
Strong PUF Security Metrics: Sensitivity of
Responses to Single Challenge Bit Flips

Wolfgang Stefani 1, Fynn Kappelhoff 1, Martin Gruber 2, Yu-Neng Wang 3,
Sara Achour 3, Debdeep Mukhopadhyay 4, and Ulrich Rührmair 5

1 TU Berlin, Berlin, Germany. w.stefani@iosat.de and fynn.kappelhoff@gmail.com
2 BMW Group, Munich, Germany. martin.gr.gruber@bmw.de

3 Stanford University, Stanford, USA. wynwyn@stanford.edu and sachour@stanford.edu
4 IIT Kharagpur, Kharagpur, India. debdeep@cse.iitkgp.ac

5 TU Berlin, Berlin, Germany, and University of Connecticut, Storrs, USA. ruehrmair@ilo.de

Abstract—This paper belongs to a sequence of manuscripts
that discuss generic and easy-to-apply security metrics for Strong
Physical Unclonable Functions (PUFs). These metrics cannot and
shall not fully replace in-depth machine learning (ML) studies
in the security assessment of Strong PUF candidates. But they
can complement the latter, serve in initial complexity analyses,
and allow simple iterative design optimization. Moreover, they
are computationally more efficient and far easier to standardize
than typical ML-studies. This manuscript treats one very natural,
but also very impactful metric, and investigates the effects that
the alteration of single challenge bits has on the associated PUF-
responses. We define several concrete metric scores based on this
idea, and demonstrate their predictive power by applying them
to various popular Strong PUF design families as test cases. This
includes XOR Arbiter PUFs, XOR Bistable Ring PUFs, and Feed-
Forward Arbiter PUFs, whose practical security is particularly
well known after two decades of intense research. In passing, our
manuscript also suggests techniques for representing our metric
scores graphically, and for interpreting them in a meaningful
manner. Our work demonstrates that if comparable methods had
existed earlier, various Strong PUF candidates deemed secure and
broken later could have been recognized and winnowed early on.

Index Terms—Strong PUFs, Security Metrics, Modeling At-
tacks on PUFs, Machine Learning Attacks on PUFs

I. INTRODUCTION

A. Motivation and Overview

In the last twenty years since their introduction [1], [2],
Physical Unclonable Functions (PUFs) have exerted a strong
influence on both cryptography and computer security. Within
the various sub-forms of PUFs treated in the literature — in-
cluding Weak PUFs [3], Controlled PUFs [4], Reconfigurable
PUFs [5], SIMPLs/PPUFs [6] [7], or UNOs [8], amongst
many others — so-called Strong PUFs arguably take a role
of particular importance for various reasons [9], [10].

According to [9], they are characterized by the following
definitional features: (i) Strong PUFs must possess a publicly
accessible challenge-response mechanism. Everyone holding
the Strong PUF or the Strong PUF embedding hardware should
be able to apply arbitrary challenges to the Strong PUF, and
to read out the resulting responses, without any access restric-
tions. (ii) Strong PUFs must possess a very large number of

possible challenges – so many that despite the publicly acces-
sible challenge-response interface, not all challenge-response
pairs (CRPs) of the Strong PUF can be read out by adversaries
in practice. (iii) The challenge-response relation of a Strong
PUF should be very complex, so complex that unknown
responses cannot be predicted numerically/computationally by
adversaries, even if these adversaries know other CRPs of the
Strong PUF.

Once a PUF meets these demanding properties, a vast
spectrum of different applications opens up: Just naming
three examples, Strong PUFs can be used for the remote
identification of hardware that has no non-volatile memory on
board, and that does not even carry dedicated cryptographic
circuitry (except the Strong PUF itself) [1]. This is not
possible by several other PUF sub-forms, such as Weak PUFs
or Unique Objects [8], [9]. Secondly, when some of their
challenges are fixed, Strong PUFs can serve as secret key
storage elements, meaning that Strong PUFs could in principle
also be used in any Weak PUF applications [11]. Finally, under
the assumption that a Strong PUF is exchanged physically
between communication partners, token-based cryptographic
protocols for advanced schemes become possible. This in-
cludes cryptographic key exchange, bit commitment, oblivious
transfer, or secure multi-party computation [12] [13].

While the broad applicability and potential impact of Strong
PUFs are clear and well-understood, their secure and efficient
realization in practice is not. Most existing silicon implemen-
tations suffer from one joint problem: They are not complex
enough to prevent the most effective attack form on Strong
PUFs, so-called machine-learning based modeling attacks
[14]. In these attacks, an adversary with temporary PUF-access
collects some fraction of CRPs, and uses this fraction to train a
machine learning (ML) algorithm. If successful, the algorithm
can later predict all PUF-responses and thus digitally emulate
the Strong PUF. Contrary to the PUF, it can be cloned and
distributed arbitrarily. This breaks essentially all protocols and
applications built on the emulated Strong PUF.

In order to “prove” that a given Strong PUF candidate is
secure against ML, one popular strategy consists of choosing
some ML-algorithms that have broken other PUFs in the

past, or that appear suitable for other reasons, and to verify
empirically that they fail in breaking the PUF under test. This
strategy possesses some inherent shortcomings, however, as
already alluded to in the abstract: First of all, the fact that k
ML-algorithms have failed on the PUF does not prove that
an already existing, but yet untested (k+1)-th algorithm will
fail, too, let alone that all future algorithms will. Secondly,
the question whether a certain ML-method succeeds on a
given PUF depends very much on aspects like the invested
computation times, numbers of CRPs used in the training
phase, or computational resources like size of RAM and
processor power. These are hard to standardize, and it is
unclear after which time (or after how many employed CRPs,
etc.) an algorithm should be considered as failing. Thirdly,
also the implementational details of the ML-algorithm play a
very important role. This includes, among many other things,
the question whether certain tailor-made transformations have
been applied to the PUF-challenges prior to the ML training
phase. It is known that such challenge transformations, which
may incorporate the special properties of the PUF under attack,
can dramatically improve ML-performance, and often are key
to successful training phases. One prime example illustrating
this effect are (XOR) Arbiter PUFs, where often only the use
of a certain, meanwhile “classical” challenge transformation
[15] [14] enables effective ML.

