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Abstract. SCALES (Small Clients And Larger Ephemeral Servers)
model is a recently proposed model for MPC (Acharya et al., TCC 2022).
While the SCALES model offers several attractive features for practical
large-scale MPC, the result of Acharya et al. only offered semi-honest
secure protocols in this model.
We present a new efficient SCALES protocol secure against malicious ad-
versaries, for general Boolean circuits. We start with the base construction
of Acharya et al. and design and use a suite of carefully defined building
blocks that may be of independent interest. The resulting protocol is
UC-secure without honest majority, with a CRS and bulletin-board as
setups, and allows publicly identifying deviations from correct execution.
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1 Introduction

Secure Multi-Party Computation (MPC) has been steadily transitioning from
theory to practice, especially in settings involving two or a small number of parties.
However, making MPC practical for large scale tasks, possibly involving a large
number of input providers, remains an outstanding challenge. Over the last few
years, the question of practical large scale MPC has led to several approaches and
ideas [BGG+20,GHK+21,GHM+21,GMPS21,CGG+21,RS22,AHKP22,KRY22,
BDO23].

This work is motivated by one of the more recent proposals, called SCALES
[AHKP22], which offers several attractive features for practical large scale MPC.
Unfortunately, the results of [AHKP22] were primarily confined to the semi-
honest setting, which is not sufficient in many real-life scenarios. In this work,
we propose a new protocol in the SCALES model with security against active
corruption. In fact, our protocol also allows publicly identifying corrupt behavior,
offering the best possible level of security when a majority of the participants
can be corrupt.



Before proceeding further, we discuss some of the key features of SCALES that
makes it potentially the model of choice in many practical situations. SCALES is
an acronym for “Small Clients And Larger Ephemeral Servers,” which captures
two of the main features of the model.

– Small Clients refers to the fact that the complexity of each party with an
input is proportional only to its own input, and does not depend on the
computational complexity of the function being securely evaluated, or even
the number of other input clients. This is important in applications where
a large number of clients supply their inputs to a task (e.g., computing
statistics, or data models).

– Ephemeral Servers refers to the fact that (apart from the small clients) the
protocol relies only on servers which are stateless, and which can join the
protocol at any point; at that point they send out a single message and exit.
The complexity of each server can be linear in the complexity of the function
being securely evaluated.5

– No Private Communication, No Secret Committees. In SCALES all commu-
nication is over a public bulletin board. Also, there are no secret committees
available at the start of the protocol (which could have enabled primitives
like target-anonymous channels).

– No Honest Majority. In practice, honest majority assumption presents several
difficulties. For one, sophisticated (rational) players may not carry out expen-
sive computations unless they are likely to be caught (as evidenced by the
concerns that have emerged in the context of blockchain miners). Secondly,
for an honest majority in the universe of players to be reflected (allowing for
a margin) in a committee with all but negligible probability, the committee
will have to be quite large. As such, SCALES model requires only one honest
server participating in (each phase of) the computation.

– Constant Number of Rounds. Another attractive feature of a SCALES protocol
is that the number of rounds in the protocol is constant – i.e., independent
of the complexity of the function being evaluated. It is solely determined by
the number of servers who participate, which is in turn determined by the
need to have at least one honest server participating in the computation.

Ephemeral Servers and Non-Ephemeral Clients. The motivation for ephemeral
servers – originally expounded in the development of the YOSO (You Only
Speak Once) model [GHK+21] – is security in the face of adaptive corruption.
Specifically, if all the (relatively small number of) servers in an MPC protocol
execution become known to the adversary, it could adaptively target and corrupt
all of them, making any form of security impossible. An innovative solution
proposed in the YOSO model is to use ephemeral parties [GHK+21]. The idea is
that these parties will remain publicly unknown – and protected from targeted
corruption – until they have “spoken;” however, by the time they have spoken,

5 An alternate expansion of SCALES could be “Small Clients and Linear-complexity
Ephemeral Servers,” to emphasize the fact that the servers are not arbitrarily complex.
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they would have erased their state, and are no longer attractive targets for
adaptive corruption.

Unfortunately, requiring that all parties be ephemeral leads to major efficiency
bottlenecks. In particular, protocols in the YOSO model rely on several instances
of expensive target anonymous channels for every round of communication.
SCALES model introduced a practically meaningful relaxation of the YOSO
requirement, to allow all the communication in the protocol to be directly over
a simple bulletin board. For this, SCALES distinguishes MPC servers from
MPC clients (input providers). Typically, from an application’s point of view,
the clients are not anonymous, and are already exposed to targeted corruption
attempts. Hence the SCALES model does not require the clients to speak only
once. However, it will be required that corrupting a client affects only its own
input, and does not compromise the security of the other clients.

With this relaxation, protocols that are fundamentally different from (and
much faster than) YOSO protocols can be used to achieve SCALES. In particular,
[AHKP22] constructs concretely efficient semi-honest secure protocols based on
rerandomizable circuit garbling.

SCALES against malicious adversaries. While [AHKP22] points out that in
principle, generic NIZK can be used to convert their garbled circuits based
SCALES protocol to be secure against active corruption, this is not concretely
efficient and is far from practical due to the complexity of the statements to be
proven. On the other hand, it is not evident how to adapt techniques available
for using garbled circuits against active corruption (without using generic NIZK)
can be exploited, as they require more interaction than is allowed in the SCALES
model.

To overcome this challenge, our starting point is the observation that the
garbled circuits used in [AHKP22] are “rerandomizable” and we can exploit this
to obtain a fairly efficient 3-round ZK proof (in the CRS model) for correctness
of garbling (and rerandomizing). We go on to develop techniques for efficiently
incorporating this protocol into a SCALES protocol. In the resulting protocol,
not only do we not require an honest majority, but also we ensure that any
corruption by a server is publicly detectable. Since this allows a larger application
to impose penalties to those who deviate from the protocol, it is arguably a
pragmatic approach to guaranteeing output delivery, instead of assuming an
honest majority.

1.1 Summary of Our Contributions and Protocol Highlights

Our main contribution is the following:

We present the first maliciously secure protocol with ephemeral servers
and SCALES-like efficiency, that is resilient to adaptive corruptions of a
majority of the computing parties. Further, in this protocol, any deviation
from correct execution can be publicly identified.
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Here by SCALES-like efficiency, we mean that the total communication and
computation in the protocol scales linearly with size of the computation, while
that of each input provider scales only proportional to its own input.

We obtain our result in the SCALES model, which was originally introduced
in [AHKP22], and is extended to the setting of active corruption here. The
protocol is UC-secure with only a CRS and a bulletin-board as setups, under a
fairly general adaptive corruption model. (See later for more details.) As part
of achieving this result, we build several components which are potentially of
independent interest:

1. A new ZK proof of knowledge for proving the correctness of garbling schemes
based on rerandomizable garbling schemes.

2. New primitives – updatable OT, verifiable updatable OT, and distributed
committed-index OT – and efficient instantiations for them.

Zero-Knowledge Proof for Correctness of Garbling. As mentioned above, as a
contribution of independent interest, we construct an efficient zero-knowledge
proof of knowledge for proving correctness of garbling a circuit and the use
of the corresponding input wire labels as sender inputs to OT. This can be
used in a 2PC setting to get a general garbling-based protocol with a poly-
logarithmic multiplicative overhead in the security parameter over the semi-
honest communication and computation complexity. It prevents selective abort
attacks and implicitly removes the need for the garbler and evaluator input
consistency checks required in existing cut-and-choose techniques for maliciously
secure garbling. We construct this ZK proof from a Σ-protocol that uses the
(rerandomizable) garbling scheme in a black-box manner. If desired, this protocol
can be converted into an NIZK protocol in the random oracle model. (We remind
the reader that our SCALES protocol does not rely on random oracles.)

Protocol Structure. Our malicious SCALES protocol is in the CRS model and
operates over a bulletin board, in three phases: function computation phase,
verification phase, and decoding phase. In each phase, each client posts an
initial message and then, one by one, each ephemeral server participating in that
phase posts a single message. While all the involved servers are ephemeral, each
client speaks thrice. Our protocol computes arbitrary functions with security
with abort in the presence of an adversary that can adaptively corrupt all-but-
one of the clients and all-but-one of the servers in each phase. Further, as all
communication in SCALES is over the bulletin-board, the correctness of the
complete transcript is publicly verifiable, and any deviation publicly identified.
While technically guaranteed output delivery is not achievable in our all-but-one
corruption setting, this identification guarantee is practically almost as good, since
penalties can be levied on parties found deviating. The overall cost this protocol
incurs, over the semi-honest SCALES protocol of [AHKP22], is a polylogarithmic
multiplicative overhead in the security parameter in both computation and
communication. Further, the soundness parameter is tunable, so that with a
constant soundness error, it can yield a covertly secure SCALES protocol with a
constant multiplicative communication overhead over the semi-honest protocol.
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1.2 Related Work

Related to our work are both YOSO and SCALES models, as well as other MPC
schemes with specialized communication patterns.

SCALES MPC. The most relevant prior work is SCALES [AHKP22]. We build
on their foundations and lift their semi-honest protocol into the malicious setting.
Doing so efficiently is technically challenging. Clearly, simply applying a generic
NIZK proof to every message works and preserves the SCALES communication
pattern. However, it is also concretely extremely inefficient.

On the other hand, standard efficient malicious-GC techniques, such as cut-
and-choose and authenticated garbling, seem to fail to work in our constrained
setting for several reasons. Firstly, standard GC protocols are designed for
2PC. Known multi-party extensions, such as BMR [BMR90], require multiple
rounds between parties, violating SCALES requirements. Similarly, cut-and-
choose too does not naturally fit with the SCALES-like communication pattern:
communication-efficient cut-and-choose [Lin13,HKE13] requires several rounds
of interaction to achieve 2−s soundness error by communicating s GCs. We show
that SCALES malicious security could be achieved in the style of cut-and-choose,
using the distributed committed OT primitive we introduce (see Section 1.4),
albeit with a lower efficiency (achieving only 2−0.31s soundness error using s
GCs).

Our main protocol avoids this penalty by using an altogether different ap-
proach that exploits the rerandomizability of the underlying GCs (achieving 2−s

soundness error with s GCs).

YOSO. Recall that one of our goals is to outsource MPC to a relatively small
number of servers, while remaining secure against an active and adaptive adversary
who can potentially corrupt every server that it finds out to be part of the protocol.
This can be achieved by the recently introduced YOSO framework [GHK+21],
where the parties only speak once, and the computation is evolved using a
sequence of elected committees.

However, [GHK+21] and related works incur impractically large costs on
various fronts. For one, these protocols use several large (hidden) committees,
with expensive “encryption to the future” channels, where each committee needs
to have an honest majority. Supporting encryption to the future turns out to
be quite expensive. Secondly, for security against active corruption, these works
use generic NIZK protocols in proportion to the size of the original computation.
Thirdly, these protocols have a round complexity proportional to the depth of the
computation, inherited from the underlying protocols and this is a major overhead
as each round (involving a committee selection) is highly expensive. 6 Finally,
6 While [KRY22] offers YOSO protocols which are constant round, these are meant

to be theoretical feasibility results (no concrete cost analysis is available) that build
on expensive base protocols, and further use their next message functions in a
non-black-box manner.
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these protocols suffer inherent inefficiencies when Boolean logic is involved, say,
in the form of conditionals (as opposed to purely arithmetic computation). The
SCALES protocol in this work avoids each of these issues. This is discussed in
more detail in Section 1.3.

Alternate MPC Models. Goyal et al. [GMPS21] explore feasibility of blockchain-
assisted MPC: input parties put the input and garblings of an MPC protocol’s
next-message function in conditional storage and retrieval systems (CSaRs).
These are posted on the blockchain that executes this MPC protocol by pro-
cessing the garbled next-message functions. It ensures no interaction between
the parties, at the cost of having them perform protocol-size-dependent compu-
tation and engaging a powerful (and expensive) blockchain setup. Two-round
MPC [GGHR14, GS18, BJKL21, BGSZ22] involves input parties posting two
rounds of messages to a bulletin board, based on which the output can be pub-
licly computed. However, the input parties incur communication and computation
costs proportional to the circuit size of an underlying MPC protocol. The Fluid
MPC model [CGG+21] allows parties to dynamically join and leave the protocol
computation; however, the identities of future parties joining the protocol need
to be known in advance. It also relies on the assumption that the adversary can
corrupt only a minority of the servers in each committee. A recent work [RS22]
extends Fluid MPC to the dishonest majority setting, though it still does not
meet the YOSO requirement.

Other Techniques for Malicious Security. Our custom zero-knowledge proof,
exploiting the explainability of RGS and UOT, avoids several disadvantages of
alternate generic approaches. There are a few significant approaches to ensuring
correctness of garbling that we need to compare with: using zero-knowledge
proofs [HIMV19,ASH+20], cut-and-choose techniques [LP09], and authenticated
garbling [YWZ20, IKO+11].

Firstly, using a generic NIZK proof system comes with the disadvantage that
it is non-black-box in the underlying primitives and incurs a high computation
overhead. A circuit for verifying the statement that a GC is a correct garbling of
a function (or a correct rerandomization of another GC) and that the inputs to
UOT are consistent with the GC, is much larger than the GC itself. In particular,
this circuit incorporates the underlying cryptographic primitives. For example,
the only known instantiation of RGS from [AHKP22] uses [BHHO08] as the
underlying encryption scheme, and involves O(κ2) group exponentiations per gate.
Further, this circuit needs to be encoded as low-level algebraic circuits, R1CS
programs, etc., before the proofs are created, resulting in a prover complexity that
is super-linear in the GC size and concretely very high. Even in the Random Oracle
(RO) model (which we do not resort to), wherein ZK-SNARKs can virtually
eliminate the communication and verifier complexity, the high prover complexity
remains. In contrast, our proof operates in the standard model (without RO) and
is black-box in the RGS, and the computational (and communication) overhead
in the final SCALES protocol compared to the semi-honest version in [AHKP22]
is simply a multiplicative factor of s, for 2−s security error.
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Another alternative, which is black-box in the underlying garbling scheme is
to use cut-and-choose techniques. Although cut-and-choose is black-box in the
underlying cryptographic primitive, they are not directly compatible with the
SCALES model. This could be addressed using the DCOT primitive we develop,
in the same way we convert our Σ protocols into the SCALES model. Even so,
they incur a multiplicative 3.2s factor for achieving 2−s soundness error while
our techniques are simpler and incur only a factor of s for the same soundness.

Finally, authenticated garbling techniques cannot be used in SCALES proto-
cols due to the need for multiple rounds of communication.

1.3 Comparison with YOSO Protocols

While YOSO and SCALES models share the key feature of ephemeral servers,
they remain incomparable to each other on certain other aspects. While YOSO
protocols allow even input clients to speak only once, in many practical settings,
SCALES protocols can offer much better efficiency and practicality. We elaborate
on this below.

Target Anonymous Channels. Typical protocols in the YOSO model involve secret
committees, and require expensive point-to-point target anonymous channels
for every round of communication, between every pair of “current” committee
member and a “future” committee member. This is exacerbated by the fact that
the most efficient YOSO protocols have round complexity proportional to the
depth of the circuits. Further, this affects the flexibility of these protocols by
requiring that the target anonymous channels are setup sufficiently in advance.

SCALES protocols are fundamentally different in that they do not involve
private communication to the servers to be selected in the future, and there is
no need to setup expensive target anonymous channels. Indeed, the SCALES
model allows servers to join the protocol truly on the fly, without any parties
being aware of a server’s existence prior to it speaking.

Rounds as a resource. A significant advantage of our work compared to the results
in the YOSO model is the round complexity and the corresponding concrete
costs. While one can instantiate YOSO with constant-round protocols (like the
BMR protocol), that incurs heavy computational costs due to generic ZK proofs;
indeed, [KRY22] proposes several such protocols as a proof of concept, focusing on
providing end-to-end proofs. But these protocols build on expensive base protocols,
and further use their next message functions in a non-black-box manner. On
the other hand, the more practical instantiations of YOSO which use underlying
protocols whose round complexity scales with the function’s multiplicative depth
(GMW, CDN, etc.) do allow for (relatively) efficient arithmetic computations,
but incurs round costs.

In the setting of YOSO and SCALES, where players self-select and communi-
cate over a bulletin board (blockchain), the round latency is daunting, ranging
from several seconds to minutes. To highlight the relative cost of latency even in
high-speed networks, we point out that recent experiments reported in [YPHK23]
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show ≈ 1600× improvement by switching from a GMW-based multi-round solu-
tion to a constant-round GC-based protocol, with the primary factor behind the
speed up being network latency. Instantiating YOSO with multi-round protocols
will incur similar penalties.

Computational costs. In terms of total computational costs, for a Boolean circuit
of size s and a security parameter κ executed by n servers, our total computational
cost is O(nsκ3). In YOSOCDN, with a YOSO committee size N (a function of
the security parameter), each role requires O(N2) computation, plus a generic
non-black-box NIZK for proving correctness of various operations (decryption,
encryption, threshold key reconstruction, resharing, and partial decryption) in a
Paillier encryption scheme.

Boolean vs. Arithmetic Computation. Our protocol is geared towards secure eval-
uation of boolean circuits, rather than arithmetic computation. While arithmetic
circuits can offer better efficiency in some applications, this is not generically the
case. This is because control flow, such as branching, is conditioned on Boolean
values, conversion to which is expensive when an arithmetic circuit is used. Pro-
grams where arithmetic operations are interspersed with conditionals (e.g., GCD
computation and, more generally, programs best executed as CPU-emulation) are
more efficiently represented as boolean circuits rather than arithmetic circuits,
as has also been observed in the context of recent high-performing interactive
ZK systems [YHKD22].

Guaranteed Output Delivery vs. Identifiability. Many of the YOSO protocols
support guaranteed output delivery, whereas our SCALES protocol settles for
identifiability of corrupt parties. However, a closer look reveals that the SCALES
approach is arguably more practical. Firstly, guaranteed output delivery requires
an honest majority assumption, which not only limits its applicability, but
also, even when it applies, severely affects efficiency compared to the SCALES
requirement that only one server needs to be honest in each phase.7 Secondly,
when MPC is deployed in a larger setting, often identifiability can already be
used to incentivize honest behavior (e.g., via smart contracts that penalize parties
identified as corrupt) and thereby guarantee output delivery.

1.4 Technical Overview

We outline the ideas and building blocks used for our maliciously secure SCALES
protocol. Similarly to the semi-honest protocol of [AHKP22], our construction
is based on rerandomizable garbling. To efficiently lift semi-honest to malicious
security, we design zero-knowledge (ZK)-friendly protocols while preserving
the SCALES communication pattern. We structure the overview as follows
7 E.g., when 1/4 of the pool is corrupted, selecting 20 parties at random from the pool

drives down the probability of not having an honest party to 2−40; even with over a
100 parties, the probability of not having an honest majority stays above 2−30.
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(cf Figure 1): we review our starting point, semi-honest construction [AHKP22].
We then highlight several lower-level obstacles to be resolved for getting malicious
security. For each, we introduce a corresponding functionality, discuss technical
issues, and sketch our approach to efficient instantiation. Finally, we discuss how
to put it all together.

SCALES
Definition 2

Theorem 3

Functionality FRGS

Figure 9

Theorem 1

Functionality FVUOT

Figure 10

Theorem 2

Projective RGS
Definition 3

Ephemeral Prover ZK
Definition 13

Lemma 8

Updatable OT
(See Figure 2)

Distributed Committed-Index OT
(See Figure 2)

Σ-Protocols for RGS
(See Figure 2)

Fig. 1 Overview of our main construction. Dotted box indicates a primitive from
prior work. We introduce and build the three lower boxes: Updatable OT, Distributed
Committed-Index OT, and Σ-protocols for correct function encoding. This Figure 1 is
the roadmap for obtaining our maliciously-secure SCALES protocol of Figure 26.

The FRGS Abstraction. Our starting point is the semi-honest SCALES protocol
of [AHKP22] which uses Rerandomizable Garbling Schemes (RGS). We introduce
a functionality FRGS (Figure 9) that captures the core of this protocol, and then
UC-securely implement it (as opposed to only with semi-honest security).

We briefly recall the structure of the protocol in [AHKP22]: A server creates
a garbled circuit (GC), which is then rerandomized by a sequence of servers, one
at a time. The final evaluation is carried out on the last GC. The input labels of
this last GC are published by the input clients: before the GCs are constructed,
they commit to their inputs via the first message of a 2-round OT protocol, and
using the second-round messages in the OT protocol posted along with each
rerandomized GC, each client can keep track of the input labels of the latest GC.
FRGS carries out the generation and rerandomization of the garbled circuits,

and publishes the correct labels of the final GC. It is a reactive functionality,
which first receives the function inputs from the clients. Then it accepts the
randomness used to create a GC of f from the first server, constructs this GC,
and makes it available to all parties. FRGS also gives each client the active label
for its own input. Next, it accepts randomness from each successive server to

9



rerandomize the prior GC, makes the new GC available to all parties, and each
client receives the active labels for its input. After the final rerandomization, all
active labels corresponding to the final garbling are given to all parties.

To realize the FRGS functionality with malicious security, we will need to
enhance the RGS-based construction of [AHKP22] with a zero-knowledge proof
facility compatible with the SCALES communication pattern.

Distributed Committed-Index OT
Figure 16

Committed-Index OT
Figure 18

Rerandomizable
2-round OT

Lemma 9
Implicit in [PVW08]

Updatable OT
Figure 12

Explainable UOT
Definition 10

Projective RGS
Definition 3

Explainable RGS
Definition 9

Σ-Protocols for RGS

Lemma 4,5

Lemma 2

Lemma 1
Implicit in
[GHV10]

Lemma 6

Lemma 7 Lemma 3

Fig. 2 Overview of constructing the building blocks. Dotted boxes indicate primitives
from prior work. This shows the roadmap for obtaining our 3 main building-blocks
shown in Figure 1 from Projective RGS and a 2-round OT protocol.

Updatable Oblivious Transfer (UOT). A key ingredient in implementing the
FRGS functionality is a variant of the OT functionality called FUOT, which involves
one receiver, one sender and multiple updaters. This functionality implements
a sequence of OTs with the same receiver and the same choice bit. While the
sender gets to input a set of strings (s00, s

0
1) to the functionality (just like in OT),

and the jth updater’s input to OT is defined as (sj0, s
j
1) = (σj(s

j−1
0 ), σj(s

j−1
1 )),

where σj is an update function that the updater can pick from a suitably defined
function class (which for us will be related to the rerandomization admitted
by the RGS). The receiver learns sjb for all j, where b is its input. Further, to
facilitate public evaluation in the overall protocol, FUOT publishes the last of
these strings, sdb , where d is the total number of updates.

A UOT protocol is a UC-secure realization of FUOT with additional structural
restrictions to fit into the SCALES model. In Section 5.1, we present such a
protocol in the FCRS-hybrid based on the 2-round OT protocol of [PVW08].
This resembles the construction of ‘rerandomizable OT’ in [GHV10]. Further,
to implement the final step of publishing the last received string (denoted as sdb
above), we rely on a NIZK protocol. As the statement proven using this NIZK
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protocol is small (depends only on one instance of the OT protocol per string
received), we rely on a generic NIZK PoK protocol in the FCRS-hybrid [GHV10].

Verifiable Updatable OT (VUOT). To ensure correct garbling/rerandomizing
and that the sender’s and updaters’ inputs to the UOT protocol are derived
during the garbling and rerandomizing process, we abstract verifiable updatable
oblivious transfer as a functionality FVUOT. This forms a convenient abstraction
from which the FRGS functionality can be readily realized.

The FVUOT functionality is parameterized by two relations and it internally
incorporates a UOT functionality. The relations tie the inputs of the sender
or the updater with a public piece of information that is maintained across
multiple rounds of updates. In our case, this will be a rerandomizable garbled
circuit (GC). The first relation will be used to check if the function is garbled
correctly and if the sender’s inputs in UOT are the input labels formed in this
process; the second relation will be used to check if the GC instance is a correct
rerandomization of an existing garbling and if the updater’s UOT inputs are
indeed those transformations created in this process. FVUOT executes as follows:
For a function f with m input bits, first each client (receiver in FVUOT) sends its
input bits to the functionality. Then the first encoder (sender in FVUOT) garbles
f , and sends this garbling, the randomness used to garble, and the complete set
of labels for all input wires to the functionality. The functionality also uses this
information to verify the first relation; then each client receives its active label
and the garbling is publicly posted. For each successive rerandomization of the
GC, FVUOT is used in a similar fashion, but with the second relation verifying
that updated OT secrets are consistent with the rerandomization of the GC.

In addition to the UOT protocol, realizing FVUOT would require a mechanism
to verify the validity of the two internal relations. This needs to be done in
a way that preserves the SCALES communication pattern: having a stateless
prover “speak once.” We abstract this mechanism as an Ephemeral Prover Zero-
Knowledge (EPZK) proof protocol and discuss its building blocks below.

Sigma Protocols for RGS. As a starting point, we construct efficient Σ-
protocols for proving that garbling and rerandomizing in RGS were performed
correctly. Our basic idea for proving garbling correctness is as follows (proving
rerandomization is similar): the Prover (RGS garbler) generates and publishes the
garbling F . Simultaneously, it rerandomizes F and publishes this regarbling Fproof .
Based on a Boolean challenge from the verifier, it opens randomness showing
either correct regarbling F 7→ Fproof , or an explanation of Fproof as a correct
garbling of f directly from some randomness. Crucially, the original garbling
F remains unopened and suitable for secure evaluation. Soundness is based on
the fact that if F is not correctly constructed, the prover cannot succeed in
both the cases and will be caught with probability 1/2 (this can be amplified
by repetition). The actual proof additionally needs to assure correctness of the
UOT execution with inputs that are consistent with the (re)garbling. Details can
be found in Section 5.2.
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We introduce explainability as a property of rerandomizable objects and define
a special class of RGS (including the construction in [AHKP22]) that satisfies
this. Informally, explainability is a property by which a rerandomized garbling of
a function f can be explained as a fresh garbling of f . This is done by defining
an algorithm that takes both the garbling and rerandomizing randomnesses
and composes them to form randomness that is indistinguishable from fresh
garbling randomness. An explainable UOT protocol is described similarly: for an
updater’s message in a UOT protocol, the sender’s and updater’s randomness
can be composed to form randomness that explains this as a fresh message by a
sender using the receiver’s first message and the rerandomized labels as inputs.
Details of both these definitions can be found in Section 5.2. These facilitate the
construction of the Σ-protocols as outlined above.

Why not a generic proof? Our proof, exploiting the explainability of RGS and
UOT, avoids several disadvantages of alternate generic approaches – like using
generic zero-knowledge proofs [HIMV19,ASH+20], cut-and-choose techniques
[LP09], and authenticated garbling [YWZ20, IKO+11]. See Section 1.2 for a
detailed discussion.

Ephemeral Prover Zero-Knowledge Protocols. The Σ protocols above
cannot be directly used in a SCALES protocol: they involve the prover (in our
case, a server) speaking twice, retaining state in between. What we require instead
is a proof system in which the prover speaks only once. This does not need to be
a NIZK, as the verifier is allowed to send a message prior to the prover’s message.
We call such a proof system an Ephemeral Prover ZK (EPZK) proof system.

Following a similar outline as that in [JKKR17], we observe that we can
eliminate the first round message in a Σ protocol, using a 2-round UC-secure OT
protocol, as follows: Recall that in a Σ protocol, the prover sends a message a, the
verifier responds with a random challenge b ∈ {0, 1}, and then the prover replies
with a message c. After computing a, the prover can compute two responses, c0
and c1, so that cb is the response on challenge b. In the new protocol, the verifier
starts by sending the first OT message playing the role of a receiver with choice
bit b. The prover computes (a, c0, c1) and responds with (a,m) where m is the
second message in the OT protocol corresponding to sender’s inputs (c0, c1). The
verifier can recover cb from OT, and complete the verification of the Σ protocol.

Using a 2-round UC-secure OT protocol (in the CRS model) above, and
running several (poly-logarithmic in the security parameter many) parallel execu-
tions of this protocol, we obtain a UC-secure protocol for the ZK functionality, as
can be modularly analyzed by considering the protocol in the OT-hybrid model.

While the above yields an EPZK proof system, we will in fact be interested
in ZK proofs given by an a priori unknown number of provers, and involving
multiple verifying clients (namely the input clients) so that unless all the clients
are corrupt, the functionality guarantees the correctness of all the claims being
proved. Also, we will avoid the need for separate proofs given by each server to
each client, using a version of OT that we discuss next.
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Distributed Committed-Index OT (DCOT). As mentioned, a Σ protocol
can be turned into a UC-secure ZK proof in the OT-hybrid model, and further by
composing with a 2-round OT protocol, we obtain a 2-round ZK proof protocol.
However, since the SCALES model does not insist that the number of servers
(who will need to give proofs to the clients) is a priori fixed, we need an OT
functionality in which many senders can take part for the same choice bit sent by
a receiver. Unlike in OT, this functionality makes the choice bit and the chosen
string publicly available at the end. This is captured as “Committed Index OT,”
and can be readily implemented by having all the senders use the same first
message from the receiver, in a 2-round OT protocol (see Section 5.3).

