
Decentralized Access Control Infrastructure for

Enterprise Digital Asset Management

Chirag Madaan
chirag@cypherock.com

Rohan Agarwal
rohan@cypherock.com

Vipul Saini
vipul@cypherock.com

Ujjwal Kumar
ujjwal@cypherock.com

March 2024

Abstract

With the rapidly evolving landscape of cryptography, blockchain tech-
nology has advanced to cater to diverse user requirements, leading to the
emergence of a multi-chain ecosystem featuring various use cases charac-
terized by distinct transaction speed and decentralization trade-offs. At
the heart of this evolution lies digital signature schemes, responsible for
safeguarding blockchain-based assets such as ECDSA, Schnorr, and Ed-
DSA, among others.

However, a critical gap exists in the current landscape — there is no so-
lution empowering a consortium of entities to collectively manage or gen-
erate digital signatures for diverse digital assets in a distributed manner
with dynamic threshold settings, all while mitigating counter-party risks.
Existing threshold signature schemes impose a fixed threshold during the
key generation phase, limiting the adaptability of threshold settings for
the subsequent signature phase. Attempts to address this challenge often
involve relinquishing signature generation control either partially or en-
tirely from the participating parties, introducing vulnerabilities that could
jeopardize digital assets in the event of network disruptions.

Addressing this gap, our work introduces an innovative infrastructure
that allows a group of users to programmatically define and manage access
control policies, supported by a blockchain network dedicated to policy
enforcement. This network is uniquely designed to prevent any entity,
including itself, from autonomously generating digital signatures, thereby
mitigating counter-party risks and enhancing asset security. This system
is particularly suited for enterprise contexts, where collaborative asset
oversight and policy adherence are essential. Our solution marks a signifi-
cant stride in the realm of blockchain technology, paving the way for more

1

mailto:chirag@cypherock.com
mailto:rohan@cypherock.com
mailto:vipul@cypherock.com
mailto:ujjwal@cypherock.com

sophisticated and secure digital asset management in a rapidly evolving
digital landscape.

Keywords: Linearly homomorphic encryption, Class groups, Threshold signa-
ture schemes, Blockchain.

1 Introduction

With Bitcoin and Ethereum serving as prominent examples, the proliferation of
blockchain technologies has not only ushered in a new era of financial innovation
but has also given rise to continuous research and development in underlying
cryptographic schemes. These ongoing efforts are aimed at further enhancing
the axes of the scalability trilemma, striving to strike an optimal balance be-
tween decentralization, security, and transaction speed. This relentless pursuit
of cryptographic innovation has catalyzed the emergence of a diverse and dy-
namic blockchain ecosystem, where various chains coexist to provide versatile
solutions for decentralized applications. As we look to the future, it becomes
increasingly evident that the coexistence of multiple blockchains will not only
be the norm but also the catalyst for groundbreaking advancements in decen-
tralized technologies, providing fertile ground for the creation of innovative,
powerful, and highly specialized decentralized applications.

In the multichain landscape, the need for non-custodial wallets has become
imperative for managing assets across various blockchains, catering to both in-
dividuals and institutions. Institutional scenarios often involve a collective of
individuals jointly overseeing assets while adhering to predefined policy settings.
These policy settings serve as the governing rules dictating when and how digital
assets possessed by the group on the blockchain, can be spent, factoring in con-
siderations such as time frames, transaction amounts, and more. Remarkably,
the existing wallets in the market have yet to offer a comprehensive solution
that combines full self-custody for groups of individuals managing digital assets
with a flexible and customizable policy layer that is chain-agnostic. In essence,
there exists an unmet demand for a solution that provides robust security for
digital assets while allowing users to tailor policy settings to their specific needs.

2 Requirements

We have identified the following fundamental requirements that the non-custodial
solution should fulfill for an institution or a group of members to be able to man-
age their digital assets:

• The group or the institution should be able to create/update the policy
according to which the digital assets possessed by them are spent.

• No external entity or network should possess all the critical cryptographic
key materials or the capability to generate valid signatures by itself. Only

2

the group or the institution should own the their digital assets ensuring
full self-custody.

• The policy-enforcement layer should be decentralised in order to prevent
a single point of failure and make the compromisation of the network near
impossible for a malicious actor.

• To policy-enforcement decentralised network should be large and should
support joining and leaving of nodes at any time. There should be minimal
or zero P2P communication between the nodes to make the speed of the
protocol more practical.

• The availability of digital assets held by the group should not depend on
the availability of any external factors including the policy-enforcement
layer if all the members of the group are present.

• The solution should support spending of digital assets on almost all blockchains
to open up the possibilities of various applications and hence improve the
usefulness of the solution.

• The solution should allow the generation of group receive/change ad-
dresses to enhance privacy and security for each transaction.

Keeping these requirements in mind, we have worked on building a fast de-
centralized policy-enforcement blockchain network for institutions or a group
of members to jointly manage their digital assets on multiple chains with the
ability to securely update the policy settings whenever required. Our solu-
tion ensures that the digital assets are cryptographically possessed only by the
group and are available even when our policy-enforcement network is down, as-
suming the group members are available. We have utilized the latest research
and development of various secure cryptographic primitives such as Hierarchi-
cally Threshold Linearly Homomorphic Encryption based on class groups and
Threshold Signature Generation schemes, to realize our architecture. The se-
curity of handling individual user shares is greatly improved by integrating the
hardware security provided by the Cypherock devices. In this paper, we de-
scribe our approach to generate ECDSA signatures in a group setting as it is
the most popular digital signature algorithm currently used on the blockchains,
but the same architecture can be realized for other digital signature algorithms
like Schnorr and EdDSA as well.