These circumstances make ML-based security testing neces-
sary in practice, but also cumbersome and hard to standardize,
sometimes even inconclusive or contradictive in its findings.
The recent history of silicon Strong PUF candidates indeed
offers various examples where initial ML-experiments had
demonstrated a PUF’s security, but where just slightly more so-
phisticated ML-attempts shortly thereafter broke the candidate
[16] [14] [17] [18] [19] [20]. This calls for computationally
efficient, easy-to-apply, and simple-to-standardize metrics that
can complement ML-based security assessments, providing
a different angle for Strong PUF evaluations than pure and
exclusive ML-studies.

B. Related Work

The literature on systematic Strong PUF security metrics is
surprisingly sparse up to this point. Some interesting initial
insights can be found in [21] [22], where some first forms
of single challenge bit flips and their effects are examined. In
another related strand, sound mathematical representations of
PUFs have been developed to assess their machine learnability
in the Probably Approximately Correct (PAC) framework
[23]. Subsequently, a CAD tool framework was proposed [24],
which describes the PUF-composition in a formal language,
called PUF-G, and automates the process of PAC learnability
analysis on new PUF architectures. Finally, PUFmeter [25]
was suggested to automate the analysis of PUF designs for
evaluating ML resistance. It utilizes a PUF’s average sensi-
tivity, noise sensitivity, and k-junta testing to characterize its
security. Finally, this paper is a very strongly extended, in-
depth journal version of an earlier work by an overlapping set
of authors from 2022 [26].

C. Our Contributions

This paper makes the following contributions:

• We present computationally efficient, easy-to-apply, and
simple-to-standardize security metrics for Strong PUFs.
They work in a black-box manner, and merely require
measured/simulated CRPs of the Strong PUF under test,
but no internal mathematical model of the PUF, nor any
general knowledge on ML-techniques. We stress again
that the metrics must not be mixed up with formal se-
curity guarantees, let alone security proofs, and that they
are intended to complement, not to completely replace
ML-based security evaluations.

• Concretely, our paper systematically investigates the ef-
fects that flipping single bits in PUF-challenges has on
the resulting PUF-responses. We mathematically define
various figures of merit (or “scores”) that measure and
quantify these effects. These include the response flip
probability caused by inverting the j-th challenge bit of
a single Strong PUF instance (= Sj); the average of
the Sj scores over multiple PUF-instances (= Sj); the
“distance” of a single PUF-instance to a hypothetical
ideal Strong PUF, for which all Sj possess the value
0.5 (= I2O1); and the average of the I2O1 scores over
multiple PUF-instances (= I2O1).

• We propose that our metrics can be used for first security
assessments of Strong PUF candidates (serving as “PUF
canaries”), and also for the computationally efficient
iterative design optimization of a given Strong PUF.

• We extensively apply our metrics to several popular
Strong PUF families as test cases, namely k-XOR Arbiter
PUFs and k-XOR Bistable Ring PUFs for growing k, as
well as Feed-Forward Arbiter PUFs for growing number
of loops l, using noise-free, numerically simulated CRPs
from pypuf [27]. We then compare the obtained metric
scores on our test cases to the well-studied real-world
security of these designs, finding that they match ex-
tremely well. In passing, we show how our metric scores
can be interpreted and graphically represented in the best
fashion.

• Our findings demonstrate that our metrics could have
unearthed the security vulnerabilities of many previous
Strong PUF designs early on, avoiding periods of false
security beliefs, if they had already existed at the time of
their introduction.

• In the Supplementary Material, we prove two central
mathematical results on our metrics: First of all, the exact
relation between our above score I2O and another natural
figure of merit termed A2O1, making the latter obsolete
in Strong PUF assessments. This greatly simplifies our
analyses. Secondly, we prove an unexpected relation
between our bit flip probabilities Sj and the challenge-
bitwise nonlinearity features of a tested Strong PUF.

• Finally, we make all code for computing and graphically
representing our metric scores publicly available [28],
fostering their simple application and follow-up works.

2

II. BACKGROUND: EXAMINED STRONG PUF FAMILIES
AND NUMERIC CRP-GENERATION

A. k-XOR Arbiter PUFs

The plain Arbiter PUF [11] consists of a chain of n
consecutive “stages” (each built of two multiplexers), which
are traversed by two parallel electrical signals from left to
right. The individual paths of the two signals are determined
by n external bits applied at the stages: If the external bit at
a stage is 0, the two signals traverse this stage in parallel,
maintaining their upper/lower positions; if the external bit is
1, then the two signal paths cross each other, with the upper
signal moving down, the lower signal moving up. These n
external bits together constitute the applied PUF-challenge Ci.
The PUF-response Ri consists of just a single bit: This bit
indicates whether the upper signal or the lower signal arrived
first at a so-called “arbiter element” or latch at the right end
of the structure, i.e., after the last stage.

It has been observed early [15] that plain Arbiter PUFs are
highly susceptible to machine learning (ML) based modeling
attacks (see Section I-A). As a countermeasure, so-called k-
XOR Arbiter PUFs have been suggested [29]: k Arbiter PUFs
are employed simultaneously and “in parallel”. Exactly the
same n-bit challenge Ci is applied to all of them, and their k
individual responses are XORed to produce the final, single-
bit response Ri. (Please bear in mind that formally speaking in
this notation, a k-XOR Arbiter PUF for k = 1 and a “plain”,
normal Arbiter PUF are simply the same.)

