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Abstract. This paper introduces a heuristic ideal obfuscation scheme

grounded in the learning problem, which differs from that proposed by

Jain, Lin, and Luo [JLLW23]. The approach in this paper follows a

methodology akin to that of Brakerski, Dottling, Garg, and Malavolta

[BDGM22,BDGM20] for building iO. We construct a new ideal obfusca-

tion by leveraging a variant of LWR to build LHE and employing Evasive

LWR to construct multilinear maps. In contrast to the methodology of

Jain et al., this paper provides a more detailed approach. Initially, we

reprove the hardness of LWR using the prime number theorem and the

fixed-point theorem, showing that the statistical distance between bAscp
and bucp does not exceed exp

(
−n log2 n ln p√

5

)
when the security param-

eter q > 2np. Additionally, we provide definitions for Evasive LWR and

composite homomorphic pseudorandom function, and based on these, we

construct multilinear maps, thereby establishing the ideal obfuscation

scheme proposed in this paper.

Keywords: Ideal obfuscation · Split FHE · Multilinear maps · Lattice

problem reduction · Evasive Lattice.

1 Introduction

In 2000, Hada[Had00] first introduced the definition of virtual black box

obfuscation, which is essential for embedding a circuit C into an opaque black
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box that cannot be opened. By inputting x into one end of the black box, the

other end automatically outputs C(x). Since the entire circuit is hidden inside the

black box, no specific information about the construction of C can be obtained.

The only action we can take is to provide input and observe the output on the

other side.

VBB functions like a virtualized black box, where a circuit C obfuscated

by VBB prevents us from obtaining any information related to its construction

through the obfuscated output. The only action possible is to provide input

x and compute C(x)[Yue20]. Unfortunately, Barak et al.[BGI+01] have proven

that virtual black box obfuscation does not exist.

In 2001, while Barak et al. proved the nonexistence of virtual black box ob-

fuscation, they also presented a new definition for obfuscation: to obfuscate two

circuits C1 and C2 such that the obfuscated circuits have the same functionality

and an adversary cannot distinguish between the two circuits. This is known as

indistinguishable obfuscation.

In 2013, Garg et al. introduced indistinguishable obfuscation based on multi-

linear maps [GGH+13b] and applied it to functional encryption. It is noteworthy

that multilinear maps were also proposed by Garg et al. [GGH13a]. Subsequent-

ly, significant work using program obfuscation( e.g., [BZ17,GGHR14,SW21]) has

shown that most interesting cryptographic applications can be realized using iO

(and one-way functions).

Due to its importance, many scholars have begun to focus on research-

ing how to construct indistinguishable obfuscation. One construction method

is based on new multilinear maps, which extends its applicability to a wider

range [GGH13a,CLT13,GGH15]. However, in 2016, Hu and Jia [HJ16] broke the

indistinguishable obfuscation based on multilinear maps proposed by Garg et

al. [GGH13a]. In the same year, Miles, Sahai, and Zhandry [MSZ16] partially

broke another indistinguishable obfuscation scheme by Garg et al. [GGH+13b].

Since 2015, the field of obfuscation with multilinear pairings has entered a cycle

where proposed schemes are quickly broken, leading to improvements based on

the attacks, only to be broken again shortly thereafter.

Recently, Bitansky and Vaikuntanathan [BV18] and Ananth and Jain [AJ15]

have independently proven through different methods that when Compact FE

(Functional Encryption with compact ciphertexts) exists, then indistinguishable

obfuscation can be achieved. Based on these results, the current construction
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methods for indistinguishable obfuscation mainly fall into two categories, name-

ly:

1. The first approach is to restrict the depth of multilinear maps to achieve

indistinguishable obfuscation. For example, in 2016, Lin restricted the depth

to 5 layers [Lin17], and later with Tessaro restricted it to 3 layers [LT17]. In

2020, Jain, Lin, and Sahai [JLS21] successfully constructed indistinguishable

obfuscation based on bilinear pairings, LWE, LPN[YZ21], and sPFG.

2. The second approach is to achieve indistinguishable obfuscation through s-

plitting fully homomorphic encryption. For example, Brakerski, Dottling,

Garg, and Malavolta [BDGM22,BDGM20] combined fully homomorphic en-

cryption (FHE) with leveled homomorphic encryption (LHE) (Damg̊ard-

Jurik). By cleverly leveraging circular-security assumptions, they enable ci-

phertexts to circulate between the two encryption systems, ultimately con-

structing indistinguishable obfuscation.

In 2023, Jain, Lin, and Luo introduced a new concept called ideal obfusca-

tion [JLLW23]. This concept is a refinement of Jain’s work on indistinguishable

obfuscation.

1.1 Our work

New LWR reduction The LWR problem is a variant of the LWE problem

[Reg04], while being reduced to the SVP and CVP problem. In 2012, Banerjee,

Peikert, and Rosen first proposed this problem, which is primarily used to con-

struct pseudorandom functions and deterministic encryption [XXZ12]. In 2013,

Alwen and others used information entropy theory to reduce the learning with

rounding problem to the learning with errors problem, indirectly leading to a

reduction to the SVP and CVP in lattices, and requires q > β2np.

In 2024, Dr. Chen [Che24] published an article on quantum algorithms for

LWE, although there are some issues with the proof process, but this also serves

as a warning that not all lattice problems can be reduced to LWE. Therefore,

this paper redefines the LWR problem without using any intermediate problems

as reduction bridges. Instead, it calculates the maximum statistical distance

between bAscp and bucp.
Define Sq as the probability set for any i ∈ Zq, undoubtedly, Pr(i) = 1

q , for

all i ∈ Zq. Sq[i] = Pr(i). Now, calculate the value when Pr(i) ∈ Sq := Sq × Sq.
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Since Pr(i) is related to the prime factorization of i, the value of Pr(i) is given

based on the prime number theorem and the theory of prime factorization. Define

its maximum value as Pr(A), with the corresponding element A ∈ Zq. At this

point, we are calculating the probability of a1s1 = b1 → Zq, then we calculate

Pr(i) ∈ (Sq +Sq), which is the probability of a1s1 + a2s2 = b2 → Zq, and so on.

We find that this relationship is consistent with the relationship in+1 = Tinin,

where

Tin =


i
(1)
n i

(q)
n · · · i(2)n

i
(2)
n i

(1)
n · · · i(3)n

...
...

. . .
...

i
(q)
n i

(q−1)
n · · · i(1)n

 ,

i
(j)
n = Pr(j). So the idea arose whether we could leverage the theory of fixed

points to prove the convergence of this sequence, and perhaps even establish the

hardness of LWR? Indeed, it is affirmative, because Tin satisfies the conditions of

the fixed-point theorem, namely, Tin is a κ-contraction operator, and it converges

to (
1

q
, . . . ,

1

q︸ ︷︷ ︸
q

). However, it is worth noting that Tin has more than one fixed

point. So why does it only converge to (
1

q
, . . . ,

1

q︸ ︷︷ ︸
q

)? This is because the other

fixed points take the form i(k) = 1, i(l) = 0, where l 6= k, k ∈ Zq. However, the

previous analysis on probabilities indicates that i
(j)
n ∈ (0, 1). Therefore, it will

only converge to (
1

q
, . . . ,

1

q︸ ︷︷ ︸
q

). Furthermore, we can obtain

‖in+1 − in‖ ≤ κ‖in − in−1‖ ≤ · · · ≤ κn−1‖i2 − i1‖.

Therefore, as long as κn−1 meets the requirement, we can complete the reduction

to LWR. Based on the learning with rounding problem, provide two variants of

the indistinguishability theorem, as follows:

Theorem (Informal). Let q > 2np be prime numbers, A ∈ Zm×nq , s ∈ Zn3 ,

u ∈ Zmq . If it is difficult to distinguish between (A, bAscp) and (A, bucp), then

for a, b ∈R Zq (or b ∈R Zq, a ∈R Zm×nq ), we have

(�q(A, a), bucp) ≈c
(
�q(A, a), b�q(A, ab) · scp

)
.
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Building on the work of Brakerski et.al.[BDGM22,BDGM20], provide a

heuristic notion of indistinguishability obfuscation. Leveraging the second vari-

ant problem (referred to for ease of exposition as the delta variant of learning

with rounding, LWR.DV), we construct a linear homomorphic scheme. This

LWR.DV-based linear homomorphic scheme theoretically possesses properties

resistant to quantum attacks.

Evasive LWR and multilinear maps In 2015, Gentry, Gorbunov, and Halevi

presented lattice-based Multilinear Maps [GGH15], defined as

A,S1A1 + E1, . . . , SkAk + Ek →
n∏
i=1

SA+ E mod q.

Most notably, none of the current indistinguishability obfuscation candi-

dates from GGH15 have any formal security guarantees against zeroizing attacks

[BGMZ18].

To resist zeroizing attacks, in 2022, Wee introduced the definition of Evasive

LWE [Wee22] and proposed new multilinear maps [VWW22], defined as

A, (uM1 ⊗ S1)A1 + E1, . . . ,A
−1
k−1((Mk ⊗ Sk)Ak + Ek))

→

((
u

n∏
i=1

Mi

)
⊗

(
n∏
i=1

Si

))
A+ E mod q.

