
SyRA: Sybil-Resilient Anonymous Signatures
with Applications to Decentralized Identity

Elizabeth Crites1, Aggelos Kiayias2, and Amirreza Sarencheh⋆2

1 Web3 Foundation, elizabeth@web3.foundation
2 The University of Edinburgh & IOG, UK, firstname.lastname@ed.ac.uk

Abstract. We introduce a new cryptographic primitive, called Sybil-
Resilient Anonymous (SyRA) signature, which enables users to generate,
on demand, unlinkable pseudonyms tied to any given context, and issue
digital signatures on their behalf. Concretely, given a personhood relation,
an issuer (who may be a distributed entity) enables users to prove their
personhood and extract an associated long-term key, which can then be
used to issue signatures for any given context and message. Sybil-resilient
anonymous signatures achieve two key security properties: 1) Sybil re-
silience: ensures that every user is entitled to at most one pseudonym
per context, and 2) anonymity : requires that no information about the
user is leaked through their various pseudonyms or the signatures they
issue on their pseudonyms’ behalf.
We conceptualize SyRA signatures as an ideal functionality in the Uni-
versal Composition (UC) setting and realize the functionality via an
efficient, pairing-based construction that utilizes two levels of verifiable
random functions (VRFs) and which may be of independent interest. A
key feature of this approach is the statelessness of the issuer: we achieve
the core properties of Sybil resilience and anonymity without requiring
the issuer to retain any information about past user interactions.
SyRA signatures have various applications in multiparty systems, such
as e-voting (e.g., for decentralized governance) and cryptocurrency air-
drops, making them an attractive option for deployment in decentralized
identity (DID) systems.

Keywords: Decentralized Identity, Digital Identity, Privacy, Sybil Resilience,
Decentralized Governance, Universal Composition, Digital Signature

1 Introduction

A recent development in identity systems is the concept of decentralized identity
(DID) which comes with the promise of empowering users by enabling them to
be “self sovereign” in terms of identity management.3 This means that users

⋆ Corresponding author.

3 The W3C Decentralized Identifier working group [Con22] and Decentralized Identity
Foundation [Fou23] have been developing standards for DIDs.

have the ability to self manage the secret key(s) behind their identity and access
services that require identification without a trusted third party acting as an
intermediary, as is the case with single-sign on systems, cf. [WCW12,FKS16].
Given that users may be operating across a multitude of contexts, it is important
for them to be able to generate “context-specific” credentials that, for privacy
considerations, must be unlinkable.4 From a cryptographic perspective, these
considerations suggest the following two seemingly contradictory objectives for
realizing DIDs in a privacy-preserving manner.

– Sybil Resilience. With the help of the issuing authority, each user can trans-
late their real-world identity into a master credential, which can then be
mapped on demand and noninteractively to at most one context-specific
credential for any given context.

– Anonymity. Context-specific credentials reveal nothing of the user’s identity,
allowing users to be unlinkable across different contexts.

It is easy to see that the above properties can be trivially achieved individu-
ally: without privacy, Sybil resilience is straightforward to achieve from standard
credentials, as the user’s identity can follow them across different contexts. On
the other hand, without Sybil resilience, anonymity can be achieved by standard
cryptographic techniques, such as blind signatures [Cha81].

But how is it possible to achieve both properties simultaneously? A first ap-
proach can be derived from unclonable group identification [DDP06,CHK+06],
where context is restricted to be in the form of distinct periods, and users are
capable of authenticating themselves in a Sybil-resilient and unlinkable manner.
In these constructions, the issuer verifies the real-world identity of the user and
maps it to a credential that has the desired Sybil-resilient context-specific prop-
erty across periods. Still, it is far more desirable for real-world use cases to be
able to use as context any given string; this amounts to going from a polynomial-
size context space to an exponential one. The issue of a large space context can
be addressed via the concept of traceable ring signatures [FS07], where signing
twice for the same “issue” identifies the public key of the signer.

Nevertheless, an important consideration remains: in all these previous ap-
proaches, the connection to the real-world identity of the signer is tenuous – it
fundamentally relies on the ability of the credential issuer to maintain a mapping
between credentials and real-world identities. This raises scalability, security, and
privacy considerations, namely: how is it possible to manage an ever-growing
such mapping of real-world identities to credentials, distribute such a mapping
across many servers with Byzantine fault tolerance, and, at the same time, keep
it private in order to prevent adversaries from performing deanonymization at-
tacks via correlation? We refer to these considerations as the (credential) issuer
state problem.

Solving the issuer state problem poses a conundrum that begs cryptographic
treatment: Sybil resilience seems to mandate that the issuer must maintain a

4 See Sec. 4.2 of the Peer-DID standard that covers-context specific DIDs for users
https://identity.foundation/peer-did-method-spec/index.html.

2

https://identity.foundation/peer-did-method-spec/index.html

mapping of real-world identities to credentials; indeed, a failure to do so would
permit a trivial attack against Sybil resilience: the user would exploit the confu-
sion of the issuer to dispense more than one credential for itself and thus become
a Sybil. On the other hand, scaling and distributing the issuer would benefit from
obfuscating, or even eliminating (if possible!), such state altogether.

Motivated by the connection of all of the above to the DID problem, in
this work we focus on the following question: What is a natural cryptographic
primitive that reconciles Sybil Resilience with Anonymity, and how can we realize
it in a way that solves the issuer state problem?

Our Results. We tackle the above question by putting forth a new primitive,
Sybil-Resilient Anonymous (SyRA) signatures, and realizing it via an efficient
construction that facilitates a stateless distributed issuer entity.

In a SyRA signature scheme, an issuing authority, that may be distributed, is
tasked with translating a real-world identity s into a signing key for the prospec-
tive user.5 The issuing authority introduces a user into the system whose identity
string satisfies a public personhood relation R and must ensure that there is a
one-to-one correspondence between issued keys and distinct, real-world identi-
ties. Once the issuing protocol succeeds, a SyRA signature scheme enables a user
to sign messages for any given context ctx; signatures can be verified against the
public key of the issuing authority and the context string. The signing procedure
generates a context-specific pseudonym, or tag T , that attaches itself to each sig-
nature. This enables the user to create separate and unlinkable pseudonyms to
issue signatures across different contexts. Nevertheless, within a specific context,
the signatures issued by the user can be linked to each other.

To capture formally the properties of this new primitive, we provide an ideal
functionality for SyRA signatures in Section 3. Some key characteristics of this
functionality are as follows. First, it verifies that the prospective user possesses a
valid witness for their identity s with respect to the personhood relation. Second,
upon each signature generation step, it creates a unique user-context identifier
that is leaked to the adversary. This ensures that as long as unique user-context
combinations are being exercised, there is no loss of anonymity. On the other
hand, once the same user signs with the same context twice, the adversary will
be notified by receiving the same user-context identifier. Note that this does not
compromise the privacy of other contexts signed by the same user. Finally, the
verification interface enables the verifier to publicly extract the pseudonym of
each signature.

Armed with our ideal functionality, we set out to provide a construction for
SyRA signatures in Section 4. From a design perspective, the challenge is to
embed the identity of the user into their signing key so that signatures are un-
linkable as long as distinct contexts are signed by different users, and at the
same time enable detection for user signatures on the same context. Crucially,

5 Note that for SyRA signatures with distributed issuance, we cannot expect to have
privacy if all issuers are malicious, since in that case, they could always impersonate
a real-world user with identity s and use the tracing operation to find all of the
user’s signatures.

3

we cannot rely on any auxiliary cryptographic structure in the membership cre-
dential – this is because even if the user repeats the whole issuing protocol again,
as long as their real-world identity s remains the same, the user should not be
able to sign the same context more than once without being identified. In this
way, our issuer can be stateless.

Our construction overcomes this difficulty via the composition of two verifi-
able random functions (VRF). The first VRF is keyed by the issuing authority.
During issuance, the user obtains the VRF value on their real-world identity
string s while proving to the issuing authority that the personhood relation R is
satisfied. In this manner, the user obtains a value that is deterministically tied
to their real-world identity s. The second challenge is to ensure that this value
can be safely used as the cryptographic key to a second VRF. The reason we
aim for a second VRF here is to ensure unlinkability on the one hand while still
linking by pseudonym on the other, for all signatures issued in the same context.

For ease of presentation, we present our construction in two steps. First, we
consider a central issuer that is trusted for privacy, but with the constraint that
it is stateless, i.e., the issuer should achieve Sybil resilience without maintain-
ing in their state the set of real-world identities (or anything that is derived
from them) that have been served SyRA credentials. We then demonstrate how
to distribute the issuer. In the construction, we employ the Dodis-Yampolskiy
verifiable random function (VRF) [DY05], which we extend to Type-III bilinear
groups. Our asymmetric DY VRF produces the same classical DY VRF output
in the target group as well as a proof of correctness in one source group, but
additionally outputs the same proof in the other source group. These two val-
ues, which have the form (g1/(s+isk), ĝ1/(s+isk)) serve as the user secret key in our
SyRA signature scheme, computed by the issuer holding the issuing secret key
isk on the user’s identity string s.

The second primitive in our construction is inspired by the verifiable un-
predictable function (VUF) of [GJM+21], which has the unique property that
it employs a group element secret key. This is a key ingredient in our SyRA
signature scheme, as the output of the first VRF becomes the secret key of
the second. The VUF of [GJM+21] leveraged the determinism of BLS signa-
tures [BLS04] and a Groth-Escala NIZK [EG14] style proof of correctness with
respect to the group element key. Indeed, the output of the VUF is the pairing
T = e(h(ctx), ˆusk), where ˆusk is part of the user secret key, ctx is the context, and
h is a hash function modelled as a random oracle. Our Sybil-resilient signatures
have the same output, but we swap the Groth-Sahai NIZK proof of correctness
with a Sigma protocol, as Groth-Sahai proofs do not support the zero-knowledge
property for statements that involve the target group. Furthermore, we show in
the random oracle model that T = e(h(ctx), ˆusk) is not only unpredictable, but
actually pseudorandom. It follows that the second primitive is also a VRF, which
is essential for our privacy property.

We proceed to “thresholdize” the issuer by enabling multiple parties, each
in possession of a share of the issuer secret key, to jointly compute a secret key
pair, as above, for each user in the system. Distributed generation of user se-

4

cret keys enhances security and the availability of keying material. In the case
of identity management, any cryptographic primitive used by certification au-
thorities to issue credentials makes for an especially attractive target for misuse
or forgery. Furthermore, a user’s identity string s may be private or sensitive
information. Unlike the centralized construction, no single issuer ever sees the
user’s identity string in the clear, and a threshold number of them would need to
collude in order to break privacy. As claimed in the original Dodis-Yampolskiy
paper, it is straightforward to construct a distributed computation of the func-
tion Fisk(s) = g1/(s+isk) when the issuers have shares of the secret isk, and indeed
we realize this using standard techniques for multi-party addition, inversion, and
exponentiation [Bea92,KPR18].

We conclude our exposition with an overview of deployment considerations
and applications for SyRA signatures. In particular, we describe how the person-
hood relation may be realized in an actual deployment, and how SyRA signatures
apply to various use cases, such as e-voting, cryptocurrency airdrops, and solving
the peer DID objective, cf. Section 7.

Related Work. Below we overview prior cryptographic primitives and their
relation to SyRA signatures and our construction.

Group Signatures.Group signatures, introduced by Chaum and van Heyst [Cv91],
allow a member of a group to anonymously sign messages on behalf of the group.
The main security properties of group signatures are (1) unforgeability: only
group members can create valid signatures; (2) anonymity: message-signature
pairs do not leak the identity of the signer; (3) unlinkability: two message-
signature pairs cannot be linked to the same signer; and (4) opening: the group
manager can determine the identity of any signer using a special trapdoor. Simi-
lar to group signatures, in traceable signatures each group member has a tracing
token that, if revealed, can link signatures from the same signer [KTY04]. In
SyRA signatures, there is no opening (or tracing) authority; however, each sig-
nature incorporates an obfuscation of the user’s identity string s in such a way
that the user is unlinkable across different contexts, but entirely linkable within
the same context.

Ring Signatures. Ring signatures, introduced by Rivest, Shamir, and Tauman
Kalai [RST01], allow a member of an group, called a ring, to anonymously sign
messages on behalf of the group. Ring signatures are similar to group signatures;
however, there is no group manager who creates keys and manages the group.
Instead, the formation is ad hoc. Ring signatures provide a strong notion of
privacy: there is no mechanism for de-anonymizing users from the signatures
they produce.

Identity-Based Signatures. Identity-based signatures (IBS) [Sha84] allow a user’s
signatures to be associated with a real-world identity string, such as an email
address or phone number. User secret keys are generated by a master entity
who ties them to identities using secret information. [Her06] proposed a deter-
ministic identity-based signature scheme, where the signing is deterministic, i.e.,
signing the same message twice results in the same signature. [Hes03] proposed
an IBS where instead the key issuance phase is deterministic. Thus, a user can-

5

not obtain multiple secret keys associated with their identity string. In a hidden
identity-based signature scheme [KZ07], the user’s identity string is not public
information. SyRA signatures also facilitate hiding identities as in [KZ07], but
offer linkability for multiple signatures on the same context.

Anonymous Credentials. The concept of using context-specific pseudonyms ap-
pears first in the context of anonymous credentials, beginning with the work of
Chaum [Cha85] and [CE86], and followed up by subsequent works, cf. [CL01]. In
this setting, users have distinct and unlinkable pseudonyms across organizations
who play an active role in engaging with users transferring their credentials be-
tween them. In SyRA signatures, organizations can be entirely passive, each one
defining their own set of context strings and otherwise allowing users to create
and authorize their pseudonym for the contexts that are of interest to them.

Unclonable group identification. As discussed above, this line of work, beginning
with [DDP06,CHK+06], covers a setting in which users are unlinkable across
discrete time periods – a more limited setting compared to arbitrary context
strings. [CHK+06] builds on prior work on e-cash [CHL05,CHL06], with the
addition of this type of context.

Linkable and Traceable Ring Signatures. Linkable ring signatures [LWW04] allow
for two signatures issued by the same signer with respect to the same ring of keys
to be linked. Traceable ring signatures [FS07,ALSY13] generalize this notion to
arbitrary contexts and allow for the recovery of the public key of the signer in case
of signing twice in the same context. One-time traceable ring signatures [SZ21]
facilitate the recovery of the public key of the signer in the linkable ring signature
scenario. A similar type of functionality is achieved in the context of e-petitions
in [DKD+08], where users can only sign a petition once. As mentioned earlier, in
all these primitives, the connection of the user’s key to their real-world identity
is via an explicit mapping maintained by the issuer – while in principle such
techniques can be used to produce a SyRA construction, they fundamentally
rely on an issuer maintained mapping of real-world identities to keys.