Another significant efficiency issue stems from the need to give the proof to
multiple verifiers. While repeating the proof separately works, it results in one
of the most expensive parts of the overall protocol being replicated by a factor
equal to the number of input parties. To avoid this, we define and implement
a new functionality called DCOT which allows for a single proof that remains
sound as long as at least one of the verifying clients is honest.

The DCOT functionality is similar to COT, except that there are multiple
receivers and the choice bit is uniformly random even if an adversary corrupts
all-but-one of the receivers. We give a protocol for DCOT in the COT-hybrid
model, which, when composed with a 2-round COT protocol, yields a 2-round
protocol. In this protocol, each chooser Ci samples a bit bi as its input to a
session of the COT protocol (with all the senders). Then each sender samples
two random masks k0 and k1 and publishes (s0 ⊕ k0, s1 ⊕ k1) where (s0, s1) is
its input. Let ∆ = k0 ⊕ k1. Corresponding to each of the m choosers Ci, it
samples a random string Li

0 under the constraint that the XOR of these strings
is k0. It sets each string Li

1 = Li
0 ⊕ ∆. Note that for b =

⊕
i∈[m] bi, it holds

that kb =
⊕

i∈[m] L
i
bi

. Then the sender uses (Li
0, L

i
1) as its inputs for the COT

instance with the chooser Ci, for each of the m choosers Ci. The chosen strings
Li
bi

are made publicly available, from which kb can be publicly computed.

Maliciously Secure SCALES Protocol. Tracing back the above discussion,
the Σ protocols for RGS can be turned into EPZK protocols for the same
relations. This can then be used to obtain a UC-secure protocol for FVUOT, and
then for FRGS for evaluating any function, and this can then be used to obtain a
UC-secure SCALES protocol. In Figure 3, we summarize this protocol, omitting
the abstractions of FVUOT and FRGS (which are helpful for a modular proof). The
protocol has three phases with each requiring at least one honest participating
server. This protocol can also be relaxed to provide covert security by reducing
the number of parallel instances of the Σ-protocol executed in EPZK to one. We
refer the reader to Appendix C for details on the covertly secure protocol.

Maliciously Secure SCALES Protocol in the Random Oracle Model. A simpler
and more efficient SCALES protocol can be achieved in the Random Oracle Model
(ROM). This protocol requires only two client messages: one at the beginning
of the encoding phase and the decoding phase respectively. In the protocol in
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Maliciously Secure SCALES Protocol

1. Encoding Phase:
– Each client creates the first message of the UOT protocol as a receiver,

using its input bit as the choice bit. It also creates the first message
of the EPZK protocol. These are posted on the bulletin-board.

– The first encoder garbles an RGS for the function f . For each input
wire, it uses the two labels to create the senders’ message of the UOT
protocol. It creates the EPZK server message for proof of
correct garbling. The garbled circuit, the EPZK message, and
the set of UOT second messages are posted onto the bulletin-board.

– Every successive encoder reads the previous GC and UOT message set.
It rerandomizes the GC and updates the UOT messages so the labels
match the new garbling. It creates the EPZK server message for
proof of correct rerandomizing. The new garbled circuit, EPZK
message, and set of UOT messages are posted on the bulletin-board.

2. Verification Phase:
– Each client posts the second EPZK message.
– For multiple rounds, a server verifies the EPZK transcript

correctness and posts a bit indicating correct verification.
3. Decoding Phase:

– If all verifiers accept, each client decodes the last UOT message
and posts the final label on the bulletin-board. This is accompanied
by a CRS-based NIZK indicating honest decoding.

– For multiple rounds, a decoder reads and verifies each client’s last
message, uses the labels to evaluate the last GC, and posts the result.

– If all decoders post the same output, this is accepted by all parties.

Fig. 3 An Informal Description of a Maliciously Secure SCALES Protocol with three
phases – an encoding phase, a verification phase, and a decoding phase. Each phase
requires at least one honest participating server. The elements of the protocol that are
relevant to security against active corruption are shown bold and in color.

Figure 3, when all the participants have access to a public random oracle RO,
all encoder ZK-proofs in the EPZK protocol can be made NIZK proofs. This is
done by taking all the parallely invoked Σ-protocols for correct garbling (resp.
rerandomizing) for an encoder and applying the Fiat-Shamir transform on them
collectively. This eliminates the need for the DCOT protocol completely and
hence the clients’ involvement in EPZK. The protocol is summarized in Figure 4.

2 The SCALES Model

We describe the SCALES model and define a SCALES protocol family for a
function family F where the size of each function representation is parameterized
by k. The model involves servers, clients and a public append-only bulletin-board.
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Maliciously Secure SCALES Protocol in the ROM

1. Encoding Phase:
– Each client creates the UOT protocol first message as a receiver, using

its input bit as the choice bit and posts it on the bulletin-board.
– The first encoder garbles an RGS for the function f . For each input

wire, it uses the two labels to create the UOT protocol senders’ message.
It uses the RO to create the EPZK message (the NIZK proof)
for correct garbling. The GC, NIZK proof, and set of UOT second
messages are posted onto the bulletin-board.

– Every successive encoder reads the previous garbling and UOT message
set posted. It rerandomizes the GC and updates the UOT messages so
that the labels match the new garbling. It uses the RO to create
the NIZK proof for correct rerandomizing. The new GC, NIZK
proof, and set of UOT messages are posted on the bulletin-board.

2. Verification Phase:
– For multiple rounds, a server uses the RO to verify the NIZK

proof for all encoders and posts a bit.
3. Decoding Phase:

– If all verifiers accept, each client decodes the last UOT message and
posts the final label on the bulletin-board, along with an RO-based
NIZK for honest decoding.

– For multiple rounds, a decoder reads and verifies each client’s last
message, uses the labels to evaluate the last GC, and posts the result.

– If all decoders post the same output, this is accepted by all parties.

Fig. 4 An Informal Description of a Maliciously Secure SCALES Protocol in the
Random Oracle Model with three phases – an encoding phase, a verification phase,
and a decoding phase. Each phase requires at least one honest participating server.
The elements of the protocol that are relevant to security against active corruption are
shown bold and in color.

All the communication between the participating parties take place over this
bulletin-board.

Definition 1. Let F = {fk|k ∈ N} be a function family with members fk :
{0, 1}m(k) → {0, 1}l(k) that have circuit representation Ck. Let x = {xi}i∈[m]

be the function input. For c ∈ N, a protocol family {Πk|k ∈ N} is said to be a
c-phase SCALES protocol family for F if, for each k, the protocol Πk has the
following structure.

– Participants:
• Clients C = {Ci}i∈[m] where Ci has input bit xi.
• Ephemeral server pool S with constant fraction σ of honest servers.
• Bulletin-board B to which any party can write. Anything written onto B

is visible to all parties.
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– Communication Pattern: For each phase p ∈ [c], let sp be the number of
servers participating in computation in that phase. Each phase p has sp + 1
rounds where,

• In round 0, all clients Ci ∈ C simultaneously post a message mp
i onto B

• ∀ round j ∈ [sp], a randomly selected server Sp
j ∈ S reads B, silently

performs computation, erases its state, and posts a message mp
j onto B

– Complexity:

• Each client Ci ∈ C can perform computation proportional to a security
parameter κ and maxp∈[c](sp), but independent of |Ck|

• Each server Sp
j participating in Πk can perform O(|Ck|) = poly(k)

computation

In Definition 1 note that all participating servers are stateless and the number
of times a (stateful) client posts a message is a small constant c. The definition
remains silent about an additional privacy property of a SCALES protocol since
this would differ depending on the type of adversary being considered. Note that
the above definition is a compiler for the circuit representation of any function
into a SCALES protocol.

The SCALES protocol constructed in [AHKP22] is secure against semi-honest
adversaries and consisted of 2 phases. In the first phase, after each client has
posted a message, a set of s1 = d ephemeral servers {Ej}j∈[d] operated as
encoders to compute a garbled circuit. In the next phase, the clients’ message
provided the input labels corresponding to the final garbled circuit. Then, s2 = 1
server is tasked with evaluating the garbled circuit. In this protocol, security
holds when the semi-honest adversary corrupts all-but-one participating server
in the encoding phase and the decoding server. It can also corrupt, statically or
adaptively, up to all the input clients.

Maliciously Secure SCALES. In this work we present a SCALES protocol that
is secure in the presence of malicious adversaries. The protocol consists of 3
phases: the first phase consists of a client message followed by a set of ephemeral
server messages acting as encoders; the second phase consists of a client message
followed by a set of servers that take the role of verifiers; and the third phase
consists of the last client message followed by a set of decoders.

Definition 2. Let FB be the Bulletin-Board functionality (Figure 6) and FCRS

be a Common Reference String functionality (Figure 7). A SCALES protocol
family (Definition 1) {Πk|k ∈ N} for a function family {fk|k ∈ N} is said to be
a maliciously secure SCALES protocol family if, for each k ∈ N, Πk is
a UC-secure protocol for the functionality Ffk

SCALES (Figure 5) in the (FB,FCRS)-
hybrid against a malicious PPT adversary that is allowed all-but-one adaptive
corruption of clients, and, for each phase, all-but-one adaptive corruption with
erasures of participating servers.
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3 Preliminaries

We begin by recapping relevant definitions of objects from prior works. We
refer the reader to Appendix A for additional preliminaries. We denote by κ a
computational security parameter and s a statistical security parameter.

3.1 Rerandomizable Garbling Schemes

We re-state the definition of projective Rerandomizable Garbling Schemes [AHKP22].

Definition 3. A Projective Rerandomizable Garbling Scheme for function
family F with input domain {0, 1}m, and a leakage function ϕ : F → {0, 1}∗, is
a tuple GS = (Gb,Rerand,En,Ev) of PPT algorithms satisfying:

– Correctness: For every f ∈ F and input x ∈ {0, 1}m,

Pr[y = f(x) : (F, e)← Gb(f), X = En(e, x), y = Ev(F,X) ] = 1

Pr[y = f(x) : (F, e)← Gb(f), (F ′, πEn)← Rerand(F ),

X ′ = En(πEn(e), x), y = Ev(F ′, X ′) ] = 1

– Privacy: ∀f0, f1 ∈ F s.t. ϕ(f0) = ϕ(f1), and ∀x0, x1 ∈ {0, 1}m s.t. f0(x0) = f1(x1),

{F0, X0}(F0,e0)←Gb(f0),X0=En(e0,x0)

c
≈ {F1, X1}(F1,e1)←Gb(f1),X1=En(e1,x1)

– Rerand-Privacy: For the space of random tapes R in Gb, ∀f ∈ F , x ∈ {0, 1}m,

{r, F0, X0} r←R, (F,e)←Gb(f ;r),
(F0,πEn)←Rerand(F ), X0=En(πEn(e),x)

c
≈ {r, F1, X1}r←R,(F1,e1)←Gb(f),

X1=En(e1,x)

– Projective Encoding: The function En : E × {0, 1}m → Zm is projective:
• ∀x = {xi}i∈[m], x

′ = {x′i}i∈[m] ∈ {0, 1}m, ∀e ∈ E, {Li}i∈[m] = En(e, x) and
{L

′
i}i∈[m] = En(e, x′) such that ∀i ∈ [m], if xi = x′i then Li = L

′
i.

• πEn = {σi}i∈[m] produced by Rerand is such that ∀x ∈ {0, 1}m, ∀e ∈ E,
{Li}i∈[m] = En(e, x) and {L

′
i}i∈[m] = En(πEn(e), x) where σi(Li) = L

′
i.

[AHKP22] contains a construction for projective RGS based on garbled
circuits for which we refer the reader to Appendix A (Construction 1). We also
instantiate a variant of projective RGS with this in our final SCALES protocol.

3.2 Oblivious Transfer

Oblivious Transfer (OT) is a 2-party functionality FOT between a sender S and
a receiver R. The sender S has inputs a0, a1 ∈ {0, 1}, and the receiver R has
b ∈ {0, 1}. FOT takes these inputs and gives ab to R. We require an OT protocol
with additional features as described in Definition 4.

Definition 4. Let FCRS (Figure 7) be a Common Reference String functionality.
A tuple of PPT functions OT = (CRSgen,OT1,OT2,OTfin,OT3) is a 2-round
maliciously secure bit-OT scheme with reusable first message and rerandomizable
second message if the following holds,

17



Functionality Ff
SCALES

Let f : {0, 1}m → {0, 1}l be a function. Let A be a PPT ideal-world adversary.
Let C = {Ci}i∈[m] be the clients. The functionality Ff

SCALES works as follows:

– Ff
SCALES accepts an input bit xi from each Ci ∈ C

– Ff
SCALES computes f(x) and gives f(x) to A

– if A sends OK to Ff
SCALES, it sends f(x) to C

Fig. 5 SCALES Functionality

Bulletin-Board FB

Let P be the set of all parties. Let publish denote the action of the functionality
sending a message to all parties. The bulletin-board FB works as follows:

– FB initializes its transcript to τ = {} and c = 0
– Each time FB receives message m from party Pi,
• FB sets c = c+ 1 and τ [c] = (m,Pi)
• FB publish c

– If a party Pi sends read to FB, the functionality sends τ to Pi

– For c′ ∈ [c], if a party Pi sends (read, c′) to FB, the functionality sends
τ [c′] to Pi

Fig. 6 Bulletin-Board

Common Reference String FD
CRS

Let P be the set of all parties. Let D denote a distribution over strings {0, 1}∗
(implicitly parameterized by a security parameter κ). The functionality FD

CRS

works as follows:

– Initialization:
• Sample s← D

– If a party Pi sends read to FD
CRS, the functionality sends s to Pi

Fig. 7 Common Reference String

1. Reusable first message: for a receiver R with input b ∈ {0, 1} and the
receiver’s message m1 ← OT1(CRS; b) can be used by multiple senders Si

with input bits (ai0, a
i
1) ∈ {0, 1}2 operating as,

FCRSgen
CRS : CRS← CRSgen(1κ)

R : (Aux,m1)← OT1(CRS; b)
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Multi-OT FmultiOT

Let R be a receiver with input b ∈ {0, 1} and {Si}i∈[ℓ] be ℓ senders where each
Si has inputs (ai

0, a
i
1) ∈ {0, 1}2. The functionality FmultiOT operates as follows:

– FmultiOT accepts b from R
– ∀i ∈ [ℓ], on receiving (ai

0, a
i
1) from Si, FmultiOT gives ai

b to R

Fig. 8 Multi-OT Functionality

∀i ∈ [ℓ], Si : mi
2 ← OT2(CRS;m1, (a

i
0, a

i
1))

∀i ∈ [ℓ], R : ai
b ← OTfin(CRS;m

i
2,Aux)

The above protocol UC-securely realizes FmultiOT (Figure 8) in the FCRSgen
CRS -

hybrid when a malicious PPT adversary corrupts any subset of {Si}i∈[ℓ]
statically and R adaptively.

2. Rerandomizable second message: Let R be the space of randomness
used in OT2. There exists a composition operation ⋄ such that ∀r, r′ ∈ R,
r∗ = r′ ⋄ r ∈ R and ∀m1 it holds that,

OT2(CRS;m1, (a0, a1); r
∗) = OT3(CRS;OT2(CRS;m1, (a0, a1); r

′); r)

if r ← R or r′ ← R is sampled uniformly, r∗ is uniformly distributed in R.

In the malicious setting, in the CRS model, we create such an OT protocol
from the OT protocol in [PVW08]. This instantiation can be found in Appendix B
along with a proof that it satisfies Definition 4.

3.3 Zero-Knowledge Proofs

Zero-Knowledge Proofs are an interaction between a prover P and a verifier V
such that the interaction convinces V that a secret input x of P belongs to a
public language L but the interaction reveals nothing beyond that fact.

Definition 5. A pair of machines (P, V ) is a computational zero-knowledge
proof for a language L if for every PPT V , the following holds:

– Perfect Completeness: For every x ∈ L,

Pr[⟨P, V ⟩(x) = 1] = 1

– ϵ-Soundness: For every x ̸∈ L, and every P ∗,

Pr[⟨P ∗, V ⟩(x) = 1] ≤ ϵ

– Zero-Knowledge: For every PPT V ∗ there exists a PPT S∗ such that,

{⟨P, V ∗⟩(x)}x∈L
c
≈ {S∗(x)}x∈L
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In this work, we construct zero-knowledge proofs for correct garbling and correct
rerandomizing for Construction 1 and use these in the SCALES protocols. We
do so by first constructing Σ-protocols [CDS94] and then converting them into
zero-knowledge protocols where the prover sends only one message.

Definition 6. A Σ-protocol Sigma = (P1, V1, P2, V2) for a statement x ∈ L
with witness w is an interaction between a prover P and verifier V of the form:

1. P computes Aux, a← P1(x,w) and sends the message a to V

2. V computes b← V1(·), a uniformly random b to send to P

3. P sends the last message c = P2(a, b, x, w) to V

4. V outputs V2(a, b, c, x) ∈ {0, 1}

Such a protocol must satisfy the following properties:

– Completeness: For every x ∈ L, a← P1(x,w), and c = P2(a, b, x, w),

Pr[V2(a, b, c, x) = 1] = 1

– Special Soundness: Let w be a witness proving x ∈ L, a← P1(x,w). Then
for any set of transcripts (a, b, c) and (a, b′, c′) s.t. b ̸= b′, V2(a, b, c, x) = 1
and V2(a, b

′, c′, x) = 1, there exists a PPT algorithm,

w ← Extract(a, b, c, b′, c′, x)

– Special Honest-Verifier Zero Knowledge (SHVZK): There exists a
PPT algorithm,

τ = (a, b, c)← Sim(1κ, x, b)

such that 1 = V2(a, b, c, x). For all b ∈ {0, 1}ℓ, the distribution τ ← Sim(1κ, x, b)
is computationally indistinguishable from the distribution of τ ′ = (a′, b, c′)
obtained from an honest execution of Sigma = (P1, V1, P2, V2) for a statement
x ∈ L with witness w.

4 Rerandomizable Garbling Functionality

Previous work in [AHKP22] designs a semi-honest secure SCALES protocol based
on RGS (Definition 3). Following their premise, in this work we design an RGS-
based malicious secure SCALES protocol. In order to realize this, we first formalize
a functionality FRGS in the multiparty setting (Figure 9). For modularity, we
replace the bulletin-board functionality B with the command publish that makes
a message available to all parties in the system. The final protocol implements
this functionality in the presence of a malicious adversary as in the definition of
SCALES (Definition 2). We realize FRGS using a projective RGS (Definition 3)
and a verifiable updatable oblivious transfer (VUOT) functionality.
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Rerandomizable Garbling Functionality FRGS

Let f : {0, 1}m → {0, 1}l be a function. Let S be a set of servers and
{Ej}j∈[d+1] ⊂ S be the set of d+ 1 total encoding servers. Let C = {Ci}i∈[m]

be the clients where each Ci has input bit xi. Let publish denote the action of
FRGS making a message visible to all parties. Let RGS = (Gb,Rerand,En,Ev)
be a projective RGS (Definition 3). FRGS is a reactive functionality as follows:

1. Commit Phase:
– receive input bit xi from each client Ci ∈ C

2. Initial Encoding:
– receive input randomness r0 and function f from E0

– compute (F0, e0) = RGS.Gb(f ; r0) and publish F0

– parse {L0
i,0, L

0
i,1}i∈[m] = e0 and give each L0

i,xi
to client Ci

3. Successive Encoding j ∈ [d]:
– receive input randomness rj from Ej

– compute (Fj , πj) = RGS.Rerand(Fj−1; rj) and publish Fj

– parse {Lj
i,0, L

j
i,1}i∈[m] = πj(ej−1) = ej and give each Lj

i,xi
to Ci

4. publish X = {Ld
i,xi
}i∈[m]

At the end of the execution, any party can compute f(x) = RGS.Ev(Fd, X)

Fig. 9 Rerandomizable Garbling Functionality

4.1 Verifiable Updatable Oblivious Transfer

We formally define a functionality FVUOT for Verifiable Updatable Oblivious
Transfer (VUOT) in Figure 10. FVUOT operates in phases and involves multiple
receivers, one sender, and multiple updaters. It is parameterized by two public
relations R0 and R1. Each receiver Ci has a bit xi that is input to FVUOT in
the ‘Commit Phase’. The sender S’s input is a set of strings: a pair (s0i , s

1
i )

corresponding to each receiver Ci; a statement α0 and witness w0. This is input
to FVUOT in the ‘Initial OT’ phase. Then FVUOT checks the relation R0 over all
of the sender’s inputs, gives each Ci the string sxi

i , and reveals α0 to all parties.
Each updater Uj has as input a set of functions: one σj

i corresponding to each
receiver Ci; a statement αj and witness wj . This is input to FVUOT in the jth

‘Successive Update’ phase. FVUOT checks the relation R1 over all of Uj ’s inputs
and αj−1 from the previous phase. The functionality gives each Ci the string
si,j that is σj

i applied to the output to Ci in the previous phase. It also reveals
αj to all parties. After the final update phase, FVUOT reveals to all parties a bit
indicating whether all updaters and sender satisfied their respective relations. If
this is true, it also makes the set of final receiver outputs visible to all parties.

4.2 Realizing FRGS

We use a projective RGS (Definition 3) and the functionality FVUOT (Figure 10)
to instantiate FRGS (Figure 9). The functionality FVUOT needs to be closely tied
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Verifiable Updatable Oblivious Transfer FVUOT

Let C = {Ci}i∈[m] be the set of receivers where Ci has input xi ∈ {0, 1}.
Let S be a sender with inputs {s0i , s1i }i∈[m] where each string sbi ∈ {0, 1}ℓ.
Let R0 be a relation with statement α0 and witness w0 s.t.,

{0, 1} ← R0(α0, w0, {s0i , s1i }i∈[m])

Let U = {Uj}j∈[d] be updaters s.t. Uj has {σj
i }i∈[m] and σj

i : {0, 1}ℓ → {0, 1}ℓ.
Let R1 be a relation s.t. for each j ∈ [d] with statement αj and witness wj ,

{0, 1} ← R1(αj−1, αj , wj , {σj
i }i∈[m])

Let publish denote the action of FVUOT making a message visible to all parties.
FR0,R1

VUOT is a reactive functionality that operates as follows:

1. Commit Phase:
– receive input xi from each receiver Ci ∈ C

2. Initial OT:
– receive inputs {s0i , s1i }i∈[m] and α0, w0 from S
– compute b0 ←R0(α0, w0, {s0i , s1i }i∈[m])
– for all i ∈ [m], give si,0 = sxi

i to receiver Ci

– publish α0

3. Successive Update j ∈ [d]:
– receive inputs {σj

i }i∈[m] and αj , wj from Uj

– compute bj ←R1(αj−1, αj , wj , {σj
i }i∈[m])

– for all i ∈ [m], give si,j = σj
i (si,j−1) to receiver Ci

– publish αj

4. publish b =
∧d

j=0 bj and, if b = 1, then publish {si,d}i∈[m]

Fig. 10 Verifiable Updatable Oblivious Transfer

to the RGS. In particular, in RGS = (Gb,Rerand,En,Ev) let RGS.Gb produce a
projective input encoding e = {L0

i , L
1
i }i∈[m]. Then in FVUOT, the input of the

sender S is {s0i , s1i }i∈[m] = {L0
i , L

1
i }i∈[m] and relation R0 becomes:

RGb(α0, w0, {s0i , s1i }i∈[m])

=

{
1 if (F, e) = RGS.Gb(f ; r) where F = α0, r = w0, e = {s0i , s1i }i∈[m]

0 otherwise

(1)

Let RGS.Rerand produce input transformations of the form πEn = {λi}i∈[m].
Then for FVUOT, the input of each updater Uj is {σj

i }i∈[m] = {λi}i∈[m]. Further,
the relation R1 is of the following form:

RRerand(αj−1, αj , wj , {σj
i }i∈[m])

=

1 if (F, π) = RGS.Rerand(F ′; r) where
{
F ′ = αj−1, F = αj ,

r = wj , π = {σj
i }i∈[m]

0 otherwise

(2)
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Let f be the function and x = {xi}i∈[m] be its input. Let S be a set of servers and
{Ej}j∈[d] ⊂ S be the encoding servers. C = {Ci}i∈[m] be the clients where each Ci

has input bit xi. Let RGS = (Gb,Rerand,En,Ev) be a projective RGS (Definition 3)
and FRGb,RRerand

VUOT be a VUOT functionality (Figure 10).

1. Commit Phase:
– Each client Ci ∈ C gives xi to FVUOT

2. Initial Encoding:
– E0 samples r0 and computes (F0, e0) = RGS.Gb(f ; r0)
– E0 sends (F0, r0, e0) to FVUOT as in relation RGb (Equation 1)
– parse e0 = {L0

i , L
1
i }i∈[m] and for all i ∈ [m], FVUOT gives L0

i,xi
to Ci

– FVUOT publishes F0 = α0

3. Successive Encoding:
– Ej samples rj and computes (Fj , πj) = RGS.Rerand(Fj−1; rj)
– Ej sends (Fj , rj , πj) to FVUOT as in relation RRerand (Equation 2)
– parse πj = {λi}i∈[m] and for all i ∈ [m], FVUOT gives Lj

i,xi
= λi(L

j−1
i,xi

) to Ci

– FVUOT publishes Fj = αj

4. FVUOT publishes b =
⋂d

j=0 bj
– if b = 0, then honest parties ABORT
– if b = 1, then FVUOT publishes X = {Ld

i,xi
}i∈[m]

5. Decoding Phase:
– Any S ∈ S can compute f(x) = RGS.Ev(Fd, X)

Protocol Realizing FRGS

Fig. 11 Construction for FRGS in the FRGb,RRerand
VUOT -hybrid

Theorem 1. Let RGS = (Gb,Rerand,En,Ev) be a projective RGS (Definition 3).
Then the protocol in Figure 11 UC-securely realizes FRGS (Figure 9) in the
FRGb,RRerand

VUOT -hybrid, where FVUOT (Figure 10) is parameterized by relations RGb

(Equation 1) and RRerand (Equation 2).

Proof. We need to show that the functionality FRGS (Figure 9) is realized by the
protocol in Figure 11. Let B be the bulletin-board. Let A be a PPT malicious
adversary. Among the parties that A corrupts, let CS ⊂ C be the set of statically
corrupted clients. Let CA ⊂ C − CS denote the set of clients that A adaptively
corrupts after the ‘commit phase’ in FRGS. Let S ⊂ {E0, . . . , Ed} be the set of
statically corrupted encoding servers such that at least one server is honest. Note
that A may also corrupt other servers than the encoding server and it has access
to everything on B.

Let RGS = (Gb,Rerand,En,Ev) be a projective RGS as in Definition 3. Let
FVUOT be the functionality realizing VUOT (Figure 10). Then in the FVUOT-
hybrid let Sim be a PPT simulator for the protocol in Figure 11 that operates as
follows:

1. In the ‘commit phase’,
– Sim emulates the ‘commit phase’ of FVUOT and for each statically cor-

rupted client Ci ∈ CS , it accepts xi for A.
– Sim passes {xi}Ci∈CS

to FRGS.

23



2. For every client Ci ∈ CA that A adaptively corrupts,
– Sim sends i to FRGS and receives xi.
– Sim gives xi to A.

3. In the ‘initial encoding’ phase, if E0 is corrupted,
– Sim emulates ‘initial OT’ of FVUOT and accepts (F0, r0, e0) from A.
– Sim emulates FVUOT and computes b0 = 1 if (F0, e0) == RGS.Gb(f ; r0),

and b0 = 0 otherwise.
– If b0 = 0, it gives ⊥ to FRGS and the execution aborts.
– Otherwise, it gives r0 and f , that is publicly known, to FRGS that computes
(F0, e0) = RGS.Gb(f ; r0) and posts F0 onto B.

– FRGS gives {L0
i,xi
∈ e0}Ci∈CS∪CA

to Sim, and Sim gives this to A.
If E0 is honest, FRGS posts F0 onto B and Sim gets for each corrupted Ci the
label L0

i,xi
∈ e0, which it passes to A.

4. In the ‘successive encoding’ phase, if Ej is corrupted,
– Sim emulates ‘successive update’ of FVUOT and gets (Fj , rj , πj) from A.
– Sim, emulating FVUOT, sets bj = 1 if (Fj , πj) == RGS.Rerand(Fj−1; rj),

and bj = 0 otherwise.
– If bj = 0, it gives ⊥ to FRGS and the execution aborts.
– Otherwise, Sim gives rj to FRGS.
– FRGS computes (Fj , πj) = RGS.Rerand(Fj−1; rj) and posts Fj onto B.
– FRGS gives {Lj

i,xi
}Ci∈CS∪CA

to Sim, where each Lj
i,xi
∈ ej = πj(ej−1),

and Sim gives this to A.
If Ej is honest, FRGS posts Fj onto B and Sim gets for each corrupted Ci the
label Lj

i,xi
∈ ej = πj(ej−1). Sim gives this to A.