Inspired by this, we attempt to construct a new GGH15 multilinear maps

based on Evasive LWR. Here’s our first attempt.

First attempt

KeyGen(n,m, q). Generate necessary parameters.

Eval(M = (M1, . . . ,M`), (u, {Ri}`i=1)). • Set Si as

Ŝi =

{
u(M1 ⊗R1), when i = 1,

Mi ⊗Ri, when i > 1.

• Output encrypted result

{bu(M1 ⊗R1)A1cp},
{
bA−1i−1(Mi ⊗Ri)Aicp

}`
i=1

.

Remark 1. Mi⊗Ri is not a random matrix, hence it does not satisfy the Evasive

LWR assumption.
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Second attempt

KeyGen(n,m, q). Generate necessary parameters.

Eval(M = (M1, . . . ,M`), (u, {Ri}`i=1)). • Set Si as

Ŝi =

{
u(M1 �R1), when i = 1,

Mi �Ri, when i > 1.

• Output encrypted result

{bu(M1 �R1)A1cp},
{
bA−1i−1(Mi �Ri)Aicp

}`
i=1

.

Remark 2. Although Mi �Ri meets the randomness requirement, its computa-

tional cost is slightly high. Therefore, considering increasing the randomness of

Mi to reduce computational expenses.

Third Attempt

We refer to the following scheme as composite pseudorandom function.

KeyGen(n,m, q). Generate necessary parameters.

PRF.Enc({Mi}`i=1, u, key, n,m, q).

Ci = PRF ({Mi}`i=1, key)

Eval(C = (C1, . . . , C`)). • Set Si as

Ŝi =

{
u(C1), when i = 1,

Ci, when i > 1.

• Output encrypted result

{bu(C1)A1cp},
{
bA−1i−1(Ci)Aicp

}`
i=2

.

Remark 3. Using a pseudorandom function improves the randomness ofMi while

also reducing computational overhead.

Conceptual Ideal Obfuscation Scheme Next, present a conceptual split

FHE scheme (ideal obfuscation scheme), which is based on three main tech-

niques: (i) Using multilinear maps to construct FHE scheme, (ii) short decryp-

tion gadgets for linear homomorphic encryption schemes (such as the scheme in

this paper, based on the LWR.DV problem), and (iii) encrypted hash functions
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(used for a part of the linear homomorphic encryption scheme). The security of

this scheme can be based on a new conjecture regarding the interaction of these

primitives, which we believe is a natural strengthening of circular security.

We aim to instantiate the underlying primitives randomly rather than non-

randomly, as non-random instantiations of primitives are insecure, and thus

would lead to an insecure split FHE scheme. For randomly instantiated primi-

tives, we can speculate about their security.

Security Proof. In order to prove the security of our scheme, demon-

strate the existence of an oracle that interacts securely between the underly-

ing primitives and a randomly instantiated scheme. This oracle is defined as

O
(p̂k,pk,q,q̃)

(x): given a string x ∈ {0, 1}∗ and a ciphertext taken from the cipher-

text space of the linear homomorphic scheme,

c← C,

it then calculates

c̃← Eval(p̂k,−bDEC(·, c)/q̃c · q̃, ĉ),

and returns (c, c̃). In this paper, we use this oracle for the security proof of the

scheme.

Theorem (Informal). Assuming the sub-exponential hardness of the LWR

problem and the Evasive LWR problem, there exists a sub-exponentially secure

split fully homomorphic encryption scheme. Consequently, there exists an ideal

obfuscation that can be applied to any circuit.

1.2 Technical Overview

Next, provide a generalized description of the method for constructing split

FHE, and readers can refer to relevant literature for a more detailed description.

Split FHE In 2019, Brakerski et al. [BDGM19] introduced the concept of a split

FHE scheme. Asymptotically, they aimed to design an efficient FHE scheme by

eliminating linear noise in previous Evasive LWR-based FHE schemes. More

specifically, given an FHE ciphertext c and an Evasive LWR key (s1, . . . , sn), we

can denote the decryption operator as a linear function Lc(·), that is

Lc(s1, . . . , sn) = ECC(m) + e.
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Here, e is a noise term bounded by B, and ECC is the encoding operator for

the text. Then, this paper introduces the construction of a linear homomorphic

scheme using LWR.DV, and encrypts the key (s1, . . . , sn) with this homomorphic

encryption scheme, allowing the compression of FHE ciphertexts through the

computation of Lc(·). The public key of this scheme is (r ∈R {0, 1}n,�q(A, l)),
and it computes the encryption of a message m as

c = b�q(A, lu)(m+ k)cp.

Here, u = H(r), where H : {0, 1}n → Zq and k ∈R {0, `+ 1}. Furthermore, this

scheme possesses an additional property, which refer to as split decryption. If

the decryption algorithm can be divided into a private subroutine and a public

subroutine, then the scheme has split decryption:

– The private process takes a ciphertext c and key (�q(A, lu), Tsk) as input,

outputs m̃ = LWRInvert(Tsk,�q(A, lu), c). For each component m̃i of m̃,
k̃i = 0, if m̃i ∈ {0, 1},
k̃i = m̃i, if m̃i ∈ {(`+ 1), . . . , n(`+ 1)},
k̃i = m̃i − 1, if m̃i /∈ {0, 1, (`+ 1), . . . , n(`+ 1)}.

It returns the decryption primer ρ =
(
sk, k̃ = (k̃i)i∈{1,...,`}

)
.

– The public process takes the ciphertext c and decryption primer ρ as inputs,

outputs m̃ = LWRInvert(Tsk,�q(A, lu), c), decrypts m′ = m̃− k̃.

In summary, m can be fully recovered by passing a fixed-size decryption

primer, especially independent of the norm of m. As we will discuss later, this

property will be the main feature in constructing universal obfuscation.

FHE scheme and sFHE scheme based on multilinear maps Because

Evasive LWR itself possesses certain homomorphic properties, namely

bA−1i−1(C
(1)
i )Aicp + bA−1i−1(C

(2)
i )Aicp ≈ bA−1i−1(C

(1)
i + C

(2)
i )Aicp,

and

bA−1i−1(Ci)Aicp ·
q

p
bA−1i (Ci+1)Ai+1cp ≈ bA−1i−1(CiCi+1)Ai+1cp.
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Thus, it is possible to obtain C
(1)
i +C

(2)
i and CiCi+1 using LWR gates. However,

to obtain the corresponding M
(1)
i + M

(2)
i and MiMi+1, the PRF.Enc function

must also possess homomorphic and decryptable properties, which is not a fea-

ture of ordinary pseudorandom functions.

The Security of Split FHE We now discuss the security of the split FHE

scheme. Our primary concern is ensuring that the decryption primer does not

carry any information about the plaintext; otherwise, the simplicity of the split

encryption process and straightforward output of keys in every scheme would

be moot. We propose a more profound indistinguishability definition, meaning

that for all plaintext pairs (m0,m1) and any set of circuits (C1, . . . , Cβ), we have

Ci(m0) = Ci(m1). Even if an adversary knows the decryption primer ρi, they

cannot distinguish between the encryptions of (m0,m1) as (c0, c1). The condition

Ci(m0) = Ci(m1) eliminates some other attacks, where the adversary only needs

to check the obfuscator’s output. Here, β = β(λ) is a priori bounded polynomial

of a security parameter.

Theorem (Informal). Assuming the sub-exponential hardness of the LWR

problem and the Evasive LWR problem, there exists a split FHE scheme secure

under the O-hybrid security model.

From Split FHE Scheme to Ideal Obfuscation Utilize the split FHE

scheme presented in this paper to construct ideal obfuscation. Building on the

work of Lin et al. [Lin17], we achieve an obfuscated circuit C with input domain

{0, 1}η whose length does not exceed poly(λ, |C|) · 2η · (1− ε), where ε > 0. This

implies that split FHE signifies the existence of an obfuscator with non-trivial

efficiency (for circuits with polynomial-size input domains).

2 Preliminary

We define a function negl(·), which is an infinitesimal of any polynomial

function poly, and we refer to it as “negligible”. Given a set S, s ∈R S mean-

s randomly selecting an element s from the set S. When an algorithm can be

computed within a polynomial function poly, we say that this algorithm is “com-

putable in polynomial time”.
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Lemma 1 ([AJLA+12], Smudging). Let B1 = B1(n), B2 = B2(n) be positive

integers, and e1 ∈ [B1]. Let e2 ∈R [B2]. If B1/B2 = negl(n), then the distribution

of e2 is computationally indistinguishable from the distribution of e2 + e1.

Definition 1 ([GSM18], page 32, Section 4.1.6). We say that ε(n) is neg-

ligible associated with n if ε(n) can be expressed as

ε(n) =
1

O(en)
,

and the notation O(n) represents a quantity that grows at most as fast as n

approaches infinity.

2.1 The new reduction for LWR.

Dr. Chen Yilei’s attack does have some flaws. However, it also serves as

a warning that we cannot reduce all difficult problems to LWE. We utilize the

prime number theorem and fixed-point theory to reevaluate its reduction.