Legacy compatible identification. In this setting, put forth in [ZMM+20] and
utilized in the context of DIDs in CanDID [MMZ+21], the users can prove a
piece of information, that can be their real-world identity, from a “legacy” web-
service to a third-party provider. In the context of CanDID, such a provider
(which is in fact a distributed entity) can issue a credential that the user can
on demand (albeit interactively with the issuer) transpose to any context he
wishes, while remaining unlinkable; furthermore, Sybil resilience is ensured with
respect to the user’s real-world identity. The CanDID construction makes the
only attempt (to the best of our knowledge) towards solving the issuer state
problem: the real-world identity of the user is obfuscated in the form of its PRF
evaluation via a key that is shared between the issuing authorities. Each issuing
authority keeps a copy of this obfuscated database and, hence, any attempt of the
user to subvert Sybil resilience can be blocked by checking the PRF evaluation
of their real-world identity against the obfuscated database. It is worth noting
that this approach still has the downsides that each issuer needs to maintain a
state linear in the number of credentials, and that users who lose their keys need

6

additional infrastructure to help them recover it, as the issuers, in their effort
to protect against Sybils, will deny re-issuance to any user who is unfortunate
enough to lose their key. Our SyRA construction, on the other hand, circumvents
both of these downsides by requiring no (updateable) state for the issuers as well
as it does not require interaction to introduce users to new contexts.

zkLogin [BCJ+24] similarly allows users to prove pieces of information from
legacy web-services, but specifically in order to authorize cryptocurrency transac-
tions. In particular, it leverages legacy providers in the OpenID Connect network,
which include Google, Facebook, many other major platforms. Such a provider
maps real-world identities to keys in such a way that it obviates the need for users
to self-manage signing keys associated with digital wallets. It essentially acts like
an identity-based signature scheme, where the OpenID provider is the key distri-
bution authority. As in IBS, the real-world identity being used is the user’s email
address. A similar approach is taken by ZK Address Abstraction [PLL+23], i.e.,
using a zero-knowledge proof over the signed statement issued by the provider on
user information in order to authenticate blockchain transactions. While these
schemes protect the private data of users, neither addresses the property of Sybil
resilience.

2 Preliminaries

Let k ∈ N denote the security parameter and 1k its unary representation. Let
p be a k-bit prime. For all positive polynomials f(k), a function ν : N → R+

is called negligible if ∃ k0 ∈ N such that ∀ k > k0 it holds that ν(k) < 1/f(k).
We denote by G∗ the set G \ 1G, where 1G is the identity element of the group
G. We denote the group of integers mod p by Zp = Z/pZ and its multiplicative
group of units by Z∗

p. We denote the set of integers {1, . . . , n} by [1, n]. Let

Y
$←− F (X) denote running probabilistic algorithm F on input X and assigning

its output to Y . Let x
$←− Zp denote sampling an element of Zp uniformly at

random. All algorithms are randomized unless expressly stated otherwise. PPT
refers to probabilistic polynomial time.

Definition 1 (Bilinear Group). A bilinear group generator GrGen(1k) re-

turns a tuple bp← (G, Ĝ,GT , p, e, g, ĝ) such that G, Ĝ and GT are finite groups

of the same prime order p, g ∈ G and ĝ ∈ Ĝ are generators, and e : G × Ĝ →
GT is a bilinear pairing, which is efficiently computable and satisfies (1) non-
degeneracy: e(g, ĝ) ̸= 1GT

and (2) bilinearity: ∀ x, y ∈ Zp, e(g
x, ĝy) = e(g, ĝ)xy =

e(gy, ĝx).

We rely on Type-III, or asymmetric, bilinear groups G and Ĝ, for which there
is no efficiently computable isomorphism between them.

2.1 Cryptographic Assumptions

Assumption 1 (Decisional Diffie-Hellman (DDH)) The decisional Diffie-
Hellman assumption holds in G for GrGen if for all PPT adversaries A, there

7

exists a negligible function ν such that:

|Pr[A(bp, gx, gy, gr) = 1]− Pr[A(bp, gx, gy, gxy) = 1]| ≤ ν(k)

where in each case the probabilities are taken over the experiment in which
GrGen(1k) outputs bp = (p,G, Ĝ,GT , e, g, ĝ), and then random x, y, r ∈ Zp are
chosen.

The DDH assumption may be defined similarly for Ĝ and GT .

Assumption 2 (q-Decisional Bilinear Diffie-Hellman Inversion (q-DBDHI))

[DY05] Let GrGen be a group generator that outputs bp = (G, Ĝ,GT , p, e, g, ĝ).
The q-Decisional Bilinear Diffie-Hellman Inversion assumption holds for GrGen
if for all PPT adversaries A, there exists a negligible function ν such that:

|Pr[A(bp, gx, ĝx, . . . , gx
q

, ĝx
q

; e(g, ĝ)1/x)]− Pr[A(bp, gx, ĝx, . . . , gx
q

, ĝx
q

;Γ)]| ≤ ν(k)

where the probability is taken over the internal coin tosses of A and choices of
x ∈ Z∗

p and Γ ∈ GT .

2.2 Verifiable Random Functions

A verifiable random function (VRF) is a function whose output is pseudoran-
dom and for which a proof of correct evaluation is provided (i.e., a PRF with
verifiability).

In our construction of a Sybil-resilient anonymous (SyRA) signature scheme,
we employ a VRF to compute user secret keys. Recall the Dodis-Yampolskiy
VRF in Fig. 3 [DY05]. It is defined over a symmetric pairing e : G × G → GT ,
where the output is a value Fsk(τ) = e(g, g)1/(τ+sk) in the target group, with
corresponding proof πvrf = g1/(τ+sk) in the source group. It is proven secure
(i.e., pseudorandom) under the q-Decisional Bilinear Diffie-Hellman Inversion
assumption (q-DBDHI) in [DY05]: Given (g, gx, . . . , gx

q

), it is hard to distin-
guish e(g, g)1/x from random. The q powers are used to simulate VRF output
queries in the security reduction. In our SyRA signature scheme, we make use
of the Dodis-Yampolskiy VRF in the asymmetric setting. In particular, user se-
cret keys consist of a pair of group elements, one in each of the source groups,
corresponding to a VRF proof of correctness in each group. We capture this
in our definitions (Figs. 1 and 2) by allowing a second proof π̂vrf to be output.
Pseudorandomness plays a key role in the proof of security for our construc-
tion (specifically, anonymity of users), and verifiability ensures users received
correctly generated secret keys. Our asymmetric DY VRF is secure under the
q-Decisional Diffie-Hellman inversion assumption (q-DBDHI) over asymmetric
pairings (Assumption 2).

Definition 2 (Verifiable Random Function (VRF)). [DY05] Let ℓ : N →
N∪{∗} and ℓ′ : N→ N be any functions for which ℓ(κ) and ℓ′(κ) are computable
in poly(κ) time (except when ℓ takes the value ∗ for an input of any length).
A function family F(·)(·) : {0, 1}ℓ(k) → {0, 1}ℓ′(k) is a family of VRFs if there
exist polynomial-time algorithms (VRF.Setup,VRF.Gen,VRF.Prove,VRF.Ver) as
follows:

8

MAIN GameuniqueA (κ)

PP← VRF.Setup(1κ)

(vk∗, τ∗, T ∗
1 , T

∗
2 , π

∗
vrf,1, π

∗
vrf,2, π̂

∗
vrf,1 , π̂

∗
vrf,2)

$←− A()

return (T ∗
1 ̸= T ∗

2) ∧

VRF.Ver(vk∗, τ∗, T ∗
1 , π

∗
vrf,1, π̂

∗
vrf,1) ∧

VRF.Ver(vk∗, τ∗, T ∗
2 , π

∗
vrf,2, π̂

∗
vrf,2)

Fig. 1. Game used to define the uniqueness of a VRF (with optional second proof π̂vrf).

MAIN GamepseudoA (κ)

S← ∅ // query set

PP← VRF.Setup(1κ)

(vk, sk)← VRF.Gen()

b′
$←− AOSign,OChal

(vk)

return (b′ = b)

ORACLE OSign(τ)

if τ = τ∗return ⊥
else

(T, πvrf , π̂vrf)← VRF.Prove(sk, τ)

S← S ∪ {τ}

return (T, πvrf , π̂vrf)

ORACLE OChal(τ∗)

// called once

if τ∗ ∈ S return ⊥

b
$←− {0, 1}

if b = 0, T0 ← Fsk(τ
∗)

if b = 1, T1
$←− {0, 1}ℓ

′(κ)

return Tb

Fig. 2. Game used to define the pseudorandomness of a VRF (with optional second
proof π̂vrf).

PP
$←− VRF.Setup(1κ) : a PPT algorithm that takes as input the security

parameter and outputs public parameters PP, which are implicitly given as
input to all other algorithms.

(vk, sk)
$←− VRF.Gen(): a PPT algorithm that returns a public verification key

vk and secret key sk.

(Fsk(τ), πvrf) ← VRF.Prove(sk, τ): an algorithm that takes as input a secret
key and VRF input τ and returns a VRF output Fsk(τ) and proof of correct-
ness πvrf .

0/1 ← VRF.Ver(vk, τ, T, πvrf): a deterministic algorithm that takes as input
a verification key, VRF input τ , VRF output T , and proof πvrf and verifies
that T = Fsk(τ) using the proof πvrf , outputting 1 to indicate acceptance or
0 to indicate rejection.

The main security properties of a VRF are correctness, uniqueness, and pseu-
dorandomness.

9

VRF.Setup(1κ)

bp = (p,G,GT , e, g)← GrGen(1κ)

return PP = bp

VRF.Prove(sk, τ)

T ← e(g, g)1/(τ+sk)

πvrf ← g1/(τ+sk)

return (T, πvrf)

VRF.Gen()

y
$←− Z∗

p; sk← y

vk← gy

return (vk, sk)

VRF.Ver(vk, τ, T, πvrf)

return e(πvrf , g
τ · vk) = e(g, g) ∧

T = e(πvrf , g)

Fig. 3. The Dodis-Yampolskiy VRF [DY05].

1. Correctness. For all κ ∈ N and input values τ ∈ {0, 1}κ,

Pr[PP← VRF.Setup(1κ); (vk, sk)
$←− VRF.Gen(); (T, πvrf)

$←− VRF.Prove(sk, τ) :

VRF.Ver(vk, τ, T, πvrf) = 1] = 1

2. Uniqueness. For all PPT adversaries A playing game GameuniqueA (Fig. 1),
there exists a negligible function ν such that:

AdvuniqueA (κ) = Pr
[
GameuniqueA (κ) = 1

]
≤ ν(κ)

3. Pseudorandomness. For all PPT adversaries A playing game GamepseudoA
(Fig. 2), there exists a negligible function ν such that:

AdvpseudoA (κ) = Pr
[
GamepseudoA (κ) = 1

]
≤ ν(κ)

Our Asymmetric Dodis-Yampolskiy VRF Construction. Our asymmet-
ric Dodis-Yampolskiy VRF (DY-VRF†) construction is specified in Fig. 4.

Theorem 1. Our asymmetric DY VRF (Fig. 4) satisfies uniqueness (Fig. 1)
and pseudorandomness (Fig. 2) under the q-Decisional Bilinear Diffie-Hellman
Inversion assumption (Assumption 2).

Proof. This follows from the uniqueness and pseudorandomness of the DY VRF
under the symmetric q-Decisional Bilinear Diffie-Hellman Inversion assumption
(q-DBDHI) [DY05].

In the original Dodis-Yampolskiy reduction, the powers (g, gx, . . . , gx
q

) are
used to simulate the output and VRF proof. The additional powers (ĝ, ĝx, . . . , ĝx

q

)
in our construction are only needed to simulate the VRF proof π̂vrf in the other
source group. We note that the security proof given in [DY05] is for small inputs,
which aligns with identifiers s being small.

10

VRF.Setup(1κ)

bp = (p,G, Ĝ,GT , e, g, ĝ)← GrGen(1κ)

return PP = bp

VRF.Prove(sk, τ)

T ← e(g, ĝ)1/(τ+sk)

πvrf ← g1/(τ+sk)

π̂vrf ← ĝ1/(τ+sk)

return (T, πvrf , π̂vrf)

VRF.Gen()

y
$←− Z∗

p; sk← y

v̂k← ĝy

return (v̂k, sk)

VRF.Ver(v̂k, τ, T, πvrf , π̂vrf)

return e(πvrf , ĝ
τ · v̂k) = e(g, ĝ) ∧

T = e(πvrf , ĝ) ∧
e(πvrf , ĝ) = e(g, π̂vrf)

Fig. 4. Our asymmetric Dodis-Yampolskiy VRF (DY-VRF†).

3 Formal Modelling of SyRA Signatures

We now define Sybil-resilient anonymous signatures in the form of an ideal func-
tionality FSyRA, which captures the desired security properties: unforgeability,
Sybil resilience, privacy, and unlinkability.

Session identifiers are of the form sid = (Iss, sid′). Initially, init ← 0. At
the end of Key Generation, init is set to 1. In the beginning of all other inter-
faces of the functionality (Issue, Signature Generation, Verification and Extract
Pseudonym, and Leak Signatures) it is checked whether init has been set to 1. If
not, FSyRA ignores the received message.

Key Generation. The issuer’s party identifier Iss is included in the session
identifier sid. FSyRA first checks that sid = (Iss, sid′), which guarantees that each
issuer can initialize its own instance of the functionality. FSyRA then asks the
adversary A for a verification key ivk.

Issue. Before being given the ability to sign messages, a party has to provide
evidence that they are indeed the rightful owner of the identity string s. We treat
the verification of this evidence abstractly via a personhood relation R. The
relation takes a public value xs, which specifies the public information known
to both the enrolling party and the issuer, while s, ws is the private input of the
enrolling party.

The personhood relation allows us to configure the functionality to sup-
port different identification processes. For instance, if users are in possession
of X509 attribute certificates for their s value, the relation can be of the form
RGov(xs, s, ws) so that xs = (pkGov, certU), ws = skU , certU = (pkU , s), and
Cert.Verify(pkGov, certU) = 1 ∧ pkU = gskU . That is, the user proves that they
possess a certificate on s signed by the government for which they know their
secret key. Note that it is crucial that the issuer confirms pkGov as part of its
input; otherwise, the user could use certificates signed by arbitrary public keys.

11

It is straightforward to extend the above to a setting where various identity
providers are recognized by the issuer. Another alternative is that the issuer
and user run DECO [ZMM+20], a mechanism for porting existing identities
from websites (e.g., bank or government websites). Note also that xs models the
leakage of the certification process. If one were to, for example, model anonymous
credentials instead of classical certificates, certU would become part of ws and
xs would not reveal any information about s. We intentionally leave any further
details about R and the way it is implemented in the environment unspecified,
so that our mechanism is compatible with a variety of different personhood
instantiations.