5. Sim emulates FVUOT and posts b=1 onto B and then X = {Ld
i,xi
}i∈[m] is

posted by FRGS.

Let κ be a computational security parameter. Let R denote the space of random-
ness of all parties participating in the protocol and r⃗ denote the contents of the
random tape of all the parties in the real execution. The view of A produced by
Sim is distributed as,{

{xi}Ci∈CS∪CA
, {rj}j ̸=j∗∈[d], {Fj , {Lj

i,xi
}Ci∈CS∪CA

}j∈[d], b,X
}
κ∈N,r⃗∈R

This is exactly identical to the distribution of the view in the real execution.
Hence, Figure 11 securely computes FRGS in the FVUOT-hybrid.

It now remains to show how FRGb,RRerand

VUOT (Figure 10) is UC-securely realized.
However, before diving into the construction itself, we first define and construct
its key building-blocks.

5 Constructing Verifiable Updatable OT

In this section we construct a protocol that realizes FVUOT (Figure 10) in the
presence of malicious adversaries. This requires three major building blocks. We
define them in their full generality and present protocols for these that when put
together realize FRGb,RRerand

VUOT in particular:

24



Updatable Oblivious Transfer FM,Σ
UOT

For a message domainM, let S be a sender with input strings s0, s1 ∈M. Let
C be a chooser with input bit b ∈ {0, 1}. For function domain Σ, let {Uj}j∈[d]
be updaters with σj ∈ Σ s.t. σj :M→M. Let publish be the action of making
a message visible to all parties. The functionality FM,Σ

UOT works as follows:

1. OT Phase:
– receive input b from C and (s0, s1) from S
– send sb,0 = sb to C

2. Update Phase, for each j ∈ [d]:
– receive input σj from Uj and send sb,j = σj(sb,j−1) to C

3. Reveal Phase:
– publish sb,d

Fig. 12 Updatable Oblivious Transfer

– Updatable Oblivious Transfer Functionality (UOT): In Section 5.1 we
define the functionality FUOT and present a protocol realizing FUOT for a
message and function domain compatible with the RGS in Construction 1.

– Σ-Protocols: In Section 5.2 we present Σ-Protocols for the relations RGb

and RRerand. The Σ-Protocol for RGb proves correctness of garbling and that
the correct garbling labels are used in the OT phase. The Σ-Protocol for
RRerand proves the correctness of rerandomizing and that the correct input
label transformation functions are used in the successive update.

– Distributed Committed-Index Oblivious Transfer Functionality
(DCOT): In Section 5.3 we define a functionality FDComOT and construct a
protocol that realizes it. The functionality allows multiple receivers to input a
random bit each. Then, for multiple rounds, a sender sends two input strings.
In the end one string of each sender is publicly revealed and the choice of
this string corresponds to the XOR of all the receivers’ input choice bits.

In Section 5.4, we combine the last two objects to get Ephemeral Prover Zero-
Knowledge FEPZK. This is a functionality parameterized by two relations R0 and
R1. It involves multiple provers Pj each with a statement αj and witness wj as
inputs where, in the end, FEPZK outputs a bit indicating whether all the provers’
inputs satisfy R0 or R1 as required. In Section 5.5 we present a protocol that
realizes FVUOT in the FEPZK-hybrid using the UOT protocol as a building block.

5.1 Updatable Oblivious Transfer

In this section, we define and construct a protocol for Updatable Oblivious
Transfer (UOT). The UOT functionality FUOT is described in Figure 12. It
involves a chooser C with a bit b, a sender S with input strings s0, s1 ∈M and
multiple updaters {Uj}j∈[d] where each Uj has a function σj ∈ Σ. In the ‘OT
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phase’ FUOT accepts the chooser’s and sender’s inputs and returns the string
sb to the chooser. In every ‘Update Phase’, each updater Uj sends σj to FUOT

which gives to C the output of σj applied to the output received in the previous
phase. Finally, in the ‘Reveal Phase’ FUOT makes the final output to C available
to all parties.

We realize FUOT in a way that requires the sender and each updater to send
only one message each. The chooser sends one message at the beginning and one
at the end of the protocol and the resulting protocol is secure in the presence of
a PPT malicious adversary adaptively corrupting the chooser, and all-but-one of
the sender and updaters. We abstract such a protocol as in Definition 7.

Definition 7. Let M be the message space for the sender S and Σ be the
function space for each updater in {Uj}j∈[d] such that each σ ∈ Σ is of the form
σ : M → M. The tuple UOT = (CRSgen,OT1,OT2,OTupdt,OTfin,OTvrfy) is a
SCALES Protocol for UOT if the following protocol UC-securely realizes
FM,Σ

UOT (Figure 12) in the (FCRSgen
CRS ,FB)-hybrid in the presence of any PPT

adversary A that can adaptively corrupt C maliciously and statically corrupt
all-but-one of {S} ∪ {Uj}j∈[d] semi-honestly:

Inputs: b ∈ {0, 1} for receiver C; (s0, s1) ∈M2 for S; σi for each updater Ui.

FCRSgen
CRS : CRS← CRSgen(1κ)

C : Aux,m1 ← OT1(CRS; b) m1 → FB
S : m0

2 ← OT2(CRS;m1, (s0, s1)) m0
2 → FB

C : M ← OTfin(CRS;Aux,m
0
2)

{sb,⊥} ← OTvrfy(CRS;M) output sb

∀j ∈ [d] Uj : mj
2 ← OTupdt(CRS;m

j−1
2 , σj) mj

2 → FB
C : Mj ← OTfin(CRS;Aux,m

j
2) Md → FB

{sb,j ,⊥} ← OTvrfy(CRS;Mj) output sb,j
public : {sb,d,⊥} ← OTvrfy(CRS;Md) output sb,d

where FCRSgen
CRS (Figure 7) is the Common Reference String functionality and

FB(Figure 6) is the Bulletin-Board functionality.

[GHV10] constructs a protocol for ‘rerandomizable OT’ in the semi-honest set-
ting that achieves a similar functionality as UOT for a restricted class of messages
and function space. Our protocol for FUOT closely follows their construction.

Definition 8. Let RGS = (Gb,Rerand,En,Ev) be a projective rerandomizable
garbling scheme (Definition 3) with encoding set E = Z2m and domain of off-
set functions Π = {πEn : Z2 → Z2}m. Then UOT is a UOT protocol (Def-
inition 7) with sender’s message space M and updater’s function space Σ is
RGS-Compatible if it holds that Z ⊆M and πEn ⊆ Σ.
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Constructing UOT. We construct UOT for the sender’s message domain
M being the set of balanced binary strings: s0, s1 ∈ {0, 1}ℓ with ℓ

2 0s and the
rest 1s. The function family for each updater Uj is the family of permutations
Σ = {σ : [ℓ] → [ℓ]}. This suffices since we only require a UOT protocol that
is compatible with the projective RGS in Construction 1. That is, the UOT
inputs of the sender are labels of an input wire of the RGS. The inputs of each
updater is a function σ ∈ Σ in the space of transformations applied to the labels.
Following [GHV10], we realize FUOT from 2-round bit-OT protocol (Definition 4).

Let OT = (CRSgen,OT1,OT2,OTfin,OT3) be a 2-round maliciously secure OT protocol
(Definition 4). Let NIZK = (CRSgen,Prove,Verify) be an NIZK proof CRSNIZK ← CRSgen(1κ),
Π ← Prove(CRSNIZK;Aux, b;m1,m2, ab) and {0, 1} ← Verify(CRSNIZK;m1,m2, ab, Π) for ROT:

∃r,Aux, b s.t. Aux,m1 ← OT.OT1(CRSOT, r; b) ab = OT.OTfin(CRSOT;m2,Aux)

Let M be the set of ℓ-bit balanced binary strings and Σ be the family of permutations on ℓ
positions. Then UOT = (CRSgen,OT1,OT2,OTupdt,OTfin,OTvrfy) is defined as follows:

– CRS← UOT.CRSgen(1κ)

CRSOT ← OT.CRSgen(1κ)

CRSNIZK ← NIZK.CRSgen(1κ) CRS = (CRSOT,CRSNIZK)

– Aux,m1 ← UOT.OT1(CRS; b)

Aux,m1 ← OT.OT1(CRSOT; b)

– m0
2 ← UOT.OT2(CRS;m1, (s0, s1))

s0, s1 = {ai
0}i∈[ℓ], {a

i
1}i∈[ℓ]

∀i ∈ [ℓ],m
i
2 ← OT.OT2(CRSOT;m1, (a

i
0, a

i
1)) m

0
2 = {mi

2}i∈[ℓ]

– mj
2 ← UOT.OTupdt(CRS;m

j−1
2 , σj)

m
j−1
2 = {mi

2}i∈[ℓ] σj : [ℓ]→ [ℓ] ∈ Σ

∀i ∈ [ℓ],m
i′
2 ← OT.OT3(CRSOT;m

i
2) m

j
2 = σj({mi′

2 }i∈[ℓ])

– Mj ← UOT.OTfin(CRS;Aux,m
j
2) mj

2 = {mi
2}i∈[ℓ]

∀i ∈ [ℓ], a
i
b ← OT.OTfin(CRSOT;m

i
2,Aux)

∀i ∈ [ℓ], Πi ← NIZK.Prove(CRSNIZK;Aux, b;m1,m
i
2, a

i
b)

sb = {ai
b}i∈[ℓ] Π = {Πi}i∈[ℓ] Mj = (sb, Π)

– sb ← UOT.OTvrfy(CRS;Mj)

Mj = (sb = {ai
b}i∈[ℓ], {Πi}i∈[ℓ])

∀i ∈ [ℓ], bi ∈ {0, 1} ← NIZK.Verify(CRSNIZK;m1,m
i
2, a

i
b, Πi) return

{
sb if

⋂
i∈[ℓ] bi = 1

⊥ otherwise

Protocol Realizing FUOT

Fig. 13 Construction for FUOT using OT

Lemma 1. Let M ⊂ {0, 1}ℓ be the set of balanced binary strings and Σ =
{σ : [ℓ] → [ℓ]} be the family of permutations on bit-positions. Let OT =
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(CRSgen,OT1,OT2,OTfin,OT3) be a 2-round maliciously secure OT protocol (Def-
inition 4) in the FOT.CRSgen

CRS -hybrid and NIZK = (CRSgen,Prove,Verify) be an
NIZK proof system for ROT in the FNIZK.CRSgen

CRS -hybrid. Figure 13 is a UC-secure
protocol that realizes FM,Σ

UOT (Figure 12 – Definition 7).

Proof. Figure 13 contains a UOT protocol constructed using a 2-round malicious-
secure bit-OT protocol and an NIZK proof system. Let OT be the OT protocol
as in (Definition 4). Since the protocol is a 2-round secure protocol in the presence
of reuse of the first OT message, there exists a PPT simulator SimmultiOT that
can simulate the view of a malicious PPT adversary that statically corrupts an
arbitrary subset of the senders and adaptively corrupts the receiver, in a way
that is computationally indistinguishable from the real view.

Let NIZK = (Prove,Verify) be an NIZK proof system for the relation,

∃Aux, b s.t. Aux,m1 ←OT.OT1(b)

ab =OT.OTfin(m2,Aux)

where w = (Aux, b) is the witness and α = (OT,m1,m2, ab) is the statement.
There exists a PPT simulator SimNIZK(α) that can produce a view whose distri-
bution is computationally indistinguishable from the real NIZK proof.

LetM⊂ {0, 1}ℓ be the set of balanced binary strings and Σ = {σ : [ℓ]→ [ℓ]}
be the family of permutations on ℓ-bit-positions. We need to show that the protocol
in Figure 13 is a protocol that realizes FUOT (Figure 12) as in Definition 7 with
respect to sender’s input spaceM and updaters’ function space Σ. Let SimUOT

be a PPT simulator in the ideal world that operates as follows:

1. In the ‘OT Phase’, if C is statically corrupted:
– SimUOT receives m1 from the PPT adversary A.
– SimUOT invokes SimmultiOT to extract b from a corrupt receiver.
– SimUOT passes b into FUOT.

otherwise, if C is initially honest:
– SimUOT invokes SimmultiOT to simulate m∗1 for an honest receiver.
– SimUOT posts m∗1 to B.

2. Continuing the ‘OT Phase’, if S is statically corrupted:
– SimUOT receives m0

2 from the adversary A and parses m0
2 = {mi

2}i∈[ℓ].
– SimUOT has s0 = {ai0}i∈[ℓ] and s1 = {ai1}i∈[ℓ] and passes it into FUOT.

3. If C is adaptively corrupted:
– SimUOT gets the input b from FUOT.
– SimUOT invokes SimmultiOT to derive r for an adaptively corrupted receiver
– SimUOT passes (r, b) to A.

4. At the end of the ‘OT phase’, if C is corrupted and S is honest,
– SimUOT gets s0b = sb from FUOT and parses s0b = {aib}i∈[ℓ].
– SimUOT continues SimmultiOT with {aib}i∈[ℓ] to generate {mi∗

2 }i∈[ℓ] for ℓ
honest senders.

– SimUOT posts m0∗
2 = {mi∗

2 }i∈[ℓ] to B.
5. For each j ∈ [d], in the ‘Update Phase’, if Uj is statically corrupted:
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– SimUOT receives mj
2 from A and parses mj

2 = {mi′

2 }i∈[ℓ].
– SimUOT has σ and passes it to FUOT.

6. At the end of the ‘Update Phase’, if C is corrupted and Uj′ is honest,
– SimUOT gets sjb from FUOT and parses sjb = {aib}i∈[ℓ].
– SimUOT completes SimmultiOT with {aib}i∈[ℓ] corresponding to ℓ honest

senders and simulates {mi∗
2 }i∈[ℓ].

– SimUOT posts mj∗
2 = {mi∗

2 }i∈[ℓ] to B.
7. If C is honest in the ‘Reveal Phase’,

– SimUOT receives sdb from FUOT and parses sdb = {aib}i∈[ℓ].
– ∀i ∈ [ℓ], SimUOT invokes Π∗i ← SimNIZK(OT,m1,m

i′

2 , a
i
b).

– SimUOT posts sdb , {Π∗i }i∈[ℓ] to B.

The complete view of the protocol produced by SimUOT consists of,{
m∗1 if C is honest
m1, b, {sjb}j∈[d]∪{0} if C is statically corrupted{
m0∗

2 if S is honest
m0

2, s0, s1 if S is corrupted

∀j ∈ [d]

{
mj∗

2 if Uj is honest
mj

2, σj if Uj is corrupted{
b, r, {sjb}j∈[d]∪{0} if C is adaptively corrupted
sdb , {Π∗i }i∈[ℓ] if C is honest

Without loss of generality, consider the view when S and all updaters Uj are
honest, and C is adaptively corrupted at the end of the execution. Let κ be a
computational security parameter. Let R denote the space of randomness of all
parties participating in the protocol and r⃗ denote the contents of the random
tape of all parties and simulator. The view for this execution is distributed as,{

(s0, s1), {σj}j∈[d], b, r, {sjb}j∈[d]∪{0},m
∗
1,m

0∗
2 , {mj∗

2 }j∈[d], {Π∗i }i∈[ℓ]
}
κ∈N,r⃗∈R

Out of all corruption strategies, the distribution of this view differs the most
from the distribution of the real view in the protocol,{

(s0, s1), {σj}j∈[d], b, r, {sjb}j∈[d]∪{0},m1,m
0
2, {m

j
2}j∈[d], {Πi}i∈[ℓ]

}
κ∈N,r⃗∈R

This distribution can be shown to be indistinguishable from that of the real
view using UOT by reducing to the indistinguishability of the real and simulated
views of the bit-OT protocol OT, and the NIZK proof NIZK. Consider the
following set of hybrids:

– Hybrid H0. This is the distribution of the output of SimUOT. It differs from
the view of the real execution in that all the messages in the transcript are
simulated messages.

H0 =
{
(s0, s1), {σj}j∈[d], b, r, {sjb}j∈[d]∪{0},

m∗1,m
0∗
2 , {mj∗

2 }j∈[d], {Π∗i }i∈[ℓ]
}
κ∈N,r⃗∈R
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– Hybrid H1. This is the distribution output by an intermediate hybrid ex-
periment in which the sender S’s message m0

2 is generated as in the real
execution but everything else is generated as in SimUOT.

H1 =
{
(s0, s1), {σj}j∈[d], b, r, {sjb}j∈[d]∪{0},

m∗1,m
0
2, {m

j∗
2 }j∈[d], {Π∗i }i∈[ℓ]

}
κ∈N,r⃗∈R

– Hybrid H2. This is the distribution output by an intermediate hybrid ex-
periment in which both the chooser C’s first message m1 and the sender
S’s message m0

2 is generated as in the real execution but everything else is
generated as in SimUOT.

H2 =
{
(s0, s1), {σj}j∈[d], b, r, {sjb}j∈[d]∪{0},

m1,m
0
2, {m

j∗
2 }j∈[d], {Π∗i }i∈[ℓ]

}
κ∈N,r⃗∈R

– Hybrid Hj+2. For each j ∈ [d], this is the distribution output by an inter-
mediate hybrid experiment in which C’s first message, S’s message and the
messages of the first j updaters are created as in the real execution but
everything else is generated as in SimUOT.

Hj+2 =
{
(s0, s1), {σj′}j′∈[d], b, r, {sjb}j∈[d]∪{0},

m1,m
0
2, {m

j′

2}j′≤j , {m
j′∗
2 }j′>j∈[d], {Π∗i }i∈[ℓ]

}
κ∈N,r⃗∈R

The last of these hybrids has all the messages in the bit-OT protocol as
messages from the real protocol.

– Hybrid Hd+2+i. For each i ∈ [ℓ], this is the distribution output by an inter-
mediate hybrid experiment in which all the messages up to the last updater’s
message is generated as in the real execution of the protocol. In the chooser’s
final message, the first i instances of the NIZK proof is generated as in the
real execution and the rest is generated as in the simulation.

Hd+2+i =
{
(s0, s1), {σj}j∈[d], b, r, {sjb}j∈[d]∪{0},

m1,m
0
2, {m

j
2}j∈[d], {Πi′}i′≤i, {Π∗i′}i′>i∈[ℓ]

}
κ∈N,r⃗∈R

The last hybrid is the distribution as in the real protocol.

Claim 1 Assuming that the bit-OT protocol OT is secure upon reusing the first
OT message in the presence of a PPT malicious adversary adaptively corrupting
the receiver, the views in hybrid distributions H0 and H1 are computationally
indistinguishable.

Proof. The hybrids H0 and H1 differ only in the way that the honest sender’s
message is generated. In H1 it is m0

2, generated as in the real execution of
the protocol. In H0 it is the simulated message m0∗

2 . This can be parsed as,
m0∗

2 = {mi∗
2 }i∈[ℓ] where this is the output of the bit-OT simulator SimmultiOT

when the receiver’s message is m∗1 and the OT output is {aib}i∈[ℓ]. Since the
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bit-OT scheme OT is secure upon the reuse of the first OT message in the
presence of a PPT malicious adversary adaptively corrupting the receiver, it
follows that the distribution of the view produced by SimmultiOT is computationally
indistinguishable from that of the real view. However, if there existed a PPT
adversary A that can distinguish between hybrids H0 and H1 with non-negligible
advantage ϵ, then A can be used in a black-box way as a subroutine by a PPT
distinguisher D to distinguish between the output of SimmultiOT and the real OT
view upon reuse of the first message.

D works by sending the challenger C the sender’s OT input bits {ai0, ai1}i∈[ℓ]
and the OT first message m∗1. C replies with a message m that D uses to create
the rest of the view as in the simulation SimUOT. If m = m0∗

2 as output by
SimmultiOT, the view created is from H0. Otherwise, if m = m0

2, the view created
is from H1. D gives this to A and outputs whatever it outputs. In this execution
D has the same advantage as A, which is non-negligible. However, since the OT
protocol is secure against a corrupt receiver R when the first OT message is
reused, no such D can exist and so no such A can exist.

Claim 2 Assuming that the bit-OT protocol OT is secure against a PPT mali-
cious adversary statically corrupting the sender, the views in hybrid distributions
H1 and H2 are computationally indistinguishable.

Proof. If there exists a PPT adversary A that can distinguish between hybrids
H1 and H2 with non-negligible advantage, then it can be used in a black-box way
by a PPT distinguisher D that needs to distinguish between a real and simulated
view of a corrupted sender S in the bit-OT protocol OT. D works by sending
the challenger C the receiver’s OT input bit b. C replies with a message m that
D uses to create the rest of the view as in the simulation SimUOT. If m = m∗1,
the view created is from H1. Otherwise, if m = m1, the view created is from H2.
D gives this to A and outputs whatever it outputs. In this execution D has the
same advantage as A, which is non-negligible. However, since the OT protocol is
secure against a corrupted sender S, no such D can exist and so no such A can
exist.

Claim 3 Assuming that the bit-OT protocol OT is secure against a PPT mali-
cious adversary statically corrupting the receiver, the views in hybrid distributions
Hj+2 and Hj+1 are computationally indistinguishable.

Proof. For each j ∈ [d], the hybrids Hj+1 and Hj+2 differ only in one honest
updater’s message. In Hj+2 it is mj

2, generated as in the real execution of
the protocol. In Hj+1 it is the simulated message mj∗

2 . This can be parsed as,
mj∗

2 = {mi∗
2 }i∈[ℓ] that is the output of the bit-OT protocol simulator SimmultiOT

when the receiver’s message is m1 and the OT output is {aib}i∈[ℓ]. Like in the
proof of Claim 1, since the bit-OT scheme OT is secure upon the reuse of the first
OT message in the presence of a PPT malicious adversary statically corrupting
the receiver, it follows that the distribution of the view produced by SimmultiOT is
computationally indistinguishable from that of the real view. This is distributed
identically to a view in which the message mj

2 is generated as in the real execution
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of the UOT protocol owing to the fact that the second OT message in OT is
rerandomizable. That is, the outputs of OT.OT3 used in the execution of UOT
is identically distributed to that of OT.OT2 in the above distribution. Therefore,
if there exists a PPT adversary A that can distinguish between Hj+1 and Hj+2

with non-negligible advantage, it can be used in a black-box way by a PPT
distinguisher D to distinguish between the output of SimmultiOT and the real OT
view upon reuse of the first message.

D works by sending the challenger C the sender’s OT input bits {ai0, ai1}i∈[ℓ]
(that are the output after permuting using σj) and the OT first message m1.
D also creates the messages m0

2, {m
j′

2}j′<j as in the real execution of UOT. C
replies with a message m that D uses to create the rest of the view as in the
simulation SimUOT. If m = mj∗

2 as output by SimmultiOT, the view created is from
Hj+1. Otherwise, if m = mj

2, the view created is from Hj+2. D gives this to A
and outputs whatever it outputs. In this execution D has the same advantage as
A, which is non-negligible. However, since the OT protocol is secure against such
a corrupt receiver R, no such D can exist and so no such A can exist.

Claim 4 Assuming that the NIZK proof scheme NIZK is a computational zero-
knowledge proof, the views in hybrid distributions Hd+2+i and Hd+1+i are compu-
tationally indistinguishable.

Proof. If there exists a PPT adversary A that can distinguish between hybrids
Hd+2+i and Hd+1+i, then A can be used in a black-box way by a PPT distin-
guisher D that distinguishes between a real NIZK proof Πi and a simulated
proof Π∗i output by SimNIZK. D works by generating the view up to Πi−1 as in
the real protocol execution of UOT. It sends the challenger C the NIZK inputs
aib,Aux, b,m1,m

i
2. C replies with a message m that D uses to create the rest of

the view as in the simulation. If m = Π∗i as output by SimNIZK, the view created
is from Hd+1+i. Otherwise, if m = Πi, the view created is from Hd+2+i. D gives
this to A and outputs whatever it outputs. In this execution D has the same
advantage as A, which is non-negligible. However, since the NIZK proof system is
secure against a corrupt verifier, no such D can exist and so no such A can exist.

Since none of the listed set of hybrids is distinguishable, it follows that the
distributions of the real view of the protocol UOT and the simulated view are
computationally indistinguishable. Hence, the protocol UOT securely realizes
FUOT in the presence of malicious adversaries in the SCALES model.

5.2 Σ-Protocols for Correct Function Encoding

Given a projective RGS (Definition 3) and a compatible UOT protocol UOT
(Definition 8), it remains to check the relations RGb,RRerand as follows:

RGb(α0, w0, {s0i , s1i }i∈[m]) : f, {mi
1}i∈[m], are known

w0 = r0, {ri}i∈[m] α0 = F0,OT0,CRS {s0i , s1i }i∈[m] = {L0
0,i, L

1
0,i}i∈[m] = e0

s.t.

{
F0, e0 = RGS.Gb(f ; r0)

OT0 = {m0,i
2 = UOT.OT2(CRS;m

i
1;L

0
0,i, L

1
0,i; ri)}i∈[m]

(3)
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RRerand(αj−1, αj , wj ,{σj
i }i∈[m]) :

wj = rj , {ri}i∈[m] {σj
i }i∈[m] = {λi}i∈[m] = πj

αj = Fj ,OTj αj−1 = Fj−1, {mj−1,i
2 }i∈[m],CRS

s.t.

{
Fj , πj = RGS.Rerand(Fj−1; rj)

OTj = {mj,i
2 = UOT.OTupdt(CRS;m

j−1,i
2 ;λi; ri)}i∈[m]

(4)

Explainability. We define ‘explainability’ as a property of rerandomizable
objects. Informally, an explainable RGS has a function Explain that creates
randomness r explaining the rerandomized GC as a correct garbling of the function
f , hiding the randomnesses used in garbling and rerandomizing individually.

Definition 9. Let RGS = (Gb,Rerand,En,Ev) be a projective RGS (Definition 3).
Let R be the space of randomness for garbling and rerandomizing. RGS is Ex-
plainable if there exists a function Explain(·) s.t. for all f ∈ F and x ∈ {0, 1}m,

– Explainable Garbling Privacy:

{f,X, F, F ′, r∗}r,r′←R;(e,F )=Gb(f ;r);X=En(e,x);F ′=Rerand(F ;r′);r∗=Explain(r,r′)

c
≈{f,X, F,G, s}r,s←R;(e,F )=Gb(f ;r);X=En(e,x);G=Gb(f ;s)

– Explainable Rerandomizing Privacy:

{F ∗, X, F, F ′, r∗}r,r′←R;(F∗,e)←Gb(f);(F,π)=Rerand(F∗;r);X=En(π(e),x);

F ′=Rerand(F ;r′);r∗=Explain(r,r′)

c
≈{F ∗, X, F,G, s}r,s←R;(F∗,e)←Gb(f);(F,π)=Rerand(F∗;r);X=En(π(e),x);G=Rerand(F∗;s)

Lemma 2. The RGC in Construction 1 is an Explainable RGS (Definition 9).

A detailed proof for this can be found in Appendix A.3. Similarly to the above,
we also define ‘explainability’ for a UOT protocol. Here, we require that the
function Explain composes the sender and updater’s randomnesses.

Definition 10. A UOT protocol (Definition 7) UOT = (CRSgen,OT1,OT2,
OTupdt,OTfin,OTvrfy) is Explainable if there exists a PPT function Explain(·)
s.t. ∀s0, s1 ∈ M, σ ∈ Σ, and the space of randomness ROT used in OT2 and
OTupdt,

– Update Explainability:

{m1,m2,m
1
2, r
∗} r,r′←ROT;CRS←CRSgen(1κ);m1←OT1(CRS;b);

m2=OT2(CRS;m1,(s0,s1);r);m
1
2=OTupdt(CRS;m2,σ;r′);r∗=Explain(r,r′;σ)

c
≈{m1,m2,m

′
2, s} r,s←ROT;CRS←CRSgen(1κ);m1←OT1(CRS;b);

m2=OT2(CRS;m1,(s0,s1);r);m
′
2=OT2(CRS;m1,(σ(s0),σ(s1));s)

– Sequential Update Explainability:

{m2,m
′
2,m

′′
2, r
∗}r,r′←ROT;CRS←CRSgen(1κ);m1←OT1(CRS;b);m2←OT2(CRS;m1,(s0,s1));

m′
2=OTupdt(CRS;m2,σ;r);m′′

2=OTupdt(CRS;m
′
2,σ

′;r′);r∗=Explain(r,r′;σ′)

c
≈{m2,m

′
2,m

∗
2, s}r,s←ROT;CRS←CRSgen(1κ);m1←OT1(CRS;b);m2←OT2(CRS;m1,(s0,s1));

m′
2=OTupdt(CRS;m2,σ;r);m∗

2=OTupdt(CRS;m2,(σ◦σ′);s)
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Lemma 3. The UOT protocol in Figure 13 is Explainable (Definition 10).