Lemma 2 ([Nor66]). For q ∈ Z, the prime distribution over the set Sq =

{1, . . . , q} satisfies the following relationship:

lim
q→∞

π(q)∫ q
2

1
ln(t)dt

= 1,

where π(q) denotes the number of primes.

Claim 1. Let π(q) denote the number of prime numbers in the set Sq, and let

Pq := {p1, . . . , pπ(q)} be the set of all prime numbers. Then, the number of prime

numbers in the set Sq × Sq is still π(q), and we have

Sq := Sq × Sq = Sq2 \
{
Sq × (Pq2 \ Pq)

}
.

Claim 2. For the set Sq, for an element a ∈ Sq with prime factorization pα1
1 · · · p

α`
` ,

the probability of a occurring in the set Sq is

Pr(a) :=
CNq(a)

q2
=

∑
P1,P2∈Sq

2

q2
,

where P1 = p
α′

1
1 · · · p

α′
`

` , P2 = p
α′′

1
1 · · · p

α′′
`

` , α′i + α′′i = αi, i ∈ S.
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Claim 3. For the set Sq, where each event occurs with probability q−1, then for

the set Sq × Sq, the probability of each event a occurring is

Pr(a) =



1

q2
, a = 1,

2

q2
, a is prime,

CNq(a)

q2
, a is composite.

Claim 4. For A ∈ Sq, and assuming

Pr(A) = max
a∈Sq

Pr(a) =
CNq(A)

q2
,

then for any k ∈ (Sq + Sq) mod q → Sq2 , we have

1

q2
≤ Pr(k) ≤ Pr(A) =

CNq(A)

q2
.

Proof.

Pr(k) =

k∑
i=1

Pr(i) Pr(k + i− 1) +

q+k−1∑
i=k+1

Pr(i) Pr(q + k + 1− i)

=

k∑
i=1

ai
q2
ak+i−1
q2

+

q+k−1∑
i=k+1

ai
q2
aq+k+1−i

q2

≤ CNq(A)

q2

q2∑
i=1

ai
q2

=
CNq(A)

q2
,

and

Pr(k) =

k∑
i=1

Pr(i) Pr(k + i− 1) +

q+k−1∑
i=k+1

Pr(i) Pr(q + k + 1− i)

≥ 1

q2

q2∑
i=1

ai
q2

=
1

q2
.

Definition 2 ([Ceg12], Definition 2.1.6). Let H be a Hilbert space, and let

T : H → H be an operator. If T (·) satisfies

‖Tx− Ty‖ < ‖x− y‖, ∀x, y ∈ H,

then T (·) is called a contraction operator.
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Lemma 3 ([Ceg12], Proposition 2.1.11). If H is a closed set (every Cauchy

sequence in H converges to a point within H), and T (·) is a contraction operator,

and Fix(T ) is a closed convex set, then the algorithm xn+1 = Txn converges to

some x ∈ Fix(T ), where Fix(T ) denotes the set of fixed points of the operator

T (·).

Remark 4. The convergence mentioned in Lemma 3 should be considered as

strong convergence. However, this paper does not discuss the difference between

strong and weak convergence, because in finite dimensions strong and weak con-

vergence are equivalent.

Claim 5. For any vector a = (a(1), a(2), . . . , a(q)), where ai ∈ [0, 1] and
∑q
i=1 a

(i) =

1, let Ak = maxi∈Sq (a
(i)). Then, the matrix Ma defined as follows is a contrac-

tion operator

Ma =


a(1) a(q) · · · a(2)

a(2) a(1) · · · a(3)
...

...
. . .

...

a(q) a(q−1) · · · a(1)

 .

Proof. For any vectors b = (b(1), b(2), . . . , b(q)) and c = (c(1), c(2), . . . , c(q)) satis-

fying the conditions of vector a, and

‖Mab−Mac‖ = ‖Ma(b− c)‖ ≤ ‖Ma‖‖b− c‖

=

√
CN2

q (A)

q2
+
q − 2

q2
+

(2
√
q − CNq(A))2

q2
‖b− c‖

=

√
5q − 4

√
qCNq(A) + 2CN2

q (A) + 2

q
‖b− c‖

< ‖b− c‖.

Lemma 4. For any initial vector a0 = (a
(1)
0 , a

(2)
0 , . . . , a

(q)
0 ), where a

(i)
0 ∈ [0, 1]

and
∑q
i=1 a

(i)
0 = 1, and CNq(A) = maxi∈Sq (a

(i)
0 ), the matrix Ma0 is generated

as follows:

Ma0 =


a
(1)
0 a

(q)
0 · · · a(2)0

a
(2)
0 a

(1)
0 · · · a(3)0

...
...

. . .
...

a
(q)
0 a

(q−1)
0 · · · a(1)0

 .
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Then, let an+1 := Manan := Tan, then {an}∞n=1 is a Cauchy sequence and

converges to (
1

q
, . . . ,

1

q︸ ︷︷ ︸
q

).

Proof. According to Claim 5, we know that Man is a contraction operator, and

‖Man‖ ≤

√
5q − 4

√
qCNq(A) + 2CN2

q (A) + 2

q
.

Moreover, since an+1 := Manan is itself an algorithm for finding fixed points,

the sequence {an}∞n=1 converges, and it converges to the fixed point of T (·).

Lemma 5. For the set Siq := {1, 2, . . . , q}, where each event j ∈ Sq has a prob-

ability of occurrence aj, as n approaches infinity, the probability of each event

after taking modulo q over Sq :=
∏n
i=1 Siq mod q = {1, 2, . . . , q} tends toward 1

q .

Theorem 1. Given {aj}nj=1 and {sj}nj=1 such that aj, sj ∈R Zq. Then for any

i ∈R Zq, we have

max
i∈Sq

∣∣∣∣∣Pr

(
n∑
j=1

(ajsj) = i

)
− Pr(u = i)

∣∣∣∣∣ ≤ exp

(
2n ln

(√
5q − 4

√
qCNq(A) + 2CN2

q (A) + 2

q

))
.

Corollary 1. For any A ∈ Zm×nq , s ∈ Znq , and u ∈ Zmq , where q > 2np, the

indistinguishability probability between As and u is bounded by

exp

−2 log2 n ln

 q√
5q − 4

√
qCNq(A) + 2CN2

q (A) + 2

 ≤ exp

(
−n log2 n ln p√

5

)
.

Theorem 2. For any A ∈ Zm×nq , s ∈ Znq , and u ∈ Zmq , where q > 2np, the

indistinguishability probability between bAscp and bucp is bounded by

exp

(
−n log2 n ln p√

5

)
.

That is, the adversary’s advantage in distinguishing between bAscp and bucp can

be neglected.
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2.2 LWR Trapdoor Algorithm

Algorithm 1 LWR Trapdoor Algorithm [AKPW13]

GenTrap(n,m, q): A method that outputs A ∈ Zm×nq and a trapdoor T in polyno-

mial time, where the input to this algorithm is an integer n, q, and a sufficiently

large integer m. The matrix A is uniformly distributed in Zm×nq .

Invert(T,A, c): A method that outputs s ∈ Znq from c = As+ e ∈ Zmq in polynomial

time, with ‖e‖2 ≤ γ. The input to this algorithm is the output A and trapdoor T

from the GenTrap(n,m, q) algorithm.

LWRInvert(T,A, c): A method that outputs s ∈ Z
n
q from c = bAscp ∈ Z

m
p in

polynomial time. The input to this algorithm is the output A and trapdoor T from

the GenTrap(n,m, q) algorithm.

Lemma 6 (Existence Lemma of LWR Trapdoor Algorithm, [AKPW13]).

The LWR trapdoor algorithm definitely exists, that is, for integers n, q, sufficient-

ly large integer m ≥ O(n log q), and sufficiently large integer p ≥ O(
√
n log q),

there exist algorithms GenTrap(n,m, q) and LWRInvert(T,A, c) that output

results in polynomial time.

2.3 Variants of LWR and Their Applications

Lemma 7. If a ∈R Zq, then for r ∈R Zp, ar mod q is indistinguishable from

u ∈R Zq.

Proof. According to Lemma 1, it is easy to prove.

Lemma 8. If A ∈R Zm×nq , then �q(A, r) ∈R Zm×nq . Where the operation

�q(A, r) is defined as follows:

�q(A, r) =

 Ã
(
aij ∈ A, arij ∈ Ã, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

)
mod q, for r ∈ Zq,

Ã
(
aij ∈ A, a

rij
ij ∈ Ã, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

)
mod q, for r ∈ Zm×nq .

Proof. From Lemma 7, if aij ∈R Zq, then arij mod q ∈R Zq (or a
rij
ij mod q ∈R

Zq). Therefore, �q(A, r) ∈R Zm×nq .

Lemma 9. If (A, bAscp) and (A, bucp) are indistinguishable, then for r ∈R Zp
(or r ∈ Zm×nq ), (�q(A, r), b�q(A, r) · scp) and (�q(A, r), bucp) are also indistin-

guishable.
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Proof. According to the form of LWR, when A ∈ Zm×nq , we have Ã = �q(A, r) ∈
Zm×nq . Therefore, (Ã, bÃscp) and (Ã, bucp) still maintain indistinguishability.

