
Parallel Zero-knowledge Virtual Machine

Wenqing Hu1, Tianyi Liu2, Ye Zhang4, Yuncong Zhang3, and Zhenfei Zhang4

1 Missouri University of Science and Technology
huwen@mst.edu

2 University of Illinois Urbana-Champaign
tianyi28@illinois.edu

3 Shanghai Jiao Tong University
shjdzhangyuncong@sjtu.edu.cn

4 Scroll Foundation
{ye,zhenfei}@scroll.io ⋆⋆

Abstract. Zero-knowledge virtual machine (zkVM) is a novel applica-
tion of succinct and non-interactive zero-knowledge proof protocols that
allows for verifiable computation over arbitrary codes. In this paper, we
present a new paradigm to build such a zkVM via data parallel circuits.
Our parallelization happens at the opcode and the basic block level.
Such a design allows us to eliminate almost all of the circuit overhead
for opcodes, including the control flow and the data flow which can be
substantial in a zero-knowledge circuit. The size of our circuit is dynamic
and optimal in the sense that it only costs the sum of all individual op-
codes that are executed in the program, (i.e., you only pay as much as
you use); while in all previous designs, the circuit is of a constant size, de-
termined by the product of a) the upper limit of the number of opcodes,
and b) the size of a super opcode circuit that is capable of handling every
type of opcode.
Further, we present an asymmetric GKR prover that is tailored to the
data parallelism in our zkVM design, accompanied by various optimized
constraint gadgets. The use of GKR prover also leads to significant re-
ductions in the number of witnesses that are to be committed: GKR
allows us to commit only the input and output of the circuits, whereas
in previous Plonkish-based solutions, the prover needs to commit to all
the witnesses.

1 Introduction

Zero-knowledge proof (ZKP) protocols [17] are a cryptographic primitive that
allows a prover to convince a verifier of the correctness of computations without
leaking the actual computation. Zero-Knowledge Succinct Non-interactive Argu-
ment of Knowledge (zk-SNARK) system is a ZKP system that ensures that the
proof size is significantly smaller than the size of computation and enables faster
validation. The past decade has witnessed fruitful results of zk-SNARKs, in terms
of both theoretical breakthroughs [6,7,13,16,20,41], and practical and concrete
⋆⋆ Alphabetical Order.

2 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

instantiations [2,32,36,40,45], enabling various applications, such as anonymous
payment protocols [12, 19, 31], distributed private computations [5, 9, 14, 23, 54],
zero-knowledge machine learning (zkML) [21,24,55] and more.

In this paper, we focus on zero-knowledge Virtual Machines (zkVMs), a spe-
cific application of zk-SNARKs. zkVM allows for private and verifiable compu-
tation over generic programs. To assert that a piece of program, in the form of a
list of opcodes over a target virtual machine, takes in a given input and outputs
a given result, the prover generates a proof of the correct execution of the op-
codes over the committed inputs and the committed results. zkVM can be seen
as a superset of all previous applications, wherein a zkVM protocol, the prover
must support all opcodes from the virtual machine, dynamically, and of arbi-
trary order; whereas prior applications, such as anonymous payment protocols
and zero-knowledge machine learning protocols, prove a static and prior-known
program, i.e., a subset of the opcodes of fixed order.

Verifiable computation. zkVMs have seen many use cases. A typical one is gen-
eral purpose verifiable computation. This is achieved via applying zkVM over a
Turing complete language, such as RISC-V or WASM. Since any program can be
compiled to, for instance, RISC-V opcodes, in theory, one can generate proof for
code written in any language while developers do not require any prior exposure
to cryptography. There exists a set of toolchains that build proofs for existing
languages such as RISC-V [26,39] and WASM. On the other hand, active research
is conducted to invent zero-knowledge friendly programming languages and their
intermediate representations [15, 30]. The main challenge of this route remains
efficiency, with multiple research directions in the form of better and dedicated
VM designs such as [15,34,50] and high performance proof systems [33,36].

zkEVM. Another typical use case of zkVM is its application to the Ethereum vir-
tual machine, also known as zero-knowledge Ethereum Virtual machines (zkEVMs)
[38, 46]. The EVM is the execution environment that runs on the Ethereum
blockchain. In the Ethereum blockchain, each program is a smart contract that
is committed publicly, and executed automatically upon receiving transactions.
It has been widely applied to the fields of finance, supply chain, voting system,
legal industry, and so on. The EVM is a computational engine that functions as a
decentralized computer, hosting and executing smart contracts on the Ethereum
blockchain. The EVM allows developers to create applications, ensuring consis-
tency and security across the network. One of Ethereum’s biggest challenges is
its scalability, in that transactions are congested due to the limitation of block
data and network throughput.

zkEVM is one of the two major candidates for Ethereum scalability, and the
only one that is backed by cryptography; with the other one being optimistic
rollups, and relying on game theory with financial incentives. At a high level,
with zkEVM, one can aggregate (also known as roll up) multiple transactions
into a single one, consisting of a succinct proof validating the executions of smart
contracts invoked by those transactions. Abstractly speaking, those transactions
happen one layer above the blockchain (and hence layer two) instead of the

Parallel Zero-knowledge Virtual Machine 3

mainnet. This effectively reduces the congestion of Ethereum, resulting in orders
of magnitude cheaper transactions.

Interestingly, a zkEVM can be build directly from EVM’s opcode, or indi-
rectly from another zkVM. As illustrated in Figure Figure 1, one can compile
the Go or Rust implementation of EVMs [27,29] into RISC-V opcodes, and then
use zkVM to prove the RISC-V opcodes. At a glance this method may look more
complex than directly building a zkEVM, as it involves more components in its
workflow. However, in practice, most of toolchains exist already, and one only
needs to build a uniform prover for a stable version of RISC-V. This alleviates
the burden of code maintenance and auditing, originated from the fact that the
EVM itself is a fast moving target and is under active development. Recent
progress in [22] shows that this route actually delivers compelling performance
compared with the first method.

Solidity
Yul opcodes

zkEVM

Proof

Solidity
Yul opcodes

RETH
compiler

Rust opcodes

RISC-V zkVM

Proof

Fig. 1: Two typical ways to build zero-knowledge Ethereum virtual machines

It is worth noting that the zk term in zk(E)VM stems from conventional
reasons. For the aforementioned scalability use case, the zero-knowledgeness is
not essential, and sometimes even undesirable for regulation reasons.

1.1 Related work

Zero knowledge proof systems Zero-knowledge proofs were invented in the
seminar work of [17]. Modern zk-SNARKs are constructed by compiling an
information-theoretic object called an Interactive Oracle Proof (IOP) [3] to a
SNARK via a polynomial commitment scheme. As briefly mentioned in previ-
ous subsections, there exists a long list of proof systems, tailored for different
setups. Instead of reviewing all those candidates, we focus on a special category
of proof systems, the GKR protocol.

4 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

GKR protocol. The GKR protocol was an interactive proof system first put
forth by Goldwasser, Kalai, and Rothblum [16]. Converting GKR into a non-
interactive protocol is a direct application of the classic Fiat-Shamir transfor-
mation [11]. For the rest of the paper, for the ease of presentation, we will focus
on the interactive version. In such a protocol, the circuit is layered and linked
via a chain of reductions, with the first and last layers dedicated to the circuit
outputs and inputs. The reduction is done via repetitively invoking a sumcheck
protocol [25], asserting that any given layer and its consecutive layer satisfy cer-
tain constraints derived from the actual statement. By iterating through all the
layers, we enforce that the first and last layers, i.e., the outputs and inputs of
the program, are valid for the circuit. We defer to Section 2.3 for a more detailed
illustration of the GKR protocol.

The original GKR protocol runs in linear time for the prover and verifier.
Thaler [47] showed that GKR is friendly to data parallel circuits, i.e., circuits
consisting of a repetitive pattern. The GKR circuits are sometimes referred to as
the data parallel circuits due to this finding; it is the key differentiator between
GKR circuits and punkish or R1CS circuits. Zhang et al. [56] improves the
concrete performance by allowing non-consecutive layer constraints.

There have also been many optimizations of GKR for dedicated applications.
The works [21,24] and [1] show that GKR has great potential for machine learn-
ing circuits, specifically, convolutional neural network, decision trees, and train-
ing. The works [28,43] build concretely efficient lookup tables from GKR proto-
cols. ZK-Bridge [53] reports great performance numbers for repetitive ECDSA
circuits, attributing to GKR’s friendliness to data parallel circuits.

zkVMs. In the literature, there exists a list of zkVM solutions, such as Scroll [46]
and Polygon [34,35]. They all follow a same paradigm:

1. Describe each sub-module in the virtual machine, including but not limited
to execution units, stack, memory and chips, in a constraint system such as
Plonkish [37], rank one constraint system (R1CS) or customizable constraint
system [42];

2. Apply a SNARK protocol (not necessarily zero-knowledge) to the constraint
system to generate a proof. Candidates are Plonky [32], Starky [44] or Halo2
[36] for Plonkish arithmetizations, and Groth16 [18], Marlin [8] or Spartan
[41] for R1CS.

3. Leverage one or several layers of proof recursion to reduce the proof size and
the verification cost. Zero-knowledgeness can be achieved during the final
recursion if desired [5].

Note that when the program is huge, the proving time becomes problematic.
A workaround is execution continuation: a long list of opcodes is divided into
multiple small lists, each small list is proved separately and a macro proof is
also present to glue the small lists together. Folding schemes such as [6, 20] are
considered a perfect candidate for such use cases when instances from multiple
small lists can be folded into a single one.

Parallel Zero-knowledge Virtual Machine 5

The above framework has a crucial drawback: The prover algorithm describes
the execution logic of the virtual machine, which is uniform through all programs.
Therefore, it fails to exploit the structure of the program. Considering that in the
programming language domain, programs are always optimized by a compiler
before being translated into machine code and executed on processors, we are
asking, can a prover also take advantage of the code structure before generating
a uniform proof?

1.2 Our Techniques

ADD MUL1 ADD2 MUL2 MUL3 RET

(a) Classic zkVM design

ADD1 ADD2 MUL1 MUL2 MUL3 RET

Chip

(b) Our design

Fig. 2: Classical zkVM vs Our design

In this paper, we present a novel approach to build zero-knowledge virtual
machines. Based on this framework, we present two schemes.

GKR-zkVM. The first scheme is named GKR-zkVM as it is very parallel, like
the circuits for our zkVMs. In contrast to existing solutions where program
opcodes are proved sequentially as they are executed (see Figure 2a), we group
the identical opcodes together as in Figure 2b and prove them in batches. In
more details, we execute the program in full and obtain all the opcodes, and
their corresponding inputs and outputs. Then, we group opcodes and generate
proofs for correct executions for each group. At a high level, the task of proving
a program is then divided into two sub-tasks:

1. Prove the correct execution of each opcode. We refer to this circuit as the
opcode circuit.

2. Prove that the opcode circuits are executed in the correct order, and the
global states are updated resepectively. We refer to the circuit for fulfilling
this task as the chip circuit.

6 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

For the first task, we use a repetition friendly prover as each group now consists
of identical opcodes. We use the GKR backend and utilize its data-parallel circuit
in our paper.

Having proved the correctness of each opcode, we use a chip circuit that
glues all the opcodes together, proving that the opcodes, though proved out of
their order, are derived truthfully from the original program. The main tools
we need for this statement are set equality checks and lookup arguments, both
instantiated using the GKR protocol.

The above framework already improves the existing, sequential solutions in
many respects. To name a few, our protocol avoids the heavy overhead from
the universal opcode circuit, i.e., one opcode circuit that supports all possible
opcodes as a requirement for the static zero-knowledge proof circuit, whereas our
prover is adaptive to dynamic execution trace. We also eliminate the branching
overhead in selecting opcodes during a sequential proving. In the mean time,
our dynamic circuit proves as many opcodes as in the original program, while
classical solutions require their static circuits to handle max possible number of
opcodes that any supported program may be compiled into.

GKR-zkVM Pro. On top of GKR-zkVM, we further investigate the scenario
where the program structure can be exploitable. We present GKR-zkVM Pro,
which is empowered by a structure-aware prover that allows us to take advantage
of decades of advancement from the compiler community. Modern compilers
compile programs into chunks of likely repetitive opcodes for optimizations. Each
chunk is called a basic block. Our improved version of the scheme works over the
basic blocks. We design our circuit so that data propagation through opcodes
within the same basic block is implicitly guaranteed. This allows us to further
reduce the stack and the memory circuits.

Asymmetric GKR prover. To accommodate the fact that the circuits in
GKR-zkVM and GKR-zkVM Pro are dynamic, we present an asymmetric GKR
protocol where the prover dynamically adjusts to the circuit while the verifier
remains static.

During verification, the verifier will receive a piece of auxiliary information,
which is a description of the program that has been executed. However, this
auxiliary input to the verifier is a leak of information, and makes the verifier
non-static. To mitigate this issue, following the common practice, we use a GKR
verification circuit to generate a recursive proof. This recursive proof no longer
leaks information about the original program. Meanwhile, the circuit verifying
this recursive proof is static, and therefore, a static verifier.

Compared with other leading candidates in this domain, such as Plonk [13,32]
based solutions, GKR is better in many ways.

First, the nature of most programs is that they usually have compact inputs
and outputs, with a lot of intermediate data during computation. With Plonk-
ish arithmetizations, one is required to commit to all those intermediate data;

Parallel Zero-knowledge Virtual Machine 7

whereas in GKR these costs are avoided. Table 1 shows the number of witness
cells that our protocol commits per opcode.