Proof. We already know from the proof of Lemma 1 that Figure 13 is an updatable
OT protocol for sender’s message space M⊂ {0, 1}ℓ, the set of balanced binary
strings, and the family of permutations on bit-positions F = {σ : [ℓ]→ [ℓ]} as the
updaters’ function family. Let OT = (OT1,OT2,OTfin,OT3) be the underlying
2-round malicious secure bit-OT protocol (Definition 4). Consider the following
function Explain:

– parse the inputs σ : [ℓ]→ [ℓ], r = {ri}i∈[ℓ] and r′ = {r′i}i∈[ℓ]
– for each i ∈ [ℓ], compute r∗i = rσ[i] ⋄ r′i
– output r∗ = {r∗i }i∈[ℓ]

Due to the functions in OT, for any honestly created UOT first message m1,

OT2(m1, (σ(s0), σ(s1));Explain(r, r
′;σ))

=OTupdt(OT2(m1, (s0, s1); r), σ; r
′)

Furthermore, for any subsequent honestly created UOT message m2,

OTupdt(m2, (σ ◦ σ′);Explain(r, r′;σ))
=OTupdt(OTupdt(m2, σ; r), σ

′; r′)

We now need to show that update explainability (Definition 10) holds:

{m1,m2,m
1
2, r
∗}r,r′←ROT;m1←OT1(b);m2=OT2(m1,(s0,s1);r)

m1
2=OTupdt(m2,σ;r

′);r∗=Explain(r,r′;σ)

c
≈{m1,m2,m

′
2, s}r,s←ROT;m1←OT1(b);m2=OT2(m1,(s0,s1);r)

m′
2=OT2(m1,(σ(s0),σ(s1));s)

That is, for all inputs (b, s0, s1), given the first two messages m1 and m2 of the
updatable OT protocol in Figure 13, a message m1

2 created by updating the
second message, along with the composed randomness r∗, is indistinguishable
from a fresh message m′2 using OT2 and fresh randomness s. Both cases use
the same s0, s1 and σ, but in the latter case, m′2 is independent of m2. These
distributions are indistinguishable due to the fact that both m1

2 = {mi′

2 }i∈[ℓ] and
m′2 = {mi

2}i∈[ℓ] encode (σ(s0), σ(s1)) and it holds that for all i ∈ [ℓ], mi′

2 and
mi

2 come from the same distributions owing to the rerandomizing property of
OT.OT3 in the bit-OT construction. Their joint distributions with the respective
randomnesses r∗ and s are also indistinguishable. The randomness r′ is sampled
uniformly at random and so r∗ = Explain(r, r′;σ) is also uniformly random in
ROT, regardless of how r is sampled. The freshly picked s is uniformly random
as well. So both distributions given above are identically distributed.

It remains to show that sequential update explainability (Definition 10) also
holds:

{m2,m
′
2,m

′′
2, r
∗}r,r′←ROT;m1←OT1(b);m2←OT2(m1,(s0,s1));

m′
2=OTupdt(m2,σ;r);m

′′
2=OTupdt(m

′
2,σ

′;r′);

r∗=Explain(r,r′;σ′)
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c
≈{m2,m

′
2,m

∗
2, s}r,s←ROT;m1←OT1(b);m2←OT2(m1,(s0,s1));

m′
2=OTupdt(m2,σ;r);

m∗
2=OTupdt(m2,(σ◦σ′);s)

That is, for all inputs (b, s0, s1, σ), given the message m2 and m′2 updated from it
using the updatable OT protocol in Figure 13, a message m′′2 created by updating
m′2, along with the composed randomness r∗, is indistinguishable from a message
m∗2 using OTupdt on m2 and fresh randomness s. Both cases use the same σ
and σ′, but in the latter case, m∗2 is independent of m′2. These distributions are
indistinguishable due to the fact that both m′′2 = {mi′

2 }i∈[ℓ] and m∗2 = {mi
2}i∈[ℓ]

apply (σ ◦ σ′) to m2 and it holds that for all i ∈ [ℓ], mi′

2 and mi
2 come from

the same distributions owing to the rerandomizing property of OT.OT3 in the
bit-OT construction. Their joint distributions with the respective randomnesses
r∗ and s are also indistinguishable. The randomness r′ is sampled uniformly at
random and so r∗ = Explain(r, r′;σ) is also uniformly random, regardless of how
r is sampled. The freshly picked s is uniformly random as well. This completes
the proof.

Σ-Protocol for RGb. We present a Σ-Protocol for relation RGb (Equation 3).
Let GS = (Gb,Rerand,En,Ev) be an explainable RGS (Definition 9). Let UOT =
(CRSgen,OT1,OT2,OTupdt, OTfin,OTvrfy) be a compatible explainable UOT pro-
tocol (Definition 10). Consider Sigma = (P1, V1, P2, V2) as in Figure 14.

The prover P has witness w = (r0, e0, {ri}i∈[m]). Both the prover P and verifier V have
α = (f, {mi

1}i∈[m], F0,OT0,CRS).

1. P1(α,w):
– sample r∗ and {r∗i }i∈[m] and compute (Fproof , πproof) = RGS.Rerand(F0; r

∗)

– parse πproof = {σi}i∈[m] and compute {mproof
i = UOT.OTupdt(CRS;m

0,i
2 ;σi; r

∗
i )}i∈[m]

– output a = (Fproof , {mproof
i }i∈[m])

2. V1(·): output b← {0, 1}
3. P2(a, b, α, w):

– if b = 0, output c = (r∗, {r∗i }i∈[m])

– if b = 1, compute r′ = RGS.Explain(r0, r
∗) and {r′i = UOT.Explain(ri, r

∗
i ;σi)}i∈[m]

• output c = (r′, {r′i}i∈[m])
4. V2(a, b, c, α):

– if b = 0,
• output 1 if (Fproof , πproof) == RGS.Rerand(F0; r

∗), and πproof = {σi}i∈[m] s.t. ∀i ∈ [m],
mproof

i == UOT.OTupdt(CRS;m
0,i
2 ;σi; r

∗
i ); and 0 otherwise

– if b = 1,
• output 1 if (Fproof , πproof(e0)) == RGS.Gb(f ; r′), and πproof(e0) = {σi(L

0
i ), σi(L

1
i )}i∈[m]

s.t. ∀i ∈ [m], mproof
i == UOT.OT2(CRS;m

i
1;σi(L

0
i ), σi(L

1
i ); r

′
i); and 0 otherwise

Protocol Σ-protocol for RGb

Fig. 14 Σ-protocol for Correct Garbling

Lemma 4. If RGS is an explainable RGS (Definition 9) and UOT is a compatible
explainable UOT protocol (Definition 10) then Figure 14 is a Σ-protocol for the
relation RGb (Equation 3) with soundness error 1

2 .
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Proof. In Figure 14, Let UOT = (OT1,OT2,OTupdt,OTfin,OTvrfy) be an explain-
able UOT protocol (Definition 10). Let RGS = (Gb,Rerand,En,Ev) be an ex-
plainable RGS (Definition 9). Completeness (Definition 6) holds since for a
correct statement, both when b = 0 and b = 1, the verification will output 1 by
construction of an Explainable RGS and Explainable UOT.

To show that special soundness (Definition 6) also holds, consider:

Fproof , {mproof
i }i∈[m] = a← P1(α,w)

r∗, {r∗i }i∈[m] = c0 ← P2(a, 0, α, w)

r′, {r′i}i∈[m] = c1 ← P2(a, 1, α, w)

where, r′ = RGS.Explain(r0, r
∗)

∀i ∈ [m], r′i = UOT.Explain(ri, r
∗
i , σi)

and let the PPT function Extract(a, 0, c0, 1, c1, α) works as follows:

– given r∗ and r′, compute the garbling randomness r0
– for each i ∈ [m], given r∗i and r′i, compute the updatable OT randomness ri
– compute (F0, e0) = RGS.Gb(f ; r0)

– return w = (r0, e0, {ri}i∈[m])

It remains to show that Figure 14 satisfies Special Honest-Verifier Zero
Knowledge (SHVZK - Definition 6). For this, let Sim(1κ, α, b) be a PPT algorithm
that operates as follows:

– Parse α = ({mi
1,m

0,i
2 }i∈[m], f, F0).

– If b = 0, sample r∗ and compute (Fproof , πproof)← RGS.Rerand(F0; r
∗). Parse

πproof = {σi}i∈[m] and for all i ∈ [m], sample r∗i and compute mproof
i =

UOT.OTupdt(m
0,i
2 ;σi; r

∗
i ). Output,

a = (Fproof , {mproof
i }i∈[m]), b = 0, c = (r∗, {r∗i }i∈[m])

– Otherwise if b = 1, sample s and compute (F ′proof , e
′
proof) ← RGS.Gb(f ; s).

Parse e′proof = {L′0i , L′1i }i∈[m] and for all i ∈ [m], sample si and compute
m′proofi = UOT.OT2(m

i
1;L

′0
i , L

′1
i ; si). Output,

a = (F ′proof , {m
′proof
i }i∈[m]), b = 1, c = (s, {si}i∈[m])

When b = 0, the output of the simulation is exactly identical to the real execution
of the Σ-protocol. When b = 1, the views are computationally indistinguishable. In
the latter case, in both the real and simulated views α = ({mi

1,m
0,i
2 }i∈[m], f, F0).

In the real execution, the first message a contains a rerandomized circuit Fproof

and updated OT messages {mproof
i }i∈[m] and the last message c contains the

composed randomnesses for both (r∗, {r∗i }i∈[m]). In the simulated view, a contains
a fresh garbling F ′proof and OT messages {m′proofi }i∈[m] created directly from the
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first OT message, while c contains fresh randomness used for both the garbling
and OT messages (s, {si}i∈[m]). It remains to show that,{

{mi
1,m

0,i
2 ,mproof

i , r∗i }

i∈[m],

r,r′←ROT;m
i
1←OT1(xi);

m0,i
2 =OT2(m

i
1,(L

0
i ,L

1
i );r);

mproof
i =OTupdt(m

0,i
2 ,σi;r

′);

r∗i =Explain(r,r′;σi)

,

{f, F0, Fproof , r
∗} r,r′←R;F0=Gb(f ;r);

Fproof=Rerand(F0;r
′);r∗=Explain(r,r′)

}
c
≈

{
{mi

1,m
0,i
2 ,m′proofi , si}

i∈[m],

r,si←ROT;m
i
1←OT1(xi);

m0,i
2 =OT2(m

i
1,(L

0
i ,L

1
i );r)

m′proof
i =OT2(m

i
1,(σi(L

0
i ),σi(L

1
i ));si)

,

{f, F0, F
′
proof , s}r,s←R;F0=Gb(f ;r);

F ′
proof=Gb(f ;s)

}

Consider the following sequence of hybrids:

– Hybrid H0. This is the same distribution as the LHS of the above equation.
It is distributed as the output of the real execution when b = 1.

H0 =

{
{mi

1,m
0,i
2 ,mproof

i , r∗i }

i∈[m],

r,r′←ROT;m
i
1←OT1(xi);

m0,i
2 =OT2(m

i
1,(L

0
i ,L

1
i );r);

mproof
i =OTupdt(m

0,i
2 ,σi;r

′);

r∗i =Explain(r,r′;σi)

,

{f, F0, Fproof , r
∗} r,r′←R;F0=Gb(f ;r);

Fproof=Rerand(F0;r
′);r∗=Explain(r,r′)

}

– Hybrid Hi. For each i ∈ [m], this is an intermediate hybrid which is distributed
as the output of the real execution when b = 1, up to the m− ith updated
OT message mproof

i . All the UOT messages beyond this are generated as in
the simulation.

Hi =

{
{mi′

1 ,m
0,i′

2 ,mproof
i′ , r∗i′}

i′≤m−i,

r,r′←ROT;m
i′
1←OT1(xi′ );

m0,i′
2 =OT2(m

i′
1 ,(L0

i′ ,L
1
i′ );r);

mproof

i′ =OTupdt(m
0,i′
2 ,σi′ ;r

′);

r∗
i′=Explain(r,r′;σi′ )

,

{mi′

1 ,m
0,i′

2 ,m′proofi′ , si′}
i′>m−i∈[m],

r,si′←ROT;m
i′
1←OT1(xi′ );

m0,i′
2 =OT2(m

i′
1 ,(L0

i′ ,L
1
i′ );r)

m′proof
i′ =OT2(m

i′
1 ,(σi′ (L

0
i′ ),σi′ (L

1
i′ ));si′ )

,

{f, F0, Fproof , r
∗} r,r′←R;F0=Gb(f ;r);

Fproof=Rerand(F0;r
′);r∗=Explain(r,r′)

}
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Note that the last of these hybrids has all UOT messages in the 3rd message
of the proof as messages generated in the simulation.

Hm =

{
{mi

1,m
0,i
2 ,m′proofi , si}

i∈[m],

r,si←ROT;m
i
1←OT1(xi);

m0,i
2 =OT2(m

i
1,(L

0
i ,L

1
i );r)

m′proof
i =OT2(m

i
1,(σi(L

0
i ),σi(L

1
i ));si)

,

{f, F0, Fproof , r
∗} r,r′←R;F0=Gb(f ;r);

Fproof=Rerand(F0;r
′);r∗=Explain(r,r′)

}
– Hybrid Hm+1. This is the last hybrid that is distributed as the RHS of the

distribution above and is the output of the simulator Sim when b = 1. This
differs from the previous hybrid in that the garbling in the 3rd message of
the proof is a fresh garbling of f using independent randomness s.

Hm+1 =

{
{mi

1,m
0,i
2 ,m′proofi , si}

i∈[m],

r,si←ROT;m
i
1←OT1(xi);

m0,i
2 =OT2(m

i
1,(L

0
i ,L

1
i );r)

m′proof
i =OT2(m

i
1,(σi(L

0
i ),σi(L

1
i ));si)

,

{f, F0, F
′
proof , s}r,s←R;F0=Gb(f ;r);

F ′
proof=Gb(f ;s)

}
Claim 5 Assuming that UOT is an explainable UOT protocol (Definition 10)
satisfying update explainability, then for all i ∈ [m], the hybrid distributions Hi

and Hi−1 are computationally indistinguishable.

Proof. Note that the hybrid distributions Hi and Hi−1 differ only in that in Hi−1,
proof message m′proofm−i is computed directly from mm−i

1 using fresh randomness
sm−i, as in the simulation. In Hi, proof message mproof

m−i is computed as an update
from m0,m−i

2 using randomness r∗m−i, as in the real execution. If there existed a
PPT adversary A that can distinguish between these hybrids with non-negligible
advantage, then this can be used in a black-box way by a PPT distinguisher D
to violate update explainability of UOT.

D knows RGS, UOT, the function f , input x and the index i. It com-
putes F0, Fproof and r∗ as in the real execution of the Σ-protocol for when
b = 1. Then for all i′ < m − i, it computes (mi′

1 ,m
0,i′

2 ,mproof
i′ , r∗i′) using

e0 and πproof as in the real execution as well. For all i′ > m − i ∈ [m], it
computes (mi′

1 ,m
0,i′

2 ,m′proofi′ , si′) as in the simulation. It then gives the tuple
(mm−i

1 ,m0,m−i
2 , xm−i ∈ x, (L0

m−i, L
1
m−i) ∈ e0, σm−i ∈ πproof) to the challenger C,

along with the randomness r used to create m0,m−i
2 from mm−i

1 . The challenger
then returns a message m. If m = (mm−i

1 ,m0,m−i
2 ,mproof

m−i, r
∗
m−i), then this tuple,

along with the view already generated, would belong to the hybrid distribution
Hi. Otherwise, if m = (mm−i

1 ,m0,m−i
2 ,m′proofm−i , sm−i), then this would belong to

the hybrid distribution Hi−1. D gives this to A and outputs whatever it outputs.
In this execution, D would have the same advantage as A, which is non-negligible.
However, since UOT is an explainable UOT protocol and update explainability
holds, it follows that no such D can exist and so no such A can exist.
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Claim 6 Assuming that RGS is an explainable RGS (Definition 9) satisfying
explainable garbling privacy, then the hybrid distributions Hm and Hm+1 are
computationally indistinguishable.

Proof. Note that the hybrid distributions Hm and Hm+1 differ only in that
in Hm+1, the proof garbling F ′proof is computed directly from f using fresh
randomness s, as in the simulation. In Hm, the proof garbling Fproof is computed
by rerandomizing F0 and r∗ is the composed randomness as in the real execution.
If there existed a PPT adversary A that can distinguish between these hybrids
with non-negligible advantage, then this can be used in a black-box way by a
PPT distinguisher D to violate explainable garbling privacy of RGS.

D knows RGS, UOT and the function f and input x. It computes the garbling
F0 and sends the tuple (f, F0, e0, x) to the challenger C along with the garbling
randomness r. The challenger then returns a message m containing f, F0, X
another garbling F ′ and randomness r′ such that (F ′, e′)← Gb(f ; r′). D uses e′

to generate the UOT messages for the proof as fresh OT sender’s messages derived
from {mi

1}i∈[m]. All these, except X, complete view is sent to A and D outputs
whatever A outputs. Note that if (F ′, r′) == (F ′proof , s) is a fresh garbling of f ,
then the above distribution is as in Hm+1. Otherwise, if (F ′, r′) == (Fproof , r

∗) is
a rerandomized garbling from F0 and the composed randomness, the distribution
is as in hybrid Hm. In this execution, D would have the same advantage as A,
which is non-negligible. However, since RGS is an explainable RGS and explainable
garbling privacy holds, it follows that no such D or A can exist.

Since none of the adjacent pairs of hybrids listed above are distinguishable
and there are polynomial number of hybrids in the security parameter κ, it follows
that the distributions of the real and simulated executions are computationally
indistinguishable.

Σ-Protocol for RRerand. For an explainable RGS (Definition 9) and compatible
explainable UOT protocol (Definition 10), consider the Σ-protocol in Figure 15.

The prover P has witness w = (rj , πj , {ri}i∈[m]). Both the prover P and verifier V have
α = (Fj−1, {mj−1,i

2 }i∈[m], Fj ,OTj ,CRS).

1. P1(α,w):
– sample r∗ and {r∗i }i∈[m] and compute (Fproof , πproof) = RGS.Rerand(Fj ; r

∗)

– parse πproof = {σi}i∈[m] and compute {mproof
i = UOT.OTupdt(CRS;m

j,i
2 ;σi; r

∗
i )}i∈[m]

– output a = (Fproof , {mproof
i }i∈[m])

2. V1(·): output b← {0, 1}
3. P2(a, b, α, w):

– if b = 0, output c = (r∗, {r∗i }i∈[m])

– if b = 1, compute r′ = RGS.Explain(rj , r
∗) and {r′i = UOT.Explain(ri, r

∗
i ;σi)}i∈[m]

• output c = (r′, {r′i}i∈[m])
4. V2(a, b, c, α):

– if b = 0,
• output 1 if (Fproof , πproof) == RGS.Rerand(Fj ; r

∗), and πproof = {σi}i∈[m] s.t. ∀i ∈ [m],
mproof

i == UOT.OTupdt(CRS;m
j,i
2 ;σi; r

∗
i )

• otherwise, output 0
– if b = 1,

Protocol Σ-protocol for RRerand
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• output 1 if (Fproof , πproof(πj)) == RGS.Rerand(Fj−1; r
′), and πproof(πj) = {σ′

i ◦ σi}i∈[m]

s.t. ∀i ∈ [m], mproof
i == UOT.OTupdt(CRS;m

j−1,i
2 ;σ′

i ◦ σi; r
′
i)

• otherwise, output 0

Fig. 15 Σ-protocol for Correct Rerandomizing

Lemma 5. If RGS is an explainable RGS (Definition 9) and UOT is a compatible
explainable UOT protocol (Definition 10) then Figure 15 is a Σ-protocol for the
relation RRerand (Equation 4) with soundness error 1

2 .

Proof. In Figure 15, Let UOT = (OT1,OT2,OTupdt,OTfin,OTvrfy) be an explan-
able UOT protocol (Definition 10). Let RGS = (Gb,Rerand,En,Ev) be an explan-
able RGS (Definition 9). Completeness (Definition 6) holds since for a correct
statement, both when b = 0 and b = 1, the verification will output 1 by construc-
tion of Explanable RGS and Explanable UOT.

To show that special soundness (Definition 6) also holds, consider:

Fproof , {mproof
i }i∈[m] = a← P1(α,w)

r∗, {r∗i }i∈[m] = c0 ← P2(a, 0, α, w)

r′, {r′i}i∈[m] = c1 ← P2(a, 1, α, w)

where, r′ = RGS.Explain(r, r∗)

∀i ∈ [m], r′i = UOT.Explain(ri, r
∗
i , σi)

and let the PPT function Extract(a, 0, c0, 1, c1, α) works as follows:

– given r∗ and r′, compute rj
– for each i ∈ [m], given r∗i and r′i, compute the updatable OT randomness ri
– compute (Fj , πj) = RGS.Rerand(Fj−1; rj)
– return w = (rj , πj , {ri}i∈[m])

It remains to show that Figure 15 satisfies Special Honest-Verifier Zero
Knowledge (SHVZK - Definition 6). For this, let Sim(1κ, α, b) be a PPT algorithm
that operates as follows:

– Parse α = ({mj−1,i
2 ,mj,i

2 }i∈[m], Fj−1, Fj)
– If b = 0, sample r∗ and compute (Fproof , πproof)← RGS.Rerand(Fj ; r

∗). Parse
πproof = {σi}i∈[m] and for each i ∈ [m], sample r∗i and compute mproof

i =

UOT.OTupdt(m
j,i
2 ;σi; r

∗
i ). Output,

a = (Fproof , {mproof
i }i∈[m]), b = 0, c = (r∗, {r∗i }i∈[m])

– Otherwise if b = 1, sample s and compute (Fproof , πproof)← RGS.Rerand(Fj−1; s).
Parse πproof = {σi}i∈[m] and for each i ∈ [m], sample si and compute
mproof

i = UOT.OTupdt(m
j−1,i
2 ;σi; si). Output,

a = (Fproof , {mproof
i }i∈[m]), b = 1, c = (s, {si}i∈[m])
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When b = 0, the simulation is exactly identical to the real execution of the
Σ-protocol. When b = 1, the views are computationally indistinguishable.
In the latter case, in both the real and simulated views the statement is
α = ({mj−1,i

2 ,mj,i
2 }i∈[m], Fj−1, Fj). In the real execution, the first message a con-

tains a garbling Fproof rerandomized from Fj and OT messages {mproof
i }i∈[m] up-

dated from {mj,i
2 }i∈[m]. The last message c contains the composed randomnesses

for both (r∗, {r∗i }i∈[m]). In the simulated view, a contains F ′proof rerandomized
from Fj−1 and OT messages {m′proofi }i∈[m] created directly from {mj−1,i

2 }i∈[m],
while c contains fresh randomness used for both the garbling and OT messages
(s, {si}i∈[m]). It remains to show that,

{
{mj−1,i

2 ,mj,i
2 ,mproof

i , r∗i }

i∈[m],

r,r′←ROT;m1←OT1(xi);

mj−1,i
2 ←OT2(m1,(L

0
i,j−1,L

1
i,j−1));

mj,i
2 =OTupdt(m

j−1,i
2 ,σj

i ;r);

mproof
i =OTupdt(m

j,i
2 ,σi;r

′);

r∗i =Explain(r,r′;σi)

,

{Fj−1, Fj , Fproof , r
∗}r,r′←R;Fj−1←Gb(f);Fj=Rerand(Fj−1;r);

Fproof=Rerand(Fj ;r
′);r∗=Explain(r,r′)

}
c
≈

{
{mj−1,i

2 ,mj,i
2 ,m′proofi , si}

i∈[m],

r,si←ROT;m1←OT1(xi);

mj−1,i
2 ←OT2(m1,(L

0
i,j−1,L

1
i,j−1));

mj,i
2 =OTupdt(m

j−1,i
2 ,σj

i ;r);

m′proof
i =OTupdt(m

j−1,i
2 ,(σj

i ◦σi);si)

,

{Fj−1, Fj , F
′
proof , s}r,s←R;Fj−1←Gb(f);Fj=Rerand(Fj−1;r);

F ′
proof=Rerand(Fj−1;s)

}

Consider the following sequence of hybrids:

– Hybrid H0. This is the same distribution as the LHS of the above equation.
It is distributed as the output of the real execution when b = 1.

H0 =

{
{mj−1,i

2 ,mj,i
2 ,mproof

i , r∗i }

i∈[m],

r,r′←ROT;m1←OT1(xi);

mj−1,i
2 ←OT2(m1,(L

0
i,j−1,L

1
i,j−1));

mj,i
2 =OTupdt(m

j−1,i
2 ,σj

i ;r);

mproof
i =OTupdt(m

j,i
2 ,σi;r

′);

r∗i =Explain(r,r′;σi)

,

{Fj−1, Fj , Fproof , r
∗}r,r′←R;Fj−1←Gb(f);Fj=Rerand(Fj−1;r);

Fproof=Rerand(Fj ;r
′);r∗=Explain(r,r′)

}

– Hybrid Hi. For each i ∈ [m], this is an intermediate hybrid which is distributed
as the output of the real execution when b = 1, up to the m− ith updated
OT message mproof

i . All the UOT messages beyond this are generated as in
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the simulation.

Hi =

{
{mj−1,i′

2 ,mj,i′

2 ,mproof
i′ , r∗i′}

i′≤m−i,

r,r′←ROT;m1←OT1(xi′ );

mj−1,i′
2 ←OT2(m1,(L

0
i′,j−1

,L1
i′,j−1

));

mj,i′
2 =OTupdt(m

j−1,i′
2 ,σj

i′ ;r);

mproof

i′ =OTupdt(m
j,i′
2 ,σi′ ;r

′);

r∗
i′=Explain(r,r′;σi′ )

,

{mj−1,i′
2 ,mj,i′

2 ,m′proofi′ , si′}

i′>m−i∈[m],

r,si′←ROT;m1←OT1(xi′ );

mj−1,i′
2 ←OT2(m1,(L

0
i′,j−1

,L1
i′,j−1

));

mj,i′
2 =OTupdt(m

j−1,i′
2 ,σj

i′ ;r);

m′proof
i′ =OTupdt(m

j−1,i′
2 ,(σj

i′◦σi′ );si′ )

,

{Fj−1, Fj , Fproof , r
∗}r,r′←R;Fj−1←Gb(f);Fj=Rerand(Fj−1;r);

Fproof=Rerand(Fj ;r
′);r∗=Explain(r,r′)

}
Note that the last of these hybrids has all UOT messages in the 3rd message
of the proof as messages generated in the simulation.

Hm =

{
{mj−1,i

2 ,mj,i
2 ,m′proofi , si}

i∈[m],

r,si←ROT;m1←OT1(xi);

mj−1,i
2 ←OT2(m1,(L

0
i,j−1,L

1
i,j−1));

mj,i
2 =OTupdt(m

j−1,i
2 ,σj

i ;r);

m′proof
i =OTupdt(m

j−1,i
2 ,(σj

i ◦σi);si)

,

{Fj−1, Fj , Fproof , r
∗}r,r′←R;Fj−1←Gb(f);Fj=Rerand(Fj−1;r);

Fproof=Rerand(Fj ;r
′);r∗=Explain(r,r′)

}
– Hybrid Hm+1. This is the last hybrid that is distributed as the RHS of the

distribution above and is the output of the simulator Sim when b = 1. This
differs from the previous hybrid in that the garbling in the 3rd message of the
proof is a rerandomized garbling from Fj−1 using independent randomness s.

Hm+1 =

{
{mj−1,i

2 ,mj,i
2 ,m′proofi , si}

i∈[m],

r,si←ROT;m1←OT1(xi);

mj−1,i
2 ←OT2(m1,(L

0
i,j−1,L

1
i,j−1));

mj,i
2 =OTupdt(m

j−1,i
2 ,σj

i ;r);

m′proof
i =OTupdt(m

j−1,i
2 ,(σj

i ◦σi);si)

,

{Fj−1, Fj , F
′
proof , s}r,s←R;Fj−1←Gb(f);Fj=Rerand(Fj−1;r);

F ′
proof=Rerand(Fj−1;s)

}
Claim 7 Assuming that UOT is an explainable UOT protocol (Definition 10)
satisfying explainable update privacy, then for all i ∈ [m], the hybrid distributions
Hi and Hi−1 are computationally indistinguishable.