According to all we currently know, this design trick for
sufficiently large k protects k-XOR Arbiter PUFs against all
those ML-attacks that merely use plain, single CRPs (and no
other information) in the ML-training phase: Increasing k lin-
early seems to exponentially increase the computational effort
of such attacks [14]. Furthermore, increasing the challenge
length n seems to raise the ML-efforts only polynomially
in this attack type [14]. There are two important caveats,
though: Firstly, incrementing k also raises the instability of
a k-XOR Arbiter PUF exponentially in k. This obviously
puts limits on the practically usable values of k. Secondly,
additional side-channel information can exponentially boost
ML performance, re-enabling polynomial-time ML-attacks on
k-XOR Arbiter PUFs. For example, power side channels that
reveal the cumulative number of 0’s and 1’s in the input to
the final XOR gate [30] re-enable polynomial attacks. Also
utilizing the stability levels of each single CRP in repeated
measurements allows polynomial attack performance [31].

We stress that we will not use ML-performance under side-
channel information as comparative benchmark in this paper,
though. One straightforward reason is that our generic, black-
box type metrics cannot take such additional information into
account (yet), at least not in a general manner and for arbitrary
side channels. Secondly, we felt that a Strong PUF design itself
should not be penalized for extra physical and implementation-
dependent attack vectors. Also in the analysis of AES or other
symmetric primitives, such physical vectors would be analyzed

separately from the primitives’ digital complexity and security,
as we do in this paper.

B. Feed-Forward Arbiter PUFs with l Loops

The Feed-Forward Arbiter PUF (FF Arb PUF) was intro-
duced immediately after the susceptibility of the plain Arbiter
PUF against simple ML-based modeling attacks, in particular
against support vector machines (SVMs), had been discovered
[16]. One of its goals was to prevent these attacks by additional
design features. To this end, a normal Arbiter PUF is amended
with some additional, so-called “feed-forward loops”. In these
loops, an “intermediate time” or “split time” between the two
competing electrical signals is taken at some point in the
sequence of stages of the Arbiter PUF chain. For this purpose,
the two signals are split or branched between two stages: One
“copy” of each signal continues to race on from left to right
in the sequence of stages. The other copy of the signals is fed
into one additional arbiter element, which determines which
of the two signals was faster at that point, and correspondingly
outputs a 0 or 1. This output bit is then used as external input
bit to a dedicated additional stage further down to the right in
the sequence of stages. Please note that this additional stage
has no external challenge bit applied, but is only switched by
the output bit of the feed-forward loop. This means that a FF
Arb PUF with l loops and n-bit challenges has n + l stages;
at n of these, external challenge bits are applied, and at l of
these, outputs of the arbiter elements in the loops are applied.

While a plethora of loop numbers and loop architectures
(adjacent, overlapping, nested, mixtures of all three, etc.) are
conceivable in FF Arb PUFs, we employ for comparability
the same architecture as in earlier studies [14], [32]: The l
loops all have equal sizes, and are distributed equidistantly
over the entire length of the Arbiter PUF. At that, the starting
and ending points of consecutive or neighbouring loops just
overlap. It is known from earlier ML-experiments that when
using the “right” ML-algorithms, attack performance on these
architectures is polynomial both in the challenge length n and
in the number of loops k [14]. Further details on the specific
loop structures investigated by us are provided right during
our analyses in Section IV-B on page 9.

C. k-XOR Bistable Ring PUFs

Our third example design, which leaves the realm of the
Arbiter PUF family, is the so-called Bistable Ring PUF (BR
PUF) [33]. It consists of a double ring of inverters segmented
into n stages, with two inverters per stage. By applying
external challenge bits at each stage, one of the two inverters is
selected. All selected inverters are then linked or connected in
order to form a ring. For an even number of stages/connected
inverters, this ring is a bistable system, and can converge
exactly to two possible states after being powered up. Which
of the two states it finally takes depends on the selected
inverters in each stage and on their manufacturing variations,
and defines the response of the BR PUF. This implies that a
BR PUF with n stages (and 2n inverters) has n-bit challenges
and 1-bit responses.

3

Test 1 (SINGLE CHALLENGE BIT FLIPS ON A SINGLE
PUF-INSTANCE).

Under Test:

• A single PUF-instance P with n-bit challenges
Ci = b1i · · · bni and single-bit responses Ri.

Test Scores:

• n numbers S1(P), . . . , Sn(P) ∈ [0, 1]. Each Sj(P)
gives the probability that the response Ri of the PUF-
instance P to a uniformly randomly chosen challenge
Ci will “flip” (i.e., will turn from Ri into Ri ⊕ 1)
when the j-th challenge bit bji of Ci is “flipped”
(i.e., is turned from bji into bji ⊕ 1). a

• One number I2O1(P) ∈ [0, 0.5], where the acronym
stands for “single-flip instance-to-optimum score”.
It calculates the mean absolute distance of all test
scores Sj(P) to the ideal value 0.5:

I2O1(P) :=
|S1(P)− 0.5| + . . .+ |Sn(P)− 0.5|

n
(1)

• Notation: Whenever P is clear from the context we
may drop it, simply writing Sj and I2O1 for brevity.

Estimating S1, . . . , Sn and I2O1 in Practice:

• Any Sj can be estimated by the following method:
– s challenges C1, . . . , Cs are chosen uniformly

at random from P’s challenge space.

– The challenges C1, . . . , Cs are applied to P.
Then in all these challenges C1, . . . , Cs, the j-
th bit is flipped, and the so-obtained challenges
C∗

1 , . . . , C
∗
s are applied to P. Finally, Sj is cal-

culated as the fraction of responses that flipped
when C∗

i was applied instead of Ci.
• When estimating different Sj , usually the same chal-

lenge set C1, . . . , Cs is employed for simplicity and
yet better comparability.

• An estimated value for I2O1 can then be calculated
from the estimated Sj , following Eqn. (1).