3 Related Work

The recent advancements in threshold signature schemes, particularly for El-
liptic Curve Digital Signature Algorithm (ECDSA), have been significant, with
multiple efficient protocols being proposed in a relatively short span. [10] [9] [6]
[5] [7] [4]. These protocols vary in their assumptions, adversarial models, build-
ing blocks, and performance metrics, providing a broad spectrum of choices
depending on the specific requirements of the use case at hand.

3

Paper Rounds Space Time Channels IA Assumptions
LN18 [10] 7 O(n2) O(n2) P2P No DCR or OT, DDH
GG19 [9] 8 O(n2) O(n2) P2P & BC No sRSA, DCR, DDH
DKLS19 [6] [log t] + 6 O(n2) O(n2) P2P & BC No DH
DJN20 [5] 4 O(n2) O(n2) P2P No -
DKLS23 [7] 3 O(n2) O(n2) P2P No DH

Table 1: Comparison of some of the popular TSS protocols.

One major requirement for implementing true institutional self-custody with
an access control layer is dynamic threshold, which is not possible via any of
the above TSS protocols. There is very limited work done on securely enforcing
dynamic threshold property. Moreover, we require the protocol to have iden-
tifiable abort to prevent malicious users in the network from performing DoS
attacks. As can be seen in Table 1, most of the popular TSS protocols require
high rounds of communication, high bandwidth and do not support identifiable
abort.

There has been some work that focus on establishing a decentralised access
control layer for general purpose use case [11] but the management of assets held
be a group of users is not defined and there is no protection of funds availability
in case of network outage.

3.1 Our Work

To address the limitations of previous works and fulfill the requirements de-
scribed above where signing thresholds can be defined based on specific condi-
tions within the distributed message signing phase, a cryptographic foundation
is essential. This necessitates that the message signing phase should support
different thresholds as defined in the policy, and should be enforced by the net-
work of validators.

This further necessitates that during the distributed key generation phase,
participants should not hold the private shares generated over the group polyno-
mials, otherwise, participants will always be able to generate signatures with the
lowest threshold established. In this paper, we propose an a secure group setup
which results in encrypted group private key which is then used to generate
encrypted signatures (See Figure 4). This process also generates additive shares
of the group private key which are stored on individual Cypherock devices,
protected against the loss and theft of the device, by further sharding of shares
into the X1 cards. The additive shares are generated to help protect/recover the
funds in the very rare case the policy enforcement network becomes unavailable.

The encryption scheme should have threshold linear homomorphic proper-
ties in the message space of the ECDSA which is now possible due to the recent
advancements in this research field [3]. Using the properties of such a homomor-
phic encryption scheme, the participants will be able to generate an encrypted

4

signature following a suitable distributed threshold signature scheme from the
encrypted shares with the help of the policy-enforcement blockchain network.
During signature generation, the network only participates in providing ran-
domness to the ephemeral key of the signature to prevent the calculation of
private key from a signature by the malicious group members. The decryption
of the signature will be done in a hierarchical threshold manner by the network
only when the policy compliance checks are passed and the threshold number
of parties in a group. This is done to prevent the generation of malicious sig-
natures if somehow the network gets corrupted. The validator network itself is
incapable of decrypting an encrypted signature due to the hierarchical distribu-
tion of decryption key among enterprise users and the network (See Figure 5).
The final decrypted signature can then be utilized to transfer the digital assets
on the respective blockchains. This approach helps enterprise achieve full self
custody with a decentralized layer to enforce policies and regulations on the
funds and the transactions.

We are currently working on researching efficient ZKP algorithms and im-
plementing ZKP generation on Cypherock X1 devices to create an overall inte-
grated system for digital asset management.

4 Cryptography Primitives

4.1 Hierarchical Threshold Linearly Homomorphic Encryp-
tion

In our approach, we extend the Threshold Linearly Homomorphic Scheme [2] [3]
to be used hierarchically. The paper defines the following framework to setup
the class groups:

• G = ⟨g⟩: cyclic group of order s · 2k, with gcd(2k, s) = 1

• F = ⟨f⟩: subgroup of 2k-roots of unity of G, of order 2k

• Efficient algorithm for computing discrete logarithms in F (x given fx)

• H = ⟨h⟩: subgroup of 2k-th powers of G of unknown odd order s

• G ∼= F ×H

• s̃ is a known upper bound for s

HSM2k assumption: Given f, h, s̃ and zb, where b← U{0, 1},
z0 = hx · fu, and z1 = hx for x← DH and u← U((Z/2kZ)×)
no PPT algorithm can decide b with probability significantly greater than 1/2.

After setting up the required class groups, the paper describes the following
mathematics of essential functions: KeyGen, Encrypt, Decrypt, EvalAdd and
EvalScal.

5

4.1.1 KeyGen

• This function generates Threshold Additive Homomorphic Encryption
(tAHE) key pairs. It either takes a private key sk as input or generates it
randomly.

• A random private key sk is chosen in the private key bounds of the cryp-
tosystem.

• The corresponding public key is computed as follows:

pk = hsk

• The function then returns the key pairs.

4.1.2 Encrypt

• In our paper, we have referred to the encryption function as enc(m, pk)
where m is the message to be encrypted and pk is the encryption public
key.