Proof. Note that the hybrid distributions Hi and Hi−1 differ only in that in
Hi−1, proof message m′proofm−i is computed directly from mj−1,m−i

2 using fresh
randomness sm−i, as in the simulation. In Hi, proof message mproof

m−i is computed
as an update from mj,m−i

2 using randomness r∗m−i, as in the real execution. If
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there existed a PPT adversary A that can distinguish between these hybrids
with non-negligible advantage, then this can be used in a black-box way by a
PPT distinguisher D to violate sequential update explainability of UOT.

D knows RGS, UOT, the prior garbling Fj−1, {mj−1,i′
2 }i′∈[m], the input x and

the index i. It computes Fj , Fproof and r∗ as in the real execution of the Σ-protocol
for when b = 1. Then for all i′ < m − i, it computes (mj−1,i′

2 ,mj,i′

2 ,mproof
i′ , r∗i′)

using πj and πproof as in the real execution as well. For all i′ > m− i ∈ [m], it
computes (mj−1,i′

2 ,mj,i′

2 ,m′proofi′ , si′) as in the simulation. It then gives the tuple
(mj−1,m−i

2 ,mj,m−i
2 , σj

m−i ∈ πj , σm−i ∈ πproof , xm−i ∈ x, L
xm−i

m−i,j−1) to the chal-
lenger C, along with the randomness r used to create mj,m−i

2 from mj−1,m−i
2 . The

challenger then returns a message m. If m = (mj−1,m−i
2 ,mj,m−i

2 ,mproof
m−i, r

∗
m−i),

then this, along with the view already generated would belong to the hybrid
distribution Hi. Otherwise, if m = (mj−1,m−i

2 ,mj,m−i
2 ,m′proofm−i , sm−i), then this,

along with the view already generated would belong to the hybrid distribution
Hi−1. D gives this to A and outputs whatever it outputs. In this execution, D
would have the same advantage as A, which is non-negligible. However, since
UOT is an explainable UOT protocol and sequential update explainability holds,
it follows that no such D can exist and so no such A can exist.

Claim 8 Assuming that RGS is an explainable RGS (Definition 9) satisfying
sequential update explainability, then the hybrid distributions Hm and Hm+1 are
computationally indistinguishable.

Proof. Note that the hybrid distributions Hm and Hm+1 differ only in that
in Hm+1, the proof garbling F ′proof is computed directly from Fj−1 using fresh
randomness s, as in the simulation. In Hm, the proof garbling Fproof is computed
by rerandomizing Fj and r∗ is the composed randomness as in the real execution.
If there existed a PPT adversary A that can distinguish between these hybrids
with non-negligible advantage, then this can be used in a black-box way by a
PPT distinguisher D to violate explainable rerandomizing privacy of RGS.

D knows RGS, UOT and the prior garbling Fj−1, input x and input en-
coding information ej−1. It computes the garbling Fj and sends the tuple
(Fj−1, x, ej−1, Fj , πj) to the challenger C along with the rerandomizing ran-
domness r. The challenger then returns a message m containing Fj−1, Fj , Xj

another garbling F ′ and randomness r′ such that (F ′, π′) ← Rerand(Fj−1; r
′).

D uses π′ to generate the UOT messages for the proof as fresh OT updater’s
messages derived from {mj−1,i

2 }i∈[m]. This complete view, except Xj , is sent
to A and D outputs whatever A outputs. Note that if (F ′, r′) == (F ′proof , s) is
rerandomized from Fj−1, then the above distribution is as in Hm+1. Otherwise,
if (F ′, r′) == (Fproof , r

∗) is a rerandomized garbling from Fj and the composed
randomness, the distribution is as in hybrid Hm. In this execution, D would
have the same advantage as A, which is non-negligible. However, since RGS is an
explainable RGS and explainable rerandomizing privacy holds, it follows that no
such D can exist and so no such A can exist.
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Distributed Committed-Index OT FDComOT

Let {Sj}j∈[d]∪{0} be the senders where each Sj has strings (sj0, s
j
1). Let {Ci}i∈[m]

be choosers where each Ci has bit bi. Let publish denote the action of FDComOT

making a message visible to all parties. FDComOT works as follows:

1. Choosers’ Commit Phase:
– ∀i ∈ [m], receive input bi from Ci

2. ∀j ∈ [d] ∪ {0}, Senders’ Commit Phase:
– receive input (sj0, s

j
1) from Sj

3. Reveal Phase:
– publish ({sjb}j∈[d], {bi}i∈[m]), where b =

⊕m
i=0 bi

Fig. 16 Distributed Committed-Index OT

Since none of the adjacent pairs of hybrids listed above are distinguishable
and there are polynomial number of hybrids in the security parameter κ, it follows
that the distributions of the real and simulated executions are computationally
indistinguishable.

5.3 Distributed Committed-Index Oblivious Transfer

In this section we define and build the last key building-block for FVUOT: a
‘Distributed Committed-Index OT’ (DCOT) FDComOT. This is a functionality
between d+ 1 senders and m choosers. First, each chooser Ci samples a random
bit bi and inputs to the functionality. Each sender Sj gives 2 strings sj0, s

j
1 as

its input and the goal is for the functionality to make publicly visible: sjb, for a
choice bit b that combines the bits of all the choosers: b =

⊕m
i=0 bi. Figure 16

describes this functionality FDComOT. We need a protocol for this where each
server, acting as a sender, speaks once and the clients, acting as choosers, post at
most one message before and after, followed by public verification and decoding.

Definition 11. The tuple DComOT = (CRSgen,OT1,OT2,OTfin,OTdec) is a
Maliciously Secure SCALES Protocol for DCOT if the following protocol
UC-securely realizes FDComOT (Figure 16) in the (FCRSgen

CRS ,FB)-hybrid in the
presence of any PPT malicious adversary A that can corrupt all-but-one client
{Ci}i∈[m] adaptively and all-but-one of {Sj}j∈[d]∪{0} statically.

Inputs: bi ∈ {0, 1} for each chooser Ci, (s
j
0, s

j
1) ∈M2 for each Sj

FCRSgen
CRS : CRS← CRSgen(1κ)

∀i ∈ [m], Ci : Auxi,m
i
1 ← OT1(CRS; bi) mi

1 → FB
∀j ∈ [d] ∪ {0}, Sj : mj

2 ← OT2(CRS; {mi
1}i∈[m], (s

j
0, s

j
1)) mj

2 → FB
∀i ∈ [m], Ci : mi

3 ← OTfin(CRS; {mj
2}j∈[d]∪{0},Auxi)m

i
3 → FB
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public : {{sjb}j∈[d]∪{0},← OTdec(CRS; {mi
1}i∈[m],

{bi}i∈[m]} {mj
2}j∈[d]∪{0}, {m

i
3}i∈[m])

output {{sjb}j∈[d]∪{0}, {bi}i∈[m]}

where FCRSgen
CRS (Figure 7) is the Common Reference String functionality and

FB(Figure 6) is the Bulletin-Board functionality.

We build DComOT (Definition 11) using multiple instances of ‘Committed-
Index OT’ protocols. The ‘Committed-Index OT’ (COT) FComOT (Figure 18 –
Definition 12) is a simplification of the above functionality to the single-chooser
case. Such a protocol ComOT as in Definition 12 can be realized using a 2-round
OT with a reusable first message (Definition 4). This is done by simply letting the
first and second messages in ComOT be the first and second messages in the OT
protocol. In the third message ComOT.OTfin, the chooser outputs its choice bit
and the randomness used to compute the first message. Finally, in ComOT.OTdec

any party can use the COT transcript so far to derive the receiver’s OT output.

A Distributed Committed-Index OT Protocol. Given a COT protocol
ComOT = (CRSgen,OT1, OT2, OTfin,OTdec) as above, it can be extended to
a DCOT protocol (Definition 11). Consider the protocol below in the FComOT-
hybrid.

Lemma 6. Figure 17 UC-securely realizes FDComOT (Definition 11 – Figure 16)
in the (FComOT,FB)-hybrid.

For each i ∈ [m], let F i
ComOT (Figure 18) realize COT. Let FB be the bulletin-board

functionality. Let {Sj}j∈[d]∪{0} be the senders where each Sj has strings (sj0, s
j
1). Let

{Ci}i∈[m] be choosers where each Ci has bit bi.

– Choosers’ Commit Phase:
• ∀i ∈ [m], Ci sends bi to F i

ComOT

– ∀j ∈ [d] ∪ {0}, Sender’s commit phase:
• Sj has inputs sj0, s

j
1 ∈ {0, 1}ℓ and samples ∆← {0, 1}ℓ

• ∀i ∈ [m], Sj samples Li,j
0 ← {0, 1}ℓ and computes Li,j

1 = Li,j
0 ⊕∆

• ∀i ∈ [m], Sj sends Li,j
0 , Li,j

1 to F i
ComOT

• Sj computes, cj0 = sj0
(⊕m

i=1 L
i,j
0

)
and cj1 = sj1

(⊕m
i=1 L

i,j
0

)
⊕∆

• Sj sends (cj0, c
j
1) to FB

– Reveal Phase:
• ∀i ∈ [m], F i

ComOT publishes ({Li,j
bi
}j∈[d]∪{0}, bi)

• compute b =
⊕m

i=1 bi and ∀j ∈ [d] ∪ {0}, sjb = cjb
(⊕m

i=1 L
i,j
bi

)
• output ({sjb}j∈[d]∪{0}, {bi}i∈[m])

Protocol Realizing FDComOT

Fig. 17 Protocol Realizing FDComOT in the FComOT-hybrid
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Committed-Index OT FComOT

Let {Sj}j∈[d]∪{0} be the senders where each Sj has input strings (sj0, s
j
1). Let

C be the chooser with input bit b. Let publish denote the action of FComOT

making a message visible to all parties. FComOT works as follows:

1. Chooser’s Commit Phase:
– receive input b from C

2. ∀j ∈ [d] ∪ {0} Senders’ Commit Phase:
– receive input (sj0, s

j
1) from Sj

3. Reveal Phase:
– publish ({sjb}j∈[d]∪{0}, b)

Fig. 18 Committed-Index OT

We prove that DComOT (Figure 17) is a secure protocol for FDComOT in the
FComOT-hybrid. Before getting into the details of the proof, it becomes necessary
to first formally define the Committed-Index OT functionality FComOT.

Definition 12. The tuple ComOT = (CRSgen,OT1,OT2,OTfin,OTdec) is a Ma-
liciously Secure SCALES Protocol for COT if the following protocol UC-
securely realizes FComOT (Figure 18) in the (FCRSgen

CRS ,FB)-hybrid in the presence
of any PPT malicious adversary A that can corrupt C adaptively and all-but-one
of {Sj}j∈[d]∪{0} statically.

Inputs: b ∈ {0, 1} for chooser C, (sj0, s
j
1) ∈M2 for each Sj

FCRSgen
CRS : CRS← CRSgen(1κ)

C : Aux,m1 ← OT1(CRS; b) m1 → FB
∀j ∈ [d] ∪ {0}, Sj : mj

2 ← OT2(CRS;m1, (s
j
0, s

j
1)) mj

2 → FB
C : m3 ← OTfin(CRS; {mj

2}j∈[d]∪{0},Aux)m3 → FB
public : {{sjb}j∈[d]∪{0},← OTdec(CRS;m1,

{bi}i∈[m]} {mj
2}j∈[d]∪{0},m3)

output {{sjb}j∈[d]∪{0}, {bi}i∈[m]}

where FCRSgen
CRS (Figure 7) is the Common Reference String functionality and

FB(Figure 6) is the Bulletin-Board functionality.

We construct ComOT as in Definition 12 using a 2-round OT with a reusable
first message (Definition 4).
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Let OT = (CRSgen,OT1,OT2,OTfin) be a 2-round OT protocol with reusable first message
(Definition 4). Then ComOT = (CRSgen,OT1,OT2,OTfin,OTdec) operates as follows:

– CRS← CRSgen(1κ)
CRS← OT.CRSgen(1κ)

– Chooser’s commit phase: Aux,m1 ← OT1(CRS; b)

(m1,Aux)← OT.OT1(CRS, r; b) s.t. r ∈ Aux

– ∀j ∈ [d] ∪ {0}, Sender’s commit phase: mj
2 ← OT2(CRS;m1; s

j
0, s

j
1)

s
j
0, s

j
1 = {ai

0}i∈[ℓ], {a
i
1}i∈[ℓ]

∀i ∈ [ℓ],m
i
2 ← OT.OT2(CRS;m1, a

i
0, a

i
1)

mj
2 = {mi

2}i∈[ℓ]

– Reveal Phase: m3 ← OTfin(CRS; {mj
2}j∈[d]∪{0},Aux)

m3 = (b, r)

– {({sjb}j∈[d]∪{0}, b),⊥} ← OTdec(CRS;m1, {mj
2}j∈[d]∪{0},m3)

m3 = (b, r) and Aux← r

∀j ∈ [d] ∪ {0}, mj
2 = {mi

2}i∈[ℓ]

∀i ∈ [ℓ], a
i
b ← OT.OTfin(CRS;m

i
2,Aux)

s
j
b = {ai

b}i∈[ℓ]

output

{
({sjb}j∈[d]∪{0}, b) if (m1,Aux) = ComOT.OT1(CRS, r; b)

⊥ otherwise

Protocol Realizing FComOT

Fig. 19 Protocol realizing FComOT using OT

Lemma 7. If OT is a 2-round OT protocol (Definition 4) with reusable first
message that is secure against adaptive receiver corruption and static sender
corruption in the malicious setting, then Figure 19 is a maliciously secure SCALES
protocol UC-securely realizing FComOT (Figure 18 – Definition 12) in the FmultiOT-
hybrid.

Proof Outline. We need to show that given a 2-round maliciously secure OT
protocol with reusable first message, that is secure also in the presence of adaptive
receiver corruption, the COT protocol in Figure 19 UC-securely realizes FComOT

(Definition 12 – Figure 18) in the presence of a malicious PPT adversary. We
present this proof in the FmultiOT-hybrid.

In COT, the PPT malicious adversary A can corrupt C adaptively and up to
all-but-one of the senders statically. This corresponds to corrupting R adaptively
and for (d + 1)ℓ senders in the bit-OT protocol, statically corrupting up to
all-but-ℓ-consecutive senders, where ℓ is the length of the senders’ strings in COT.
The simulator for this protocol Sim works by emulating FmultiOT corresponding
to this corruption set. The view produced by the COT simulator can be shown
as identically distributed to the real view in the indistinguishable from the real
view in the FmultiOT-hybrid.

47



Proof. Let OT = (OT1,OT2,OTfin) be a 2-round maliciously secure OT protocol
that is secure against adaptive receiver corruption and under reuse of the first
OT message. Let FmultiOT be the corresponding functionality that it realizes.

For the Committed-Index OT protocol ComOT as in Figure 19, let A be
a malicious PPT adversary. A can corrupt the chooser C either statically or
adaptively after it sends the first message, and all-but-one senders in S. Consider
the following PPT simulator SimComOT:

1. if C is statically corrupted:
– SimComOT, emulating FmultiOT, receives b from the PPT adversary A.
– SimComOT passes b into FComOT.

otherwise, if C is initially honest SimComOT does nothing.
2. ∀j ∈ [d] ∪ {0}, if Sj is statically corrupted:

– SimComOT, emulating FmultiOT for a set of ℓ corrupt senders, {ai0, ai1}i∈[ℓ].
– SimComOT passes s0 = {ai0}i∈[ℓ] and s1 = {ai1}i∈[ℓ] into FComOT.

3. if C is adaptively corrupted:
– SimComOT gets b from FComOT and emulating FmultiOT, sends b to A.

4. if C is honest in the ‘reveal phase’:
– FComOT posts ({sjb}j∈[d]∪{0}, b) to B.

The complete view of the protocol produced by SimComOT consists of,{
b if C is statically corrupted

∀j ∈ [d] ∪ {0}
{
sj0, s

j
1 if Sj is corrupted

{sjb}j∈[d]∪{0}, b

This view is identical to that in the real execution in the FmultiOT-hybrid. Hence,
the protocol ComOT securely realizes FComOT in the presence of malicious adver-
saries in the SCALES model.

We are now ready to prove that DComOT (Figure 17) is a secure protocol for
FDComOT against all-but-one statically corrupted senders and all-but-one choosers
that can be adaptively corrupted by a malicious adversary, in the FComOT-hybrid.

Proof Outline. Let A be a PPT adversary that can statically corrupt all-but-one
of the senders and adaptively corrupt all-but-one of the choosers. We need to
show that DComOT is a secure protocol for FDComOT in the FComOT-hybrid. This
would imply that the DCOT protocol as in Figure 20 securely realizes FDComOT

in the plain model given a COT protocol as in Definition 12 for FComOT.
For DCOT, the PPT simulator SimDComOT, in the FComOT-hybrid would work

by first collecting all the choice bits bi from each statically corrupt client by
emulating FComOT. These are forwarded to FDComOT in the ‘commit-phase’. If a
server is corrupted, it would receive the 2 ciphertexts (cj0, c

j
1) posted and for all

i ∈ [m], the labels (Li
0, L

i
1) by emulating FComOT. The simulator checks if the

labels are well formed and extracts (sj0, s
j
1) to send to FDComOT. If a server is

not corrupted, it samples the ciphertexts (cj0, c
j
1) uniformly at random and posts
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these. For each client that is adaptively corrupted, FDComOT reveals their choice
bits to the simulator and this is given to the adversary. In the ‘reveal-phase’ when
FDComOT reveals {sjb}j∈[d]∪{0}, {bi}i∈[m] to the simulator, for each j ∈ [d] ∪ {0},
it prepares kjb = cjb ⊕ sjb. It samples each Li

bi
at random with the constraint

that kjb =
⊕m

i=1 L
i
bi

. Then is posts for all i ∈ [m], Li
bi
, bi. This completes the

simulation.
This simulated view is identically distributed to the real view of the protocol,

and hence the protocol is secure.

Proof. Let A be a PPT malicious adversary in the real world that can statically
corrupt all-but-one sender and adaptively corrupt all-but-one choosers. We need
to show that Figure 17 is a secure protocol for FDComOT in the FComOT-hybrid.

Let CS be the set of choosers that are statically corrupted and CA be the set
of adaptively corrupted choosers. Let S∗ be the set of corrupted senders. A can
also corrupt any number of parties that are not the senders or the choosers. The
PPT simulator SimDComOT in the FComOT-hybrid would work as follows:

1. for all corrupted clients Ci ∈ CS ,
– get bi by emulating the ith instance of FComOT.
– pass bi to FDComOT.

2. for each j ∈ [d] ∪ {0}, if Sj is corrupted:
– receive the ciphertexts (cj0, c

j
1) posted by A.

– for all i ∈ [m], get labels (Li
0, L

i
1) by emulating the ith instance of FComOT.

– if ̸ ∃∆ such that ∀i ∈ [m], Li
0 ⊕ Li

1 = ∆, send ⊥ to FDComOT.
– otherwise, compute Li

0 ⊕ Li
1 = ∆, kj0 =

⊕m
i=1 L

i
0 and kj1 = kj0 ⊕∆.

– extract sj0 = cj0 ⊕ kj0 and sj1 = cj1 ⊕ kj1 and pass (sj0, s
j
1) to FDComOT.

if Sj is honest:
– sample cj0 and cj1 uniformly at random and post it.

3. for each adaptively corrupted client Ci ∈ CA,
– A sends i to SimDComOT and this is passed to FDComOT.
– FDComOT gives bi that it gives to A, emulating the ith instance of FComOT.

4. when FDComOT reveals ({sjb}j∈[d]∪{0}, {bi}i∈[m]), for each honest Sj :
– compute kjb = cjb ⊕ sjb.
– for all i ∈ [m], sample Li

bi
at random but satisfying kjb =

⊕m
i=1 L

i
bi

.
– for all i ∈ [m], emulate the ith instance of FComOT and post (Li

bi
, bi).

Let κ be a computational security parameter. Let R be the space of randomness
for all participating parties and let r⃗ denote the contents of the random tapes of
all these parties. The view of in the above simulation is distributed as:{

{sj0, s
j
1}j∈[d]∪{0}, {bi}i∈[m],{cj0, c

j
1, {Li

0, L
i
1}i∈[m]}Sj∈S∗ ,

{cj0, c
j
1, {Li

bi}i∈[m]}Sj ̸∈S∗
}
κ∈N,r⃗∈R

This simulated view is identically distributed to the real view of the protocol,
and hence the protocol is secure.

Distributed Committed-Index OT in the Plain Model.
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Let ComOT = (CRSgen,OT1,OT2,OTfin,OTdec) be a COT protocol (Definition 12)
where sender’s inputs ∈ {0, 1}ℓ. The protocol
DComOT = (CRSgen,OT1,OT2,OTfin,OTdec) operates as follows:

– CRS← CRSgen(1κ)
CRS← ComOT.CRSgen(1κ)

– Choosers’ Commit Phase:
∀i ∈ [m], (Auxi,m

i
1)← OT1(CRS; bi)

(Auxi,m
i
1)← ComOT.OT1(CRS; bi; ri)

– ∀j ∈ [d] ∪ {0}, Sender’s commit phase:
mj

2 ← OT2(CRS; {mi
1}i∈[m]; s

j
0, s

j
1)

sj0, s
j
1 ∈ {0, 1}

ℓ

sample ∆← {0, 1}ℓ

∀i ∈ [m], Li,j
0 ← {0, 1}

ℓ, Li,j
1 = Li,j

0 ⊕∆

∀i ∈ [m], mi
2 ← ComOT.OT2(CRS;m

i
1;L

i,j
0 , Li,j

1 )

cj0 = sj0

( m⊕
i=1

Li,j
0

)
, cj1 = sj1

( m⊕
i=1

Li,j
0

)
⊕∆

mj
2 = (cj0, c

j
1, {m

i
2}i∈[m])

– Reveal Phase:
mi

3 ← OTfin(CRS; {mj
2}j∈[d]∪{0},Auxi)

∀j ∈ [d] ∪ {0},mi,j
2 = mi

2 ∈ mj
2

mi
3 ← ComOT.OTfin(CRS; {mi,j

2 }j∈[d]∪{0},Auxi)

– {({sjb}j∈[d]∪{0}, {bi}i∈[m]),⊥} ← OTCRS
dec ({mi

1}i∈[m], {mj
2}j∈[d]∪{0}, {m

i
3}i∈[m])

∀i ∈ [m], j ∈ [d] ∪ {0}, mi,j
2 = mi

2 ∈ mj
2

∀i ∈ [m], {({Li,j
bi
}j∈[d]∪{0}, bi),⊥} ← ComOT.OTdec(CRS;m

i
1, {mi,j

2 }j∈[d]∪{0},m
i
3)

b =

m⊕
i=1

bi

∀j ∈ [d] ∪ {0}, sjb = cjb

( m⊕
i=1

Li,j
bi

)
output ({sjb}j∈[d]∪{0}, {bi}i∈[m])

Protocol Realizing FDComOT

Fig. 20 Protocol Realizing FDComOT in the Plain Model
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Ephemeral Prover Zero-Knowledge Proof Functionality FEPZK

Let {Pj}j∈[d]∪{0} be the provers where P0 has statement α0 and witness w0 for
relation R0 and for j ∈ [d], each Pj has input statement αj and witness wj for
relation R1. Let publish denote the action of FEPZK making a message visible
to all parties. The functionality FEPZK works as follows:

1. ∀j ∈ [d] ∪ {0} Prover’s Commit Phase:
– receive input (αj , wj) from Pj and publish αj

2. Reveal Phase:
– compute b0 = R0(α0, w0) and ∀j ∈ [d], compute bj = R1(αj , αj−1, wj)
– publish b =

∧
j∈[d]∪{0} bj

Fig. 21 Ephemeral Prover Zero-Knowledge Proof Functionality

5.4 Ephemeral Prover Zero-Knowledge Proofs

Given a DCOT protocol (Definition 11 – Figure 16), the Σ-protocols in Section 5.2
can be converted into an ephemeral prover zero-knowledge proof in the SCALES
model. Consider a EPZK functionality as in Figure 21. Recall that Σ-protocols
(Definition 6) have a three-message-transcript: (a, b, c). In our SCALES protocol,
we need the encoding ephemeral server to be the prover. However, it can only
send one message, as opposed to the two messages required in the Σ-protocol.
An Ephemeral Prover Zero-Knowledge Proof is formalized in Definition 13.

Definition 13. For {Sj}j∈[d]∪{0}, each proving server Sj has witness wj and
statement αj. For public relations R0,R1, S0 needs to prove R0(α0, w0) = 1
and all other Sj prove R1(αj , wj) = 1. Let {Ci}i∈[m] be a set of choosers. An
ephemeral prover zero-knowledge proof is a tuple EPZK = (CRSgen,EPZK1,
EPZKP ,EPZK2,EPZKV ) that UC-securely realizes FEPZK (Figure 21) in the
(FCRSgen

CRS ,FB)-hybrid in the presence of a PPT malicious adversary A corrupting
all-but-one client {Ci}i∈[m] adaptively and all-but-one of {Sj}j∈[d]∪{0} statically.

FCRSgen
CRS : CRS← CRSgen(1κ)

∀i ∈ [m], Ci : Auxi,m
i
1 ← EPZK1(CRS) mi

1 → FB
∀j ∈ [d] ∪ {0}, Sj : πj ← EPZKP (CRS;αj , wj , {mi

1}i∈[m]) πj → FB
∀i ∈ [m], Ci : mi

2 ← EPZK2(CRS; {πj}j∈[d]∪{0},Auxi) mi
2 → FB

public : {0, 1} ← EPZKV (CRS; {mi
1}i∈[m], {πj}j∈[d]∪{0},

{mi
2}i∈[m], {αj}j∈[d]∪{0})

output {0, 1}

where FCRSgen
CRS (Figure 7) is the Common Reference String functionality and

FB(Figure 6) is the Bulletin-Board functionality.

The verifier’s role is split into one that provides the challenge and one that
verifies the proof. We delegate the former role in our protocol to the input clients.
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Each client picks a challenge and the final challenge used is an XOR of all the
individual inputs. The latter role of verifying the proof itself is delegated to other
ephemeral servers that post a bit to B (indicating an accept or reject).

Lemma 8. If Sigma is a Σ-protocol with soundness error 1
2 for the relations

(α0, w0) ∈ R0 and ∀j ∈ [d], (αj , wj) ∈ R1, then Figure 22 realizes FEPZK (Fig-
ure 21) in the (FDComOT,FB)-hybrid, where FB is the Bulletin-Board functionality
(Figure 6) and FDComOT is the Distributed Committed-Index OT functionality
(Figure 16).

Let s be a statistical security parameter. Let FDComOT (Figure 16) be the distributed
committed-index OT functionality with Fk

DComOT denoting the kth instance of
DComOT. Let FB be the bulletin-board functionality. Let Sigma = (P1, V1, P2, V2)
be a Σ-protocol with soundness 1

2
where a← P1(x,w), b ∈ {0, 1} ← V1(·),

c← P2(a, b, x, w), {0, 1} ← V2(a, b, c, x). Consider the following protocol realizing
FEPZK in the FDComOT-hybrid:

1. ∀i ∈ [m], each client Ci does the following:
– ∀k ∈ [s], sample bit bki and give to Fk

DComOT in the ‘commit-phase’
2. ∀j ∈ [d] ∪ {0}, the server Sj (prover) does the following:

– ∀k ∈ [s] compute ak
j ← Sigma.P1(αj , wj)

– ∀k ∈ [s] compute sj,k0 = Sigma.P2(αj , wj , a
k
j , 0) and

sj,k1 = Sigma.P2(αj , wj , a
k
j , 1)

– ∀k ∈ [s] pass (sj,k0 , sj,k1 ) to Fk
DComOT

– give (αj , {ak
j }k∈[s]) to FB

3. each Fk
DComOT publishes ({sj,kb }j∈[d]∪{0}, {b

k
i }i∈[m]) in the ‘reveal-phase’

4. each server (verifier) does the following:
– ∀k ∈ [s] compute bk =

⊕m
i=1 b

k
i

– send {Sigma.V2(a
k
j , b

k, sj,k
bk

, αj)}k∈[s],j∈[d]∪{0} to FB

Protocol Realizing FEPZK

Fig. 22 Construction for FEPZK

We need to show that it securely realizes FEPZK in the FDComOT-hybrid.

Proof Outline. For (α0, w0) ∈ R0 and for each j ∈ [d], in the relation (αj , wj) ∈
R1, let Sigma = (P1, V1, P2, V2) be a Sigma protocol with soundness 1

2 such that
b ∈ {0, 1} ← Sigma.V1(·). We need to prove that the above protocol realizes
FEPZK with negligible soundness error.