Second, GKR’s IOP uses the sumcheck protocol, a linear time, parallelization
friendly protocol; whereas classic Plonk uses a univariate polynomial identity
check protocol which requires the FFT algorithm for polynomial multiplications.
This requires O(n log(n)) time to compute.

opcode GKR-zkVM GKR-zkVM Pro
JUMP 16 0
POP 32 -

SWAP2 64 -
DUP1 32 -
ADD 128 32
GT 128 32

JUMPI 64 16
PUSH1 16 -

MSTORE 64 64
RETURN 32 32

Table 1: Witness sizes for some opcodes in GKR-zkVM and GKR-zkVM Pro, where
sizes are padded to the power of 2s for simplicity. We use - to indicate that the
opcode is not needed in GKR-zkVM Pro.

1.3 Organization of This Paper

In Section 2, we introduce several definitions related to our paper. In Section 3,
we present the GKR arithemtics, introducing the high degree custom gates.
Then, we present our variant of GKR protocol in Section 4. In Section 5 and
Section 6 we present the core design of our protocol. Finally we show practical
tricks to handle ROM and RAM in Section 7.

2 Preliminaries

2.1 Notations

We use b to stand for binary input vectors, e.g., b = (b0, . . . , bn−1) ∈ {0, 1}n
and x = (x0, . . . , xn−1) ∈ Fn, where F is a finite field.

We define a vector of field elements as a(b) : {0, 1}n → F, which is indexed
by binary string. Its Multilinear Extensions (MLE, [48, Section 3.5]) polynomial
is defined by ã(X) : Fn → F via Definition 2, where X = (X0, . . . , Xn−1) is a list
of variables. We usually follow the conventions that using a(b) to index a value
in the vector, a(x) to indicate evaluate a(x) on some random point x (usually
generated by a verifier in the succinct proving protocol), and aeval to denote the

8 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

evaluation. We use (bx∥bs), (x∥s) and (X∥S) to denote concatenation of bit
strings, random points and variables.

We sill frequently use the following functions: for X and Y, let

ẽq(X,Y) =

n−1∏
i=0

((1−Xi)(1− Yi) +XiYi) .

The above notion of ẽq can be extended to the multi-variable case, in which we
define

ẽq(X,Y(0), . . . ,Y(d−1)) =

n−1∏
i=0

(
(1−Xi)(1− Y

(i)
0) · · · (1− Y

(i)
d−1) +XiY

(i)
0 · · ·Y (i)

d−1

)
.

2.2 Interactive Argument

Definition 1 (Interactive Argument). We say that ARG = (G,P,V) is an
interactive argument of knowledge for a relation R if it satisfies the following
completeness and knowledge properties.

– Completeness: For every adversary A

Pr

[
(x,w) ̸∈ R or pp← G(1λ)

⟨P(pp,x,w),V(pp,x)⟩ = 1 : (x,w)← A(pp)

]
= 1

– Witness-extended emulation: ARG has witness-extended emulation with
knowledge error κ if there exists an expected polynomial-time algorithm ε
such that for every polynomial-size adversary A it holds that∣∣∣∣∣∣∣Pr

 pp← G(1λ)
A(aux, tr) = 1 : (x, aux)← A(pp)

tr← ⟨A(aux),V(pp,x)⟩

− Pr

 A(aux, tr) = 1 pp← G(1λ)
and if tr is accepting : (x, aux)← A(pp)

then (x,w) ∈ R (tr,w)← εA(aux)(pp,x)

∣∣∣∣∣∣∣ ≤ κ(λ)

Above ε has oracle access to (the next-message functions of) A(aux).

If the interactive argument of knowledge protocol ARG is public-coin, is has
been shown that by the Fiat-Shamir transformation [11], we can derive a non-
interactive argument of knowledge from ARG. If the scheme further satisfies the
following property:

– Succinctness. The proof size is |π| = poly(λ, log |C|) and the verification
time is poly(λ, |x|, log |C|),

then it is a Succinct Non-interactive Argument of Knowledge (SNARK).

Parallel Zero-knowledge Virtual Machine 9

Protocol 1 (Sumcheck Protocol) The sumcheck protocol is an interactive proof
protocol between P and V, described as follows:

– SC.Proven,d(σ, F (X)): With the input σ ∈ F, F : Fn → F with degree at most d for
each variable, P goes through the following steps:
1. For i = 0, . . . , n− 1, run the following steps:

(a) Set
f (i)(X) =

∑
b∈{0,1}n−i−1

F (b, X, xn−i, . . . , xn−1).

(b) Compute f (i)(1), . . . , f (i)(d) and send to the verifier.
(c) Receive a challenge xn−i−1 from the verifier.

– SC.Verify
f(·)
n,d (σ): With the input σ ∈ F, V goes through the following steps:

1. Set σ0 = σ.
2. For i = 0, . . . , n− 1, run the following steps:

(a) Receive f (i)(1), . . . , f (i)(d) from the verifier and compute f (i)(0) = σi −∑d
j=1 f

(i)(j).
(b) Randomly generate xn−i−1 ← F and send to the prover.
(c) Recover f (i)(X) from

(
f (i)(0), . . . , f (i)(d)

)
and compute σi+1 =

f (i)(xn−i−1).
3. Query the oracle Feval = F (x0, . . . , xn−1). If Feval = σn, output 1. Otherwise,

output 0.

In Section 3 we will present a variant of Sumcheck protocol. The highlights here are
the changes we will make in our version in Figure 4.

Fig. 3: Sumcheck Protocol

2.3 GKR Protocol

Sumcheck Protocol Sumcheck protocol is one of the most important interac-
tive proofs in the literature. The sumcheck problem is to prove that the sum of
a multivariate polynomial f : Fn → F on all binary inputs is a certain value c,
i.e., c =

∑
b0,...,bn−1∈{0,1} f(b0, . . . , bn−1). Calculating the sum directly requires

exponential time in n, as there are 2n combinations of b0, . . . , bn−1. Lund et
al. [25] proposed a sumcheck protocol that allows a verifier V to delegate the
computation to a computationally unbounded prover P, who can convince V
that σ is the correct sum. We present, in Protocol 1, the non-interactive version
of the sumcheck protocol after applying the Fiat-Shamir transform.

Multilinear Extension Multilinear extension is a particular type of multivari-
able polynomials, often represented with an array or a book keeping table. The
definition is as follows:

Definition 2 (Multilinear Extension [10]). Let a : {0, 1}n → F be a func-
tion. The multilinear extension of a is the unique polynomial ã : Fn → F such

10 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

that ã(X0, . . . , Xn−1) = a(X0, . . . , Xn−1) for all X0, . . . , Xn−1 ∈ {0, 1}. ã can be
expressed as:

ã(X) =
∑

b∈{0,1}n
ẽq(X, b) · a(b)

=
∑

b∈{0,1}n

∏n

i=0
((1−Xi)(1− bi) +Xibi)) · a(b),

Inspired by the closed-form equation of the multilinear extension given above,
we can view an array a = (a0, . . . , aN−1) as a function a : {0, 1}logN → F such
that ∀i ∈ [0, N), a(i0, . . . , ilogN−1) = ai where ij is the j-th bit of i. Here, we
assume N is a power of two. Therefore, in this paper, we abuse the notation of
multilinear extension on an array as the multilinear extension ã of a.

In this paper, we mostly utilize the sumcheck protocol for products of MLEs.
The state-of-the-art algorithm is proposed by Xie et al. [52], whose performance
is summarized in Lemma 1.

Lemma 1. Sumcheck protocol for a product of d MLEs with n variables runs in
O(d2n) time.

GKR Protocol GKR [16] is an interactive protocol for general arithmetic
circuits with the prover running in linear time in the circuit size. It uses the
sumcheck protocol as a building block. Let C be a layered arithmetic circuit
with depth d over a finite field F. Here, layer 0 is the output layer, and layer d
is the input layer. Each gate in the i-th layer takes inputs from two wires in the
(i + 1)-th layer. Following the conventions in prior work [10, 47, 52, 57, 58], for
any i, the computation between two adjacent layers Ṽi+1 : {0, 1}si+1 → F and
Ṽi : {0, 1}si → F is defined as follows:

Ṽi(Z) =
∑

x,y∈{0,1}si+1
fi(Z,x,y)

=
∑

x,y∈{0,1}si+1
m̃uli+1(Z,x,y)Ṽi+1(x)Ṽi+1(y)

+
∑

x,y∈{0,1}si+1

˜addi+1(Z,x,y)(Ṽi+1(x) + Ṽi+1(y)), (1)

where Ṽi is the MLE for the i-th layer while si is the number of variables of Vi.
This can be verified by the sumcheck protocol, at the end of which the statement
is reduced to verification on two evaluations of Ṽi+1. Then, these two evaluation
arguments can be merged by a random linear combination as in the following
equation:

α · Ṽi+1(X) + β · Ṽi+1(Y)

=
∑

z∈{0,1}si+1
(α · ẽq(X, z) + β · ẽq(Y, z)) · Ṽi+1(z).

where α and β are sampled from the transcript. Both equations above can be
proved by sumcheck protocols in linear time.

For layered circuits, the state-of-art instantiation of GKR protocol is from
Xie et al. [52]. We recap their results as follows:

Parallel Zero-knowledge Virtual Machine 11

Theorem 1. For an input size n and a finite field F, there is a zero-knowledge
argument protocol for the relation

R = {(C,x;w) : C ∈ CF ∧ |x|+ |w| ≤ n ∧ C(x;w) = 1},

under q-Strong Bilinear Diffie-Hellman and (d, ℓ)-Extended Power Knowledge of
Exponent assumptions. Moreover, for every (C,x;w) ∈ R, the running time of
P is O(|C|) field operations and O(n) multiplications in the base group of the
bilinear map. The running time of V is O(|x|+d·log |C|) if C is log-space uniform
with d layers. P and V interact O(d log |C|) rounds and the total communication
(proof size) is O(d log |C|). In case d is polylog(|C|), the protocol is a succinct
argument.

Zhang et al. [56] generalize the GKR protocol to non-consecutive layered
circuits. In their scheme, the circuit remains layered, but the input of a given
layer may come from multiple previous layers. They prove the following result
over this type of circuit:

Theorem 2. Let C : Fn → Fk be a depth-d general arithmetic circuit. There is
an interactive proof for the function computed by C with soundness O(d log |C|/|F|).
The running time of the prover P is O(|C|). The proof size is min

{
O(d logC + d2), O(|C|)

}
.

Let the time to evaluate all gate evaluations at random points be T . Then, the
running time of V is min

{
O(n+ d log |C|+ d2 + T), O(|C|)

}
.

2.4 Constraints toolbox

Our protocol uses the following constraints as subroutines.

Set equality checking For two sets S1 =
{
v
(0)
1 , . . . , v

(|S1|−1)
1

}
and S2 ={

v
(0)
2 , . . . , v

(|S2|−1)
2

}
, with an extra challenge τ , the constraints to check S1 = S2

is
|S1|−1∏
i=0

(
v
(i)
1 + τ

)
=

|S2|−1∏
i=0

(
v
(i)
2 + τ

)
. (2)

Lookup argument For two multisets A =
{
a0, . . . , a|A|−1

}
and T =

{
t0, . . . , t|T |−1

}
,

with an extra challenge τ , the constraints to check A ⊆ T is

|A|−1∑
i=0

1

ai + τ
=

|T |−1∑
i=0

mi

ti + τ
, (3)

where mi denotes the number of occurrences of ti in A.
LogUp is an efficient lookup argument protocol that uses GRK as the back-

end [28]. The GKR circuit of LogUp is designed for checking Equation 3 with-
out involving any inverting operation. The field inverting operation is expensive

12 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

in circuit, because it requires the prover to supply the inverted result as an
input to the GKR circuit. LogUp avoids those expensive inversions by com-
puting the sum of fractions instead. It exploits the fraction addition formula
a/b+ c/d = (ad+ bc)/(bd) to compute the sum of fractions, and then checks the
equality ad = bc instead of a/b = c/d . As a result, LogUp completely removed
the division and inversion.

3 Generalized GKR Arithmetics

We start by introducing a generalization to the GKR protocol. We extend both
the gates and the layer structures to a broader notion. Our generalized version
of GKR will form the foundation of our zkVM design.

3.1 Gate Design

GKR arithmetics were initially designed for arithmetic circuits, consisting of
2-to-1 multiplication gates and addition gates, as per Equation 1. Then, one
can construct circuits for arbitrary polynomials computations, for which a wide
variety of functions can be approximated, to any desired degree of accuracy (as
per the Stone-Weierstrass theorem in the context of continuous functions on
closed intervals).

As shown in Equation 1, the polynomials m̃ul(by,b
(0)
x ,b

(1)
x) and ˜add(by,b

(0)
x ,b

(1)
x)

act as selectors. For a given index point (by,b
(0)
x ,b

(1)
x), a mul (add, respectively)

gate is switched on with inputs (b(0)
x ,b

(1)
x) and output by, if and only if the poly-

nomial m̃ul (˜add, respectively) evaluates to 1 over F2. These two gates are already
sufficient to build any circuit, from a theoretical perspective. Nonetheless, our
generalization allows for better expressive gates and concrete performance im-
provement.