• A random number r is chosen in the private key bounds of the cryptosys-
tem.

• The first part of the encrypted message is computed as: c1 = hr.

• The second part of the encrypted message is computed as: c2 = fm×pkr.

• The function returns (c1, c2) as the encrypted message.

4.1.3 Decrypt

• In our paper, we have referred to the decryption function as dec(e, sk)
where e is the encrypted message i.e e = (c1, c2) and sk is the decryption
private key.

• Then the function computes M = c2× c1−sk.

• If M /∈ F , then the function returns ⊥.

• Else, the function returns logf (M).

4.1.4 EvalAdd

• This function adds two encrypted messages e1 and e2 and returns their
encrypted sum.

• This function takes pk, e1 = (c1, c2) and e2 = (c′1, c
′
2) as input.

• It then computes c′′1 = c1× c′1 and c′′2 = c2× c′2.

6

• A random number r is chosen in the private key bounds of the cryptosys-
tem.

• The function returns e = e1 + e2 = (c′′1 × hr, c′′2 × pkr).

4.1.5 EvalScal

• This function multiplies a non-encrypted scalar value with an encrypted
message and returns the encrypted product.

• This function takes pk, e = (c1, c2) and α as input.

• It then computes c′1 = c1α and c′2 = c2α.

• A random number r is chosen in the private key bounds of the cryptosys-
tem.

• The function returns α× e = (c′1 × hr, c′2 × pkr).

4.1.6 Threshold Decryption

Let’s say a value s is encrypted using public key pk to get e = enc(s, pk) =
(c1, c2) and the corresponding decryption private key sk such that pk = hsk is
distributed using the Shamir secret sharing scheme with threshold value t, i.e.,
the i-th group member has the share Ssk(i) such that any t number of shares
can be interpolated to generate the value sk as:

sk =

t∑
i=1

(λi × Ssk(i))

where,

λi =
∏

1≤m≤n,m̸=j

m

m− j

Instead of computing the decryption key sk using interpolation and then
decrypting e value, each party can compute a partial decryption of e using their
share as detailed below and finally, t number of partial decryptions of e can be
multiplied together to compute the value of s.

The i-th group member can compute the partial decryption of e as: di =
c1−λi×Ssk(i) and broadcast it. In our paper, we refer to this process of computing
partial decryption of e as partDec(e, λi, Ssk(i)). Finally, s can be computed as:
s = logf (c2×(

∏t
i=1 di)) if c2×(

∏t
i=1 di) ∈ F , we refer to this process of comput-

ing final decrypted value from partial decryptions as aggPartDecs(e, {d1, d2, ..., di})
This function returns ⊥ if c2× (

∏t
i=1 di) /∈ F .

In our paper, the private decryption key sk is distributed hierarchically
among User Group members and validators without the help of any trusted

7

dealer, but with the Distributed Key Generation (DKG) process as visualized
in Figure 5. Even in this case, our functions partDec and aggPartDecs will work
correctly to compute the final decrypted value if the encryption was performed

using the global public key, i.e., pk = pk
tp
g ×pkv = hsk

tp
g ×hskv (View Figure 5).

4.2 Distributed Key Generation

This section describes the approach for a group of total n members to securely
generate shares of group threshold additive homomorphic (tAHE) decryption
key with the threshold value t, and make the group tAHE encryption key pub-
lic. This implies that any t number of group members can re-generate the group
tAHE decryption key, but they’ll never be required to do so in the protocol ex-
plained later. Hence, the group tAHE decryption key is never computed and
stored in its original form.

For the DKG process, parties engage in the following process:

1. Each group member, represented by the i-th member, creates its own
random individual polynomial of degree t− 1. The individual polynomial
of the i-th member is represented as:

Si(x) = rt−1 ∗ xt−1 + rt−2 ∗ xt−2 + ...+ r0

The coefficients of this polynomial are randomly chosen in the secret key
bounds of the tAHE cryptosystem.

2. Each group member then computes n number of shares for each member
in the group including itself. The shares computed by the i-th member
are represented as:

{Si(1), Si(2), ..., Si(n)}

3. The i-th group member then transmits its polynomial’s share for the j-th
group member via a private and authenticated channel. In the same way,
each group member shares its individual polynomial’s shares to the other
respective group members.

4. Each group member on receiving the shares from other group members
securely, performs arithmetic addition of the shares to get the share of the
group secret polynomial. The share of group secret polynomial of the i-th
group member is:

S(i) =

n∑
j=1

Sj(i)

5. Every group member, represented by the i-th member, will have to broad-
cast their share of the group public key calculated as shown below:

Qi = hS(i)

8

6. Upon receiving the group public key shares, each group member, repre-
sented below as the i-th member, can run a check by interpolating in the
exponent to verify its public key share.

Qi = ExpInt(Q1, Q2, ...Qn, i)

Qi = Qλ1
1 ∗Q

λ2
2 ∗ ... ∗Qλn

n

where,

λj =
∏

1≤m≤n,m ̸=j

m− i

m− j

and i is the interpolation point.

7. If the check passes, then the group public key is generated by interpolating
in the exponent as follows:

Q = ExpInt(Q1, Q2, ...Qn, 0)

4.3 BIP-32 Extension

This section describes our approach for a group of members to derive child/receive
addresses from the group public key. And, update their private key shares ap-
propriately to spend the digital assets held by the child/receive addresses. For
the BIP-32 extension we assume, the group has already been set up, the group
public key is computed and is known to everyone, and the shares of the group
private key are distributed among the group members securely.

