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Abstract. In recent years quantum computing has developed rapidly. The security
threat posed by quantum computing to cryptography makes it necessary to better
evaluate the resource cost of attacking algorithms, some of which require quantum
implementations of the attacked cryptographic building blocks. In this paper we
manage to optimize quantum circuits of AES in several aspects. Firstly, based on de
Brugière et al.’s greedy algorithm, we propose an improved depth-oriented algorithm
for synthesizing low-depth CNOT circuits with no ancilla qubits. Our algorithm finds
a CNOT circuit of AES MixColumns with depth 10, which breaks a recent record of
depth 16. In addition, our algorithm gives low-depth CNOT circuits for many MDS
matrices and matrices used in block ciphers studied in related work. Secondly, we
present a new structure named compressed pipeline structure to synthesize quantum
circuits of AES, which can be used for constructing quantum oracles employed in
quantum attacks based on Grover and Simon’s algorithms. When the number of
ancilla qubits required by the round function and its inverse is not very large, our
structure will have a better trade-off of D-W cost. We then give detailed quantum
circuits of AES-128 under the guidance of our structure and make some comparisons
with other circuits. Finally, our encryption circuit and key schedule circuit have their
own application scenarios. The Encryption oracle used in Simon’s algorithm built
with the former will have smaller depth. For example, we can construct an AES-128
Encryption oracle with T -depth 33, while the previous best result is 60. A small
variant of the latter, along with our method to make an Sbox input-invariant, can
avoid the allocation of extra ancilla qubits for storing key words in the shallowed
pipeline structure. Based on this, we achieve a quantum circuit of AES-128 with the
lowest T ofD-W cost 130720 to date.
Keywords: Quantum circuit · Depth · AES · Encryption oracle

1 Introduction
Quantum computers provide a great potential of solving certain important information
processing tasks that are intractable for any classical computer. Shor’s algorithm [Sho94]
showed that a sufficiently large quantum computer allows to factor numbers and compute
discrete logarithms in polynomial time, which represents a exponential speed-up compared
to classical algorithms and can be devastating to many public-key encryption schemes in
use today.

The possible emergence of large-scale quantum computing devices in the near future
has brought new security threats and raised concerns about post-quantum security. Not
only the public-key cryptosystem, the security of the symmetric-key cryptosystem is also
under threat. A trivial application of Grover’s algorithm [Gro96] results in a quadratic
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speedup of the exhaustive search attack. Simon’s algorithm [Sim97] answers the question
of how to find the period of a periodic function with n input bits in O(n) quantum queries.
As a result, many encryption structures and the most widely used modes of operation for
authentication and authenticated encryption were attacked by using Simon’s algorithm
[KLLNP16a, LM17]. Both of these two algorithms require the quantum oracle of the
symmetric building block to be attacked. Moreover, the National Institute of Standards
and Technology (NIST) used the complexity of the quantum circuit for AES with a bound
of depth called MAXDEPTH as a baseline to categorize the post-quantum public-key
schemes into different security levels in the call for proposals to the standardization of
post-quantum cryptography1. Both these reasons give rise to the growing appeals for
studying the quantum implementations of symmetric-key building blocks as well as how to
optimize them. This helps understand the quantum security of current encryption schemes
and guides future post-quantum encryption designs.

The synthesis and optimization of quantum circuits have been studied for many
years [SBM05, SM13, JST+20, AMMR13, AMM14, STY+23]. Given an n-qubit unitary
operator and an available gate set G, synthesis algorithms find one of its implementations
described as a sequence of G quantum gates in G with width (number of qubits) W , full
depth FD and T -depth TD. The optimization of G and W is related to the saving of
resources and qubits, while the optimization of FD, TD is also concerned due to the
phenomenon of quantum decoherence. In addition, it is worth noting that there is a lot of
work on optimizing quantum circuits on some noisy intermediate-scale quantum (NISQ)
devices (see [Pre18, WHY+19, ZFX22] for an incomplete list). In the process of quantum
computation, since it has been difficult to isolate qubits for a long time, qubits would
interact unintentionally with external elements, which would distort the results. Assuming
that two non-overlapping gates can run in parallel, the running time of the circuit is related
to its depth. Therefore, the proper execution of complex algorithms can be significantly
facilitated by optimizing the depth of quantum circuits since the decoherence time is very
limited. The reduction of T -depth is more important in fault-tolerant computations where
the running time is dominated by T -depth [Fow12].

Recent research on quantum implementation of symmetric ciphers mainly focuses on
AES due to its popularity and importance. The main concerns are the structure, AES
MixColumns and AES S-box. At the same time, there is also related work focusing on
quantum implementations of other symmetric building blocks [ZLW+22]. One research line
is to optimize the width. Grassl et al. proposed the first quantum circuit of AES under the
so-called zig-zag structure with low width [GLRS16]. Zou et al. proposed the improved
zig-zag structure, and then Huang et al. presented the OP-based round-in-place structure
with a similar idea. Jaques et al. first proposed the straight-line structure of key schedule
process with no ancilla states and first adopted the pipeline structure. Furthermore, Jang
et al. proposed the shallowed pipeline structure to reduce the full depth. Li et al. directly
designed an in-place quantum circuit of AES S-box with low width and constructed a
straight-line circuit of AES with the lowest width to date [LGQW23]. During the research
on quantum circuits of AES, many researchers studied low-width quantum circuits of AES
S-box.

The other research line is to reduce the circuit depth. In Clifford+T circuits, T -depth
is the main concern since Clifford gates are much cheaper than the T gate. The pipeline
structure, first mentioned in reversible logic implementations of AES in [DSSR13], is
straightforward to provide a low T -depth circuit of AES in many studies. To synthesize
low T -depth AES S-box, usually a low Toffoli-depth Sbox which computes redundant
states is designed. Jaques et al. constructed an Sbox with Toffoli-depth 6, and then gave
a quantum circuit of AES-128 with T -depth 120. Li et al. [LCS+22] proposed an Sbox

1https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for
-proposals-final-dec-2016.pdf
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with Toffoli-depth 4. Huang et al. also gave an Sbox with Toffoli-depth 4, and further
gave one with Toffoli-depth 3, which is the theoretical minimum. Therefore, the T -depth
of quantum circuit of AES-128 is reduced to 60 [HS22]. The width of Sbox was further
reduced by Jang et al.’s and Liu et al.’s techniques [JBK+22, LPZW23], while the saving
of qubits made the optimized Sbox no longer input-invariant.

Full depth is a forward-looking time-cost measure for quantum circuits, so optimizing
the depth of a CNOT circuit can reduce the full depth of the entire circuit. CNOT circuits
which consist only of CNOT gates appear as subcircuits of larger circuits, such as quantum
oracles of symmetric ciphers, stablizer circuits [AG04], and CNOT+T circuits. Patel
et al. and Jiang et al. proposed methods to generate CNOT circuits with asymptotic
optimal gate count and space-depth trade-off, respectively [PMH08, JST+20]. For specific
matrices, Xiang et al.’s method [XZL+20] is based on some reduction rules for matrix
decomposition, can effectively reduce the number of gates of given CNOT circuits and
provides CNOT circuits with the smallest CNOT gates to date for many MDS matrices
and matrices used in block ciphers. A lot of work on quantum circuits of AES (see
[ZWS+20, HS22, JBK+22, LGQW23] for an incomplete list) adopted the implementation
of AES MixColumns with 92 CNOT gates provided by Xiang et al.’s method. Its depth
estimation given by the Q# resource estimator is 30. However, their method does not take
the circuit depth into account. Zhu et al. defined the exchange-equivalence of sequences,
and proposed a framework of optimizing the depth a given CNOT circuit [ZH22] by
exploring the possibility of exchanging CNOT gates. They started the optimization with
the results of Xiang et al.’s method and gave a better estimation of depth 28 for AES
MixColumns. Recently Liu et al. proposed a method for computing the depth of given
quantum circuits and provided a circuit of AES MixColumns with depth 16 by computing
the depth of many search results of Xiang et al.’s method. Some CNOT circuits of AES
MixColumns with ancilla qubits are synthesized on the basis of optimized low-depth
classical circuits, and the state-of-art classical circuit of AES MixColumns with minimum
depth 3 requires 99 XOR gates [SFX23]. In addition, de Brugière et al. proposed a
depth-oriented greedy method and a block algorithm for small and middle scale matrices,
respectively [dBBV+21b]. However, their methods have not been tested on the linear
layers of many cryptographic building blocks.

1.1 Our contributions
This paper mainly focuses on optimizing quantum circuits of AES and gives improvements
in several aspects.

Improved greedy algorithm for finding low-depth CNOT circuits with no
ancilla qubits. We first notice that related works of providing CNOT circuits of AES
Mixcolumns either adopted non-depth-oriented search methods or determined the depth
based on existing circuits. Instead, we use a depth-oriented search method. Since de
Brugière et al. proposed a depth-oriented cost-minimization greedy algorithm that is
suitable for random small scale matrices, we first apply their algorithm to AES Mixcolumns
and find a circuit with depth 12, which is much better than a recent record of depth 16 in
[LPZW23]. We then propose an improved greedy algorithm based on de Brugière et al.’s
algorithm and successfully find a circuit with depth 10, which can be used to reduce the full
depth of quantum circuits of AES. The improvement of our algorithm is reflected in three
aspects. First, in addition to considering the logarithm of each row’s Hamming weight, we
also consider the square of each row’s Hamming weight, which gives priority to rows or
columns that are "far from being done" and is beneficial to reduce the circuit depth in many
cases. Second, we treat two cases of row and column operations differently when evaluating
the cost, that is, each column’s Hamming weight is considered when column operations
are performed. Finally, we give an equivalent condition of determining whether a matrix
can be implemented with depth 1 to better handle sparse matrices. As applications, our
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improved greedy method provides low-depth CNOT circuits for many MDS matrices and
matrices used in block ciphers (see Table 3, 4). Except for some matrices with depth 3, all
the results are much better than those in [ZH22]. de Brugière et al.’s algorithm is also
applied to these matrices for comparison.