High-degree gates. High degree gates are a very useful tool in zero-knowledge
circuit designs. [7] showed how to build such a gate in the Plonkish arithmetiza-
tion, and [54] reported concrete performance improvements for various circuits
when high degree gates are deployed.

GateA: Linear combination of product gates. A degree-d gate is a general-
ization of the aforementioned add and mul gates: it is represented by a polynomial

G̃(by,b
(0)
x , . . . ,b(d−1)

x) =

{
1, If out(by) =

∏d−1
k=0 in(b

(k)
x).

0, Otherwise.
(4)

where in and out are respectively the input and the output of this layer.
The above gate is a product of several entries from the input layer. It is simple

as it mimics the original ˜add and m̃ul design; yet it is elegant as we can derive an
expressive gates from G̃. In the simple case, similarly to the traditional GKR,

Parallel Zero-knowledge Virtual Machine 13

G̃(by,b
(0)
x , . . . ,b

(d−1)
x) = 1 is interpreted as “the output indexed by by is equal to

the definition, in this case, the product
∏d−1

k=0 in(b
(k)
x)”, and therefore for each by,

there should exist exact one b
(0)
x , . . . ,b

(d−1)
x such that G(by,b

(0)
x , . . . ,b

(d−1)
x) =

1.
However, exploiting the nature of GKR protocol, it is convenient to extend

this interpretation by allowing arbitrary number of satisfying b
(0)
x , . . . ,b

(d−1)
x ,

and reinterpret G(by,b
(0)
x , . . . ,b

(d−1)
x) = 1 as “the product

∏d−1
k=0 in(b

(k)
x) is

added to the output indexed by by”. As a result, out(by) equals the summa-
tion of all gates taking it as the output wire.

This idea was initially proposed in [24]. For parallel operations such as inner
product functions, this gate can be very expressive.

GateB: Product of linear combination gates. An alternative high-degree
gate to the above design is to switch the order of linear combination and prod-
uct. In this case, we represent the linear combination with d matrices, i.e.,
{G(j)(by,b

(j)
x)}j∈[[d]]. Then we can compute d vectors, where the j-th vector

is given by f(by)
(j) =

∑
b

(j)
x

G(j)(by,b
(j)
x) · in(b(j)

x). Finally, out(by) equals the
product

∏
j∈[[d]] f(by)

(j).

Note that the above two types of high-degree gates are not mutually exclusive:
we can use both gates in a same protocol, optimizing different components of a
same circuit when applicable.

3.2 Data-Parallel Instantiations for Our Gates

Goldwasser et al. [16] proved that log-space uniform circuits can be verified in
sublinear time. However, in practice, this lower bound is not always guaranteed
as log-space uniform circuits are non-trivial to construct for arbitrary operations.
Instead, we focus on circuits with specific structures for which it is easy to derive
efficient verifiers. Particularly, we consider data-parallel computation [47] that
is to be supported in our GKR protocol. Looking ahead, we also claim that
data-parallel operations are all we need to design an efficient zkVM.

Data-Parallel Instantiation for GateA. Suppose in and out are the input
and output wires of one layer. Without loss of generality, we assume |in| = |out| =
N = 2n. The computation consists of M = 2m copies of N

M -size sub-circuits. We
use (bx∥bs) to index the wires in a layer, in which bx indicates the wire index
inside a sub-circuit and bs indicates the index of the sub-circuit copy. A gate in
the sub-circuit is denoted as G(by,b

(0)
x , . . . ,b

(d−1)
x). For by,b

(0)
x , . . . ,b

(d−1)
x ∈

{0, 1}n−m indexing the wires in a sub-circuit, and bt ∈ {0, 1}m indexing different
sub-circuit copies, GateA’s data-parallel instantiation is given by the following

14 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

sumcheck formula:

˜out(Y∥T) =
∑

b(0)
s ,

b(0)
x

· · ·
∑

b(d−1)
s ,

b(d−1)
x

ẽq(T,b
(0)
s , . . . ,b

(d−1)
s)G(Y,b

(0)
x , . . . ,b

(d−1)
x)

·ĩn(b(0)
x ∥b(0)

s) · · · ĩn(b(d−1)
x ∥b(d−1)

s)
(5)

where b
(0)
s , . . . ,b

(d−1)
s ∈ {0, 1}m and b

(0)
x , . . . ,b

(d−1)
x ∈ {0, 1}n−m.

Data-Parallel Instantiation for GateB. With the same data-parallel layer
model as above, GateB’s data-parallel instantiation is given by the following
sum-check formula:

˜out(Y∥T) =
∑
bs

∑
bz

ẽq(T,bs) · ẽq(Y,bz)·∑
b

(0)
x

G(0)(bz,b
(0)
x) · ĩn(b(0)

x ∥bs)

 · · ·

 ∑
b

(d−1)
x

G(d−1)(bz,b
(d−1)
x) · ĩn(b(d−1)

x ∥bs)

 . (6)

3.3 Unlayered Circuit and Our Genaralized GKR Protocol

Zhang et al. [56] proposed a GKR protocol for unlayered circuits. Such an unlay-
ered circuit is constructed for gates with fan-in-2 inputs, where a layer number
is assigned for each gate according to its topological order in the circuit. Under
this assignment procedure, a gate denoted as Gi,j will have its output in the i-th
layer and inputs in the (i+1)-th layer and the j-th layer (j > i+1), respectively.
For j ̸= i + 1, let Sj→i be the subset of used wires in the j-th layer that enter
the sumcheck relation of the i-th layer, i.e., there exists some gate Gi,j . The wire
values on this subset are collected into a vector Vj→i(·), while the wire values
on the whole layer j are denoted by Vj(·).

To prevent the proving complexity from blowing up with the number of pos-
sible Gi,js, Zhang et al. [56] also propose to re-index the wires in Sj→i according
to their order in this subset. During the GKR reduction process, the original
indexes of wires in Sj→i inside the j-th layer are recovered during a sumcheck
protocol, converting a subset evaluation Vj→i,eval to an evaluation Vj,eval.

Their approaches have several limitations:

1. The requirement of input wires makes it hard to support self-defined layer
structure. They use topological sorting to automatically assign layer numbers
for gates. However, if we want to embed special sumcheck protocols in the
GKR circuit, all candidate wires must be allocated in a same layer. This is
hard for the automated approach.

Parallel Zero-knowledge Virtual Machine 15

Furthermore, in their design, exactly one wire must come from the previous
layer. This is guaranteed by their layer assignment method. However, such
an enforcement excludes other optimal layer assignment opportunities.

2. Their complicated gate design doesn’t support more than 2 fan-in gates
naively. For those high fan-in gates, the order of input wires matters (for
example, subtraction). Their solution to this issue is to process the same
gate multiple times with different input orders.

In this paper, we resolve the above issue by proposing a simplified circuit
structure based on the following principles:

1. We restrict the inputs to the gates at layer i to be from the previous layer
i+ 1;

2. When a gate at layer i needs an input from any of the layer j’s with j > i+1,
we copy this input to layer i+ 1.

Similar to the structure in [56], we have two types of wire vectors: We define
the complete wire values in layer i as vector Vi, and Vj→i(j > i + 1) as the
collected wire values of the subset Sj→i.

Thus, our GKR circuit’s i-th layer is structured with the following attributes:

– Gates from layer i+1 to layer i; they follow either one of the two GKR layer
protocols in the previous subsection.

– paste_fromj→i(by,bx); indicating the bx-th wire value in the vector Vj→i is
pasted to Vi(by).

– copy_toi→k(by,bx); indicating the bx-th wire value in Vi is collected in the
vector Vi→k, with the new index by.

For our zkVM design introduced in the later sections, we need to support
input witness from different sources (committed by polynomial commitment
scheme or other predecessor circuits) and output to different target (different
successor circuits). Hence we define input_paste_from and output_copy_to to
split the input layer and output layer into subsets.

Based on the above circuit structure, we propose the Generalized GKR Proto-
cols in Protocol 5 to Protocol 10, where for each layer i we first consider merging
evaluations from both Vi and Vi→k, then we use sumcheck to prove/verify the
consecutive layer computations that involve both types of wire vectors discussed
above. The rest of the protocol follows the same scheme as the original GKR
protocol. Specifically, we divide the GKR layer protocol into the following two
phases:

1. Merge evaluations from the subsequent layers. This is done in Protocol 5
and Protocol 6 and is based on the following identity:

c−1∑
k=0

αkṼ
(k)
i (Yk∥Tk) +

c+c′−1∑
k=c

αkṼi→ℓk−c(Yk∥Tk)

=
∑
bt

∑
by

(
c−1∑
k=0

ẽq(Tk,bt)ẽq(Yk,by) +
c+c′−1∑
k=c

ẽq(Tk,bt) ˜copy_toi→ℓk−c
(Yk,by)

)
Ṽi(by).

(7)

16 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

2. Check the correctness of the wire values. At layer i, one of the two data-
parallel instantiations for our gates, i.e. (5) or (6), is proved/verified.
The layerwise adaptation of (5) is given by

Ṽi(Y∥T) =
∑

b
(0)
s ,

b
(0)
x

···b
(d−1)
s ,

b
(d−1)
x

ẽq(T,b
(0)
s , . . . ,b

(d−1)
s)GA(Y,b

(0)
x , . . . ,b

(d−1)
x) · Ṽi+1(b

(0)
x ∥b(0)

s)

· · · Ṽi+1(b
(d−1)
x ∥b(d−1)

s) +
∑c′′

j=0 ẽq(T,b
(0)
s) ˜paste_fromℓ′j

(Y,b
(0)
x)Ṽℓ′j→i(b

(0)
x ∥b(0)

s)

(8)
To prove this summation, we launch a d-phase GKR layer protocol shown
in Protocol 7 and Protocol 8. In each phase, the initialization of each book-
keeping table requires O(N) operations. Then, the sumcheck protocol is ap-
plied over a degree-2 equation, and will terminate in n rounds.
The layerwise adaptation of (6) is given by

Ṽi(Y∥T) =
∑

bs

∑
bz

(
ẽq(T,bs) · ẽq(Y,bz) ·

(∑
b
(0)
x

G
(0)
B (bz,b

(0)
x) · Ṽi+1(b

(0)
x ∥bs)

)
· · ·
(∑

b
(d−1)
x

G
(d−1)
B (bz,b

(d−1)
x) · Ṽi+1(b

(d−1)
x ∥bs)

)
+
∑

b
(0)
x

∑c′′

j=0
˜paste_fromℓ′j

(bz,b
(0)
x)Ṽℓ′j→i(b

(0)
x ∥bs)

)
(9)

To prove this summation, we present a (d + 1)-phase GKR layer protocol
as shown in Protocol 9 and Protocol 10 . The initialization of the book-keeping
tables requires O(N) operations, and the sumcheck protocol is applied to a
degree-(d + 1) equation with O(n) rounds. Applying the results from [7], the
total cost will is O(d log2 dN).

3.4 Multi-round GKR IOP

We can further extend the power of the GKR circuit by introducing verifier-
sampled randomnesses, or challenges, to the inputs of the circuit. As illustrated
by Thaler in his textbook [49], randomness significantly improves the perfor-
mance of certain tasks, with negligible sacrifice to soundness. A typical example
is the set equality check. The deterministic algorithm requires a quadratic com-
plexity via naive comparison, or a quasi-linear complexity via sorting, both are
very expensive for arithmetic circuits. Using randomness, however, one can lever-
age the grand-product argument and check the set equality with a simple circuit
consisting of a linear number of gates, e.g., as in PLONK [13].

To allow the GKR circuit to take verifier challenges as inputs, we split the
circuit witnesses (more precisely, inputs) into multiple segments, such that the
prover commits one segments in each round. Then, we introduce several rounds
called witness-commitment rounds, in which the parties interact with each other
as follows:

1. The prover commits to the input wires of the first witness-commitment round
and sends the commitments to the verifier.

Parallel Zero-knowledge Virtual Machine 17

2. The verifier samples the first challenge and sends to the prover.
3. The parties repeat the above steps for the other input wires in the order as

they were split.

After the inputs for all the phases are committed and the challenges are ready,
the prover computes all the witnesses for all the layers in the circuit, and the
two parties execute the GKR protocol. At the end of the GKR protocol, the
statement is reduced to an evaluation statement for the input layer, which is
then reduced into the evaluation statements for the committed polynomials.

In general, the input wires are split according to their reliance on the chal-
lenges. Each wire should be committed as early as possible, i.e., in the round
immediately after all the relied challenges have been sampled.

Multi-round GKR IOP
Prover Verifier
com0 ← Commit(f̃0(X))

com0−−−−−−−−−−−−−−−−→
r0 ←$ F

r0←−−−−−−−−−−−−−−−−
Compute f̃i+1(X) with ri
comi+1 ← Commit(f̃i+1(X))

comi+1−−−−−−−−−−−−−−−−→
ri+1 ←$ F

ri+1←−−−−−−−−−−−−−−−−
Repeat for m rounds Repeat for m rounds
Set Vin ← (f0∥f1∥ · · · ∥fm−1).
Compute VL−1, . . . , V0.
(πgkr, {yi}m−1

i=0 , z)← GKR.prove(V0,eval)
πgkr−−−−−−−−−−−−−−−→

({yi}m−1
i=0 , z)← GKR.verify(πgkr)

πpcs ← PCS.prove({f̃i}m−1
i=0 , z)

πpcs−−−−−−−−−−−−−−→
PCS.verify(πpcs, {(yi, comi)}m−1

i=0 , z)

4 Asymmetric Protocols

In real world zero-knowledge proof systems, proof recursions are performed for
multiple times, in order to reduce proof size. The complete procedure can be
represented as a chain of provers(

P(C0)
0 (x0,w0),P(C1)

1 (x1,w1), . . . ,P(Cr−1)
r−1 (xr−1,wr−1)

)
where P(Ci)

i (xi,wi) is a prover who generates a proof for the computation Ci, x
is the common input to both the prover and the verifier, and w is the prover’s
private input. For the adjacent pair Pi and Pi+1, Pi+1 is used to generate a new

18 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

proof asserting the proof πi generated by Pi is correct. For this reason, Pi+1 is
often referred to as “recursive prover” of Pi.