Signature Generation. Both honest and malicious parties can request signa-
tures on a context ctx and a message m. Upon receiving the sign instruction, a
new signature will be requested from the adversary A. In this request, we only
leak the identity of compromised users together with a value ucid, which is a
unique label per each user-context pair. Recall that a user is compromised if its
s value has been submitted to the issue protocol of a malicious party—modelling
different devices of the user.

Upon a response from the adversary, the functionality adds a record to the
set Sig to enable signature verification. The adversary submits the signature σ
and pseudonym T to the ideal functionality together with s∗ of malicious users
as she can hold several identity strings (s∗ is ignored for honest users). FSyRA

checks if for the same ivk, s, and ctx the submitted T is consistent with already
recorded T ′ or not. FSyRA also checks the uniqueness of T .

Verification. The verification interface allows external parties to verify signa-
tures and extract the associated pseudonyms of the signatures. Note that we do
not assume a public-key infrastructure for issuer verification keys or authenti-
cated channels between verifiers and issuers; thus, verifiers might inadvertently
use incorrect issuer verification keys.

For signatures generated with respect to the session’s issuer verification key,
verification is based on the records in Sig created during signature generation.
For other verification keys, the adversary decides the verification outcome and
we add new signature records to the set Sig to assure verification consistency.

Regarding pseudonym extraction, the interface also allows external parties to
submit signatures and receive the associated pseudonym. In this way, with the
pseudonym in hand, parties are able to check their local key-value store table
to see whether (pseudonym, context) exists, efficiently detecting all signatures
of the same s holder on the same context ctx.

If the submitted signature is invalid (for ivk), FSyRA returns⊥ for the pseudonym.
Additionally, FSyRA guarantees consistency by adding a record of previous veri-
fication and pseudonym extraction results to the set Ver .

Leak Signatures. This is an adversarial interface for retrieving the signatures
of users who are corrupted during the protocol (i.e., adaptive corruptions).

12

Functionality Sybil-Resilient Anonymous Signatures FSyRA

Key Generation.

1. Upon input (Init, sid) from some party P : Parse sid = (Iss, sid′), ignore if
P ̸= Iss. Else, output (Init, sid, P) to A.

2. Upon receiving (VerKey, sid, ivk) from A: Output (VerKey, sid, ivk) to P .
Record ivk. Set init← 1.

Issue.

1. Upon receiving a value (Issue, sid, s, xs, ws) from some party P, and
(Issue.Ok, sid,P, xs) from party Iss, where sid = (Iss, sid′): Ignore if
R(xs, (s, ws)) ̸= 1 or if P is honest and there exists s′ such that I(P) = s′ and
s′ ̸= s. Else, act as follows:
(a) If P is malicious, retrieve {Pi}i values of honest parties for which
{I(Pi) = s}i holds. Set P̂(s)← {Pi}i.

(b) Else (P is honest), if there exists a malicious party P′ for which s ∈ I(P′)
holds, set P̂(s)← P̂(s) ∪ P.

Generate a fresh id. Set T (id)← (P, s). If P ∈ P̂(s), set T ← (P, s, P̂(s), xs).
Else, set T ← xs. Hand (Issue, sid, id, T) to A.

2. Upon receiving (Issued, sid, id) from A: Ignore if T (id) = ⊥. Else, retrieve
T (id) = (P, s). Set I(P)← I(P) ∪ {s}. Output (Issued, sid) to P.

Signature Generation.

1. Upon receiving a value (Sign, sid, ctx,m) from some party P: Ignore if I(P) =
∅. Else, if there exists a ucid where M(ucid) = (P, ctx), retrieve ucid. Else,
generate a fresh ucid and set M(ucid) ← (P, ctx). If there exists an s value
such that P ∈ P̂(s), set ψ ← (ctx,m,P). Else, set ψ ← (ctx,m). Select a fresh
tid and set D(tid)← (P, ctx,m). Hand (Sign, sid, ucid, ψ, tid) to A.

2. Upon receiving (Signature, sid, σ, T, s∗, tid) from A: Ignore if D(tid) = ⊥,
or there exists an entry (·, ·, ·, ·, σ, ·, ·) in the set Sig . Else, retrieve D(tid) =
(P, ctx,m).
(a) If s∗ ∈ I(P) and P is malicious, set s← s∗.
(b) Else, if P is honest, retrieve I(P) = {s′} and set s← s′.
(c) Else, ignore.
Ignore if:
– there exists (ivk, s, ctx, ·, ·, T ′, ·) ∈ Sig where T ′ ̸= T , or
– there exists (·, ·, ·, ·, ·, T ′, ·) ∈ Sig where T ′ = T .

Else, add (ivk, s, ctx,m, σ, T, 1) to the set Sig . Output
(Signature, sid, ctx,m, σ) to P.

Verification.

1. Upon receiving a value (Ver, sid, ivk′, ctx,m, σ) from some party V: Hand
(Ver, sid, ivk′, ctx,m, σ) to A.

2. Upon receiving (Ver.Ok, sid, ivk′, ctx,m, σ, T, θ) from A:
(a) If (ivk′, ·, ctx,m, σ, T ′, Θ′) ∈ Ver , set T ← T ′ and Θ ← Θ′.
(b) Else, if (ivk, s, ctx,m, σ, T ′, 1) ∈ Sig such that ivk′ = ivk, record

(ivk, s, ctx,m, σ, T ′, 1) in the set Ver and set T ← T ′ and Θ ← 1.

13

(c) Else, if (ivk, ·, ctx,m, σ, ·, 1) /∈ Sig such that ivk′ = ivk, record
(ivk, ·, ctx,m, σ,⊥, 0) in the set Ver and set T ← ⊥ and Θ ← 0.

(d) Else, record (ivk′, ·, ctx,m, σ, T, θ) in the set Ver and set T ← T and
Θ ← θ.

Output (Ver.End, sid, ivk′, ctx,m, σ, T , Θ) to V.

Leak Signatures.

1. Upon receiving (Leak.Sig, sid, ivk, s) from A: If P̂(s) = ∅, set η ← ⊥.
Else, retrieve {(ivk, s, ·, ·, σi, Ti, 1)}i from set Sig and set η ← {σi}i. Hand
(Leaked.Sig, sid, ivk, η) to A.

4 Our SyRA Signature Construction

We describe our Sybil-resilient anonymous signature construction ΠSyRA and
prove that ΠSyRA securely realizes FSyRA. Our construction uses two crypto-
graphic primitives: ElGamal encryption (Definition 3) and our asymmetric Dodis-
Yampolskiy verifiable random function DY-VRF† (Section 2.2). Additionally, it
relies on the following ideal sub-functionalities: random oracle functionality FRO

(Definition 5), non-interactive zero knowledge functionality FNIZK (Definition 6),
and (communication) channel functionality FCh (Definition 7), parameterized by
two labels: (i) SSA for secure and sender anonymous channel FSSA

Ch , (ii) SRA for
secure and receiver anonymous channel FSRA

Ch .6 The construction ΠSyRA is pre-
sented in four phases: Key Generation, Issue, Signature Generation, and Verifi-
cation as follows.

Key Generation. In this phase, the issuer Iss is activated by Z, and gen-
erates its secret signing key and public verification key pair (isk, ivk).
Iss acts as follows upon receiving (Init, sid) from Z:

1. Call GrGen : bp = (p,G, Ĝ,GT , e, g, ĝ)← GrGen(1k), where g and ĝ are

generators of G and Ĝ, respectively.

2. Pick isk
$←− Z∗

p,W
$←− G, and Ŵ

$←− Ĝ.

3. Set ˆivk← ĝisk and ivk← (bp, ˆivk,W, Ŵ).
4. Output (VerKey, sid, ivk) to Z.

Issue. Issue is an interactive protocol between the party P offering a unique
real-world identifier s and the issuer Iss holding isk. P is activated by Z. The
6 Note that a degree of sender/receiver anonymity is essential for maintaining privacy.
Without this anonymity, “network leakage” could potentially expose the parties
involved in a transaction, regardless of the robustness of cryptographic safeguards at
the transactional level. Furthermore, in real-world deployment, some level of network
leakage might be deemed acceptable. In such a scenario, our analysis would still be
applicable, acknowledging that the adversary could compromise privacy through
traffic analysis to some extent.

14

protocol produces the secret key (usk, ˆusk) of a party, which corresponds to the
two VRF proofs, πvrf and π̂vrf , of DY-VRF

†. There is no output for Iss.
P acts as follows upon receiving (Issue, sid, s, xs, ws) from Z:

1. Ignore, if there exists a recorded s′ such that s′ ̸= s.
2. Else, call FNIZK with (Prove, sid, xs, (s, ws)) for the relationR(xs, (s, ws)).
3. Upon receiving (Proof, sid, πs) from FNIZK, call FSSA

Ch with (Send, sid, Iss,
(s, xs, πs)).

4. Record s as s′.

Iss, upon receiving (Received, sid,P, (s, x′s, πs)) and (Issue.Ok, sid,P, xs), where
x′s = xs from FSSA

Ch and Z, respectively, acts as follows:

1. Call FNIZK with (Verify, sid, xs, πs) and receive (Verification, sid, b).
2. Ignore if b = 0. Else, compute the user secret key: (usk, ˆusk)← (g1/(s+isk),

ĝ1/(s+isk)).
3. Call FSRA

Ch with (Send, sid,P, (ivk, usk, ˆusk)).

Upon receiving (Received, sid, Iss, (ivk, usk, ˆusk)) from FSRA
Ch , P records (ivk, usk,

ˆusk) and outputs (Issued, sid) to Z.
Signature Generation. To sign messages, party P is activated by Z with a

message (Sign, sid, ctx,m). P, who has an identity string s, a secret key (usk, ˆusk),
a context-message pair (ctx,m), and issuer verification key ivk generates a sig-
nature σ on (ctx,m) as follows:

1. Ignore if (ivk, usk, ˆusk) has not been recorded. Else, proceed as follows.
2. Call FRO with (Query, sid, ctx) and receive (Query.Re, sid, Z). Compute

T ← e(Z, ˆusk).

3. Pick (β, α)
$←− Z∗

p. Parse ivk = (bp, ˆivk,W, Ŵ). Compute C = (C1, C2)←
(gβ ,W β · usk) and Ĉ = (Ĉ1, Ĉ2)← (ĝα, Ŵα · ˆusk).

4. Call FNIZK with (Prove, sid, x, w) for the following relation R(x, w), state-
ment x, and witness w:
– R(x, w) ⇔ e(Z, Ŵ)α = e(Z, Ĉ2)/T ∧ e(C2, ĝ)e(g

−1, Ĉ2) = e(W, ĝ)β

e(g−1, Ŵ)α ∧ e(C2, ˆivk)e(g−1, ĝ) = e(W, ˆivk)βe(W, ĝ)β·se(C2, ĝ
−1)s

∧ C1= gβ ∧ Ĉ1= ĝα.
– x = (Z,C, Ĉ, T, ivk, ctx,m)
– w = (s, α, β)

5. Upon receiving (Proof, sid, π) from FNIZK, output (Signature, sid, ctx,m,
σ = (π, x)) to Z.

The signer must prove the well-formedness of the pseudonym T = e(Z, ˆusk)
without revealing their secret key ˆusk. This is accomplished by encrypting ˆusk
under a public group element Ŵ . Hence, instead of proving T = e(Z, ˆusk), they
prove e(Z, Ŵ)α = e(Z, Ĉ2)/T . Additionally, the signer needs to prove that the
encrypted ˆusk is well-formed with respect to the issuer verification key ivk. To

15

do so, the signer first proves that ˆusk is well-formed with respect to usk (by
e(C2, ĝ)e(g

−1, Ĉ2)=e(W, ĝ)βe(g−1, Ŵ)α, where usk is encrypted under a public
group element W) and then proves the well-formedness of usk with respect to

ivk (by e(C2, ˆivk)e(g−1, ĝ) = e(W, ˆivk)βe(W, ĝ)β·se(C2, ĝ
−1)s). Finally, the well-

formedness of C1 and Ĉ1 is proven.
Verification. The verifier V is activated upon receiving a message (Ver, sid, ivk′,

ctx,m, σ) from Z that includes the issuer verification key ivk′, the context-
message pair (ctx,m), and the signature σ. The signature is verified and the
associated pseudonym is extracted as follows:

1. Parse σ = (π, x) and x = (Z,C, Ĉ, T, ivk, ctx,m).
2. Set b← 0 and η ← ⊥ if:

– ivk ̸= ivk′; or
– upon calling FRO with (Query, sid, ctx), (Query.Re, sid, Z ′) is returned

where Z ′ ̸= Z; or
– upon calling FNIZK with (Verify, sid, x, π), (Verification, sid, 0) is

returned.
3. Else, set b← 1 and η ← T .
4. Output (Ver.End, sid, ivk′, ctx,m, σ, η, b) to Z.

4.1 Implementing Our Non-Interactive Zero-Knowledge Proofs

In our signature framework, the relation R(x, w) that is proven by the signer
is expressed as a set of algebraic discrete logarithm equations. Sigma protocols
excel in prover efficiency when applied to such algebraic statements compared
to zk-SNARKs [Gro10]. Sigma protocols result in concise proof sizes, involve a
limited number of operations, and do not necessitate the creation of a trusted
common reference string [GQ88,Sch91]. This observation is particularly relevant
in our system, where proof generation for algebraic statements could mainly
depend on individuals with limited computational resources.

In the following, the prover and the verifier are denoted by Prv and Vrf,
respectively. Prv proves the following relation:

– R(x, w)⇔e(Z, Ŵ)α=e(Z, Ĉ2)/T∧e(C2, ĝ)e(g
−1, Ĉ2)=e(W, ĝ)βe(g−1, Ŵ)α

∧ e(C2, ˆivk)e(g−1, ĝ)=e(W, ˆivk)βe(W, ĝ)β·se(C2, ĝ
−1)s ∧ C1= gβ ∧ Ĉ1=

ĝα.
– x = (Z,C, Ĉ, T, ivk, ctx,m)
– w = (s, α, β)

Let us defineA = e(Z, Ŵ), B = e(Z, Ĉ2)/T,E = e(C2, ĝ)e(g
−1, Ĉ2), F = e(W, ĝ),

G = e(g−1, Ŵ), H = e(C2, ˆivk)e(g−1, ĝ), I = e(W, ˆivk), and J = e(C2, ĝ
−1).

Hence, the relation is simplified to the following one:

16

– R(x, w)⇔ Aα = B ∧ Ĉ1 = ĝα ∧ C1 = gβ ∧ E = F βGα ∧H = IβF β·sJs

– x = (Z,C, Ĉ, T, ivk, ctx,m)
– w = (s, α, β)

where bases (A,B,E, F,G,H, I, J) are target group elements that can be effi-
ciently computed by the verifier Vrf using the statement x = (Z,C, Ĉ, T, ivk).
Moreover, all source group elements (C1, Ĉ1, g, ĝ) are known to Vrf.