This approach mimics the BIP-32 [12] approach to deterministically generate
child addresses. To derive group keys, we pre-define a base derivation path as
follows:

b = m / 67’ / 77’

Child keys can be derived at any path below the base derivation path as
follows:

1. Choose a derivation path d after the base derivation path b to determin-
istically derive the group public key.

2. Use the BIP-39 [1] approach to create a BIP-39 seed using the group public
key hash (256 bits) as the random entropy.

3. Using the BIP-39 seed, compute the child private key at the chosen deriva-
tion path. We represent this child private key as rd.

4. Perform EC addition to the group public key with rd.G, resulting in the
the child group public key.

5. To update the group private key shares, individual parties can compute
the rd value using the derivation path and add it to their shares to get the
shares of the group child private key.

9

6. Note, in case the shares of group private key are encrypted using the
linearly homomorphic encryption scheme, parties can encrypt rd value
using the same encryption key and perform homomorphic addition of two
encrypted values to compute the encrypted share of group child private
key.

5 Our Solution

Before we begin to describe our solution to the problem of devising an approach
for a group of members to own digital assets together with a dynamic threshold
setting to spend those assets defined clearly in an easily manageable policy, we
define the following:

5.1 Definitions

Figure 1: Flow Diagram

10

1. User Group - This term refers to a collective of individuals who jointly
possess cryptocurrency assets. The access to these assets by members of
the group is governed by an articulated policy managed by the group. The
total number of group members is represented as np.

2. Policy - This is a framework of regulations delineating the required num-
ber of group members who must be present to generate the signature on
each possible message. We assume T to be an array encapsulating various
threshold values corresponding to different messages, as specified in the
policy.

3. Policy Contract - A blockchain-based smart contract [8] created by the
User Group that implements a function that assesses whether a given
message can be signed by the given threshold number of group members,
returning a boolean value indicative of compliance with established norms.

4. Validator - An entity responsible for ensuring policy adherence. The i-th
validator is denoted as Vi.

5. Validator Network - An interconnected system comprising multiple val-
idators. The validator network operates on predetermined constant pa-
rameters enforced by the access control contract defined below, such as
rv = tv/nv. This represents the ratio of the threshold number of validators
required to validate the policy compliance to the total number of valida-
tors currently online in the network. In response to the expansion of the
validator network, the requisite number of validators for policy validation
will proportionally increase.

6. Access Control Contract - A pre-formulated smart contract that en-
forces the compliance of policies utilizing the validator network. This con-
tract is established by the blockchain network and calls the policy contract
set up by the group to check for policy compliance.

5.2 Validator Network Setup

1. Initial seed validators will establish the validator network and partake in
the Distributed Key Generation (DKG) process to compute the shares of
the validator network’s private decryption key, denoted as skv.

2. After the DKG process, each validator, identified as the i-th validator,
will be assigned a share, Sskv

(i), and the network collectively possesses
the validator network’s public encryption key, pkv.

3. The DKG process is performed such that any tv subset of validators can
interpolate their shares to derive the validator network decryption key.
However, this interpolation will never be performed, instead partial de-
cryptions will be computed using the shares and then aggregated together
to get the final decrypted value. This is because of the decentralized na-
ture of the validator network.

11

Figure 2: Validator Network Post-Setup

4. The public encryption key of the validator network, generated by the
chosen Threshold Homomorphic Encryption Scheme, is publicly accessible
and can be retrieved from the blockchain.

5. Figure 2 shows the state of the validator network after the DKG process.

5.3 User Group Setup

1. Initially, the User Group delineates their policy and proceeds to program
the policy contract accordingly

2. Subsequently, all group members participate in the Distributed Key Gen-
eration (DKG) process such that each member gets a share for each of the
len(T) User Group’s private tAHE decryption keys.

3. We require len(T) number of shares possessed by each party such that
any T [i] number of group members should be able to interpolate their i-th
shares to get the i-th decryption key.

4. Each participant in the group, denoted as the j-th member, get the fol-
lowing shares:

Sski
g
(j)∀i ∈ T

12

5. Upon the conclusion of the DKG process, len(T) public encryption keys
for the User Group are generated, symbolized as pkig∀i ∈ T .

6. These public keys are then uploaded to the Access Control Contract, mak-
ing them available for public access.

7. Further, each of the len(T) public keys is multiplied with the public en-
cryption key of the validator network (pkv) to derive the final set of len(T)
global encryption keys:

eki = pkig × pkv∀i ∈ T

Figure 3 shows the state of the User Group after setting up the User Group
encryption keys and the shares of User Group decryption keys.

Figure 3: User Group Setup - Part 1

8. The User Group then engages in the encrypted DKG procedure, detailed
as follows:

(a) Each group member generates a unique random number, for instance,
the i-th participant creates ai within the curve order of SECP256K1.

(b) Members then encrypt their random numbers using all the global
encryption keys. The calculation done by the i-th members is shows
as below:

enc(ai, ekj)∀j ∈ T

.

13

(c) Post-encryption, these values are uploaded to the contract along with
the individual additive share of the group public key computed by
the i-th member as follows:

Qi = ai ·G

(d) Members also upload zero knowledge proofs to prove the correct us-
age of encryption function and that the random number used is con-
sistent in the encrypted values and the curve point uploaded to the
contract.