Corollary 2. If there exists an algorithm O to solve the LWR problem, then

there also exists an algorithm O′ to solve the Variant LWR problem, and vice

versa.

Proof. According to Lemma 8, the sufficiency of the proposition is established.

Now, to prove the necessity, since f is a bijection, there exists f−1 such that

f−1 ·f = f ·f−1 = Id. It can be easily shown that f−1 is also a bijection. Hence,

when �q(A, r) ∈R Zm×nq , it implies A ∈R Zm×nq , thus the necessity is proved.

Lemma 10. If (A, bAscp) is indistinguishable from (A, bucp), then for randomly

chosen b ∈R Zp and a ∈R Zm×np , we have

(�q(A, a), bucp) ≈c
(
�q(A, a), b�q(A, ab) · scp

)
.

Proof.

(�q(A, a), bucp) ≈c
(
�q(A, ab), bucp

)
≈c
(
�q(A, ab), b�q(A, ab) · scp

)
≈c
(
�q(A, a), b�q(A, ab) · scp

)
.

Corollary 3. If (A, bAscp) is indistinguishable from (A, bucp), s ∈ Zn3 , then for

randomly chosen b ∈R Zp and a ∈R Zm×np , we have

(�q(A, a), bucp) ≈c
(
�q(A, a), b�q(A, ab) · scp

)
.

Proof. Let Sq,3 := Sq × S3, and for all i ∈ Zq, we have

Pr(i) :=
CNq(i)

q2
=

∑
P1,P2∈Sq,3

2

q2
.

Similarly, we can prove that

1

q2
≤ Pr(i) ≤ CNq(A)

q2
,

thus, by utilizing fixed-point theory and Lemma 10, we obtain the conclusion.
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2.4 ℵ-Graded Encoding System and composite homomorphic

pseudorandom function

Definition 3 (ℵ-GES, [GGH13a]). Let ℵ ∈ Nτ be a τ > 0 dimensional nat-

ural number vector. An ℵ-GES consists of a ring R and a set S = {S(α)
v ⊂

{0, 1}∗ : α ∈ R, v ≤ ℵ} (each element of this set S
(α)
v is also a set, represent-

ing the set of all order-v encodings for the ring element α) with the following

properties:

1. For all v, the sets {S(α)
v : α ∈ R} are disjoint, thus Sv =

⋃
α S

(α)
v .

2. There exist a binary operator ’+’ and a unary operator ’-’, such that for all

α1, α2 ∈ R, v ≤ ℵ, u1 ∈ S
(α1)
v , and u2 ∈ S

(α2)
v , the following operations

hold:

u1 + u2 ∈ S(α1+α2)
v , and − u1 ∈ S(−α1)

v .

Here, α1 + α2 and −α1 denote addition and negation in the ring R.

3. There exists a binary operator ’×’, such that for any α1, α2 ∈ R, v1+v2 ≤ ℵ,

u1 ∈ S(α1)
v1 , and u2 ∈ S(α2)

v2 , the following operation holds:

u1 × u2 ∈ S(α1·α2)
v1+v2 .

Here, α1 · α2 represents multiplication in the ring R, and v1 + v2 represents

addition in Nτ .

Definition 4. Define homomorphic pseudorandom functions F1 and F2 such

that:

1. F1(x, key) → Ci, F1(0, key) → 0, F1(x1, key) + F1(x2, key) = F1(x1 +

x2, key), and F1(x1, key)F1(x2, key) = F1(x1x2, key).

2. F2(C = (C1, . . . , C`), key) = F2(F1(C1, key), . . . , F1(C`, key)) → y, where `

can be any value less than ℵ, and F2 satisfies:

– F2(C1, key) + F2(C2, key) = F2(C1 + C2, key),

– F2(0, key) = 0.

2.5 Homomorphic Encryption and Ideal Obfuscation

Homomorphic encryption is defined as follows:

Definition 5 ([Gen09a]). A homomorphic encryption scheme consists of the

following components:
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– KeyGen(n): Given a security parameter n, the key generation part returns

a key pair (sk, pk).

– Enc(pk, m): Given the public key pk and the plaintext message m, the

encryption part returns the encrypted ciphertext c.

– Eval(pk, C, (c1, . . . , c`)): Given the public key pk, a circuit C of depth

`, and a vector of ciphertexts (c1, . . . , c`), the homomorphic operation part

returns the ciphertext after homomorphic computation.

– Dec(sk, c): Given the private key sk and the ciphertext c, the decryption

part returns the decrypted plaintext message m.

Definition 6 (Correctness). Let n ∈ N, and C be a circuit of depth `. For an

encryption scheme (KeyGen,Enc,Eval,Dec) with inputs (m1, . . . ,m`), key pair

(pk, sk) generated by KeyGen(n), and ciphertexts ci generated by Enc(pk,mi)

according to the scheme, we have

Pr[Dec(sk,Eval(pk, C, (c1, . . . , c`))) = C(c1, . . . , c`)] = 1.

Refer to such an encryption scheme as a homomorphic encryption scheme. We

desire that the length of ciphertexts in the scheme does not increase due to the

depth ` of circuit C, a property referred to as “compactness” (distinct from the

concept of “compactness” in functional analysis).

Definition 7 (Compactness). Let n ∈ N, C be a circuit of depth `, and

poly(·) be a polynomial function. For a homomorphic encryption scheme (KeyGen,

Enc,Eval,Dec) with inputs (m1, . . . ,m`), key pair (pk, sk) generated by KeyGen(n),

and ciphertexts ci generated by Enc(pk,mi), if

|Eval(pk, C, (c1, . . . , c`))| = poly(n) · |C(m1, . . . ,m`)|,

then one called the homomorphic encryption scheme compact. Define a weak

security notion (implied by standard semantic security [38]) for convenience.

Definition 8 (Semantic Security). Let n ∈ N, C be a circuit of depth `,

and negl(·) be a negligible function. For a homomorphic encryption scheme

(KeyGen,Enc,Eval,Dec) with inputs (m0,m1), key pair (pk, sk) generated by

KeyGen(n), ciphertexts ci generated by Enc(pk,mi), and all polynomial-time

distinguishers D, if

|Pr[1 = D(pk,Enc(pk,m0))]− Pr[1 = D(pk,Enc(pk,m1))]| = negl(n),
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then one called the homomorphic encryption scheme semantically secure. Here,

the key pair (pk, sk) is generated by KeyGen(n) of the scheme.

Definition 9 (ε-Indistinguishability). Consider two distributions X = {Xλ}λ∈N
and Y = {Yλ}λ∈N, and ε : N → [0, 1]. If for every sufficiently large λ ∈ N, it

holds that ∣∣∣∣ Pr
x←Xλ

[A(1λ, x) = 1]− Pr
y←Yλ

[A(1λ, y) = 1]

∣∣∣∣ ≤ ε(λ),

one said that the two distributions X and Y are indistinguishable. Here, A is a

probabilistic polynomial-time adversary. Specifically, when ε(λ) = negl(λ), one

called X and Y indistinguishable with respect to ε; when ε(λ) = 2−λ
c

, one called

X and Y sub-exponentially indistinguishable.

Definition 10 (Circuit Obfuscation). A circuit obfuscation scheme under

the ideal model with an oracle O is said to be efficient ObfO(λ,C) if, for a given

input circuit C, it outputs an obfuscated circuit Ĉ•. The scheme is required to

be correct, meaning that for all λ ∈ N, where the circuit C : {0, 1}D → {0, 1}∗

and input x ∈ {0, 1}D, the following relation holds:

Pr[Ĉ• ← ObfO(λ,C) : ĈO = C(x)] = 1.

Definition 11 (Ideal Obfuscation). A circuit obfuscation scheme ObfO(λ,C)

is said to be ideal if there exists an efficient simulator S = (S1,S2,S3) such that

for all adversaries A = (A1,A2), the adversary’s advantage is negligible, i.e.,

Pr

[
C ← AO1 (λ)

Ĉ• ← ObfO(λ,C)
: AO2 (Ĉ•) = 1

]
−Pr

[
C ← AS11 (λ)

C̃• ← SC2 (λ,D, S)
: AS

C
3

2 (C̃•) = 1

]
.

Here, D = |x| is the length of the input circuit C, and S = |C| is the size of the

circuit C.

3 Evasive LWR and Multilinear Mapping

3.1 Evasive LWR

Definition 12 (Solution Evasive LWR). For Ai, Si ∈ Zn×nq , i = 1, . . . , `,

where A−1i denotes the inverse of matrix Ai for i = 2, . . . , `, and u ∈ Znq , the

Solution Evasive LWR problem refers to finding Si, i = 1, . . . , `, from (buS1A1cp,

bA−11 S2A2cp, . . . , bA−1`−1S`A`cp).
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Theorem 3. For Ai, Si ∈ Zn×nq , i = 1, . . . , `, where A−1i denotes the inverse of

matrix Ai for i = 2, . . . , `, and u ∈ Znq , we have

({Ai}`i=1, b kS1A1 cp, {b A−1i−1SiAi cp}
`
i=2) ≈C ({Ai}`i=1, b u1 cp, {b Ui cp}`i=2),

as well as A1,

⌊
u

(∏̀
i=1

S1

)
A1

⌋
p

 ≈C
A1,

⌊
u1
∏̀
i=1

Ui

⌋
p

 .