We say that the adjacent pair (P(Ci)
i (xi,wi),P(Ci+1)

i+1 (xi+1,wi+1)) is sym-
metric when

Ci+1(·) = V(Ci)
i (·)

xi+1 = (xi, πi)

for verifier V(Ci)
i corresponding to P(Ci)

i .
In contrary, we say the pair (P(Ci)

i (xi,wi),P(Ci+1)
i+1 (xi+1,wi+1)) is asym-

metric, when

Ci+1(·) = V(·)
i (·)

xi+1 = (xi, πi, ⟨Ci⟩)

where V(·)
i is a universal circuit that additionally takes a computation represen-

tation as input, and ⟨Ci⟩ denotes a representation of Ci.
Most of previous zkVM solutions set C0 = VM, x = (⟨Π⟩ , x), where VM is

the virtual machine logic, Π is the program to be proved and x is the input of the
program. Through the whole proving chain, all pairs are symmetric. However,
considering the case where all provers are instantiated with succinct proving
schemes, i.e., Pi runs in polynomial time while Vi runs in sub-linear time, the
total cost will be dominated by P0, asymptotically speaking. The circuit sizes
of the remaining provers will decrease continuous, where the decreasing factor
varies for different proving scheme. For this reason, our solution aims to improve
the performance of P0.

We generalize the proving chain by allowing any pair in the chain to be
asymmetric. When applying this notion to zkVM, we set C0 = (VM, Π) and
x = x, then P0 becomes a non-uniform prover.

For the rest of this section, we first present out intuition why a non-uniform
prover is beneficial. Then we specify asymmetric protocols for two sub-circuits
that our zkVM design builds on top of.

4.1 Non-uniformity Leads to Better Performance

In this section, we illustrate, via a simple example, why asymmetric protocols
and non-uniform provers can be more efficient than the traditional proof systems
with uniform provers.

Suppose our goal is to generate a uniform proof at the final step. In real
world analogy, people deploy verifiers in smart contracts so that the proofs can
be verified on-chain. A simple verification scheme for uniform proofs will result
in a shorter smart contract and thus less costly. Considering the case where we
want to prove a simple program that inputs an integer N and a vector f of size
N , and outputs the sum of the elements in this vector. This is a program with
a variable-length for-loop, therefore, we need extra constraints and witnesses

Parallel Zero-knowledge Virtual Machine 19

Protocol 2 (Asymmetric Sumcheck Protocol) Sumcheck protocol with variable
length is an interactive proof protocol between a ASC.P and ASC.V which is described
as follows:

– ASC.Proven,d(σ, F (X)): Return SC.Proven,d(σ, F (X)).
– ASC.Verify

F (·)
nmax,d

(n, σ, πSC): With input σ ∈ F, V goes through the following steps:
1. Generate idx = (idx0, . . . , idxnmax) = (0, 1, . . . , nmax).
2. Set σ0 = σ, statein_sc = 1.
3. For i = 0, . . . , nmax − 1, run the following steps:

(a) If idxi = n, then set statein_sc = 0.
(b) If statein_sc = 1:

i. Compute f (i)(0) = σi −
∑d

j=1 f
(i)(j).

ii. Randomly generate xn−i−1 ← F and sends it to P.
iii. Recover f (i)(X) from

(
f (i)(0), . . . , f (i)(d)

)
and compute σi+1 =

f (i)(xn−i−1).
4. Query the oracle Feval = F (x0, . . . , xn−1). If Feval = σn, output 1. Otherwise,

output 0.

The orange highlights are the different between this protocol and a classic sumcheck
protocol in Figure 3.

Fig. 4: Asymmetric Sumcheck Protocol

to support loop control. Furthermore, to generate a uniform proof, our prover
should work for all possible inputs, which, in the worst case, has a size Nmax

that can potentially be much larger than N . That is, the uniform prover will
run O(Nmax) time with an extra overhead linear to Nmax to handle loop control
logic.

However, this computation can be easily proved with a non-uniform sum-
check prover in O(N) time, without dealing with the for-loop logic. Although
non-uniform proofs may be of variable sizes and structures, we can leverage
a uniform recursive verifier to prove the verification circuit whose size is now
O(logNmax). Note that although the verifier must pay additional (constant) over-
head to handle the aforementioned variable proof sizes, the gains still overweight
as long as O(N + logNmax) < O(Nmax), which is true under our assumption.

4.2 Asymmetric Sumcheck and GKR Protocol

Inspired by the above observation above, we introduce the asymmetric sumcheck
(ASC) protocol and the asymmetric GKR (AGKR) protocol, where ASC implies
AGKR, just as the classic sum-check implies GKR. ASC and AGKR are not
only building blocks of our zkVM design. They are also good illustrations of how
asymmetry leads to better efficiency. We start by describing the ASC protocol.

20 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

Asymmetric GKR (AGKR) Protocol. By replacing SC.Verify with ASC.Verify,
we directly obtain the basic version of AGKR, which we denote by AGKRlayered.Verify.
In our zkVM, we will be applying AGKR to two types of structured circuits,
namely, the data-parallel circuits and the tree-structured circuits, explained as
follows.

– AGKR for data-parallel circuit (denoted by AGKRdata_par). We refer
to Section 3 for more details.

– AGKR for tree-structured circuit (denoted by AGKRtree). A tree-
structured circuit is defined by a chain of connections of identical data-
parallel sub-circuits. Suppose a sub-circuit C has a input size B and a output
size 1. The corresponding tree-structured circuit consists of N = Bn leaves
from those data-parallel circuits. We use this structure for the following two
checks:
• the lookup argument. We implement a LogUp circuit for the sum of N

fraction numbers. This is a tree-structured circuit where the leaves are
pairs of denominators and numerators. Each sub-circuit Gfsum computes
the fractional sum function fsum(a, b, c, d) := (ad+ bc, bd).

• the set equality check. The leaves are the set elements (added a random
challenge), and the sub-circuits Gfproduct are simply computing the product
of two children, i.e., fprod(a, b) = ab.

We derive AGKRdata_par from AGKRlayered as already described in Section 3. We
construct AGKRtree by repetitively invoking AGKRdata_par. We omit the details
of these two protocols.

5 GKR-zkVM

In all existing zkVM designs, opcodes are executed sequentially. Additional con-
troller witnesses are padded as prefixes and suffixes to the actual witnesses during
the execution. Those include flags for the beginning and end of the execution,
as well as the opcode identifiers. Such an overhead is none negligible, and can
sometimes be substantial, compared with the main body of the execution. As an
example, Scroll’s zkEVM [46] uses over one hundred witnesses per each opcode.

In this section, we propose a new framework for zkVM. Our goal is to prove
opcodes in parallel, and minimizing the aforementioned controlling overhead.

In our framework, the opcode list is categorised into multiple groups; each
group consists of multiple instances of identical opcodes. Utilizing the data-
parallel circuit, we can efficiently prove the constraints within each group. We
add a program state transition logic to the opcode circuit, and use a global state
to track the state transition. Finally, the global state is also proved via a chip
circuit to ensure consistency across all opcodes.

Intuitively, our framework reduces the control flow from the following aspects:

– Avoiding opcode selectors. In a classical design, for a given opcode, the
circuit needs to first assert the type of the opcode so that the corresponding

Parallel Zero-knowledge Virtual Machine 21

sub-circuit is correctly loaded. This can be done by first looking up the
opcode from a prefixed table, or via an encoding mechanism with additional
selectors, and then branching through various opcode’s sub-circuit. In our
framework, the opcodes within the same group are of the same type. The
expensive look-ups and branching are avoided. Proving an opcode execution
does not incur any additional overhead.

– Avoiding universal opcode circuit. zkVM uses a universal, static circuit
to handle various programs. That means the circuit is fixed for an unknown
sequence of opcodes. To achieve this goal, in a classical design, a universal
opcode circuit is adopted to host all potential opcodes. Such an opcode
circuit needs to maintain orders of magnitude redundancy so that different
opcodes, for instance, add and mload, share the same circuit layout. It is
straightforward to see that our design eliminates such redundancy and each
sub-circuit is dedicated to the given opcode.

We stress that our circuit is dynamic, in that the number of opcodes in each
group varies for different programs. We use our asymmetric GKR protocol in
Section 4 to handle the dynamic circuits and achieve a static verifier.

5.1 Virtual Machine Layout

We model a virtual machine as follows. A virtual machine supports a set of
opcodes, where each opcode is associated with an identifier i ∈ [0, Q). Then,
a program Π := (op0, . . . , opNΠ−1) ∈ [0, Q)NΠ is represented by a sequence of
identifiers, denoted by opi. During the execution, we use pc to iterate through
the list of Π. With this model in mind, we proceed to the overall picture of our
framework, illustrated in Figure 5.

Fig. 5: GKR-zkVM Layout

22 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

1. Set op to the current opcode.
2. Read the data from the stack and the memory.
3. Apply the opcode’s logic over the data.
4. Update the stack and the memory if necessary.
5. Update the program counter as defined by the current pc.

Fig. 6: Subroutine to process an opcode

The opcode computation is to read operands from the storage (stack and
memory), compute results, and write them back to the storage. An opcode circuit
therefore consists of similar steps as shown in Figure 6. The detailed protocol
for parallel opcode computation will be presented in Section 5.2, while a brief
description is shown to the left of Figure 5.

Upon collecting all chip records, the chip circuit will perform consistency
checks among those records, ensuring the state transitions, memory accesses,
etc. are valid and consistent across all the records. Our toolbox for such checks
is set equality checks and lookup arguments. Looking ahead, we present a unified
ROM and RAM circuit design in Section 7 as a practical optimization for lookup
tables.

5.2 Opcode Circuit Layout and Constraints

For completeness, we list all the constraints for the opcode circuit.

Opcode constraint. Suppose an opcode op updates the program from state
(pcin, clkin, topin) to (pcout, clkout, topout), pops npop values and pushes npush val-
ues to the stack, accesses memory nmem times. First and foremost, we need to
constrain that the operation defined by the opcode itself is satisfied.

1. Opcode related constraints. This includes the correctness checking of
(pcout, clkout, topout), stack result computation, and other chip operations.

Program state transition. Our design differentiates itself from the existing
approaches in that we choose not to prove opcodes in the sequence in which they
are executed. Instead, to ensure soundness, we prove that opcodes are chained
together correctly as in the original program.

A state record is formatted as a tuple sin := (pcin, clkin, topin), representing the
program counter, the clock, and the top of the stack. A program state transition
will generate two records, sin = (pcin, clkin, topin) and sout = (pcout, clkout, topout),
reflecting how and when the state transition happens.

Next, to show that the state transitions correctly reflects the executions of all
opcodes, we prove that all input states Ssin =

{
s
(q)
in

}
q∈[[NΠ]]

matches all output

Parallel Zero-knowledge Virtual Machine 23

states Ssout =
{
siout

}
i∈[[NΠ]]

Ssout =
{
s
(q)
out

}
q∈[[NΠ]]

except for the program’s very

initial input state s0 and the final output state sfinal, i.e., we invoke a set equality
check (see Section 2.4) to check that

Ssin ∪ {sfinal} = Ssout ∪ {s0} .

One last caveat is that the state record is formatted as a tuple (pcin, clkin, topin).
One can map this tuple into a single field element (pcin, clkin, topin) 7→ F by lin-
early combining pcin, clkin and topin with a random challenge sampled from the
transcript. As such, the elements in both sets are single field elements over which
we can directly apply the set equality check.

Explicitly, we have the following two constraints.

2. Generate state transition records.

recordsin = RLC (pcin, clkin, topin) ,

recordsout = RLC (pcout, clkout, topout) .

Stack constraints. We adopt the techniques from Blum et al. [4], which also
involves set equality checks. We use two sets to track all stack push and pop
operations. A stack push record consists of a tuple (a, v, t) where a, v, t denote
the position, value and timestamp when the push operation happens. A stack pop
record also consists of a tuple (a, v, t′) where the additional variable t′ denotes
the timestamp when the value v is pushed into the stack. Notice that, in the
opcode circuit we have already asserted that (a, v, t) and (a, v, t′) are well-formed,
including assertions such as the stack address a does not under or overflow, and
the time stamp t < clkin. Though out the execution of all the opcodes, we collect
two sets Spush = {(a, v, t)i}i∈[[Npush]]

and Spop = {(a, v, t′)i}i∈[[Npop]]
. Similar to

program state records, we also use random linear combinations to map stack
push and pop records (a, v, t) to field elements before the actual set equality
checks. And finally a set equality check

Spush = Spop

ensures the stack is consistent.

To sum up, the stack operations consist of the following two constraints.