(e) Upon receiving all the values from all the group members, the con-
tract verifies the zero knowledge proofs and then proceed to generate
group public key and encrypted group private keys using the additive
property of tAHE scheme used, as follows:

Q =

np∑
i=1

Qi

enc(X, eki) =

np∑
j=1

enc(aj , eki)∀i ∈ T

(f) Our BIP-32 extension approach can be used to derive child/receive
addresses from this group key, and encrypted shares can be up-
dated accordingly to spend the digital assets held by child/receive
addresses.

Figure 4: User Group Setup - Part 2

14

9. At this point, each party possesses their len(T) number of shares of dif-
ferent decryption keys with different threshold values. Each party also
possess an additive share ai of the group private key which is kept as a
backup in case the validator network goes down. The contract contains the
group private key encrypted with all global encryption keys. See Figure 4.

5.4 Signature Generation Process

1. Consider a scenario where tp members of the group intend to generate a
signature on a message M , which complies with the policy. Specifically,
the policy permits the message M to be signed by tp users, with tp being
an element of the set T .

2. These tp participants independently generate two random numbers within
the curve order of SECP256K1. For instance, the i-th participant produces
two values, denoted as kgi and pgi .

3. They also fetch the value enc(X, ektp) from the contract. Check Figure 5
to see the distribution of the decryption key corresponding to ektp among
the User Group and the validator network.

Figure 5: Distribution of Decryption Key

4. Subsequently, the i-th participant encrypts the values kgi and pgi using the
global encryption key ektp , resulting in enc(kgi , ektp) and enc(pgi , ektp).
The i-th participant also computes enc(pgi ∗ X, ektp) = pgi ∗ enc(X, ektp)
using the scalar multiplication propert of tAHE scheme.

5. The participants also compute zero knowledge proofs to prove the correct
usage of encryption function and the scalar multiplication property.

6. All tp users then interact with the Access Control Contract to initiate the
signature generation phase. The i-th user invokes the contract with the
following parameters: tp, M , enc(kgi , ektp), enc(p

g
i , ektp), enc(p

g
i ∗X, ektp),

Kg
i = kgi .G (where G is the generator point of SECP256K1) and the ZKPs.

15

7. The Access Control Contract inquires with the Policy Contract, estab-
lished by the group, to validate whether the message M is eligible to be
signed by tp parties.

8. Depending on the verdict of the Policy Contract and the verification of
the ZKPs, the Access Control Contract either terminates the process or
progresses to the subsequent operation.

9. In the next phase, the Access Control Contract awaits the involvement of
rv × nv validators in the signature generation process.

10. Before their participation, these rv ∗ nv number of validators retrieve the
appropriate User Group encryption key for the threshold value tp. This key
is then combined with the public encryption key of the validator network,
pkv, to formulate ektp , as shown:

ektp = pktpg × pkv

11. Each validator, denoted as the i-th validator, randomly generates two
numbers kvi and pvi within the curve order of SECP256K1.

12. The validators then collectively engage with the Access Control Contract
to partake in the signature generation. The i-th validator supplies the
contract with M , enc(kvi , ektp), enc(p

v
i , ektp), enc(p

v
i ∗X, ektp), K

v
i = kvi .G

(where G is the generator point of SECP256K1) and the required ZKPs.

13. Upon receipt of function calls from all rv × nv validators, the contract
verifies the ZKPs and employs the homomorphic encryption property to
aggregate the encrypted values:

enc(k, ektp) =

tp∑
i=1

enc(kgi , ektp) +

rv×nv∑
i=1

enc(kvi , ektp)

.

14. Concurrently, the contract calculates theR value, integral to the signature,
as follows:

R =

tp∑
i=1

Kg
i +

rv×nv∑
i=1

Kv
i

15. The r component of the signature is derived as the x-coordinate of the
elliptic curve point R:

r = R.x

Figure 6 shows the visualization of Round 1.

16. Each of the tp number of participants, represented by the i-th participant,
retrieves the encrypted value enc(k, ektp) from the contract and multiplies
it with its own random pgi value generated before. This computation,

16

Figure 6: Signature Generation - Round 1

leveraging the scalar multiplication feature of the homomorphic encryption
scheme, is executed as follows:

enc(pgi × k, ektp) = pgi × enc(k, ektp)

17. In a similar fashion, each of the rv × nv validators also acquires the
enc(k, ektp) value from the contract. Utilizing their respective random
value pvi , the i-th validator computes the following, using the scalar mul-
tiplication property of the homomorphic encryption scheme:

enc(pvi × k, ektp) = pvi × enc(k, ektp)

18. The group participants and the validators also compute ZKPs to prove
the correct usage of the scalar multiplication property of the homomorphic
encryption scheme.

19. Following these calculations, both the tp participants and the rv × nv

validators transmit their respective encrypted computations and the ZKPs
to the contract which first verifies the ZKPs and then processes the inputs
collectively to form the encrypted product of the aggregate group secrets
p and k, where p =

∑tp
i=1 p

g
i +

∑rv×nv

i=1 pvi and k =
∑tp

i=1 k
g
i +

∑rv×nv

i=1 kvi :

enc(p× k, ektp) =

tp∑
i=1

enc(pgi × k, ektp) +

rv×nv∑
i=1

enc(pvi × k, ektp)

Figure 7 shows the visualization of Round 2.