Compressed pipeline structure for quantum circuits of AES. We observe
that the pipeline structure has a low depth but too many intermediate states, while the
OP-based round-in-place structure has fewer intermediate states but a greater depth. To
combine the advantages of the above two structures, We propose a new structure named
compressed pipeline structure, which computes new states and eliminates intermediate
states in parallel for qubit reuse. If the round function is taken as a unit, our structure will
have lower D-W cost than the above two structures when the number of ancilla qubits of a
round function is small enough. To give detailed quantum circuits of AES-128, we propose
iterative round functions for the encryption circuit under the guidance of our structure.
Since two consecutive roundkeys are needed in the round functions, we also present a new
circuit for the key schedule of AES-128 which provides linear components of consecutive
two roundkeys in one round. Both cases of NCT-based circuit and qAND-based circuit are
considered. Our circuit only needs such quantum circuits of AES S-box where the output
register is |0⟩ and has lower TD-W or TofD-W cost when the number of ancilla qubits
of AES S-box is small enough. The cost for the AES Grover oracle can be evaluated by
referring to the cost of the encryption circuit.

The AES-128 Encryption oracle with lower T -depth. The encryption circuit
in our structure can be used to construct the Encryption oracle employed in Simon’s
algorithm with simplified cleaning of redundant states. If the round function is taken as a
unit, our constructed Encryption oracle will have depth r + 1, which is almost half of the
previous best result 2r. When it comes to AES-128, the AES-128 Encryption oracle can
be constructed with smaller T -depth. Since the redundant states of the encryption circuit
can be cleaned by |c⟩ with one layer of AES S-box, the AES-128 Encryption oracle can be
constructed with T -depth 33, which breaks the previous record of T -depth 60 in [HS22].

Key schedule of the shallowed pipeline structure with input-invariant Sbox.
In the key schedule of the shallowed pipeline structure, 10× 32 qubits need to be allocated
for storing the input register of low Toffoli-depth Sbox which cannot keep the input register
unchanged. We find that adding some CNOT gates can make such Sbox input-invariant
without increasing the Toffoli-depth and ancilla qubits, which ensures that the information
of the input register is not lost. Based on this, we propose a new key schedule for the
shallowed pipeline structure which is actually a small variant of the key schedule in the
compressed pipeline structure. It can avoid the allocation of extra 10 × 32 qubits for
storing key words and can be used to synthesize a quantum circuit of AES-128 with the
lowest TofD-W cost 130720 to date.

All the source codes and results of this paper are available at https://gitee.com/Haot
ian-Shi/Quantum-circuits-of-aes-with-a-low-depth-linear-layer-and-a-new-st
ructure.

1.2 Organization

In Section 2 we introduce some background knowledge about quantum computation. In
Section 3 we introduce some existing methods for optimizing the depth of CNOT circuits.
Our new method and its application on some matrices are illustrated in Section 4. In
Section 5 we propose our compressed pipeline structure for iterative building blocks.
Specific quantum implementations of AES in different scenarios and the resource costs are
given in Section 6. We conclude our work in Section 7.

https://gitee.com/Haotian-Shi/Quantum-circuits-of-aes-with-a-low-depth-linear-layer-and-a-new-structure
https://gitee.com/Haotian-Shi/Quantum-circuits-of-aes-with-a-low-depth-linear-layer-and-a-new-structure
https://gitee.com/Haotian-Shi/Quantum-circuits-of-aes-with-a-low-depth-linear-layer-and-a-new-structure
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2 Preliminaries
2.1 Notations
We assume that the reader is familiar with AES, and a brief description of AES is given in
Appendix B for completeness. Some notations used throughout the paper are listed as
follows:

Table 1: Some notations used throughout the paper.
Notation Definition
F2 The finite field with two elements 0 and 1
⊕ The XOR computation
GL(2, n) The set of all n × n invertible matrices over F2
GF(n,F2) The finite field with 2n elements
In The n-by-n identity matrix over F2.
E(i + j) The resulting matrix by adding the j-th row to

the i-th row of In (type-3 elementary matrix in
GL(2, n))

E(i, j) The CNOT gate of adding the i-th qubit to the
j-th qubit

E(i ↔ j) The resulting matrix by exchanging the i-th
and j-th row of In (type-1 elementary matrix
in GL(2, n)), or the swapping of the i-th and j-th
qubits.

|u⟩ A state vector u
S(x) The function of AES S-box.
OR The quantum oracle: |x⟩ |y⟩ 7→ |x⟩ |y ⊕ R(x)⟩
OR−1 The quantum oracle: |x⟩ |y⟩ 7→ |x⟩ |y ⊕ R−1(x)⟩
kk

j The k-th 32-bit word of the j-th roundkey, or
W4j+k in the key schedule of AES-128.

2.2 Quantum computation
The simplest quantum system is a single qubit state. It can be described as a unit vector
|u⟩ in a Hilbert Space H = C2 and has two computational basis states |0⟩ and |1⟩. Then
|u⟩ = α |0⟩+ β |1⟩, where |α|2 + |β|2 = 1. An n-qubit state |u⟩ can be described as a unit
vector in H⊗n, and a computational basis state can be described as a state of n-bit 0/1
string: |x1x2 . . . xn⟩.

The evolution of an n-qubit quantum state can be described as a quantum gate
represented by a 2n × 2n unitary matrix U . It acts on an n-qubit state |u⟩ by left matrix
multiplication U |u⟩. Several typical quantum gates include:

X =
(

0 1
1 0

)
, S =

(
1 0
0 i

)
, T =

(
1 0
0 e

i
4π

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.
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In this paper we mainly focus on quantum circuits which compute classical vectorial
boolean functions, so the input states we are concerned with are only computational basis
states. The X gate, CNOT gate and Toffoli gate all act on computational basis states as
shown in Figure 1:

X|a⟩ |a ⊕ 1⟩
|a⟩

|b⟩

|a⟩

|b ⊕ a⟩

|a⟩

|b⟩

|c⟩

|a⟩

|b⟩

|c ⊕ a · b⟩

X gate CNOT gate Toffoli gate

Figure 1: Circuits of X gate, CNOT gate and Toffoli gate. The changed qubit is called the
target qubit.

One can see that the roles they play in quantum computation are NOT gate, XOR
gate and AND gate in classical computation, respectively. An NCT-based circuit is often
designed to compute a vectorial boolean function and is defined as follows:

Definition 1 (NCT-based circuit). An NCT-based circuit is a quantum circuit consisting
only of X gates, CNOT gates and Toffoli gates.

There is another quantum gate called a quantum AND gate (qAND in short) which
simulates the functionality of a classical AND gate. It differs from the Toffoli gate in that
the target qubit must be |0⟩. This gate together with its adjoint is illustrated in Figure 2.

|a⟩ • T † • |a⟩

|b⟩ • T † • |b⟩

|0⟩ H • • T • • H S |ab⟩

|0⟩ T |0⟩
(a) The qAND gate

S

S S†

H X

|0⟩or|1⟩

Conditioned on the measurement result being |1⟩

|a⟩

|b⟩

|ab⟩

|a⟩

|b⟩

|0⟩

(b) The qAND† gate

Figure 2: The quantum AND gate together with its adjoint.

2.3 Optimization goals

Due to the limited decoherence time and qubit resources, it is crucial to reduce the time
cost and storage cost in quantum circuits. In NCT-based circuits, the metrics of width (W ),
Toffoli depth (TofD), and TofD-W cost are crucial for evaluating the cost. In practice,
the Toffoli gate can be decomposed with T -depth 3/4 and full depth 9/8, respectively,
using 0 ancilla qubit [AMMR13], or decomposed with T -depth 1 using 4 ancilla qubits
[Sel13]. If the target qubit of a Toffoli gate is identically equal to |0⟩, the Toffoli gate can
be replaced by qAND with T -depth 1 using 1 ancilla qubit and its adjoint can be replaced
by qAND† with T -depth 0 using 0 ancilla qubit. As is shown in [NC00], the Clifford
gates are much cheaper than the T -gate. Therefore, T -depth (TD) is a key parameter to
measure the running time of a circuit. At the same time, a forward-looking perspective
assumes that each gate has a unit depth and defines the full depth (FD) as a time-cost
metric.
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3 State-of-art heuristics for optimizing the depth of CNOT
circuits

In this section, we first introduce some background knowledge of CNOT circuits. We then
introduce some existing methods for optimizing the depth of CNOT circuits, including
methods for handling existing circuits [ZH22, LPZW23] and the depth-oriented greedy
algorithm [dBBV+21b].

