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ABSTRACT
In this work, we present novel protocols over rings for semi-honest
secure three-party computation (3-PC) and malicious four-party
computation (4-PC) with one corruption. Compared to state-of-the-
art protocols in the same setting, our protocols require fewer low-
latency and high-bandwidth links between the parties to achieve
high throughput. Our protocols also reduce the computational com-
plexity by requiring up to 50 percent fewer basic instructions per
gate. Further, our protocols achieve the currently best-known com-
munication complexity (3, resp. 5 elements per multiplication gate)
with an optional preprocessing phase to reduce the communica-
tion complexity of the online phase to 2 (resp. 3) elements per
multiplication gate.

In homogeneous network settings, i.e. all links between the par-
ties share similar network bandwidth and latency, our protocols
achieve up to two times higher throughput than state-of-the-art
protocols. In heterogeneous network settings, i.e. all links between
the parties share different network bandwidth and latency, our
protocols achieve even larger performance improvements.

We implemented our protocols and multiple other state-of-the-
art protocols (Replicated 3-PC, Astra, Fantastic Four, Tetrad) in a
novel open-source C++ framework optimized for achieving high
throughput. Five out of six implemented 3-PC and 4-PC protocols
achieve more than one billion 32-bit multiplication or more than
32 billion AND gates per second using our implementation in a 25
Gbit/s LAN environment. This is the highest throughput achieved
in 3-PC and 4-PC so far and between two and three orders of
magnitude higher than the throughput MP-SPDZ achieves in the
same settings.
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1 INTRODUCTION
Secure Multiparty Computation (MPC) enables parties to execute
functions on obliviously shared inputs without revealing them [24].
Consider multiple hospitals that want to study the adverse effects
of a certain medication based on their patients’ data. While joining
these datasets could enable more statistically significant results,
hospitals might be prohibited from sharing their private patient
data with each other. MPC enables these hospitals to perform this
study and only reveal the final output of the function evaluated.

A popular approach to enable MPC is designing an addition and
multiplication protocol based on a secret sharing (SS) scheme. With
those two protocols in place, any function can be represented as a
circuit consisting of addition and multiplication gates. These oper-
ations can be performed in different computation domains. Some

protocols require computation over a field, while others allow com-
putation over any ring. Typical choices are the ring Z2 for boolean
circuits and Z264 for arithmetic circuits. While boolean circuits can
express comparison-based functions, arithmetic circuits can express
arithmetic functions more compactly [20]. Computation over Z264
is supported by 64-bit hardware natively and thus leads to efficient
implementations. Multiple approaches also allow share conversion
between computation domains to evaluate mixed circuits [10].

To evaluate a circuit over a ring, the parties first secretly share
their inputs. Then, they evaluate each gate of the circuit in topo-
logical order. Linear gates, such as additions or multiplications by
constants, can typically be evaluated locally by the parties with-
out interaction. However, multiplying two secretly shared values
requires the parties to exchange messages. After evaluating the
circuit, the parties reveal their final shares to obtain the result of
the computation.

As parties must wait for intermediary messages to be received
before they can continue evaluating the circuit, the number of com-
munication rounds required to evaluate a circuit scales linearly
with the circuit’s multiplicative depth. The number of messages
required to evaluate a circuit scales linearly with the number of
multiplication gates. As evaluating multiple circuits in parallel does
not increase the number of communication rounds, and many cir-
cuits’ multiplicative depth does not increase with the number of
inputs, scaling MPC for large amounts of data and complex work-
loads usually requires high throughput. High throughput can be
achieved by reducing the computational complexity and number
of elements communicated per gate.

An MPC protocol can guarantee privacy and correctness against
different adversary types [32]. A protocol in the honest majority
class assumes that an adversary only controls a minority of the
computation parties. A protocol in the semi-honest class assumes
that an adversary does not deviate from the protocol specification.
Typically, honest majority protocols are significantly faster than dis-
honest majority protocols, while semi-honest protocols are slightly
faster than malicious protocols.

The three-party setting for semi-honest SS-based protocols is
particularly relevant due to its low bandwidth requirements. This
setting allows the use of information-theoretic security techniques
not applicable to two-party computation [9]. Likewise, the four-
party setting for SS-based protocols is of particular interest for
malicious security with one corruption. This setting allows exploit-
ing the redundancy of secretly shared values to efficiently verify
the correctness of exchanged messages. These properties of 3-PC
and 4-PC protocols can be utilized in the client-server model [12].
Here, three or four fixed computation nodes perform a computation
for any number of input parties.
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Some protocols make use of a preprocessing phase. This phase
is typically independent of any inputs from the parties and only
requires constant communication rounds. During the online phase,
the parties consume values received in the preprocessing phase
to evaluate the circuit. Some honest-majority protocols do not
require all parties to communicate with each other or only during
the preprocessing phase. These protocols are helpful in network
settings where the network connectivity between the parties differs.

1.1 Motivation
Several existing works designed protocols that achieve the same
communication complexity for each party [1, 2, 11, 15, 21]. However,
in practical scenarios, network latency and bandwidth between
parties might differ arbitrarily. Thus, achieving high throughput
in practice requires utilizing links between parties more that are
well-connected and links between parties less that are not well-
connected. This flexibility requires heterogeneous protocols. We
refer to a heterogeneous protocol if only some links between the
parties require high bandwidth and only some links between the
parties require low latency to achieve high throughput. We refer
to a homogeneous protocol if all the communication and round
complexity of a protocol is divided evenly on all or at least most
links.

Additionally, recent protocols usually do not optimize for com-
putational complexity. Thus, even state-of-the-art 4-PC protocols
[7, 11, 23] require almost 100 local additions or multiplications
for each multiplication gate on top of computing hashes and sam-
pling shared random numbers. While the performance of MPC
is communication-bound in most settings, using MPC with em-
bedded devices, in network settings with high bandwidth, or to
compute functions with low communication complexity, such as
dot products, can lead to a bottleneck in computation.

Araki et al. [2] demonstrated for the first time that implementing
a semi-honest 3-PC protocol in a homogeneous network setting
can achieve a throughput of seven billion AND gates per second.
However, their implementation is not published, and open-source
implementations do not come close to that throughput. For instance,
on our test setup, the popular open-source library MP-SPDZ [19]
achieves a throughput of less than tenmillion AND gates per second
using the same 3-PC protocol. Moreover, several state-of-the-art
protocols lack any kind of open-source implementation entirely
[5–7, 22, 23, 30].

High throughput has not yet been demonstrated for heteroge-
neous network settings and 4-PC protocols. Due to the recent in-
terest in the 3-PC [1, 2, 6, 8, 15, 18, 25, 29, 30] and 4-PC [5, 7, 11, 16,
22, 23] settings, as well as MPC in heterogeneous network settings
[13, 17, 31], there is a need for efficient protocols and open-source
implementations in these settings.

1.2 Our Contribution
In this work, we present new 3-PC and 4-PC protocols in the honest
majority setting. We provide efficient constructions for both hetero-
geneous and homogeneous network settings. Our main contribu-
tions are that our protocols achieve less computational complexity
than related work, best-known communication complexity, and
tolerate a higher number of weak network links between parties.

Additionally, we provide an open-source implementation 1 of our
protocol along with state-of-the-art protocols [2, 6, 11, 21, 23]. Our
implementation achieves a currently unmatched throughput of
more than 25 billion AND gates per second on a 25 Gbit/s network
for each implemented protocol. When evaluating complex circuits
such as AES, this translates to four times higher throughput than
the currently fastest AES implementation by [2]. More specifically,
we achieve the following results:

(1) We present a semi-honest 3-PC protocol and a malicious 4-
PC protocol that require three (resp. five) elements of global
communication per multiplication gate. Both protocols re-
duce the computational complexity per gate compared to
related work. Figure 10 shows that our protocols achieve
up to two times higher throughput for computationally
intensive tasks such as dot products.

(2) Additionally, our 4-PC protocol requires fewer high-bandwidth
links between parties than relatedwork. Figure 9 shows that
even if we restrict the bandwidth between 2

3 of all links ar-
bitrarily, we still achieve a throughput of approx. 10 billion
AND gates per second. Both our 3-PC and 4-PC protocols
only require one low-latency and two high-bandwidth links
between the parties to achieve high throughput.

(3) We implement our protocols in C++ along with several
other state-of-the-art 3-PC protocols [2, 6, 21], 4-PC pro-
tocols [11, 23], and a trusted-third-party protocol in our
framework. Some of these protocols have not been previ-
ously implemented in any open-source framework [6, 23].
For other protocols [2, 11], we achieve up to three orders
of magnitudes higher throughput than their current open-
source implementation in MP-SPDZ [19]. The results are
shown in tables 3, 4, and 5.

2 MPC IN VARIOUS NETWORK SETTINGS
With our 3-PC protocol and our heterogeneous 4-PC protocol, we
aim to achieve high throughput while requiring a minimal number
of high-bandwidth and low-latency links between the parties. This
means that certain links are only required for setting up pre-shared
keys between the parties or exchanging hashes for verification at
the end of the protocol but not for the bulk of the communication.
Figure 1 illustrates this property. Our 3-PC protocol does not require
𝑃0 and 𝑃1 to communicate, while 𝑃0 and 𝑃2 only communicate in the
preprocessing phase. In our 4-PC protocol, even more links between
the parties are not required. Additionally, the online phase contains
messages that only serve the purpose of verifying communication.
These messages can be sent in a single communication round. As
a result, only one pair of parties in our 3-PC and heterogeneous
4-PC protocol needs to share a high bandwidth link, while only two
pairs of parties need to share a low-latency link.

While this property is advantageous in heterogeneous network
settings where the network link properties between parties differ,
we show how to apply our protocols to network settings where this
property is not the primary concern. For instance, in homogeneous
network settings where all parties share similar bandwidth and
latency, an efficient protocol evenly divides its communication
complexity on all links.
1Code Repository: https://github.com/chart21/hpmpc/tree/bench
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Every 𝑛-PC protocol can be converted into a protocol optimized
for homogeneous network settings by running 𝑛! circuits in parallel.
In each evaluation, the parties select a novel permutation of their
roles in the protocol. We refer to this technique as Split-Roles.
Consider a 3-PC protocol with parties 𝑃𝑖 , 𝑃 𝑗 ,𝑃𝑘 . In this example,
there are six unique permutations to assign the party roles 𝑃0, 𝑃1,𝑃2
to 𝑃𝑖 , 𝑃 𝑗 ,𝑃𝑘 .

Observe that for every protocol using 𝑙 elements of global com-
munication, the number of messages per circuit remains the same,
yet all communication channels are now utilized equally. Figure 1
illustrates the resulting communication between nodes when using
our 3-PC and 4-PC protocols in a heterogeneous and a homoge-
neous network setting.

Suppose the parties wish to evaluate a circuit that cannot be
parallelized well and need to compute a function only once. In that
case, we can still optimize a protocol for a given network setting
at no additional communication cost. For instance, in our 3-PC
and 4-PC protocols, 𝑃1’s and 𝑃2’s computation and communication
pattern can be easily adjusted such that 𝑃0 sends its message in the
preprocessing phase to 𝑃1 instead of 𝑃2. Additionally, messages sent
by a party in our 4-PC protocol are usually verified by another party
holding the same message. These parties can also switch roles on a
per-message basis. By changing the communication per-message,
parties can granularly adjust the utilization of different network
links.

3 RELATEDWORK
Table 1 shows the number of operations required to calculate a
multiplication gate of our protocols and related work in the same
setting. Especially our 4-PC protocol reduces the number of required
operations significantly. Our 3-PC protocol mainly reduces the
number of required operations required by the parties active in
the online phase. The table also shows the total number of ring
elements sent by each protocol and the number of links utilized by
each party. Note that our heterogeneous 4-PC protocol requires the
lowest number of low bandwidth links (2) and the lowest number of
low latency links (1) between the parties. Our benchmark (cf. figure
9) shows that this property leads to significant improvements in
certain network settings. The table excludes calls to shared random
number generators and hash-based verification. For both metrics
our protocols tie with the best state-of-the-art protocol.

3.1 Three-Party Semi-honest Computation
Most existing semi-honest 3-PC protocols work optimally in a
homogeneous network setting [2, 3, 21]. Only a few protocols work
well in heterogeneous network settings [6] but are missing an open-
source implementation.

Compared to existing 3-PC protocols, our protocol requires the
same number of overall exchanged elements per gate but slightly
lower computational complexity. Some of that computation and
communication can be shifted in the constant round preprocessing
phase. This way, only the network link between 𝑃2 and 𝑃3 is utilized
in the online phase. Since 𝑃0 performs most of the computation,
the relative improvement compared to related work in the online
phase is larger. Hence, if only considering the online phase, our
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Figure 1: Number of ring elements exchanged between par-
ties using our protocols in different network settings

Dashed arrows denote communication in constant communication rounds. Bolt arrows denote

communication in linear communication rounds with respect to the circuit’s multiplicative depth.

protocol reduces the total number of elementary operations per
multiplication by at least 40% compared to [2, 6].