17

Figure 7: Signature Generation - Round 2

20. Once the contract aggregates the encrypted product, each member of the
User Group, denoted as the i-th participant, retrieves this data. They
then perform a partial decryption using their specific share of the User
Group decryption key, computed as follows:

dgi = partDec(enc(p× k, ektp), λi, Sskg
tp (i))

21. Concurrently, the validators, each represented as the i-th validator, un-
dertake their partial decryption tasks. This involves applying their share
of the validator decryption key to the encrypted product:

dvi = partDec(enc(p× k, ektp), λi, Sskv (i))

22. These partial decryption outputs are then propagated back to the contract
along with the ZKPs to prove the correct usage of partial decryption
functions, where they are collectively synthesized to formulate the final
decrypted value, denoted as w = k × p after ZKP verification:

w = aggPartDecs(enc(p× k, ektp),

{dgi | i = 1, . . . , tp} ∪ {dvi | i = 1, . . . , rv × nv})

Figure 8 shows the visualization of Round 3.

18

Figure 8: Signature Generation - Round 3

23. The contract the computes the encrypted signature from all the raw ma-
terials using additive property of the homomorphic scheme as follows:

enc(s, ektp) = enc(sg, ektp) + enc(sv, ektp), where

enc(sg, ektp) is the encrypted signature share of the User Group and
enc(sv, ektp) is the encrypted signature share of the Validator Network
computed using the additive and scalar multiplication properties of the
homomorphic encryption scheme, as follows:

enc(sg, ektp) =

tp∑
i=1

[(w−1×enc(pgi , ektp)×Hash(M))+(r×w−1×enc(pgi ∗X, ektp))]

enc(sv, ektp) =

rv×nv∑
i=1

[(w−1×enc(pvi , ektp)×Hash(M))+(r×w−1×enc(pvi ∗X, ektp))]

since the contract already has the values, w, enc(pgi , ektp), enc(p
v
i , ektp),

M , r, enc(pgi ∗X, ektp) and enc(pvi ∗X, ektp).

24. Each User Group participant, denoted as the i-th participant, retrieves
the encrypted final signature. They then perform a partial decryption
using their allocated share of the decryption key and broadcast this to

19

the contract along with the ZKPs to prove the correct usage of partial
decryption function:

sgi = partDec(enc(s, ektp), λi, Sskg
tp (i))

25. In parallel, each validator, denoted as the i-th validator, processes their
partial decrypted signature by applying their share of the validator de-
cryption key to the encrypted final signature, before broadcasting it to
the contract along with ZKPs to prove the correct usage of partial de-
cryption function:

svi = partDec(enc(s, ektp), λi, Sskv
(i))

26. The contract then aggregates these inputs to compute the complete final
signature after verifying all the ZKPs:

s = aggPartDecs(enc(s, ektp),

{sgi | i = 1, . . . , tp} ∪ {svi | i = 1, . . . , rv × nv})

Figure 9 shows the visualization of the final round.

Figure 9: Signature Generation - Round 4

20

Figure 10: Signature Generation Process Summary

27. Finally, all tp number of participants of the User Group retrieve the con-
solidated final signature. This signature is then utilized to authorize the
expenditure of the digital assets held collectively by the group.

Figure 10 shows the overall ECDSA circuit computed at the contract with
contributions from the User Group and the Validator Network. As can be
seen from the equations, the randomness used for generating the ephemeral key
k is contributed by both the User Group and the Validator Network. This
is architectured in this way to prevent a malicious set of group members from
generating the signature with their own ephemeral key and hence leak the group
private key.

5.5 Validator Network Outage Scenario

The above scheme supports the availability of the digital assets held by the User
Group even in the case when the whole blockchain network where the contracts
are hosted is down or even when there are no rv × nv number of validators
available to validate the policy compliance. But to transfer the digital assets
in such a scenario, all the members of the User Group have to come online
to re-generate the shares of the group private key using the random ai values
held by the parties. The parties, after performing the DKG (Distributed Key
Generation) process again using the same random values as the coefficient of

21

x0 of their individual polynomial, can obtain the non-encrypted shares of the
group private key with the threshold value being np. Using these shares, they
can compute signatures over any arbitrary message and transfer the digital
assets.

6 Security Analysis

We now describe the scenarios where the malicious actors can try to sign a
message that does not comply with the policy defined, and how our system
prevents the signature from being generated in such cases. Assuming t (where
t < np) malicious User Group members want to sign the message M ′ that does
not comply with policy and there’s a message M that does comply with the
policy. The following scenarios are possible:

1. The malicious User Group members can call the Access Control Contract
with the message M ′ but the Access Control contract will halt before call-
ing out the validators from the network upon confirming that M ′ doesn’t
comply with the rules set up by the group, with the Policy Contract. And
since all users are required to make updates to the Policy Contract, the
t number of malicious users will not be able to generate any signature at
all.

2. The malicious User Group members can call the Access Control Contract
with the message M and it’ll pass the policy compliance check by the
contract. However, the signature shares generated by the validators will
be on the message M and not M ′. Moreover, the malicious users only
submit their ui and vi to the contract and the message is added by the
contract to compute the encrypted signature share of the User Group.
This mechanism allows for secure enforcement of the policy.

3. The malicious User Group members may try to generate the complete
encrypted signature by themselves since they possess the encrypted private
key shares with threshold value t. But they will not be able to decrypt
the signature to spend the digital assets, because some of the shares of
the decryption key are held by the validator network.