• Based on our experience with the PUF-designs of
this paper, statistically recommendable values are
s = 1, 000 or larger, if possible. Extreme values of
s = 100 should only be used in very first qualitative
analyses, and if strictly necessary.

Ideal Test Scores and Simple Interpretation:

• The ideal score for all Sj is 0.5. Deviations (both
larger or smaller values within [0, 1]) can signal po-
tential weaknesses of the considered PUF-instance.
They may also indicate that the effective challenge
space of the PUF-instance is reduced, in particular
for any Sj very close to 0 or 1.

• The ideal score for I2O1 is 0. Deviations (i.e., larger
values within [0, 0.5]) can again signal potential
weaknesses of the examined PUF-instance.

aWe emphasize explicitly that said probability is taken over the uniformly random choice of Ci from P’s challenge space, but not over any
manufacturing variations, as only one fixed PUF instance is considered here.

As before, a k-XOR BR PUF can be formed by using k
BR PUFs in parallel, applying the same external challenge to
all of them, and by computing the final response by XORing
the individual responses of all k BR PUFs. Even though the
BR PUF is one of the most-cited Strong PUF designs [33],
the ML-complexity of k-XOR BR PUFs has not been studied
with the same intensity as for k-XOR Arbiter PUFs. Existing
ML-experiments seem to indicate a similar trend, though:
According to all we know, the best ML-performance for k-
XOR BR PUFs is exponential in k and polynomial in the
challenge length n [34], [35]. This holds at least for ML-
attacks that merely use “plain” CRPs without any side channel
information, a considered by us in this paper (compare end of
Section II-A).

D. Simulation of CRP-Data

The PUF CRP data for all figures and analyses in this
paper was generated with the python package pypuf (ver-
sion 3.2.1) [27]. We use non-noisy simulations, i.e., our
numerically generated CRPs are perfectly stable. All internal
parameters/manufacturing variations of the PUF are chosen
independently via a standard normal distribution.

III. DEFINITION OF OUR SECURITY METRICS

The sensitivity of PUF-responses to flipping single bits
in the PUF-challenges could be seen as one of the most
suggestive security and quality metrics for Strong PUFs. We
formally define an associated Test 1 and two related numeric
scores in the grey box above, namely Sj and I2O1. Please note
that Test 1 is dedicated to examining single PUF-instances.
To deal with r instances (from the same PUF-design and with
the same challenge length), Test 2 is introduced on page 5. It
adds the averaged numeric scores Sj , I2O1, and A2O1 to our
toolbox.

Let us elaborate a bit further on these two tests and their
interpretation. For a hypothetical “ideal” Strong PUF instance
P with n-bit challenges, the bit flip probabilities Sj(P) for
j = 1, . . . , n should all be equal to 0.5, implying that I2O1(P)
will be equal to 0. A noticeable deviation from these ideal
values can signal potential security weaknesses of the tested
PUF-instance against ML-based modeling attacks. Note that
deviations in the scores of single PUF-instances may result
from a non-optimal general PUF design under test, from the
effects that individual manufacturing variations have on the
tested instance, or from a combination of both.

4

Test 2 (SINGLE CHALLENGE BIT FLIPS ON r PUF-
INSTANCES).

Under Test:

• r PUF-Instances P1, . . . ,Pr from the same PUF-
design, all with n-bit challenges Ci = b1i · · · bni and
single-bit responses Ri.

Test Scores:

• n numbers S1, . . . , Sn ∈ [0, 1]. Each Sj de-
notes the arithmetic mean of the r-element set
{Sj(P1), . . . , Sj(Pr)}:

Sj :=
Sj(P1) + . . .+ Sj(Pr)

r
(2)

• One number I2O1 ∈ [0, 0.5]. It denotes
the arithmetic mean of the r-element set
{I2O1(P1), . . . , I2O1(Pr)}:

I2O1 :=
I2O1(P1) + . . .+ I2O1(Pr)

r
(3)

• One number A2O1 ∈ [0, 0.5], where the acronym
stands for “single-flip average-to-optimum score”.
It gives the mean absolute deviation between the
arithmetic mean Sj and the optimal value 0.5:

A2O1 :=
|S1 − 0.5| + . . .+ |Sn − 0.5|

n
(4)

Estimating Sj , I2O1 and A2O1 in Practice:

• Any Sj can be estimated as follows:

– The values Sj(P1), . . ., Sj(Pr) are estimated by
the method described in Test 1.

– Sj is then estimated by Eqn. (2).

• The value I2O1 can be estimated as follows:

– The values I2O1(P1), . . . , I2O1(Pr) are esti-
mated by the method described in Test 1.

– I2O1 is then estimated by Eqn. (3).

• The value A2O1 can be calculated on the basis of
the estimated Sj , following Eqn. (4).

Ideal Test Scores and Simple Interpretation:

• The ideal score for Sj is 0.5. For I2O1 and A2O1 it
is 0.

• Deviations from these ideal values (within the possi-
ble ranges [0, 1] or [0, 0.5]) can again signal potential
weaknesses of the examined PUF-instances and/or
the underlying PUF-design.

• For increasing values of r, the above scores gradually
become design-specific figures rather than instance-
specific ones. Based on our experience with the PUF-
designs of this paper, statistically recommendable
values are r = 100 or larger, if possible.

Similar statements hold for the analysis of r PUF-instances
in Test 2: If all were hypothetical “ideal” instances, the
score Sj would be equal to 0.5 for all j = 1, . . . , n, whilst
I2O1 = A2O1 = 0. Once more, noticeable deviations from
the ideal values can signal potential security weaknesses the
tested design. For larger r, such deviation will predominantly
result from the non-optimalites of the general design under
test; the findings become increasingly design-specific, less
instance-specific. Interestingly, a mean score Sj = 0.5 does
not necessarily imply that for all r considered single instances
Sj = 0.5. A meaningful analysis therefore should not only
take the mean values Sj into account, but also the statistical
spread of the single Sj values across the r instances. We will
follow this paradigm in almost all of our later analyses: For
example in the statistical box plots of Figures 3, 4, 7, 10, 13,
14, which are based on many PUF-instances, or in Figures 1,
2, 5, 8, 11, 12, which show curves from several PUF-instances
side by side for better comparison.