Proof. Here is the translation of the provided text into English:

First, let

O(n) =
n log2 n ln p√

5
.

On one hand, according to Theorem 2, it is known that

|Pr(bb1cp = b uS1A1 cp)− Pr(b u1 cp)| ≤ 2 · e−O(n) + e−2O(n),

and

|Pr(bBicp = b A−1i−1SiAi cp)− Pr(b Ui cp)| ≤ 2 · e−O(n) + e−2O(n),

thus we can obtain

({Ai}`i=1, b uS1A1 cp,{b A−1i−1SiAi cp}
`
i=2)

≈C ({Ai}`i=1, b u1 cp, {b A−1i−1SiAi cp}
`
i=2)

≈C ({Ai}`i=1, b u1 cp, b U2 cp, {b A−1i−1SiAi cp}
`
i=3)

...

≈C ({Ai}`i=1, b u1 cp, {b Ui cp}`i=2).

On the other hand, using the same principle, it can be derived that∣∣∣∣∣∣Pr

A1,

⌊
u

(∏̀
i=1

Si

)
A1

⌋
p

− Pr

A1,

⌊
u1

∏̀
i=1

Ui

⌋
p

∣∣∣∣∣∣ ≤ `′ · e−O(n),

`′ ∈ (`, 2`).

Definition 13 (Evasive LWR Decision). For Ai, Si ∈ Zn×nq , i = 1, . . . , `,

where A−1i denotes the inverse of matrix Ai for i = 2, . . . , `, and u ∈ Znq ,
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the Evasive LWR decision problem refers to distinguishing, in polynomial time,

between the distributions

(bb1 = uS1A1cp, bB2 = A−11 S2A2cp, . . . , bB` = A−1`−1S`A`cp)

and

(bu1cp, bU2cp, . . . , bU`cp),

as well as between the distributionsA1,

⌊
u

(∏̀
i=1

Si

)
A1

⌋
p

 and

A1,

⌊
u1
∏̀
i=1

Ui

⌋
p

 .

3.2 Evasive LWR-base Multilinear Mapping

Algorithm 2 Composite homomorphic pseudorandom function

PRF.KeyGen(n,m, q). Generate necessary parameters.

PRF.Enc({Mi}`i=1, key, n,m, q).

Ci = PRF ({Mi}`i=1, key)

PRF.Eval(C = (C1, . . . , C`)). • Set Si as

Ŝi =

{
u(C1), if i = 1,

Ci, if i > 1.

• Output encrypted result

{bu(C1)A1cp},
{
A−1
i−1b(Ci)Aicp

}`
i=2

.

Theorem 4. Composite homomorphic pseudorandom function is a type of grad-

ed encoding system.

Proof. A usable asymmetric graded encoding system comprises the following

effective algorithms: Instance Generation, Ring Element Sampling, Encoding,

Addition and Multiplication Encodings, Zero Testing, and Extraction, denoted

as GES = (InstGen, samp, enc, add, neg, mul, isZero, ext).

Instance Generation. Generates keys for ciphertext fully homomorphic

pseudorandom functions, as well as algorithms like Enc and Eval. Security pa-

rameters n, and noise ε such that ‖ε‖ ≤ B.
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Encoding. For input plaintext to be encrypted {mi}`i=1, ` ≤ ℵ, use the fully

homomorphic encryption algorithm Enc(mi, key) to obtain ciphertext {ci}`i=1.

Addition and Multiplication Encodings. According to the definition of

fully homomorphic encryption schemes or ciphertext fully homomorphic pseu-

dorandom functions: ca + cb = Enc(ma +mb, key), ca · cb = Enc(ma ·mb, key),

−ca = Enc(−ma, key).

Furthermore, for {mi}`i=1, we have that

ℵ∑
i=1

ci = Enc(

ℵ∑
i=1

mi, key) +

ℵ∑
i=1

εi,

∥∥∥∥∥
ℵ∑
i=1

εi

∥∥∥∥∥ ≤ B.

Additionally, we know that

ℵ∏
i=1

ci = Enc(

ℵ∏
i=1

mi, key) +Ξ, ‖Ξ‖ ≤ B.

Zero Testing. Since Enc(0, key) =Enc(ma −ma, key) = Enc(ma, key) +

Enc(−ma, key) = ca − ca ≤ B, it’s easy to prove that zero testing holds.

Extraction. For ℵ-level encodings c, c′, we have

‖c− c′‖ = ‖Enc(m, key) + ε− Enc(m, key)− ε′‖ ≤ B.

4 Linear Homomorphic Encryption Scheme based on

LWR Variant Problems

Scheme 3 LHE Scheme based on LWR Problem

LWR.DV.KeyGen(n,m, q). Choose a random vector r ∈ {0, 1}n and ma-

trices A, l ∈R Zm×nq . Let u = H(r) ∈ Zq, output sample (�q(A, lu), Tsk) ←
GenTrap(n,m, q), let pk = (r,�q(A, l)) and sk = (�q(A, lu), Tsk).

LWR.DV.Enc(pk, s, q, p). Let u = H(r) ∈ Zq. For each element alij of

�q(A, l), compute (alij)
u mod q = aluij , thus obtaining �q(A, lu). For plain-

text s ∈ {0, 1}n, choose a random vector k ∈ {0, ` + 1}n, output c =

b�q(A, lu)(s+ k)cp.
LWR.DV.Eval(pk, q, p, f, (c1, . . . , c`)). Input ciphertext vector (c1, . . . , c`)

and linear function g = (α1, . . . , α`) ∈ {0, 1}`, compute

c =
∑̀
i=1

αici mod q.
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LWR.DV.PDec(sk, c). For ciphertext c ∈ Znp , output s̃ = LWRInvert(Tsk,�q(A, lu), c),

for each component s̃i of s̃,
k̃i = 0, when s̃i ∈ {0, 1},
k̃i = s̃i, when s̃i ∈ {(`+ 1), . . . , n(`+ 1)},
k̃i = s̃i − 1, when s̃i /∈ {0, 1, (`+ 1), . . . , n(`+ 1)}.

Return ρ =
(
sk, k̃ = (k̃i)i∈{1,...,`}

)
.

LWR.DV.Rec(ρ, c). For ciphertext c ∈ Znp , output s̃ = LWRInvert(Tsk,�q(A, lu), c),

decrypt s′ = s̃− k̃.

Simulatable Decryption Hint. For given ciphertext c and plaintext mes-

sage s̃ (where c and s̃ are unrelated), choose k̃ ∈R {0, ` + 1, . . . , n(` + 1)}n,

ũ ∈R Zq. Let s̃k ← GenTrap(n,m, q), compute simulated ciphertext c̃ and

c̃i =
∣∣∣(c− b�q(A, lũ)(s̃+ k̃)cp

)
i

∣∣∣ , i ∈ {1, . . . , n}.
Then output ρ̃ = (s̃k, k̃).

5 Splitting Fully Homomorphic Encryption Scheme

Next, we will introduce an instantiation of FHE with split decryption. First

propose a scheme based on standard assumptions, which assumes the existence

of a structured version of a random oracle, and then present a trusted candidate

scheme for this oracle.

5.1 Defining a Special Oracle for Constructing Splitting Fully

Homomorphic Schemes

Before presenting the split fully homomorphic scheme, define a special or-

acle. The parameters of this oracle are (p̂k, pk, q, q̃), where the input is a string

x ∈ {0, 1}∗, and it uniformly outputs encrypted values for LHE and FHE. The

oracle is deterministic and accessible to all parties, so when given the same input

x, the oracle always outputs the same pair of ciphertexts. The formal definition

of this oracle is as follows.
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Definition 14 ([BDGM20]). O
(p̂k,pk,q,q̃)

: Given input string x ∈ {0, 1}∗, out-

puts two ciphertexts that are uniformly distributed:

Enc(pk, s) and Ênc(p̂k,−bs/q̃c · q̃)

where s← Zq.

The oracle O
(p̂k,pk,q,q̃)

can encrypt the private key of FHE using LHE

scheme, and the resulting ciphertexts follow a uniform distribution. This is be-

cause we use the decryption and multiplication algorithms DEC&Mult in the

FHE scheme to compute Enc(pk, s − bs/q̃c · q̃ + noise), where the noise is the

decryption noise of the FHE scheme. By choosing appropriate parameters q̃, we

can achieve

Enc(pk, s− bs/q̃c · q̃ + noise) = Enc(pk, (s mod q̃) + noise)

≈s Enc(pk, (s mod q̃)).

Thus, one obtained ciphertexts that are statistically indistinguishable through

the two encryption systems.

Description. Now, provide a formal description of our scheme. We assume

the existence of the following primitives:

– cPRF = ( ̂KeyGen, Ênc, Êval, D̂ec) with linear decryption-multiplication

and noise constraint B.