The following interactive proofs can be made non-interactive using the Fiat-
Shamir transformation [FS87].7

Proof of Knowledge of Discrete Log:

– R(x, w)⇔ y = gx

– x = (y, g)
– w = x

1. Prv computes a← gθ for θ
$←− Z∗

q . Sends a to Vrf.

2. Vrf selects c
$←− Zq. Sends c to Prv.

3. Prv computes z = θ + cx mod q. Sends z to Vrf.
4. Vrf checks if a = gzy−c holds. If so, the verifier accepts.

Proof of Multiplicative Relation for Exponents:

– R(x, w)⇔ A1 = ga1hr1 , A2 = ga2hr2 , A3 = ga3hr3 = ga1a2hr3

– x = (g, h,A1, A2, A3)
– w = (a1, a2, a3, r1, r2, r3)
– We have to also prove that A3 = Aa2

1 hr, where r + r1a2 = r3 mod q.

1. Prv computes vi = gθihRi for i = 1, 2, 3, v = Aθ2
1 hR for (θi, Ri, θ, R)

$←− Zq.
Sends ({vi}, v) for i = 1, 2, 3 to Vrf.

2. Vrf chooses a challenge c
$←− Z2k (k is fixed where 2k < q). Sends c to Prv.

3. Prv computes si = θi − cai, ti = Ri − cri, t = R− cr. Sends the tuple (si, ti)
for i = 1, 2, 3 and t to Vrf.

4. Vrf Checks if vi = (Ai)
cgsihti for i = 1, 2, 3 and v = Ac

3A
s2
1 ht hold. Vrf

accepts if all four equations hold.

5 Security Proof for Our SyRA Construction

In this section, we prove the security of our Sybil-resilient anonymous signature
scheme (Section 4). Our functionality, defined in Section 3, is general and allows
for adaptive corruptions; however, we prove our scheme secure in the static cor-
ruption model. Concretely, this corresponds to ∪sP̂(s) = ∅ in our functionality,
and no Leak Signatures interface.

7 The context-message pair (ctx,m), which is part of the NIZK statement, is included
in the Fiat-Shamir hash function computation by both the signer and the verifier.
This has been abstracted away by FNIZK.

17

Theorem 2. Let qt be an upper bound on the number of signatures of all hon-
est parties and let qh be an upper bound on the number of queries the adver-
sary can make to the random oracle. Under the IND-CPA security of ElGamal
encryption, the pseudorandomness of our asymmetric Dodis-Yampolsky VRF
(DY-VRF†), and the DDH assumption, in the {FNIZK,FRO,FCh}-hybrid model,
no PPT environment Z with static corruptions can distinguish the real-world
execution EXECΠSyRA,A,Z from the ideal-world execution EXECFSyRA,S,Z with ad-
vantage greater than

2qt · AdvIND-CPAA (k) + (qt + 1) · AdvpseudoA,DY-VRF†(k) + qt · qh · AdvDDH
A (k)

in the presence of an arbitrary number of corrupted signers and verifiers that are
all colluding.

5.1 Our UC Simulator

We refer to the real-world protocol as ΠSyRA and the adversary as A. The sim-
ulator S is described in detail below. It ensures that the view of the real-world
execution EXECΠSyRA,A,Z and the ideal-world execution EXECFSyRA,S,Z are indis-
tinguishable for any PPT environment Z. The session identifier sid is selected
by the environment Z. Our general proof strategy is for the simulator S to in-
ternally run an instance of ΠSyRA and the real-world adversary A, except that
S simulates the behaviour of honest users. The purpose of the simulator S is to
ensure that the view of the internally-run adversary A (in the ideal world) can-
not be distinguished from the view of the real-world adversary A. This enables
S to extract the necessary information, so that it can instruct the functionality
to also provide indistinguishable outputs at the interfaces of honest users.

At the beginning of the execution, the environment Z instructs the adversary
to corrupt certain parties using a message of the form (Corrupt, sid,P), where P
represents a party that can be any entity within the network, excluding the issuer
Iss. The simulator S reads these corruption messages and informs FSyRA about
which parties have been corrupted by sending the message (Corrupt, sid,P). Ad-
ditionally, the simulator S keeps track of the identifiers of the corrupted parties
for future reference. The adversary A has the authority to instruct corrupted
parties in an arbitrary manner, and the simulator S engages in interactions
with FSyRA on behalf of these corrupted parties. In the ideal-world execution
EXECFSyRA,S,Z , the honest (dummy) parties transmit their inputs from the envi-
ronment Z directly to FSyRA.

We define a simulator S that reproduces the real-world view of the adver-
sary A and simulates the actions of honest parties during the execution. The
simulator S engages in interactions with both the dummy adversary A and the
functionality FSyRA. Similar to the functionality FSyRA and our protocol ΠSyRA

for realizing it, the simulator’s details are described in four parts: Key Genera-
tion, Issue, Signature Generation, and Verification. As ∪sP̂(s) = ∅, we do not
consider the Leak Signatures interface ((Leaked.Sig, sid, ivk,⊥) is always sent
to the simulator). The simulator S emulates the functionalities FNIZK,FRO, and

18

FCh. To achieve this, it must maintain specific lists associated with each func-
tionality. However, for the sake of simplicity and without loss of generality, we
assume that S keeps track of the states of these functionalities, but we do not
explicitly discuss or address all these lists in detail.

The simulator S maintains the following lists and sets, which are initialized
to ∅:

– LCR: list of corrupted-registered parties (who have been issued signing keys)
– Scorrupted: set of s values of corrupted parties
– LSS: list of simulated signatures (by the simulator S)

Key Generation

1. Honest issuer Iss:

(a) Receive (Init, sid, P) from FSyRA and start simulating the honest issuer
(similar to the real-world scheme).

(b) Execute the GrGen algorithm and generate the system’s public parame-
ters ivk following the real-world algorithm.

(c) Submit (VerKey, sid, ivk) to FSyRA.

Issue

1. Honest party P and honest issuer Iss:

(a) Upon receiving (Issue, sid, id, xs) from FSyRA, start emulating honest P.
(b) Leak (Prove, sid, xs) to A (as the leakage the real-world A sees from
FNIZK once the honest P calls FNIZK).

(c) Emulating FNIZK, store (xs, πs) upon receiving (Proof, sid, πs) from A.
(d) Leak (Send, sid, Iss, |m|,mid) to the dummy A (which is what the real-

world A sees as the leakage of the communication channel FSSA
Ch between

P and Iss), where the message m is of the form (s, xs, πs) whose size |m|
is known to S.

(e) Upon receiving (Ok, sid,mid) from A, leak (Send, sid, Iss, |m|,mid′) to A
(which is what the real-world A sees as the leakage of the communication
channel FSRA

Ch between Iss and P), where m is of the form (ivk, usk, ˆusk)
whose size |m| is known to S.

(f) Upon receiving (Ok, sid,mid′) from A, submit (Issued, sid, id) to FSyRA.

2. Corrupted party P and honest issuer Iss:

(a) Once A (on behalf of a corrupted party P) calls FSSA
Ch with (Send, sid, Iss,

(s, xs, πs)),
8 leak (Send, sid, Iss, |m|,mid) to A (which is what the real-

world A sees as the leakage of the communication channel FSSA
Ch between

P and Iss), where m = (s, xs, πs) is received via S who emulates FSSA
Ch .

(b) Provide (Verify, sid, xs, πs) to A.
8 For an honest Iss to receive (Received, sid,P, (s, xs, πs)) from FSSA

Ch , A should call
FSSA

Ch with (Send, sid, Iss, (s, xs, πs)). Otherwise, honest Iss does not proceed.

19

(c) Upon receiving (Witness, sid, w′s) from A where w′s = (s, ws), submit
(Issue, sid, s, xs, ws) on behalf of P to FSyRA.

9

(d) Upon receiving (Issue, sid, id, xs) from FSyRA (which means R(xs, (s, ws))

has already been checked by FSyRA), compute usk = g1/(s+isk) and ˆusk =
ĝ1/(s+isk).

(e) Leak (Send, sid, Iss, |m|,mid′), where m = (ivk, usk, ˆusk), to A (which is
what the real-world A sees as the leakage of the communication channel
FSRA

Ch between Iss and P).

(f) Upon receiving (Ok, sid,mid′) fromA, provide (Received, sid, Iss, (ivk, usk, ˆusk))
to A emulating FSRA

Ch .
(g) Set LCR ← LCR ∪ {P}.
(h) Set Scorrupted ← Scorrupted ∪ {s}.
(i) Submit (Issued, sid, id) to FSyRA (and output to Z whatever A outputs).

Signature Generation

1. Honest party P:

(a) Receive (Sign, sid, ucid, ctx,m, tid) from FSyRA.
(b) Emulating FRO, retrieve Z.
(c) If there exists an entry (ucid′, T ′) recorded where ucid′ = ucid, set T ←

T ′. Else, pick T
$←− GT , and record (ucid, T).

(d) Pick (β, α)
$←− Z∗

p and A
$←− G, B̂

$←− Ĝ.

(e) Compute C ← (gβ ,W β ·A), and Ĉ ← (ĝα, Ŵα · B̂).
(f) Leak (Prove, sid, x) to the dummy A, where x = (Z,C, Ĉ, T, ivk, ctx,m).
(g) Upon receiving (Proof, sid, π) from A, emulate FNIZK record (π, x).
(h) Set σ ← (π, x) and LSS ← LSS ∪ {σ}.
(i) Submit (Signature, sid, σ, T, s∗, tid) to FSyRA where s∗ = 0.

2. Corrupted party P:
Output to the environment Z whatever internally-run A outputs. Note that
submitting a signature generation instruction to FSyRA – on behalf of cor-
rupted P via S – happens later when S, who emulates an honest verifier V,
receives a (valid) signature generated by a corrupted party. It is important
to note that a corrupted party can locally compute signatures. However, as
long as no honest verifier has encountered any of these signatures, there is
no need for any security guarantees to come into play. In other words, as
we will see, once Z submits a valid signature for verification, the simulator
first checks whether or not the signature has already been simulated by the
simulator. If it is not simulated (and it is a valid signature), the simulator
should register the signature to the ideal functionality FSyRA (so that it is
recorded in the set Sig by FSyRA). However, as long as Z has not submitted
the signature, there is no need to do anything.

9 S itself can also check whether or not R(xs, (s, ws)) holds. Moreover, the identifier
of the party, P, is known to S who emulates the channel functionality.

20

Verification

1. Honest verifier V:

(a) Receive (Ver, sid, ivk′, ctx,m, σ) from FSyRA. If there exists an entry
(Ver.Ok, sid, ivk′, ctx,m, σ, T, θ), submit it to FSyRA.

(b) Else, submit (Ver.Ok, sid, ivk′, ctx,m, σ,⊥, 0) to FSyRA and record it if
ivk′ ̸= ivk. Else, act as follows:

(c) If there exists σ′ ∈ LSS where σ′ = σ, parse σ = (π, x) and x =
(Z,C, Ĉ, T, ivk, ctx,m). Submit (Ver.Ok, sid, ivk′, ctx,m, σ, T, 1) to FSyRA

and record it.
(d) Else (σ /∈ LSS), act as follows:

i. Parse σ = (π, x) and x = (Z,C, Ĉ, T, ivk, ctx,m). If in emulating FRO

the recorded entry for context ctx is (sid, ctx, h) where h ̸= Z, submit
(Ver.Ok, sid, ivk′, ctx,m, σ,⊥, 0) to FSyRA and record it.

ii. Else, hand (Verify, sid, x, π) to A.
iii. Upon receiving (Witness, sid, w) from A, check (x, w) ∈ R and if

the relation does not hold, submit (Ver.Ok, sid, ivk′, ctx,m, σ,⊥, 0)
to FSyRA and record it.

iv. Else, parse w = (s, α, β).
– If s ∈ Scorrupted, submit (Sign, sid, ctx,m) to FSyRA on behalf of P

where P ∈ LCR holds. (If there exist multiple such P values, pick
one at random.)
Upon receiving (Sign, sid, ucid, ctx,m, tid) from FSyRA, parse σ =

(π, x) and x = (Z,C, Ĉ, T, ivk, ctx,m), and submit (Signature, sid,
σ, T, s, tid).
Finally, output (Ver.Ok, sid, ivk′, ctx,m, σ, T, 1) to FSyRA and record
it.

– Else, the simulation fails. We later show that the probability
of A forging a valid signature on behalf of an honest party, or
generating a valid signature for a new party that never existed
in the system before, is negligible.
Also, consider the following two bad events: for every two signa-
tures σ1 and σ2 with associated T1 and T2, (1) If T1 = T2 and
s1 ̸= s2, or (2) If T1 ̸= T2, and s1 = s2. We will show that the
probability of the these bad events is zero.

2. Corrupted verifier V:
Output to Z whatever A outputs.

5.2 Sequence of Games and Reductions

In a series of games, we demonstrate that the two random variables EXECΠSyRA,A,Z

and EXECFSyRA,S,Z are statistically close. We use the notation Pr[Game(i)(k) = 1]
to represent the likelihood that the environment Z produces an outcome of 1
in Game(i). Each specific game Game(i) is associated with its own ideal func-

tionality F (i)
SyRA and simulator S(i). We begin with the least secure (most leaky)

21

functionality F (0)
SyRA and corresponding simulator S(0), and progressively move

towards our primary functionality FSyRA and primary simulator S.
Let qt denote the upper bound on the number of signatures of all honest

parties and let qh denote the upper bound on the number of queries the adver-
sary can make to the random oracle, which are both polynomial in the security
parameter k.

Summary of Games. Here, we provide an overview of six distinct games
Game(0), . . . ,Game(5), where Game(0) corresponds to the real-world execution
EXECΠSyRA,A,Z and Game(5) corresponds to the ideal-world execution EXECFSyRA,S,Z .
We provide detailed explanations of the games and security reductions in Sec-
tion 5.3. Note that the signatures of honest parties are simulated by the simulator
S, who emulates FNIZK.

Game(1): All secret key pairs (usk, ˆusk) of honest parties with corresponding

ElGamal ciphertexts (C, Ĉ) are changed to (A, B̂), where A
$←− G, B̂

$←− Ĝ. All
values T = e(Z, ˆusk) remain the same, and all qt signatures are with respect to
(A, B̂). Thus, under the IND-CPA security of ElGamal encryption, we show:

|Pr[Game(1)(k) = 1]− Pr[Game(0)(k) = 1]| ≤ 2qt · AdvIND-CPA
A (k)

Game(2): All pseudonyms T = e(Z, ˆusk) of honest parties are changed T =

e(Z, D̂), where D̂
$←− Ĝ, and all qt signatures are computed with these values.