24 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

3. Generate stack pop records. Suppose the values from the stack are
v
(0)
pop, . . . , v

(npop−1)
pop , written to the stack at the clock clk

(0)
pop, . . . , clk

(npop−1)
pop :

recordrange = recordrange ∪ {(0 ≤ topin − npop < sizestack)} ,

recordrange = recordrange ∪
{
(clk(i)pop < clkin)

}
recordpop = recordpop ∪

{
RLC

(
topin − i− 1, v(i)pop, clk

(i)
pop

)}
, ∀0 ≤ i < npop.

4. Generate stack push records. Suppose the values from the stack are
v
(0)
push, . . . , v

(npush−1)

push :

recordrange = recordrange ∪ {(0 ≤ topin − npop + npush − 1 < sizestack)} ,

recordpush = recordpush ∪
{
RLC

(
topin − npop + i, v

(i)
push, clkin

)}
, ∀0 ≤ i < npush.

Memory constraints. The memory checking mechanism also stems from Blum
et al. [4], and is built upon the stack checking constraints in the previous sub-
section. A memory record is also of the form (a, v, t). A memory write operation
will generate a pair of records, popping the old data and pushing the new data
to the same memory address simultaneously. The memory load function works
identical to memory write, where we pop and push the same data simultaneously.
Accordingly, a set equality check over the push record set and the pop record
set, together with the same random linear combination method in the previous
paragraph, ensures the memory is consistent.

To sum up, the memory operations consist of the following two constraints.

5. Generate memory records (If load). Suppose the loaded values are
v
(0)
load, . . . , v

(nmem−1)
load with address a

(0)
mem, . . . , a

(nmem−1)
mem , written to the memory at

the clock clk
(0)
load, . . . , clk

(nmem−1)
load :

recordrange = recordrange ∪
{
(clk

(i)
load < clkin)

}
,

recordload = recordload ∪
{
RLC

(
a(i)
mem, v

(i)
load, clk

(i)
load

)}
,∀0 ≤ i < nmem,

recordstore = recordstore ∪
{
RLC

(
a(i)
mem, v

(i)
load, clk

(i)
in

)}
, ∀0 ≤ i < nmem.

6. Generate memory records (If store). Suppose the stored values are
v
(0)
store, . . . , v

(nmem−1)
store with addresses a

(0)
mem, . . . , a

(nmem−1)
mem , overwrite the values

v
(0)
load, . . . , v

(nmem−1)
load written to the memory at the clock clk

(0)
load, . . . , clk

(nmem−1)
load :

recordrange = recordrange ∪
{
(clk

(i)
load < clkin)

}
,

recordload = recordload ∪
{
RLC

(
a(i)
mem, v

(i)
load, clk

(i)
load

)}
, ∀0 ≤ i < nmem,

recordstore = recordstore ∪
{
RLC

(
a(i)
mem, v

(i)
store, clk

(i)
in

)}
, ∀0 ≤ i < nmem.

Parallel Zero-knowledge Virtual Machine 25

Chip lookup constraints. Lookup arguments are a common method to deal
with complex and non-linear operations in zkVMs. The prover pre-compute a
lookup table, in the form of a set of key-value store. For the rest of this subsection,
we use bytecode chip as an example. A bytecode table’s record is of the format
T := {(pci, opcodei)}. During the execution, the prover maintains an append
only set S for the actual pc and opcode that is been executed. Then, the prover
append the key and value pair (pccur, opcodecur) to S. The lookup is correct if
S ⊆ T .

Concretely we use the LogUp protocol introduced by Papini et al. [28], which
is constructed based on the circuit Gfsum (see Section 4.2) to compute fractional
summation, therefore can be instantiated with our AGKRtreeGfsum . The constraints
are defined as follows.

7. Generate bytecode chip lookup.

recordAbytecode = RLC (pcin, op) .

5.3 Chip Computation Constraints

Memory initialization and finalization constraints. Depending on the architec-
ture, some virtual machine initializes the memory with 0s at program initial-
ization, and allows for access without declaration; others requires each memory
address to be accessible only after a manual declaration and initialization. In our
zkVM, we unify the two architectures via writing a default value to the memory
when it is empty at the time of the first load operation. This is done at clkin = 0.
Suppose there are nmem,init of cells with addresses a

(0)
mem,init, . . . , a

(nmem,init−1)
mem,init to be

initialized, then we have a circuit with recordstore defined as

recordstore = recordstore ∪
{
(a

(i)
mem,init, 0, 0)

}
,∀0 ≤ i < nmem,init. (10)

We also finalize memory by clearing the memory addresses whose values have
not been manually removed by the opcodes. In our zkVM, this is done at clkfinal.
Suppose there are nmem,finl of cells with addresses a

(0)
mem,finl, . . . , a

(nmem,finl−1)
mem,finl and

values v(0), . . . , v(nmem,finl−1) to be removed from the memory, then we have a
circuit with the output recordload defined as

recordload = recordload ∪
{
(a

(i)
mem,finl, v

(i), clkfinal)
}
,∀0 ≤ i < nmem,finl. (11)

Stack initialization and finalization constraints. Handling stacks is a bit sim-
pler, because stack is always empty at the initiation. When finalizing the stack
with npop,finl elements after the program halt, obviously its address is from 0 to
npop,finl − 1, then we have an extra circuit with the output recordpop defined as

recordpop = recordpop ∪
{
(i, v(i), clkfinal)

}
,∀0 ≤ i < npop,finl. (12)

26 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

Table constraints. For each chips proved by lookup arguments, we need a circuit
to initialize the table items and generate the corresponding table records. For
example, for the bytecode chip with the table record set recordTbytecode, we have
the following constraints in that circuit:

recordTbytecode = recordTbytecode ∪ {(i, opi)} ,∀0 ≤ i < NΠ (13)

Each opcode additionally has several tree structured circuits, shown as the
the green triangle as in Figure 5. Circuits are used to compute the product or sum
of every chip. Later on, within the chip table circuit, there is also a tree circuit
which performance a same computation. The products, denoted as

{
δ(chip)

}
for

all chips, and the summation, denoted as
{
σ(chip)

}
, will be send to the verifier.

A consistency check is then performed across different trees by the verifier.

5.4 Proving and Verification Protocols

The detailed description of the constraint system has already been presented in
Section 5.2. The circuit structure and proving process in presented in Figure 7.

Fig. 7: Circuit Structure in GKR-zkVM

Proving cost analysis. Suppose for each program the number of types of
opcodes is a constant, which is common in real-world scenarios. Assume any
opcode in a program is executed for at most N times, then

– The circuit size and the running time of the prover are O(N), due to the
linear-time prover of GKR.

– The running time of the verifier and the proof size are both O(log2 N), where
one O(logN) comes from the sum-check and another factor of logN comes
from the tree-structure circuits that have O(logN) layers.

Note that the verification and proof size can be further reduced by recursion,
which is a common practice in the zero-knowledge community.

Parallel Zero-knowledge Virtual Machine 27

Protocol 3 (GKR-zkVM) The proving-verification process proceeds as follows:

– Prover:
1. Prover sends auxiliary information to the verifier, including the program’s

input and output length, the length of the public instance and the bytecode
length. Notice that some data field, such the bytecode, may be already known
by the verifier.

2. Prover and verifier exchange witness commitments and challenges in several
rounds.

3. Prover sends
{
δ(chip)

}
,
{
σ(chip)

}
, and generates all GKR proofs for the cir-

cuits, following the flow as shown in Figure 7. Prover sends those messages
to the verifier.

4. Prover opens polynomial commitments and send the openings to the verifier.
– Verifier:

1. Verifier receives the auxiliary information.
2. Verifier exchanges witness commitments and challenges with prover in several

rounds.
3. Verifier receives GKR proofs and verifies them.
4. Verifier also receives polynomial commitment openings and verifies them.
5. Verifier checks the correctness of

{
δ(chip)

}
and

{
σ(chip)

}
.

6 GKR-zkVM Pro

In this section, we present an optimized design building on top of previous sec-
tion.

The design in the previous section has two minor drawbacks. First, our par-
allelization was done at the opcode level. Most of the opcodes, such as ADD,
MUL, etc. have very shallow circuits. One feature of GKR, when it is turned into
a non-interactive protocol, is that one is only required to commit to the input
and output layers of the protocol, not the intermediate layers. Shallow circuits
mean we have to commit to more witnesses.

The other direction of optimization is to build structure awareness for the
prover. The design in the previous version treats every opcode separately, and
does not exploit the fact that most programs have repeated patterns. As alluded
earlier, structure awareness is a common means in programming language for
compilers to optimize execution. We borrow this intuition and apply it to our
prover.

When applying this intuition to our prover, we have the following observa-
tions. In a typical virtual machine, programs use a stack to handle data flow
among opcodes. These data flow are currently represented by records, checked
by our chip circuit. Notice that when a segment of program does not contain
branches, the data flow remains identical within this segment. This leads to the
idea of handling data flow at the basic block level.

28 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

Now we are ready to present the details of this improvement. We note that
cross this section we are using stack based virtual machines as examples, though
our method is also applicable to register based virtual machines.

6.1 Critical Observations in The Program Execution

Consider that GKR protocol is originally to deal with fixed circuits instead of dy-
namic execution trace, we try to convert the execution trace “more like” a circuit.
In this subsection, we start from some observations of stacks and basic blocks
and then propose our enhanced design GKR-zkVM Pro. Finally, we demonstrate
that how GKR is applied to reduce the stack operations to be proved.

Our view of stack operations Stack operation, generally speaking, is to con-
nect a value to two opcodes where the value is generated and consumed. Consider
the following example. For an opcode execution sequences Π := (. . . ,ADD,MUL, . . .),
the element popped in MUL is the result pushed in ADD. Therefore, if we visu-
alize the opcodes as gates in a circuit, the stack operations will form the wires
connecting the ADD and MUL gates. For simplicity, we call the opcode that
generates the stack element the generator (i.e., the ADD gate) and the one that
consumes the stack element the consumer. Extending this notion over the whole
trace, we can construct a circuit for the program Π.

However, the existences of branches make the circuit dynamic. That is the
stack operation will connect a generator to multiple consumers depending on the
branching condition. Our solution to the branching issue is to work only with
chunks of opcode that does not contain branches. This notion is known as basic
block (BB) in the compiler design domain, and is useful to partition a program.
Formally,

Definition 3 (Basic block [51]). The code in a basic block has the following
properties:

– One entry point, meaning that no code within it is the destination of a jump
instruction anywhere in the program.

– One exit point, meaning that only the last instruction can cause the program
to begin executing code in a different basic block.

Under these circumstances, whenever the first instruction in a basic block is
executed, the rest of the instructions are necessarily executed exactly once and
in order.

Further analyzing of basic blocks leads to the following observations:

– The stack behaviors are identical for executions of a same basic block.
Then, if we treat a BB as a fixed sub-circuit; a program will contain multiple
identical BB sub-circuits, also known as data parallel circuits. A typical
example here is the code within a loop that gets executed multiple times.

Parallel Zero-knowledge Virtual Machine 29

– The opcodes are always executed sequentially inside a basic block. Therefore,
we only need to check the state validation in the first and last opcodes in a
basic block.

In summary, our key intuition is that basic blocks can be processed with data-
parallel circuits.

6.2 A Toy Example

Figure 8 presents a toy example. This example program (Figure 8a) reads an
input integer n and executes a loop with n repetitions to compute the sum of
a variable-length array. After compiling this program into assembly (see Fig-
ure 8b), we identify three basic blocks in the bytecode: the first basic block (B1)
consists of the first two opcodes. Notice that the third opcode is the destination
of a CJMP opcode. The second basic block (B2) starts from the third opcode and
finishes at the CJMP opcode. Finally, the last basic block (B3) consists of the
last opcode. Note that when B1 is finished, the only possible destination is B2;
whereas B2 may be followed by either itself or B3, i.e., a branch. A complete
workflow is illustrated in Figure 8c.

1 int n = input ();
2
3 int sum = 0;
4 for(int i = n; i > 0; i--) {
5 sum += a[i];
6 }

(a) Toy program

1 B1: PUSH 0 # [sum]
2 PUSH n # [sum , n]
3 B2: DUP # [sum , i, i]
4 LOAD # [sum , i, a[i]]
5 SWAP1 # [sum , a[i], i]
6 SWAP2 # [i, a[i], sum]
7 ADD # [i, sum’]
8 SWAP1 # [sum’, i]
9 SUB 1 # [sum’, i’]

10 DUP # [sum’, i’, i’]
11 NZ # [sum’, i’,
12 is_zero(i’)]
13 CJMP B2 # [sum’, i’]
14 B3: POP

(b) Toy program in assembly (c) Basic Block

Fig. 8: Program and its Basic Block for the Toy Example

Next, we explain how to generate a proof for this program exploiting this
structure. The entire procedure follows the same workflow as GKR-zkVM, except
that the opcode circuits are replaced with basic block circuits. We show how to
prove B2, the most complex basic block in this example. As shown in Figure 9a,
the circuits accomplish three tasks: add the current entry to the sum, decrement
the counter, and decide whether to jump. To prove this computation, the prover
traverses the instructions in the reverse order, and invokes the GKR prover to
reduce the outputs to the inputs, as illustrated in Figure 9b, where the left side
is the output for each circuit.

Finally, the verifier validates the proof in the same order as the proving.