– LHE = (KeyGen,Enc,Eval,PDec,Rec) with small decryption hints and

simulatable decryption hints, then we refer to LHE as linear homomorphic

encryption.

If the underlying FHE scheme is leveled out, then it will result in split FHE.

Conversely, if the FHE scheme supports evaluation of unbounded circuits, then

the resultant split FHE construction will also do so. The formal description of

this scheme is as follows.

Scheme 4 Split Homomorphic Encryption Scheme

KeyGen(n,m, q). Given security parameter n, output sample (sk, pk) ←
KeyGen(n). Let Zq be the plaintext space under LHE definition, output

sample (ŝk, p̂k)← K̂eyGen(n,m, q).

Let ŝk = (T1, . . . , Tn) ∈ {0, 1}n×n, then return

sk = sk and pk = (p̂k, pk, c1, . . . , cn).

where, for any i ∈ [n], define ci ← Enc(pk, Ti).
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Enc(pk, s). Return the ciphertext

c← Ênc(p̂k, s).

Eval(pk, f, (c1, . . . , c`). Given a circuit C of ` bits and ciphertexts of length

k bits (c1, . . . , c`)). For any j ∈ [k], Cj is the j-th component of circuit C,
calculate

dj ← Êval(p̂k, Cj , (c1, . . . , c`)).

Define the linear function over Zq as

g(x1, . . . , xn) =

k∑
j=1

DEC&Mult
(

(x1, . . . , xn), dj , 2
dlog(q̃+(k+1)B)e+j

)
.

Compute d ← Eval(pk, g, (c1, . . . , cn)), then query (a, ã) ← O
(p̂k,pk,q,q̃)

(d)

and define the following linear function

g̃(x1, . . . , xn, xn+1, xn+2) = DEC&Mult((x1, . . . , xn), ã, 1) + xn+1 + xn+2.

Return

c← Eval(pk, g̃, (c1, . . . , cn), d, a).

PDec(sk, c). Given an evaluable ciphertext c, return

ρ← PDec(sk, c).

Rec(ρ, c). Given an evaluable ciphertext c, return

s̃← Rec(ρ, c),

and return the binary representation of s̃ without the dlog(q̃ + (k + 1)B)e
least significant bits.

Analysis: During the analysis, set parameters as needed to ensure the

scheme can decrypt correctly. Subsequently, demonstrate that our choices lead

to a set of satisfiable constraints. These constraints satisfy the conditions of the

underlying hard problems, thus the hardness problem assumptions still hold.

The following theorem establishes correctness.

Theorem 5 (Correctness of Split Homomorphic Encryption Scheme).

Let q ≥ 2k + 2dlog(q̃+(k+1)B)e. Assuming that FHE and LHE are correct, then

Scheme 4 satisfies the correctness of split homomorphism.
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Proof. We rewrite

s̃ = Rec(ρ, c) = Rec(PDec(sk, c), c),

where c = Eval(pk, g̃, (c1, . . . , cn), d, a)). By the correctness of the LHE scheme,

we can rewrite d as

d = Eval(pk, g, (c1, . . . , cn))

= Eval(pk, g, (Enc(pk, T1), . . . ,Enc(pk, Tn)))

= Enc

pk, k∑
j=1

DEC&Mult
(

(T1, . . . , Tn), dj , 2
dlog(q̃+(k+1)B)e+j

) .

Where

dj = Êval(p̂k, Cj , (c1, . . . , c`))

and ci = Ênc(p̂k, si). Therefore, by the correctness of the FHE scheme for

decryption-multiplication, we can rewrite as

d = Enc

pk, k∑
j=1

DEC&Mult
(

(T1, . . . , Tn), dj , 2
dlog(q̃+(k+1)B)e+j

)

= Enc

pk,
k∑
j=1

2dlog(q̃+(k+1)B)e+j · Cj(s1, · · · , s`) +

k∑
j=1

ej︸ ︷︷ ︸
ẽ

 .

Let r ← Zq and define the oracle O
(p̂k,pk,q,q̃)

such that a = Enc(pk, r) and

g̃(x1, . . . , xn, xn+1, xn+2) = DEC&Mult((x1, . . . , xn), ã, 1) + xn+1 + xn+2.

Where, ã = Ênc(p̂k,−br/q̃c · q̃). Then by the correctness of the FHE scheme,

and c = Enc(pk, s̃), where s̃ is

s̃ = DEC&Mult ((T1, . . . , Tn), ã, 1) +

k∑
j=1

2dlog(q̃+(k+1)B)e+j · Cj(s1, · · · , s`) + ẽ+ r

= −br/q̃c · q̃ + e+

k∑
j=1

2dlog(q̃+(k+1)B)e+j · Cj(s1, · · · , s`) + ẽ+ r

=

k∑
j=1

2dlog(q̃+(k+1)B)e+j · Cj(s1, · · · , s`) + ẽ+ e+ r mod q̃︸ ︷︷ ︸
r̃

.
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Note that an upper bound for ẽ+ e is (k + 1) · B, and r̃ is a small perturbation

due to the modulo q̃. This means that the output of the circuit is encoded as a

high-order bit s̃ with probability 1 when q is sufficiently large.

Theorem 6 (Security of Split Homomorphic Encryption Scheme). Let

q ≥ 2k + 2dlog(q̃+(k+1)B)e. Assuming that the FHE scheme and the LHE scheme

are secure schemes, then Scheme 4 satisfies the security model O
(p̂k,pk,q,q̃)

for

split homomorphism.

Proof. Assume (s0, s1, C1, . . . , Cβ) is the adversary’s input chosen at the begin-

ning of the generation of system π.

Hybrid H0: Define the following original system. The challenger generates

a distribution using a random coin toss as follows:

(pk, c = Ênc(p̂k, sδ), ρ1, . . . , ρβ).

Where

pk = (p̂k, pk,Enc(pk, T1), . . . ,Enc(pk, Tn)),

and ρi is obtained from PDec(sk,Eval(pk, Ci, c)).

Hybrids H1, . . . ,Hβ : Let Eval(pk, Ci, c) generate d(i). The ith Hybrids Hi is

defined the same as Hybrids Hi−1 except for the input d(i) and the output a (or

ã) such that

c = Enc
(
pk,ECC(Ci(sδ)) + ẽ+ e+ r − br/q̃c · q̃

)
,

where ECC is the high-order bit encoding defined in the homomorphic en-

cryption part, ẽ + e is the decryption noise after homomorphic computation

(d(1), . . . , d(k), ã), r ← Zq, ρ̃i is the “decryption tweak” obtained using random

coin toss a, which can be used to decrypt the ciphertext c.

Note that the decryption noise ẽ + e can be efficiently calculated using

the FHE scheme key, therefore ρ̃i can also be computed in polynomial time.

The ciphertext distributions of Hybrids H1, . . . ,Hβ are consistent, with the only

difference being the specific form of ρ̃i. This is because the LHE scheme has

simulatable decryption tweaks, so the distribution of Hi is consistent with the

distribution of Hi−1, i.e.,

(pk, Ênc(p̂k, sδ), ρ̃1, . . . , ρ̃i−1, ρi, ρi+1, . . . , ρβ)

= (pk, Ênc(p̂k, sδ), ρ̃1, . . . , ρ̃i−1, ρ̃i, ρi+1, . . . , ρβ).
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Hybrids Hβ+1, . . . ,H2β : The β + ith Hybrids and the previous β Hybrids

are different mainly in a, i.e.,

c = Enc
(
pk,ECC(Ci(sδ)) + ẽ+ e+ br/q̃c · q̃ + r̃ − br/q̃c · q̃

)
= Enc

(
pk,ECC(Ci(sδ)) + ẽ+ e+ r̃

)
.

Where, r̃ ← Zq̃. Note that the distributions caused by these two Hybrids are

different only when r ∈ R, whereR := {q−(q mod q̃), . . . , q}. Because q̃/q ≤ 2−λ,

these two distributions to be statistically close.

Hybrids H2β+1, . . . ,H3β : The 2β + ith Hybrids are defined the same as the

previous ones, except for the value of a, i.e.,

c = Enc(pk,ECC(Ci(sδ)) + ỹ).

Where the noise ẽ can be neglected in the calculation, therefore it is not reflected

in the above equation. The difference between this and the previous Hybrids lies

in whether the ciphertext contains ẽ+e. Since an upper bound of the noise ẽ+e

is (k + 1) · B, and q̃ ≥ 2λ · (k + 1) · B, according to Lemma 1, the distribution

caused by this Hybrids is statistically indistinguishable from the previous one.

Hybrids H3β+1, . . . ,H3β+n: The 3β + ith Hybrids are defined the same as

the previous ones, except that the ciphertext c(LHE,i) is derived from encrypting

0 with the public key. At this point, the LHE scheme key no longer contributes

to (ρ̃1, . . . , ρ̃β), so use indistinguishability to demonstrate the semantic security

of these Hybrids.Enc(pk, 0), . . . ,Enc(pk, 0),Enc(pk, Ti),

Enc(pk, Ti+1), . . . ,Enc(pk, Tn)


≈c

Enc(pk, 0), . . . ,Enc(pk, 0),Enc(pk, 0),

Enc(pk, Ti+1), . . . ,Enc(pk, Tn)

 .

