations

To compare our implementation with other recent ISD implementations, we
solved several McEliece instances using the new cuMMT, whose results are de-
picted in Figure 5, as well as the estimated runtimes and bit complexities. We
describe recent record computations for McEliece instances below.

11
01

11
61

12
23

12
84

13
47

14
09

14
73

15
36

10−2

10−1

100

101

102

103

104

105

Dimension n

R
u
n
ti
m
e
[d
ay

s]

55

60

65

70

75

B
it

co
m
p
le
x
it
y

estimated runtime

actual runtime

bit complexity (M ≤ 33)

Fig. 5. Bit complexities and estimated running times to solve each McEliece challenge
with a desktop PC equipped with an Intel Core i9-12900 CPU and an RTX 4080 GPU.
Instances that were successfully solved by our implementation are marked with small
squares. The red dashed line represents the minimal time tαmin and the blue dashed line
represents the maximal time tαmax w.r.t. α = 0.01, as discussed in Section 7.4. One can
see that all of our records are within the range of tαmin and tαmax.

McEliece-1161 was solved in 15.66 days by Narisada, Fukushima, and Kiy-
omoto using a GPU implementation of Dumer’s algorithm on an Intel Xeon
E5-2686v4 server and an NVIDIA Tesla V100 [28].

Esser, May, and Zweydinger achieved the first records for McEliece-1223 and
McEliece-1284 at 2.45 days and 31.43 days, respectively, using their fast imple-
mentation of the MMT/BJMM algorithm with 4 AMD EPYC 7742 CPUs [15].

Revisiting the May–Meurer–Thomae Algorithm 29

Their implementation was later improved by introducing time-memory trade-
offs, achieving an expected runtime of 13.10 days for McEliece-1284 [17].

Recently, Bernstein, Lange, and Peters solved McEliece-1347 using software
they developed on several clusters of computers [6]. According to the website9,
it is stated that the expected runtime of their implementation for McEliece-1284
with 4 AMD EPYC 7742 CPUs is 31.56 days.

The expected runtimes of our new cuMMT with one desktop PC under the
memory constraints of M ≤ 33 for McEliece-1284 and McEliece-1347 are 23.30
days and 108.39 days, respectively. For McEliece-1473 and McEliece-1536, ex-
pected runtime of our implementation with M ≤ 33 are 2474 days and 11552
days, respectively. We refrain from making direct comparisons between individ-
ual implementations, as the objective of this paper is not to identify the best
implementation among all implementations.

7.4 Practical Minimal/Maximal Time of ISD Algorithms

There may be concerns regarding the disparity between the expected runtime
and the actual runtime, as evident in the McEliece-1409 record. Specifically, this
situation raises questions about whether dimensionality n influences the variance
in runtime. However, we can refute this notion by extending the confidence
interval analysis to the geometric distribution. Note that the best-case/worst-
case time complexities of an ISD algorithm are 1 and ∞, respectively.

We denote the probability of success for each iteration as q in any ISD algo-
rithm. The probability density function for the N -th iteration at which the algo-
rithm terminates is given by f(N) = q(1−q)N−1, which is the geometric distribu-
tion. Since the total time complexity of an ISD algorithm up to theN -th iteration
is N(Tge + Tsearch), f(N) can be extended to a map between the runtime of an
ISD and the probability of success: f(t) = q(1−q)t/T−1, where T = Tge+Tsearch.
The cumulative distribution function for f(t) is F (t) = 1 − (1 − q)t/T . We aim
to exclude the leftmost/rightmost α from the area formed between 0 and f(t),
as depicted in Figure 6.

To do so, we consider an interval, [tαmin, t
α
max], where t

α
min satisfies F (tαmin) = α

and tαmax satisfies F (tαmax) = 1−α. We refer to tαmin as the minimal time and tαmax

as the maximal time with respect to α. The minimal time tαmin is determined by
solving the following equation for t: 1− (1− q)t/T = α, which gives

tαmin =
(
q−1α+O(q−1α2)

)
T, (21)

by series expansion. Assuming q ≪ 1 and α≪ 1, Eq. (21) is approximated by

tαmin ≈ q−1Tα. (22)

The maximal time can be determined by solving the following equation for t:
1− (1− q)t/T = 1− α, which gives

tαmax =

(
q−1 − 1

2
+O(q)

)
T lnα−1, (23)

9 https://isd.mceliece.org/1347.html, published on February 26, 2023.