3.1 CNOT circuits
A CNOT circuit is a quantum circuit that contains only CNOT gates. One can see from
Figure 1 that a CNOT gate adds one boolean tuple to another, so it can be seen as an
invertible linear transformation

(
1 0
1 1

)
in F2

2. Similarly, for an n-qubit system, the

CNOT gate E(i, j) controlled by the i-th qubit and targeting on the j-th qubit can be
seen as the type-3 elementary matrix E(j + i). Therefore, a CNOT circuit of n-qubits
can be seen as a product of type-3 elementary matrices. Actually the linear layer of a
cipher is an n-bit reversible linear boolean function and can be interpreted as an invertible
matrix A in GL(2, n). Therefore, the CNOT circuit of a linear layer A can be synthesized
by referring to a proper form of matrix decomposition of A. Recall that the general form
of matrix decomposition is illustrated below as Theorem 1:

Theorem 1. Any A in GL(2, n) can be expressed as a product of type-1 and type-3
elementary matrices.

Note that the only type-2 matrix in GL(2, n) is the identity matrix and therefore
does not appear in the matrix decomposition. However, this form does not promise a
consecutive product of type-3 elementary matrices. In general, it is clear that the matrix
multiplication does not satisfy the commutative law, but given two elementary matrices
E(i + j) (type-3) and E(k ↔ l) (type-1), we have the following property:

Property 1. E(i + j)E(k ↔ l) = E(k ↔ l)E(fk,l(i) + fk,l(j)), E(k ↔ l)E(i + j) =
E(fk,l(i) + fk,l(j))E(k ↔ l), where

fk,l(x) =


k, if x = l;
l, if x = k;
x, else.

(1)

As a result, we can have the following form of matrix decomposition which is easy
converted to a CNOT circuit:

Theorem 2. Any A in GL(2, n) can be expressed as

A = PE(i1 + j1)E(i2 + j2) . . . E(iL + jL), (2)

where P is a permutation matrix.

Since the swapping of two qubits can be realized by rewiring for free, it is easy to
convert a decomposition of A to a CNOT circuit of A and vise versa. Based on Theorem
2, Xiang et al. defined the sequential XOR (s-XOR) metric which describes the minimum
gate cost of implementing A by updating input variables to output variables:

Definition 2 (s-XOR). [XZL+20] Let M ∈ GL(n,F2) be an invertible matrix. Assume
(x1, x2, . . . , xn) are the n input bits of M . It is always possible to perform a sequence of
XOR instructions xi = xi ⊕ xj with 1 ≤ i, j ≤ n, such that the n input bits are updated
to the n output bits. The s-XOR count of M is defined as the minimum number of XOR
instructions to update the inputs to the outputs.
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Xiang et al. proposed some reduction rules to reduce the number of type-3 elementary
matrices in a matrix decomposition and obtained in-place implementations of the many
constructed MDS matrices and matrices used in block ciphers with minimum XOR gates
up to date [XZL+20]. The specific results of their method can serve as a fairly good
starting point for optimizing the quantum depth of the corresponding CNOT circuits.

3.2 Computing the depth of given circuits
Zhu et al. used a sequence SEQ = {E(c1, t1), E(c2, t2), . . . , E(cL, tL)} to describe a
given CNOT circuit [ZH22]. To compute the depth of a sequence SEQ, the authors
divide it into D subsequences: SEQ1, SEQ2, . . . , SEQD such that SEQ =

⋃D
i=1 SEQi.

{SEQ1, SEQ2, . . . , SEQD} is called a parallel partition of SEQ if any two gates in SEQi

can act in parallel for all 1 ≤ i ≤ D. Then the sequence depth of SEQ is defined as the
minimum D such that there is a parallel partition of SEQ with D subsequences.

It is easy to see that if two adjacent gates E(ci, ti), E(ci+1, ti+1) can act in parallel,
E(ci+1, ti+1) can move forward and E(ci, ti) can move backward without changing the
output of the sequence. The depth of SEQ evaluated from most quantum resource
estimators, such as the Q# resource estimator of Microsoft [Q#], is the sequence depth of
one of its move-equivalent sequences. The Q# resource estimator works by moving all
E(ci, ti) forward as far as possible. However, the definition of move-equivalence can be
extended. Zhu et al. noticed this and clarified the equivalent condition of exchanging two
CNOT gates:

Property 2. Given E(ci, ti) and E(cj , tj), E(ci, ti)E(cj , tj) = E(cj , tj)E(ci, ti) if and
only if ti ̸= cj and tj ̸= ci.

They then gave the definition of exchange-equivalent sequences and proposed an
algorithm named One-way-opt, which involves iteratively extracts a layer of CNOT gates
by exploring gates that can be exchanged forward and can run in parallel with the
gates of the current layer. One-way-opt is executed twice in both forward and backward
directions to search for low-depth exchange-equivalent sequences. Redecomposition of
SEQ’s subsequences is also considered to explore more possibilities. Recently, Jang et al.
also adopted the idea of reordering gates to optimize the depth of linear layers [JBK+22].

Liu et al. proposed an algorithm FINDDEPTH to quickly determine the full depth of
a given quantum circuit [LPZW23]. They record the updated qubits (target qubits) and
used qubits (control qubits) of previous CNOT gates in each depth layer to determine the
minimum depth d where the current CNOT gate E(c, t) can be placed. Specifically, the
control qubit c should not be updated in larger depths, and the target qubit t should not
be used in larger depths. At the same time, qubits c, t should not emerge in depth layer d.
Note that from Zhu et al.’s perspective this algorithm actually returns the sequence depth
of a exchange-equivalent sequence of the given SEQ.

3.3 Greedy method
de Brugière et al. [dBBV+21b] proposed a depth-oriented greedy method to find low-depth
CNOT circuits of invertible linear layers. It is a cost-minimization algorithm, that is,
a cost function needs to be defined to evaluate the cost of reducing the matrix A to a
permutation matrix, and then a strategy for exploring effective elementary transformations
is designed according to the cost function.

The authors considered four cost functions to guide the optimization of gate count
[dBBV+21a]:
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(1)hsum(A) =
∑
i,j

aij ;

(2)Hsum(A) = hsum(A) + hsum(A−1);

(3)hprod(A) =
∑

i

log2(
∑

j

aij);

(4)Hprod(A) = hprod(A) + hprod(A−1).
These four cost functions roughly estimate the cost of decomposition through the sparsity
of a matrix A, and reach their minimum when A is a permutation matrix. Therefore, they
can guide the search in the cost-minimization process. hsum is a rough estimation since
there can be too many operations which lead to the same cost, and the remaining cost
functions have two major improvements over hsum. On the one hand, the inverse of the
matrix is taken into account, which was first proposed in [SP14]. Since a row operation
on A is equivalent to a corresponding column operation on A−1, adding the cost of the
inverse matrix can provide a balanced estimation of the distance to a permutation matrix.
On the other hand, the logarithm of every row’s Hamming weight is taken into account,
which was first presented in [dBBV+21a]. hprod gives priority to "almost done" rows such
that the overall efficiency of elimination is guaranteed. Note that with cost-minimization
algorithms one may end up with a sparse matrix but where the rows and columns have
few nonzero common entries. This type of matrix represents a local minimum from which
it might be difficult to escape. Both these two considerations can help to avoid getting
stuck in local minima and can lead to better results.

Once a fairly well cost function is chosen (such as (2) or (4)), the greedy method for
optimizing gate count works by memorizing the operations that minimize the cost function
and randomly choosing one from them, and some restrictions exist in the case of depth
optimization. The author defines two sets Lr and Lc, which record the previously applied
row and column operations [dBBV+21a] that can run in parallel. In each iteration of
choosing an operation, the available row or column operations must meet the following
two conditions:

• Reduce the cost function.

• Can act in parallel with Lr or Lc.

If no available row or column operations exist, one resets Lr, Lc to empty. Each time a
non-empty Lr or Lc is reset to empty, the depth count is increased by one. The algorithm
ends when the cost function is equal to its minimum, that is, the current matrix is a
permutation matrix, or when the depth counter exceeds a certain threshold, that is, the
algorithm falls into local minima.

According to their experiments with random matrices, this depth-oriented greedy
method behaves well for small n (roughly n < 40). When n is larger, it performs worse
than their block algorithm and often falls into local minima. Their block algorithm
[dBBV+21b] and Jiang et al.’s algorithm [JST+20] have asymptotic optimal bounds and
can handle larger matrices better.

4 Our method and its applications
In this section, we first propose an improved greedy algorithm for finding low-depth CNOT
circuits. Then we apply our algorithm to different linear building blocks with sizes of 16 ×
16 and 32 × 32 that have been studied in [ZH22]. Since the original greedy method in
[dBBV+21b] is not applied to these matrices, we also apply their method to these matrices
for comparison.
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4.1 Our method

Our method is based on the framework of the original greedy method [dBBV+21b], and
differs from it in three aspects. First, in addition to considering the logarithm of each row’s
Hamming weight, we also consider the square of each row’s Hamming weight. Second, we
treat two cases of row and column operations differently when evaluating the cost, that
is, each column’s Hamming weight is considered when column operations are performed.
Finally, we add a judgement of whether the current matrix can be implemented with depth
1 to better handle sparse matrices.