Besides initial assessments of PUF-complexity, the Sj (or
Sj) values also allow statements on the effective challenge
space size of an examined PUF-instance (or examined PUF-
design, respectively). If many Sj (or Sj) are close to 0,
then the corresponding bit positions in the challenge have no
notable effect on the responses; they more or less do not matter
and can be excluded. Something similar holds for challenge

bit positions whose corresponding values Sj (or Sj) are close
to 1: Their effect on the responses can be approximated by
merely taking their parity. Both can simplify attacks.

Finally, we vividly stress again that even ideal test scores
(e.g., all Sj = Sj = 0.5 and I2O1 = I2O1 = A2O1 = 0)
do not unconditionally prove the security of a PUF-design or
PUF-instance. But relatively “bad” scores (apart from patho-
logical and constructed cases) usually can be seen as a negative
criterion, which may signal Strong PUF vulnerabilities early
on. Such PUFs can then either be improved in an iterative
design process, possibly using our metrics as evaluation scores
in each design loop. Or they can be winnowed and sorted out
in due time, if such improvement turns out impossible.

We will now apply Tests 1 and 2 to various popular Strong
PUF families to prove the usefulness of our metrics. The
results are presented and discussed over the next subsections.

IV. APPLICATION OF OUR SECURITY METRICS TO
POPULAR STRONG PUF FAMILIES

A. Single Bit Flip Test on k-XOR Arbiter PUFs

We first applied Tests 1 and 1 to six individual Arbiter
PUF instances of challenge length 64. Figure 1 illustrates the
resulting response flip probabilities Sj plus I2O1 and I2O1

scores. The Sj increase monotonically with the position j
of the flipped bit within the challenge. Their values range

5

Fig. 1: Response flip probability Sj vs. bit flip position j for
eight Arbiter PUF instances with challenge length 64, using a
fixed challenge set of size s = 105.

from close to zero (at the very left) to close to one (at
the very right). In large parts, but not at its very left and
right edges, this leads to a quasi-linear curve. This finding is
perhaps somewhat unexpected, but in agreement with earlier
literature [36]: The challenge bits in an Arbiter PUF obviously
do not have equal influence on its responses. Furthermore,
only very few challenge bits are close to the ideal value
0.5, signalling potential vulnerabilities. The IO21 scores vary
somewhat statistically around their (substantially large) mean
value I2O1 = 0.183.

Next, we applied Test 1 and 2 to 100 Arbiter PUF instances.
Figure 3 subsumes the statistics, showing boxplots on the Sj

scores, together with the average scores Sj and I2O1. While

Fig. 2: Response flip probability Sj vs. bit flip position j for
eight 2-XOR Arbiter PUF instances with challenge length 64,
using a fixed challenge set of size s = 105.

Fig. 3: Response flip probability Sj vs. bit flip position j for
hundred Arbiter PUF instances with challenge length 64, using
a fixed challenge set of size s = 105. The box plot’s whiskers
range between the 10th and 90th percentile.

there are (for every position j) notable outliers of Sj-values
beyond the boxplot’s two whiskers (at the 10th and 90th
percentile), an almost linear increase in the mean scores Sj

can be identified with growing j. As before, the curve becomes
notably steeper towards its left and right edges. Note that both
Figures 1 and 3 exhibit very similar I2O1 scores of 0.183 and
0.189; the small difference is caused by expectable statistical
variations.

Subsequently, we ran Tests 1 and 2 on eight k-XOR Arbiter
PUFs of challenge length 64 for k = 2 and k = 3, showing our
results in Figures 2 and 5. Complementary large-scale statistics

Fig. 4: Response flip probability Sj vs. bit flip position j for
hundred 2-XOR Arbiter PUF instances with challenge length
64, using a fixed challenge set of size s = 105. The box plot’s
whiskers range between the 10th and 90th percentile.

6

Fig. 5: Response flip probability Sj vs. bit flip position j for
eight 3-XOR Arbiter PUF instances with challenge length 64,
using a fixed challenge set of size s = 105.

over one hundred instances are subsumed in the boxplots of
Figures 4 and 7. These four figures jointly can be seen as first
indication of a more general trend: Increasing k successively
yields test scores that are closer and closer to the optimal
values. For larger k, the resulting Sj and Sj get closer to 0.5
over the entire challenge length, i.e., for all possible j. At the
same time, the I2O1 and I2O1 slowly, but steadily approach
0. This phenomenon is yet more systematically examined in
Figure 6 and Table I, where we study the I2O1-values of k-
XOR Arbiter PUFs for up to k = 20. They show that our
metrics can discriminate exceptionally well between k-XOR
Arbiter PUF and (k + 1)-XOR Arbiter PUF, even for large
k. This extreme discriminativity could be seen as positive

Fig. 6: Descending I2O1 Scores for 100 k-XOR Arbiter PUF
instances with challenge length 64, using a fixed challenge set
of size s = 105.