4. Once the signature of the message M is successfully generated, the mali-
cious User Group members may try to figure out the random nonce (k)
value used in the signature computation, to get the decrypted group pri-
vate key to generate further non-compliant signatures. However, they can
not compute the value of k as it was not just distributed between the User
Group but also the Validator Network. The malicious members are thus
not able to guess the shares used by the validators while contributing to
the group secret value k.

Although the approach we described is secure against policy compliance
breaks, we acknowledge that we do need Zero Knowledge Proofs (ZKPs) at

22

various steps in our solution to achieve the property of identifiable abort. This
is a required property in practical scenarios as the network should be able to
figure out which dishonest validator node or group member is trying to sabotage
the signature generation process.

7 What’s possible with our solution

The innovative blockchain infrastructure proposed in this whitepaper has far-
reaching implications for the management of digital assets, addressing the needs
of institutions and collectives in a secure, decentralized, and flexible manner.
The implementation of this infrastructure enables a variety of applications,
catering to specific policy requirements and enhancing operational efficiencies.
Below are key features provided by this solution:

7.1 Address Whitelisting

The policy mechanism in this solution allows for the creation of ”whitelists” of
addresses, ensuring that transactions are only signed and executed if they are
destined for these pre-approved addresses. This reduces the risk of unauthorized
transactions and enhances the security of asset management.

7.2 Spending Limits

Institutional users can set spending limits within the policy, defining the maxi-
mum amount of digital assets that can be transacted in a single operation or over
a specified time. Additionally, the policy can dictate the number of members
required to authorize transactions exceeding these limits.

7.3 Time-Based Transactions

The solution enables the configuration of policies for time-based transactions,
allowing transactions to be executed only during specified time windows. This
feature is useful for executing scheduled payments, limiting transactions to busi-
ness hours, or aligning transactions with specific events or milestones.

7.4 Programmable Rules

One of the most powerful aspects of this solution is its ability to support arbi-
trary programmable rules within the policy framework. This flexibility allows
institutions to encode complex, custom rules that govern how and when transac-
tions are executed. These rules can be tailored to specific organizational needs,
regulatory requirements, or risk management strategies, providing unparalleled
customization in digital asset management.

23

7.5 DAO Access Control

This infrastructure is ideal for decentralized autonomous organizations (DAOs),
as it aligns with their democratic and decentralized principles. DAOs can use
this system to democratically control and update policies, ensuring asset man-
agement aligns with the collective will of their members. This also includes
robust access control mechanisms, allowing DAOs to define who can manage
their assets, under what conditions, and with specific limitations. This func-
tionality is essential for DAOs with significant assets or those needing to adhere
to strict regulatory standards.

8 Conclusion

In conclusion, the development of the Dynamic Threshold Digital Signing Scheme
for Blockchain marks a significant leap forward in the field of blockchain tech-
nology and digital asset management. This scheme not only introduces a novel
approach to enforce access control policy settings but also addresses key chal-
lenges in policy management, decentralization, network resilience, efficiency, and
security.

Through our unique group access control framework supporting dynamic
thresholds, we have achieved a flexible yet secure mechanism for managing dig-
ital assets. The decentralized nature of the validation network underpins the
robustness of the system, eliminating single points of failure and ensuring con-
sistent operation even when parts of the network are down. The scheme further
supports the protection of funds even when the validation network becomes un-
available.

This approach, along with the fact that the keys to sign transactions remain
within the group, reinforces the security and autonomy of user groups. The
ease of deriving child/receive addresses for groups and the capability to sup-
port the joining and leaving of validators demonstrate the system’s flexibility
and scalability. Moreover, the scheme’s compatibility with all chains ensures
its wide applicability, striking a balance between usefulness and security. This
balance is achieved under specific security assumptions, notably the Decisional
Diffie-Hellman (DDH) assumption and the Hard Subgroup Membership (HSM)
with 2k security.

Looking to the future, the architecture of this scheme lays the foundation
for a myriad of applications, including blockchain bridges, swaps, private trans-
actions, and private data processing. These potential applications highlight the
versatility and broad impact of the scheme, opening new avenues for secure and
efficient blockchain interactions.

24

9 Future Work

Future works includes further optimisations to practically implement the scheme
for real world use cases, and developing a proof of concept to gather performance
benchmarks before implementing the scheme using Cypherock X1 devices. As
we explore further, further improvements will be added to this paper in the
revised editions.

25

References

[1] BIP39. https://github.com/bitcoin/bips/blob/master/bip-0039.
mediawiki. Accessed: March 1, 2024.

[2] Cyril Bouvier et al. I want to ride my BICYCL: BICYCL Implements
CryptographY in CLass groups. Cryptology ePrint Archive, Paper 2022/1466.
https://eprint.iacr.org/2022/1466. 2022. doi: 10.1007/s00145-
023-09459-1. url: https://eprint.iacr.org/2022/1466.

[3] Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Threshold Lin-
early Homomorphic Encryption on Z/2kZ. Cryptology ePrint Archive,
Paper 2022/1143. https://eprint.iacr.org/2022/1143. 2022. url:
https://eprint.iacr.org/2022/1143.

[4] Cypherock. TSS in Secure Environment. https://github.com/Cypherock/
MPC-TSS/blob/mascot-iknp-mta/MPC_in_Secure_Environment.pdf.
Accessed: March 1, 2024. 2023. url: https://github.com/Cypherock/
MPC-TSS/blob/mascot-iknp-mta/MPC_in_Secure_Environment.pdf.