We first make an intrinsic observation about the problem of synthesizing low-depth
CNOT circuits. Though not strict, the larger Hamming weight of a row i, the more
potential gates need to be done on the row i. Therefore, prioritizing the rows or columns
with larger Hamming weights might be a preferable choice to obtain lower circuit depth.
Intuited by this, we propose a new cost function hsq which is based on the square of every
row’s Hamming weight:

hsq(A) =
∑

i

(
∑

j

aij)2.

We also notice that focusing on the Hamming weight of the rows ignores the effect of the
column operations. So we propose two cost functions Hsqr, Hsqc which are based on hsq

to evaluate row operations and column operations respectively:

Hsqr(A) = hsq(A) + hsq((A−1)T );
Hsqc(A) = hsq(AT ) + hsq(A−1).

Note that the cost of corresponding transformation of inverse matrix is under consideration.
In our method, the cost after row operations is evaluated by Hsqr(A), and the cost after
column operations is evaluated by Hsqc(A). In addition, the cost of current matrix is
defined as the maximum evaluation of Hsqr and Hsqc to explore more possibilities.

According to our experiments, using row and column cost functions based on hprod

will sometimes yield better results than using row and column cost functions based on hsq,
which means that hsq is not the best choice for all matrices. So in practice, we also use
cost functions Hprodr and Hprodc defined as follows:

Hprodr(A) = hprod(A) + hprod((A−1)T );
Hprodc(A) = hprod(AT ) + hprod(A−1).

In our algorithm, we adopt a hybrid strategy of randomly using Hprodr, Hprodc or Hsqr, Hsqc,
since both cases are likely to give the best result.

In addition, we give an equivalent condition to test whether a matrix can have depth 1.
This helps determine whether the last searched Lr and Lc can be implemented in parallel,
since the original algorithm can only find this better case with probability 2

2t , where t is
the total number of CNOT gates in the last searched Lr and Lc.

Theorem 3. Suppose the implementation of a permutation matrix is free. Given an
invertible matrix An×n on F2, A can be implemented with depth 1 if and only if the
following conditions hold:

• (a) The Hamming weights of all A’s rows are less than or equal to 2.

• (b) For any two rows i, j of A with Hamming weight 2, aikajk = 0 for all k.
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Algorithm 1 Improved greedy algorithm for synthesizing low-depth CNOT circuits.
Input: An invertible matrix An×n

Output: A depth d and a vector of layers Layers that implement A with length d.
Layers← ∅, Layersr ← ∅, Layersc ← ∅;
Lr ← ∅, Lc ← ∅;
List← ∅;
B ← A;
Randomly determine Hr, Hc ← Hsqr, Hsqc or Hsqr, Hsqc.
cost← max{Hr(B), Hc(B)};
one← False;
d← 0;
while True do

cost← max{Hr(B), Hc(B)};
mincost← minimum resulting cost of all available row operations adding i-th row

to the j-th row (denoted {i, j, 0}) to B, and all available column operations adding i-th
column to the j-th coloumn (denoted {i, j, 1}) to B (if not one);

List← {All operations that lead to the mincost};
if mincost = cost then

if not one and can-depth-one(A) then
one← True;

end if
if Lr.size() then

d← d + 1, Layersr.append(Lr), Lr.clear();
end if
if Lc.size() then

d← d + 1, Layersc.append(Lc), Lc.clear();
end if
if cost = 2n then

break;
end if
if d >= 100 then

return d,∅. ▷ Too large d means the matrix may fall into a local minima.
end if

else
Randomly choose one operation {i, j, op} that minimizes the cost function of the

resulting matrix, add {i, j, op} to Lr if op = 0, or Lc if op = 1;
B ← E(j + i)1−opBE(i + j)op;

end if
List.clear();

end while
Record a permutation P , satisfying P (i) = j if B[i][j] = 1;
for i from 0 to Layerc.size() - 1 do

l← ∅;
for j from 0 to Layerc[i].size() - 1 do
{t, c, op} ← Layerc[i][j], l.append({c, t});

end for
Layers.append(l);

end for
for i from Layerr.size() - 1 down to 0 do

l← ∅;
for j from 0 to Layerr[i].size() - 1 do
{c, t, op} ← Layerc[i][j], l.append({P [c], P [t]});

end for
end for
return d, Layers;



12 Quantum Circuits of AES with a Low-depth Linear Layer and a New Structure

Proof. It is easy to see that a set of row operations on a permutation matrix can be
interpreted as a set of column operations and vice versa. So we only need to consider the
parallelism of row operations to reduce a matrix to a permutation matrix.

Necessity. It is easy to see that target rows of type-3 matrices have Hamming weight 2
and other rows have Hamming weight 1. (b) holds since the reduced matrix is a permutation
matrix.

Sufficiency. Without loss of generality, assume that the i-th row has Hamming
weight 2 for 0 ≤ i < l, and other rows have Hamming weight 1. For each i such that
ai,pi

= 1, ai,qi
= 1, there exist only one corresponding row ti with Hamming weight 1 such

that either ati,pi
= 1 or ati,qi

= 1, since A is invertible. Applying E(ti, i) for 0 ≤ i < l
gives the implementation with depth 1.

Detailed procedures of our improved greedy algorithm is illustrated as Algorithm 1.
The running time of this algorithm is dominated by evaluating the cost of all possible row
or column operations. Suppose the considered matrix A is n by n. Ignoring the limitation
of parallelism, at most n2 row operations and n2 column operations need to be evaluated.
Since A−1 can be computed first and updated according to the corresponding operations
on A, the cost of the resulting matrix can be computed in O(n) times based on the cost
of A. Therefore, the complexity of determining of an operation to be done for a current
matrix is upper bounded by O(n3). Similar to de Brugière et al’s greedy method, our
algorithm behaves well for small scale matrices (roughly n < 40), and our often falls into
local minima when n is larger. Our algorithm is repeated tens of thousands of time for a
matrix and the best result is recorded.

4.2 Application to AES MixColumns
We first focus on CNOT circuits of AES MixColumns. Previous researchers synthesized
quantum circuits of AES MixColumns with different methods. Some CNOT circuits with
low depth were designed by converting optimized classical circuits (see [LSL+19, BFI21,
LWF+22] for an incomplete list) into quantum style using ancilla qubits. Zhu et al. studied
the exchange-equivalence sequence of the CNOT circuit provided by Xiang et al’s method
[ZH22] and found an implementation that has depth 28. Recently Liu et al. proposed a
method for computing the depth of quantum circuits and then used it to evaluate many
circuits generated by Xiang et al.’s method [XZL+20]. They obtained a circuit with 98
CNOT gates and depth 16. Jang et al. optimized the circuit built upon the work in
[LSL+19] and obtained an out-of-place circuit with depth 8 [JBK+22].

We observe that related works of providing CNOT circuits of AES MixColumns either
adopt non-depth-oriented search methods or determine the depth based on existing circuits.
Instead, we use depth-oriented search algorithms to generate low-depth CNOT circuits with
no ancilla qubits. We first apply the greedy algorithm in [dBBV+21b] with cost function
Hprod to AES MixColumns and obtain a circuit with depth 12 and 128 gates. Then using
our improved greedy algorithm, we can find a circuit with depth 10 and 131 gates. It can
be used to reduce the full depth of quantum circuits of AES without increasing the circuit
width. The comparison with previous results is shown in Table 2.

4.3 Applications to many proposed matrices
Following the work of [ZH22], we apply our method to various matrices in the literature
including:

• some matrices which are used in block ciphers [DR02, Bar00, SSA+07, JV05, Ava17,
SKW+98, BNN+10, JNP15, BBI+15, CMR05, ADK+14, BCG+12, BJK+16].
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• some MDS matrices which are independently constructed in [SKOP15, SS16, SS17,
JPST17, LS16, LW16, BKL16];

Table 2: Comparison of CNOT circuits of the AES MixColumns matrix.
Source # CNOT W FD

[BFI21, LWF+22] 206 135 13
[LSL+19] 210 137 11
[JBK+22] 169 96 8
[JNRV20] 277 32 111

[GLRS16, ZWS+20] 277 32 39
[XZL+20] 92 32 30

[ZH22] 92 32 28
[LPZW23] 98 32 16

[dBBV+21b] 128 32 12
This paper 131 32 10

Based on the CNOT circuits of these matrices provided by Xiang et al.’s method, Zhu
et al. evaluated their move-equivalent sequence depth by Q#[Q#], and investigated their
exchange-equivalent sequence depth. Except for a few small-scale matrices, we can find
better results with lower depths for these matrices. For the matrices used in block ciphers,
we have succeeded in reducing the circuit depth for all of them except for a few matrices
that already have CNOT circuits with small depth (see Table 3). For the many constructed
MDS matrices, we can optimize the depth of CNOT circuits for all of them (see Table 4).
Overall, our improved greedy algorithm gives the best results with the lowest depth for all
of the matrices2.