Hybrids H(0)
3β+n, . . . ,H

(b)
3β+n: Fix the length of the challenge plaintext to i,

and use the symbol H(i)
3β+n to represent the Hybrids at this point. The distribu-

tion of this Hybrids is

(pk, c = Ênc(p̂k, si), ρ̃1, . . . , ρ̃β),

where

pk = (p̂k, pk,Enc(pk, 0), . . . ,Enc(pk, 0)).
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Because the FHE scheme key is no longer encoded in the public parameters, there

is no need to compute (ρ̃1, . . . , ρ̃β). Therefore, any advantage that the adversary

has in distinguishing H(0)
3β+n and H(1)

3β+n cannot be greater than distinguishing

Ênc(p̂k, s0) and Ênc(p̂k, s1). Therefore, the FHE scheme is computationally in-

distinguishable, thus proving the semantic security of the sFHE scheme.

5.2 Instantiation of Oracle Model

To complete the description of our scheme, we discuss some candidate in-

stantiations O
(p̂k,pk,q,q̃)

of the oracle. We require the underlying LHE scheme

to have a dense ciphertext space. We introduced the cyclic assumption intro-

duced by Brakerski et al. [BDGM20] bridging the gap between FHE and LHE

schemes. The oracle machine shown in Theorem 6 is just one of them, which is a

special program obfuscation that enables the realization of split fully homomor-

phic schemes. Next, we introduce another oracle constructed by Brakerski et al.

[BDGM20].

Simple Candidate Quantum Oracle. Let C be the ciphertext space of

LHE. The first instantiation is to take the encryption algorithm in FHE and

encrypt the key in LHE, ĉ ← Ênc(p̂k, sk). Extract the ciphertext hash value of

the homomorphic operation obtained through a hash function, which is used to

fix the random coin in the algorithm. LHE ciphertext is sampled without knowing

the underlying plaintext (which is why we need dense ciphertext), while FHE

terms are calculated by homomorphically evaluating the decryption circuit and

rounding the resulting message to the nearest multiple of q̃.

Let D = (Da)a∈C , where Da is a set in the Hilbert space HDa = C[{0, 1}n∪
{⊥}]. The Hilbert space HDa can be seen as a space spanned by a set of orthog-

onal bases |b〉, where b ∈ {0, 1}n ∪ {⊥}. Let the unitary transformation U be

defined as

U |⊥〉 = |ψ0〉, U |ψ0〉 = |⊥〉 and U |ψb〉 = |ψb〉,∀b ∈ {0, 1}n \ {0}n.

where |ψb〉 := H|b〉, and H is the Hadamard transform on C[{0, 1}n] = (C2)⊗n.

Let |b〉 = 2−n/2
∑
η(−1)η·b|ψη〉, then we have

U |b〉 = |b〉+ 2−n/2(|⊥〉 − |ψ0〉).
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When the oracle is queried, the unitary transformation OXY Z acts on the query

register X and Y , and the database register D, with the specific expression

OXY Z =
∑
a

|a〉〈a| ⊗OaY Da and OaY Da = UDaCNOTY DaUDa .

where CNOT|b〉|ba〉 = |b〉|b⊕ba〉, b, ba ∈ {0, 1}n and CNOT|b〉|⊥〉 = |b〉|⊥〉. With

these tools, present Don et al.’s quantum hash oracle model as follows:

y := max
a∈C
| {b ∈ {0, 1}n|〈a, b〉 ∈ R} |, ỹ ← Êval(p̂k,−bDec(·, y)/q̃c · q̃, ĉ)

Additionally, consider the following projector:

Π a
Da :=

∑
b s.t.
〈a,b〉∈R

|b〉〈b|Da and Π ∅Da := 1D −
∑
a∈X

Π a
Da =

⊗
a∈X

Π̄ a
Da .

where Π̄ a
Da

:= 1Da−Π a
Da

. Furthermore, define the measurementM =MR, and

the following projector

Σa :=
⊗
a′<a

Π̄ a′

Da′
⊗Π a

Da and Σ∅ := 1−
∑
a′

Σa′ =
⊗
a′

Π̄ a′

Da′
= Π ∅.

In addition, define the pure state measurement unitary transformation MDP =

MR
DP ∈ L(HD ⊗HR), i.e.,

MDP := |ϕ〉D|w〉P 7→ |ϕ〉D|w + a〉P .

Note that y is an element in the ciphertext domain of LHE, and its form is

y = Enc(pk, s). For some s ∈ Zq, because LHE has a dense ciphertext domain.

Furthermore, through the correctness of the FHE and LHE schemes, we have

ỹ = Êval(p̂k,−bDec(·, y)/q̃c · q̃, ĉ)

= Êval(p̂k,−bDec(·, y)/q̃c · q̃, Ênc(p̂k, sk))

= Ênc(p̂k,−bDec(sk, y)/q̃c · q̃)

= Ênc(p̂k,−bs/q̃c · q̃).

Therefore, it can be seen that the formation of (y, ỹ) is based on the following

assumptions.

Alternating Encryption Security. The cyclic dependency introduced by

ĉ = Ênc(p̂k, sk) in the security of LHE and FHE schemes (e.g., the split FHE

construction in this paper includes the encryption of ŝk under pk in the pub-

lic key) is considered a very mild assumption. Currently, it is the only known
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method to construct FHE from the LWE problem through bootstrapping theo-

rems [Gen09b].

Perturbation. In the case of y := maxa∈C | {b ∈ {0, 1}n|〈a, b〉 ∈ R} |, al-

though ỹ is an FHE encryption of the correct value, it is not necessarily uniformly

distributed. In particular, the randomness of ỹ may depend on the low-order bit-

s of s in a complex way. In the specific case of LWR-based schemes, the noise

term may carry information about s modulo q̃, which may introduce pertur-

bation that interferes with decryption. However, the noise function is usually

highly nonlinear, making it difficult to exploit. Therefore, we only consider the

FHE.Eval algorithm.

Perturbation Elimination. Regarding the methods for eliminating the

perturbation in LHE and FHE ciphertexts, we naturally think of ciphertext re-

processing techniques [DS16]: it can be expected that repeating bootstraping op-

erations on FHE ciphertexts can eliminate the perturbation from LHE ciphertext

noise. Unfortunately, our setting is different from the typical settings considered

in the literature, as the ciphertext perturbation reprocessing algorithm must be

executed by the distinguisher and cannot use private random coins. Although

it seems difficult to formally analyze the effectiveness of these methods in our

setting, we hope that these techniques may (at least heuristically) help mitigate

the perturbation that interferes with decryption. This paper takes a different

approach and provides a simple heuristic to alleviate perturbation. In short, the

idea is to sample a set of random plaintexts and define a random string as the

sum of a uniform subset S of these plaintexts. For the construction described

earlier, Brakerski et al.’s instantiation includes a ciphertext ĉ = Ênc(p̂k, sk). The

parameter σ ∈ poly(n,m, q, p) of the scheme is determined by the length of the

set S. The algorithm is presented randomly below, although this simplification

can be easily bypassed using standard techniques (e.g., computing random coins

using encrypted Hash(x)).

O(p̂k, pk, q, q̃)(x): Input string x ∈ {0, 1}∗ and a random set S ← {0, 1}σ.

For all i ∈ [σ], when Si = 1, uniformly output sample

yi := max
a∈C
| {b ∈ {0, 1}n|〈a, b〉 ∈ R} |,
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when Si = 0, uniformly output sample yi ← Enc(pk, si), where si is any known

plaintext message. Then compute

ỹ ← Êval

(
p̂k,−

σ∑
i=1

bDec(·, y)/q̃c · q̃, ĉ

)
.

Let g be a linear function defined as follows

g(x1, . . . , xS) =
∑
i∈S

xi +
∑
i/∈S

bxi/q̃c · q̃.

Then compute ỹ ← Eval(pk, g, {yi}i∈S) and return (y, ỹ). By the correctness of

homomorphic operations in the FHE scheme, it shown that

ỹ = Êval

(
p̂k,−

σ∑
i=1

bDec(·, y)/q̃c · q̃, ĉ

)
= Êval

(
p̂k,−

σ∑
i=1

bDec(·, y)/q̃c · q̃, Ênc(p̂k, sk)

)

= Ênc

(
p̂k,−

σ∑
i=1

bDec(sk, y)/q̃c · q̃

)
= Ênc

(
p̂k,−

σ∑
i=1

bs/q̃c · q̃

)
.

Combining with the correctness of the LHE scheme, one obtain

y = Eval(pk, g, {yi}i∈S) = Eval(pk, g, {Enc(pk, si)}i∈S)

= Enc

(
pk,
∑
i∈S

si +
∑
i/∈S

bsi/q̃c · q̃

)
= Enc

pk,
∑
i∈S

(si mod q̃)︸ ︷︷ ︸
s̃

+
∑
i/∈S

bsi/q̃c · q̃

 .

6 Constructing Ideal Obfuscation using Homomorphic

Splitting Encryption Scheme

6.1 Ideal Obfuscation

Scheme 5 Ideal Obfuscation Scheme

KeyGen(n,m, q). For i ∈ [0, D), j ∈ [0, B], randomly sample ki,j ← {0, 1}λ

and compute

hi,j = PrO(ki.j , x).