Note that in this game, the simulator consistently employs an identical random
group element D̂ for a given identity string s holder. Under the pseudorandom-
ness of DY-VRF†, we show:

|Pr[Game(2)(k) = 1]− Pr[Game(1)(k) = 1]| ≤ qt · AdvpseudoA,DY-VRF†(k)

Game(3): If a particular identity string s holder is directed to sign distinct
contexts, e.g. T = (h(ctx), D̂) and T ′ = (h(ctx′), D̂), the simulator substitutes

distinct random group elements for these values, e.g., T ′, T ′ $←− GT . Under the
DDH assumption, we show:

|Pr[Game(3)(k) = 1]− Pr[Game(2)(k) = 1]| ≤ qt · qh · AdvDDH
A (k)

Game(4): F (4)
SyRA prohibits S(4) from submitting any message to F (4)

SyRA on be-
half of the adversary A (corrupted party) who generates a valid signature for a
new party (not belonging to the group of honest and corrupted parties) or gener-
ates a valid signature on behalf of an honest party. Under the pseudorandomness
of DY-VRF†, we show:

|Pr[Game(4)(k) = 1]− Pr[Game(3)(k) = 1]| ≤ AdvpseudoA,DY-VRF†(k)

Game(5): F (5)
SyRA does not allow S(5) to submit any message to F (5)

SyRA on behalf
of the adversary A (corrupted party) who generates two valid signatures with

22

one unique identifier s on a given context where T1 ̸= T2, or generates two valid
signatures using two identifiers s1 ̸= s2 where T1 = T2. It is argued that the
probability of such events is zero. Hence:

Pr[Game(5)(k) = 1] = Pr[Game(4)(k) = 1]

Thus, any PPT environment Z can distinguish EXECΠSyRA,A,Z from EXECFSyRA,S,Z
with probability bounded by:

2qt · AdvIND-CPA
A (k) + (qt + 1) · AdvpseudoA,DY-VRF†(k) + qt · qh · AdvDDH

A (k).

5.3 Details of Games and Associated Reductions

We now provide a detailed description of the games and reductions in our security
proof.

Remark 1. For the sake of simplicity and to prevent redundancy, we will refrain
from including details like channel leakages in the following games. They have
already been discussed in the simulator description in Section 5.1.

Game(0): Initially, F (0)
SyRA forwards all communication with Z. The simulator

S(0) corresponds to the execution of the real-world protocol EXECΠSyRA,A,Z .

Game(1): Same as Game(0), except that in Game(1), we change all honest
parties’ plaintexts (usk, ˆusk) of encryptions (C, Ĉ) to random group elements

selected from G and Ĝ, respectively. However, note that T values are computed
with real-world values.

We show that Game(1) and Game(0) are indistinguishable under the IND-CPA
security of ElGamal encryption, which allows us to bound the probability that
Z distinguishes Game(1) from Game(0).

We introduce a sequences of sub-games:

(Game
(0)
0 := Game(0), . . . ,Game

(0)
i−1,Game

(0)
i , . . . ,Game

(0)
2qt

:= Game(1))

where qt denotes the upper bound on the number of all signatures of all honest

parties. Define Game
(0)
0 := Game(0) as the real-world execution EXECΠSyRA,A,Z .

Game
(0)
1 is the same as Game

(0)
0 , except we change the plaintext of the first

ciphertext of the first honest party from the real-world value to the ideal-world
random group element. Finally, we do the same for the last (second) ciphertext

of the last honest party such that in Game
(0)
2qt

:= Game(1), all ciphertexts are

generated from random group elements by S(0)2qt
= S(1). The reduction between

Game
(0)
i−1 and Game

(0)
i is described below, where any difference between them is

upper bounded by AdvIND-CPA
A (k).

In leaky functionalities F (0)
SyRA,i, 1 ≤ i ≤ 2qt, where F (0)

SyRA,1 := F (0)
SyRA and

F (0)
SyRA,2qt

:= F (1)
SyRA, the leaked message to the simulator in the Issue and Sign

commands are (Issue, sid, id,P, s, xs) and (Sign, sid,P, ctx,m, tid), respectively,

23

for honest parties. Hence, the simulator knows (P, s) values for all honest parties.
Later, in subsequent games, the associated functionalities become less leaky and
closer to our main functionality FSyRA.

Associated Reduction Between Game
(0)
i−1 and Game

(0)
i (IND-CPA secu-

rity of ElGamal encryption; for 1 ≤ i ≤ 2qt). If Z distinguishes Game
(0)
i−1 and

Game
(0)
i , we can construct A′ that breaks the IND-CPA security of ElGamal

encryption used in our construction.

– For 1 ≤ j ≤ i − 1: all (real-world) plaintexts have already been substituted
with (ideal-world) random values.

– For i+ 1 ≤ j ≤ 2qt: all ciphertexts are created using real-world plaintexts.
– The challenger C of the IND-CPA game outputs pk to A′.
– A′ sets W ← pk in ivk. For simplicity, we omit writing the details for Ĉ, as it

is similar to C. (In our construction, pk for ElGamal ciphertext C is W ∈ G
and for Ĉ it is Ŵ ∈ Ĝ.)

– The real-world plaintext value g1/(s+isk) (associated to b = 0 in the IND-CPA

game) is changed to A in Game
(0)
i , where A

$←− G (which is the ideal-world
value associated to b = 1 in the IND-CPA game).

– The challenger provides Cb to distinguisher A′: for b = 0, C0 encrypts

g1/(s+isk), and for b = 1, C1 encrypts A. Therefore, for Z, Game
(0)
i is the

same as running the real-world protocol with real-world value usk for an
honest party, rather than a random group element. Hence, if Z distinguishes

Game
(0)
i−1 from Game

(0)
i , A′ uses this to win the IND-CPA game.

The next game hop, namely between Game
(0)
i and Game

(0)
i+1, for the value ˆusk of

honest parties encrypted to Ĉ is similar, so we omit the details.

A′ simulates signatures σ of honest parties as follows:

– Leak (Prove, sid, x) to A where x = (Z,C, Ĉ, T, ivk, ctx,m).
– Upon receiving (Proof, sid, π) from A, emulate FNIZK record (π, x).
– Set σ ← (π, x) and LSS ← LSS ∪ {σ}. Recall that LSS is the list of simulated

signatures.

– Submit (Signature, sid, σ, s∗, tid) to F (0)
SyRA,i where s∗ = 0.

Moreover, A′ is able to simulate valid secret keys (usk, ˆusk) of corrupted parties.
This is similar to the simulation of the case “Corrupted party P and honest issuer
Iss” in the Issue protocol in Section 5.1. Therefore, under the IND-CPA security
of ElGamal encryption, the following inequality holds:

|Pr[Game(1)(k) = 1]− Pr[Game(0)(k) = 1]| ≤ 2qt · AdvIND-CPA
A (k)

Game(2): Same as Game(1), except that in Game(2), we change all tags T =

e(Z, ˆusk) of honest parties to tags of the form T = e(Z, D̂) where D̂
$←− Ĝ. We

highlight that in this game, for a fixed identifier s, the simulator always uses the
same random group element D̂. Hence, Game(2) is the same as Game(1), except

24

S(2) computes the T values using random group elements, rather than real-world
ˆusk values, for all honest parties.

We show that Game(2) and Game(1) are indistinguishable under the pseu-
dorandomness of DY-VRF†, which allows us to bound the probability that Z
distinguishes Game(2) from Game(1).

We introduce a sequence of sub-games:

(Game
(1)
0 := Game(1), . . . ,Game

(1)
j−1,Game

(1)
j , . . . ,Game(1)qt := Game(2))

(where qt denotes the upper bound on the number of all signatures of all honest

parties.) Define Game
(1)
0 := Game(1). Game

(1)
1 is the same as Game

(1)
0 , except in

Game
(1)
1 , we change the tag T from the real-world value T = e(Z, ˆusk) to the

ideal-world value T = e(Z, D̂), where D̂
$←− Ĝ. Finally, we do the same for the last

tag such that in Game(1)qt := Game(2), all tags are generated using random group

elements (instead of real-world values ˆusk). The reduction between Game
(1)
j−1 and

Game
(1)
j is described below, where any difference between them is upper bounded

by AdvpseudoA,DY-VRF†(k).

In leaky functionalities F (1)
SyRA,j , 1 ≤ j ≤ qt, where F (1)

SyRA,1 := F (1)
SyRA and

F (1)
SyRA,qt

:= F (2)
SyRA), the leaked message to the simulator in the Issue and Sign

commands are (Issue, sid, id,P, s, xs) and (Sign, sid,P, ctx,m, tid), respectively,
for an honest party P.

Associated Reduction Between Game
(1)
j−1 and Game

(1)
j (pseudorandom-

ness of DY-VRF†; for 1 ≤ j ≤ qt). If Z distinguishes Game
(1)
j−1 and Game

(1)
j , we

can construct A′ that breaks the pseudorandomness of DY-VRF†.

– For 1 ≤ k ≤ j − 1: all (real-world) ˆusk values in tags T = e(Z, ˆusk) have

already been substituted with (ideal-world) random values D̂
$←− Ĝ, T =

e(Z, D̂).
– For j + 1 ≤ k ≤ qt: all tags are created using real-world ˆusk values.
– The challenger C of the pseudorandomness game outputs ˆIPK to A′.
– A′ sets ˆivk← ˆIPK.
– Program random oracle as: Zl = h(m1l)← grl for rl

$←− Z∗
p.

– Upon receiving (Sign, sid,P, ctx,m, tid) from F (1)
SyRA,j , A′ retrieves the asso-

ciated s value of P using the leaked message (Issue, sid, id,P, s, xs).
– If there exists an entry (s′, r′s) recorded where s′ = s, set D̂ ← ĝr

′
s . Else,

pick rs
$←− Z∗

p. Record (s, rs), and set D̂ ← ĝrs .

– The real-world tag value Treal = e(g, ĝ1/(s+isk))rl (associated to b = 0 in
the pseudorandomness game) is changed to the ideal-world value Tideal =

e(g, D̂)rl in Game
(0)
i (associated to b = 1 in the pseudorandomness game).

– A′ provides s (for which s /∈ Scorrupted holds) to the challenger C (where
s /∈ Q;Q is a query list maintained by C, which as we will see only contains
s values of corrupted parties.).

25

– Upon receiving the challenge target group element Tb given by C to dis-
tinguisher A′, for case b = 0: Treal = T0; and for b = 1: Tideal = T1. If Z
distinguishes Game

(1)
j−1 from Game

(1)
j , A′ uses this to win the pseudorandom-

ness game. Therefore, for Z, Game
(1)
j is the same as running the real-world

protocol with real-world ˆusk value used in tag computation for an honest
party, rather than a random group element from Ĝ.

A′ simulates signatures σ of honest parties as follows:

– Leak (Prove, sid, x) to A where x = (Z,C, Ĉ, T, ivk, ctx,m).
– Upon receiving (Proof, sid, π) from A, emulate FNIZK record (π, x).
– Set σ ← (π, x) and LSS ← LSS ∪ {σ}.
– Submit (Signature, sid, σ, s∗, tid) to F (1)

SyRA,j where s∗ = 0.

Moreover, A′ is able to simulate valid secret keys (usk, ˆusk) of corrupted
parties (different from the previous game, without knowing isk) as follows:

– Upon receiving the message (Send, sid, Iss, (s, xs, πs)) from A submitted to
FSSA

Ch , A′ acts as follows:
– Provide (Verify, sid, xs, πs) to A.
– Upon receiving (Witness, sid, (s, ws)) from A, submit (Issue, sid, s, xs, ws) on

behalf of (corrupted) P to F (1)
SyRA,j .

– Upon receiving (Issue, sid, id, xs) from F (1)
SyRA,j , A′ queries C using s provided

by A.
– C sets Q ← Q∪ {s} and sends g1/(s+isk) and ĝ1/(s+isk) to A′.
– Upon receiving g1/(s+isk) and ĝ1/(s+isk) from C, A′ sets usk ← g1/(s+isk) and

ˆusk← ĝ1/(s+isk).
– Set LCR ← LCR ∪{P}, and Scorrupted ← Scorrupted ∪{s}. Recall that LCR is the

list of corrupted-registered parties (who have been issued signing keys).
– Provide (Received, sid, Iss, (usk, ˆusk)) to A.
– Submit (Issued, sid, id) to F (1)

SyRA,j , and output to Z whatever A outputs.

Therefore, under the pseudorandomness of DY-VRF†, the following inequality
holds:

|Pr[Game(2)(k) = 1]− Pr[Game(1)(k) = 1]| ≤ qt · AdvpseudoA,DY-VRF†(k)

Game(3): Same as Game(2), except that in Game(3), we change all tags T =

e(Z, D̂) of honest parties to random values T
$←− GT . We highlight that in this

game, for a fixed identifier s, the simulator samples fresh random group elements
for different contexts unless the same identity string s holder is instructed to sign
the same context. (In this case, the simulator receives the same ucid from the
ideal functionality and uses the same tag value T , as we will see.)

Specifically, in Game(2), if the same s holder was instructed to sign different
contexts, the simulator used the same D̂ value for tags (e.g., T1 = e(h(ctx1), D̂)

26

and T2 = e(h(ctx2), D̂), where D̂
$←− Ĝ, and h is the output of FRO). In Game(3),

if the same s holder is instructed to sign different contexts, the simulator uses

different random group elements for tag computation: (T1, T2)
$←− G2

T .

In leaky functionalities F (2)
SyRA,j , 1 ≤ j ≤ qt, where F (2)

SyRA,1 := F (2)
SyRA and

F (2)
SyRA,qt

:= F (3)
SyRA), the leaked message to the simulator in the Issue and Sign

commands (Issue, sid, id,P, xs) and (Sign, sid,P, ctx,m, tid), respectively, for an
honest party P.

We show that Game(3) and Game(2)are indistinguishable under the DDH as-
sumption, which allows us to bound the probability that Z distinguishes Game(3)

from Game(2).
We introduce a sequences of sub-games:

(Game
(2)
0 := Game(2), . . . ,Game

(2)
j−1,Game

(2)
j , . . . ,Game(2)qt := Game(3))

(where qt denotes the upper bound on the number of all signatures of all honest

parties.) Define Game
(2)
0 := Game(2). Game

(2)
1 is the same as Game

(2)
0 , except in

Game
(2)
1 , we change the first tag value of the first honest party (e.g., who holds

s1) from T1,1 = e(Z, D̂) to T1,1
$←− GT . in Game

(2)
2 , we change the second tag

value of the first honest party (holding s1) from T2,1 = e(Z ′, D̂) to T2,1
$←− GT ,

and so on. The reduction between Game
(2)
j−1 and Game

(2)
j is described below,

where any difference between them is upper bounded by AdvDDH
A (k).

Associated Reduction Between Game
(2)
j−1 and Game

(2)
j (DDH; for 1 ≤

j ≤ qt). If Z distinguishes Game
(2)
j−1 and Game

(2)
j , we can construct A′ that

breaks the DDH assumption.