2Note that for a few matrices, implementations with the same depth but fewer gates can be searched
using de Brugière et al.’s algorithm. Therefore, their algorithm could be used in combination with our
algorithm in order to search for better low depth CNOT circuits.
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Table 3: Comparison of the depth/gate count of CNOT circuits for matrices used in block
ciphers

Cipher Size Q# [ZH22] This paper [dBBV+21b]
AESa [DR02] 32 30/92 28/92 10/131 12/128

ANUBIS [Bar00] 32 26/98 20/98 10/119 14/136
CLEFIA M0 [SSA+07] 32 30/98 27/98 10/110 13/126
CLEFIA M1 [SSA+07] 32 21/103 16/103 10/128 13/127

FOX MU4 [JV05] 32 55/136 48/136 21/265 21/200
QARMA128 [Ava17] 32 6/48 5/48 3/48 3/48

TWOFISH [SKW+98] 32 37/111 29/111 15/175 18/187
WHIRLWIND M0 [BNN+10] 32 65/183 51/183 28/331 28/286
WHIRLWIND M1 [BNN+10] 32 69/190 54/190 22/290 25/279

JOLTIK [JNP15] 16 20/44 17/44 7/52 9/48
MIDORI [BBI+15] 16 3/24 3/24 3/24 3/24

SmallScale AES [CMR05] 16 20/43 19/43 10/62 11/59
PRIDE L0 [ADK+14] 16 3/24 3/24 3/24 3/24
PRIDE L1 [ADK+14] 16 5/24 5/24 3/24 3/24
PRIDE L2 [ADK+14] 16 5/24 5/24 3/24 3/24
PRIDE L3 [ADK+14] 16 6/24 6/24 3/24 3/24

PRINCE M0 [BCG+12] 16 6/24 6/24 3/24 3/24
PRINCE M1 [BCG+12] 16 6/24 6/24 3/24 3/24

QARMA64 [Ava17] 16 6/24 5/24 3/24 3/24
SKINNY [BJK+16] 16 3/12 3/12 3/12 3/12

a A recent result of 16/98 is given in [LPZW23].

5 The compressed pipeline structure for iterative primitives
In this section, we first introduce some structures used for quantum circuits of AES in
previous works. Then we propose a new structure named compressed pipeline structure.
Finally we make some comparisons in different levels and introduce its application in the
Grover oracle and the Encryption oracle.

5.1 Existing structures
Many structures have been proposed to synthesize quantum circuits of AES. Some of them
are based on out-of-place round functions, including the pipeline structure Sp, the zig-zag
structure Sz and the out-of-place based (OP-based in short) round-in-place structure Si.
The pipeline structure, which is first mentioned in reversible logic implementations of AES
in [DSSR13], was proposed by Jaques et al. in [JNRV20]. It has low depth and large width
and is used to construct low T -depth quantum circuits of AES in [JNRV20, HS22, JBK+22,
LPZW23]. The zig-zag structure was first put forward by Grassal et al. in [GLRS16]
to reduce the number of intermediate states. It is used to construct low-width circuits
of AES in [GLRS16, ASAM18, LPS20]. To further reduce the number of intermediate
states, Zou et al. presented the improved zig-zag structure [ZWS+20], and Huang et al.
proposed the OP-based round-in-place structure to construct in-place circuits on the basis
of out-of-place circuits. Denote the j-th round function Rj which satisfies Rj(cj−1) = cj ,
then the out-of-place oracle ORj

takes |x⟩ |y⟩ as input and outputs |x⟩ |y ⊕Rj(x)⟩. The
input register and output register is distinguished by notation Rj,i and Rj,o respectively.
For simplicity, the key schedule and the ancilla qubits are omitted. Sp and Sz compute
the desired output |c⟩ along with some redundant states, as illustrated in Figure 3, 4,
respectively. The construction of the in-place function in Si is shown in Figure 5.
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Table 4: Comparison of the depth/gate count of CNOT circuits for many constructed
MDS matrices

Matrices Size Move-eq [ZH22] This paper [dBBV+21b]
4× 4 matrices in GF(4, F2)

[BKL16] 16 23/41 21/41 10/59 12/57
[JPST17] 16 24/41 18/41 9/49 9/48

[LS16] 16 27/41 26/41 11/63 12/65
[SKOP15] 16 25/44 22/44 11/59 11/59

[LW16] 16 29/44 27/44 11/62 12/65
[JPST17](Involutory) 16 15/41 14/41 9/54 13/54
[SKOP15](Involutory) 16 19/44 16/44 7/52 9/48

[LW16](Involutory) 16 27/44 25/44 7/52 9/48
[SS16](Involutory) 16 12/38 11/38 8/46 8/44

4× 4 matrices in GF(8, F2)
[BKL16] 32 56/144 47/144 18/208 20/188
[JPST17] 32 26/82 22/82 9/100 9/96

[LS16] 32 67/121 54/121 21/235 23/203
[LW16] 32 55/104 42/104 13/164 16/167

[SKOP15] 32 23/90 20/90 10/112 11/118
[SS16] 32 47/114 40/114 20/218 20/190

[JPST17](Involutory) 32 18/83 14/83 9/103 13/108
[SKOP15](Involutory) 32 18/91 16/91 8/101 9/96

[LW16](Involutory) 32 19/87 19/87 8/99 8/98
[SS16](Involutory) 32 19/93 18/93 10/122 12/119

8× 8 matrices in GF(4, F2)
[SS17] 32 54/183 55/183 29/351 33/302

[SKOP15] 32 59/170 49/170 28/349 29/286
[SKOP15](Involutory) 32 47/185 37/185 29/337 30/300

8× 8 matrices in GF(8, F2)
[SKOP15](Involutory) 64 50/348 37/348 22/484 25/412

There are also some other structures which do not take the out-of-place round function
as a unit. On the one hand, an in-place round function can be directly designed without
out-of-place round functions. For example, Li et al. proposed an in-place quantum circuit
of AES S-box with only 8 ancilla qubits, and then used it to synthesize a quantum circuit
of AES under the straight-line structure, which has the lowest width to date [LGQW23].
On the other hand, some out-of-place round functions themselves can be decomposed into
computation and uncomputation. The shallowed pipeline structure proposed by Jang et
al. delays the uncomputation of one round function (if exists) to the next round to reduce
the full depth [JBK+22]. Liu et al. improved this structure by sharing the ancilla qubits
of the computation and uncomputation to save qubits [LPZW23].
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Figure 3: The pipeline structure Sp.
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Figure 5: OP-based round-in-place function in Si.

5.2 Compressed pipeline structure
In this section we propose the compressed pipeline structure.

We first make some observations on existing structures. Though the pipeline structure
has the lowest depth, too many qubits store the intermediate states. At the same time, the
zig-zag structure and its improvements clean some intermediate states to save qubits, but
at a cost of almost twice the depth of the pipeline structure. To combine the advantages of
the above two structures, we propose a strategy of computing new states and eliminating
intermediate states in parallel.

Specifically, when cj+1 (j ≥ 1) is generated, the register storing cj−1 can be cleaned
by OR−1

j−1
in parallel and then can be reallocated in further use. In fact, our structure

can be thought of as adding the clean process to the pipeline structure, hence the name
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compressed pipeline structure denoted by Scp. Since the input register of both OR−1
j−1

and ORj
is the same, |cj⟩ is copied by CNOT gates so that OR−1

j−1
and ORj

can act in
parallel. Therefore, our structure requires four intermediate message registers, while a
round function and its inverse function need to be executed in parallel. Scp is illustrated
in Figure 6.
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Figure 6: The compressed pipeline structure Scp. For convenience, the copy of the |cj⟩
state is simplified as "split into two parts".

5.3 Comparison of different structures
In this subsection, we will compare the depth and width of different structures that takes
round function as a unit and illustrate the use of our Scp in two scenarios: the Grover
oracle and the Encryption oracle.

We first clarify some parameters for the different structures. Suppose ORj
has a

unit depth and needs α ancilla qubits. Since the components of ORj , OR−1
j

are almost
the same, it is reasonable to regard them as having the same cost. Suppose the round
function iterates for r rounds, and one message register needs n qubits. The width of
the key schedule is set to k′ to show the difference from the other structures, because in
our structure, the parallel execution of a round function with its inverse means that two
consecutive roundkeys are required.

The comparison with previous structures under the above parameters is outlined in
Table 5. Since we treat a round function as a unit, only the comparison between Sp,Sz,Si

with our Scp are considered.

Table 5: The comparison of different structures, where t is the minimal number such that∑t
i=1 i > r.

Structure Depth Width
Sp r k + (r + 1)n + α

Sz ≈ 2r k + tn + α ≈ k +
√

2rn + α
Si 2r k + 2n + α

This paper r k′ + 4n + 2α

Our Scp has the same depth r as Sp, and at the same time needs 4 message registers
instead of r + 1 message registers in Sp. Therefore, our Scp will have lower width than Sp
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and lower D-W cost than Sz,Si if α and k′ are small enough.

Circuits for Grover oracles. We first consider the Grover oracle: |y⟩ |q⟩ → |y⟩ |q ⊕ f(y)⟩,
where f(y) is a boolean function which outputs one bit 1 or 0. An exhaustive key search
Grover oracle has input state |k⟩, and the correctness of the key is verified by some
plaintext-ciphertext pairs. For simplicity we consider the case of one pair (m0, c0). Denote
an encryption circuit as C∗, the Grover oracle works as follows:

• C∗ computes |c⟩ with |m0⟩ and |k⟩.

• A comparison process compares |c⟩ with |c0⟩ to decide whether to flip |q⟩.

• Do the uncomputation with C†
∗.

It can be seen that the cost of the Grover oracle is almost twice that of the encryption
circuit. Therefore, the cost of Grover oracles with different structures can be evaluated
directly by referring to the cost of different encryption circuits in Table 5.