Randomly sample sε ← {0, 1}λ. For d ∈ [0, D], input security parameter n,

output sample (skd, pkd)← KeyGen(n). Let Zq be the plaintext space under
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LHE definition, output sample (ŝkd, p̂kd)← K̂eyGen(n,m, q). Let

ŝkd = (T1, . . . , Tn) ∈ {0, 1}n×n, then return

skd = skd and pkd = (p̂kd, pkd, c1, . . . , cn).

where, for any i ∈ [n], we define ci ← Enc(pkd, Ti).

Enc(pkd, infoε). For input infoε = (normal, ε, {ki,j}i∈[0,D),j∈[1,B], sε), return

ctε ← Ênc(p̂kd, infoε).

Eval(pkd, fd, (c1, . . . , c`). fd is provided later. Input circuit C of ` bits and

ciphertext of length k bits (c1, . . . , c`). For any j ∈ [k], where Cj is the j-th

component of circuit C, compute

ḋj ← Êval(p̂kd, Cj , (c1, . . . , c`)).

Define linear function over Zq as

g(x1, . . . , xn) =

k∑
j=1

DEC&Mult
(

(x1, . . . , xn), ḋj , 2
dlog(q̃+(k+1)B)e+j

)
.

Compute ḋ← Eval(pkd, g, (c1, . . . , cn)), then query (a, ã)← O
(p̂kd,pkd,q,q̃)

(ḋ)

and define the following linear function

g̃(x1, . . . , xn, xn+1, xn+2) = DEC&Mult((x1, . . . , xn), ã, 1) + xn+1 + xn+2.

Output

ctε ← Eval(pkd, g̃, (c1, . . . , cn), ḋ, a).

Return the obfuscated circuit

Ĉ = ({hi,j}i∈[0,D),j∈[1,B], ctε, {skd}d∈[0,D]).

Eval&Expand. (normal mode)

– For d ∈ [0, D), Eval&Expand encrypts fd(normal, χ, {ki,j}i∈[0,D),j∈[1,B], sχ)

1. Compute sχ‖0‖rχ‖0‖sχ‖1‖rχ‖1 ← G(sχ).

2. For b ∈ {0, 1}, run ctχ‖b ← Ênc(p̂kd+1, infoχ‖b; rχ‖b). where,

infoχ‖b = (normal, C, χ‖b, {ki,j}i∈[d+1,D),j∈[1,B], sχ‖b),

C is the circuit to be obfuscated. Output

(H(kd,1, χ)‖ · · · ‖H(kd,B , χ))⊕ (ctχ‖0‖ctχ‖1).
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– For d = D, fD(normal, C, x, sx), output C(x).

ĈO[ctε, {skd}d∈[0,D], {hi,j}i∈[0,D),j∈[0,B]](x)

Hardwired. ctε, initial ciphertext.

skd, secret key.

hi,j , handles generated by PrOM.

Input. x ∈ {0, 1}D, input circuit.

Output. Compute as follows.

For d = 0, . . . , D − 1:

χd ← x≤d

νχd ← Rec(ρχd , ctχd), ρχd ← PDec(skd, ctχd)

otpχd ← O(hEval, hd,1, χd‖0D−d)‖ · · · ‖O(hEval, hd,B , χd‖0D−d)
ctχd‖0‖ctχd‖1 ← νχd ⊕ otpχd

Output Dec(skD, ctx)

Fig. 1. Obfuscated Circuit (ĈO)→ Ĉ•[ctx, {skd}d∈[0,D], {hi,j}i∈[0,D),j∈[0,B]]

Correctness Analysis. According to the obfuscation form ĈO in Figure

3 and the tree structure in Figure 2.

H(kd,1, χd‖0D−d)‖ · · · ‖H(kd,B , χd‖0D−d)

= O(hEval, hd,1, χd‖0D−d)‖ · · · ‖O(hEval, hd,B , χd‖0D−d).

6.2 Security Analysis

Lemma 11. Assuming H is a pseudo-random function, Gsr, Gv are pseudo-

random generators, and (Gen,Enc,Enc) is adaptively secure, with appropriate

parameters L and B, then Construction 1 in [JLLW23] is an ideal obfuscation

under PrOM.

Theorem 7. Assuming H is a pseudo-random function, Gsr, Gv are pseudo-

random generators, algorithm 5 is an ideal obfuscation under PrOM.
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ctε

(ct0‖ct1)⊕ otpε

ct0 ct1

(ct00‖ct01)⊕ otp0 (ct10‖ct11)⊕ otp1

ct00 ct01 ct10 ct11

ct11

(ctχ‖0‖ctχ‖1)⊕ otpχ

ctχ‖0 ctχ‖1

ctx

C(x)

Fig. 2. The binary tree of ciphertexts [JLLW23] in Scheme 5

Expandd,hyb[pkd+1](χ, infoχ)

Hardwired. pkd+1, public key at level (d+ 1).

Input. x ∈ {0, 1}d, input appropriate circuit;

infoχ = (C, {ki,j}i∈(d,D),j∈[1,B], sχ, β, {σχ,j}j∈[0.β), wχ, {kd,j}j∈(σ,B]):

C, circuit to be obfuscated.

ki,j , keys of H at levels (d+ 1, . . . , D − 1).

sχ, seed of pseudo-random generator Gsr, related to χ.

β, mixing index.

σχ,j , seed of pseudo-random generator Gv, related to χ.

wχ, decryption result of the software module.

kd,j , keys of H at level (d+ 1).

Output. Calculated as follows.

sχ‖0‖rχ‖0‖sχ‖1‖rχ‖1 ← Gsr(sχ)

For η = 0, 1:

flagχ‖η ← normal

infoχ‖η ← (C, {ki,j}i∈[d+1,D),j∈[1,B], sχ‖η)

ctε ← Enc(pkd+1,flagχ‖η, χ‖η, infoχ‖η)

Output νχ ← Gν(σχ, 1)‖ · · · ‖Gν(σχ, β − 1)‖wχ
‖([ctχ‖0‖ctχ‖1]β+1 ⊕H(kd,β+1, χ‖0D−d))‖ · · ·
‖([ctχ‖0‖ctχ‖1]B ⊕H(kd,B , χ‖0D−d))

Fig. 3. Obfuscation circuit (ĈO)→ Ĉ•[ctx, {skd}d∈[0,D], {hi,j}i∈[0,D),j∈[0,B]]
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Expandd[pkd+1](flagχ, χ, infoχ)− For Level d ∈ [0, D)

Hardwired. pkd+1, (d+ 1) level public key.

Input. flagχ ∈ {normal, hyb, sim}, flag matching with χ.

χ ∈ {0, 1}d, input appropriate prefix for the circuit.

infoχ, information matching with χ, changes with flagχ.

Output. 
Expandd,normal[pkd+1](χ, infoχ), if flagχ = normal;

Expandd,hyb[pkd+1](χ, infoχ), if flagχ = hyb;

Expandd,hyb(χ, simχ), if flagχ = sim.

}
Fig.7

Eval(flagχ, χ, infoχ)− For Level D

Hardwired. pkd+1, (d+ 1) level public key.

Input. flagχ ∈ {normal, sim}, flag matching with χ.

χ ∈ {0, 1}D, input circuit.

infoχ, information matching with χ, changes with flagχ.

Output. {
Evald,normal(χ, infoχ), if flagχ = normal;

Evald,sim(χ, infoχ), if flagχ = sim.

Expandd,normal[pkd+1](χ, infoχ)

Hardwired. pkd+1, (d+ 1) level public key.

Input. χ ∈ {0, 1}d, input appropriate prefix for the circuit.

infoχ = (C, {ki,j}i∈[0,D),j∈[0,B], sχ):

C, circuit to be obfuscated.

ki,j , keys for hash functions d, . . . ,D − 1H.

sχ, seed for pseudo-random generator Gsr corresponding to χ.

Output. Perform the following calculations.

sχ‖0‖rχ‖0‖sχ‖1‖rχ‖1 ← Gsr(sχ).

for η = 0, 1:

flagχ‖η ← normal

infoχ‖η ← (C, {ki,j}i∈[d+1,D),j∈[1,B], sχ‖η).

ctχ‖η ← Enc(pkd+1, flagχ‖η, χ‖η, infoχ‖η)

otpχ ← H(kd,1, χ‖0D−d‖ · · · ‖H(kd,B , χ‖0D−d)
Output νχ ← (ctχ‖0‖ctχ‖1)⊕ otpχ

Evalnormal(χ, infoχ)

Input. χ ∈ {0, 1}D, input circuit.

infoχ = (C, sχ):

C, circuit to be obfuscated.

sχ, unused seed.

Output. C(χ), compute the evaluation of a generalized circuit (C,χ).

Fig. 4. The circuits Expand&Evald in Scheme 5



36 Z. Shan et al.

References

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation

from compact functional encryption. In Advances in Cryptology – CRYP-

TO 2015, pages 308–326. Springer Berlin Heidelberg, 2015.

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
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