30 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

(a) Computing B2 Cir-
cuits

(b) Prove and Verify B2 Circuits

Fig. 9: Prove and Verify Basic Block in the Toy Example

6.3 Virtual Machine Layout and Opcode Layout

Before proceed further, let us first review the difference between this new de-
sign and GKR-zkVM. Recall that in GKR-zkVM, we have already modelled Π :=
(op0, . . . , opNΠ−1) ∈ [0, Q)NΠ as in Section 5.1, and same type of opcodes are
handle by a single data-parallel circuit.

Let us further assume Π := (b0, . . . , bBΠ−1) ∈ [0, R)BΠ where BΠ is the total
number of basic blocks in Π, R is the number of unique basic blocks, and bi is
the identifier for the i-th basic block. Each basic block BB is represented by its
pc counters (qstart...qend), a sub-vector of Π.

Similar to GKR-zkVM, our view of a virtual machine circuit still consists of
the opcode circuits and the chip circuits. The difference here is that the opcode
circuits are now grouped by the basic blocks rather than their individual opcode
type. Specifically, for each basic block bi in the program, we have a BB start
circuit, a BB final circuit, and a list of opcode circuits, each for one opcode in
the basic block, respectively. We expect a basic block circuit to be repeated for
multiple times, and forms a data parallel circuit, and eventually get proved via
the AGKR_DP protocol.

6.4 Constraints

Following the above basic block abstraction, we claim that we no longer need to
handle the stack and global states at the opcode level. We define a basic block
start circuit and end circuit to handle the storage. Within each basic block,
the opcodes are executed sequentially, and the state transitions are implicitly
guaranteed by the gates connecting the opcodes, as explained in Section 6.1.

GKR-zkVM Pro improves upon GKR-zkVM in the following aspects:

Parallel Zero-knowledge Virtual Machine 31

– First, the opcode circuits inside a basic block no longer handles the stack
operations, also avoids checking the range of stack top and timestamp.

– Second, the opcodes inside a basic block are guaranteed to be executed
sequentially, and therefore we no longer need to handle bytecode lookups for
the current opcode. The only exception is the last opcode, which is always
a jump operation.

– Thirds, the opcode circuit does not need to handle global states. The global
state records are generated only at the beginning and the end of a basic
block.

Constraints in Basic Block Circuits. The basic block start circuits and
final circuits are used to assert the validity of stack operations and global state
updates.

An heuristic here is that from a basic block point of view, the stack changes,
in terms of pop and push operations, will be much smaller than the sum of all
its opcodes’. The justification is that we expect that consecutive opcodes’ stack
operations to cancel each other.

Our basic block’s stack circuit is therefore designed as follows:

– The basic block start circuit reads all the values in the stack that will be
touched by the opcodes inside this basic block.

– The relative positions of these values to the stack top are fixed and remain
constant for this basic block when generating all its opcode circuit.

– The basic block final circuit is responsible for updating the global state,
including the new program counter, the clock and the stack top.

– The basic block final circuit also finalizes the operations on the stack.

Suppose a basic block BB updates the program from state (pcin, clkin, topin)
to (pcout, clkout, topout), pops npop values at the beginning and pushes npush values
to the stack in the end, then it has the following constraints:

32 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

1. Generate state transition records. The BB start circuit generates a state
record:

recordsin = RLC (pcin, clkin, topin) .

BB final circuit checks the correctness of (pcout, clkout, topout) according to the BB’s
structure, and then generate a state record:

recordsout = RLC (pcout, clkout, topout) .

2. Initialization of the stack. The BB start circuit loads values from the stack
and exports them as outputs, which are then fed into the corresponding opcode
circuits within the block. Denote the values from the stack by v

(0)
pop, . . . , v

(npop−1)
pop

and let clk(0)pop, . . . , clk
(npop−1)
pop be the clock that stack is written, respectively. Then,

recordrange = recordrange ∪ {(0 ≤ topin − npop < sizestack)} ,

recordrange = recordrange ∪
{
(clk(i)pop < clkin)

}
recordpop = recordpop ∪

{
RLC

(
topin − i− 1, v(i)pop, clk

(i)
pop

)}
, ∀0 ≤ i < npop.

3. The BB final circuit takes values as the input that are computed within the block
and not yet consumed. It writes the, back those values to the stack. Denote this
values by v

(0)
push, . . . , v

(npush−1)

push , then:

recordrange = recordrange ∪ {(0 ≤ topin − npop + npush − 1 < sizestack)} ,

recordpush = recordpush ∪
{
RLC

(
topin − npop + i, v

(i)
push, clkin

)}
, ∀0 ≤ i < npush.

6.5 Proving And Verification Protocols

The complete protocol is presented in Protocol 4. The circuit structure is il-
lustrated in Figure 10, implying a non-uniform proving protocol. Note that we
cannot derive the verification process via a simple combination of AGKR proto-
cols. The connections of opcodes within a basic block influence the circuit layout,
and a uniform verifier should be able to infer the layout via the opcode sequence.

Cost analysis. GKR-zkVM Pro is a structure-aware protocol for programs with
applicable structures. Suppose the program is of size NΠ , consisting of BΠ basic
blocks. When the number of iterations of each basic block is bounded by M , and
every basic block executes at most a constant number of stack operations, the
prover proves O(BΠM) number of stack operations. Furthermore, the number
of integrity checks associated with the stack is also reduced to O(BΠM), includ-
ing range checks on the stack top pointer, and the comparison between stack
timestamp and the current clock. GKR-zkVM Pro becomes increasingly efficient
when BΠM is significantly smaller than N .

Parallel Zero-knowledge Virtual Machine 33

Fig. 10: Structure of Basic Blocks in GKR-zkVM Pro

This cost improvement on the prover side comes at a cost of a slight increment
to the verifier’s work. In general, the stack operations that was previously done
by the opcode circuits are now performed by the verifier’s. This is executed once
for every opi ∈ Π, regardless of the number of repetitions. Consequently, the
verifier’s cost is increased by O(NΠ) in the worst case.

In summary,

– The running time of the prover is O(NΠM).
– The verification cost and proof size are O(NΠ log2 M).

Note that M here is usually smaller than the N , the number of opcode
repetitions in GKR-zkVM. Furthermore, the total number of stack operations on
the prover and the verifier sides has been reduced to O(NΠ + BΠ ·M), which,
for most programs, is significantly less than the number of operations in their
executions. Also, we moved bytecode checkings from the prover to the verifier.
Similar to the above analysis, the combined cost for bytecode operations are
reduced.

7 GKR-zkVM’s ROM and RAM

In both GKR-zkVM and GKR-zkVM Pro protocols, we have introduced multiple
tables for memory constraints, chip lookup constraints, etc. In this section, we

34 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

Protocol 4 (GKR-zkVM Pro) The proving and verification proceed as follows:

– Prover:
1. Prover sends auxiliary information to the verifier, including the program’s input

and output length, the length of the public instance and the basic block infor-
mation. Notice that some data field, such the bytecode, may be already known
by the verifier.

2. Prover and verifier exchange witness commitments and challenges in several
rounds.

3. Prover sends
{
δ(chip)

}
,
{
σ(chip)

}
, and generates all GKR proofs for the circuits,

following the flow as shown in Figure 10. This consists of basic block circuits,
including BB start and BB Final, opcode circuits, chip table circuits and tree
circuits for computing summations and products. Prover sends those messages
to the verifier.

4. Prover opens polynomial commitments and send the openings to the verifier.
– Verifier:

1. Verifier receives the auxiliary information.
2. Verifier exchanges witness commitments and challenges with prover in several

rounds.
3. Verifier receives GKR proofs from the prover in the order corresponding to

the program. The verifier iterates through the program and the corresponding
circuits reversely, from the last opcode to the first.
(a) If the circuit is a BB final circuit, the verifier verifies it and, initialize the

verifier’s stack using the input evaluations.
(b) If the circuit is a opcode circuit, the verifier fetches the evaluations from

the stack, verify the GKR proof, and update the stack.
(c) If the circuit is a BB start circuit, the verifier fetches all the remaining

evaluations in the stack, verifies the GKR proof, and ensures the stack is
empty.

4. Verifier receives polynomial commitment openings and verifies them.
5. Verifier checks the correctness of the product of

{
δ(chip)

}
, and

{
σ(chip)

}
.

show how to reduce those tables into merely two tables: a ROM table and a RAM
table. At a high level, the ROM table is the concatenation of all read-only tables,
with an additional key indicating which table the entry is originated from. The
RAM table is used for operations on mutable tables. In the case of zkVM, these
particularly refer to the stack, memory, and global state checking operations.
The reduction in the number of tables leads to less number of circuits for the
set equality check and lookup arguments.

ROM Table. The ROM table collects all the lookup tables into a single table,
thus merging multiple lookup arguments into one. This optimization is formal-
ized into the following fact.

Parallel Zero-knowledge Virtual Machine 35

(a) GKR-zkVM Pro zkVM layout (b) GKR-zkVM Pro opcode layout

Fig. 11: GKR-zkVM Pro Layouts

Fact 1 Given a set A = {ai}ma−1
i=0 of input vectors and set T = {ti}mt−1

i=0 of
tables, for every i let a′i = {(′tag′i, ai,j)}

|ai|
j=0 and t′i = {(′tag′i, ti,j)}

|ti|
j=0. Let A :=

a′1∥ · · · ∥a′ma
and T := t′1∥ · · · ∥t′mt

. Then all the pairs in V is a subset of all the
pairs in T if and only if for every i from 0 to m−1, the entries of vi is a subset
of the entries in ti.

Based on this fact, we introduce the ROM table whose constraints are de-
fined as follows. We first initialize recordROM

T as the empty list. Suppose then for
each chip operation with record a on the chip ′tag′, we introduce the following
constraints

recordROM
T = recordROM

T ∪ {RLC (′tag′∥a)} (14)

For example, suppose we have a range check chip and a bytecode chip, with tables
defined as [0, 2b) and {(i, op)}0≤i<NΠ

, respectively. We initialize an empty list
recordROM

A , and the constraints for checking these two operations are respectively

recordROM
A = recordROM

A ∪ {RLC (′range′, a)} for a range check on a

recordROM
A = recordROM

A ∪
{
RLC

(′bytecode′, pc, op)} for looking up (pc, op)
(15)

Merging multiple lookup arguments into a single one leads to less number
of circuits. Consider two lookup arguments, with a lookup vector size of N and

36 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

a table size also of N . Executing the two lookup arguments separately requires
2 logN rounds, whereas the merged lookup argument requires log 2N = 1+logN
rounds. This significantly reduces the cost for the verifier.

RAM Table. We use a RAM table to handle the memory, the stack opera-
tions, and the global state checking. Unlike the ROM table where the data is
stored once and remains static for its whole lifetime, the RAM table must han-
dle the cases where the data are mutable. Therefore, we use the offline memory
checking [4] technique to transform these checks into a set-equality argument
described in Section 5.2.

Now, let us explain how to perform all checks with a single RAM table. First,
recall that in the offline memory checking, both the reading and the writing
operations generate two records: one read and one write at the same address.
This inspires us to define a new memory model, which we refer to as once access
memory (OAM) which is a special kind of read-write memory.

Definition 4. An OAM with address space 0, · · · ,M − 1 is a random-access,
read-write memory of this address space, with the following restriction: an OAM’s
address can only be accessed by write and read operations in an interleaved se-
quence, starting from write and ending with read. In another word, for each
address, the operations to this address must follow the write, read, write, read,
· · · , write, read pattern.

Let recordOAM
load and recordOAM

store be the tables that store the sequence of OAM
operations. Then the constraints for these two operations are defined as follows:

– OAM read with a value v at an address a that was written at a timestamp
clk, with an original chip tag ′tag′:

recordOAM
load = recordOAM

load ∪ {RLC (′tag′, a, v, clk)} (16)

– OAM write with a value v to an address a at a timestamp clk, with an
original chip tag ′tag′:

recordOAM
store = recordOAM

store ∪ {RLC (′tag′, a, v, clk)} (17)

Intuitively, we view each value as an object generated by a write operation
and consumed by a read operation.

Under our OAM model, storage operations, including read-write memory
operations, stack operations, and global state updates, can all be simulated with
OAM operations. Although here we will explicitly specify some dedicated address
for the stack operations, this address is actually maintained by the push and pop
logic in the opcodes.

We omit the details of range check operations that are to be used in the
following constraints. They can be directly instantiated from ROM as shown in
Equation 15.

Parallel Zero-knowledge Virtual Machine 37

– For a memory read operation at address a and a timestamp clk, reading a
value vload that was written at clkload,

recordrange = recordrange ∪ {(clkload < clk)}
recordOAM

load = recordOAM
load ∪ {RLC (′memory′, amem, vload, clkload)}

recordOAM
store = recordOAM

store ∪ {RLC (′memory′, amem, vload, clk)} .

– For a memory write operation at address a and a timestamp clk, overwriting
the value vload that was written at clkload with the new value vstore

recordrange = recordrange ∪ {(clkload < clk)}
recordOAM

load = recordOAM
load ∪ {RLC (′memory′, amem, vload, clkload)}

recordOAM
store = recordOAM

store ∪ {RLC (′memory′, amem, vstore, clk)} .

– For a stack PUSH operation that writes value vpush to a at time clk

recordrange = recordrange ∪ {(0 ≤ a < sizestack)} ,
recordOAM

store = recordOAM
store ∪

{
RLC

(′stack′, a, vpush, clk)} .

– For a stack POP operation that reads a value vpop that was pushed at time
clkload from stack address a at time clk,

recordrange = recordrange ∪ {(0 ≤ a < sizestack)} ,
recordrange = recordrange ∪ {(clkpop < clk)}
recordOAM

load = recordOAM
load ∪

{
RLC

(′stack′, a, vpop, clkpop)} .