https://isd.mceliece.org/1347.html

30 S. Narisada et al.

0

f(t) := q(1− q)
t
T

−1

α

α

0 tαmin q−1T tαmax t

Fig. 6. The minimal time tαmin and maximal time tαmax of an ISD algorithm w.r.t. a
parameter 0 ≤ α ≤ 1. f(t) := q(1 − q)t/T−1 is a map from the runtime t to the
success probability f(t) at which an ISD algorithm terminates, where T = Tge+Tsearch.
We draw f(t) with q = 0.01 in this figure for simplicity. q−1T is an average time
complexity of an ISD. Note that the practical value of q is sufficiently small, which gives
approximations of tαmin ≈ q−1Tα and tαmax ≈ q−1T lnα−1. For instance, in the case of
McEliece-1409, optimal parameters in the revisited MMT algorithm yield q = 2−37.1.

by series expansion. Assuming q ≪ 1, then Eq. (23) is approximated by

tαmax ≈ q−1T lnα−1. (24)

It is noteworthy that Eq. (24) increases on a logarithmic scale with decreasing
in α, whereas Eq. (22) linearly decreases as q ≪ 1 is satisfied in ISD algorithms.
Therefore, the choice of α significantly affects the minimal runtime.

For our McEliece-1409 result, the consumed iteration count was 230.8, whereas
the average number of iterations is q−1 = 237.1, resulting in an expected runtime
of 65.3 days. This result gives α ≈ 2−6.3 = 0.013, which falls within the runtime
interval of 15.7 hours to 300.7 days with α = 0.01.

To securely integrate code-based cryptography into real applications, a suffi-
ciently large security margin from the average time complexity should be set by
assuming that α is very small (e.g., α = 2−32), thereby reducing the probability
of successful decoding to a negligible level.

8 Conclusion

In this paper, we propose the revisited MMT algorithm as a generalization of
MMT and BJMM decoding. This algorithm offers the lowest bit security level
for Classic McEliece among all ISD algorithms. Experimentally, we successfully
solve McEliece-1409, which has 70-bit security, for the first time in 30 hours using
10 desktop PCs. These results provide both theoretical and practical evidence
for the reliability of code-based NIST-PQC round 4 candidates.

Future work should include concrete analyses and practical implementations
of later-proposed ISD algorithms, such as the May–Ozerov, Both–May, and siev-
ing ISD algorithms, considering multiple weight distributions. It is important to
verify the resilience of the remaining code-based NIST-PQC candidates against

Revisiting the May–Meurer–Thomae Algorithm 31

structural attacks. Analyzing quantum ISD algorithms from both theoretical
and practical perspectives is also crucial for ensuring the security of code-based
cryptography.

Acknowledgments

This study was supported by JSPS KAKENHI JP22KJ0554 and the Joint Re-
search Center for Advanced and Fundamental Mathematics for Industry, Insti-
tute of Mathematics for Industry, Kyushu University (2022a015).

References

1. Albrecht, M., Bard, G.: The M4RI Library. The M4RI Team (2023), https://bi
tbucket.org/malb/m4ri

2. Aragon, N., Lavauzelle, J., Lequesne, M.: decodingchallenge.org (2019), http://
decodingchallenge.org

3. Becker, A., Coron, J.S., Joux, A.: Improved Generic Algorithms for Hard Knap-
sacks. In: Paterson, K.G. (ed.) Advances in Cryptology – EUROCRYPT 2011. pp.
364–385. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

4. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in
2n/20: How 1 + 1 = 0 improves information set decoding. In: EUROCRYPT 2012.
pp. 520–536 (2012)

5. Berlekamp, E., McEliece, R., Van Tilborg, H.: On the inherent intractability of cer-
tain coding problems (corresp.). IEEE Transactions on Information Theory 24(3),
384–386 (1978)

6. Bernstein, D.J., Lange, T., Peters, C.: Attacking and Defending the McEliece Cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) Post-Quantum Cryptography. pp. 31–
46. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

7. Both, L., May, A.: Decoding linear codes with high error rate and its impact for
LPN security. In: International Conference on Post-Quantum Cryptography. pp.
25–46 (2018)

8. Canto Torres, R., Sendrier, N.: Analysis of Information Set Decoding for a Sub-
linear Error Weight. In: Takagi, T. (ed.) Post-Quantum Cryptography. pp. 144–161.
Springer International Publishing, Cham (2016)