– For 1 ≤ k ≤ j − 1: all D̂ values (associated to each honest party P) in tags
T = e(Z, D̂) have already been substituted. For instance, T1 = e(Z, D̂) and

T2 = e(Z ′, D̂) associated with an honest party have changed to (T1, T2)
$←−

G2
T .

– For j + 1 ≤ k ≤ qt: all tags are created such that for a fixed s holder the
simulator always uses the same group element D̂ in tag computation.

– The challenger C of DDH for g ∈ G computes: X = gx, Y = gy, C0 = gxy,

and C1 = gr where C samples (x, y, r) randomly: (x, y, r)
$←− Z∗

p.
– The challenger C provides (g,X, Y,Cb) to A′ where b = 0 or b = 1.

Let qh be the total number of queries the adversary can make to the random
oracle. Then:

– i
$←− [1, qh], A′ sets Z = h(ctx)← X if ctr = i; (ctr is initially set to zero).

Else, program the random oracle as: Zk = h(ctxk) ← gxk where xk
$←− Z∗

p

and set ctr← ctr+ 1.
The tag value T = e(h(ctx), D̂), which is computed as e(C0, ĝ) (associated
to b = 0 in the DDH game), is changed to T = e(C1, ĝ) (associated to b = 1

in the DDH game) in Game
(2)
j . Therefore, if Z distinguishes Game

(2)
j−1 from

Game
(2)
j , A′ uses this to win the DDH game.

27

A′ simulates signatures σ of honest parties as follows:

– Leak (Prove, sid, x) to A where x = (Z,C, Ĉ, T, ivk, ctx,m).
– Upon receiving (Proof, sid, π) from A, emulate FNIZK record (π, x).
– Set σ ← (π, x) and LSS ← LSS ∪ {σ}.
– Submit (Signature, sid, σ, s∗, tid) to F (2)

SyRA,j where s∗ = 0.

Moreover, A′ is able to simulate valid secret keys (usk, ˆusk) of corrupted parties.
This is similar to the simulation of the case “Corrupted party P and honest issuer
Iss” in the Issue protocol in Section 5.1. Therefore, under the DDH assumption,
the following inequality holds:

|Pr[Game(3)(k) = 1]− Pr[Game(2)(k) = 1]| ≤ qt · qh · AdvDDH
A (k)

Game(4): Same as Game(3), except that in Game(4), F (4)
SyRA does not allow S(4)

to submit any message to F (4)
SyRA on behalf of adversary A (corrupted party)

who generates a valid signature for a new party (who is not among honest and
corrupted parties) or who generates a valid signature on behalf of an honest

party. Hence, Game(4) is the same as Game(3), except that it checks whether a
flag is raised or not. The flag is raised if A can generate a valid signature for
a completely new party, who is neither honest nor corrupted, or forge a valid
signature for an honest party.

We show that Game(4) and Game(3) are indistinguishable under the pseu-
dorandomness of DY-VRF†, which allows us to bound the probability that Z
distinguishes Game(4) from Game(3).

Note that F (4)
SyRA, in the Issue and Sign commands, does not leak the identity

of the (honest) party P to S(4). F (4)
SyRA leaks to ideal-world adversary S whatever

our final FSyRA leaks to S, which is (Sign, sid, ucid, ctx,m, tid). As a result, S(4)
picks a random group element as the tag value, except in the instance that the
same ucid is received from the functionality.

Associated Reduction Between Game(4) and Game(3) (pseudorandom-

ness of DY-VRF†). If Z distinguishes Game(4) and Game(3), we can construct A′

that breaks the pseudorandomness of DY-VRF†.
The final simulator S is described in Section 5.1. To prevent redundancy, we

will highlight distinctions from this simulator. S(4) fails with probability at most
AdvpseudoA,DY-VRF†(k) as it is shown below in cases where emulating honest verifier

S(4) receives a valid signature (from A) that is never simulated by S(4).

– Given the extracted witness w = (s, α, β) from A’s statement and proof (x, π)
(see Section 5.1 for more details), A′ provides s /∈ Scorrupted to the challenger
C of the pseudorandomness game (where s /∈ Q; recall that Q is a query list
maintained by C, which only contains s values of corrupted parties).

– The challenger C provides Tb to A′.
– Parse x = (Z,C, Ĉ, T, ivk, ctx,m). For case b = 0: T0 = T ; and for b = 1: T1 ̸=

T . Hence, if A provides a valid signature (see Section 5.1 for a comprehensive

28

description of the steps involved in verifying the signature) for s /∈ Scorrupted,
A′ uses that to win the pseudorandomness game. Therefore, the probability
of failure for S(4) is upper bounded by AdvpseudoA,DY-VRF†(k).

Simulating the view of A for the valid keys (usk, ˆusk) of corrupted parties

(without knowing isk) is as in Game(2).A′ simulates the signatures of honest users
as in the previous game. Therefore, under the pseudorandomness of DY-VRF†,
the following inequality holds:

|Pr[Game(4)(k) = 1]− Pr[Game(3)(k) = 1]| ≤ AdvpseudoA,DY-VRF†(k)

Game(5): Same as Game(4), except that in Game(5), F (5)
SyRA does not allow S(5) to

submit any message to F (5)
SyRA on behalf of adversary A (corrupted party) who:

– generates two valid signatures on behalf of a corrupted party on a context
where T1 ̸= T2; or

– generates two valid signatures on a context using two real-world identifiers
s1 ̸= s2 where T1 = T2.

Hence, Game(5) is the same as Game(4), except that it checks whether a flag is
raised or not. The flag is raised if one of the two events above occurs. Hence, the
probability that Z distinguishes Game(5) from Game(4) is zero, as tag values have
uniqueness with respect to the context and s value of the party. More precisely:

– For a given s and context ctx, all generated signatures have the same tag
T = e(Z, ĝ)1/(isk+s).

– For a given context ctx, s1, and s2 where s1 ̸= s2, we always have T1 =
e(Z, ĝ)1/(isk+s1) ̸= T2 = e(Z, ĝ)1/(isk+s2), as s≪ |Z∗

p|.

Hence, the flag is never raised, and the following equality holds:

|Pr[Game(5)(k) = 1] = Pr[Game(4)(k) = 1]

As F5
SyRA = FSyRA and S5 = S, so that Game(5) corresponds to the ideal-world

execution EXECFSyRA,S,Z , we argue that random variables EXECΠSyRA,A,Z and
EXECFSyRA,S,Z are statistically close. Indeed, the probability for any PPT envi-
ronment Z to distinguish EXECΠSyRA,A,Z from EXECFSyRA,S,Z is upper bounded
by

2qt · AdvIND-CPA
A (k) + (qt + 1) · AdvpseudoA,DY-VRF†(k) + qt · qh · AdvDDH

A (k)

which concludes the security proof.

6 Threshold Sybil-Resilient Anonymous Signatures

Recall that our construction of a Sybil-resilient anonymous signature scheme
(Section 4) consists of two main parts: (1) issuance of each user’s secret key as

29

a function of their unique identity string s and the issuer secret key, and (2)
generation of Sybil-resilient anonymous signatures by users under the obtained
secret keys. In this section, we show how the first part may be extended to allow
distributed computation of user secret keys. This is desirable for a number of
reasons, including the following:

1. Distributing trust. A single trusted issuer represents a single point of attack
and failure.

2. Robustness. Allowing a threshold number of issuers to collectively sign a
user’s identity string s allows some number of them to be offline, as long as
the threshold is reached.

3. Confidentiality. A user’s identity string s may be private or sensitive infor-
mation, such as a Social Security Number (SSN) in the US. No single issuer
ever sees the user’s string in the clear, and a threshold number of them would
need to collude to break privacy.

Threshold Sybil-resilient anonymous signatures allow multiple issuers, each
possessing a share of the signing key isk, to issue a key pair (usk, ˆusk) to each user
in the system. In particular, we consider a set of n issuers, each in possession of
shares (ivki, iski). Recall that in our single-issuer construction, a user secret key
(usk, ˆusk) is computed as (g1/(s+isk), ĝ1/(s+isk)), which has the form of two Dodis-
Yampolskiy VRF proofs [DY05], one in each source group (Fig. 4). As noted in
the original paper, it is straightforward to construct a distributed computation
of the function fisk(s) = g1/(s+isk) when the issuers have shares of the secret isk.
Indeed, there are well-known techniques for multi-party addition, inversion, and
exponentiation [Bea92,KPR18], which we specify below for completeness.

In a threshold Sybil-resilient anonymous signature scheme, the public param-
eters are generated via a distributed secret sharing PP← T.Setup and given as
input to all other algorithms and protocols. For generation of the issuer keys,
a distributed key generation protocol (DKG) is used, which outputs the joint
public key ivk representing the set of n issuers as well as n verification key shares
{ivki}i∈[n] and secret key shares {iski}i∈[n], one held by each issuer. To collec-
tively “sign” a user’s identity string s, at least a threshold of t issuers engage in
an interactive protocol T.Issue. At the end of the protocol, the issuers’ individ-
ual shares of the user secret key are combined by the user to form the key pair
(usk, ˆusk), which the user can verify as in the single-party construction. Signature
generation and verification are the same as in Section 4.

Efficient and simulatable distributed key generation. In our threshold construc-
tion, we make repeated use of the Gennaro et al. [GJKR99] distributed key
generation protocol New.DKG(t, n) (Fig. 5). It can be viewed as n parallel in-
stantiations of Pedersen verifiable secret sharing (Pedersen-VSS) [Ped92], which
is derived from Shamir secret sharing [Sha79] but additionally requires each par-
ticipant to provide a vector of Pedersen commitments to ensure their received
share is consistent with all other participants’ shares. It is well known that some
popular alternatives, such as the Pedersen DKG [Ped92], do not produce a uni-
formly random joint public key [GJKR99], whereas the Gennaro et al. DKG is

30

fully simulatable and therefore compatible with threshold constructions in the
UC setting.

Construction.

1. PP
$←− T.Setup(1k):

bp = (p,G, Ĝ,GT , e, g, ĝ)← GrGen(1k)

All n issuers engage in Gennaro et al.’s distributed key generation proto-
col (Fig. 5).

({ ˆivkj}nj=1, {iskj}nj=1)
$←− New.DKG(t, n)

where { ˆivkj}nj=1 = {ĝiskj}nj=1.
The system’s public parameters are as follows:

PP← (bp, { ˆivkj}nj=1,W, Ŵ)

where W
$←− G, and Ŵ

$←− Ĝ and the discrete logarithms base g and ĝ,
respectively, are not known to anyone. This can be achieved with Steps 1-3
in Fig. 5. PP is publicly announced to all network entities.

2. (usk, ˆusk)←− T.Issue(s, {iskj}j∈S):
T.Issue is an interactive protocol between a prospective user P offering a
real-world unique identifier s and a set of at least t issuers holding {iskj}j∈S
where S ⊆ [n] and |S| ≥ t. It produces the user’s secret key pair (usk, ˆusk).
At a high level, the protocol is as follows:
– The user P verifiably secret shares s among the issuers.
– Each issuer who holds a share of s engages with other issuers in a secure

multi-party computation (MPC) protocol to compute DY-VRF† shares
(Fig. 4), which are shares of user secret keys.

– The user reconstructs its secret key pair (usk, ˆusk) using the shares re-
ceived from the issuers.

In more detail, the steps are as follows:
(a) The user P executes the Pedersen-VSS protocol to share s with the is-

suers and proves that R(xs, (s, ws)) holds. For example, in addition to
the Pedersen-VSS, one way to accomplish this is to first (1) Shamir se-
cret share s to obtain s1, . . . , sn, (2) compute a Pedersen commitment
for each share si using randomness ri, and (3) provide a proof of knowl-
edge of (s, ws) together with {si}ni=1, {ri}ni=1, {coei}

t−1
i=1, where coei is

the ith coefficient of the associated polynomial of Shamir secret sharing.
P broadcasts all commitments to shares via standard Byzantine broad-
cast [GKKZ11] to all issuers and, at the same time, securely sends each
issuer’s share and randomness of the Pedersen commitment to them.
Upon receiving messages from a secure broadcast channel, each issuer
can check the well-formedness of its commitment with respect to the set
of all commitments received from the broadcast channel.

31

(b) Each issuer Issi (who holds si from the output of the Pedersen-VSS
protocol) engages in a distributed computation of the user’s secret key
pair as follows:
i. Compute

µi = iski + si

ii. We assume that before engaging in the T.Issue protocol, issuers have
obtained secret shares of a random Beaver triple [a], [b] and [c] = [a·b]
using the protocol in [KPR18]. Hence, Issi has ai, bi and ci. Holding
ρi (a secret share of a random field element ρ, which can be generated
with Steps 1-3 in Fig. 5), distribute ρi + ai and µi + bi so that the
values of ρ+ a = X and µ+ b = Y are revealed publicly.

iii. Compute the secret sharing of ρµ as follows:

ρµ = ((ρ+ a)− a)((µ+ b)− b)

= (ρ+ a)(µ+ b)− a(µ+ b)− b(ρ+ a) + ab

= XY − aY − bX + ab

so that:
(ρµ)j = XY − ajY − bjX + cj

Distribute (ρµ)i so that the value (ρµ)−1 can be computed by any-
one. Then, the share of the inverse of the field element is computed
as follows:

1/µi = (ρµ)−1ρi

iv. Compute
uski = g1/µi , ˆuski = ĝ1/µi

which are sent to the user via calling FSRA
Ch with (Send, sid,P, (uski, ˆuski)).

(c) The user does the following:
i. Receive (Received, sid, Issi, (uski, ˆuski)) from FSRA

Ch .
ii. Reconstruct the secret key pair based on the received shares using

Lagrange interpolation (where µ = isk+ s):

usk = g1/(s+isk), ˆusk = ĝ1/(s+isk)

Check if e(usk, ĝ) = e(g, ˆusk) and e(usk, ˆivk · ĝs) = e(g, ĝ) hold.

Signature Generation, and Verification are the same as in Section 4.

7 Deployment Considerations and Applications

In this section we discuss deployment considerations and applications for SyRA
signatures. In particular, we describe how recovery of keys can be handled, how
the personhood relation may be realized in an actual deployment, how we can
combine revocation and attribute based credentials with SyRA, and how SyRA

32

New.DKG(t, n)

Generating x:

1. Each party Pi performs a Pedersen-VSS of a random value zi as a dealer:
(a) Pi chooses two random polynomials fi(z), f

′
i(z) over Zp of degree t− 1:

fi(z) = ai,0 + ai,1z + · · ·+ ai,t−1z
t−1 f ′

i(z) = bi,0 + bi,1z + · · ·+ bi,t−1z
t−1

Let zi = ai,0 = fi(0). Pi broadcasts Ci,k = gai,khbi,k (mod p) for k = 0, . . . , t− 1.
Pi computes the secret shares s̄i,j = fi(j), s̄

′
i,j = f ′

i(j) (mod p) for j = 1, . . . , n
and sends s̄i,j , s̄

′
i,j to party Pj .