The highest reported number of evaluated gates per second
for 3-PC that we are aware of is 7 billion gates per second in the
semi-honest setting [2] and 1.15 billion gates per second in the
malicious setting [1]. Other work reports a little over 10 million
multiplications per second in the semi-honest setting and 3 million
multiplications per second in the malicious setting [14]. [33] use
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Table 1: Operations and communication for related protocols

Protocol Party Operation Communication
Add Mult Off On Links

Replicated [2]
(3-PC)

𝑃0 4 2 (+1) 0 1 1
𝑃1 4 2 (+1) 0 1 1
𝑃2 4 2 (+1) 0 1 1
Total 12 6 (+3) 0 3 3B,3L

Astra [6]
(3-PC)

𝑃0 2 1 1 0 1
𝑃1 4 2 0 1 1
𝑃2 5 3 0 1 1
Total 11 6 1 2 2B,1L

Ours
(3-PC)

𝑃0 4 2 1 0 1
𝑃1 4 2 0 1 1
𝑃2 3 1 0 1 1
Total 11 5 1 2 2B,1L

Fantastic
Four [11]
(4-PC)

𝑃0 15 9 0 0-3 0-3
𝑃1 15 9 0 0-3 0-3
𝑃2 15 9 0 0-3 0-3
𝑃3 15 9 0 0-3 0-3
Total 60 36 0 6 2-4B,2-4L

Tetrad [23]
(4-PC)

𝑃0 14 5 1 0 1
𝑃1 12 8 0 1 1
𝑃2 12 8 0 2 2
𝑃3 14 9 1 0 1
Total 52 30 2 3 3B,1L

Ours
(4-PC)

𝑃0 7 3 3 2 1
𝑃1 5 3 4 2 1
𝑃2 6 3 3 2-3 2
𝑃3 7 3 5 0-1 0-1
Total 25 12 2 3 2-3B,1L

FPGAs to achieve 28.5 million multiplications per second. Our im-
plementation achieves 44.49 billion AND gates or more than one
billion 32-bit multiplications on a 25 Gbit/s network. Even if we
consider a lower network bandwidth of 10 Gbit/s as in [2], our
implementation achieves more than twice the performance.

3.2 Four-Party Malicious Computation
There are multiple 4-PC protocols that tolerate up to one corruption
[5, 7, 11, 22, 23]. All of these protocols share that they require at least
six elements of global communication per multiplication gate. Only
recently, a protocol achieved five elements of global communication
per multiplication gate [23]. However, among other 4-PC protocols
[5, 7, 22], it is lacking an open-source implementation.

Our 4-PC protocol offers the following benefits over these pro-
tocols. First, it requires only five elements per multiplication gate.
Second, we introduce a variation of our protocol optimized for
heterogeneous network settings, requiring only one low-latency
and two high-bandwidth links between the parties. As a result, out
of the six total network links that exist in a 4-PC setup, four are
not utilized at all, one is utilized in constant rounds only, and one
is utilized with linear communication rounds. Existing work such
as Trident [7] and Tetrad [23] require more than two high band-
width links. While Fantastic Four [11] can be modified to require
only two high-bandwidth links, it requires at least two low-latency

links and more communication than our protocol. Figure 9 shows
a setting where these properties of our protocol lead to arbitrary
improvement in performance compared to existing work. Third,
our protocols require storing fewer shares per party and reduce the
computational complexity compared to the state-of-the-art. This
includes reducing the total number of shares per value by 1

3 and
elementary operations per multiplication gate by more than 50%
compared to [7, 11, 23]. Our benchmark demonstrates that our 4-
PC protocol achieves up to 25% to 100% higher throughput than
state-of-the-art protocols on the same setup.

Note that there is a recent solution that can convert any honest-
majority semi-honest protocol into a malicious one at no additional
amortized communication costs [4]. However, the zero-knowledge
proofs required for this conversion come with significant compu-
tational overhead. According to a recent benchmark [11], their
ring-based solution only achieves 22 multiplication gates per sec-
ond. This is orders of magnitude lower than what state-of-the-art
protocols achieve.

The highest reported number of evaluated gates per second that
we are aware of in the malicious 4-PC setting is 400,000 multiplica-
tions per second [11]. In the case of 64-bit computation, this result
is communication-equivalent to 25.6 million AND gates. Our imple-
mentation achieves over 25 billion AND gates per second or more
than 400 million 64-bit multiplications using the same protocol as
[11], and over 600 million 64-bit multiplications using our proposed
protocol.

4 PRIMITIVES
In this section, we present primitives required by our protocols to
evaluate a function securely.

4.1 Generating Shared Random Numbers
Each pair of parties {𝑃𝑖 , 𝑃 𝑗 } in our 3-PC protocol agrees on the same
key 𝑘𝑖, 𝑗 at the beginning of the protocol. Using protocol ΠSRNG, the
parties can generate new random values without interaction that
are not accessible to 𝑃𝑘 . We refer to this procedure as sampling from
a shared random value generator (SRNG). For our 4-PC protocol,
we assume that each set of parties {𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘 } has access to the
same key 𝑘𝑖, 𝑗,𝑘 . Similar to our 3-PC protocol, the parties use 𝑘𝑖, 𝑗,𝑘
to sample random ring elements without interaction, which are not
known by 𝑃𝑙 .

Setup: Let 𝑃 denote the set of all parties, and Z2𝑙 denote the ring of

integers modulo 2𝑙 . Each subset 𝑆 ⊆ 𝑃 exchanges a unique shared key
𝑘𝑆 ∈ Z2𝑙 at the beginning of the protocol. Party 𝑃𝑖 ∉ 𝑆 does not learn
𝑘𝑆 .
Procedure: Let 𝑐 ∈ N represent a counter, and let 𝑃𝑅𝐹 : Z2𝑙 ×N→ Z2𝑙
be a pseudorandom function.
(1) Compute 𝑟𝑆 = 𝑃𝑅𝐹 (𝑘𝑆 , 𝑐 ) to obtain a random value 𝑟𝑆 ∈ Z2𝑙 .
(2) Upon need for a new random value, perform 𝑐 ← 𝑐 + 1 and repeat

the first step.

Protocol ΠSRNG (ki,j, c) → ri,j

Figure 2: Generating shared random numbers
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4.2 Verifying the Correctness of Sent Messages
Our 4-PC protocol is secure against corruption of a single party.
To achieve malicious security, each party needs to verify the cor-
rectness of the messages it receives. To verify the correctness of a
value 𝑣 obtained with the help of a message sent by a potentially
malicious party 𝑃𝑖 to 𝑃 𝑗 , the parties have access to a Compare-View
functionality ΠCV.

If a party 𝑃𝑘 also holds 𝑣 , 𝑃 𝑗 and 𝑃𝑘 can use the Compare-View
functionality to compare their views of any number 𝑛 of values
𝑣1...𝑛 . To do so, they compare a single hash of their concatenated
views of 𝑣1...𝑛 at the end of the protocol. Figure 3 describes this
functionality.

Assumptions: 𝑃 𝑗 obtains a set of values v1...n with the help of messages
sent by 𝑃𝑖 . 𝑃𝑘 can obtain 𝑣1...𝑛 , without interacting with 𝑃𝑖 . 𝑃 𝑗 and
𝑃𝑘 have access to a collision-resistant hash function 𝐻 . Let | | denote
concatenation.
Procedure:

(1) 𝑃 𝑗 and 𝑃𝑘 compute ℎ𝑉 = 𝐻 (𝑣1 | |𝑣2 | | . . . | |𝑣𝑛 ) .
(2) They exchange and compare ℎ𝑉 to verify the correctness of 𝑣𝑖 ...𝑛 .
(3) If the two hash values ℎ𝑉 are not equal, they abort.

Protocol ΠCV (vi...n, 𝑃 𝑗 , 𝑃𝑘 ) → bool

Figure 3: Verifying the correctness of received values

4.3 Notations
We use 𝑃𝑖, 𝑗 to indicate that a computation is performed by both
𝑃𝑖 and 𝑃 𝑗 , and 𝑟𝑖, 𝑗 for a random value sampled by ΠSRNG using a
key 𝑘𝑖, 𝑗 that is pre-shared between 𝑃𝑖 and 𝑃 𝑗 in a setup phase. We
use 𝑚𝑖 to refer to a message that 𝑃𝑖 sends to another party. We
use 𝑣𝑖 to refer to a term used by 𝑃𝑖 to verify the correctness of
the protocol. In some cases, parties locally compute a value 𝑥 that
is not finalized yet according to the protocol specification. These
intermediary states of 𝑥 are denoted by 𝑥 ′. A secret share of value
𝑥 that is held by all parties according to our sharing semantics is
denoted by [𝑥]. Where applicable, [𝑥]𝐵 denotes a boolean sharing
of 𝑥 while [𝑥]𝐴 denotes an additive sharing of 𝑥 .

5 3-PC PROTOCOL
In this section, we describe our 3-PC protocol over rings in detail.
Our protocol is secure against up to one corruption. The global
communication complexity is one element of communication in
the preprocessing phase and two elements of communication in the
online phase. To achieve high throughput, the protocol requires two
high-bandwidth links and one low-latency link out of the three total
links between the parties. If preferred, the preprocessing phase can
also be executed within the online phase. The sharing semantics of
our 3-PC protocols are designed in a way such that, 𝑃1 and 𝑃2 can
communicate to obtain a masked version of a multiplication 𝑐 = 𝑎𝑏

with an input-independent error. 𝑃0 can prepare a message for 𝑃2 in
the preprocessing phase in order to correct this input-independent
error such that all parties obtain valid and masked shares of 𝑐 .

5.1 Secret Sharing and Reconstruction
In order to share a value 𝑎 held by input party 𝐴 in our scheme,
each party obtains the following shares from 𝐴.

𝑃0 : (𝑥1, 𝑥2)
��� 𝑃1 : (𝑥1, 𝑎2 = 𝑎 + 𝑥2)

��� 𝑃2 : (𝑥2, 𝑎1 = 𝑎 + 𝑥1)

Note that 𝑥1 and 𝑥2 are input-independent values. The parties
can sample 𝑥1 using ΠSRNG with pre-shared key 𝑘𝐴,0,1, while 𝑥2
can be sampled using pre-shared key 𝑘𝐴,0,2. To reconstruct 𝑎, 𝑃0
sends 𝑥1 to 𝑃2 and 𝑥2 to 𝑃1, while 𝑃2 sends 𝑎1 to 𝑃0. Each party then
holds a pair (𝑎𝑖 , 𝑥𝑖 ) to compute 𝑎 = 𝑎𝑖 − 𝑥𝑖 . Due to the linearity
of the secret sharing scheme, additions and multiplications by a
public value can be evaluated locally by the parties by computing
the respective operations on each share.

5.2 Multiplication (AND) Gates
Let (𝑥1, 𝑥2), (𝑥1, 𝑎2), (𝑥2, 𝑎1) be the secret sharing of 𝑎, and let
(𝑦1, 𝑦2), (𝑦1, 𝑏2), (𝑦2, 𝑏1) be the secret sharing of 𝑏. Computing
𝑐 = 𝑎𝑏, masked by 𝑧𝑖 , requires parties to communicate. The intuition
behind our multiplication protocol is that 𝑃2 can locally compute
𝑎1𝑏1 = 𝑎𝑏 + 𝑎𝑦1 + 𝑏𝑥1 + 𝑥1𝑦1, thus obtaining 𝑎𝑏 with an input-
dependent error: 𝑎𝑦1 + 𝑏𝑥1 and an input-independent error: 𝑥1𝑦1.
Our goal is to correct these errors using 𝑃0’s and 𝑃2’s messages
while obliviously inserting the mask 𝑧1, such that 𝑃2 obtains 𝑐1 =
𝑎𝑏 + 𝑧1. Similarly, 𝑃1 should obtain 𝑐2 = 𝑎𝑏 + 𝑧2. Figure 4 shows
all steps required by our multiplication protocol. In the following
paragraphs, we explain the formulas shown in figure 4.

Preprocessing Phase. By using their pre-shared keys, all parties first
sample values to mask intermediary messages (𝑟0,1) or to mask final
outputs (𝑧1 and 𝑧2). All input-independent shares of 𝑐: 𝑧1,𝑧2 are
computed non-interactively using ΠSRNG.

All subsequent steps in the protocol are required to let 𝑃1 and 𝑃2
obtain valid input-dependent shares 𝑐2 = 𝑎𝑏 + 𝑧2 and 𝑐1 = 𝑎𝑏 + 𝑧1,
respectively. 𝑃0 sends message𝑚0 to 𝑃2 in the preprocessing phase
that serves the purpose of correcting the input independent error
when 𝑃1 and 𝑃2 communicate. Note that𝑚0 = 𝑥1𝑦2+𝑥2𝑦1−𝑥1𝑦1+𝑟0,1
without brackets. The mask 𝑟0,1 ensures that 𝑃2 cannot infer any
values from 𝑃0’s message.