Fig. 7: Response flip probability Sj vs. bit flip position j for
hundred 3-XOR Arbiter PUF instances with challenge length
64, using a fixed challenge set of size s = 105. The box plot’s
whiskers range between the 10th and 90th percentile.

indication for the quality and precision of our metrics.
Please note that the special way of ordering the randomly

generated PUF-instances along the x-axis in Figure 6 (namely

Number of PUF-Instances
10 100 1000

k

1 0.18171 0.18866 0.19015
2 0.09490 0.10127 0.10031
3 0.05868 0.06190 0.06223
4 0.04043 0.04202 0.04278
5 0.02978 0.03096 0.03157
6 0.02294 0.02378 0.02454
7 0.01851 0.01927 0.01990
8 0.01564 0.01613 0.01644
9 0.01419 0.01366 0.01401

10 0.01204 0.01212 0.01206
11 0.01077 0.01058 0.01051
12 0.00974 0.00925 0.00927
13 0.00911 0.00845 0.00832
14 0.00771 0.00758 0.00745
15 0.00630 0.00675 0.00675
16 0.00611 0.00618 0.00617
17 0.00571 0.00560 0.00563
18 0.00512 0.00515 0.00519
19 0.00501 0.00485 0.00482
20 0.00464 0.00441 0.00448

k-XOR
Arbiter PUFs

I2O1

TABLE I: I2O1 scores for various k-XOR Arbiter PUFs,
averaged over different numbers of PUF-instances. The same,
fixed challenge set of size s = 105 was used for computing
each single I2O1-value.

7

by descending I2O1-scores) allows grasping the distribution of
metric scores over all instances at one glance, even for very
large numbers of examined instances. Albeit this simple trick
of re-ordering the x-axis appears straightforward, we must
admit that we have never encountered it before in the literature.
We will also apply it later in Figures 9 and 15.

Another interesting observation is that the statistical spread
of our metric scores — for example of the I2O-scores in Figure
6, or of the Sj-scores and boxplots in Figures 1 to 5 and
7 — becomes “flatter” for increasing k in k-XOR Arbiter
PUFs. This means that the chance of obtaining a low-quality,
vulnerable outlier in PUF-production becomes successively
smaller. I.e., with increasing k, we observe less variations in
the quality of fabricated k-XOR Arbiter PUF instances.

Let us also have a word on Table I. It systematically
investigates the behavior of the I2O1 score of k-XOR Arbiter
PUFs for growing k, and for increasing number of examined
PUF-instances. The same challenge set of size s = 105

is employed for each PUF-instance and for computing each
single I2O1-score to ensure comparability. The table illustrates
the extreme numeric stability of the growing I2O1-values for
ever larger k. Even for only ten examined PUF-instances, these
values can easily discriminate k-XOR Arbiter PUF designs for
up to k = 20, indicating the quality of our metrics.

Readers will probably have already observed that the shapes
of the shown curves in Figures 1, 5, 10, 7 (for k-XOR Arbiter
PUFs with odd k) and Figures 2, 4 (for k-XOR Arbiter PUFs
with even k) systematically differ. Odd k lead to curves that are
point-symmetric around the center point (32.5, 0.5) in (x, y)-
coordinates. For even k, the right halves of the Sj- and Sj-
curves seem to be “mirrored downwards” at the y = 0.5
line. This creates axisymmetric curves overall, with a vertical
symmetry axis located at x = 32.5. Let us focus on the case
k = 2 for a closer explanation of this interesting phenomenon.
It can be attributed to the general functionality of the XOR
operation: Recall here that the 2-XOR Arbiter PUF consists of
two independent, parallel Arbiter PUFs. If the last challenge
bit is flipped, it is highly likely that the response of both of
these two independent Arbiter PUFs will flip, too. These two
flips will then cancel out in the final XOR gate, however;
therefore with high probability, the same, unchanged PUF-
response results. A similar logic can be extended to all XOR
Arbiter PUFs with even k. For uneven k, on the other hand,
this effect is exactly inverse: If an uneven amount of parallel
Arbiter PUFs all flip, then the final response after the XOR
will necessarily flip, too. As expected, both effects become
weaker for larger k, and the Sj overall move closer to the
ideal value 0.5. Again, this is empirically confirmed for up to
k = 20 in Table I.

All these findings, which are delivered almost automatically
and in a simple-to-standardize fashion by our metrics, are
in strong agreement with the longly and laboriously studied
practical security of k-XOR Arbiter PUFs against ML: For
example with the known insecurity of plain Arbiter PUFs and
k-XOR Arbiter PUFs for small k, or with the increasing ML-
resilience of k-XOR Arbiter PUFs for growing k [14], [32].

Please also compare Section II-A in this context.

B. Single Bit Flip Test on Feed-Forward Arbiter PUFs

Let us now apply Tests 1 and 2 to another well-studied
Strong PUF candidate from the Arbiter PUF family, namely FF
Arb PUFs. As already stated in Section II-B, the FF Arb PUF
historically was proposed in 2004 to thwart the simple ML-
attacks on the original Arbiter PUF, such as the application of
SVMs [16]. Since it succeeded at that, it was assumed secure
for several years, until it was broken around six years after
its introduction by another ML-technique known as Evolution
Strategies (ES) [14].

Please recall here that the number and positions of the loops
in a FF Arb PUF are variable design parameters (see again
Section II-B). We will examine an exemplary FF Arb PUF
with eight loops and challenge length 64 bits in the following.
It is identical to the “classical” FF Arb PUF designs already
studied in previous works [14], [32]: All eight loops have equal
and maximal length, the ending point of the previous loop and
the starting point of the new loop just about overlap (meaning
that the next loop starts between stage n and n + 1 if the
previous loop ends in stage n + 1), and the very last loop
ends in the last stage. More precisely, the starting points and
ending points of each of our eight loops can be written as (6,
15), (14, 22), (21, 29), (28, 36), (35, 43), (42, 50), (49, 57),
(56, 64). In this notation, the first entry in each tuple gives
the challenge bit (not the stage!) after which the two signals
are branched and the respective loop starts. The second entry
gives the challenge bit (not the stage!) after which the output
of the respective feed-forward loop is fed into a new, dedicated
stage, which employs the loop’s output as its sole configuring
input bit. Slightly jumping ahead, this notation will be most
useful for understanding the dotted lines of Figure 8: They
precisely coincide with the starting/ending points of the loops
in our above notation.