(b) Each party Pj verifies the shares they received from the other parties. For each
i = 1, . . . , n, Pj checks if

gs̄i,jhs̄′i,j =

t−1∏
k=0

Cjk

i,k (mod p) (1)

If the check fails for an index i, Pj broadcasts a complaint against Pi.
(c) Each party Pi who, as a dealer, received a complaint from party Pj broadcasts
the values s̄i,j , s̄

′
i,j that satisfy Eq. (1).

(d) Each party marks as disqualified any party that either
- received more than t− 1 complaints in Step 1(b), or
- answered a complaint in Step 1(c) with values that falsify Eq. (1).

2. Each party then builds the set of non-disqualified parties QUAL.
3. The distributed secret value x is not explicitly computed by any party, but it
equals x =

∑
i∈QUAL zi (mod p). Each party Pi sets her share of the secret as

xi =
∑

j∈QUAL s̄j,i (mod p) and the value x′i =
∑

j∈QUAL s̄
′
j,i (mod p).

Extracting Y = gx (mod p):

4. Each party i ∈ QUAL exposes Yi = gzi (mod p) via Feldman-VSS:
(a) Each party Pi, i ∈ QUAL, broadcasts Ai,k = gai,k (mod p) for k = 0, . . . , t−1.
(b) Each party Pj verifies the values broadcast by the other parties in QUAL,
namely, for each i ∈ QUAL, Pj checks if

gs̄i,j =

t−1∏
k=0

(Ai,k)
jk (mod p) (2)

If the check fails for an index i, Pj complains against Pi by broadcasting the
values s̄i,j , s̄

′
i,j that satisfy Eq. (1) but do not satisfy Eq. (2). 5. For parties Pi

who receive at least one valid complaint, i.e., values which satisfy Eq. (1) and
not Eq. (2), the other parties run the reconstruction phase of Pedersen-VSS to
compute zi, fi(z), Ai,k for k = 0, . . . , t in the clear. For all parties in QUAL, set
Yi = Ai,0 = gzi (mod p). Compute Y =

∏
i∈QUAL Yi (mod p).

Fig. 5. Gennaro et al.’s distributed key generation protocol [GJKR99].

33

signatures can be used to solve various use cases, such as e-voting, cryptocurrency
airdrops and peer DIDs.

Key Recovery. Sybil resilience may complicate key recovery since a Sybil at-
tacker can pretend that it has lost her key in order to be reissued a credential
and in this way break Sybil resilience. Various approaches have been suggested
to mitigate this attack strategy in prior work, e.g., the key can be revoked us-
ing a credential revocation mechanism, e.g., [BCD+17], and only then the user
is reissued its new credential. Alternatively the system can store the key infor-
mation separately in a distributed fashion to facilitate key recovery directly, cf.
[MMZ+21]. Our construction approach offers a strikingly simpler key recovery
mechanism: A user simply reruns the issuing protocol with the issuer to recover
their key, which is always the same for a given identity s. Hence, the system
prevents a malicious user who attempts to reissue a DID as part of an attack
that evades the system’s abuse mitigation mechanisms.

Realizing Personhood. One way to provide proof of personhood in our sys-
tem is to use an oracle system like DECO [ZMM+20] (or Town Crier [ZCC+16])
that ensures data privacy and remains compatible with legacy systems without
requiring alterations to data sources. DECO functions as a three-party proto-
col involving a prover, a verifier, and a TLS server. Its purpose is to enable
the prover to convince the verifier that a piece of data, which may potentially
be private to the prover, retrieved from the server satisfies a specific predicate
using zero-knowledge proofs without server-side modifications. In our specific
context, the DECO verifier can either be the issuer itself or a party designated
as trustworthy by the issuer. Using this approach for personhood would require
identifying a piece of information that is unique to individuals and possible to
verify against a web service. For instance, a social security number (SSN) and a
government web-site that includes the SSN as part of a TLS encrypted interac-
tion. Another approach to establishing personhood is using biometric data — a
recent embodiment of this idea that gained some traction is Worldcoin [Wor23].
It utilizes a biometric device that reads the iris of an individual and records
information that can be utilized to subsequently prove the user’s identity.

Revocation. Incorporating revocation comprehensively with SyRA signatures
is out of scope in the current writeup and an interesting direction for future
work. Nevertheless, we outline here an initial set of ideas to illustrate how it is
possible to add credential revocation in different scenarios. A simple method to
incorporate revocation is by exploiting the secret key component ˆusk and utilize
it in the context of a revocation list. Specifically, a revocation authority can
maintain a list of ˆusk values associated with the identity strings and disclose
publicly those that need to form the revocation list; alternatively, the issuer can
reconstruct ˆusk on the spot given the identity string s of the user that should
be revoked. Using this list, a verifier can locally compute Trev = e(h(ctx), ˆusk)
for each announced ˆusk. Given this, the verifier can ignore all signatures with
T ′ values such that T ′ = Trev. Note that despite disclosing ˆusk, no one can sign
on behalf of the associated user, as the signature σ = (x, π) is a NIZK proof
whose generation necessarily requires a witness for the relation R(x, w) = 1 from

34

Section 4. This means signature generation also requires usk, which cannot be
derived from ˆusk because SyRA relies on Type-III (asymmetric) bilinear groups.
In this way, by efficiently revealing only one group element, ˆusk, it is possi-
ble for verifiers identify all signatures of the revoked user upon receiving their
signatures.

The above mechanism requires revealing ˆusk. In case the user’s SyRA key
is compromised, the user can provide s to the issuer along with the relevant
proof of ownership of s; so that the issuer computes ˆusk. In this setting, the
affected user would have to update their identity string s with a new one from
the identity provider that is acknowledged by the personhood relation R (e.g.,
get issued a new social security number). Note that the identity provider needs
to check that the old identity string has indeed been revoked. Furthermore,
this will not provide forward security, at least in a non-interactive manner since
revealing the ˆusk value of a user will link all its past pseudonyms. (Note that
alternatively, verifiers could, in principle, run a multi-party protocol with issuers
to check if an identity has been revoked instead of using ˆusk but this is not a
practical solution). Adding forward security to this revocation mechanism is an
interesting question for future work.

Identity Attributes. SyRA signatures can be combined with anonymous at-
tribute based credentials to demonstrate user attributes in a privacy-preserving
way while maintaining resilience against Sybil attacks. The approach is simple:
users will obtain keys for both SyRA and anonymous attribute-based credentials.
This allows subsequently to engage in attribute-based identification with each
transcript signed using SyRA for the context requested by the verifier. While
simple and effective the above approach may be further improved in terms of ef-
ficiency by investigating a concrete design for attribute-based SyRA signatures;
we leave this question for future work.

7.1 Applications

e-Voting and e-Petitions. There are many online services that require strict
single access per ID, such as e-voting. SyRA enables verifiers to cluster all signa-
tures with respect to their pseudonyms T for each context. Sybil resilience means
that a user can create at most one pseudonym T per context. For instance, in e-
voting or e-petitions [DKD+08], the election procedure identifier would be used
to determine the context, and the choice of the voter will be the message. The
user can sign multiple times for the same identifier (as is needed in many election
schemes for coercion protection, for instance, [VG06]), and then the system can
choose the latest “message” (recall all signatures of the user share the same T
value).

Cryptocurrency Airdrops. In a cryptocurrency airdrop, a user is set to receive
a certain amount of cryptocurrency. The user generates a cryptocurrency address
A; utilizing SyRA signatures, the users can use the name of the airdrop event
as the context and the address A as the message to be signed. The primitive

35

enables the user to sign multiple addresses if needed or perform various actions
in the context of one specific airdrop. Note that if a user signs the same context
twice, those two signatures are linkable (they have the same T), however still,
the privacy of the user’s real-world identifier, s, is preserved and the user cannot
be linked if they participate in multiple airdrops. Our mechanism enables the
airdrop provider to write policies such as “each user receives exactly X coins”,
with the Sybil resilient property of SyRA being the enforcer of this property. 10

Peer DID. Decentralized identifiers are often anchored to a public source of
truth, such as a blockchain. While this ensures the security and immutability
of transactions, it allows arbitrary parties to resolve users’ DIDs (i.e., obtain
their DID documents). Users in a DID system should control every aspect of the
use of their digital identity, including the ability to interact with other people,
institutions, and organizations in a private manner. One solution, put forth by
the Decentralized Identity Foundation [Fou23], is Peer DID11, which moves the
resolution of DIDs to local, peer-to-peer interactions off chain. In this system,
a user Alice can create a pairwise DID for each interaction with a different
user or organization. For example, Alice may interact with her doctor, bank,
etc. using these context-specific “credentials.” Our SyRA signatures are directly
applicable here, as Alice can create pairwise DIDs from her master credential,
which is tied to her real-world identity, via context-specific pseudonyms. The
security properties of SyRA signatures ensure that Alice’s identity is protected,
and her interactions are unlinkable across all contexts in which she engages,
while Sybil resilience protects the verifiers from interacting with multiple users
controlled by Alice.

Privacy-Preserving Regulatory Compliance. In the context of regulatory
compliance, SyRA signatures provide a mechanism for verifying identities with-
out exposing sensitive information. This capability is particularly relevant for
financial institutions and other regulated entities that need to adhere to KYC
(Know Your Customer), AML (Anti Money Laundering), and CFT (Combating
Financing Terrorism) regulations. For example, when a recipient is involved in
a transaction, they may be asked to sign a transaction using SyRA to verify
that they are not identified as a terrorist according to a list of terrorist iden-
tity strings. Such a list could be prepared by the issuer for a specific context of
interest by calculating all the relevant T -values; note that this also maintains
the privacy of the list itself. Adding this requirement to the user’s workflow
would ensure compliance with CFT regulations while enabling the recipient to
receive funds without disclosing her identity. Similarly, the sender of a transac-
tion can be required to provide a SyRA signature on the transaction to prove
that she is not associated with any revoked entities listed in AML regulations,

10 As an example of the relevance of our approach to practice consider that in the
Arbitrum airdrop, around 253 million Arbitrum tokens, 21.8% of all tokens, were
acquired by Sybil accounts [Xe23].

11 https://identity.foundation/peer-did-method-spec/index.html

36

https://identity.foundation/peer-did-method-spec/index.html

enabling her to send funds. SyRA signatures can also be used to facilitate AM-
L/CFT checks in anonymous payment systems like [GGM16], PEReDi [KKS22],
Zether [BAZB20], and PARScoin [SKK23], following the mechanism described
above offering a privacy-preserving, yet compliant, solution for these platforms.

Acknowledgements

We would like to express our gratitude to Markulf Kohlweiss for the valuable dis-
cussions and suggestions provided. This work has been supported by Input Out-
put (iohk.io) through their funding of the University of Edinburgh Blockchain
Technology Lab.

References

ALSY13. Man Ho Au, Joseph K. Liu, Willy Susilo, and Tsz Hon Yuen. Secure id-
based linkable and revocable-iff-linked ring signature with constant-size con-
struction. Theor. Comput. Sci., 469:1–14, 2013.

BAZB20. Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether:
Towards privacy in a smart contract world. In International Conference on
Financial Cryptography and Data Security, pages 423–443. Springer, 2020.

BCD+17. Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyanskaya,
Leonid Reyzin, Kai Samelin, and Sophia Yakoubov. Accumulators with
applications to anonymity-preserving revocation. In 2017 IEEE European
Symposium on Security and Privacy, EuroS&P 2017, Paris, France, April
26-28, 2017, pages 301–315. IEEE, 2017.

BCJ+24. Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Yan Ji, Jonas Lind-
strøm, Deepak Maram, Ben Riva, Arnab Roy, Mahdi Sedaghat, and Joy
Wang. zklogin: Privacy-preserving blockchain authentication with existing
credentials. CoRR, abs/2401.11735, 2024.

Bea92. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO’91, volume
576 of Lecture Notes in Computer Science, pages 420–432, Santa Barbara,
CA, USA, August 11–15, 1992. Springer, Heidelberg, Germany.

BLS04. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
Weil pairing. Journal of Cryptology, 17(4):297–319, September 2004.

CDG+18. Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and
Gregory Neven. The wonderful world of global random oracles. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 280–312. Springer, 2018.

CE86. David Chaum and Jan-Hendrik Evertse. A secure and privacy-protecting
protocol for transmitting personal information between organizations. In
Andrew M. Odlyzko, editor, Advances in Cryptology - CRYPTO ’86, Santa
Barbara, California, USA, 1986, Proceedings, volume 263 of Lecture Notes
in Computer Science, pages 118–167. Springer, 1986.

Cha81. David Chaum. Verification by anonymous monitors. In Allen Gersho, editor,
Advances in Cryptology – CRYPTO’81, volume ECE Report 82-04, pages
138–139, Santa Barbara, CA, USA, 1981. U.C. Santa Barbara, Dept. of
Elec. and Computer Eng.

37

Cha85. David Chaum. Security without identification: Transaction systems to make
big brother obsolete. Commun. ACM, 28(10):1030–1044, 1985.

CHK+06. Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyan-
skaya, and Mira Meyerovich. How to win the clonewars: efficient periodic
n-times anonymous authentication. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS 2006, Alexan-
dria, VA, USA, October 30 - November 3, 2006, pages 201–210. ACM, 2006.

CHL05. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact
e-cash. In Ronald Cramer, editor, Advances in Cryptology – EURO-
CRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
302–321, Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg, Ger-
many.

CHL06. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Balancing ac-
countability and privacy using e-cash (extended abstract). In Roberto De
Prisco and Moti Yung, editors, SCN 06: 5th International Conference on Se-
curity in Communication Networks, volume 4116 of Lecture Notes in Com-
puter Science, pages 141–155, Maiori, Italy, September 6–8, 2006. Springer,
Heidelberg, Germany.

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001,
volume 2045 of Lecture Notes in Computer Science, pages 93–118, Inns-
bruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany.

Con22. The World Wide Web Consortium. Decentralized identifiers (dids), 2022.
https://w3c.github.io/did-core/.

Cv91. David Chaum and Eugène van Heyst. Group signatures. In Donald W.
Davies, editor, Advances in Cryptology – EUROCRYPT’91, volume 547 of
Lecture Notes in Computer Science, pages 257–265, Brighton, UK, April 8–
11, 1991. Springer, Heidelberg, Germany.

DDP06. Ivan Damg̊ard, Kasper Dupont, and Michael Østergaard Pedersen. Unclon-
able group identification. In Serge Vaudenay, editor, Advances in Cryptology
- EUROCRYPT 2006, 25th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, St. Petersburg, Russia, May
28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer
Science, pages 555–572. Springer, 2006.

DKD+08. Claudia Diaz, Eleni Kosta, Hannelore Dekeyser, Markulf Kohlweiss, and
Girma Nigusse. Privacy preserving electronic petitions. Identity in the
Information Society, 1(1):203–219, 2008.