Let A be a PPT adversary that corrupts all-but-one of the provers statically,
and all-but-one of the clients adaptively. A simulator SimEPZK for the above
protocol would work by first receiving the bits {bki }k∈[s] from each statically
corrupt client Ci by emulating each Fk

DComOT in the ‘commit-phase’. For each
corrupt proving server Sj , it receives {sj,k0 , sj,k1 }k∈[s] also by emulating each
Fk

DComOT. It reads {akj }k∈[s] that the server posts and then it calls the extraction
algorithm until it gets a valid witness wj for at least one k ∈ [s]. Then (αj , wj)
are passed to FEPZK. If Sj is honest, first sample {bki }k∈s corresponding to the
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honest clients Ci and compute bk = ⊕i∈[m]b
k
i . Then use the simulator of the

sigma protocol to generate {akj , s
j,k
bk
}k∈[s]. Post {akj }k∈[s]. In the end, once FEPZK

responds to SimEPZK, it posts {sj,kb }j∈[d]∪{0}, {bki }i∈[m] on behalf of each Fk
DComOT

execution.
The view produced by this simulation differs from that in the real execution

only for the transcripts produced by the Σ-protocol simulation on behalf of
the honest provers. Therefore the distribution of both views can be show as
computationally indistinguishable by reduction to the indistinguishability of the
distribution of the views for the Σ-protocol.

Proof. For (α0, w0) ∈ R0 and for each j ∈ [d], in the relation (αj , wj) ∈ R1, let
Sigma = (P1, V1, P2, V2) be a Sigma protocol (Definition 6) with soundness 1

2
such that b ∈ {0, 1} ← Sigma.V1(·). Such a protocol satisfies ‘special soundness’
and there exists a PPT algorithm,

wj ← Sigma.Extract(a, b, c, b′, c′, αj)

The protocol also satisfies ‘special honest-verifier zero-knowledge’ so there exists
a PPT simulator,

(a, b, c)← Sigma.Sim(1κ, αj , b)

Given these building-blocks, we need to prove that the above protocol realizes
FEPZK with negligible soundness error.

Let A be a PPT adversary that corrupts all-but-one of the provers statically,
and all-but-one of the clients adaptively. Let CS be the set of statically corrupted
clients, CA be the set of adaptively corrupted clients, and S∗ be the set of
corrupted proving servers. The PPT simulator SimEPZK operates as follows:

– ∀k ∈ [s], SimEPZK emulates Fk
DComOT to receive {bki }Ci∈CS

from A
– ∀j ∈ [d] ∪ {0}, if Sj is corrupt,
• ∀k ∈ [s], SimEPZK emulates Fk

DComOT and gets (sj,k0 , sj,k1 ) from A
• SimEPZK reads {akj }∈[s] that A posts
• ∀k ∈ [s], SimEPZK invokes {wj ,⊥} ← Sigma.Extract(akj , 0, s

j,k
0 , 1, sj,k1 , αj)

until it gets a valid wj

• SimEPZK gives (αj , wj) to FEPZK that posts αj

if Sj is honest,
• SimEPZK samples the bits {bki }k∈[s] for each honest client Ci

• FEPZK publishes αj

• ∀k ∈ [s], SimEPZK computes bk = ⊕i∈[m]b
k
i and then invokes,

(ak∗j , bk, sj,k∗
bk

)← Sigma.Sim(1κ, αj , b
k)

• SimEPZK publishes {ak∗j }k∈[s]
– for each adaptively corrupted client Ci ∈ CA,
• SimEPZK emulates each Fk

DComOT and gives {bki }Ci∈CA
to A

– in the reveal phase for each Fk
DComOT,

• publish ({sj,kb }j∈[d]∪{0}, {bki }i∈[m])
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Let κ be a computational security parameter. Let R be the space of randomness
for all participating parties and r⃗ denote the contents of their random tapes. The
view produced in the above execution is distributed as,{

{αj , wj}j∈[d]∪{0}, {bki }i∈[m],k∈[s],

{akj , s
j,k
0 , sj,k1 }k∈[s],Sj∈S∗ , {ak∗j , sj,k∗

bk
}k∈[s],Sj ̸∈S∗

}
κ∈N,r⃗∈R

Let s be the number of provers not corrupted by A. Consider the following
s2 + 1 hybrid distributions:

– Hybrid H0. This is the distribution of the output of SimEPZK. This differs
from the distribution of the view of A in the real execution only in that A
receives the output of the Σ-protocol simulator for all honest provers.

H0 =
{
{αj , wj}j∈[d]∪{0}, {bki }i∈[m],k∈[s],

{akj , s
j,k
0 , sj,k1 }k∈[s],Sj∈S∗ , {ak∗j , sj,k∗

bk
}k∈[s],Sj ̸∈S∗

}
κ∈N,r⃗∈R

– Hybrid Hjs+k. For each j ∈ [s], k ∈ [s], this is the distribution output by an
intermediate hybrid experiment in which all the messages up to the js+ kth

Σ-protocol execution messages of an honest prover are generated as in the
real protocol execution. The rest of the messages are generated as in the
simulation.

Hjs+k = {{αj′ , wj′}j′∈[d]∪{0}, {bk
′

i }i∈[m],k′∈[s],

{ak
′

j′ , s
j′,k′

0 , sj
′,k′

1 }k′∈[s],Sj′∈S∗ , {ak
′

j , sj
′,k′

bk′ }k′<k,(k′=k,j′<j),

{ak
′∗

j , sj
′,k′∗

bk′ }k′>k,(k′=k,j′≥j)}

The last of the above hybrids Hss is the distribution produced by the real
execution of the protocol.

Claim 9 Assume that Sigma is a Σ-protocol with soundness 1
2 such that b ∈

{0, 1} ← Sigma.V1(·), for the relation (α0, w0) ∈ R0 and for each j ∈ [d], the
relation (αj , wj) ∈ R1. Then for each i ∈ [ss], the views in the hybrid distributions
Hi and Hi−1 are computationally indistinguishable.

Proof. Let j ∈ [s], k ∈ [s] be such that i = js+ k. Then the hybrid distributions
Hi and Hi−1 differ only in the way that the jth honest prover’s kth Σ-protocol
transcript is produced. In Hi, this is produced as in the real execution of the
Σ-protocol. In Hi−1, this is produced as given in the output of the simulator
Sigma.Sim. Since the Σ-protocol satisfies ‘special honest-verifier zero-knowledge’,
it follows that both these transcripts are computationally indistinguishable.

However, if there existed a PPT adversary A that can distinguish between
hybrids Hi and Hi−1 with non-negligible advantage ϵ, then A can be used in a
black-box way as a subroutine by a PPT distinguisher D to distinguish between
the output of Sigma.Sim and the Σ-protocol. D works by first generating the view
of the protocol up to the jth honest prover’s k − 1th Σ-protocol transcript as in
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the real execution. It then gives the statement αj , witness wj and the bit bk to
the challenger C that returns a message m. D then completes the rest of the view
of the protocol as in the simulation SimEPZK and gives this to A. Note that if
m = (ak∗j , bk, sj,k∗

bk
) as output by Sigma.Sim then the complete transcript belongs

in the distribution Hi−1. Otherwise, if m = (akj , b
k, sj,k

bk
) as in the real execution

of the algorithms in Sigma, then the transcript belongs in the distribution Hi.
Finally, D outputs whatever A outputs. In this experiment D’s advantage is
the same as that of A, which is non-negligible. However since Sigma is a secure
Σ-protocol, no such D can exist and hence no such A can exist.

Therefore, as none of the listed adjacent hybrids are distinguishable and there
are polynomially many such hybrids, it follows that the distributions of the real
and simulated transcripts are also computationally indistinguishable.

Realizing EPZK in the Plain Model.

Let s be a statistical security parameter. Let DComOT = (CRSgen,OT1,OT2,OTfin,
OTdec) (Definition 11) be a protocol realizing FDComOT. Let Sigma = (P1, V1, P2, V2)
be a Σ-protocol with soundness 1

2
where a← P1(x,w), b ∈ {0, 1} ← V1(·),

c← P2(a, b, x, w), {0, 1} ← V2(a, b, c, x). Consider the following protocol
EPZK = (CRSgen,EPZK1,EPZKP ,EPZK2,EPZKV ):

1. CRS← CRSgen(1κ)
CRS← DComOT.CRSgen(1κ)

2. ∀i ∈ [m], Auxi,mi
1 ← EPZK1(CRS)

∀k ∈ [s], b
k
i ← {0, 1} Auxi = {Auxki }k∈[s]

∀k ∈ [s],Auxki ,m
k,i
1 ← DComOT.OT1(CRS; b

k
i ) m

i
1 = {mk,i

1 }k∈[s]

3. ∀j ∈ [d] ∪ {0}, πj ← EPZKP (CRS;αj , wj , {mi
1}i∈[m])

∀k ∈ [s], a
k
j ← Sigma.P1(αj , wj)

∀k ∈ [s], s
j,k
0 ← Sigma.P2(a

k
j , 0, αj , wj) s

j,k
1 ← Sigma.P2(a

k
j , 1, αj , wj)

∀k ∈ [s],m
j,k
2 ← DComOT.OT2(CRS; {mk,i

1 }i∈[m]; s
j,k
0 , s

j,k
1 )

πj = (αj , {ak
j ,m

j,k
2 }k∈[s])

4. ∀i ∈ [m], mi
2 ← EPZK2(CRS; {πj}j∈[d]∪{0},Auxi)

∀k ∈ [s],m
i,k
3 ← DComOT.OTfin(CRS; {mj,k

2 }j∈[d]∪{0},Aux
k
i ) m

i
2 = {mi,k

3 }k∈[s]

5. b← EPZKV (CRS; {mi
1}i∈[m], {πj}j∈[d]∪{0}, {mi

2}i∈[m], {αj}j∈[d]∪{0})
– ∀k ∈ [s], compute

{sj,k
bk
}j∈[d]∪{0},

{bki }i∈[m] ← DComOT.OTdec(CRS; {mk,i
1 }i∈[m], {m

j,k
2 }j∈[d]∪{0}, {m

i,k
3 }i∈[m])

b
k
=

m⊕
i=1

b
k
i ∀j ∈ [d] ∪ {0},bj

k = Sigma.V2(a
k
j , b

k
, s

j,k

bk
, αj)

Protocol Realizing FEPZK
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– output b =
∧

k∈[s],j∈[d]∪{0} b
j
k

Fig. 23 Construction for FEPZK

It is immediate that the protocol in Figure 22 has the same communication
pattern as in Definition 13 and is therefore a SCALES protocol.

5.5 Verifiable Updatable OT Protocol

Given all the building blocks described in the previous sections, we are now ready
to describe a protocol that realizes FVUOT (Figure 10).

Theorem 2. Let RM0 and RΣ
1 be two NP-relations. Let UOT = (CRSgen,OT1,

OT2,OTupdt,OTfin,OTvrfy) be a UOT protocol (Definition 7) that UC-securely

realizes FM,Σ
UOT . Then the protocol in Figure 24 realizes FR

M
0 ,RΣ

1

VUOT (Figure 10) in

the (FR
M
0 ,RΣ

1

EPZK ,FB)-hybrid, where these functionalities are as in Figure 21 and
Figure 6 respectively.

Let UOT = (CRSgen,OT1,OT2,OTupdt,OTfin,OTvrfy) be a UOT protocol
(Definition 7) that computes FUOT (Figure 12) among 1 sender, 1 receiver and d
updaters. Let FEPZK (Figure 21) be a zero-knowledge functionality for d+ 1 servers
and m challengers. Let C = {Ci}i∈[m] be the set of receivers where Ci has input
xi ∈ {0, 1}. Let S be a sender with inputs {s0i , s1i }i∈[m] where each string
sbi ∈ {0, 1}ℓ. Let U = {Uj}j∈[d] be updaters s.t. Uj has {σj

i }i∈[m] and each
σj
i : {0, 1}ℓ → {0, 1}ℓ. Let R0 be a relation with statement α0 and witness w0 and
R1 be a relation s.t. for each j ∈ [d], statement αj and witness wj ,

{0, 1} ← R0(α0, w0, {s0i , s
1
i }i∈[m])

{0, 1} ← R1(αj−1, αj , wj , {σj
i }i∈[m])

Let FB be a bulletin-board. The protocol VUOT operates as follows:

CRS← UOT.CRSgen(1κ)

1. Commit Phase: All receivers Ci ∈ C send mi
1 to FB where

AuxUOT
i ,m

i
1 ← UOT.OT1(CRS; xi)

2. Initial OT: Sender S computes,

∀i ∈ [m],m
0,i
2 ← UOT.OT2(CRS;m

i
1, (s

0
i , s

1
i ))

α,w → FEPZK where, α = α0, {m0,i
2 }i∈[m] w = w0, {s0i , s

1
i }i∈[m]

FEPZK publishes α and all receivers Ci ∈ C compute,

Mi,0 ← UOT.OTfin(CRS;Aux
UOT
i ,m

0,i
2 )

{s0,ixi
,⊥} ← UOT.OTvrfy(CRS;Mi,0)

Protocol Realizing FR0,R1
VUOT in the (FR0,R1

EPZK ,FB)-hybrid
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3. Successive Update: Each updater Uj ∈ U computes,

∀i ∈ [m],m
j,i
2 ← UOT.OTupdt(CRS;m

j−1,i
2 , σ

j
i )

α,w → FEPZK where, α = αj , {mj,i
2 }i∈[m] w = wj , {σj

i }i∈[m]

FEPZK publishes α and all receivers Ci ∈ C compute,

Mi,j ← UOT.OTfin(CRS;Aux
UOT
i ,m

j,i
2 )

{sj,ixi
,⊥} ← UOT.OTvrfy(CRS;Mi,j)

4. Verification Phase: FEPZK publishes {bj}j∈[d]∪{0}
5. If b =

⋂
j∈[d]∪{0} bj == 1, all receivers Ci ∈ C send Mi,d to FB where

Mi,d ← UOT.OTfin(CRS;Aux
UOT
i ,m

d,i
2 )

Any party can compute, ∀i ∈ [m], {sd,ixi
,⊥} ← UOT.OTvrfy(CRS;Mi,d)

Fig. 24 Construction for FVUOT in the FEPZK-hybrid

Proof. We need to show that the functionality FVUOT (Figure 10) is realized
by the protocol in Figure 24. Let B be the bulletin-board. Let A be a PPT
malicious adversary. Among the parties that A corrupts, let CS ⊂ R be the set of
statically corrupted receivers. Let CA ⊂ R− CS denote the set of receivers that
A adaptively corrupts after the ‘commit phase’ in FVUOT. Let S ⊂ {S} ∪ U be
the set of statically corrupted updaters and sender such that at least one party
is honest. Let the honest updater/sender be Ej∗. Note that A may also corrupt
parties not involved in the computation and it has access to everything on B.

Let FR0,R1

EPZK (Figure 21) be the functionality realizing ephemeral-prover zero-
knowledge for relations R0, R1. Let UOT = (OT1,OT2,OTupdt,OTfin,OTvrfy)
be a UOT protocol (Definition 7) realizing the functionality FUOT (Figure 12).
For i ∈ [m], let UOTi be the instance of the UOT functionality with Ri as the
receiver and let Simi

UOT be the corresponding PPT simulator that can simulate
the view of this protocol in the presence of an adversary corrupting all-but-one
updaters and sender statically and the receiver adaptively. Then let Sim be a
PPT simulator in the FEPZK-hybrid that uses {Simi

UOT}i∈[m] as a black-box and
operates as follows:

1. In the ‘commit phase’ of the protocol,
– for each statically corrupted receiver Ri ∈ CS , Sim calls Simi

UOT and
extracts xi from A.

– Sim passes {xi}Ri∈CS
to FVUOT.

2. For every receiver Ri ∈ CA that A adaptively corrupts,
– Sim sends i to FVUOT and receives xi.
– Sim gives xi to A.

3. In the ‘initial OT’ phase, if S is corrupted,
– Sim emulates FEPZK and receives (α0, w0) from A.

It extracts {si0, si1}i∈[m] ∈ w0 and ∀i ∈ [m], invoke Simi
UOT with (si0, s

i
1).

– Sim sends ({si0, si1}i∈[m], α0, w0p) to FVUOT.
Otherwise, it sends ABORT.
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– Sim computes b0 = R0(α0, w0) and posts α0 onto B.
– Sim uses {s0i = sixi

}Ri∈CA∪CS
to complete executing each Simi

UOT.
If S is honest, FVUOT posts α0 onto B and Sim gets for each corrupted Ri

the string sixi
using which it completes the execution of Simi

UOT with A.
4. In the ‘successive update’ phase, if Uj is corrupted,

– Sim emulates FEPZK and receives (αj , wj) from A.
It extracts {σi

j}i∈[m] ∈ wj and ∀i ∈ [m], it continues Simi
UOT with σi

j .
– Sim sends ({σi

j}i∈[m], αj , wj) to FVUOT.
Otherwise, it sends ABORT.

– Sim computes bj = R1(αj , wj) and posts αj onto B.
It uses {sjxi

= σi
j(s

j−1
i )}Ri∈CA∪CS

to complete each Simi
UOT with A.

If Uj is honest, FVUOT posts αj onto B and Sim gets for each corrupted Ri

the string sji using which it completes the execution of Simi
UOT with A.

5. In the ‘verification phase’,
– Sim emulates FEPZK and posts b =

⋂
j∈[d]∪{0} bj onto B.

6. If b = 0, publish ABORT. Otherwise,
– For each i ∈ [m], Sim completes the execution of Simi

UOT.

Let κ be the computational security parameter. Let R be the space of randomness
of all participating parties and let r⃗ be the contents of the random tape of the
participating parties. Let us denote by τSimi

UOT
the transcript output by the

execution of Simi
UOT. The view of produced by Sim is distributed as,{

{xi}i∈[m], {si0, si1}i∈[m], {σi
j}i∈[m],j∈[d], {αj , {sji}Ri∈CS∪CA

}j∈{0}∪[d],
{wj}j ̸=j∗∈[d], b, {sdi }i∈[m], {τSimi

UOT
}i∈[m]

}
κ∈N,r⃗∈R

This is identical to the real view with the exception that all the messages in all
the instances of the UOT protocol are simulated. The distribution of the above
view can be show as computationally indistinguishable from the real view by
considering a set of m+ 1 hybrids as follows:

– Hybrid H0. This is the distribution of the output of Sim. This differs from
the distribution of the view in the real execution only in that all the UOT
sub-protocol transcripts are simulated.

H0 =
{
{xi}i∈[m], {si0, si1}i∈[m], {σi

j}i∈[m],j∈[d], {αj , {sji}Ri∈CS∪CA
}j∈{0}∪[d],

{wj}j ̸=j∗∈[d], b, {sdi }i∈[m], {τSimi
UOT
}i∈[m]

}
κ∈N,r⃗∈R

– Hybrid Hk. For each k ∈ [m], this is the distribution output by an intermediate
hybrid experiment in which all the messages of the first k UOT protocol
executions are generated as in the real protocol execution. The rest of the
messages are generated as in the UOT simulation.

Hk =
{
{xi}i∈[m], {si0, si1}i∈[m], {σi

j}i∈[m],j∈[d], {αj , {sji}Ri∈CS∪CA
}j∈{0}∪[d],

{wj}j ̸=j∗∈[d], b, {sdi }i∈[m], {τ iUOT}i≤k, {τSimi
UOT
}i>k∈[m]

}
κ∈N,r⃗∈R

The last of the above hybrids Hm is the distribution produced by the real
execution of the protocol.
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Claim 10 Assume that UOT is a UOT protocol that realizes the functionality
FUOT (Definition 7) in the presence of a PPT malicious adversary corrupting
all-but-one of the sender and updaters statically and the receiver adaptively.
Then for each k ∈ [m], the views in the hybrid distributions Hk and Hk−1 are
computationally indistinguishable.

Proof. The hybrid distributions Hk and Hk−1 differ only in the way that the
kth UOT sub-protocol transcript is produced. In Hk, this is produced as in the
real execution of the functions in UOT. In Hk−1, this is produced as given in the
output of the simulator SimUOT. Since UOT securely realizes FUOT (Definition 7)
in the presence of a PPT malicious adversary corrupting all-but-one of the sender
and updaters statically and the receiver adaptively, it follows that both these
transcripts are computationally indistinguishable.

However, if there existed a PPT adversary A that can distinguish between
hybrids Hk and Hk−1 with non-negligible advantage ϵ, then A can be used in a
black-box way as a subroutine by a PPT distinguisher D to distinguish between
the output of SimUOT and the protocol UOT. D works by first generating the
view of the protocol up to the k − 1th UOT protocol transcript as in the real
execution. It then gives the inputs xk, (sk0 , sk1) and {σj

k}j∈[d] to the challenger C
that returns a message m. D then completes the rest of the view of the protocol
as in the simulation SimUOT and gives this to A. Note that if m = τSimk

UOT
as

output by SimUOT then the complete transcript belongs in the distribution Hk−1.
Otherwise, if m = τkUOT as in the real execution of the algorithms in UOT, then
the transcript belongs in the distribution Hk. Finally, D outputs whatever A
outputs. In this experiment D’s advantage is the same as that of A, which is
non-negligible. However since UOT is a secure protocol, no such D can exist and
hence no such A can exist.

Therefore, as none of the listed adjacent hybrids are distinguishable and there
are polynomially many such hybrids, it follows that the distributions of the real
and simulated transcripts are also computationally indistinguishable.

Verifiable Updatable OT in the Plain Model.

Let UOT = (CRSgen,OT1,OT2,OTupdt,OTfin,OTvrfy) be a UOT protocol
(Definition 7) that for all i ∈ [m], computes F i

UOT (Figure 12) for 1 sender, 1 receiver
and d+ 1 updaters. Let EPZK = (CRSgen,EPZK1,EPZKP , EPZK2,EPZKV ) be a
zero-knowledge protocol (Definition 13) for d+ 1 servers and m challengers
computing FEPZK (Figure 21).
Let R = {Ri}i∈[m] be the set of receivers where Ri has input xi ∈ {0, 1}.
Let S be a sender with inputs {s0i , s1i }i∈[m] where each string sbi ∈ {0, 1}ℓ.
Let R0 be a relation with statement α0 and witness w0 s.t.,

{0, 1} ← R0(α0, w0, {s0i , s
1
i }i∈[m])

Let U = {Uj}j∈[d] be updaters s.t. Uj has {σj
i }i∈[m] and σj

i : {0, 1}ℓ → {0, 1}ℓ.
For each j ∈ [d], let R1 be a relation with statement αj and witness wj s.t.,

Protocol Realizing FR0,R1
VUOT
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{0, 1} ← R1(αj−1, αj , wj , {σj
i }i∈[m])

Let B be a bulletin-board. The protocol VUOT operates as follows:

CRSUOT ← UOT.CRSgen(1κ)

CRSEPZK ← EPZK.CRSgen(1κ)

1. Commit Phase: All receivers Ri ∈ R post (mi
1,m

i
1) on to B where,

AuxUOT
i ,m

i
1 ← UOT.OT1(CRSUOT; xi)

AuxEPZKi ,m
i
1 ← EPZK.EPZK1(CRSEPZK)

2. Initial OT: Sender S posts (α0, π0, {m0,i
2 }i∈[m]) on to B where,

∀i ∈ [m],m
0,i
2 ← UOT.OT2(CRSUOT;m

i
1, (s

0
i , s

1
i ))

π0 ← EPZK.EPZKP (CRSEPZK;α,w, {mi
1}i∈[m])

where, α = α0, {m0,i
2 ,m

i
1}i∈[m] w = w0, {s0i , s

1
i }i∈[m]

All receivers Ri ∈ R compute,

Mi,0 ← UOT.OTfin(CRSUOT;Aux
UOT
i ,m

0,i
2 )

{s0,ixi
,⊥} ← UOT.OTvrfy(CRSUOT;Mi,0)

3. Successive Update: Each updater Uj ∈ U posts (αj , πj , {mj,i
2 }i∈[m]) on to B,

∀i ∈ [m],m
j,i
2 ← UOT.OTupdt(CRSUOT;m

j−1,i
2 , σ

j
i )

πj ← EPZK.EPZKP (CRSEPZK;α,w, {mi
1}i∈[m])

where, α = αj−1, αj , {mj−1,i
2 ,m

j,i
2 }i∈[m] w = wj , {σj

i }i∈[m]

All receivers Ri ∈ R compute,

Mi,j ← UOT.OTfin(CRSUOT;Aux
UOT
i ,m

j,i
2 )

{sj,ixi
,⊥} ← UOT.OTvrfy(CRSUOT;Mi,j)

4. Verification Phase: All receivers Ri ∈ R post mi
2 to B where,

m
i
2 ← EPZK.EPZK2(CRSEPZK; {πj}j∈[d]∪{0},Aux

EPZK
i )

All verifying servers Vv posts bv to B where,

bv ← EPZK.EPZKV (CRSEPZK; {mi
1}i∈[m], {πj}j∈[d]∪{0}, {m

i
2}i∈[m], {αj}j∈[d]∪{0})

5. If b =
⋂

v∈[c] bv == 1, all receivers Ri ∈ R post Mi,d to B where,

Mi,d ← UOT.OTfin(CRSUOT;Aux
UOT
i ,m

d,i
2 )

Any party can compute,

∀i ∈ [m], {sd,ixi
,⊥} ← UOT.OTvrfy(CRSUOT;Mi,d)

Fig. 25 Construction for FVUOT
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6 A Malicious SCALES Protocol

In this section we summarize our protocol with all the compositions implemented.
This realization of FRGS in the FCRS,FB-hybrid model is a maliciously secure
SCALES protocol computing any functionality f . The protocol (Construction 26)
uses an instantiation for FRGS (Construction 11) using an RGS and an instantia-
tion of FVUOT (Construction 24). It uses the following sub-protocols and objects
as building blocks:

– A Projective RGS (Definition 3) object that is also Explanable (Definition 9).
Let this be RGS = (Gb,Rerand,En,Ev).

– A compatible UOT protocol (Definition 8) that is Explanable (Definition 10).
Let UOT = (CRSgen,OT1,OT2, OTupdt, OTfin,OTvrfy) have sender’s inputs
as the projective encoding, and updaters’ functions as the encoding transfor-
mations.

– An Ephemeral Prover Zero-Knowledge protocol for proving the correctness
of encoding (Definition 13). Let this be EPZK = (CRSgen,EPZK1,EPZKP ,
EPZK2,EPZKV ).

Let κ be a computational security parameter. Let C = {Ci}i∈[m] be the set of clients
where each Ci has input bit xi. Let B be the bulletin-board. The functionality FCRS
generates the following and gives it to all parties:

CRSUOT ← UOT.CRSgen(1κ)

CRSEPZK ← EPZK.CRSgen(1κ)

1. Computation phase:
– ∀i ∈ [m], client Ci posts (mi

1,m
i
1) onto B where,

AuxUOT
i ,m

i
1 ← UOT.OT1(CRSUOT; xi)

AuxEPZKi ,m
i
1 ← EPZK.EPZK1(CRSEPZK)

– Ephemeral server E0 posts (F0, π0, {m0,i
2 }i∈[m]) onto B where,

(F0, e0)← RGS.Gb(f ; r0) e0 = {L0
i,0, L

1
i,0}i∈[m]

∀i ∈ [m],m
0,i
2 ← UOT.OT2(CRSUOT;m

i
1, (L

0
i,0, L

1
i,0), r

i
0)

π0 ← EPZK.EPZKP (CRSEPZK;α,w, {mi
1}i∈[m]) for relation RGb where,

α = F0, {m0,i
2 ,m

i
1}i∈[m] w = r0, {ri0}i∈[m], {L

0
i,0, L

1
i,0}i∈[m]

– For round j ∈ [c1 − 1], server Ej posts (Fj , πj , {mj,i
2 }i∈[m]) to B where,

(Fj , λj)← RGS.Rerand(Fj−1; rj) λj = {σj
i }i∈[m]

∀i ∈ [m],m
j,i
2 ← UOT.OTupdt(CRSUOT;m

j−1,i
2 , σ

j
i , r

i
j)

πj ← EPZK.EPZKP (CRSEPZK;α,w, {mi
1}i∈[m]) for relation RRerand where,

α = Fj−1, Fj , {mj−1,i
2 ,m

j,i
2 }i∈[m] w = rj , {rij}i∈[m], {σ

j
i }i∈[m]

2. Verification phase:

Protocol Maliciously Secure SCALES Protocol for f
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– ∀i ∈ [m], client Ci posts mi
2 onto B where,

m
i
2 ← EPZK.EPZK2(CRSEPZK; {πj}j∈[c1−1]∪{0},Aux

EPZK
i )

– For each round k ∈ [c2], each ephemeral server Vk posts bk onto B where,

bk ← EPZK.EPZKV (CRSEPZK; {mi
1}i∈[m], {πj}j∈[c1−1]∪{0}, {m

i
2}i∈[m], {αj}j∈[c1−1]∪{0})

3. Decoding phase:
– If

⋂
v∈[c2] bv == 1, ∀i ∈ [m], each client Ci posts Mi,c1−1 onto B where,

Mi,c1−1 ← UOT.OTfin(CRSUOT;Aux
UOT
i ,m

c1−1,i
2 )

– For each round j ∈ [c3], each ephemeral server Dj posts f(x) onto B where,

∀i ∈ [m], {Lxi
i,c1−1,⊥} ← UOT.OTvrfy(CRSUOT;Mi,c1−1)

Xc1
= {Lxi

i,c1−1}i∈[m]

f(x) = RGS.Ev(Fc1−1, Xc1
)

Each client reads B and accepts the final output if all servers in the Decoding
phase publish the same output.