Online Phase. In Step 1 of the online phase, 𝑃2 locally computes
𝑐′1 = 𝑎1𝑏1 +𝑚0 = 𝑎𝑏 + 𝑎𝑦1 + 𝑏𝑥1 + 𝑥1𝑦1 +𝑚0. Note that 𝑃2 obtains
𝑎𝑏 but with an input-dependent error: 𝑎𝑦1 + 𝑏𝑥1 and an input-
independent error: 𝑥1𝑦1 +𝑚0. 𝑃1 calculates 𝑐′2 = 𝑎2𝑦1 +𝑏2𝑥1 +𝑟0,1 =
𝑎𝑦1 + 𝑏𝑥1 + 𝑥1𝑦2 + 𝑥2𝑦1 + 𝑟0,1. Observe that the input-dependent
terms 𝑎𝑦1 + 𝑏𝑥1 are exactly 𝑃1’s input-dependent error. 𝑃1 and 𝑃2
exchange their terms in Step 2 after inserting their desired final
mask 𝑧1 or 𝑧2 of the other party in their messages.

After exchanging their messages, 𝑃1 and 𝑃2 can locally compute
their share of 𝑐 in Step 3. 𝑃2 obtains its local share as follows.

𝑐1 = 𝑐′1 −𝑚
1 = 𝑎𝑏 + 𝑎𝑦1 + 𝑏𝑥1 + 𝑥1𝑦1 −𝑚1 +𝑚0 (1)

= 𝑎𝑏 + 𝑎𝑦1 + 𝑏𝑥1 + 𝑥1𝑦1 (2)

− (𝑎𝑦1 + 𝑏𝑥1 + 𝑥1𝑦2 + 𝑥2𝑦1 + 𝑟0,1 − 𝑧1) +𝑚0 (3)

= 𝑎𝑏 + 𝑥1𝑦1 − 𝑥1𝑦2 − 𝑥2𝑦1 − 𝑟0,1 +𝑚0 + 𝑧1 (4)

Notice that by subtracting𝑚1, 𝑃2 successfully got rid of the input
dependent error, at the expense of a larger input independent error:
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𝑥1𝑦1−𝑥1𝑦2−𝑥2𝑦1−𝑟0,1. Fortunately, this is exactly the term −𝑚0 of
the message 𝑃0 prepared in its message in the preprocessing phase.
Thus, the final equation results in:

𝑎𝑏 + 𝑥1𝑦1 − 𝑥1𝑦2 − 𝑥2𝑦1 − 𝑟0,1 +𝑚0 + 𝑧1 = 𝑎𝑏 + 𝑧1 (5)

𝑃1 calculates 𝑎𝑏 + 𝑧2 in a similar way. In Step 2 it receives𝑚2 =

𝑐′1 +𝑧2 = 𝑎1𝑏1 +𝑚0 +𝑧2 and subtracts its already calculated 𝑐2 from
𝑚2 in Step 3 to obtain 𝑎𝑏 + 𝑧2. Note that both parties 𝑃1 and 𝑃2
achieve low computational complexity by utilizing 𝑐1 and 𝑐2 for
both their messages and their final local computation.

Preprocessing:
(1) Sample random values using ΠSRNG:

𝑃0,1 : 𝑧1, 𝑟0,1 𝑃0,2 : 𝑧2

(2) Locally compute:

𝑃0 :𝑚0 = 𝑥2𝑦2 − (𝑥1 − 𝑥2 ) (𝑦1 − 𝑦2 ) + 𝑟0,1

(3) Communicate:

𝑃0 → 𝑃2 :𝑚0

Online:
(1) Locally compute:

𝑃1 : 𝑐′2 = 𝑎2𝑦1 + 𝑏2𝑥1 + 𝑟0,1 𝑃2 : 𝑐′1 = 𝑎1𝑏1 +𝑚0

(2) Communicate:

𝑃1 → 𝑃2 :𝑚1 = 𝑐′2 − 𝑧1 𝑃2 → 𝑃1 :𝑚2 = 𝑐′1 + 𝑧2

(3) Locally compute:

𝑃1 : 𝑐2 =𝑚2 − 𝑐′2 𝑃2 : 𝑐1 = 𝑐′1 −𝑚1

Protocol ΠMult ( [a], [b] ) → [𝑐 ]

Figure 4: 3-PC multiplication protocol

5.3 Security
Araki et el. [2] formulate a notion of privacy in the client-server
model. Loosely speaking, a protocol is private in the presence of
even a malicious adversaryA if the view of theA when the input 𝑣
is computationally indistinguishable from its viewwhen the input is
𝑣′. To achieve their notion of security, a protocol needs to satisfy two
conditions. First, each share sent toA needs to be masked by a new
value obtained from correlated randomness. Second, pseudorandom
values need to be keyed by a key 𝑘 that A does not see. Observe
that our protocols satisfy these properties: Each message𝑚 in our
protocols is masked by a new call to ΠSRNG with a key 𝑘 that is
shared by all parties except the recipient of𝑚. While this notion
of privacy can be achieved even by semi-honest protocols, it does
not prove correctness. In the appendix, we unfold all computations
of our multiplication protocol to show that all parties obtain valid
shares according to the protocol specifications.

6 4-PC PROTOCOL
Our 4-PC protocol is secure against up to one malicious corrup-
tion. The global communication complexity is two elements of
communication in the preprocessing phase and three elements of
communication in the online phase. We present a variation of our

protocol optimized for heterogeneous network settings, which re-
quires two high-bandwidth links and one low-latency link out of
the six total links between the parties to achieve high throughput. If
preferred, the preprocessing phase can also be executed within the
online phase. To optimize our protocol for homogeneous network
settings, we use the techniques described in section 2. The sharing
semantics of our 4-PC protocol naturally extend the 3-PC protocols
with the necessary redundancy to verify all messages sent between
the parties. This property requires 𝑃0 to hold an input-dependent
share to verify the communication between 𝑃1 and 𝑃2 with the help
of an additional party 𝑃3. 𝑃3 also assists in verifying the messages
sent by 𝑃0.

6.1 Secret Sharing and Reconstruction
In order to share a value 𝑎 held by input party 𝐴 in our scheme,
each party obtains the following shares from 𝐴.

𝑃0 : (𝑎𝑢 = 𝑎 + 𝑢, 𝑥0 = 𝑥1 + 𝑥2)
��� 𝑃1 : (𝑥1, 𝑎0 = 𝑎 + 𝑥0)

𝑃2 : (𝑥2, 𝑎0 = 𝑎 + 𝑥0)
��� 𝑃3 : (𝑢, 𝑥0 = 𝑥1 + 𝑥2)

Note that 𝑥1, 𝑥2, and 𝑢 are input-independent values that can
be sampled with ΠSRNG using pre-shared keys 𝑘𝐴,0,1,3, 𝑘𝐴,0,2,3, and
𝑘𝐴,1,2,3 respectively. 𝑃0 and 𝑃3 can then locally compute 𝑥0 = 𝑥1+𝑥2.
It is clear that no single party’s share reveals anything about 𝑎.
In addition, holding two distinct shares suffices to obtain 𝑎. For
instance, by exchanging their shares, 𝑃0 and 𝑃1 can compute 𝑎0 −
𝑥0 = 𝑎.

To securely share a value in the presence of amalicious adversary,
input party 𝐴 sends 𝑎𝑢,0 = 𝑎 + 𝑢 + 𝑥0 to 𝑃0, 𝑃1, and 𝑃2. The parties
compare their view of 𝑎𝑢,0 and locally convert it to their respective
share by subtracting the mask they generated together with 𝐴

from 𝑎𝑢,0. To securely reconstruct a value in the presence of a
malicious adversary, 𝑃0 sends 𝑥0 to 𝑃1 and 𝑃2. 𝑃1, 𝑃2, and 𝑃3 then
compare their view of 𝑥0. Due to the security assumptions, one
party of the pair {𝑃0, 𝑃3} is guaranteed to be honest. Thus, 𝑃1 and
𝑃2 either receive a correct 𝑥0 or they abort. 𝑃0 and 𝑃3 exchange
their shares 𝑎𝑢 and 𝑢 without any verification. All parties locally
compute and compare their view of 𝑎. As one party of the pair of
{𝑃1, 𝑃2} is honest, 𝑃0 and 𝑃3 either also obtain a correct 𝑎 or they
abort. Due to the linearity of the secret sharing scheme, additions
and multiplications by a public value can be evaluated locally by
the parties by computing the respective operations on each share.

6.2 Multiplication (AND) Gates
Let all shares 𝑎𝑖 be masked by 𝑥𝑖 or 𝑢 and all shares 𝑏𝑖 masked by
𝑦𝑖 or 𝑣 . In order to compute a secret sharing of 𝑐 = 𝑎𝑏, each party
performs a different computation on its shares to obtain 𝑐𝑖 masked
by 𝑧𝑖 or𝑤 . Figure 5 shows all steps required by the parties.

Preprocessing Phase. Again, the parties sample random ring ele-
ments using ΠSRNG to mask their messages and to insert the correct
mask into another party’s share when communicating. All input-
independent shares of 𝑐: 𝑧1,𝑧2, 𝑧0 = 𝑧1 + 𝑧2, and 𝑤 are computed
non-interactively using ΠSRNG.
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All subsequent steps in the protocol are required to let the parties
𝑃0,1,2 obtain valid input-dependent shares. Similarly to the 3-PC pro-
tocol, 𝑃0 sends a message𝑚0 to 𝑃2 that serves the purpose of elimi-
nating the input-independent error when 𝑃1 and 𝑃2 communicate
and inserting the correct mask 𝑧0 in their input-dependent shares.
As 𝑃0 also needs to obtain an input-dependent share 𝑐𝑤 = 𝑎𝑏 +𝑤 in
our 4-PC protocol, 𝑃3 computes message𝑚3 that serves the purpose
of eliminating the input-independent error of 𝑃0’s computation in
the online phase.

Online Phase. In the online phase, 𝑃1 and 𝑃2 exchange messages
𝑚1 and𝑚2,0 to compute 𝑐0 = 𝑎𝑏 + 𝑧0. In Step 1 of the online phase,
𝑃1 calculates𝑚1, and 𝑃2 calculates𝑚2,0. Both messages are masked
with 𝑟0,1,3 and 𝑧0 (contained in𝑚0) respectively. Both parties locally
compute 𝑐′0 = 𝑎0𝑏0 and subtract their locally computed messages
from 𝑐′0. After exchanging𝑚

1 and𝑚2,0 in Step 2, both parties also
subtract their received message to compute 𝑐0 in Step 3.

Observe that the following equation holds:

𝑚1 = 𝑎0𝑦1 + 𝑏0𝑥1 + 𝑟0,1,3 (6)
= 𝑎𝑦1 + 𝑏𝑥1 + 𝑥0𝑦1 + 𝑥1𝑦0 + 𝑟0,1,3 (7)

𝑚2,0 = 𝑎0𝑦2 + 𝑏0𝑥2 −𝑚0 (8)

= 𝑎𝑦2 + 𝑏𝑥2 + 𝑥0𝑦2 + 𝑥2𝑦0 −𝑚0 (9)

𝑚1 +𝑚2,0 = 𝑎𝑦0 + 𝑏𝑥0 + 2𝑥0𝑦0 + 𝑟0,1,3 −𝑚0 (10)
𝑎0𝑏0 = 𝑎𝑏 + 𝑎𝑦0 + 𝑏𝑥0 + 𝑥0𝑦0 (11)

The equation shows that the input-dependent error 𝑎𝑦0 + 𝑏𝑥0
when computing 𝑎0𝑏0 matches the input-dependent term when
computing𝑚1 +𝑚2,0. Using this insight, the parties can calculate
𝑐0 = 𝑎0𝑏0 −𝑚1 −𝑚2,0 = 𝑎𝑏 − 𝑥0𝑦0 − 𝑟0,1,3 +𝑚0. Notice that𝑚0 =

𝑧0 + 𝑥0𝑦0 + 𝑟0,1,3 was constructed by 𝑃0 to eliminate the remaining
input-independent error of 𝑥0𝑦0 − 𝑟0,1,3 and obliviously insert the
mask 𝑧0 in 𝑐0 such that both parties obtain 𝑎𝑏 + 𝑧0.