Since uncomputation of recovering m is necessary in the Grover oracle, the depth of
the Grover oracle is dominated by that of C∗. Thus, Sp is used to construct low-depth
circuits of the Grover oracle in related research. Our circuit Scp greatly reduces the use
of message registers to store intermediate states and will have lower width than Sp if the
number of ancilla qubits required in round functions is small enough.

Circuits for Encryption oracles. We then consider the Encryption oracle defined in
[KLLNP16b]: |m⟩ |0⟩ → |m⟩ |E(m)⟩, where m is the plaintext and E(m) is the encryption
of m. Encryption oracles allows the input register to be in a superposition

∑
m |m⟩, and

then the output will be a superposition
∑

m |m⟩ |E(m)⟩. Note that the key register is
not needed in the Encryption oracle since the roundkeys can be precomputed classically
and the AddRoundKey can be realized by applying X gates on specified qubits. The
construction of Encryption oracles using Sp,Sz or Si is shown in Figure 7.
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Figure 7: The Encryption oracle based on different structures

We show that our structure Scp can be used to construct an Encryption oracle that
has a smaller depth. The depth of an Encryption oracle using Si is 2r since there is no
redundant intermediate states, and the depth of an Encryption oracle using Sp/Sz is twice
the depth of Sp/Sz since uncomputation is needed to clean redundant states. However, the
advantage of our structure is that Scp can greatly reduce the cost for cleaning redundant
states. Since |cj−1⟩ is cleaned by |cj⟩, the remaining redundant states contains only |cr−1⟩,
which can be cleaned by |c⟩ using R−1

r . Thus, the depth of an Encryption oracle using Scp

and R−1
r is only r + 1, almost half the previous record. The comparison with previous

results is outlined in Table 6.
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Table 6: The depth and width of Encryption oracles with different structures
Sp Sz Si This paper

depth 2r ≈ 4r 2r r + 1
width (r + 1)n + α ≈

√
2rn + α (1 + 2)n + α (1 + 4)n + 2α

6 Quantum circuits of AES

In this section we give detailed quantum circuits of AES under the guidance of our structure.
Quantum circuits for the encryption circuit and the key schedule of AES-1283 are specified,
and the cost is compared with other circuits in different cases. The encryption circuit can
be used to synthesize an Encryption oracle with the lowest T -depth to date, and a small
variant of the key schedule with our design of input-invariant Sbox can be used in the
shallowed pipeline structure to save qubits for key registers.

6.1 Quantum circuits of AES S-box

We first introduce some knowledge on quantum circuits of AES S-box. The C2 circuit of
AES S-box defined by C2 : |x⟩ |y⟩ 7→ |x⟩ |y ⊕ S(x)⟩ is the main concern for out-of-place
implementations, since C1 circuits defined by C1 : |x⟩ |0⟩ 7→ |x⟩ |S(x)⟩ are special cases of
C2 circuits and are easier to design. The C3 circuit defined by C3 : |S(x)⟩ |x⟩ 7→ |S(x)⟩ |0⟩
can be efficiently constructed on a C1 circuit with a few more CNOT gates by the method
in [HS22]. Moreover, some C2 circuits of AES S-box can be decomposed into Sbox and
SubS†. The Sbox circuit is defined by Sbox: |x⟩ |0⟩ |y⟩ 7→ |x′⟩ |r⟩ |y ⊕ S(x)⟩, where |r⟩ is
the redundant state. Sbox can be decomposed into two parts denoted by SubS and SubC.
SubS takes |x⟩ |0⟩ as input and outputs |x′⟩ |r⟩, where |r⟩ contains linear components of
S(x). Then SubC adds them to |y⟩ to get |y ⊕ S(x)⟩.

Related works have studied some low Toffoli-depth Sboxes illustrated in Table 7. In
these related works, the target qubit of each Toffoli gate in SubS is always a new qubit
|0⟩, so the Toffoli gates can be replaced by qAND gates with T -depth 1, and SubS† can
be realized with T -depth 0 using qAND†. Therefore, these related works can be used to
synthesize low T -depth qAND-based C2 circuits of AES S-box.

Note that the input register of some Sboxes can remain unchanged while others cannot.
An Sbox is defined to be input-invariant if it can keep the input register unchanged, which
means the information of the input register |x⟩ is not lost before SubS† or Sbox† is done.
We observe that, the reason why some Sboxes are not input-invariant is that the input
register is updated by some ancilla qubits with CNOT gates to save qubits, and these
ancilla qubits themselves are also updated. It is worthy to note that the updating of |x⟩
can be uncomputed with only CNOT gates, as the target qubit of all Toffoli gates is always
a new qubit |0⟩ in related works of low Toffoli-depth Sboxes. Therefore, adding some
CNOT gates can make this kind of Sbox input-invariant without increasing the number of
ancilla qubits and the Toffoli-depth (see Table 7 for our results). The full depth is also not
increased when the Toffoli gates are decomposed.

3We omit the quantum circuit analysis of AES-192 and AES-256 because their analysis is similar to
AES-128, but the key schedules are a little different but easier to design, and the added comparison is
somewhat cumbersome.
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Table 7: Some low TofD Sboxes
Source #CNOT #1qClifford #Toffoli TofD Ancilla qubits Input-invariant

[JNRV20] 186 4 34 6 120 ✔

[HS22] 214 4 34 4 120 ✔

[HS22] 356 4 78 3 182 ✔

[LPZW23] 168 4 34 4 74 ✘

This paper 179 4 34 4 74 ✔

[LPZW23] 196 4 34 4 60 ✘

This paper 207 4 34 4 60 ✔

[JBK+22] 313 4 78 3 136 ✘b

[JBK+22] 162 4 34 4 68a ✘b

a The full depth of this circuit is smaller when the Toffoli gates are decomposed.
b Since the authors does not give specific implementations, we cannot give detailed costs for
their input-invariant versions.

The process of finding a sequence of CNOT gates added to a given low Toffoli-depth
Sbox to make it input-invariant can be integrated into an algorithm. It involves recording
the qubits whose updatings should be memorized. All the input qubits are recorded at the
beginning, and each qubit used to update a recorded qubit is recorded. Finally, a sequence
of uncomputing the memorized updatings is returned. The detailed process is illustrated
in Algorithm 2. Note that in order not to increase the Toffoli-depth, this algorithm is only
suitable for such low Toffoli-depth Sboxes where the updating of input qubits is related
with only CNOT gates.

Some C1 circuits for low-width Toffoli-based circuits are also studied, see Table 8 for
some recent works. If these C1 circuits are used for AES S-box, our quantum circuit of
AES-128 in Subsection 6.3 will have the lowest TofD-W/TD-W cost.

Table 8: Some Toffoli-based C1 circuits of AES S-box
Source #CNOT #1qClifford #Toffoli Toffoli-depth Ancilla qubits

[LXX+23] 193 4 57 24 5
[LXX+23] 195 4 57 22 6
[LGQW23] 197 4 44 32 4

6.2 Round function and key schedule
In this subsection we give the detailed circuits of the iterative functions that we define for
the encryption circuit and key schedule of AES-128.

For the encryption circuit, we define the beginning function B and the j-round function
Fj which are shown in Figure 8. For simplicity, the result of applying multiple AES S-boxes
on a qubit register |x⟩ is denoted by |S(x)⟩ throughout the rest of the paper. B and Fj

acts as follows:

B : |m⟩ |0⟩ |0⟩ |0⟩ 7→ |c0⟩ |S(c0)⟩ |c1⟩ |0⟩ ,
Fj : |cj−1⟩ |S(cj−1)⟩ |cj⟩ |0⟩ 7→ |cj⟩ |S(cj)⟩ |cj+1⟩ |0⟩ .

(3)

As a result, our circuit Ccp is synthesized by connecting B, F1, F2, . . . , F9. Note that Ccp

does not strictly adhere to the structure Scp in Figure 6. One can see that outputs of AES
S-box are copied for cleaning the inputs in the next round, which saves the cost of the
inverse of linear layers, and that our circuit Ccp is more compact, has clear linear and
nonlinear layers, and has fewer linear layer components of AES than the circuit which
adhere strictly to Scp. In a nonlinear layer, 16 C1 circuits and 16 C3 circuits are executed
in parallel for the encryption circuit.
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Algorithm 2 Make an Sbox input-invariant.
Input: An NCT-based circuit C = {g0g1 . . . gt−1} of an Sbox with input qubits
|x0x1 . . . x7⟩, ancilla qubits |r0r1 . . . rm−1⟩ and output qubits |y0y1 . . . y7⟩. The updating
of input qubits in the input Sbox should be related with only CNOT gates.

Output: A sequence of CNOT gates which is added to the Sbox to make it input-invariant.
seq ← [];
for i from 0 to m− 1 do

updated[i]← 0;
end for
for i from 0 to t− 1 do

if gi is not a CNOT gate then
Continue;

end if
Let a be the control qubit and b be the target qubit of gi.
if b is some |xi⟩ or some |rj⟩ with updated[j] = 1 then

seq.append(gi);
if a is some |rj⟩ then

updated[j]← 1;
end if

end if
end for
seq.reverse();
return seq;

We then present a new key schedule circuit which is suitable with our new encryption
circuit, since in Fj , two consecutive roundkeys |kj⟩ , |kj+1⟩ should be able to be computed
simultaneously by CNOT gates. Instead of storing |kj⟩ , |kj+1⟩ in eight 32-qubit registers, we
store linear components of two consecutive roundkeys registers to save qubits4. The linear
components of two consecutive roundkeys |kj⟩ , |kj+1⟩ include |k0

j ⟩ |k1
j ⟩ |k2

j ⟩ |k3
j ⟩ |S(k3

j )⟩,
and the computation of |kj⟩ , |kj+1⟩ with CNOT gates is based on the dependence of

4It is relatively easy for AES-192 and AES-256 to provide two consecutive roundkeys with eight 32-qubit
key registers.