– For a stack SWAP operation that swaps v, v′ in addresses a, a′ that was
pushed at time clkpop, clk

′
pop, respectively, currently at time clk, it is equiva-

lent to execute two stack pop operations for (a, v, clkpop) and (a′, v′, clk′pop),
followed by two stack push operations for (a, v′, clk) and (a′, v, clk).

– For a stack DUP operation that duplicates the value v at stack address a
that was pushed at timestamp clkpop, currently at time clk with the stack
top address atop. it is equivalent to execute one stack pop operations for
(a, v, clkpop), followed by two stack push operations for (a, v, clk) and (atop, v, clk).

In summary, we unify all the lookup arguments into a single ROM table,
and the stack and memory operations into a RAM table. From the circuit point
of view, the chip circuit now only consists of one LogUp circuit and one set
equality check, thus reducing the number of rounds in the GKR protocol for the
chip circuit.

8 Conclusions And Discussion

We conclude our paper with the following remarks.

38 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

Application to register machines Throughout the paper, we demonstrated
how to build a zkVM for a stack machine. Our framework can also be applied
to register machines, although extra care need to be taken when dealing with
registers. We leave this to future work.

Alternative provers We used GKR as our backend prover for its data-parallel
circuit friendliness. Nonetheless, our framework is generic for various provers, so
long as they can prove the opcode circuit, basic block circuit and chip circuit effi-
ciently. To this end, we may plug-and-play other candidates, such as [32], which,
although have a slower asymptotic complexity, has shown great performance in
practice.

Opportunistic proving We note that the GKR-zkVM and GKR-zkVM Pro
schemes in this paper are not mutually exclusive. In certain scenarios, it may
be beneficial to segment a program into multiple pieces, with parts proved via
GKR-zkVM and others proved via GKR-zkVM Pro. We may opportunistically ap-
ply GKR-zkVM Pro to the basic blocks that are repeated for many times; and
leave the rest to GKR-zkVM. How to dynamically segment the program is still
an open problem, while finding a sweet spot requires further analysis and real
world experiments. We also leave this to future work.

References

1. Kasra Abbaszadeh, Christodoulos Pappas, Dimitrios Papadopoulos, and Jonathan
Katz. Zero-knowledge proofs of training for deep neural networks. IACR Cryptol.
ePrint Arch., page 162, 2024.

2. arkworks contributors. arkworks zksnark ecosystem, 2022.
3. Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle

proofs. Cryptology ePrint Archive, Paper 2016/116, 2016. https://eprint.iacr.
org/2016/116.

4. M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correct-
ness of memories. In [1991] Proceedings 32nd Annual Symposium of Foundations
of Computer Science, pages 90–99, 1991.

5. Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu. Zexe: Enabling decentralized private computation. Cryptology ePrint
Archive, Paper 2018/962, 2018. https://eprint.iacr.org/2018/962.

6. Benedikt Bünz and Binyi Chen. Protostar: Generic efficient accumulation/folding
for special sound protocols. Cryptology ePrint Archive, Paper 2023/620, 2023.
https://eprint.iacr.org/2023/620.

7. Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. Hyperplonk: Plonk
with linear-time prover and high-degree custom gates. In Advances in Cryptology
– EUROCRYPT 2023, pages 499–530, 2023.

8. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas Ward. Marlin: Preprocessing zksnarks with universal and updatable srs.
In Advances in Cryptology – EUROCRYPT 2020, pages 738–768, 2020.

https://eprint.iacr.org/2016/116
https://eprint.iacr.org/2016/116
https://eprint.iacr.org/2018/962
https://eprint.iacr.org/2023/620

Parallel Zero-knowledge Virtual Machine 39

9. Alessandro Chiesa, Ryan Lehmkuhl, Pratyush Mishra, and Yinuo Zhang. EOS:
Efficient private delegation of zkSNARK provers. In USENIX Security Symposium,
pages 6453–6469, 2023.

10. Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical Verified
Computation with Streaming Interactive Proofs. In Proceedings of the 3rd Inno-
vations in Theoretical Computer Science Conference, pages 90–112, 2012.

11. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In Advances in Cryptology — CRYPTO’ 86, pages
186–194, 1987.

12. Azetc foundation. Aztec. https://aztec.network/.
13. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permuta-

tions over lagrange-bases for oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, Paper 2019/953, 2019.

14. Sanjam Garg, Aarushi Goel, Abhishek Jain, Guru-Vamsi Policharla, and Sruthi
Sekar. zkSaaS: zero-knowledge SNARKs as a service. In USENIX Security Sym-
posium, pages 4427–4444, 2023.

15. Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo – a turing-complete
stark-friendly cpu architecture. Cryptology ePrint Archive, Paper 2021/1063, 2021.
https://eprint.iacr.org/2021/1063.

16. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating compu-
tation: interactive proofs for muggles. pages 113–122, 2008.

17. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof-systems (extended abstract). In Robert Sedgewick, editor,
Proceedings of the 17th Annual ACM Symposium on Theory of Computing, May
6-8, 1985, Providence, Rhode Island, USA, pages 291–304. ACM, 1985.

18. Jens Groth. On the size of pairing-based non-interactive arguments. Cryptology
ePrint Archive, Paper 2016/260, 2016. https://eprint.iacr.org/2016/260.

19. Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol
specification. version 2022.3.8. Online, 2022. https://zips.z.cash/protocol/
protocol.pdf.

20. Abhiram Kothapalli, Srinath T. V. Setty, and Ioanna Tzialla. Nova: Recursive
zero-knowledge arguments from folding schemes. In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 - 42nd Annual Inter-
national Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August
15-18, 2022, Proceedings, Part IV, volume 13510 of Lecture Notes in Computer
Science, pages 359–388. Springer, 2022.

21. Modulus Lab. Scaling intelligence: Verifiable decision forest interence with remain-
der. Github, 2022. https://github.com/Modulus-Labs/Papers/blob/master/
remainder-paper.pdf.

22. Succinct lab. Succinct processor 1. https://blog.succinct.xyz/
introducing-sp1/.

23. Tianyi Liu, Tiancheng Xie, Jiaheng Zhang, Dawn Song, and Yupeng Zhang. Pi-
anist: Scalable zkrollups via fully distributed zero-knowledge proofs. In IEEE
Symposium on Security and Privacy, pages 35–35, 2024.

24. Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkcnn: Zero knowledge proofs for convo-
lutional neural network predictions and accuracy. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, page 2968–2985,
2021.

25. C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive
proof systems. pages 2–10 vol.1, 1990.

https://aztec.network/
https://eprint.iacr.org/2021/1063
https://eprint.iacr.org/2016/260
https://zips.z.cash/protocol/protocol.pdf
https://zips.z.cash/protocol/protocol.pdf
https://github.com/Modulus-Labs/Papers/blob/master/remainder-paper.pdf
https://github.com/Modulus-Labs/Papers/blob/master/remainder-paper.pdf
https://blog.succinct.xyz/introducing-sp1/
https://blog.succinct.xyz/introducing-sp1/

40 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

26. Nexus Inc. Nexus zkVM. https://github.com/nexus-xyz/nexus-zkvm/.
27. Ethereum Org. Go ethereum: Official go implementation of the ethereum protocol.

https://github.com/ethereum/go-ethereum.
28. Shahar Papini and Ulrich Haböck. Improving logarithmic derivative lookups using

gkr. Cryptology ePrint Archive, Paper 2023/1284, 2023.
29. Paradigm. Reth: Modular, contributor-friendly and blazing-fast implementation

of the ethereum protocol, in rust. https://github.com/paradigmxyz/reth.
30. Aztec project. noir language, 2023. https://noir-lang.org/docs/.
31. Monero Project. Monero. Online, 2022. https://github.com/monero-project/

monero.
32. Polygon project. Plonky2. https://github.com/mir-protocol/plonky2.
33. Polygon project. Plonky3. https://github.com/Plonky3/Plonky3.
34. Polygon project. Polygon Hermez. https://polygon.technology/solutions/

polygon-hermez/.
35. Polygon project. Polygon Miden. https://polygon.technology/polygon-miden.
36. Zcash project. The halo2 book.
37. Zcash project. PLONKish arithmetization. link, 2022.
38. ZkSync project. ZkSync. https://zksync.io/.
39. Risc-Zero project. Risc-Zero. https://www.risczero.com/.
40. SCIPR Lab. libiop: a C++ library for IOP-based zkSNARKs. https://github.

com/scipr-lab/libiop, 2021.
41. Srinath Setty. Spartan: Efficient and general-purpose zksnarks without trusted

setup. In Advances in Cryptology – CRYPTO 2020, pages 704–737, 2020.
42. Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint systems

for succinct arguments. Cryptology ePrint Archive, Paper 2023/552, 2023.
43. Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup singularity

with lasso. Cryptology ePrint Archive, Paper 2023/1216, 2023.
44. Starkware. Starknet. https://www.starknet.io/en.
45. StarkWare Team. ethSTARK. https://github.com/starkware-libs/ethSTARK,

2021.
46. Scroll tech. Scroll. https://scroll.io/.
47. Justin Thaler. Time-Optimal Interactive Proofs for Circuit Evaluation. In Ad-

vances in Cryptology – CRYPTO 2013, pages 71–89, 2013.
48. Justin Thaler. Proofs, arguments, and zero-knowledge, 2020.
49. Justin Thaler. Proofs, Arguments, and Zero-Knowledge. December 2022.
50. Valida. Valida, a stark-based virtual machine, 2023. https://github.com/

valida-xyz/valida.
51. Wikipedia contributors. Basic block — Wikipedia, the free encyclopedia, 2023.
52. Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and

Dawn Song. Libra: Succinct zero-knowledge proofs with optimal prover computa-
tion. In Advances in Cryptology – CRYPTO 2019, pages 733–764, 2019.

53. Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang,
Yongzheng Jia, Dan Boneh, and Dawn Song. zkbridge: Trustless cross-chain bridges
made practical. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, ed-
itors, Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022,
pages 3003–3017. ACM, 2022.

54. Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz, Ben Fisch, Fer-
nando Krell, and Philippe Camacho. Veri-zexe: Decentralized private compu-
tation with universal setup. Cryptology ePrint Archive, Paper 2022/802, 2022.
https://eprint.iacr.org/2022/802.

https://github.com/nexus-xyz/nexus-zkvm/
https://github.com/ethereum/go-ethereum
https://github.com/paradigmxyz/reth
https://noir-lang.org/docs/
https://github.com/monero-project/monero
https://github.com/monero-project/monero
https://github.com/mir-protocol/plonky2
https://github.com/Plonky3/Plonky3
https://polygon.technology/solutions/polygon-hermez/
https://polygon.technology/solutions/polygon-hermez/
https://polygon.technology/polygon-miden
https://zcash.github.io/halo2/concepts/arithmetization.html
https://zksync.io/
https://www.risczero.com/
https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libiop
https://www.starknet.io/en
https://github.com/starkware-libs/ethSTARK
https://scroll.io/
https://github.com/valida-xyz/valida
https://github.com/valida-xyz/valida
https://eprint.iacr.org/2022/802

Parallel Zero-knowledge Virtual Machine 41

55. Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. Zero knowledge
proofs for decision tree predictions and accuracy. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, CCS ’20: 2020 ACM SIGSAC Con-
ference on Computer and Communications Security, Virtual Event, USA, Novem-
ber 9-13, 2020, pages 2039–2053. ACM, 2020.

56. Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and
Yupeng Zhang. Doubly efficient interactive proofs for general arithmetic circuits
with linear prover time. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 159–177, 2021.

57. Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Xiaodong Song. Trans-
parent polynomial delegation and its applications to zero knowledge proof. 2020
IEEE Symposium on Security and Privacy (SP), pages 859–876, 2020.

58. Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. vsql: Verifying arbitrary sql queries over dynamic out-
sourced databases. 2017 IEEE Symposium on Security and Privacy (SP), pages
863–880, 2017.

A Protocols

42 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

Protocol 5 (GKR Layer Prover Protocol, Phase 1) Suppose Li is the struc-
ture of the i-th layer in the circuit. Before proving current layer, there are c eval-
uations

{
(Ṽi(yk∥tk), (yk∥tk))

}
0≤k<c

generated by the gate computation of the next

layer, and c′ evaluations
{
(Ṽi→ℓk−c(yk∥tk), (yk∥tk))

}
c≤k<c+c′

corresponding to the

subsets Si→ℓk copied to the ℓk-th layer for 0 ≤ k < c′.

– GKRPhase1
layered .Prove

(Li)
n

({
(Ṽi(yk∥tk), (yk∥tk))

}
,
{
(Ṽi→ℓk−c(yk∥tk), (yk∥tk))

}
, Ṽi(Y,T)

)
:

The prover runs the following steps:
1. Set σ and F1(Y) =

∑c+c′

k=0 f (k)(Y)g(k)(Y), where

σ =
c−1∑
k=0

αkṼ
(k)
i (yk∥tk) +

c+c′−1∑
k=c

αkṼi→ℓk−c(yk∥tk) ,

f
(k)
1 (Y) = Ṽi(Y∥tk), for 0 ≤ k < c+ c′ ,

g
(k)
1 (Y) = αkẽq(yj ,Y), for 0 ≤ k < c ,

g
(k)
1 (Y) = αk ˜copy_toi→ℓk−c

(yj ,Y), for c ≤ k < c+ c′,

2. Run SC.Proven−m,2(σ, F1(Y)). Set y to be the random variables received from
the verifier during the sumcheck protocol, and F1,eval as the last step evaluation.