In our 4-PC protocol, 𝑃0 also needs to obtain the input-dependent
share 𝑐𝑤 = 𝑎𝑏+𝑤 . In Step 1 of the online phase, 𝑃0 locally computes
𝑐′𝑤 = 𝑎𝑢𝑦0 + 𝑏𝑣𝑥0. 𝑃1 and 𝑃2 compute𝑚2,1 = 𝑐′0 + 𝑟1,2,3. In step 2 of
the online phase, 𝑃2 sends𝑚2,1 to 𝑃0. This message is used by 𝑃0 in
Step 3 to compute 𝑐𝑤 locally. Observe that the following equation
holds:

𝑐′𝑤 = 𝑎𝑢𝑦0 + 𝑏𝑣𝑥0 = 𝑎𝑦0 + 𝑏𝑥0 + 𝑢𝑦0 + 𝑣𝑥0 (12)

𝑚2,1 = 𝑎0𝑏0 + 𝑟1,2,3 = 𝑎𝑏 + 𝑎𝑦0 + 𝑏𝑥0 + 𝑥0𝑦0 + 𝑟1,2,3 (13)

𝑚3 = 𝑥0 (𝑦0 − 𝑣) − 𝑦0𝑢 −𝑤 + 𝑟1,2,3 (14)

𝑐𝑤 =𝑚2,1 − (𝑐′𝑤 +𝑚3) (15)
= 𝑎0𝑏0 − 𝑎𝑦0 − 𝑏𝑦0 − 𝑥0𝑦0 +𝑤 = 𝑎𝑏 +𝑤 (16)

Preprocessing:
(1) Sample random values using ΠSRNG:

𝑃0,1,3 : 𝑟0,1,3, 𝑧1 𝑃0,2,3 : 𝑧2 𝑃1,2,3 : 𝑟1,2,3, 𝑤

Protocol ΠMult ( [a], [b] ) → [𝑐 ]

(2) Locally compute:

𝑃0, 𝑃3 : 𝑧0 = 𝑧1 + 𝑧2 𝑃0, 𝑃3 :𝑚0 = 𝑧0 + 𝑥0𝑦0 + 𝑟0,1,3
𝑃3 :𝑚3 = 𝑥0 (𝑦0 − 𝑣) − 𝑦0𝑢 − 𝑤 + 𝑟1,2,3

(3) Communicate:

𝑃0 → 𝑃2 :𝑚0 𝑃3 → 𝑃0 :𝑚3Online:
(1) Locally compute:

𝑃0 : 𝑐′𝑤 = 𝑎𝑢𝑦0 + 𝑏𝑣𝑥0 𝑃1,2 : 𝑐′0 = 𝑎0𝑏0

𝑃1 :𝑚1 = 𝑎0𝑦1 + 𝑏0𝑥1 + 𝑟0,1,3 𝑃2 :𝑚2,0 = 𝑎0𝑦2 + 𝑏0𝑥2 −𝑚0

𝑃1,2 :𝑚2,1 = 𝑐′0 + 𝑟1,2,3
𝑃1 : 𝑐′′0 = 𝑐′0 −𝑚1 𝑃2 : 𝑐′′′0 = 𝑐′0 −𝑚2,0

(2) Communicate:

𝑃1 → 𝑃2 :𝑚1 𝑃2 → 𝑃1 :𝑚2,0 𝑃2 → 𝑃0 :𝑚2,1

(3) Locally compute:

𝑃1 : 𝑐0 = 𝑐′′0 −𝑚2,0 𝑃2 : 𝑐0 = 𝑐′′′0 −𝑚1

𝑃0 : 𝑐𝑤 =𝑚2,1 − (𝑐′𝑤 +𝑚3 )
𝑃1,2 : 𝑐𝑤,0 = 𝑐0 + 𝑤 𝑃0 : 𝑐𝑤,0 = 𝑐𝑤 + 𝑧0

(4) Compare views using ΠCV:

𝑃0,1 :𝑚2,1 𝑃2,3 :𝑚0 𝑃0,1,2 : 𝑐𝑤,0

Figure 5: 4-PC multiplication protocol

Verifying Communication. To ensure that their local share of 𝑐 is
valid, all parties that receive a message need to verify its correctness.
To verify message𝑚0 sent by 𝑃0 to 𝑃2 in the preprocessing phase,
𝑃2 and 𝑃3 compare their views of𝑚0. Note that 𝑃3 holds all values
to compute𝑚0 locally. Similarly, 𝑃1 can compute𝑚2,1 locally from
its shares and compare its view with 𝑃0.

The remaining messages are𝑚3 sent by 𝑃3, and the messages𝑚1

and𝑚2,0 exchanged between 𝑃1 and 𝑃2. All these messages can be
verified with a single check by parties 𝑃0,1,2 comparing their view
of 𝑎𝑏 + 𝑐0 +𝑤 . If 𝑃3’s message𝑚3 is incorrect, 𝑃1’s and 𝑃2’s correct
view will differ from 𝑃0’s corrupted view. If 𝑃1’s or 𝑃2’s message is
incorrect, 𝑃0’s correct view will differ from their corrupted views of
𝑎𝑏+𝑐0+𝑤 . As our protocol tolerates up to one corrupted party, only
one of these cases can occur. Therefore, the parties successfully
verified all messages exchanged during the multiplication protocol.

Note that message𝑚2,1 is only needed to let 𝑃0 verify the mes-
sages exchanged between 𝑃1 and 𝑃2. Delaying all messages for all
gates by a constant factor does not affect the protocol’s through-
put in the amortized sense. For this reason, 𝑃0 and 𝑃1 can share a
high-latency link even if the evaluated circuit has a high multiplica-
tive depth. Messages utilized that way can also be viewed as part
of a constant-round post-processing phase. Note that the parties
achieve low computational complexity by reusing calculated terms
across messages, verification, and obtaining shares.

6.3 Multiplication in Heterogeneous Network
settings

The previously introduced multiplication protocol requires three
high-bandwidth and one low-latency link between all parties. For
heterogeneous network settings, we can reduce the number of
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required high-bandwidth links further to two. While difficult to
prove, this property seems optimal for high-throughput secret-
sharing-based schemes in terms of required low-latency and high-
bandwidth links between the parties. A lower number of low-
latency links would imply that the parties can compute any circuit
in constant rounds. A lower number of required high-bandwidth
links would imply that two parties can efficiently evaluate a non-
linear gate without obtaining any messages from a third party.

In order to shift all the communication from our multiplication
protocol to two links, we replace the need for𝑚3 that 𝑃3 sends to
𝑃0 in protocol ΠMult with a message𝑚2,2 that 𝑃2 sends to 𝑃0. 𝑃0
then verifies 𝑃1’s and 𝑃2’s communication with the help of this new
message𝑚2,2. Our modification has the additional advantage that
𝑃3 now does not need to communicate to any other party when
evaluating a multiplication gate. Thus, 𝑃3 can have an arbitrarily
weak network link to all other parties. Figure 6 shows all steps
required by the parties.

Preprocessing:
(1) Sample random values using ΠSRNG:

𝑃0,1,3 : 𝑟0,1,3, 𝑧1 𝑃0,2,3 : 𝑧2 𝑃1,2,3 : 𝑟1,2,3, 𝑤

(2) Locally compute:

𝑃0, 𝑃3 : 𝑧0 = 𝑧1 + 𝑧2 𝑃0, 𝑃3 :𝑚0 = 𝑧0 + 𝑥0𝑦0 + 𝑟0,1,3
𝑃3 : 𝑣3 = 𝑥0 (𝑦0 − 𝑣) − 𝑦0𝑢 − 𝑧0 + 𝑟1,2,3

(3) Communicate:

𝑃0 → 𝑃2 :𝑚0

Online:
(1) Locally compute:

𝑃1 :𝑚1 = 𝑎0𝑦1 + 𝑏0𝑥1 + 𝑟0,1,3 𝑃2 :𝑚2,0 = 𝑎0𝑦2 + 𝑏0𝑥2 −𝑚0

𝑃1 : 𝑐′0 = 𝑎0𝑏0 −𝑚1 𝑃2 : 𝑐′′0 = 𝑎0𝑏0 −𝑚2,0

𝑃0 : 𝑐′𝑤 = 𝑎𝑢𝑦0 + 𝑏𝑣𝑥0

(2) Communicate:

𝑃1 → 𝑃2 :𝑚1,𝑚2,0

(3) Locally compute:

𝑃1 : 𝑐0 = 𝑐′0 −𝑚2,0 𝑃2 : 𝑐0 = 𝑐′′0 −𝑚1

𝑃1, 𝑃2 :𝑚2,1 = 𝑐0 + 𝑤 𝑃1, 𝑃2 :𝑚2,2 =𝑚1 +𝑚2,0 + 𝑟1,2,3

(4) Communicate:

𝑃2 → 𝑃0 :𝑚2,1 𝑃2 → 𝑃0 :𝑚2,2

(5) Locally compute:

𝑃0 : 𝑣3 =𝑚2,2 − 𝑐′𝑤 𝑃0 : 𝑐𝑤 =𝑚2,1 − 𝑧0

(6) Compare views using ΠCV:

𝑃0, 𝑃1 :𝑚2,1,𝑚2,2 𝑃0, 𝑃3 : 𝑣3 𝑃2, 𝑃3 :𝑚0

Protocol ΠMult_H ( [a], [b] ) → [𝑐 ]

Figure 6: Heterogeneous 4-PC multiplication protocol

The key modification in the preprocessing phase is that 𝑃3 now
calculates 𝑣3 (𝑚3 in protocol ΠMult). 𝑃3 does not send 𝑣3 to 𝑃0.
Similarly to protocol ΠMult, 𝑃1 and 𝑃2 use Steps 1-3 of the online

phase to compute their share 𝑐0. However, in protocol ΠMult_H they
define𝑚2,1 = 𝑐0 +𝑤 and𝑚2,2 = 𝑚1 +𝑚2 in Step 3. 𝑃2 then sends
these messages to 𝑃0. In Step 5, 𝑃0 uses message 𝑚2,1 to locally
compute its share 𝑐𝑤 without requiring interaction with 𝑃3.

To help 𝑃1 and 𝑃2 verify the correctness of their exchanged
messages𝑚1 and𝑚2,0, 𝑃0 uses𝑚2,2 to compute 𝑣3 =𝑚2,2 − 𝑐′𝑤 and
compares its view of 𝑣3 with 𝑃3. The following equations show why
the messages can be verified this way.

𝑚2,2 =𝑚1 +𝑚2,0 + 𝑟1,2,3 = 𝑎𝑦0 + 𝑏𝑥0 + 𝑥0𝑦0 − 𝑧0 + 𝑟1,2,3 (17)
𝑐′𝑤 = 𝑎𝑢𝑦0 + 𝑏𝑣𝑥0 = 𝑎𝑦0 + 𝑏𝑥0 + 𝑢𝑦0 + 𝑣𝑥0 (18)

𝑣3 =𝑚2,2 − 𝑐′𝑤 = (𝑚1 +𝑚2,0) − 𝑎𝑢𝑦0 + 𝑏𝑣𝑥0 (19)
= 𝑥0𝑦0 − 𝑢𝑦0 − 𝑣𝑥0 − 𝑧0 + 𝑟1,2,3 (20)

The equations show that 𝑃0 obtains the same 𝑣3 that 𝑃3 computes
locally in the preprocessing phase only if𝑚1 and𝑚2,0 are correct.
To verify whether 𝑃2 also sent𝑚2,2 that is consistent with 𝑃1’s view
of𝑚2,2, 𝑃0 and 𝑃1 compare their views of𝑚2,2. Finally, 𝑃0 needs
to verify𝑚2,1 sent by 𝑃2. To do so, 𝑃0 simply compares its view of
𝑚2,1 with 𝑃1.

Similarly to the basic variant of the 4-PC multiplication protocol,
𝑃2’s messages𝑚2,1 and𝑚2,2 can be received by 𝑃0 with arbitrary de-
lay and can be regarded as part of a constant round post-processing
phase. Therefore, the multiplication protocol requires only one
communication round and one low latency link between 𝑃1 and 𝑃2.

To ensure that all parties can detect corrupted messages, we
consider all possible scenarios:

(1) 𝑃0 is corrupted. 𝑃0 can send a corrupted𝑚0 to 𝑃2. In this
case, 𝑃2’s and 𝑃3’s views of𝑚0 differ.

(2) 𝑃1 is corrupted. 𝑃1 can send a corrupted𝑚1 to 𝑃2. In this
case, 𝑃0’s and 𝑃3’s views of 𝑣3 differ.

(3) 𝑃2 is corrupted. 𝑃2 can choose the same error 𝑒 in all its
messages. In this case, 𝑃0’s and 𝑃3’s views of 𝑣3 differ. As
soon as 𝑃2 chooses different errors in its messages 𝑃1’s view
of𝑚2,1 or𝑚2,2 will differ from 𝑃0’s.

(4) 𝑃3 is corrupted. 𝑃3 does not send any messages but only
compares its views with other parties at the end of the
protocol. Any corrupted messages in this phase will lead to
an abort of the protocol.

6.4 Security
The earlier defined notion of privacy in the presence of a malicious
adversary A also holds for our 4-PC protocols: Each message𝑚 in
our protocol is masked by a new call to ΠSRNG with a key 𝑘 that is
shared by all parties except the recipient of𝑚. Similarly to [11], we
show in the appendix that each message a party sends is verified
by a set of other parties using ΠCV.