We then executed Test 1 and 2 on six randomly chosen
FF Arb PUFs instances of exactly this loop structure. The
results are shown in Figures 8 and 10. They already signal
first weaknesses in the FF Arb PUF’s design at one glance,
since many Sj substantially deviate from the ideal value of
0.5. Those areas of maximal deviation are sharply demarcated
by the starting and ending points of some of the individual
loops of the examined design. The resulting I2O1 scores are
weak, even comparable to the Arbiter PUF, clearly signalling
potential vulnerabilities of the FF Arb PUF. This illustrates
the predictive power of our metrics: Had they been known at
the time of introduction of the FF Arb PUF in 2004 [16], they
would have signalled potential vulnerabilities early on. One
could have reasonably concluded that sooner or later, efficient
ML-attacks would loom [14], even if the prevailing method of
SVMs at the time could not break FF Arb PUFs. Assessments
like these are one of the main purposes of our metrics.

Please recall that in Section IV-A, we examined the metric
scores of k-XOR Arbiter PUFs for growing k. This suggests
a similar analysis for growing numbers of loops l in the FF
Arb PUF. Following these traces, we applied Tests 1 and 2 to

8

Fig. 8: Response flip probability Sj vs. bit flip position j for
six FF Arb PUF instances, each with eight feed-forward (FF)
loops and challenge length 64, using a fixed challenge set of
size s = 105. The starting points of the FF loops are marked
by dotted vertical lines.

FF Arb PUFs with growing numbers of loops l = 1, . . . , 10.
The loops are placed via the same rationale as above: They all
just overlap (meaning that the next loop starts right before the
previous loop ends), are distributed as uniformly as possible
over the entire chain of stages, and have equal length. In
this construction principle, the entire loop structure is already
completely specified by describing the last loop. For full
exactness of our exposition, let us do so for all examined FF
Arb PUF architectures, where l = 1, . . . , 10:

Fig. 9: Descending I2O1 Scores for 100 FF Arbiter PUF
instances with l feed-forward loops and challenge length 64,
using a fixed challenge set of size s = 105.

Fig. 10: Response flip probability Sj vs. bit flip position j for
100 FF Arb PUF instances with eight FF loops and challenge
length 64, using a fixed challenge set of size s = 105. The
box plot whiskers range between the 10th and 90th percentile.
The starting points of FF loops are marked by dotted lines.

l = 1 : (2, 64) l = 5 : (54, 69) l = 9 : (64, 73)
l = 2 : (33, 66) l = 6 : (57, 70) l = 10 : (65, 73)
l = 3 : (44, 67) l = 7 : (60, 71)
l = 4 : (50, 68) l = 8 : (62, 72)

Figures 9 and Table II display our results. They illustrate
that neither the statistical spread of scores over a population
of 100 FF Arb PUFs, nor the distribution of I2O1 scores
over many instances, change notably with growing numbers
of loops l. The parameters l in a FF Arb PUF and k in a k-
XOR Arbiter PUF thus have much differing effects: Increasing
l hardly affects ML-security and PUF-quality at all.

Again, all the above findings are in strong agreement with

Number of PUF-Instances
10 100 1000

l

1 0.17905 0.18725 0.18353
2 0.17777 0.17981 0.17761
3 0.18398 0.18835 0.18330
4 0.18077 0.18853 0.18355
5 0.17996 0.18882 0.18245
6 0.18110 0.18613 0.18284
7 0.18009 0.18320 0.18094
8 0.17981 0.18486 0.18174
9 0.18382 0.18454 0.18189

10 0.18115 0.18322 0.18031

FF Arb PUF
(with l loops)

I2O1

TABLE II: I2O1 scores for FF Arb PUFs with loops l =
1, . . . , 10, averaged over different numbers of PUF-instances.
The same, fixed challenge set of size s = 105 was used for
computing each single I2O1-value.

9

Fig. 11: Response flip probability Sj vs. bit flip position j
for six Bistable Ring PUF instances with challenge length 64,
using a fixed challenge set of size s = 105.

known ML-results that have evolved over a significant period
of time in PUF-research (see, for example, [14], [15], [32]).
Once more, this seems to illustrate the predictive quality and
usefulness of our metrics.

In passing, let us state that many features of Figure 8
(and of most other presented data) invite further interpretation.
For example, some of the feed-forward loops apparently lead
to “valleys” in the Sj-curves of Figure 8, but others do
not. While considering these aspects highly interesting, we
must leave a detailed mathematical resolution to follow-up
publications, simply for reasons of space. Asides, readers are
encouraged to follow these promising routes in their own
future works, too.

Fig. 12: Response flip probability Sj vs. bit flip position j for
six 4-XOR Bistable Ring PUF instances with challenge length
64, using a fixed challenge set of size s = 105.

Fig. 13: Response flip probability Sj vs. bit flip position j for
100 Bistable Ring PUF instances with challenge length 64,
using a fixed challenge set of size s = 105. The box plot’s
whiskers range between the 10th and 90th percentile.

C. Single Bit Flip Test on k-XOR Bistable Ring PUFs

The Bistable Ring PUF [33] from Section II-C rests on a
fundamentally different design paradigm than the Arbiter PUF
family. Applying our metrics to this varying candidate as test
case shall therefore complete the exemplary analyses led in
this paper.

When considering the k-XOR BR PUFs architecture, the
influence of every single challenge bit on the response intu-
itively should be smaller than for the k-XOR Arbiter PUF:
Recall that merely a single inverter element in the entire
bistable ring is altered when flipping a single challenge bit.

Fig. 14: Response flip probability Sj vs. bit flip position j
for 100 4-XOR Bistable Ring PUF instances with challenge
length 64, using a fixed challenge set of size s = 105. The box
plot’s whiskers range between the 10th and 90th percentile.