Fig. 26 Maliciously Secure SCALES Protocol

Theorem 3. Assuming the hardness of the DDH problem, Figure 26 is a mali-
ciously secure SCALES protocol (Definition 2) computing any function f .

The proof of Theorem 3 follows from Theorem 1 – 2 and that the communication
pattern is as required in SCALES (Definition 1).
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Appendix

A Additional Preliminaries

Definition 14. Two probability ensembles X = {Xn}n∈N and Y = {Yn}n∈N
defined over a finite domain D are statistically indistinguishable, denoted
X

s
≈ Y , if every positive polynomial p(·) and all sufficiently large n’s,

∆(Xn, Yn) <
1

p(n)

where,

∆(Xn, Yn) =
1

2
·
∑
α∈D
|Pr[Xn = α]− Pr[Yn = α]|

Definition 15. Two probability ensembles X = {Xn}n∈N and Y = {Yn}n∈N
are computationally indistinguishable, denoted X

c
≈ Y , if for every PPT

distinguisher D, every positive polynomial p(·) and all sufficiently large n’s,

|Pr[D(Xn, 1
n) = 1]− Pr[D(Yn, 1

n) = 1]| < 1

p(n)

A.1 Key and Message Homomorphic Encryption

We re-state the definition of strong Key and Message Homomorphic Encryption
from [AHKP22].
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Definition 16. A strong key-and-message homomorphic encryption scheme
(strong KMHE) is the set of PPT algorithms KMH = (Gen,Enc,Dec,Eval) defined
on domains of (private) keys, messages and ciphertexts K,M, C, a key transfor-
mation family Fkey, and a message transformation family Fmsg (all indexed by
an implicit security parameter κ) such that the following conditions hold:

– Correctness: ∀m ∈M, k ∈ K,

Pr[k ← Gen(1κ);Dec(k,Enc(k,m)) = m] = 1

– KMH Correctness: ∀m ∈M, k ∈ K, f ∈ Fkey, g ∈ Fmsg,

Pr[k ← Gen(1κ);Dec(f(k),Eval(Enc(k,m), f, g)) = g(m)] = 1

– Key Privacy: ∀k, k′ ← Gen(1κ), f ∈ Fkey,

{k, f(k)}
s
≈ {k, k′}

– KMH Privacy: ∀ PPT adversary A, the advantage Pr[b′ = b] ≤ 1
2 + ν(κ)

for a negligible function ν in the following experiment (κ being an implicit
input to C and A):
1. C samples a uniform random bit b ← {0, 1}, keys k0, k1, k

′ ← Gen(1κ),
and f ← Fkey. It sends (k0, k1, f(k1)) to A.

2. For as many times as A wants:
• A produces arbitrary m,m′ ∈ M and g ∈ Fmsg, and computes

c← Enc(k0,m). It sends (c, g,m′) to C.
• C sends cb to A, where c0 ← Eval(c, f, g) and c1 ← Enc(k′,m′).

3. A outputs b′.

[AHKP22] contains a construction for strong KMHE based on the [BHHO08]
encryption scheme.

A.2 Rerandomizable Garbled Circuits

The work in [AHKP22] also shows an instantiation of a projective RGS with
rerandomizable garbled circuits (RGC). The construction is based on that in
[GHV10] but uses a sharable variant of strong KMHE (Definition 16) as the
underlying encryption primitive.

Sharable KMHE (Definition 17) is a strong KMHE that is modified to facilitate
garbling and rerandomizing circuits. Like most traditional garbling, the RGC
construction we employ also garbles a circuit gate-by-gate. Each gate is garbled
by designating labels for both values 0 and 1 of each input and out wire of
the gate. Then a set of ciphertexts are created by encrypting an output label
using one input label from each wire, according to the truth table of the gate
functionality. In our construction, these ciphertexts are created using strong
KMHE. Note that since circuit intermediate wires can be both input and output
wires of gates, it becomes necessary that the key space K of strong KMHE be
a subset of the message spaceM. Further, we apply the same operation to all
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ciphertexts with the same wire label for rerandomizing. So it is also necessary
that Fkey be contained in Fmsg.

Traditional garbling of 2-input gates employs double encryption of the output
label using both input labels, creating one ciphertext. However, this would
complicate matters if used as it is for RGCs since it requires the ciphertext
space to also be within the message space and the domains of Fkey and Fmsg

would need to be readjusted. Therefore, we garble by creating a 2-out-of-2 secret
sharing of the output label and then encrypting each share with one input label
as the key. This makes it necessary to have efficient sharing and reconstruction
algorithm Share and Recon. Share is a randomized algorithm that takes as input
an element from K and outputs two elements fromM such that no element in
isolation reveals the input. Recon is deterministic and can derive the input to
Share given both shares.

In order to be compatible with rerandomizing, we require two additional
properties. Firstly, we need that the shares can be rerandomized. That is, given
a pair of shares s0 and s1 of a message k, there exist functions h and h such
that h(s0) and h(s1) are also a sharing of k. These functions must come from a
domain F∗msg such that when h is picked at random, applying h and h induces a
fresh sharing of k. Since rerandomizing requires that operations are performed
on ciphertexts, it becomes necessary that these operations are homomorphically
applied F∗msg ⊆ Fmsg.

Secondly, note that when applying function σ ∈ Fkey to the message space, it
needs to be applied to shares of the label and not the label itself. Therefore, we
need the additional property that any such σ applied to the shares translates to it
being applied to the reconstructed value as well. Combining the two requirements,
Definition 17 states that a distribution containing a sharing of a key k and, for
any σ ∈ Fkey, the sharing of σ(k) be identically distributed to one containing
a sharing of k and a pair containing σ and h applied to one share and σ and h
applied to the other.

Definition 17. A sharable key-and-message homomorphic encryption
scheme is a set of PPT algorithms (Gen,Enc,Dec,Eval,Share,Recon) where
KMH = (Gen,Enc,Dec,Eval) is a strong KMHE scheme as in Definition 16 for
domains of (private) keys K, messagesM and ciphertexts C, a key transformation
family Fkey, and a message transformation family Fmsg with the additional
property that K ⊆M and Fkey ⊆ Fmsg.

The scheme has two additional PPT functions (1) ([k]0, [k]1)← Share(k) that
outputs two random shares [k]0, [k]1 ∈M of a key k ∈ K. (2) k ← Recon([k]0, [k]1)
that reconstructs the label k from its shares. Further there exists F∗msg ⊆ Fmsg

such that, ∀σ ∈ Fkey, ∀h ∈ F∗msg,∃h ∈ F∗msg s.t. ∀k ∈ K,{
[k]0, [k]1, [σ(k)]0, [σ(k)]1

}
([k]0,[k]1)←Share(k);

([σ(k)]0,[σ(k)]1)←Share(σ(k))

≡
{
[k]0, [k]1, h(σ([k]0)), h(σ([k]1))

}
([k]0,[k]1)←Share(k)
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Circuit Notation. For a function f : {0, 1}m → {0, 1}l, a boolean circuit that
computes it is denoted by C = (W, I, O,G). W is the set of all wires and
I ⊂ W and O ⊂ W are the set of input and output wires respectively. Within W ,
I = (w1, · · · , wm) are the m input wires, wm+1, · · · , wm+p are the p internal wires,
and O = (wm+p+1, · · · , wm+p+l) are the l output wires. These make v = m+p+ l
total wires. G = (gm+1, ..., gm+q) is the set of gates. Each gi = (wℓ, wr, wi, op) is
a binary gate where wℓ and wr are the left and right input wires respectively, wi

is the output wire (uniquely defined by the gate index), and op represents the
gate functionality (AND, XOR, etc.).

Construction 1 We denote by GS = (Gb,En,Ev,Rerand) a rerandomizable gar-
bling scheme where all the algorithms are instantiated with a sharable KMHE
(Definition 17) scheme KMH as the underlying encryption scheme.

1. The garbling algorithm Gb(C, 1κ):
– For every wire wi ∈ W −O, sample labels L0

wi
, L1

wi
← KMH.Gen(1κ).

– For every output wire wi ∈ O, use the same labels L0, L1 ∈ K across all
output wires. These are publicly known.

– For every gate gi = (wℓ, wr, wi, op) ∈ G, for each of the 4 rows, let
([Lb

wi
]0, [L

b
wi
]1) ← KMH.Share(Lb

wi
) be the shares of one of gi’s output

labels for b ∈ {0, 1} and π be a permutation on four positions. Then the
garbling of gate gi can be defined as:

Gi =


π[0, 0] : KMH.Enc(L0

wℓ
, [L

op(0,0)
wi ]0),KMH.Enc(L0

wr
, [L

op(0,0)
wi ]1)

π[0, 1] : KMH.Enc(L0
wℓ
, [L

op(0,1)
wi ]0),KMH.Enc(L1

wr
, [L

op(0,1)
wi ]1)

π[1, 0] : KMH.Enc(L1
wℓ
, [L

op(1,0)
wi ]0),KMH.Enc(L0

wr
, [L

op(1,0)
wi ]1)

π[1, 1] : KMH.Enc(L1
wℓ
, [L

op(1,1)
wi ]0),KMH.Enc(L1

wr
, [L

op(1,1)
wi ]1)


– Output Ĉ = ((G1, · · · , Gq), (L0, L1)) and L = {L0

wi
, L1

wi
}wi∈I .

2. The encoding algorithm En(L, x) gets a set of input labels L and the function
input x = (x1, · · · , xm) and outputs I = {Lxi

wi
}wi∈I .

3. The evaluation algorithm Ev(Ĉ, I) :
The algorithm works gate by gate, by decrypting each row in the garbled gate.8
The resulting plaintexts are combined to the output label using KMH.Recon.
Evaluating a gate lets us derive one label for a wire in the circuit. Following
the terminology of [LP09], this label is termed the active label of that wire.
Such a label is also derived for each output wire of the circuit and this belongs
in the set (L0, L1) and can be mapped to output values 0 or 1. This set of
labels yields the function’s output f(x).

4. The rerandomizing algorithm Rerand(Ĉ) :
– For all wires wi ∈ W −O, sample σi ← Fkey.
– For all output wires wi ∈ O, let σi = I be the identity function.

8 We assume that the evaluator identifies the valid output label by adding a fixed suffix
to the plaintext as suggested originally in [LP09].
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– For all gates gi ∈ G, let (σℓ, σr, σi) correspond to the wires (wℓ, wr, wi).
Let πi be a permutation on four elements. Sample h0, h1, h2, h3 ← F∗msg

and derive h0, h1, h2, h3 ∈ F∗msg. In order to rerandomize Gi into G∗i , the
following is carried out:

G
′
i =

πi[0, 0] : KMH.Eval(c0,0, σℓ, σi),KMH.Eval(c0,1, σr, σi)
πi[0, 1] : KMH.Eval(c1,0, σℓ, σi),KMH.Eval(c1,1, σr, σi)
πi[1, 0] : KMH.Eval(c2,0, σℓ, σi),KMH.Eval(c2,1, σr, σi)
πi[1, 1] : KMH.Eval(c3,0, σℓ, σi),KMH.Eval(c3,1, σr, σi)

 where Gi =

c0,0, c0,1
c1,0, c1,1
c2,0, c2,1
c3,0, c3,1



G
∗
i =


KMH.Eval(c′0,0, I, h0),KMH.Eval(c′0,1, I, h0)

KMH.Eval(c′1,0, I, h1),KMH.Eval(c′1,1, I, h1)

KMH.Eval(c′2,0, I, h2),KMH.Eval(c′2,1, I, h2)

KMH.Eval(c′3,0, I, h3),KMH.Eval(c′3,1, I, h3)

 where G
′
i =


c′0,0, c

′
0,1

c′1,0, c
′
1,1

c′2,0, c
′
2,1

c′3,0, c
′
3,1


– Output Ĉ′ = ((G∗1, · · · , G∗q), (L0, L1)) and Π = {σi}wi∈I .

A.3 Proof of Lemma 2

Proof. For RGCs in Construction 1, let KMH = (Gen,Enc,Dec,Eval,Share,Recon)
be a Sharable Strong KMHE scheme (Definition 17). Then, for F = Gb(f ; r), the
garbling randomness r is comprised of:

– ∀ wire w ∈ W, labels L0
w, L

1
w ← Gen(1κ).

– ∀ gate g ∈ G, the sharing randomness {sgi }i∈[4] used in Share.
– ∀ gate g ∈ G, the encryption randomness {rgi0, r

g
i1}i∈[4] used in Enc.

For F = Rerand(F ∗; r′), the randomness r′ is comprised of the following:

– ∀ wire w ∈ W, a transformation function σw ← Fkey.
– ∀ gate g ∈ G, the share randomizing functions {hi ∈ F∗msg}i∈[4].
– ∀ gate g ∈ G, the rerandomizing randomness {rgi0, r

g
i1}i∈[4] used in Eval.

Given (r, r′) such that F = Gb(f ; r) and F ′ = Rerand(F ; r′), let Explain(r, r′) be
a function that operates as follows:

– parse r = ({L0
w, L

1
w}w∈W , {sgi }i∈[4],g∈G , {r

g
i0, r

g
i1}i∈[4],g∈G).

– parse r′ = ({σw}w∈W , {hi}i∈[4],g∈G , {r′gi0, r
′g
i1}i∈[4],g∈G).

– return r∗ where,

r∗ = ({σw(L
0
w), σw(L

1
w)}w∈W , {hi(s

g
i )}i∈[4],g∈G , {r

g
i0 + r′gi0, r

g
i1 + r′gi1}i∈[4],g∈G)

For the above function Explain, F ′ = Gb(f, r∗) by construction (Construction 1).
We now show that explainable garbling privacy is satisfied:

{f,X, F, F ′, r∗}r,r′←R;(e,F )=Gb(f ;r);X=En(e,x);
F ′=Rerand(F ;r′);r∗=Explain(r,r′)

c
≈{f,X, F,G, s}r,s←R;(e,F )=Gb(f ;r);X=En(e,x);

G=Gb(f ;s)

Consider the following set of hybrids:
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– Hybrid H0. This is the same distribution as the LHS of the above equation.
It consists of a function f , a garbling F of f , the set of active input labels
X corresponding to F , a garbling F ′ that is rerandomized from F and the
composed randomness r∗ that is output from Explain.

H0 =
{
f,X, F, F ′, r∗

}
r,r′←R;(e,F )=Gb(f ;r);X=En(e,x);
F ′=Rerand(F ;r′);r∗=Explain(r,r′)

– Hybrid H1. This is a hybrid distribution consisting of a function f and a
garbling F of f , with input labels X as in H0. This distribution additionally
contains randomness r1 from the distribution,

R1 =
{
{σw(L

0
w), σw(L

1
w)}w∈W , {s∗gi }i∈[4],g∈G ,

{rgi0 + r′gi0, r
g
i1 + r′gi1}i∈[4],g∈G

}
r,r′←R;

{L0
w,L1

w}w∈W ,{rgi0,r
g
i1}i∈[4],g∈G∈r;

{σw}w∈W ,{r′gi0,r
′g
i1}i∈[4],g∈G∈r′

and a garbling F1 of f generated using the randomness r1. Note that r1
is different from r∗ ∈ H0 in that the randomness used in sharing labels
{s∗gi }i∈[4],g∈G is different and freshly sampled.

H1 =
{
f,X, F, F1, r1

}
r←R;(e,F )=Gb(f ;r);X=En(e,x);

r1←R1;F1=Gb(f ;r1)

– Hybrid H2. This is a hybrid distribution consisting of a function f , a garbling
F of f , with input labels set X as in H1. This distribution additionally
contains randomness r2 that is distributed as,

R2 =
{
{σw(L

0
w), σw(L

1
w)}w∈W , {s∗gi }i∈[4],g∈G ,

{rg∗i0 , r
g∗
i1 }i∈[4],g∈G

}
r,r′←R;

{L0
w,L1

w}w∈W∈r;
{σw}w∈W∈r′

and a garbling F2 of f generated using the randomness r2. Note that r2 is
different from r1 ∈ H1 in that the randomness used for encryption is freshly
sampled.

H2 =
{
f,X, F, F2, r2

}
r←R;(e,F )=Gb(f ;r);X=En(e,x);

r2←R2;F2=Gb(f ;r2)

– Hybrid H3. This is a hybrid distribution consisting of a function f , a garbling
F of f , with input labels set X as in H2. It additionally contains randomness
s that is completely freshly sampled and a garbling G of f generated using s.
It differs from r2 in that the labels for each wire is a freshly sampled label,
instead of being a rerandomized label. This is also the distribution in the
RHS of the equation for explainable garbling privacy.

H3 =
{
f,X, F,G, s

}
r,s←R;(e,F )=Gb(f ;r);X=En(e,x);

G=Gb(f ;s)

Claim 11 The hybrid distributions H0 and H1, and H1 and H2 are identically
distributed.
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Proof. The hybrid distributions H0 and H1 differ only in the that the sharing
randomness is {hi(s

g
i )}i∈[4],g∈G ∈ r∗ ∈ H0 and {s∗gi }i∈[4],g∈G ∈ r1 ∈ H1. In both

hybrids, this sharing randomness originates from the same distribution due to a
property of sharable KMHE. So it follows that r∗, r1 ← R. In both hybrids, the
elements f , F and X are generated in the same way. In H0, F ′ = Gb(f ; r∗) and in
H1, F1 = Gb(f ; r1). Since both garbling randomnesses are identically distributed,
it follows that the garblings are as well. Therefore the hybrid distributions H0

and H1 on the whole are identically distributed.
The hybrids H1 and H2 are identically distributed as they only differ since the

randomness used for encryption within r1 ∈ H1 is a composition of randomnesses
used for encryption and homomorphic operations, whereas that in r2 ∈ H2 is
fresh randomness. These come from the same distribution and induce identical
distributions on the ciphertexts produced.

Claim 12 Assuming KMH is a strong KMHE (Definition 16) satisfying Key
Privacy, the hybrid distributions H2 and H3 are statistically indistinguishable.

Proof. The hybrid distributions H2 and H3 are statistically close since their dif-
ference originates from the fact that the wire labels are {σw(L

0
w), σw(L

1
w)}w∈W ∈

r2 ∈ H2 and {L0′

w , L1′

w}w∈W ∈ s ∈ H3. The rest of both the hybrids is cre-
ated identically. As it follows from the Key Privacy property of strong KMHE
(Definition 16) that ∀w ∈ W, b ∈ {0, 1},

{Lb
w, σw(L

b
w)}

s
≈ {Lb

w, L
b′

w}

and there are polynomially many such wires in the security parameter κ, the
distributions H2 and H3 are also statistically close.

Since none of the above described pairs of adjacent hybrids are distinguishable,
it follows that explainable garbling privacy holds.

It remains to show that explainable rerandomizing privacy (Definition 9) is
satisfied. Given (r, r′) such that F = Rerand(F ∗; r) and F ′ = Rerand(F ; r′),
consider a function Explain(r, r′) that operates as follows:

– parse r = ({σw}w∈W , {hg
i }i∈[4],g∈G , {r

g
i0, r

g
i1}i∈[4],g∈G).

– parse r′ = ({σ′w}w∈W , {h′gi }i∈[4],g∈G , {r
′g
i0, r

′g
i1}i∈[4],g∈G).

– return r∗ where,

r∗ = ({σ′w ◦ σw}w∈W , {hg
i ◦ h

′g
i }i∈[4],g∈G , {r

g
i0 + r′gi0, r

g
i1 + r′gi1}i∈[4],g∈G)

For the above function Explain, F ′ = Rerand(F ∗, r∗) by construction (Construc-
tion 1). We need to show that explainable rerandomizing privacy is satisfied:

{F ∗, X, F, F ′, r∗} r,r′←R;(F∗,e)←Gb(f);(F,π)=Rerand(F∗;r);
X=En(π(e),x);F ′=Rerand(F ;r′);r∗=Explain(r,r′)

c
≈{F ∗, X, F,G, s}r,s←R;(F∗,e)←Gb(f);(F,π)=Rerand(F∗;r);

X=En(π(e),x);G=Rerand(F∗;s)

Consider the following set of hybrids:
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– Hybrid H0. This is the same distribution as the LHS of the above equation. It
consists of a prior garbling F ∗, a garbling F rerandomized from F ∗, the set of
active input labels X corresponding to F , a garbling F ′ that is rerandomized
from F and the composed randomness r∗ that is output from Explain.

H0 =
{
F ∗, X, F, F ′, r∗

}
r,r′←R;(F∗,e)←Gb(f);(F,π)=Rerand(F∗;r);

X=En(π(e),x);F ′=Rerand(F ;r′);r∗=Explain(r,r′)

– Hybrid H1. This is a hybrid distribution consisting of F ∗, F and X as in H0.
This distribution additionally contains randomness r1 from the distribution,

R1 =
{
{σ′w ◦ σw}w∈W , {h∗gi }i∈[4],g∈G ,
{rgi0 + r′gi0, r

g
i1 + r′gi1}i∈[4],g∈G

}
r,r′←R;

{σw}w∈W ,{rgi0,r
g
i1}i∈[4],g∈G∈r;

{σ′
w}w∈W ,{r′gi0,r

′g
i1}i∈[4],g∈G∈r′

and a garbling F1 rerandomized from F ∗ generated using the randomness r1.
Note that r1 is different from r∗ ∈ H0 in that the functions applied on the
label shares {f∗gi }i∈[4],g∈G is different and freshly sampled.

H1 =
{
F ∗, X, F, F1, r1

}
r←R;(F∗,e)←Gb(f);(F,π)=Rerand(F∗;r);
X=En(π(e),x);r1←R1;F1=Rerand(F∗;r1)

– Hybrid H2. This is a hybrid distribution consisting of F ∗, F and X as in H1.
This distribution additionally contains randomness r2 that is distributed as,

R2 =
{
{σ′w ◦ σw}w∈W , {h∗gi }i∈[4],g∈G , {r

g∗
i0 , r

g∗
i1 }i∈[4],g∈G

}
r,r′←R;{σw}w∈W∈r;
{σ′

w}w∈W∈r′

and a garbling F2 rerandomized from F ∗ generated using the randomness
r2. Note that r2 is different from r1 ∈ H1 in that the randomness used for
encryption is freshly sampled.

H2 =
{
F ∗, X, F, F2, r2

}
r←R;(F∗,e)←Gb(f);(F,π)=Rerand(F∗;r);
X=En(π(e),x);r2←R2;F2=Rerand(F∗;r2)

– Hybrid H3. This is a hybrid distribution consisting of F ∗, F and X as in
H2. It additionally contains randomness s that is completely freshly sampled
and a garbling G rerandomized from F ∗ generated using s. It differs from
r2 in that the label transformations are freshly sampled, instead of being a
composed function of label transformations. This is also the distribution in
the RHS of the equation for explainable rerandomizing privacy.

H3 =
{
F ∗, X, F,G, s

}
r,s←R;(F∗,e)←Gb(f);(F,π)=Rerand(F∗;r);

X=En(π(e),x);G=Rerand(F∗;s)

The hybrids H0 and H1 are identically distributed as they only differ since
the randomness used for sharing the output labels in each garbled gate within
r∗ is a composition of the randomnesses used for two stages of rerandomizing

71



operations, whereas that in r1 is fresh randomness. These come from the same
distribution and induce identical distributions on the ciphertexts produced.

The hybrids H1 and H2 are identically distributed as they only differ since
the randomness used for encryption within r1 is a composition of the random-
nesses used for homomorphic operations, whereas that in r2 is fresh randomness.
These come from the same distribution and induce identical distributions on the
ciphertexts produced.

Finally, the hybrids H2 and H3 are indistinguishable since the their difference
stems from the fact that the label transformations in s are freshly sampled while
those in r2 are a composition of label transformations. Both these belong in Fkey

and originate from the same distribution. Hence, rerandomizable garbled circuits
as in Construction 1 are Explanable.

B 2-round Malicious OT in the CRS Model

In this section we discuss the oblivious transfer protocol in [PVW08]. It is a
2-round malicious secure OT protocol in the CRS model. We show that it is
additionally secure against adaptive receiver corruption. The protocol employs a
‘dual-mode cryptosystem’ as a building block that we simplify and restate:

Definition 18. A Dual-Mode Cryptosystem consists of a tuple of algorithms:

– (CRS, t)← Setup(1κ) : outputs common reference string CRS and trapdoor t
– (pk, sk)← Gen(CRS, σ) : for a branch σ ∈ {0, 1} outputs a key pair
– c← Enc(CRS, pk, b,m) : outputs ciphertext c encrypting message m such that

it can only be decrypted if b = σ that was used to generate pk
– m← Dec(sk, c) : outputs message m that the ciphertext encrypts if b used in

the encryption equals σ used to create sk
– σ ← Branch(CRS, t, pk) : outputs the branch σ ∈ {0, 1} used to create pk
– (pk, sk0, sk1)← TrapGen(CRS, t) : outputs public key pk and two correspond-

ing secret keys, one to decrypt each branch

The functions need to satisfy the following properties:

– Correctness: ∀(CRS, t)← Setup(1κ),∀σ ∈ {0, 1}, (pk, sk)← Gen(CRS, σ),

Pr[m = Dec(sk,Enc(CRS, pk, σ,m))] = 1

– Messy Branch Indistinguishability: ∀(CRS, t)← Setup(1κ),∀pk,m0,m1,
∀b← Branch(CRS, t, pk),

{Enc(CRS, pk,¬b,m0)}
s
≈ {Enc(CRS, pk,¬b,m1)}

– Trapdoor Generation: ∀(CRS, t) ← Setup(1κ),∀σ ∈ {0, 1}, (pk′, sk′) ←
Gen(CRS, σ),∀(pk, sk0, sk1) ← TrapGen(CRS, t),

{pk′, sk′}
s
≈ {pk, sk0}

s
≈ {pk, sk1}

Pr[m = Dec(sk0,Enc(CRS, pk, 0,m))] = 1

Pr[m = Dec(sk1,Enc(CRS, pk, 1,m))] = 1
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[PVW08] gives a construction of this cryptosystem that is based on the DDH
hardness assumption. The details of the construction are as follows:

Construction 2 Let G be a group with order p. Consider the following encryp-
tion scheme E = (Setup,Gen,Enc,Dec,Branch,TrapGen) :

1. (CRS, t)← Setup(1κ)
– sample g0, g1 ← G
– sample x0, x1 ← Zp

– set h0 = gx0
0 and h1 = gx1

1

– CRS = (g0, h0, g1, h1)
– t = (x0, x1)

2. (pk, sk)← Gen(CRS, σ)
– sample r ← Zp

– set g = grσ and h = hr
σ

– pk = (g, h)
– sk = r

3. c← Enc(CRS, pk, b,m)
– sample s, t← Zp

– pkb = (gb, hb, g, h)
– set u = gsb · ht

b and v = gs · ht

– set c1 = u and c2 = v ·m
– c = c1, c2

4. m← Dec(sk, c)
– m = c2

csk1

5. σ ← Branch(CRS, t, pk)
– parse CRS = (g0, h0, g1, h1)
– parse t = (x0, x1)
– parse pk = g, h
– if gx0 == h, set σ = 0
– if gx1 == h, set σ = 1

6. (pk, sk0, sk1)← TrapGen(CRS, t)
– parse CRS = (g0, h0, g1, h1)
– parse t = (x0, x1)
– sample r ← Zp

– set g = gr0 and h = hr
0

– pk = g, h
– sk0 = r
– sk1 = x0r

x1

For the above scheme, consider the following ciphertext rerandomizing function
y′ ← Rerand(CRS, pk, b, y):

– parse y = (c1, c2) and CRS = (g0, h0, g1, h1)
– sample sb, tb ← Zp and compute c′1 = c1 · gsbb · h

tb
b and c′2 = c2 · gsb · htb

– return y′ = (c′1, c
′
2)

Now the details of the OT protocol are as follows:

Construction 3 Let G be a group with order p. Let E = (Setup,Gen,Enc,Dec,
Branch,TrapGen,Rerand) be a dual-mode cryptosystem as in Construction 2.
Consider the following OT protocol OT = (CRSgen,OT1,OT2,OTfin,OT3):

1. CRS← CRSgen(1κ)
– compute (CRS, t)← E .Setup(1κ)
– sender S and receiver R gets CRS

2. (m1,Aux)← OT1(CRS; b)
– R computes (pk, sk)← E .Gen(CRS, b)
– set Aux = sk
– set m1 = pk and send m1 to S

3. m2 ← OT2(CRS;m1, s0, s1)
– S parses m1 = pk
– sample r0 and compute y0 = E .Enc(CRS, pk, 0, s0; r0)
– sample r1 and compute y1 = E .Enc(CRS, pk, 1, s1; r1)
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– set m2 = (y0, y1) and send it to R

4. sb ← OTfin(CRS;m2,Aux)

– R parses m2 = (y0, y1) and Aux = sk
– compute sb ← E .Dec(sk, yb)

5. m′2 ← OT3(CRS;m1,m2)

– parse m2 = (y0, y1) and m1 = pk
– sample r0 and compute y′0 = E .Rerand(CRS, pk, 0, y0; r0)
– sample r1 and compute y′1 = E .Rerand(CRS, pk, 1, y1; r1)
– set m′2 = (y′0, y

′
1)

Lemma 9. Assuming that Construction 2 is a secure dual-mode cryptosystem
(Definition 18), the bit-OT protocol in [PVW08] as given in Construction 3
satisfies Definition 4 in the FCRS-hybrid model.