7 ADDITIONAL PROTOCOLS
Using our protocols for real-world applications requires support
for fixed point arithmetic and mixed circuits. In the appendix, we
provide additional protocols for these settings. Truncation is re-
quired after multiplying two fixed point shares. Similiar to Tetrad
[23], probabilistic truncation as proposed by ABY3 [28] can be built
into our 3-PC and 4-PC multiplication protocols at no additional
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communication costs. We are not aware of any existing 3-PC proto-
col that implements a probabilistic truncation protocol that is fused
with the multiplication protocol. As in our multiplication protocol
we improve over Tetrad in computational complexity and higher
tolerance to weak network links.

To evaluate a comparison [𝑎] > [𝑏] we use the following es-
tablished sequence proposed by [28]. First, the parties calculate
[𝑐] = [𝑏] − [𝑎]. Note that the sign bit of 𝑐 is 1 if 𝑎 > 𝑏, and 0
otherwise. By converting [𝑐] into a boolean share, the parties can
extract a share of its sign bit. Afterward, the parties can convert the
share of the sign bit back to an arithmetic share to use the result of
the comparison.

Share conversion from the arithmetic to the boolean domain re-
quires one ring element of total communication in our 3-PC scheme
and two elements of communication in our 4-PC scheme, followed
by a boolean addition. Similarly, converting a shared bit to an arith-
metic share requires one ring element of total communication in
our 3-PC scheme and two elements of communication in our 4-PC
scheme, followed by an 𝑋𝑂𝑅 in the arithmetic domain. In both
schemes, converting from the arithmetic to the boolean domain
is part of non-latency critical communication and thus does not
add to the round complexity. Table 2 shows the number of ring
elements exchanged for the different protocols. All additional proto-
cols only utilize the same network links between the parties that are
already utilized in our multiplication protocol. Thus, our protocols
maintain their high tolerance to weak network links. Similar to our
multiplication protocols, each message is masked by ΠSRNG, while
each message is verified using ΠCV.

Table 2: Communication complexity of additional protocols

Primitive Scheme Off On Rounds

Multiplication + Truncation 3-PC 1 2 1
4-PC 2 3 1

Arithmetic to Boolean
(ex. Boolean Addition)

3-PC 1 0 0
4-PC 1 1 0

Bit to Arithmetic
(ex. Arithmetic XOR)

3-PC 1 0 0
4-PC 1 1 0

8 IMPLEMENTATION
We implemented our protocols and related state-of-the-art ones in
C++. Our implementation supports Bitslicing, Vectorization, mul-
tiprocessing, hardware instructions such as VAES and SHA, and
adjustable message buffering.

All results in this section and section 9 are based on a test setup
of 3-4 nodes. Each node is connected with a 25 Gbit/s duplex link
to each other node and equipped with a 32-core AMD EPYC 7543
processor. If not stated otherwise, we do not use a separate prepro-
cessing phase but perform all preprocessing operations during the
online phase.

8.1 Accelerating Basic Instructions
To implement the protocols efficiently, we first need to accelerate
the operations required by all protocols. We use Single Instruction
Multiple Data (SIMD) approaches to accelerate these operations

using wider register sizes. For example, we can use the AVX-512
instruction set to perform eight 64-bit additions, 512 1-bit logic
gates, or four 128-bit AES rounds in parallel using a single instruc-
tion on a 512-bit register. For SSL-encrypted communication, we
rely on the OpenSSL library. Notably, the throughput of the crypto-
graphic instructions is, on average, only 5-10 times slower than the
throughput of the non-cryptographic instructions.

8.2 Bitslicing and Vectorization
The key idea of Bitslicing is that computing a bit-wise logical oper-
ation on an m-bit register effectively works like𝑚 parallel boolean
conjunctions, each processing a single bit [26]. Thus, Bitslicing can
accelerate single-bit operations such as AND or 𝑋𝑂𝑅.

Vectorization is a technique to perform multiple operations in
parallel by packing multiple values next to each other in a single
vector. Modern 𝑋86 processors provide hardware instructions to
perform operations such as additions and multiplications on a vec-
tor of packed values using a single instruction. To efficiently switch
from a bit-sliced representation to a vectorized representation, we
utilize the matrix transposition techniques implemented by the
Usuba Bitslicing compiler [27].

Figure 7 shows the throughput of the protocols when utilizing
Bitslicing. The throughput measured on our test setup increases
over 100 times when performing 256 AND gates in parallel on an
AVX-2 register compared to using a boolean variable and perform-
ing one instruction for each input.
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Figure 7: Throughput in billion AND gates per second when
utilizing Bitslicing

8.3 Buffering
When evaluating a circuit, the parties must exchange a certain
number of messages in each communication round. A party can
either send each message as soon as it is computed, or it can buffer
a set of messages and send them all at once. Our measurements
showed a 50 times difference in throughput between an ideal and
worst-case buffer size. On our test setup, buffering between 0.3MB
and 3𝑀𝐵 of messages lead to the highest throughput.

8.4 Multiprocessing
Figure 8 shows that when combining the Bitslicing with multipro-
cessing, our implementations achieves a throughput of more than
20 billion AND gates per second for all protocols except Tetrad.
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These results are within 80% − 95% of the theoretical limit of 25
billion AND gates per second that we can achieve on a 25-Gbit/s
network without using Split-roles. The remaining gap in through-
put is likely explained by the networking overhead when sending
and receiving messages with multiple threads using conventional
sockets.
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Figure 8: Throughput in billion AND gates per second when
utilizing Multiprocessing

8.5 Split-Roles
To achieve more than 25 billion AND gates per second on our net-
work, we need to utilize Split-Roles. This way, all messages are
equally distributed between the parties, and the available network
bandwidth is fully utilized. For instance, on a 25-Gbit/s network,
we can theoretically achieve a throughput of 50 billion AND gates
per second by utilizing Split-Roles with a 3-PC protocol that re-
quires three elements of global communication. We can increase the
throughput further by executing a 3-PC protocol with four parties,
essentially creating a 4-PC protocol. This way, we can achieve a
theoretical throughput of 100 billion AND gates per second on a
25-Gbit/s network as the total number of links between the par-
ties doubles. Table 4 shows the throughput of the implemented
protocols when utilizing Split-Roles along with our other tweaks.

8.6 Online Phase
Most protocols we implemented offer a preprocessing phase that
can be detached from the online phase. Table 4 shows the through-
put of the implemented protocols when considering both phases and
when only considering the Online Phase. We additionally compare
the throughput of the Online Phase to the throughput a Trusted
Third Party (TTP) can achieve on the same hardware (c.f. Table 5).
The table shows that the throughput when utilizing a TTP is less
than one order of magnitude higher than the secure alternatives
when utilizing all aforementioned tweaks.

9 BENCHMARKS
In this section, we present the results of our benchmarks. We im-
plemented two other state-of-the-art protocols for each category,
namely the 3-PC protocols Astra [6] and Replicated [2] and the
4-PC protocols Fantastic Four [11] and Tetrad [23]. One protocol
in each category offers function-dependent preprocessing (Astra,
Tetrad), while the other does not (Replicated, Fantastic Four). All

benchmarks were performed on the aforementioned test setup with
AMD EPYC nodes on a 25 Gbit/s network and 0.3ms latency be-
tween the nodes. We start by benchmarking the throughput of
independent 𝐴𝑁𝐷 and multiplication gates, as accelerating these
basic operations in MPC also benefits all higher-level functions.
Apart from our benchmarks, we also tested the correctness of all
implemented secret sharing and multiplication protocols, which
should give more confidence in the protocols that have been lacking
an open-source implementation so far [6, 23].

9.1 MP-SPDZ
MP-SPDZ [19] also implements the Replicated 3-PC and the Fantas-
tic Four 4-PC protocols. Table 3 shows the throughput of the two
protocols on our test setup. Observe also that MP-SPDZ’s through-
put of 𝐴𝑁𝐷 gates (ring size 2) does not differ significantly from
its throughput of 64-bit multiplication gates (ring size 264), even
though the latter requires sending 64 times the data between the par-
ties. This shows that MP-SPDZ does not utilize the whole network
bandwidth but is either CPU- or memory-bottlenecked. Overall,
MP-SPDZ achieves a throughput of 2.8 million to 9.7 million gates
per second on our test setup in the different settings. While MP-
SPDZ also offers multithreading functionality with so-called tapes,
utilizing multiple tapes reduced the throughput in our tests.

Table 3: MP-SPDZ - Throughput in million gates per second

Protocol Gate Throughput

Replicated Mult 9.7
AND 7.5

Fantastic-Four Mult 2.8
AND 6.4

9.2 Our Framework
We move on to the results of our implementation. Table 5 and table
4 show the throughput in billion AND gates per second of our proto-
col and related state-of-the-art ones. We combine all optimizations
introduced earlier to achieve the highest throughput for each pro-
tocol. We also implemented a Trusted Third Party (TTP) protocol
that performs the computation on a single node in the clear. The
column stating “Performance Improvement” shows the percentage
difference in throughput that our protocol in the same category
achieves compared to that specific protocol. The column stating
“Theoretical Limit” shows the throughput that our implementa-
tion achieves compared to the theoretical optimum that our given
network could achieve if we only consider the communication com-
plexity of the protocol. Note that the theoretical limit increases
if we utilize Split-Roles. The suffix “(Online)” of a protocol name
indicates that we measured only the time of the online phase.

Table 5 and 4 show, that our protocols achieve at least 69% net-
work utilization in all setups and provide higher throughput than
state-of-the-art alternatives. Our implementation of the Replicated
and Fantastic Four protocols achieves more than three orders of
magnitudes higher throughput of 𝐴𝑁𝐷 gates than their MP-SPDZ
implementation. Notably, the throughput of 𝐴𝑁𝐷 gates per second
on the same hardware when utilizing a Trusted Third Party (TTP)
instead of a secure protocol is only around one order of magnitude
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Table 4: Throughput for the implemented protocols when using Split-Roles

Category Protocol Billion Performance Theoretical
Gates/s Improvement (%) Limit (%)

3-PC Semi-Honest

Replicated 40.16 10.55% 80.31%
Astra 44.14 0.58% 88.28%
Ours 44.39 - 88.79%

Astra (Online) 68.25 1.05% 91.00%
Ours (Online) 71.84 - 95.79%

4-PC Semi-Honest

Replicated 61.85 15.06% 61.85%
Astra 67.77 5.02% 67.77%
Ours 71.17 - 71.17%

Astra (Online) 126.69 3.24% 84.46%
Ours (Online) 130.79 - 87.19%

4-PC Malicious

Fantastic Four 26.48 56.76% 44.14%
Tetrad 33.03 25.68% 55.05%
Ours 41.51 - 69.19%

Tetrad (Online) 42.22 67.68% 42.22%
Ours(Online) 70.80 - 70.80%

Table 5: Throughput for the implemented protocols without
using Split-Roles

Protocol Billion Performance Theoretical
Gates/s Improvement (%) Limit (%)

Replicated 24.30 -0.16% 97.22%
Astra 24.10 0.68% 96.40%

Ours (3-PC) 24.27 - 97.06%
Fantastic Four 20.46 10.83% 81.85%

Tetrad 15.78 43.70% 63.12%
Ours (4-PC) 22.68 - 90.71%

Trusted Third Party 512 - -

higher. Due to Bitslicing, our implementation’s throughput in Gbit/s
does not differ significantly when calculating 𝐴𝑁𝐷 gates, 32-bit, or
64-bit multiplications. Thus, the throughput in multiplications per
second can be roughly calculated as the reported number of 𝐴𝑁𝐷

gates per second divided by the integer bitlength.

9.2.1 3-PC protocols. Table 5 shows that without utilizing Split-
Roles, all 3-PC protocols achieve similar runtimes and over 95% net-
work utilization. This result suggests that the available bandwidth
restricts the protocols’ throughput. Once we utilize Split-Roles, we
need more computing power to saturate the network bandwidth.
In this case, we start to see a noticeable difference in throughput
between the protocols (cf. Table 4). This difference increases when
using 3-PC protocols in a 4-PC setting, where we can distribute the
communication complexity of the protocol on more links between
the parties. Overall, our 3-PC protocol achieves up to 5% higher
throughput than the best state-of-the-art 3-PC protocol.

9.2.2 4-PC protocols. In contrast to the 3-PC protocols, the 4-PC
protocols already show computation bottlenecks without using
Split-roles. This is expected as they require significantly more local
computation. As a result, Tetrad only achieves 63.12% network
saturation (cf. Table 5). Since in the 4-PC setting, the improvement

in computational complexity and memory complexity between our
protocol and the state-of-the-art protocols is higher than in the
3-PC setting, our protocol still achieves 90.71% network saturation
in this setting. Overall, our 4-PC protocol achieves up to 25.68%
higher throughput than the best state-of-the-art protocol in the
same category. Notably, when considering only the online phase,
all our protocols achieve more than 70 billion AND gates or more
than two billion 32-bit multiplications per second.

9.3 Sweetspots
Our 4-PC protocols excel especially in two scenarios: Heteroge-
neous network settings, and computational extensive tasks.