[5] Ivan Damg̊ard et al. Fast Threshold ECDSA with Honest Majority. Cryp-
tology ePrint Archive, Paper 2020/501. https://eprint.iacr.org/
2020/501. 2020. url: https://eprint.iacr.org/2020/501.

[6] Jack Doerner et al. Threshold ECDSA from ECDSA Assumptions: The
Multiparty Case. Cryptology ePrint Archive, Paper 2019/523. https://
eprint.iacr.org/2019/523. 2019. doi: 10.1109/SP.2019.00024. url:
https://eprint.iacr.org/2019/523.

[7] Jack Doerner et al. Threshold ECDSA in Three Rounds. Cryptology ePrint
Archive, Paper 2023/765. https://eprint.iacr.org/2023/765. 2023.
url: https://eprint.iacr.org/2023/765.

[8] Ethereum. Ethereum Whitepaper. https://ethereum.org/en/whitepaper.
Accessed: March 1, 2024. 2023. url: https : / / ethereum . org / en /

whitepaper.

[9] Rosario Gennaro and Steven Goldfeder. Fast Multiparty Threshold ECDSA
with Fast Trustless Setup. Cryptology ePrint Archive, Paper 2019/114.
https://eprint.iacr.org/2019/114. 2019. url: https://eprint.
iacr.org/2019/114.

[10] Iftach Haitner et al. Fast Secure Multiparty ECDSA with Practical Dis-
tributed Key Generation and Applications to Cryptocurrency Custody. Cryp-
tology ePrint Archive, Paper 2018/987. https://eprint.iacr.org/
2018/987. 2018. doi: 10.1145/3243734.3243788. url: https://eprint.
iacr.org/2018/987.

[11] Odsy. Odsy Litepaper. https://github.com/odsy- network/odsy-
litepaper/blob/main/odsy-litepaper-version-1-0-august-2022.

pdf. 2022. url: https://github.com/odsy-network/odsy-litepaper/
blob/main/odsy-litepaper-version-1-0-august-2022.pdf.

26

https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://eprint.iacr.org/2022/1466
https://doi.org/10.1007/s00145-023-09459-1
https://doi.org/10.1007/s00145-023-09459-1
https://eprint.iacr.org/2022/1466
https://eprint.iacr.org/2022/1143
https://eprint.iacr.org/2022/1143
https://github.com/Cypherock/MPC-TSS/blob/mascot-iknp-mta/MPC_in_Secure_Environment.pdf
https://github.com/Cypherock/MPC-TSS/blob/mascot-iknp-mta/MPC_in_Secure_Environment.pdf
https://github.com/Cypherock/MPC-TSS/blob/mascot-iknp-mta/MPC_in_Secure_Environment.pdf
https://github.com/Cypherock/MPC-TSS/blob/mascot-iknp-mta/MPC_in_Secure_Environment.pdf
https://eprint.iacr.org/2020/501
https://eprint.iacr.org/2020/501
https://eprint.iacr.org/2020/501
https://eprint.iacr.org/2019/523
https://eprint.iacr.org/2019/523
https://doi.org/10.1109/SP.2019.00024
https://eprint.iacr.org/2019/523
https://eprint.iacr.org/2023/765
https://eprint.iacr.org/2023/765
https://ethereum.org/en/whitepaper
https://ethereum.org/en/whitepaper
https://ethereum.org/en/whitepaper
https://eprint.iacr.org/2019/114
https://eprint.iacr.org/2019/114
https://eprint.iacr.org/2019/114
https://eprint.iacr.org/2018/987
https://eprint.iacr.org/2018/987
https://doi.org/10.1145/3243734.3243788
https://eprint.iacr.org/2018/987
https://eprint.iacr.org/2018/987
https://github.com/odsy-network/odsy-litepaper/blob/main/odsy-litepaper-version-1-0-august-2022.pdf
https://github.com/odsy-network/odsy-litepaper/blob/main/odsy-litepaper-version-1-0-august-2022.pdf
https://github.com/odsy-network/odsy-litepaper/blob/main/odsy-litepaper-version-1-0-august-2022.pdf
https://github.com/odsy-network/odsy-litepaper/blob/main/odsy-litepaper-version-1-0-august-2022.pdf
https://github.com/odsy-network/odsy-litepaper/blob/main/odsy-litepaper-version-1-0-august-2022.pdf

[12] Public CKD (Hierarchical Deterministic Wallets). https://github.com/
bitcoin/bips/blob/master/bip-0032.mediawiki#public-parent-

key--public-child-key. Accessed: March 1, 2024.

27

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#public-parent-key--public-child-key
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#public-parent-key--public-child-key
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#public-parent-key--public-child-key

	Introduction
	Requirements
	Related Work
	Our Work

	Cryptography Primitives
	Hierarchical Threshold Linearly Homomorphic Encryption
	KeyGen
	Encrypt
	Decrypt
	EvalAdd
	EvalScal
	Threshold Decryption

	Distributed Key Generation
	BIP-32 Extension

	Our Solution
	Definitions
	Validator Network Setup
	User Group Setup
	Signature Generation Process
	Validator Network Outage Scenario

	Security Analysis
	What's possible with our solution
	Address Whitelisting
	Spending Limits
	Time-Based Transactions
	Programmable Rules
	DAO Access Control

	Conclusion
	Future Work