9. Castryck, W., Decru, T.: An Efficient Key Recovery Attack on SIDH. In: Advances
in Cryptology – EUROCRYPT 2023: 42nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part V. p. 423–447. Springer-Verlag, Berlin, Heidelberg (2023)

10. Drăgoi, V., Richmond, T., Bucerzan, D., Legay, A.: Survey on cryptanalysis of
code-based cryptography: From theoretical to physical attacks. In: 2018 7th In-
ternational Conference on Computers Communications and Control (ICCCC). pp.
215–223 (2018). https://doi.org/10.1109/ICCCC.2018.8390461

11. Ducas, L., Esser, A., Etinski, S., Kirshanova, E.: Asymptotics and Improvements
of Sieving for Codes. Cryptology ePrint Archive, Paper 2023/1577 (2023), https:
//eprint.iacr.org/2023/1577, https://eprint.iacr.org/2023/1577

12. Dumer, I.: On minimum distance decoding of linear codes. In: Proc. 5th Joint
Soviet-Swedish Int. Workshop Inform. Theory. pp. 50–52 (1991)

https://bitbucket.org/malb/m4ri
https://bitbucket.org/malb/m4ri
http://decodingchallenge.org
http://decodingchallenge.org
https://doi.org/10.1109/ICCCC.2018.8390461
https://eprint.iacr.org/2023/1577
https://eprint.iacr.org/2023/1577
https://eprint.iacr.org/2023/1577

32 S. Narisada et al.

13. Esser, A.: Revisiting Nearest-Neighbor-Based Information Set Decoding. Cryptol-
ogy ePrint Archive, Paper 2022/1328 (2023), https://eprint.iacr.org/2022/1
328, https://eprint.iacr.org/2022/1328

14. Esser, A., Bellini, E.: Syndrome Decoding Estimator. In: Public-Key Cryptography
– PKC 2022. pp. 112–141 (2022)

15. Esser, A., May, A., Zweydinger, F.: McEliece Needs a Break – Solving McEliece-
1284 and Quasi-Cyclic-2918 with Modern ISD. In: Advances in Cryptology – EU-
ROCRYPT 2022. pp. 433–457 (2022)

16. Esser, A., Verbel, J., Zweydinger, F., Bellini, E.: CryptographicEstimators:
a Software Library for Cryptographic Hardness Estimation. Cryptology ePrint
Archive, Paper 2023/589 (2023), https://eprint.iacr.org/2023/589, https:
//eprint.iacr.org/2023/589

17. Esser, A., Zweydinger, F.: New Time-Memory Trade-Offs for Subset Sum – Im-
proving ISD in Theory and Practice. In: Advances in Cryptology – EUROCRYPT
2023. pp. 360–390 (2023)

18. Guo, Q., Johansson, T., Nguyen, V.: A New Sieving-Style Information-Set De-
coding Algorithm. Cryptology ePrint Archive, Paper 2023/247 (2023), https:

//eprint.iacr.org/2023/247, https://eprint.iacr.org/2023/247

19. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with
CCA security using decoding errors. In: Advances in Cryptology - ASIACRYPT
2016 - 22nd International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Proceedings. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 10031 LNCS, pp. 789–815. Springer (2016)

20. Hamdaoui, Y., Sendrier, N.: A Non Asymptotic Analysis of Information Set De-
coding. IACR Cryptol. ePrint Arch. 2013, 162 (2013), https://api.semanticsc
holar.org/CorpusID:17721683

21. Kachigar, G., Tillich, J.P.: Quantum Information Set Decoding Algorithms. In:
Lange, T., Takagi, T. (eds.) Post-Quantum Cryptography. pp. 69–89. Springer
International Publishing, Cham (2017)

22. Kirshanova, E.: Improved Quantum Information Set Decoding. In: Lange, T.,
Steinwandt, R. (eds.) Post-Quantum Cryptography. pp. 507–527. Springer Inter-
national Publishing, Cham (2018)

23. Kirshanova, E., May, A.: Decoding McEliece with a Hint – Secret Goppa Key Parts
Reveal Everything. In: Security and Cryptography for Networks: 13th International
Conference, SCN 2022, Amalfi (SA), Italy, September 12–14, 2022, Proceedings.
p. 3–20. Springer-Verlag, Berlin, Heidelberg (2022)

24. Li, Y., Wang, L.P.: Security analysis of the Classic McEliece, HQC and BIKE
schemes in low memory. Journal of Information Security and Applications 79,
103651 (2023). https://doi.org/https://doi.org/10.1016/j.jisa.2023.103651