9.3.1 Heterogeneous Network Settings. We simulate heterogeneous
network settings by using Linux traffic control (tc) to restrict the
bandwidth between the nodes. In these cases, we did not use Split-
roles to benefit from the heterogeneous properties of our protocols.
When we restrict the bandwidth between 1

3 of the nodes in our
setup, our 3-PC protocol still achieves the same throughput of
approx. 24 billion 𝐴𝑁𝐷 gates per second, as measured in the unre-
stricted setting. This is due to the fact that the link between 𝑃0 and
𝑃1 is not utilized at all in the multiplication protocol.

Figure 9 shows that even if we restrict the bandwidth of 2
3 of the

links in our setup, our 4-PC variation optimized for heterogeneous
settings still achieves a throughput of approx. 10 billion𝐴𝑁𝐷 gates
per second. In this setting, we cannot achieve close to 25 billion
𝐴𝑁𝐷 gates per second because to divide five elements of commu-
nication on two links, one link necessarily has to transmit two
elements per 𝐴𝑁𝐷 gate in the same direction. The figure shows
that while the bandwidth restriction affects all other protocols, it
does not affect the throughput of our heterogeneous protocol.

9.3.2 Computationally Expensive Tasks. Our protocols excel at
computationally demanding tasks due to their reduced number of
basic instructions compared to related work. Dot products are one
example of these tasks: The communication complexity to evaluate
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a dot product of size 𝑙 is that of a single multiplication. Thus, suffi-
ciently large dot products become inevitably computation-bound.
To benchmark the performance of dot products, we compute the
product of a vector of size 𝑛 with a matrix of size 𝑛 ×𝑛, resulting in
𝑛 dot products of size 𝑙 = 𝑛. A vector-matrix product is, for instance,
required in privacy-preserving machine learning when evaluating
fully connected layers. Figure 10 shows that our 4-PC protocol is
two times faster when evaluating large dot products than Tetrad
and Fantastic Four. Furthermore, our Trusted-Third-Party imple-
mentation is less than three times faster than our 4-PC protocol on
the same hardware.

9.4 AES
AES is a common benchmark for assessing the performance of
MPC frameworks and protocols. Araki et al. [2] have achieved the
highest AES throughput so far, with 1.3 million 128-bit AES blocks
per second. To test whether our tweaks on the throughput of raw
𝐴𝑁𝐷 and multiplication gates translate to more complex circuits,
we benchmark the throughput of 128-bit AES blocks using the
implemented protocols. As the basis for the AES circuit, we utilize
the optimized AES circuit proposed by USUBA [27]. We perform
over 90 million AES blocks in parallel using all tweaks introduced
in section 8.

Table 6: Throughput in million AES blocks per second

Protocol Million Performance Theoretical
Blocks/s Improvement (%) Limit (%)

Replicated 5.59 2.58% 59.01%
Astra 6.27 -8.62% 66.24%

Ours (3-PC) 5.73 - 60.54%
Astra (Online) 6.44 11.23% 45.36%

Ours (3-PC, Online) 7.17 - 50.46%
Fantastic Four 2.43 62.18% 25.64%

Tetrad 2.25 74.81% 19.82%
Ours (4-PC) 3.94 - 34.65%

Tetrad (Online) 2.63 80.78% 13.87%
Ours (4-PC, Online) 4.75 - 25.07%
Trusted Third Party 19.16 - -

Table 6 shows the throughput in AES blocks per second. While
our protocols cannot saturate the network to the same degree as
for raw 𝐴𝑁𝐷 gates, we can still achieve more than four times
higher throughput than previous work using the same 3-PC pro-
tocol. Again, especially our 4-PC protocol improves performance
compared to other protocols significantly. Our 3-PC protocol mainly
shows improvements in the online phase, as most computation in
the protocol is performed by 𝑃0 and can thus be shifted to the pre-
processing phase. In the appendix, we also evaluate the RAM usage
when running the AES benchmark.

10 CONCLUSION
In this work, we proposed novel honest-majority three-party and
four-party computation protocols optimized for achieving high
throughput in various network settings. By utilizing the client-
server model, our results can be used to enable efficient MPC for
any number of input parties. Our open-source implementation
demonstrates that our protocols can evaluate billions of gates per
second, even if most of the links between the parties have high
latency and low bandwidth. This result shows that MPC can handle
demanding workloads in diverse real-world settings where compu-
tation nodes may have varying bandwidth and latency. Finally, our
benchmarks suggest that bridging the runtime difference between
MPC and a TTP, needs optimizations both in the communication
and computational aspects of MPC protocols, as well as enhance-
ments in MPC implementations.

An interesting direction for future work is to investigate which
other honest-majority settings can be optimized for heterogeneous
network settings. Due to the high throughput our implementation
achieves when evaluating boolean and arithmetic gates, another
direction for future work is to apply the techniques we presented
in this work to high-level MPC frameworks and use cases. Addi-
tionally, demanding workloads that require evaluating large dot
products, such as privacy-preserving machine learning, can partic-
ularly benefit from our novel protocols.
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A CORRECTNESS
We unfold all computations of our 3-PC and 4-PC multiplication
protocols to show that each party obtains a valid share. Our 4-
PC protocols achieve security with abort against an adversary A
corrupting a single party. Thus, we also show that each message
sent by A can be verified by a set of honest parties using ΠCV.

A.1 3-PC Protocol
We unfold all computations in ΠMult and show that parties obtain
the correct shares of the product 𝑐 = 𝑎𝑏.

𝑃1 : (21)

𝑐2 =𝑚2 − 𝑐′2 (22)

= 𝑎1𝑏1 +𝑚0 + 𝑧2 − (𝑎2𝑦1 + 𝑏2𝑥1 + 𝑟0,1) (23)
= 𝑎𝑏 + 𝑎𝑦1 + 𝑏𝑥1 + 𝑥1𝑦1 + 𝑧2 (24)

+𝑚0 − 𝑎𝑦1 − 𝑏𝑥1 − 𝑥1𝑦2 − 𝑥2𝑦1 − 𝑟0,1 (25)

= 𝑎𝑏 + 𝑥1𝑦1 − 𝑥1𝑦2 − 𝑥2𝑦1 − 𝑟0,1 + 𝑧2 +𝑚0 (26)
= 𝑎𝑏 + 𝑥1𝑦1 − 𝑥1𝑦2 − 𝑥2𝑦1 − 𝑟0,1 + 𝑧2 (27)
+ 𝑥2𝑦2 − (𝑥1𝑦1 − 𝑥2𝑦1 − 𝑥1𝑦2 + 𝑥2𝑦2) + 𝑟0,1 (28)
= 𝑎𝑏 + 𝑧2 (29)
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𝑃2 : (30)

𝑐1 = 𝑐′1 −𝑚
1 (31)

= 𝑎1𝑏1 +𝑚0 − (𝑎2𝑦1 + 𝑏2𝑥1 + 𝑟0,1 − 𝑧1) (32)
= 𝑎𝑏 + 𝑎𝑦1 + 𝑏𝑥1 + 𝑥1𝑦1 + 𝑧1 (33)

+𝑚0 − 𝑎𝑦1 − 𝑏𝑥1 − 𝑥1𝑦2 − 𝑥2𝑦1 − 𝑟0,1 (34)

= 𝑎𝑏 + 𝑥1𝑦1 − 𝑥1𝑦2 − 𝑥2𝑦1 − 𝑟0,1 + 𝑧1 +𝑚0 (35)
= 𝑎𝑏 + 𝑥1𝑦1 − 𝑥1𝑦2 − 𝑥2𝑦1 − 𝑟0,1 + 𝑧1 (36)
+ 𝑥2𝑦2 − (𝑥1𝑦1 − 𝑥2𝑦1 − 𝑥1𝑦2 + 𝑥2𝑦2) + 𝑟0,1 (37)
= 𝑎𝑏 + 𝑧1 (38)

A.2 4-PC Protocol
We unfold all computations in ΠMult and show that parties obtain
the correct shares of the product 𝑐 = 𝑎𝑏.

𝑃0 : (39)

𝑐𝑤 =𝑚2,1 − (𝑐′𝑤 +𝑚3) (40)

= 𝑐′0 + 𝑟1,2,3 − (𝑎𝑢𝑦0 + 𝑏𝑣𝑥0) −𝑚
3 (41)

= 𝑎0𝑏0 − (𝑎𝑢𝑦0 + 𝑏𝑣𝑥0) −𝑚3 + 𝑟1,2,3 (42)
= 𝑎𝑏 + 𝑎𝑦0 + 𝑏𝑥0 + 𝑥0𝑦0 (43)

− 𝑎𝑦0 − 𝑏𝑥0 − 𝑢𝑦0 − 𝑣𝑥0 −𝑚3 + 𝑟1,2,3 (44)

= 𝑎𝑏 + 𝑥0𝑦0 − 𝑢𝑦0 − 𝑣𝑥0 −𝑚3 + 𝑟1,2,3 (45)
= 𝑎𝑏 + 𝑥0𝑦0 − 𝑢𝑦0 − 𝑣𝑥0 − 𝑥0 (𝑦0 − 𝑣) + 𝑦0𝑢 +𝑤 (46)
= 𝑎𝑏 +𝑤 (47)

𝑃1 : (48)

𝑐0 = 𝑐′′0 −𝑚
2,0 = 𝑎0𝑏0 −𝑚1 −𝑚2,0 (49)

= 𝑎0𝑏0 − (𝑎0𝑦1 + 𝑏0𝑥1 + 𝑟0,1,3) − (𝑎0𝑦2 + 𝑏0𝑥2 −𝑚0) (50)

= 𝑎0𝑏0 − (𝑎0𝑦0 + 𝑏0𝑥0 + 𝑟0,1,3 −𝑚0) (51)
= 𝑎𝑏 + 𝑎𝑦0 + 𝑏𝑥0 + 𝑥0𝑦0 (52)

− 𝑎𝑦0 − 𝑏𝑥0 − 𝑥0𝑦0 − 𝑥0𝑦0 − 𝑟0,1,3 +𝑚0 (53)

= 𝑎𝑏 − 𝑥0𝑦0 − 𝑟0,1,3 +𝑚0 = 𝑎𝑏 + 𝑧0 (54)
𝑃2 : (55)

𝑐0 = 𝑐′′′0 −𝑚
1 = 𝑎0𝑏0 −𝑚1 −𝑚2,0 = 𝑎𝑏 + 𝑧0 (56)

For all cases where A violates the protocol specifications, we
show that proving the correctness of functionality ΠMult reduces
to proving the correctness of functionality ΠCV.
Case: A = 𝑃0
Corrupted message: 𝑚0′ =𝑚0 + 𝑒
Reduction: ΠCV (𝑚0, 𝑃2, 𝑃3)

Case: A = 𝑃1
Corrupted message: 𝑚1′ =𝑚1 + 𝑒
Reduction: ΠCV (𝑐𝑤,0, 𝑃0, 𝑃1, 𝑃2)
If 𝑒 ≠ 0, 𝑃2 obtains 𝑐𝑤,0 + 𝑒 and ΠCV (𝑐𝑤,0, 𝑃0, 𝑃1, 𝑃2) fails.

Case: A = 𝑃2
Corrupted message: 𝑚2,0′ =𝑚2,0 + 𝑒1

𝑚2,1′ =𝑚2,1 + 𝑒2
Reduction: ΠCV (𝑐𝑤,0, 𝑃0, 𝑃1, 𝑃2)

ΠCV (𝑚2,1, 𝑃0, 𝑃1)

If 𝑒1 ≠ 0, 𝑃1 obtains 𝑐𝑤,0 + 𝑒1 and ΠCV (𝑐𝑤,0, 𝑃0, 𝑃1, 𝑃2) fails. If
𝑒2 ≠ 𝑒1,ΠCV (𝑚2,1, 𝑃0, 𝑃1) fails. Hence, any assignment 𝑒1 ≠ 0∨𝑒2 ≠
0 leads to abort.
Case: A = 𝑃3

Corrupted message: 𝑚3′ =𝑚3 + 𝑒
Reduction: ΠCV (𝑐𝑤,0, 𝑃0, 𝑃1, 𝑃2)
If 𝑒 ≠ 0, 𝑃0 obtains 𝑐𝑤,0 + 𝑒 and ΠCV (𝑐𝑤,0, 𝑃0, 𝑃1, 𝑃2) fails.

A.3 Heterogeneous 4-PC Protocol
We unfold all computations in ΠMult_H and show that parties obtain
the correct shares of the product 𝑐 = 𝑎𝑏.