Proof Outline. We prove the security of the protocol by reducing it to the security
of the dual-mode cryptosystem. The protocol in Construction 3 needs to securely
satisfy three properties:

1. Maliciously Secure Bit-OT: We define a simulator that can simulate the
view of a malicious PPT adversary that can statically corrupt the sender S
and adaptively corrupt the receiver R. Then, without loss of generality, we
consider the adversary’s view in the case that only R is adaptively corrupted
after the first message is sent. In this case, both OT messages are generated by
the simulator with the help of a CRS and trapdoor that is honestly generated
using Setup. This view can be shown as indistinguishable from the real view
using a sequence of hybrids. First, the distribution of the honest sender’s
simulated message can be shown as indistinguishable from the real message
due to the ‘Messy Branch Indistinguishability’ property of a dual-mode
cryptosystem (Definition 18). Then the distribution of the honest receiver’s
simulated message can be shown as indistinguishable from the real message
due to ‘Trapdoor Generation’ property.

2. Reusable first message: We define a similar simulator as above that can
simulate the view of a malicious PPT adversary that can statically corrupt
any subset of the senders {Si}i∈[ℓ] and adaptively corrupt the receiver R in
an execution of the functionality FmultiOT (Figure 8). We also use similar
reductions to the ‘Messy Branch Indistinguishability’ and ‘Trapdoor Gen-
eration’ property of a dual-mode cryptosystem (Definition 18) to prove the
indistinguishablility of the distributions of the real and simulated views of
the adversary.

3. Rerandomizable second message: For the function OT.OT3 it is immediate
for the construction that the randomness sampled for this function is drawn
from the same distribution as that used in OT.OT2. We use this to argue
that the rerandomizable second message property is satisfied.

Proof. Let E = (Setup,Gen,Enc,Dec, Branch,TrapGen) be a dual-mode cryp-
tosystem (Definition 18 – Construction 2). The proof follows in three parts
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corresponding to the 3 properties in Definition 4 that Construction 3 needs to
satisfy.

First, we need to show that (CRSgen,OT1,OT2,OTfin) ∈ OT is a maliciously
secure bit-OT protocol in the CRS model that is secure in the presence of a PPT
adversary A corrupting the sender S statically and the receiver R adaptively.
Let us denote by b ∈ {0, 1} the input of R and by a0, a1 ∈ {0, 1} the input bits
of S. Let SimOT be a PPT adversary that simulates the view of A in an ideal
execution of FOT, working as follows:

1. SimOT first invokes (CRS, t)← OT.CRSgen(1κ) and, emulating FCRS, it gives
CRS to A.

2. If R is initially corrupted,
– SimOT accepts m1 from A and parses m1 = pk = (g, h).
– SimOT computes b′ ← E .Branch(CRS, t, pk).
– SimOT passes b′ to FOT.

Otherwise, if R is initially honest,
– SimOT computes (pk, sk0, sk1)← E .TrapGen(CRS, t).
– SimOT sends m′1 = pk to A.

3. If S is corrupted and R is initially honest,
– SimOT has (sk0, sk1).
– SimOT accepts m2 from A and parses m2 = (y0, y1).
– SimOT computes a′0 = E .Dec(sk0, y0) and a′1 = E .Dec(sk1, y1).
– SimOT passes (a′0, a

′
1) to FOT.

If S is corrupted and R is initially corrupted,
– SimOT accepts m2 from A and sends ⊥ to FOT.

Otherwise, if S is honest,
– SimOT receives the output a ∈ {0, 1} from FOT.
– If R is corrupted, SimOT has b, otherwise it picks b← {0, 1} at random.
– SimOT sets ab = a and a¬b = 0 and computes m′2 ← OT.OT2(CRS; pk, a0, a1).
– SimOT gives m′2 to A.

4. If R is adaptively corrupted after the first message,
– SimOT receives b from FOT and sends (b, skb) to A.

Let κ be the computational security parameter, R denote the space of randomness
of all the parties participating in the protocol and r⃗ denote the contents of the
random tape of all the parties and the simulator. Let us, without loss of generality,
consider the case that S is honest and R is adaptively corrupted after the first
message is sent. This is the case for which the simulator needs to output all the
messages in the transcript. The output of this simulator is distributed as,{

b, (a0, a1),m
′
1,m

′
2, skb

}
κ∈N,r⃗∈R

This distribution can be shown as indistinguishable from the real view using OT
by reducing to the ‘Messy Branch Indistinguishability’ and ‘Trapdoor Generation’
property of a dual-mode cryptosystem (Definition 18). Consider the following set
of hybrids:
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– Hybrid H0. This is the distribution of the output of SimOT. It differs from
the view of the real execution in that all the messages in the transcript are
simulated messages.

H0 =
{
b, (a0, a1),m

′
1,m

′
2, skb

}
κ∈N,r⃗∈R

– Hybrid H1. This is the distribution output by an intermediate hybrid experi-
ment in which the sender S’s message m2 is generated as in the real execution
but everything else is generated as in SimOT.

H1 =
{
b, (a0, a1),m

′
1,m2, skb

}
κ∈N,r⃗∈R

– Hybrid H2. This is the distribution of the view of the real execution of the
protocol. It differs from the previous hybrid in that the simulated receiver’s
message is replaced by m1 as produced in the real execution of OT.

H1 =
{
b, (a0, a1),m1,m2, skb

}
κ∈N,r⃗∈R

Claim 13 Assuming that the dual-mode cryptosystem E (Construction 2) satis-
fies ‘Messy Branch Indistinguishability’, the views in hybrid distributions H0 and
H1 are statistically close.

Proof. The hybrids H0 and H1 differ only in the way that the honest sender’s
message is generated. In H1 it is m2, generated as in the real execution of the
protocol. This can be parsed as m2 = (y0, y1) where y0 = E .Enc(CRS, pk, 0, a0)
and y1 = E .Enc(CRS, pk, 1, a1). In H0 it is the simulated message m′2. Let b be the
branch corresponding to pk. Then, m′2 = (y′0, y

′
1) where y′b = E .Enc(CRS, pk, b, ab),

same as in H1, but y′¬b = E .Enc(CRS, pk,¬b, 0). So the only difference between the
two hybrid experiments is that the ciphertext encrypted using the messy branch
¬b is different. However, since the dual-mode cryptosystem E (Construction 2)
satisfies ‘Messy Branch Indistinguishability’, it holds that,{

E .Enc(CRS, pk,¬b, 0)
} s
≈

{
E .Enc(CRS, pk,¬b, a¬b)

}
It follows from the triangle inequality of statistical differences that the difference
between H0 and H1 can be no more than that of the above distribution and so
these distributions are also statistically close.

Claim 14 Assuming that the dual-mode cryptosystem E (Construction 2) satis-
fies ‘Trapdoor Generation’, the views in distributions H1 and H2 are statistically
close.

Proof. The hybrids H1 and H2 differ only in the way that the honest receiver’s
message is generated. In H2 it is m1, generated as in the real execution of the
protocol. This can be parsed as m1 = pk where (pk, sk) ← E .PKgen(CRS, b).
In H1 it is the simulated message m′1. This is generated as m′1 = pk′ where
(pk′, sk0, sk1)← E .TrapGen(CRS, t). However, since the dual-mode cryptosystem
E (Construction 2) satisfies ‘Trapdoor Generation’, it holds that,{

pk, sk
} s
≈

{
pk′, skb

}
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It follows from the triangle inequality of statistical differences that the difference
between H2 and H1 can be no more than that of the above distribution and so
these distributions are also statistically close.

Since none of the listed adjacent hybrids are distinguishable, it follows that
the distributions of the real view of OT and the simulated view are also indistin-
guishable. Hence, this protocol (CRSgen,OT1,OT2,OTfin) ∈ OT is a maliciously
secure bit-OT protocol in the CRS model that is secure in the presence of a PPT
adversary A corrupting the sender S statically and the receiver R adaptively.

Next, we need to show that (CRSgen,OT1,OT2,OTfin) ∈ OT is a maliciously
secure protocol in the CRS model realizing FmultiOT (Figure 8) that is secure in
the presence of a PPT adversary A corrupting the receiver R adaptively and any
subset of the senders {Si}i∈[ℓ] statically. Let us denote by b ∈ {0, 1} the input
of R and by ai0, a

i
1 ∈ {0, 1} the input bits of each Si. Let SimmultiOT be a PPT

adversary that simulates the view of A in an ideal execution of FmultiOT, working
as follows:

1. SimmultiOT first invokes (CRS, t)← OT.CRSgen(1κ) and, emulating FCRS, it
gives CRS to A.

2. If R is initially corrupted,
– SimmultiOT accepts m1 from A and parses m1 = pk = (g, h).
– SimmultiOT computes b′ ← E .Branch(CRS, t, pk).
– SimmultiOT passes b′ to FmultiOT.

Otherwise, if R is initially honest,
– SimmultiOT computes (pk, sk0, sk1)← E .TrapGen(CRS, t).
– SimmultiOT sends m′1 = pk to A.

3. For each i ∈ [ℓ], if Si is corrupted and R is initially honest,
– SimmultiOT has (sk0, sk1).
– SimmultiOT accepts mi

2 from A and parses mi
2 = (yi0, y

i
1).

– SimmultiOT computes a′i0 = E .Dec(sk0, yi0) and a′i1 = E .Dec(sk1, yi1).
– SimmultiOT passes (a′i0 , a

′i
1 ) to FmultiOT.

If Si is corrupted and R is initially corrupted,
– SimmultiOT accepts mi

2 from A and sends ⊥ to FmultiOT.
Otherwise, if Si is honest,
– SimmultiOT receives the output ai ∈ {0, 1} from FmultiOT.
– If R is corrupted, SimmultiOT has b, otherwise it picks b ← {0, 1} at

random.
– SimmultiOT sets aib = ai and ai¬b = 0 and m′i2 ← OT.OT2(CRS; pk, a

i
0, a

i
1).

– SimmultiOT gives m′i2 to A.
4. If R is adaptively corrupted after the first message,

– SimmultiOT receives b from FmultiOT and sends (b, skb) to A.

Let κ be the computational security parameter, R denote the space of randomness
of all the parties participating in the protocol and r⃗ denote the contents of the
random tape of all the parties and the simulator. Let us, without loss of generality,
consider the case that all {Si}i∈[ℓ] is honest and R is adaptively corrupted after
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the first message is sent. This is the case for which the simulator needs to output
all the messages in the transcript. The output of this simulator is distributed as,{

b, {ai0, ai1}i∈[ℓ],m′1, {m′i2 }i∈[ℓ], skb
}
κ∈N,r⃗∈R

This distribution can be shown as indistinguishable from the real view using OT
by reducing to the ‘Messy Branch Indistinguishability’ and ‘Trapdoor Generation’
property of a dual-mode cryptosystem (Definition 18). Consider the following set
of hybrids:

– Hybrid H0. This is the distribution of the output of SimmultiOT. It differs from
the view of the real execution in that all the messages in the transcript are
simulated messages.

H0 =
{
b, {ai0, ai1}i∈[ℓ],m′1, {m′i2 }i∈[ℓ], skb

}
κ∈N,r⃗∈R

– Hybrid Hi. For each i ∈ [ℓ], this is the distribution output by an intermediate
hybrid experiment in which the messages of senders in {Si′}i′≤i are generated
as in the real execution but everything else is generated as in SimmultiOT.

Hi =
{
b, {ai

′

0 , a
i′

1 }i′∈[ℓ],m′1, {mi′

2 }i′≤i, {m′i
′

2 }i′>i∈[ℓ], skb
}
κ∈N,r⃗∈R

– Hybrid Hℓ+1. This is the distribution of the view of the real execution of
the protocol. It differs from the previous hybrid Hℓ in that the simulated
receiver’s message is replaced by m1 as produced in the real execution of
OT.

Hℓ+1 =
{
b, {ai0, ai1}i∈[ℓ],m1, {mi

2}i∈[ℓ], skb
}
κ∈N,r⃗∈R

Claim 15 Assuming that the dual-mode cryptosystem E (Construction 2) sat-
isfies ‘Messy Branch Indistinguishability’, then for each i ∈ [ℓ] views in hybrid
distributions Hi and Hi−1 are statistically close.

The proof for this closely follows that in Claim 13.

Claim 16 Assuming that the dual-mode cryptosystem E (Construction 2) satis-
fies ‘Trapdoor Generation’, the views in distributions Hℓ and Hℓ+1 are statistically
close.

The proof for this closely follows that in Claim 14.
Since none of the listed adjacent hybrids are distinguishable, it follows that

the distributions of the real view of OT and the simulated view are also indistin-
guishable. Hence, this protocol (CRSgen,OT1,OT2,OTfin) ∈ OT is a maliciously
secure protocol realizing FmultiOT in the CRS model that is secure in the presence
of a PPT adversary A corrupting the receiver R adaptively and any subset of
the senders {Si}i∈[ℓ] statically.

Lastly, it remains to show that the OT second message is rerandomizable.
For this, note that the function OT.OT3 makes 2 calls to E .Rerand and OT.OT2

makes two calls to E .Enc of the dual-mode cryptosystem. When this cryptosystem
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Functionality Ff in the Covert Setting

Let f : {0, 1}m → {0, 1}l be a function. Let A be a PPT ideal-world adversary.
Let C = {Ci}i∈[m] be the clients. Let ϵ = 1

2
be the probability of cheating

detection. The functionality Ff works as follows:

– Ff accepts an input bit xi from each Ci ∈ C
– If, for any corrupted Ci, Ff receives (cheat, i) from A,
• with probability ϵ, Ff sends (corrupt, i) to all parties
• otherwise, Ff sends all inputs (undetected, {xi}Ci∈C) to A; then it

accepts an output τ from A and this is given to all honest parties as
output.

– Otherwise, Ff computes f(x) and gives f(x) to A
– If A sends OK to Ff , it sends f(x) to C

Fig. 27 Functionality in the Covert Setting

is instantiated as in Construction 2, both Rerand and Enc samples as randomness
two elements s, t← Zp. Hence the randomness used in OT.OT3 and OT.OT2 is
identically distributed. Further, let (s, t) ⋄ (s′, t′) = (s+ s′, t+ t′). Then it holds
by construction that:

OT2(m1, (a0, a1); r ⋄ r′) = OT3(OT2(m1, (a0, a1); r
′); r)

This completes the proof.

C A Covertly Secure SCALES Protocol

Consider an execution of functionality Ff that proceeds as in Figure 27.

Definition 19. A SCALES protocol (Definition 1) Π for a function f is said
to be a covertly secure SCALES protocol if it is a UC-secure protocol for
the functionality Ff (Figure 27) in the (FB,FCRS)-hybrid model against a covert
PPT adversary that is allowed all-but-one adaptive corruption of clients, and, for
each phase, all-but-one adaptive corruption with erasures of participating servers.

A Covertly Secure SCALES Protocol. The malicious-secure protocol given
in Figure 26 uses, for each encoder, s instances of parallel runs of the Σ-protocol
inside the ephemeral prover zero-knowledge protocol (Figure 22) to realize the
functionality FEPZK. This helps to give privacy error that is 2−s. Note that the
same protocol can be weakened to provide covert security instead.

Covert security, or security in the ϵ-deterrent model, where ϵ = 1
2 can be pro-

vided with only one execution of the Σ-protocol inside the Ephemeral Prover Zero-
Knowledge protocol per encoding server. Let us denote as Fϵ

EPZK the ephemeral
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prover zero-knowledge functionality that achieves FEPZK in the covert setting
(Figure 27).

Corollary 1. Assuming the hardness of the DDH problem, the protocol in Fig-
ure 26 with s = 1 is a SCALES protocol for computing the function f that is
secure in the ϵ-deterrent model for ϵ = 1

2 in the Fϵ
EPZK-hybrid.

C.1 Proof of Corollary 1

Proof. The protocol in Figure 26 satisfies the communication pattern given in
Definition 1. The protocol has 3 phases: a computation phase, a verification
phase, and a decoding phase. The clients post messages on to the bulletin-board
at the beginning of each phase. Each of the 3 phases is composed of multiple
rounds, after the clients’ first message. In each round one stateless server reads
the state of the bulletin-board, performs computation, erases its state and posts
one message. Finally, note that in Figure 26, while the clients retain state, they
read only information whose size is proportional to their individual input size, the
security parameter κ, and, for some phases, the number of servers participating
in the previous phase. Their computation is also of the same order. The servers
are stateless. Hence Figure 26 is a SCALES protocol.

It now remains to show that Figure 26 is a covert-secure SCALES protocol
(Definition 19) in the Fϵ

EPZK-hybrid. Let A be a PPT covert adversary. Let CS ⊂ C
be the set of clients that A corrupts statically and let CA ⊂ C − CS denote the
set of clients that it adaptively corrupts. Out of each of the 3 phases in the
protocol, let it be the case that A corrupts all-but-one server in each phase. For
phase p ∈ [3], let Sp denote the set of servers that participated in that phase
and let S∗p be the one honest server for that phase. In the ideal world, let Sim be
the PPT adversary interacting with A. The protocol in Figure 26 assumes the
existence of an Explanable Projective RGS (Definition 9), a 2-round Explanable
UOT protocol (Definition 10), and ephemeral prover zero-knowledge protocols
(Figure 22) for the relations RGb (Equation 3) and RRerand (Equation 4), in
the covert security case, realizing the functionality Fϵ

EPZK. We denote by SimGS

a PPT simulator that takes as input the function f and f(x), and outputs a
simulated garbling F ′ and a corresponding set of active input labels L′. For
our construction, we let SimGS operate as described in [LP09]. It holds that the
output (F ′,L′) is computationally indistinguishable from a real garbled circuit
and its active input label set. The simulator Sim for our protocol uses SimGS in a
black-box way. Let F be the ideal functionality computing f (Figure 27). The
actions of the PPT simulator Sim in the ideal-world interaction for ϵ = 1

2 in the
Fϵ

EPZK-hybrid are as follows:

1. Computation Phase:
– For each statically corrupted client Ci ∈ CS ,
• Sim invokes the ith instance of SimUOT in a black-box way and extracts

either inputs x′i ∈ {0, 1} or ⊥ (aborti,corrupti).
• Sim passes these to F .
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For each client Ci not yet corrupted, Sim invokes the ith instance of
SimUOT in a black-box way and emulates the transcript.

– For each adaptively corrupted Ci ∈ CA,
• Sim passes the index i to F and receives xi.
• Sim continues the ith execution of SimUOT, producing the randomness
ri to explain the transcript thus far.

• Sim gives (xi, ri) to the adversary A.
– ∀j ∈ [c1], if server Ej is corrupted:
• ∀i ∈ [m], Sim continues the execution of the ith execution of SimUOT

and extracts the server’s inputs from the incoming messages:
If j = 0, these inputs are (L0i,0, L

1
i,0)

Otherwise, these are transformations σj
i

• Sim emulates Fϵ
EPZK and gets statement αj = Fj and witness wj = rj .

• Using all these inputs, if j = 0 and RGb holds, or if j ̸= 0 and RRerand

holds, then set bj = 1 and continue the execution.
• Otherwise, if the required relation does not hold and Sim, emulating
Fϵ

EPZK receives abortj from A, Sim sends abortj to F and set bj = 0.
• Otherwise, if the required relation does not hold and Sim, emulating
Fϵ

EPZK receives cheatj from A, Sim sends cheatj to F :
∗ If F returns (undetected, {xi}i∈[m]), set bj = 1 and continue.
∗ Otherwise, if F returns corruptj , set bj = 0.

• Sim additionally posts Fj on behalf of Fϵ
EPZK.

– ∀j ∈ [c1], if server Ej is honest:
• Sim gets f(x′) from F and invokes (F ′,L′)← SimGS(1

κ, f, f(x′)).
• Sim sets bj = 1 within its emulation of Fϵ

EPZK and posts F ′.
• ∀i ∈ [m], Sim continues the ith instance of SimUOT with receiver’s

output as Li,j ∈ L′.
2. Verification Phase:

– Sim emulates Fϵ
EPZK and reveals b =

⋂
j∈[c1] bj .

3. Decoding Phase:
– If b = 1, then ∀i ∈ [m], complete executing the ith instance of SimUOT.
– ∀k ∈ [c3], server Dk is corrupted,
• Sim gets y′ from A.
• If y′ ̸= f(x′) send abortk to F .

– ∀k ∈ [c3], server Dk is honest, Sim posts f(x′) onto B.

Let κ be a computational security parameter. Let R be the space of random-
ness of all participating parties and let r⃗ be the contents of the random tape of
all the parties in the execution. For each i ∈ [m], let τSimi

UOT
denote the simulated

view of the ith instance of the UOT sub-protocol. The view produced by the
above simulation is distributed as,{

{xi}i∈[m], f(x
′), F ′, {Fj}j∈[c1]−S∗

1
, b, {τSimi

UOT
}i∈[m],

{Li,j ∈ L′}Ci∈CA∪CS
, {Lx

′
i

i,j}Ci∈CA∪CS ,j∈[c1]−S∗
1
, {y′}k∈[c3]

}
κ∈N,r⃗∈R

In order to show that the distribution is computationally indistinguishable from
the distribution of the view of a real execution of the protocol, consider the
following set of hybrids:
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– Hybrid H0. This is the distribution of the output of Sim. It differs from the
view of in a real execution on two fronts. First, the garbling F ′ and the clients’
active labels L′ in the view corresponding to the honest encoder are output
by a garbling simulator SimGS in such a way that evaluating the garbling
would always result in f(x′). Next, the transcripts of all the m instances of
the UOT sub-protocols are generated using a simulator SimUOT.

H0 =
{
{xi}i∈[m], f(x

′), F ′, {Fj}j∈[c1]−S∗
1
, b, {τSimi

UOT
}i∈[m],

{Li,j ∈ L′}Ci∈CA∪CS
, {Lx

′
i

i,j}Ci∈CA∪CS ,j∈[c1]−S∗
1
, {y′}k∈[c3]

}
κ∈N,r⃗∈R

– Hybrid Hi. For each i ∈ [m], this is the distribution output by an intermediate
hybrid experiment in which all the messages of the first i UOT protocol
executions are generated as in the real protocol execution. The rest of the
messages are generated as in the UOT simulation.

Hi =
{
{xi′}i′∈[m], f(x

′), F ′, {Fj}j∈[c1]−S∗
1
, b, {τ i

′

UOT}i′≤i, {τSimi′
UOT
}i′>i∈[m]

{Li′,j ∈ L′}Ci′∈CA∪CS
, {Lx

′
i′

i′,j}Ci′∈CA∪CS ,j∈[c1]−S∗
1
, {y′}k∈[c3]

}
κ∈N,r⃗∈R

The last hybrid Hm is the distribution that only differs from that of the
real execution in that the garbling of the honest encoder is produced by the
garbling simulator.

– Hybrid Hm+1. This is the distribution of the view of a real execution of the
protocol.

Hm+1 =
{
{xi}i∈[m], f(x

′), {Fj}j∈[c1], b, {τ
i
UOT}i∈[m],

{Lx
′
i

i,j}Ci∈CA∪CS ,j∈[c1], {y
′}k∈[c3]

}
κ∈N,r⃗∈R

Claim 17 Assume that UOT is a UOT protocol that realizes the functionality
FUOT (Definition 7) in the presence of a PPT malicious adversary corrupting
all-but-one of the sender and updaters statically and the receiver adaptively.
Then for each i ∈ [m], the views in the hybrid distributions Hi and Hi−1 are
computationally indistinguishable.

Proof. The hybrid distributions Hi and Hi−1 differ only in the way that the ith

UOT sub-protocol transcript is produced. In Hi, this is produced as in the real
execution of the functions in UOT. In Hi−1, this is produced as given in the
output of the simulator SimUOT. Since UOT securely realizes FUOT (Definition 7)
in the presence of a PPT malicious adversary corrupting all-but-one of the sender
and updaters statically and the receiver adaptively, it follows that both these
transcripts are computationally indistinguishable.

However, if there existed a PPT adversary A that can distinguish between
hybrids Hi and Hi−1 with non-negligible advantage ϵ, then A can be used in a
black-box way as a subroutine by a PPT distinguisher D to distinguish between
the output of SimUOT and the protocol UOT. D works by first generating the
view of the protocol up to the i − 1th UOT protocol transcript as in the real
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execution. It then gives the inputs xi, (L0i,0, L0i,1) and {σj
i }j∈[d] to the challenger

C that returns a message m. D then completes the rest of the view of the protocol
as in the simulation SimUOT and gives this to A. Note that if m = τSimi

UOT
as

output by SimUOT then the complete transcript belongs in the distribution Hi−1.
Otherwise, if m = τ iUOT as in the real execution of the algorithms in UOT, then
the transcript belongs in the distribution Hi. Finally, D outputs whatever A
outputs. In this experiment D’s advantage is the same as that of A, which is
non-negligible. However since UOT is a secure protocol, no such D can exist and
hence no such A can exist.

Claim 18 Assuming that it holds that,

{F ′,L′}(F ′,L′)←SimGS(1κ,f,f(x′))
c
≈ {F,X}(F,e)←RGS.Gb(f), X=RGS.En(e,x′)

the hybrid distributions Hm and Hm+1 are computationally indistinguishable.

Proof. The hybrid distributions Hm and Hm+1 differ only in the way that the
honest encoder’s garbled circuit and active labels set is produced. In Hm, this is
produced as (F ′,L′)← SimGS(1

κ, f, f(x′)). In Hm+1, this is produced as given in
the real protocol execution using functions in RGS. Since it holds that both these
outputs are computationally indistinguishable, it follows that the transcripts in
both hybrid distributions are computationally indistinguishable.

However, if there existed a PPT adversary A that can distinguish between
hybrids Hm and Hm+1 with non-negligible advantage ϵ, then A can be used in a
black-box way as a subroutine by a PPT distinguisher D to distinguish between
the output of SimGS and the functions in RGS. D works by first generating the
view of the protocol up to before the honest encoder’s message as in the real
execution. It then gives the inputs x′, f, κ to the challenger C that returns a
message m. D then completes the rest of the view of the protocol as in the real
execution and gives this to A. Note that if m = (F ′,L′) as output by SimGS then
the complete transcript belongs in the distribution Hm. Otherwise, if m = (F,X)
as in the real execution of the algorithms in RGS, then the transcript belongs in
the distribution Hm+1. Finally, D outputs whatever A outputs. In this experiment
D’s advantage is the same as that of A, which is non-negligible. However since
SimGS is a secure simulation for the function in RGS, no such D can exist and
hence no such A can exist.

Therefore, as none of the listed adjacent hybrids are distinguishable and there
are polynomially many such hybrids, it follows that the distributions of the real
and simulated transcripts are also computationally indistinguishable.

Lemma 10. The ephemeral prover zero-knowledge protocol (Figure 22) when
instantiated with 1 run of the Σ-protocols for each server, has soundness 1

2 ,
realizing Fϵ

EPZK for ϵ = 1
2 .

Proof. The ephemeral prover zero-knowledge protocol (Figure 22) uses a DCOT
protocol and Σ-protocols with soundness 1

2 as its building blocks. Let this protocol
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be run with no parallel repetitions and let A be a PPT adversary that corrupts
all-but-one of the challengers either statically or adaptively, and all but one of
the proving servers.

Note that since A does not corrupt all the clients, it can never know the value
of b until the reveal phase of DCOT. That is, as long as one client Ci is honest,
b = ⊕i∈[m]bi remains a value chosen uniformly at random from {0, 1}, and is
secret until the reveal phase. This corresponds to each Σ-protocol individually
maintaining soundness error 1

2 where either all provers open to the transcript
(a, 0, c0) or they all open to (a, 1, c1).

A verifier accepts in an execution of the protocol only if for all the provers,
the Σ-protocol transcript is accepting. If A chooses to cheat in any one of the
Σ-protocol transcripts, it will get caught with probability ϵ = 1

2 . If it cheats in
the transcript of p different provers, it will be detected with probability ≥ 1

2 .
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