DMS04. Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-
generation onion router. In Matt Blaze, editor, USENIX Security 2004:
13th USENIX Security Symposium, pages 303–320, San Diego, CA, USA,
August 9–13, 2004. USENIX Association.

DY05. Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function
with short proofs and keys. In International Workshop on Public Key Cryp-
tography, pages 416–431. Springer, 2005.

EG14. Alex Escala and Jens Groth. Fine-tuning Groth-Sahai proofs. In Hugo
Krawczyk, editor, PKC 2014: 17th International Conference on Theory and
Practice of Public Key Cryptography, volume 8383 of Lecture Notes in Com-
puter Science, pages 630–649, Buenos Aires, Argentina, March 26–28, 2014.
Springer, Heidelberg, Germany.

38

https://w3c.github.io/did-core/

ElG84. Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In G. R. Blakley and David Chaum, editors, Ad-
vances in Cryptology – CRYPTO’84, volume 196 of Lecture Notes in Com-
puter Science, pages 10–18, Santa Barbara, CA, USA, August 19–23, 1984.
Springer, Heidelberg, Germany.

FKS16. Daniel Fett, Ralf Küsters, and Guido Schmitz. A comprehensive formal se-
curity analysis of oauth 2.0. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, page
1204–1215, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

Fou23. Decentralized Identity Foundation, 2023. https://identity.foundation/.
FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions

to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in
Computer Science, pages 186–194, Santa Barbara, CA, USA, August 1987.
Springer, Heidelberg, Germany.

FS07. Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In Tat-
suaki Okamoto and Xiaoyun Wang, editors, PKC 2007: 10th International
Conference on Theory and Practice of Public Key Cryptography, volume
4450 of Lecture Notes in Computer Science, pages 181–200, Beijing, China,
April 16–20, 2007. Springer, Heidelberg, Germany.

GGM16. Christina Garman, Matthew Green, and Ian Miers. Accountable privacy for
decentralized anonymous payments. In Jens Grossklags and Bart Preneel,
editors, FC 2016: 20th International Conference on Financial Cryptography
and Data Security, volume 9603 of Lecture Notes in Computer Science,
pages 81–98, Christ Church, Barbados, February 22–26, 2016. Springer,
Heidelberg, Germany.

GJKR99. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Se-
cure distributed key generation for discrete-log based cryptosystems. In
Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume
1592 of Lecture Notes in Computer Science, pages 295–310, Prague, Czech
Republic, May 2–6, 1999. Springer, Heidelberg, Germany.

GJM+21. Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad
Stern, and Alin Tomescu. Aggregatable distributed key generation. In Anne
Canteaut and François-Xavier Standaert, editors, Advances in Cryptology
– EUROCRYPT 2021, Part I, volume 12696 of Lecture Notes in Computer
Science, pages 147–176, Zagreb, Croatia, October 17–21, 2021. Springer,
Heidelberg, Germany.

GKKZ11. Juan A Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou.
Adaptively secure broadcast, revisited. In Proceedings of the 30th annual
ACM SIGACT-SIGOPS symposium on Principles of distributed computing,
pages 179–186, 2011.

GOS06. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero
knowledge for np. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 339–358. Springer, 2006.

GQ88. Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge
protocol fitted to security microprocessor minimizing both trasmission and
memory. In C. G. Günther, editor, Advances in Cryptology – EURO-
CRYPT’88, volume 330 of Lecture Notes in Computer Science, pages 123–
128, Davos, Switzerland, May 25–27, 1988. Springer, Heidelberg, Germany.

39

https://identity.foundation/

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments.
In Masayuki Abe, editor, Advances in Cryptology – ASIACRYPT 2010, vol-
ume 6477 of Lecture Notes in Computer Science, pages 321–340, Singapore,
December 5–9, 2010. Springer, Heidelberg, Germany.

Her06. Javier Herranz. Deterministic identity-based signatures for partial aggre-
gation. Comput. J., 49(3):322–330, 2006.

Hes03. Florian Hess. Efficient identity based signature schemes based on pairings.
In Kaisa Nyberg and Howard M. Heys, editors, SAC 2002: 9th Annual In-
ternational Workshop on Selected Areas in Cryptography, volume 2595 of
Lecture Notes in Computer Science, pages 310–324, St. John’s, Newfound-
land, Canada, August 15–16, 2003. Springer, Heidelberg, Germany.

JAP09. JAP. Jap anonymity & privacy, 2009. http://anon.inf.tu-dresden.de/.
KKS22. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh. Peredi:

Privacy-enhanced, regulated and distributed central bank digital curren-
cies. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 1739–1752, 2022.

KPR18. Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ
great again. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances
in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of Lecture
Notes in Computer Science, pages 158–189, Tel Aviv, Israel, April 29 –
May 3, 2018. Springer, Heidelberg, Germany.

KTY04. Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable signatures.
In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology –
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 571–589, Interlaken, Switzerland, May 2–6, 2004. Springer, Heidel-
berg, Germany.

KZ07. Aggelos Kiayias and Hong-Sheng Zhou. Hidden identity-based signatures.
In Sven Dietrich and Rachna Dhamija, editors, FC 2007: 11th International
Conference on Financial Cryptography and Data Security, volume 4886 of
Lecture Notes in Computer Science, pages 134–147, Scarborough, Trinidad
and Tobago, February 12–16, 2007. Springer, Heidelberg, Germany.

LWW04. Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable spontaneous
anonymous group signature for ad hoc groups (extended abstract). In Huax-
iong Wang, Josef Pieprzyk, and Vijay Varadharajan, editors, ACISP 04:
9th Australasian Conference on Information Security and Privacy, volume
3108 of Lecture Notes in Computer Science, pages 325–335, Sydney, NSW,
Australia, July 13–15, 2004. Springer, Heidelberg, Germany.

MMZ+21. Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexan-
der Frolov, Tyler Kell, Tyrone Lobban, Christine Moy, Ari Juels, and An-
drew Miller. Candid: Can-do decentralized identity with legacy compat-
ibility, sybil-resistance, and accountability. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 1348–1366. IEEE, 2021.

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure veri-
fiable secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology –
CRYPTO’91, volume 576 of Lecture Notes in Computer Science, pages 129–
140, Santa Barbara, CA, USA, August 11–15, 1992. Springer, Heidelberg,
Germany.

PLL+23. Sanghyeon Park, Jeong Hyuk Lee, Seunghwa Lee, Jung Hyun Chun, Hyeon-
myeong Cho, MinGi Kim, Hyun Ki Cho, and Soo-Mook Moon. Beyond the
blockchain address: Zero-knowledge address abstraction. IACR Cryptol.
ePrint Arch., page 191, 2023.

40

http://anon.inf.tu-dresden.de/

RST01. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In
Colin Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume
2248 of Lecture Notes in Computer Science, pages 552–565, Gold Coast,
Australia, December 9–13, 2001. Springer, Heidelberg, Germany.

Sch91. Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal
of Cryptology, 4(3):161–174, January 1991.

Sha79. Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979.

Sha84. Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R.
Blakley and David Chaum, editors, Advances in Cryptology – CRYPTO’84,
volume 196 of Lecture Notes in Computer Science, pages 47–53, Santa Bar-
bara, CA, USA, August 19–23, 1984. Springer, Heidelberg, Germany.

SKK23. Amirreza Sarencheh, Aggelos Kiayias, and Markulf Kohlweiss. Parscoin: A
privacy-preserving, auditable, and regulation-friendly stablecoin. Cryptol-
ogy ePrint Archive, 2023.

SZ21. Alessandra Scafuro and Bihan Zhang. One-time traceable ring signa-
tures. In Elisa Bertino, Haya Shulman, and Michael Waidner, editors,
ESORICS 2021: 26th European Symposium on Research in Computer Se-
curity, Part II, volume 12973 of Lecture Notes in Computer Science, pages
481–500, Darmstadt, Germany, October 4–8, 2021. Springer, Heidelberg,
Germany.

VG06. Melanie Volkamer and Rüdiger Grimm. Multiple casts in online voting:
Analyzing chances. In Robert Krimmer, editor, Electronic Voting 2006: 2nd
International Workshop, Co-organized by Council of Europe, ESF TED,
IFIP WG 8.6 and E-Voting.CC, August, 2nd - 4th, 2006 in Castle Hofen,
Bregenz, Austria, volume P-86 of LNI, pages 97–106. GI, 2006.

WCW12. Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing me onto your accounts
through facebook and google: A traffic-guided security study of commer-
cially deployed single-sign-on web services. In 2012 IEEE Symposium on
Security and Privacy, pages 365–379, 2012.

Wor23. Worldcoin, 2023. https://whitepaper.worldcoin.org/.
Xe23. X-explore. Advanced analysis for arbitrum airdrop, 2023. https://mirror.

xyz/x-explore.eth/AFroG11e24I6S1oDvTitNdQSDh8lN5bz9VZAink8lZ4.
ZCC+16. Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town

crier: An authenticated data feed for smart contracts. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and Com-
munications Security, pages 270–282, Vienna, Austria, October 24–28, 2016.
ACM Press.

ZMM+20. Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari
Juels. DECO: Liberating web data using decentralized oracles for TLS.
In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 2020: 27th Conference on Computer and Communications Se-
curity, pages 1919–1938, Virtual Event, USA, November 9–13, 2020. ACM
Press.

A Additional Definitions

Definition 3 (ElGamal Encryption Scheme). [ElG84] The ElGamal en-
cryption scheme consists of the following three PPT algorithms:

41

https://whitepaper.worldcoin.org/
https://mirror.xyz/x-explore.eth/AFroG11e24I6S1oDvTitNdQSDh8lN5bz9VZAink8lZ4
https://mirror.xyz/x-explore.eth/AFroG11e24I6S1oDvTitNdQSDh8lN5bz9VZAink8lZ4

1. Key Generation. Assuming that p is a large prime and g is a generator of
the group Z∗

p, the key generation algorithm is performed as follows:

– Randomly select a secret key sk
$←− Z∗

p.

– Compute the corresponding public key as pk = gsk.
– Make the parameters (g, p, pk) publicly available.

2. Encryption. To encrypt a message m ∈ Zp, the encryption algorithm is
performed as follows:

– Randomly select k
$←− Z∗

p.

– The ciphertext χ = (C1, C2) mod p is computed as C1 = gk, and C2 =
pkk ·m.

3. Decryption. Given a ciphertext χ = (C1, C2), the decryption algorithm is
performed as follows:

– Compute the message m as: m = C2/C1
sk.

The ElGamal encryption scheme is IND-CPA secure under the decisional
Diffie-Hellman (DDH) assumption [ElG84].

Definition 4 (CPA Security of Public Key Encryption Scheme). Let
PE = (PE.KeyGen,Enc,Dec) be a public key encryption scheme. The following
security experiment is conducted between a PPT adversary A and a challenger.
This security experiment IND-CPAb

PE(A, k) is parameterized by a bit b ∈ {0, 1}
and a security parameter k.

1. The challenger randomly selects a key pair (pk, sk) by executing PE.KeyGen(1k)
and provides the public key pk to the adversary A.

2. The adversary A submits two plaintext messages, denoted as (m0,m1), where
|m0| = |m1|.

3. The challenger encrypts one of the plaintexts based on the bit b to create a
ciphertext cb = Encpk(mb) and provides this ciphertext cb to the adversary
A.

4. The adversary A outputs a bit b′, indicating its guess of the value of b. If A
decides to abort without producing an output, the output bit b′ is set to 0.

The adversary’s advantage is defined as:

AdvIND-CPA
A (k) = |Pr[IND-CPA1

PE(A, k) = 1]− Pr[IND-CPA0
PE(A, k) = 1]|

The public key encryption scheme PE is IND-CPA secure if for all PPT adver-
saries A in this experiment, there exists a negligible function ν such that:

AdvIND-CPA
A (k) ≤ ν(k)

Definition 5 (Random Oracle). FRO models an idealized hash function [CDG+18]
and is defined as follows.

42

Functionality FRO

The functionality is parameterized by a message space M and output space H
and acts as follows: Upon receiving (Query, sid,m) from a party P: (i) Ignore
if m /∈ M . (ii) If there exists a tuple (sid,m′, h′) where m′ = m, set h ← h′.

(iii) Else, select h̄
$←− H such that there is no stored tuple (sid,m∗, h′) where

h′ = h̄. Set h← h̄. (iv) Store (sid,m, h). (v) Output (Query.Re, sid, h) to party P.

Definition 6 (Non-Interactive Zero-Knowledge). In Section 4.1, we dis-
cussed the implementation of non-interactive zero-knowledge proofs (NIZKs)
used in our construction. Groth et al. [GOS06] provided a formal definition of
non-interactive zero knowledge via the following ideal functionality FNIZK.

Functionality FNIZK

FNIZK is parameterized by a relation R.
Proof Generation: (i) On receiving (Prove, sid, x, w) from some party P, ignore
if R(x, w) = 0. Else, send (Prove, sid, x) to A. (ii) Upon receiving (Proof, sid, π)
from A, store (x, π) and send (Proof, sid, π) to P.
Proof Verification: (i) Upon receiving (Verify, sid, x, π) from some party
P, check whether (x, π) is stored. If not, send (Verify, sid, x, π) to A. (ii)
Upon receiving response (Witness, sid, w) from A, if R(x, w) = 1 store (x, π).
If (x, π) has been stored, output (Verification, sid, 1) to P; else, output
(Verification, sid, 0).

Definition 7 (Communication Channel). Our functionality FSyRA does not
reveal the identities of users. To realize this functionality, our protocol employs
different kinds of communication channels FCh to deliver messages and to fulfill
network-level anonymity.

As discussed in Section 4, regardless of the robustness of cryptographic safe-
guards at the protocol level, “network leakage” could potentially expose the parties
involved in a communication. Hence, in our formal UC modelling, a degree of
sender/receiver anonymity is essential for maintaining (UC) anonymity. UC for-
malism aside, we presume that the user/issuer directs its communication through
an underlying anonymous communication infrastructure, like common networks
such as Tor [DMS04] or JAP [JAP09], to avoid being identified by IP addresses
(using anonymous communication networks is crucial for any solution relying
on anonymity for privacy protection).

43

Functionality FCh

Let S be the sender and R the receiver of a message m.

1. Upon input (Send, sid, R,m) from S, record a mapping P(mid) ← (S, R,m)
where mid is chosen at random. Output (Send, sid, α, β,mid) to A.

2. Upon receiving (Ok, sid,mid) from A, retrieve (S, R,m) ← P(mid) and send
(Received, sid, S,m) to R.

– Once FSSA
Ch is called, set α ← R, β ← |m| (secure and sender-anonymous

channel).
– Once FSRA

Ch is called, set α ← S, β ← |m| (secure and receiver-anonymous
channel).

44

	SyRA: Sybil-Resilient Anonymous Signatures with Applications to Decentralized Identity