𝑃0 : 𝑐𝑤 =𝑚2,1 − 𝑧0 = 𝑐0 +𝑤 − 𝑧0 = 𝑎𝑏 +𝑤 (57)

𝑃1 : 𝑐0 = 𝑐′0 −𝑚
2,0 = 𝑎0𝑏0 −𝑚1 −𝑚2,0 = 𝑎𝑏 + 𝑧0 (58)

𝑃2 : 𝑐0 = 𝑐′′0 −𝑚
1 = 𝑎0𝑏0 −𝑚1 −𝑚2,0 = 𝑎𝑏 + 𝑧0 (59)

For all cases where A violates the protocol specifications, we
show that proofing correctness of functionality ΠMult_H reduces to
proofing correctness of ΠCV.
Case: A = 𝑃0

Corrupted message: 𝑚0′ =𝑚0 + 𝑒
Reduction: ΠCV (𝑚0, 𝑃2, 𝑃3)

Case: A = 𝑃1

Corrupted message: 𝑚1′ =𝑚1 + 𝑒
Reduction: ΠCV (𝑣3, 𝑃0, 𝑃3)

If 𝑒 ≠ 0, 𝑃2 obtains 𝑚2,2′ = 𝑚2,2 + 𝑒 and sends it to 𝑃0. 𝑃0
computes 𝑣3′ based on𝑚2,2′. The following equation shows that
ΠCV (𝑣3, 𝑃0, 𝑃3) fails.

𝑣3′ =𝑚2,2′ − 𝑐′𝑤 = 𝑎𝑦0 + 𝑏𝑥0 − 𝑥0𝑦0 − 𝑧0 (60)
+ 𝑟1,2,3 + 𝑒 − 𝑎𝑢𝑦0 − 𝑏𝑣𝑥0 (61)
= 𝑥0𝑦0 − 𝑢𝑦0 − 𝑣𝑥0 + 𝑟1,2,3 − 𝑧0 + 𝑒 = 𝑣3 + 𝑒 (62)

Case: A = 𝑃2

Corrupted message: 𝑚2,0′ =𝑚2,0 + 𝑒1
𝑚2,1′ =𝑚2,1 + 𝑒2
𝑚2,2′ =𝑚2,2 + 𝑒3

Reduction: ΠCV (𝑣3, 𝑃0, 𝑃3)
ΠCV (𝑚2,1, 𝑃0, 𝑃1)
ΠCV (𝑚2,2, 𝑃0, 𝑃1)

If 𝑒1 ≠ 0, 𝑃1 obtains𝑚2,1′ =𝑚2,1+𝑒1 and𝑚2,2′ =𝑚2,2+𝑒1. In that
case, any other assignment than 𝑒1 = 𝑒2 = 𝑒3 leads to abort due to
ΠCV (𝑚2,1, 𝑃0, 𝑃1) or ΠCV (𝑚2,2, 𝑃0, 𝑃1). Assigning 𝑒1 = 𝑒2 = 𝑒3 ≠ 0
leads to 𝑃0 obtaining a corrupted 𝑣3′. Hence, ΠCV (𝑣3, 𝑃0, 𝑃3) fails.

If 𝑒1 = 0, 𝑃1 obtains𝑚2,1 and𝑚2,2. Hence, assigning 𝑒2 ≠ 0 or
𝑒3 ≠ 0 leads to abort due to ΠCV (𝑚2,1, 𝑃0, 𝑃1) or ΠCV (𝑚2,2, 𝑃0, 𝑃1).
Case: A = 𝑃3

Corrupted message: -

B ADDITIONAL PROTOCOLS
The properties of our protocols, i.e. high tolerance to weak network
links, low computational complexity, and best known communica-
tion complexity can be extended to other protocols as well.
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B.1 Truncation
Similar to Tetrad [23], probabilistic truncation as proposed by ABY3
[28] can be built into our 3-PC and 4-PC multiplication protocols at
no additional communication cost. We improve on state-of-the-art
by requiring fewer local operations per party. Probabilistic trun-
cation takes a value 𝑣 = 𝑥 − 𝑟 and a value 𝑟 and outputs their
correct truncated versions 𝑣𝑡 and 𝑟𝑡 with a high probability. We
combine truncation with our multiplication protocols to obtain
more efficient constructions.

B.1.1 3-PC. To truncate-multiply two values 𝑎 and 𝑏 in our 3-PC
scheme, all parties need to obtain a share of 𝑎𝑏 + 𝑒 and 𝑒 , where 𝑒
is a masked error term.

Let 𝑥𝑡 denote ⌊ 𝑥2𝑡 ⌋. First, the parties obtain a share of 𝑒𝑡 . To
do so, 𝑃0 computes 𝑒 = (𝑥1 − 𝑥2) (𝑦1 − 𝑦2) − 𝑥2𝑦2 + 𝑟0,1 + 𝑟0,2 and
locally truncates the result to obtain 𝑒𝑡 . 𝑃1,2 then sample 𝑧1 and 𝑃0
sends 𝑒𝑡 − 𝑧1 to 𝑃2. The parties now hold the following shares of 𝑒 :
𝑐1 =𝑚0 = 𝑒𝑡 − 𝑧1, 𝑥1 = −𝑧1, 𝑎2 = 𝑧1, 𝑥2 = −(𝑒𝑡 − 𝑧1).

Now, the parties calculate a share of 𝑎𝑏 + 𝑒 . 𝑃2 calculates𝑚2 =
𝑎1𝑏1 + 𝑟0,2, while 𝑃1 calculates𝑚1 = 𝑎2𝑦1 + 𝑏2𝑥1 − 𝑟0,1. The parties
exchange 𝑚1 and 𝑚2 to obtain 𝑎𝑏 + 𝑒 = 𝑚2 − 𝑚1. Notice that
𝑒 = 𝑥1𝑦2 + 𝑥2𝑦1 − 𝑥1𝑦1 + 𝑟0,1 + 𝑟0,2. 𝑃1 and 𝑃2 can locally truncate
𝑎𝑏 + 𝑒 to obtain (𝑎𝑏 + 𝑒)𝑡 . The parties’ shares are now defined as
𝑎1 = (𝑎𝑏 + 𝑒)𝑡 , 𝑎2 = (𝑎𝑏 + 𝑒)𝑡 , 𝑥1 = 0, 𝑥2 = 0.

Finally, the parties locally subtract their shares to compute (𝑎𝑏 +
𝑒)𝑡 − 𝑒𝑡 and 𝑒𝑡 . The parties obtain 𝑎1 = (𝑎𝑏 + 𝑒)𝑡 −𝑚0 = 𝑎𝑏 − 𝑒𝑡 +
𝑧1, 𝑥1 = 𝑧1, 𝑎2 = (𝑎𝑏 +𝑒)𝑡 −𝑧1, 𝑥2 =𝑚0 = −𝑒𝑡 −𝑧1. Note that adding
𝑎𝑖 +𝑥𝑖 results in (𝑎𝑏 +𝑒)𝑡 −𝑒𝑡 which is what we intended. Figure 11
implements the presented intuition in a computationally efficient
way.

Preprocessing:
(1) Sample random values using ΠSRNG:

𝑃0,1 : 𝑟0,1, 𝑧1 𝑃0,2 : 𝑟0,2

(2) Locally compute:

𝑃0 : 𝑧2 =𝑚0 = [ (𝑥1 − 𝑥2 ) (𝑦1 − 𝑦2 ) − 𝑥2𝑦2 + 𝑟0,1 + 𝑟0,2 ]𝑡 − 𝑧1

(3) Communicate:

𝑃0 → 𝑃2 :𝑚0

Online:
(1) Locally compute:

𝑃1 :𝑚1 = 𝑎2𝑦1 + 𝑏2𝑥1 − 𝑟0,1 𝑃2 :𝑚2 = 𝑎1𝑏1 + 𝑟0,2

(2) Communicate:

𝑃1 → 𝑃2 :𝑚1 𝑃2 → 𝑃1 :𝑚2

(3) Locally compute:

𝑃1 : 𝑐2 = [𝑚2 −𝑚1 ]𝑡 − 𝑧1 𝑃2 : 𝑐1 = [𝑚2 −𝑚1 ]𝑡 −𝑚0

𝑃2 : 𝑧2 =𝑚0

Protocol ΠMult3𝑇 ( [a], [b] ) → [𝑐 ]

Figure 11: 3-PC multiplication protocol with truncation

B.1.2 4-PC. Truncation also comes for free in our 4-PC schemes.
To truncate-multiply a value in our 4-PC schemes, 𝑃1 and 𝑃2 obtain

a share of 𝑎𝑏 + 𝑒 . To do so, they exchange𝑚1 = 𝑎0𝑦1 + 𝑏0𝑥1 − 𝑟0,1,3
and𝑚2 = 𝑎0𝑦2 +𝑏0𝑥2 − 𝑟0,2,3. They locally compute 𝑎0𝑏0 −𝑚1 −𝑚2

to obtain 𝑎𝑏 −𝑥0𝑦0 + 𝑟0,1,3 + 𝑟0,2,3. They then locally truncate 𝑎𝑏 + 𝑒 .
The parties then define their shares of [𝑎𝑏 + 𝑒]𝑡 as follows: 𝑧0 =

0, 𝑐0 = [𝑎𝑏 + 𝑒]𝑡 , 𝑧1 = 0, 𝑧2 = 0.
𝑃0 shares 𝑒𝑡 with 𝑃1 and 𝑃2 similarly to our 3-PC protocol. 𝑃0

sets𝑚0 = 𝑧1 − 𝑒𝑡 and sends it to 𝑃2. The parties then define their
shares of 𝑒𝑡 as follows: 𝑧0 = −𝑒𝑡 , 𝑐0 = 0, 𝑧1 = −𝑧1, 𝑧2 = 𝑧1 − 𝑒𝑡 . The
parties can now set their shares of 𝑎𝑏: 𝑧0 = 𝑒𝑡 , 𝑐0 = [𝑎𝑏 + 𝑒]𝑡 , 𝑧1 =
𝑧1, 𝑧2 = 𝑒𝑡 − 𝑧1.

𝑃0 also needs to obtain a share of 𝑎𝑏. Thus, 𝑃2 masks 𝑐0 with𝑤
and sends it to 𝑃0. All parties now hold their valid share. Figures
12 and 13 implement the presented intuition in a computationally
efficient way.

Preprocessing:
(1) Sample random values using ΠSRNG:

𝑃0,1,3 : 𝑟0,1,3, 𝑧1 𝑃0,2,3 : 𝑟0,2,3 𝑃1,2,3 : 𝑟1,2,3, 𝑤

(2) Locally compute:

𝑃0, 𝑃3 : 𝑧0 = [𝑟0,1,3 + 𝑟0,2,3 − 𝑥0𝑦0 ]𝑡 𝑃0, 𝑃3 :𝑚0 = 𝑧0 − 𝑧1
𝑃3 :𝑚3 = 𝑥0 (𝑦0 − 𝑣) − 𝑦0𝑢 − 𝑟0,1,2 − 𝑟0,2,3 + 𝑟1,2,3

(3) Communicate:

𝑃0 → 𝑃2 :𝑚0

𝑃3 → 𝑃0 :𝑚3
Online:
(1) Locally compute:

𝑃1 :𝑚1 = 𝑎0𝑦1 + 𝑏0𝑥1 − 𝑟0,1,3 𝑃2 :𝑚2,0 = 𝑎0𝑦2 + 𝑏0𝑥2 − 𝑟0,2,3
𝑃1,2 : 𝑐′0 = 𝑎0𝑏0 𝑃0 : 𝑣′1,2 = 𝑎𝑢𝑦0 + 𝑏𝑣𝑥0 + 𝑥0𝑦0 +𝑚3

𝑃2 : 𝑧2 =𝑚0

(2) Communicate:

𝑃1 → 𝑃2 :𝑚1,𝑚2,0

(3) Locally compute:

𝑃1,2 : 𝑣′1,2 =𝑚1 +𝑚2,0 𝑃1,2 : [𝑐0 ]𝑡 = [𝑐′0 − 𝑣′1,2 ]𝑡

𝑃1, 𝑃2 :𝑚2,1 = [𝑐0 ]𝑡 + 𝑤 𝑃1, 𝑃2 : 𝑣1,2 = 𝑣′1,2 + 𝑟1,2,3

(4) Communicate:

𝑃2 → 𝑃0 :𝑚2,1

(5) Locally compute:

𝑃0 : 𝑐𝑤 =𝑚2,1 − 𝑧0

(6) Compare views using ΠCV:

𝑃0, 𝑃1 :𝑚2,1 𝑃0, 𝑃1, 𝑃2 : 𝑣1,2 𝑃2, 𝑃3 :𝑚0

Protocol ΠMult4𝑇 ( [a], [b] ) → [𝑐 ]

Figure 12: 4-PC multiplication protocol with truncation

Preprocessing:

Protocol ΠMult4𝐻𝑇 ( [a], [b] ) → [𝑐 ]
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(1) Sample random values using ΠSRNG:

𝑃0,1,3 : 𝑟0,1,3, 𝑧1 𝑃0,2,3 : 𝑟0,2,3 𝑃1,2,3 : 𝑟1,2,3, 𝑤

(2) Locally compute:

𝑃0, 𝑃3 : 𝑧0 = [𝑟0,1,3 + 𝑟0,2,3 − 𝑥0𝑦0 ]𝑡 𝑃0, 𝑃3 :𝑚0 = 𝑧0 − 𝑧1
𝑃3 : 𝑣3 = 𝑥0 (𝑦0 − 𝑣) − 𝑦0𝑢 − 𝑟0,1,2 − 𝑟0,2,3 + 𝑟1,2,3