3. Send f
(0)
1,eval, . . . , f

(c+c′−1)
1,eval to the verifier.

4. Set σ = F1,eval, and F2(T) = f2(T)g2(T), where

f2(T) = Ṽi(y,T) ,

g
(k)
2 (T) = αkẽq(yj ,y)ẽq(tk,T) for 0 ≤ k < c ,

g
(k)
2 (Y) = αk ˜copy_toi→ℓk−c

(yj ,y)ẽq(tk,T), for c ≤ k < c+ c′,

5. Run SC.Provem,2(σ, F2(T)). Set t to be the random variables received from the
verifier during the sumcheck protocol, and F2,eval as the last step evaluation.

6. Send f2,eval to the verifier.
Output (Ṽi(y, t), (y, t))

Parallel Zero-knowledge Virtual Machine 43

Protocol 6 (GKR Layer Verifier Protocol, Phase 1) This is the verifier proto-
col corresponding to Protocol 5.

– GKRPhase1
layered .Verify

(Li)
n

({
(Ṽi(yk∥tk), (yk∥tk))

}
,
{
(Ṽi→ℓk−c(yk∥tk), (yk∥tk))

})
:

The verifier runs the following steps:
1. Set σ as

σ =

c−1∑
k=0

αkṼ
(k)
i (yk∥tk) +

c+c′−1∑
k=c

αkṼi→ℓk−c(yk∥tk).

2. Run SC.Verifyn−m,2(σ). Set y to be the random variables send to the prover
during the sumcheck protocol, and F1,eval as the last step evaluation.

3. Receive f
(0)
1,eval, . . . , f

(c+c′−1)
1,eval from the prover.

4. Compute g
(k)
1,eval(y) as follows:

g
(k)
1,eval = αkẽq(yj ,y), for 0 ≤ k < c ,

g
(k)
1,eval = αk ˜copy_toi→ℓk−c

(yj ,y), for c ≤ k < c+ c′,

5. Check whether F1,eval =
∑c+c′

k=0 f
(k)
1,evalg

(k)
1,eval.

6. Set σ = F1,eval.
7. Run SC.Verifym,2(σ). Set t to be the random variables send to the prover

during the sumcheck protocol, and F2,eval as the last step evaluation.
8. Receive f2,eval from the verifier.
9. Compute

g
(k)
2,eval = αkẽq(yj ,y)ẽq(tk, t) for 0 ≤ k < c ,

g
(k)
2,eval = αk ˜copy_toi→ℓk−c

(yj ,y)ẽq(tk, t), for c ≤ k < c+ c′,

10. Check whether F2,eval =
∑c+c′

k=0 g
(k)
2,eval · f2,eval.

44 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

Protocol 7 (GKR Layer Prover Protocol, Phase 2, Based on Equation 8)
Suppose Li is the structure of the i-th layer in the circuit. Previously, Phase 1 has
generated (Ṽi(y∥t), (y∥t)) as the evaluation and the random point of the layer output.
In the end of this phase, the protocol will generated evaluations of the previous layer
and the subsets copied from layers in front. Without loss of generality, we assume
there is only one type of gate G with degree d in the layer.

– GKRPhase2
layered .Prove

(Li)

n′

(
(Ṽi(y∥t), (y∥t)), Ṽi+1(X,S),

{
Ṽℓ′j→i(X,S)

})
: the prover will

go through the following steps:
1. Set σ = Ṽi(y∥t) and F0(X∥S) =

∑c′′

j=0 f0,j(X,S)g0,j(X,S), where

f0,j(X∥S) = Ṽℓ′j→i(X∥S) , for 0 ≤ j < c′′

g0,j(X∥S) = ẽq(t,S) ˜paste_fromℓ′j→i(y,X) , for 0 ≤ j < c′′

f0,c′′(X∥S) = Ṽi+1(X∥S)
g0,c′′(X∥S) =

∑
b
(1)
s

b
(1)
x

...
b
(d−1)
s

b
(d−1)
x

ẽq(t,S)G̃(y,X,b
(1)
x , . . .)

Ṽi+1(b
(1)
x ∥b(1)

s) · · · Ṽi+1(b
(d−1)
x ∥b(d−1)

s)

2. Run SC.Proven′,2(σ, F0(X∥S)). Let (x(0), ∥s(0)) be the random challenges re-
ceived from the verifier.

3. Compute f0,j,eval = f0,j(x
(0), ∥s(0)) for 0 ≤ j ≤ c′′ and g0,c′′,eval =

g0,c′′(x
(0), ∥s(0)). Send those messages to the verifier.

4. Set σ = g0,c′′,eval.
5. For w = 1..d, run the following steps:

(a) Set Fw(X∥S) = fw(X∥S)gw(X∥S), where

fw(X∥S) = Ṽi(X∥S)
gw(X∥S) =

∑
b
(w+1)
s

b
(w+1)
x

...
b
(d−1)
s

b
(d−1)
x

ẽq(t, s0, . . . , sw−1,S,b
(w+1)
s , . . .)

G̃(y,x0, . . . ,xw−1,X,b
(w+1)
x , . . .)

Ṽi+1(b
(w+1)
x ∥b(w+1)

s) · · · Ṽi+1(b
(d−1)
x ∥b(d−1)

s)

(b) Run SC.Proven′,2(σ, Fw(X∥S)). Let (x(w), ∥s(w)) be the random challenges
received from the verifier.

(c) Compute fw,eval = fw(x
(w), ∥s(w)) and if w ̸= d − 1, compute gw,eval =

gw(x
(w), ∥s(w)). Send those messages to the verifier.

(d) Set σ = gw,eval = gw(x
(w), ∥s(w)).

Output
{
(Ṽi+1(x

(j), s(j)), (x(j), s(j)))
}

0≤j<d
,
{
(Ṽℓ′j→i(x

(0), s(0)), (x(0), s(0)))
}

0≤j<c′′
.

Parallel Zero-knowledge Virtual Machine 45

Protocol 8 (GKR Layer Verifier Protocol, Phase 2, Based on Equation 8)
This is the verifier protocol corresponding to Protocol 7.

– GKRPhase2
layered .Verify

(Li)

n′

(
(Ṽi(y∥t), (y∥t))

)
: the verifier will go through the following

steps:
1. Set σ = Ṽi(y∥t).
2. Run SC.Verifyn′,2(σ). Let (x(0), ∥s(0)) be the random challenges sent to the

prover. Let F0,eval be the last evaluation received form the prover.
3. Received f0,j,eval for 0 ≤ j ≤ c′′ and g0,c′′,eval from the prover.
4. Set

g0,j(x
(0)∥s(0)) = ẽq(t, s(0)) ˜paste_fromℓ′j→i(y,x

(0)) , for 0 ≤ j < c′′

5. Check F0,eval =
∑c′′

j=0 f0,j,eval · g0,j,eval.
6. Set σ = g0,c′′,eval.
7. For w = 1..d, run the following steps:

(a) Run SC.Verifyn′,2(σ). Let (x(w), ∥s(w)) be the random challenges sent to the
prover. Let Fw,eval be the last evaluation received form the prover.

(b) Receive fw,eval and if w ̸= d− 1, then also gw,eval from the prover.
(c) Check Fw,eval = fw,eval · gw,eval, where if w = d− 1

gw,eval = ẽq(t, s0, . . . , sd−1)G̃(y,x0, . . . ,xd−1)

(d) Set σ = gw,eval.

46 Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang

Protocol 9 (GKR Layer Prover Protocol, Phase 2, Based on Equation 9)
Suppose Li is the structure of the i-th layer in the circuit. Previously, Phase 1 has
generated (Ṽi(y∥t), (y∥t)) as the evaluation and the random point of the layer output.
In the end of this phase, the protocol will generated evaluations of the previous layer
and the subsets copied from layers in front.

– Prove
(Li)

n′

(
(Ṽi(y∥t), (y∥t)), Ṽi+1(X,S),

{
Ṽℓ′j→i(X,S)

})
: the prover will go through

the following steps:
1. Set σ = Ṽi(y∥t).
2. Set F⋆(Z∥S) = g⋆(Z∥S) ·

(∏d−1
j=0 f

(j)
⋆ (Z∥S) +

∑c′′−1
j=0 h

(j)
⋆ (Z∥S)

)
, where

g⋆(Z∥S) = ẽq(S, t)ẽq(Z,y)

f
(j)
⋆ (Z∥S) =

∑
b
(j)
x

G̃(j)(Z,b
(j)
x)Ṽi+1(b

(j)
x ∥S)

h
(j)
⋆ (Z∥S) =

∑
b
(0)
x

˜paste_fromℓ′j→i(Z,b
(0)
x)Ṽℓ′j→i(b

(0)
x ∥S)

3. Run SC.Proven′,d+1(σ, F⋆(Z∥S)). Let (z, ∥s) be the random challenges received
from the verifier, and F⋆,eval be the evaluation computed by the last step.

4. Compute the evaluation f
(j)
⋆,eval = f

(j)
⋆ (z∥s) and h

(j)
⋆,eval = h

(j)
⋆ (z∥s). Send those

messages to the verifier.
5. Set σ = F⋆,eval · (g⋆,eval)−1, where g⋆,eval = g⋆(z∥s).
6. Set F0(X) = f ′

0(X)g′0(X) +
∑c′′−1

j=0 f
(j)
0 (X)g

(j)
0 (X), where

f ′
0(X) = Ṽi+1(X∥s)
g′0(X) = G̃(0)(z∥X) ·

∏d−1
j=1

(∑
b
(j)
x

Ṽi+1(b
(j)
x ∥s)G̃(j)(z,b

(j)
x)
)

f
(j)
0 (X) = Ṽℓ′j→i(X∥s)
g
(j)
0 (X) = ˜paste_fromℓ′j→i(z,X).

7. Run SC.Proven′−m,2(σ, F0(X)). Let x(0) be the random challenges received from
the verifier.

8. Compute the evaluations f ′
0,eval = f ′

0(x
0), g′0,eval = g′0(x

0), and f
(j)
0,eval = f

(j)
0 (x0)

for 0 ≤ j < c′′. Send those messages to the verifier.
9. Set σ = g′0,eval · (G(0)(z∥x(0)))−1.

10. For w = 1..d, run the following steps:
(a) Set Fw(X) = fw(X)gw(X) where

fw(X) = Ṽi+1(X∥s)
gw(X) = G̃(w)(z∥X) ·

∏d−1
j=w+1

(∑
b
(j)
x

Ṽi+1(b
(j)
x ∥s)G̃(j)(z,b

(j)
x)
)
.

(b) Run SC.Proven′−m,2(σ, Fw(X)). Let x(w) be the random challenges received
from the verifier.

(c) Compute the evaluations fw,eval = fw(x
w), and if w ̸= d − 1, compute

gw,eval = gw(x
w). Send those messages to the verifier.

(d) Set σ = gw,eval · (G(w)(z∥x(w)))−1.
Output

{
(Ṽi+1(x

(j), s), (x(j), s))
}

0≤j<d
,
{
(Ṽℓ′j→i(x

(0), s), (x(0), s))
}

0≤j<c′′
.

Parallel Zero-knowledge Virtual Machine 47

Protocol 10 (GKR Layer Verifier Protocol, Phase 2, Based on Equation 9)
This is the verifier protocol for Protocol 9.

– Verify
(Li)

n′

(
(Ṽi(y∥t), (y∥t))

)
: the verifier will go through the following steps:

1. Set σ = Ṽi(y∥t).
2. Run SC.Verifyn′,d+1(σ). Let (z, ∥s) be the random challenges sent to the prover,

and F⋆,eval be the evaluation received by the last step.
3. Receive the evaluations f

(j)
⋆,eval and h

(j)
⋆,eval from the prover.

4. Check F⋆,eval = g⋆,eval ·
(∏d−1

j=0 f⋆,eval +
∑c′′−1

j=0 h
(j)
⋆,eval

)
, where

g⋆,eval = ẽq(s, t)ẽq(z,y)

5. Set σ = F⋆,eval · (g⋆,eval)−1.
6. Run SC.Verifyn′−m,2(σ). Let x(0) be the random challenges sent to the prover.

Let F0,eval be the last step evaluation from the prover.
7. Receive the evaluations f ′

0,eval, g
′
0,eval, and f

(j)
0,eval for 0 ≤ j < c′′.

8. Check F0,eval = f ′
0,evalg

′
0,eval +

∑c′′−1
j=0 f

(j)
0,evalg

(j)
0,eval, where

g
(j)
0,eval =

˜paste_fromℓ′j→i(z,x
(0)).

9. Set σ = g′0,eval · (G(0)(z∥x(0)))−1.
10. For w = 1..d, run the following steps:

(a) Run SC.Verifyn′−m,2(σ). Let x(w) be the random challenges sent to the
prover. Let Fw,eval be the last step evaluation from the prover.

(b) Receive the evaluations fw,eval, and if w ̸= d − 1, receive gw,eval from the
prover.

(c) Check Fw,eval = fw,eval · gw,eval where if w = d− 1

gw,eval = G̃(d−1)(z∥x(d−1)).

(d) Set σ = gw,eval · (G(w)(z∥x(w)))−1.

	Parallel Zero-knowledge Virtual Machine