Si|m⟩

|0⟩

|0⟩

|0⟩

So

M

|c0⟩

|S(c0)⟩

|c1⟩

|0⟩

k0
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S−1
o

Si

|cj−1⟩

|S(cj−1)⟩

|cj⟩

|0⟩

|S(cj−1)⟩

|cj⟩

So|0⟩
|S(cj)⟩

S−1
i M

M kj

kj−1

|cj+1⟩

|0⟩

|cj⟩

|S(cj)⟩

Circuit of B Circuit of Fj

Figure 8: Circuits of B and Fj . Si, So and S−1
i , S−1

o stand for the input and output
registers of C1 circuits and C3 circuits, respectively. MixColmuns no longer acts on the
first message register in F9. ShiftRows are omitted for simplicity throughout the rest of
the paper.



22 Quantum Circuits of AES with a Low-depth Linear Layer and a New Structure

consecutive roundkeys illustrated below:

k0
j+1 = Constj+1 ⊕ S(kj

3)⊕ k0
j

k1
j+1 = Constj+1 ⊕ S(kj

3)⊕ k0
j ⊕ k1

j

k2
j+1 = Constj+1 ⊕ S(kj

3)⊕ k0
j ⊕ k1

j ⊕ k2
j

k3
j+1 = Constj+1 ⊕ S(kj

3)⊕ k0
j ⊕ k1

j ⊕ k2
j ⊕ k3

j

, (4)

where Constj+1 is the (j + 1)-th round constant.
By the dependence of consecutive roundkeys, we construct a circuit of key schedule

which can compute linear components of two consecutive roundkey states with six 32-qubit
registers. The beginning iteration K0 and the j-th iteration Kj act as follows:

K0 : |k0
0⟩ |k1

0⟩ |k2
0⟩ |k3

0⟩ |0⟩ |0⟩ 7→ |k0
0⟩ |k1

0⟩ |k2
0⟩ |k3

0⟩ |S(k3
0)⟩ |0⟩

Kj : |k0
j−1⟩ |k1

j−1⟩ |k2
j−1⟩ |k3

j−1⟩ |S(k3
j−1)⟩ |0⟩ 7→ |k0

j ⟩ |k1
j ⟩ |k2

j ⟩ |k3
j ⟩ |S(k3

j )⟩ |0⟩ .
(5)

The circuit of Kj is illustrated in Figure 9, and the circuit of K0 is omitted due to
its simplicity. In the nonlinear layer of Kj , 4 C1 circuits and 4 reversed C1 circuits are
executed in parallel. Therefore, Fj and Kj can be synchronized. It is easy to see that
|kj⟩ |kj+1⟩ can be computed by the linear components with depth 5, thus a small increase
in the depth of AddRoundKey trades for key register savings.
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Constj |k0
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j ⟩
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j ⟩
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(
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)
⟩

|0⟩|0⟩

|S
(
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j

)
⟩

S†
i

S†
o

Si

So

Figure 9: The j-th iteration Kj of the key schedule.

Moreover, only five 32-qubit registers are enough if one uses the qAND-based Sbox,
since Sbox† can clear the redundant states without increasing the T -depth. The beginning
iteration K

′

0 and the j-th iteration K
′

j acts as follows:

K
′

0 : |k0
0⟩ |k1

0⟩ |k2
0⟩ |k3

0⟩ |0⟩ |0⟩ 7→ |k0
0⟩ |k1

0⟩ |k2
0⟩ |k3

0⟩ |r0⟩ |0⟩
Kj : |k0

j−1⟩ |k1
j−1⟩ |k2

j−1⟩ |k3
j−1⟩ |rj−1⟩ |0⟩ 7→ |k0

j ⟩ |k1
j ⟩ |k2

j ⟩ |k3
j ⟩ |rj⟩ |0⟩

(6)

The corresponding circuit K
′

j is shown in Figure 10. |rj−1⟩ and |rj⟩ are the redundant
states within the computations of |S(kj−1)⟩ and |S(kj)⟩, respectively. Similarly, K0’s
corresponding circuit K

′

0 needs 4 Sboxes. It is worthy to note that the Sbox is actually
input-invariant, which is easy to achieve based on our analysis in Subsection 6.1.



Haotian Shi and Xiutao Feng(B) 23
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Figure 10: K
′

j with Sbox and Sbox†. The dashed line represents the ancilla qubits of
qAND-based Sbox.

6.3 Quantum circuits of AES-128
AES-128 can be constructed with iterative circuits Fj , B, Kj , K

′

j defined by us. Fj runs
in parallel with Bj , where kj , kj−1 are to add specific 32-qubit registers to the message
registers by CNOT gates. See Figure 11 for the heiararchy of our quantum circuit of
AES-128.

K0

B F1

K1

F2

K2

F3

K3

F4

K4

F5

K5

F6

K6

F7

K7

F8

K8

F9

K9|k⟩

|m⟩
|0⟩
|0⟩
|0⟩

|c⟩
|0⟩

|c9⟩
|S(c9)⟩

|k′⟩

Figure 11: Our quantum circuit of AES-128. The arrows indicate the AddRoundKey
process at the beginning or end of Kj .

We then compare the cost of our Ccp with that of Sp and Si in both Toffoli-based and
qAND-based AES S-box scenarios. For different circuits, the number of qubits required
for key registers and message registers, parallel C1, C2 circuits5 and layers of AES S-box
are shown in Table 9. One can see that our circuit Ccp do not need C2 circuits.

Table 9: Costs of different structures for AES-128
Circuits Cp Ci Ccp with Kj Ccp with K

′

j

Qubits of key registers 128 128 192 160
Qubits of message registers 128 × 11 128 × 2 128 × 4 128 × 4
C1 circuits in parallel 16 16 40 36
C2 circuits in parallel 4 2 0 0
Layers of AES S-box 10 20 10 10

The cost of different structures can be computed when the number of ancilla qubits and
the Toffoli/T -depth of AES S-box are determined. For simplicity of comparison, assume
that both C1 and C2 circuits require m ancilla qubits. In case of using Toffoli-based AES
S-box, our circuit needs fewer ancilla qubits than Cp when m < 42, and has lower TofD-W
cost than Ci when m < 16. So our circuit will have lower TofD-W -cost with state-of-art

5Since a C3 circuit can be constructed by a C1 circuit with a few more CNOT gates using the method
in [HS22], we regard them as the same type of C1 circuits.
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low-width AES S-box. In case of using qAND-based Sbox, our circuit needs fewer ancilla
qubits than Cp when m < 54, and has lower TD-W cost than Ci for all m > 0.

Since a Grover oracle is composed of AES, AES† and a small comparison process, the
choice of parameters to make the TD-W cost of Grover search lower is basically consistent
with the above analysis.

6.4 AES Encryption oracle with lower T -depth
As introduced in Subsection 5.3, previous research synthesized the AES Encryption oracle
which cannot break the limit of 2× 10 layers of AES S-box. Since the roundkeys can be
precomputed in the AES Encryption oracle, the redundant states of our circuit Ccp only
include |c9⟩ |S(c9)⟩, which can be cleaned with only one layer of AES S-box. The clear
function C shown in Figure 12 takes |c9⟩ |S(c9)⟩ |c⟩ |0⟩ as input and outputs |0⟩ |0⟩ |c⟩ |0⟩.
Therefore, the AES Encryption oracle can be constructed with (10 + 1) layers of AES
S-box.

S−1
i

|c⟩

|0⟩

|c9⟩

|S(c9)⟩

S−1
o

|c⟩

|0⟩

|0⟩

|0⟩k10

Figure 12: The clear function C.

Using the qAND-based C1 circuits and C3 circuits with T -depth 3, we construct an
AES-128 Encryption oracle with T -depth 33, which breaks the previous record of T -depth
60 in [HS22].

Since in AES-like Hasing the roundkeys are actually constants, our circuit can also be
used to construct quantum oracles of AES-like Hasing with lower T -depth.

6.5 Key schedule of the shallowed pipeline structure with lower width
Jang et al. proposed the shallowed pipeline structure using AES S-box that can be
decomposed into Sbox and SubS†, where the cleaning of redundant states SubS† is delayed
to the next round [JBK+22]. Then, Liu et al. improved the structure by sharing the ancilla
qubits in Sbox and SubS† [LPZW23]. They both adopted the straight line structure for
the key schedule, where |kj−1⟩ will be updated by |kj⟩ in the j-th round. As introduced
in Subsection 6.1, the Sbox given in [HS22] with unoptimized width is input-invariant,
but the Sbox given in [LPZW23] with optimized width is no longer input-invariant, which
leads to the lost of information in the input register. Since Sbox and SubS† need |k3

j ⟩ and
|k3

j−1⟩ for each j, respectively, Jang et al. allocated extra 32 qubits for storing |k3
j−1⟩ when

using input-invariant Sbox. Since the Sbox used by Liu et al. has smaller width but is no
longer input-invariant, 10 × 32 qubits are allocated for storing all |k3

j−1⟩ with 1 ≤ j ≤ 10.
We show that extra allocation of qubits for storing keywords is not necessary.