(3) Communicate:

𝑃0 → 𝑃2 :𝑚0
Online:
(1) Locally compute:

𝑃1 :𝑚1 = 𝑎0𝑦1 + 𝑏0𝑥1 − 𝑟0,1,3 𝑃2 :𝑚2,0 = 𝑎0𝑦2 + 𝑏0𝑥2 − 𝑟0,2,3
𝑃1 : 𝑐′0 = 𝑎0𝑏0 −𝑚1 𝑃2 : 𝑐′′0 = 𝑎0𝑏0 −𝑚2,0

𝑃0 : 𝑐′𝑤 = 𝑎𝑢𝑦0 + 𝑏𝑣𝑥0 + 𝑥0𝑦0 𝑃2 : 𝑧2 =𝑚0

(2) Communicate:

𝑃1 → 𝑃2 :𝑚1 𝑃2 → 𝑃1 :𝑚2,0

(3) Locally compute:

𝑃1 : [𝑐0 ]𝑡 = [𝑐′0 −𝑚2,0 ]𝑡 𝑃2 : [𝑐0 ]𝑡 = [𝑐′′0 −𝑚1 ]𝑡

𝑃1, 𝑃2 :𝑚2,1 = [𝑐0 ]𝑡 + 𝑤 𝑃1, 𝑃2 :𝑚2,2 =𝑚1 +𝑚2,0 + 𝑟1,2,3

(4) Communicate:

𝑃2 → 𝑃0 :𝑚2,1 𝑃2 → 𝑃0 :𝑚2,2

(5) Locally compute:

𝑃0 : 𝑣3 =𝑚2,2 − 𝑐′𝑤 𝑃0 : 𝑐𝑤 =𝑚2,1 − 𝑧0

(6) Compare views using ΠCV:

𝑃0, 𝑃1 :𝑚2,1,𝑚2,2 𝑃0, 𝑃3 : 𝑣3 𝑃2, 𝑃3 :𝑚0

Figure 13: 4-PC heterogeneous multiplication protocol with trun-
cation

B.2 Arithmetic to Binary
To convert an arithmetic share [𝑎]𝐴 to a boolean share [𝑐]𝐵 , the
parties compute boolean shares of [𝑎+𝑥0]𝐵 and [−𝑥0]𝐵 . The parties
then use a boolean adder to compute [𝑎 + 𝑥0]𝐵 + [−𝑥0]𝐵 to receive
an XOR-sharing of [𝑐]𝐵 .

B.2.1 3-PC. To compute a share of 𝑏 = [−𝑥0]𝐵 , 𝑃0,1 sample 𝑟0,1
and 𝑃0 sends𝑚0 = [−𝑥]𝐵 ⊕ 𝑟0,1 to 𝑃2 in the preprocessing phase.
The parties then define their shares as shown in figure 14. Each
party locally computes a share of 𝑐′ = [𝑎+𝑥0]𝐵 . The parties proceed
to compute [𝑐]𝐵 = [𝑎 + 𝑥0]𝐵 + [−𝑥0]𝐵 using a Boolean adder.

Preprocessing:
(1) Sample random values using ΠSRNG:

𝑃0,1 : 𝑟0,1

(2) Communicate:

𝑃0 → 𝑃2 :𝑚0 = (−𝑥0 ) ⊕ 𝑟0,1

Protocol ΠA2B,3𝑃𝐶 ( [a]A ) → [𝑐 ]𝐵

(3) Locally compute:

𝑃0,1 : 𝑦1 = 0 𝑃0,2 : 𝑦2 = 0 𝑃0,1 : 𝑧′1 = 𝑟0,1 𝑃0,2 : 𝑧′2 =𝑚0

Online:
(1) Locally compute:

𝑃1 : 𝑏2 = 𝑎2 + 𝑥1 𝑃2 : 𝑏1 = 𝑎2 + 𝑥2 𝑃1 : 𝑐′2 = 𝑧1 𝑃2 : 𝑐′1 = 𝑧2

𝑃0,1,2,3 : [𝑐 ]𝐵 = [𝑏 ]𝐵 + [𝑐′ ]𝐵

Figure 14: 3-PC Arithmetic to Binary Conversion

B.2.2 4-PC. Each party first obtains a share of 𝑏 = [−𝑥0]𝐵 . 𝑃0,1,3
sample 𝑟0,1,3 and 𝑃0 sends𝑚0 = (−𝑥0) ⊕ 𝑟0,1,3 to 𝑃2 in the prepro-
cessing phase. 𝑃3 compares its view of 𝑚0 with 𝑃2. The parties
then define their shares of 𝑏 as shown in figure 17. 𝑃1,2 locally
compute a share of 𝑐′ = [𝑎 + 𝑥0]𝐴 . 𝑃2 sends𝑚2 = 𝑎 + 𝑥0 ⊕ 𝑟1,2,3 to
𝑃0. 𝑃0 and 𝑃2 compare their views of𝑚2. The parties then define
their shares as shown in figure 17. The parties proceed to compute
[𝑐𝑏 ] = [𝑏]𝑏 + [𝑐′]𝑏 using a Boolean adder.

Preprocessing:
(1) Sample random values using ΠSRNG:

𝑃0,1,3 : 𝑟0,1,3 𝑃1,2,3 : 𝑟1,2,3

(2) Communicate:

𝑃0 → 𝑃2 :𝑚0 = (−𝑥0 ) ⊕ 𝑟0,1,3

(3) Locally compute:

𝑃1 : 𝑦1 = 0 𝑃2 : 𝑦2 = 0 𝑃0 : 𝑦0 = 0 𝑃3 : 𝑣 = 𝑟1,2,3

𝑃1 : 𝑧′1 = 𝑟0,1,3 𝑃2 : 𝑧′2 =𝑚0 𝑃0,3 : 𝑧0 = (−𝑥0 ) 𝑃3 : 𝑤 = 0

Online:
(1) Communicate:

𝑃2 → 𝑃0 :𝑚2 = 𝑎0 ⊕ 𝑟1,2,3(2) Locally compute:

𝑃1,2 : 𝑏0 = 𝑎0 𝑃0 : 𝑏𝑢 =𝑚2 𝑃1,2 : 𝑐′0 = 0𝑃0 : 𝑐′𝑢 = 𝑧0

𝑃0,1,2,3 : [𝑐 ]𝐵 = [𝑏 ]𝐵 + [𝑐′ ]𝐵

(3) Compare views using ΠCV:

𝑃2, 𝑃3 :𝑚0 𝑃0, 𝑃1 :𝑚2

Protocol ΠA2B,4𝑃𝐶 ( [a]A ) → [𝑐 ]𝐵

Figure 15: 4-PC Arithmetic to Binary Conversion

B.3 Bit to Arithmetic
To promote a shared bit [𝑎]𝐵 = 𝑎0 ⊕ 𝑥0 in the boolean domain to a
shared bit [𝑐]𝐴 = 𝑐0 + 𝑧0 in the arithmetic domain, the parties first
locally construct an 𝑋𝑂𝑅-sharing of [𝑎]𝐴 and [𝑏]𝐴 with [𝑐]𝐴 =

[𝑎]𝐴 ⊕ [𝑏]𝐴 in the arithmetic domain. Then, they perform a private
𝑋𝑂𝑅 of the resulting shares in the arithmetic domain. Note that
𝑐0 ⊕ 𝑧0 = 𝑐0 + 𝑧0 − 2𝑐0𝑧0.

B.3.1 3-PC. Each party first obtains a share of 𝑏 = [𝑥0]𝐴 . 𝑃0,1
sample 𝑟0,1 and 𝑃0 sends𝑚0 = 𝑥0 + 𝑟0,1 to 𝑃2 in the preprocessing
phase. The parties then define their shares of 𝑏 as shown in figure
16. All parties locally compute a share of 𝑐′ = [𝑎⊕𝑥0]𝐴 as shown in
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figure 17. By computing an𝑋𝑂𝑅 of [𝑏]𝐴 and [𝑐′]𝐴 in the arithmetic
domain, the parties obtain an arithmetic share of 𝑎.

Preprocessing:
(1) Sample random values using ΠSRNG:

𝑃0,1 : 𝑟0,1

(2) Communicate:

𝑃0 → 𝑃2 :𝑚0 = 𝑥0 + 𝑟0,1

(3) Locally compute:

𝑃0,1 : 𝑦1 = 0 𝑃0,2 : 𝑦2 = 0 𝑃0,1 : 𝑧′1 = 𝑟0,1 𝑧′2 = −𝑚0

Online:
(1) Locally compute:

𝑃1 : 𝑏2 = 𝑎2 ⊕ 𝑥1 𝑃2 : 𝑏1 = 𝑎1 ⊕ 𝑥2 𝑃1 : 𝑐′2 = −𝑟0, 1 𝑃2 : 𝑐′1 =𝑚0

𝑃0,1,2,3 : [𝑐 ]𝐴 = [𝑏 ]𝐴 + [𝑐′ ]𝐴 − 2[𝑏 ]𝐴 [𝑐′ ]𝐴

Protocol ΠBit2A,3𝑃𝐶 ( [a]B ) → [𝐶 ]𝐴

Figure 16: 3-PC Bit to Arithmetic

4-PC. Each party first obtains a share of 𝑏 = [𝑥0]𝐴 . 𝑃0,1,3 sample
𝑟0,1,3 and 𝑃0 sends𝑚0 = 𝑥0 + 𝑟0,1,3 to 𝑃2 in the preprocessing phase.
𝑃3 compares its view of𝑚0 with 𝑃2. The parties then define their
shares of 𝑏 as shown in figure 17. 𝑃1,2 locally compute a share of
𝑐′ = [𝑎 ⊕ 𝑥0]𝐴 . 𝑃2 sends 𝑚2 = 𝑎 ⊕ 𝑥0 + 𝑟1,2,3 to 𝑃0. 𝑃0 and 𝑃2
compare their views of𝑚2. The parties then define their shares of
𝑐 as shown in figure 17. By computing an 𝑋𝑂𝑅 of [𝑏]𝐴 and [𝑐]𝐴 in
the arithmetic domain, the parties obtain an arithmetic share of 𝑎.

Preprocessing:
(1) Sample random values using ΠSRNG:

𝑃0,1,3 : 𝑟0,1,3 𝑃1,2,3 : 𝑟1,2,3

(2) Communicate:

𝑃0 → 𝑃2 :𝑚0 = 𝑥0 + 𝑟0,1,3

(3) Locally compute:

𝑃1 : 𝑦1 = 0 𝑃2 : 𝑦2 = 0 𝑃0 : 𝑦0 = 0 𝑃3 : 𝑣 = 𝑟1,2,3

𝑃1 : 𝑧′1 = 𝑟0,1,3 𝑃2 : 𝑧′2 = −𝑚0 𝑃0,3 : 𝑧′0 = −𝑥0 𝑃3 : 𝑤′ = 0

Online:
(1) Communicate:

𝑃2 → 𝑃0 :𝑚2 = 𝑎0 + 𝑟1,2,3(2) Locally compute:

𝑃1,2 : 𝑏0 = 𝑎0 𝑃0 : 𝑏𝑢 =𝑚2 𝑃1,2 : 𝑐′0 = 0𝑃0 : 𝑐𝑢 = 𝑥0

(3) Compare views using ΠCV:

𝑃2, 𝑃3 :𝑚0 𝑃0, 𝑃1 :𝑚2

𝑃0,1,2,3 : [𝑐 ]𝐴 = [𝑏 ]𝐴 + [𝑐′ ]𝐴 − 2[𝑏 ]𝐴 [𝑐′ ]𝐴

Protocol ΠBit2A,4𝑃𝐶 ( [a]A ) → [𝑐 ]𝐵

Figure 17: 4-PC Bit to Arithmetic

C RAM UTILIZATION
Our implementation provides the option to perform the preprocess-
ing phase within the online phase. This has the advantage that a
party does not need to receive all offline material at once but can do
so in chunks as it evaluates the circuit. Also, this processing model
interleaves the communication and computation of the preprocess-
ing and the online phase, which leads to faster total runtimes than
executing both phases sequentially. In our AES benchmark, we
evaluate more than 90 million AES blocks and measure the peak
RAM utilization of each node. Table 7 shows the measurement
results. As expected, the RAM utilization increases when using a
separate preprocessing phase, as all offline material is located in
memory when the online phase starts. Also, the protocols not using
preprocessing [2, 11] show better RAM utilization as the parties
evaluate the circuit synchronously and do not buffer as many mes-
sages. Nevertheless, we see the advantage of our 4-PC protocol,
which stores fewer shares per party than related work.

Table 7: Peak RAM Utilization in MB

Category Protocols RAM RAM (Off→ On)

3-PC
Replicated 636 -
Astra 1880 2249
Ours 1259 2251

4-PC
Fantastic Four 1853 -
Tetrad 2980 3746
Ours 1562 4258

TTP Trusted Third Party 316 -
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