25. May, A., Meurer, A., Thomae, E.: Decoding Random Linear Codes in Õ(20.054n).
In: ASIACRYPT 2011. pp. 107–124 (2011)

26. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: EUROCRYPT 2015. pp. 203–228 (2015)

27. McEliece, R.J.: A Public-Key Cryptosystem Based On Algebraic Coding Theory.
Deep Space Network Progress Report 44, 114–116 (Jan 1978)

28. Narisada, S., Fukushima, K., Kiyomoto, S.: Fast GPU Implementation of Dumer’s
Algorithm Solving the Syndrome Decoding Problem. In: IEEE ISPA 2021. pp.
971–977 (2021)

https://eprint.iacr.org/2022/1328
https://eprint.iacr.org/2022/1328
https://eprint.iacr.org/2022/1328
https://eprint.iacr.org/2023/589
https://eprint.iacr.org/2023/589
https://eprint.iacr.org/2023/589
https://eprint.iacr.org/2023/247
https://eprint.iacr.org/2023/247
https://eprint.iacr.org/2023/247
https://api.semanticscholar.org/CorpusID:17721683
https://api.semanticscholar.org/CorpusID:17721683
https://doi.org/https://doi.org/10.1016/j.jisa.2023.103651

Revisiting the May–Meurer–Thomae Algorithm 33

29. Narisada, S., Fukushima, K., Kiyomoto, S.: Multiparallel MMT: Faster ISD Al-
gorithm Solving High-Dimensional Syndrome Decoding Problem. IEICE Transac-
tions on Fundamentals of Electronics, Communications and Computer Sciences
E106.A(3), 241–252 (2023). https://doi.org/10.1587/transfun.2022CIP0023

30. National Institute of Standards and Technology: PQC Standardization Process:
Announcing Four Candidates to be Standardized, Plus Fourth Round Candidates
(2022), https://csrc.nist.gov/news/2022/pqc-candidates-to-be-standardi
zed-and-round-4

31. Peters, C.: Information-set decoding for linear codes over F q. In: International
Workshop on Post-Quantum Cryptography. pp. 81–94 (2010)

32. Prange, E.: The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory 8(5), 5–9 (1962)

33. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) Algorithm for Cer-
tain NP-Complete Problems. SIAM Journal on Computing 10(3), 456–464 (1981).
https://doi.org/10.1137/0210033, https://doi.org/10.1137/0210033

34. Sendrier, N.: Decoding One Out of Many. In: Post-Quantum Cryptography. pp.
51–67 (2011)

35. Stern, J.: A method for finding codewords of small weight. In: Coding Theory and
Applications. pp. 106–113 (1989)

https://doi.org/10.1587/transfun.2022CIP0023
https://csrc.nist.gov/news/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/news/2022/pqc-candidates-to-be-standardized-and-round-4
https://doi.org/10.1137/0210033
https://doi.org/10.1137/0210033

	 Revisiting the May–Meurer–Thomae Algorithm — Solving McEliece-1409 in One Day
	1 Introduction
	Contributions
	Organization

	2 Preliminaries
	2.1 Notation
	2.2 Information Set Decoding

	3 May–Meurer–Thomae Algorithm
	3.1 Tree-based List Construction of the Depth-2 MMT Algorithm
	3.2 Computational Complexity of the MMT Algorithm
	3.3 Becker–Joux–May–Meurer Algorithm

	4 Revisited MMT Algorithm
	4.1 Disjoint Weight Distribution for Solution Candidates
	4.2 Multi-weight Initialization
	4.3 Algorithm and Computational Complexity
	Relationship to BJMM Algorithm

	5 Asymptotic Analysis for Schroeppel–Shamir ISD
	5.1 The Schroeppel–Shamir Technique
	5.2 Dumer's Algorithm with Schroeppel–Shamir Technique
	Numerical Optimization

	5.3 MMT Algorithm with Schroeppel–Shamir Technique
	Numerical Optimization
	Asymptotic Complexity for BJMM and Revisited MMT Algorithm

	6 Cryptanalysis
	6.1 Cryptanalysis for Classic McEliece
	6.2 Cryptanalysis for BIKE and HQC

	7 Experimental Results
	7.1 GPU Implementation of the Revisited MMT Algorithm
	7.2 Decoding McEliece-1409 Challenge
	7.3 Comparison with Latest Implementations
	7.4 Practical Minimal/Maximal Time of ISD Algorithms

	8 Conclusion