On the one hand, we have succeeded to make a low Toffoli-depth Sbox input-invariant
with a few more CNOT gates. On the other hand, by the dependence of consecutive
roundkeys in Equation 4 used in Kj ’s, we have k3

j−1 = k2
j ⊕ k3

j . Therefore, unchanged |k3
j ⟩

and the feasibility of computing |k3
j−1⟩ with |k2

j ⟩ , |k3
j ⟩ means that the allocation of extra

qubits for key schedule in [JBK+22, LPZW23] is unnecessary. Our K ′′
j ’s for the shallowed
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pipeline structure which are similar to Kj ’s only need 128 qubits for key registers and
work as follows:

K ′′
0 : |k0

0⟩ |k1
0⟩ |k2

0⟩ |k3
0⟩ |0⟩ 7→ |k0

1⟩ |k1
1⟩ |k2

1⟩ |k3
1⟩ |r0, 0⟩ .

K ′′
j : |k0

j ⟩ |k1
j ⟩ |k2

j ⟩ |k3
j ⟩ |rj−1, 0⟩ 7→ |k0

j+1⟩ |k1
j+1⟩ |k2

j+1⟩ |k3
j+1⟩ |rj , 0⟩ .

(7)
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Figure 13: K
′′

j for the shallowed pipeline structure. SubSi represents the input register of
SubS, and SubSr represents the register that will store the redundant state.

Using our K ′′
j and our input-invariant Sbox, we achieve a quantum circuit of AES-128

under the shallowed pipeline structure with the lowest TofD-W cost 130720 to date6.

7 Conclusion
In this work, quantum circuits of AES are studied and optimized. We first propose an
improved greedy algorithm based on it. When applied to many MDS matrices and matrices
used in block ciphers, our improved greedy algorithm gives the best results with the lowest
depth for all of them. For example, our improved method finds an in-place CNOT circuit
of AES MixColumns with depth 10, which breaks the recent record of depth 16 and helps
to reduce the full depth of AES. To further optimize quantum circuits of AES, we propose
a new compressed pipeline structure for iterative building blocks. If the round function
is taken as a unit, our structure will have lower D-W cost when the number of ancilla
qubits of a round function is small enough. Detailed quantum circuit of AES-128 under
the guidance of our structure is given and compared with previous circuits. Moreover, the
encryption circuit can be used to synthesis an AES-128 Encryption oracle with T -depth
33, and a small variant of the key schedule along with our input-invariant Sbox can avoid
the allocation of 10× 32 qubits for storing key words in the shallowed pipeline structure
where the Sbox is not input-invariant. Further optimization of low Toffoli-depth Sbox is
left as a future work. Our methods in this paper can be used to optimize quantum circuits
of other iterative building blocks.

6We contacted the author of [JBK+22] and learned that their not-yet-public circuit of Sbox with
68 ancilla qubits makes the combined Sbox and SubS† require 93 ancilla qubits. Our circuit uses the
input-invariant version of Sbox and has a maximum width of 3268 which is internally optimized via
ProjectQ [SHT18].
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A The depth 10 implementation of AES MixColumns.

Table 10: The implementation of AES MixColumns with quantum depth 10. The outputs
|y0⟩ , |y1⟩ , . . . , |y31⟩ are represented by 0, 17, 18, 27, 28, 21, 22, 15, 16, 25, 26, 3, 20, 29, 30,
7, 24, 1, 10, 19, 12, 5, 6, 31, 8, 9, 2, 11, 4, 13, 14, 23, respectively.

Operation Operation Operation
Depth 1 CNOT | (24, 16) CNOT | (7, 17)

CNOT | (12, 28) CNOT | (22, 23) CNOT | (1, 18)
CNOT | (20, 4) Depth 4 CNOT | (9, 26)
CNOT | (19, 3) CNOT | (20, 27) CNOT | (14, 23)
CNOT | (27, 11) CNOT | (22, 31) CNOT | (31, 8)
CNOT | (21, 5) CNOT | (16, 17) CNOT | (29, 13)
CNOT | (13, 29) CNOT | (10, 18) CNOT | (28, 12)
CNOT | (6, 22) CNOT | (4, 21) CNOT | (11, 4)
CNOT | (30, 14) CNOT | (25, 9) CNOT | (6, 15)
CNOT | (23, 31) CNOT | (7, 0) CNOT | (20, 27)
CNOT | (15, 7) CNOT | (29, 6) CNOT | (16, 25)
CNOT | (18, 2) CNOT | (2, 26) CNOT | (0, 24)
CNOT | (26, 10) CNOT | (11, 19) CNOT | (10, 3)
CNOT | (24, 1) CNOT | (3, 23) Depth 9
CNOT | (0, 8) CNOT | (8, 24) CNOT | (31, 7)
CNOT | (9, 25) Depth 5 CNOT | (29, 5)
CNOT | (16, 17) CNOT | (18, 26) CNOT | (2, 10)

Depth 2 CNOT | (27, 12) CNOT | (22, 14)
CNOT | (31, 7) CNOT | (17, 9) CNOT | (15, 23)
CNOT | (19, 27) CNOT | (7, 3) CNOT | (4, 28)
CNOT | (12, 20) CNOT | (31, 15) CNOT | (3, 11)
CNOT | (13, 21) CNOT | (22, 8) CNOT | (25, 1)
CNOT | (4, 28) CNOT | (23, 20) CNOT | (30, 6)
CNOT | (30, 6) CNOT | (24, 16) CNOT | (0, 16)
CNOT | (16, 0) Depth 6 CNOT | (13, 21)
CNOT | (24, 8) CNOT | (3, 23) CNOT | (12, 20)
CNOT | (26, 18) CNOT | (8, 24) CNOT | (24, 9)
CNOT | (15, 23) CNOT | (17, 1) CNOT | (19, 27)
CNOT | (2, 10) CNOT | (31, 19) CNOT | (8, 17)
CNOT | (29, 5) CNOT | (22, 30) CNOT | (26, 18)
CNOT | (3, 11) CNOT | (7, 4) Depth 10
CNOT | (25, 17) CNOT | (2, 12) CNOT | (21, 5)
CNOT | (1, 9) CNOT | (25, 18) CNOT | (13, 29)

CNOT | (22, 14) CNOT | (5, 21) CNOT | (30, 14)
Depth 3 Depth 7 CNOT | (6, 22)

CNOT | (17, 26) CNOT | (23, 24) CNOT | (15, 7)
CNOT | (18, 19) CNOT | (7, 18) CNOT | (23, 31)
CNOT | (20, 13) CNOT | (1, 2) CNOT | (27, 3)
CNOT | (31, 12) CNOT | (16, 9) CNOT | (20, 4)
CNOT | (11, 3) CNOT | (22, 19) CNOT | (19, 11)
CNOT | (8, 9) CNOT | (31, 20) CNOT | (12, 28)

CNOT | (21, 30) CNOT | (10, 27) CNOT | (9, 25)
CNOT | (28, 4) CNOT | (5, 13) CNOT | (26, 2)
CNOT | (2, 27) CNOT | (28, 29) CNOT | (18, 10)
CNOT | (7, 25) CNOT | (25, 26) CNOT | (24, 16)
CNOT | (14, 6) Depth 8 CNOT | (8, 0)
CNOT | (29, 15) CNOT | (5, 22) CNOT | (17, 1)
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B Brief description of the AES family.
The AES family [DR02] contains three instances, denoted as AES-128, AES-192 and
AES-256 respectively according to the length of the key.

The round function of the AES family consists of four transformations, i.e., SubBytes,
ShiftRows, MixColumns and AddRoundKey. The total number of rounds equals 10, 12
and 14 for AES-128, AES-192 and AES-256, respectively. 16 bytes are arranged in a 4× 4
matrix state. The SubBytes replaces each byte in the state by another one according to
the AES S-box. The ShiftRows changes the position of the bytes by cyclically rotating
the bytes in the i-th row to the left by i bytes, where i = 0, 1, 2, 3. The MixColumns is a
right circulant matrix (0x02, 0x03, 0x01, 0x01) over GF(8,F2) and acts on each column of
the state by matrix multiplication. Note that the MixColumns is absent in the last round.
The AddRoundKey adds the roundkey to the state by bitwise XOR.

The key schedule of AES-128 is based on 32-bit words. Denote the master key by
W0, W1, . . . , Ws−1, where s = 4 for AES-128. Except the given words (i.e., the words in
the master key), 40 words are required by AES-128. For AES-128, the word Wi can be
calculated by the following equation:

Wi =
{

Wi−4 ⊕ SubWord(RotWord(Wi−1))⊕ Const(i/4), if i ≡ 0 mod 4,

Wi−4 ⊕Wi−1, otherwise,

where i = 4, 5, ..., 43. ki
j equals W4j+i is the i-th 32-bit word of the j-th roundkey.

The SubWord applies four AES S-boxes to the bytes in one word. The RotWord
cyclically rotates the bytes in the word to the left by one byte. The Rcon adds the round
constant to the word by bitwise XOR.
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