10

No entire signal trains (and the possibly large delays they have
accumulated) are rerouted by a single bit flip, as in a k-XOR
Arbiter PUF. Furthermore, due to the rotational symmetry of
the BR PUF, no systematic differences in the Sj-values for
different challenge bit positions j should be observable.

These first intuitions are confirmed by the formal analyses
of this section. To start with, Figure 11 illustrates that no
single bit flip probability for any challenge positions or any
PUF-instances lies above 0.3 when considering six instances
of plain BR PUFs; most Sj are, in fact, much smaller than
that. For each PUF-instance, several Sj-scores are even equal
to zero (but the associated challenge bit positions j vary from
instance to instance). This means that the effective challenge
space for each single instance (but not for the overall BR PUF)
is systematically reduced: The instance-specific challenge bits
with Sj = 0 have no influence on the responses. The above
observations are backed up by the statistically significant
analysis of 100 BR PUF instances provided in Figure 13.

When progressing to 4-XOR BR PUFs in Figures 12 and 14,
we first observe that their Sj-scores have notably improved.
No Sj is equal to zero anymore, neither for any of the six
instances examined in Figure 12, nor for the 100 instances
of Figure 14. Both figures show that the Sj start converging
towards the ideal value of 0.5, while still remaining at a
notable distance from it, though. Again, this corroborates the
usefulness of the XOR gate as some universal “healer” for
Strong PUF insufficiencies.

The foure Figures 11 to 14 also confirm our earlier hy-
pothesis that there will be no systematic difference of the Sj-
and Sj-scores between varying challenge bit positions j in
k-XOR BR PUFs. As already mentioned, this is due to the
rotational symmetry of the ring-shaped architecture of the BR
PUF, which designs from the Arbiter PUF family do not share.
Overall, any of the three PUF design families examined in

Fig. 15: Descending I2O1 Scores for 100 k-XOR Bistable
Ring PUF instances with challenge length 64, using a fixed
challenge set of size s = 105.

Sections IV-A to IV-C possess their own individual character-
istics and well-recognizable metric scores. Again, this seems
to point at the strength and versatility of our metrics.

Finally, a systematic analysis of I2O1-scores of k-XOR BR
PUFs for growing k and different numbers of PUF-instances
is reported in Table III. The table again shows the effect
of the XOR-gate as “healer” for the insufficiencies of the
underlying plain BR PUF design. As in the similar analysis of
Section IV-A, the numeric stability of the scores even for small
numbers of considered instances, plus their discriminativity for
large k, are worth noting.

V. TWO IMPORTANT MATHEMATICAL OBSERVATIONS

A. Exact Relation between I2O1 and A2O1

Test 2 defined two average-related scores, namely I2O1 and
A2O1. Both were suggestive figures of merit that appeared
natural to introduce. Readers will have noticed, though, that in
all tests throughout this paper, we solely reported I2O1-scores,
never A2O1-scores. The underlying mathematical reasons are
elaborated in the following analysis.

The analysis starts with an important, but relatively technical
lemma, which precisely spells out the difference between I2O1

and A2O1. The work invested here will later help proving our
central theorem almost immediately.

Number of PUF-Instances
10 100 1000

k

1 0.42163 0.42025 0.42094
2 0.35224 0.35423 0.35434
3 0.29810 0.29824 0.29817
4 0.25166 0.25122 0.25094
5 0.21025 0.21100 0.21101
6 0.17824 0.17809 0.17785
7 0.15071 0.14968 0.14958
8 0.12566 0.12551 0.12585
9 0.10604 0.10589 0.10595

10 0.08908 0.08944 0.08917
11 0.07380 0.07495 0.07513
12 0.06348 0.06333 0.06318
13 0.05322 0.05349 0.05320
14 0.04431 0.04461 0.04478
15 0.03814 0.03757 0.03772
16 0.03222 0.03181 0.03176
17 0.02705 0.02668 0.02666
18 0.02289 0.02248 0.02245
19 0.01914 0.01880 0.01889
20 0.01643 0.01597 0.01593

k-XOR I2O1

Bistable Ring
PUFs

TABLE III: I2O1 Scores for k-XOR Bistable Ring PUFs,
averaged over different numbers of PUF-instances. The same,
fixed challenge set of size s = 105 was used for computing
each single I2O1-value.

11

Lemma 1. Let P1, . . . ,Pr be r Strong PUF instances with
challenge length n and single-bit responses. Now, for all j =
1, . . . , n, we define:

M+
j := {i ∈ {1, . . . , r} | Sj(Pi) > 0.5}

and
M−

j := {i ∈ {1, . . . , r} | Sj(Pi) < 0.5}.

Furthermore, let MSmall
j := M+

j if∑
i∈M+

j

(Sj(Pi)− 0.5) ≤
∣∣∣∣ ∑
i∈M−

j

(Sj(Pi)− 0.5)

∣∣∣∣,
and MSmall

j := M−
j elsewise. Then it holds that:

I2O1 − A2O1 =
2

rn

n∑
j=1

∑
i∈MSmall

j

|Sj(Pi)− 0.5|. (5)

Proof. Let us define the index set MBig
j via

MBig
j ∈ {M+

j ,M−
j } \MSmall

j ,

i.e., MBig
j is the “other” element from {M+

j ,M−
j } that is not

identical to MSmall
j . Then the following calculation proves the

lemma:

I2O1 − A2O1 =

(a)
=

1

r

r∑
i=1

(
1

n

n∑
j=1

|Sj(Pi)− 0.5|

)
− 1

n

n∑
j=1

|Sj − 0.5 |

(b)
=

1

r

r∑
i=1

(
1

n

n∑
i=1

|Sj(Pi)− 0.5|

)

− 1

n

n∑
j=1

∣∣∣∣∣
(
1

r

r∑
i=1

Sj(Pi)

)
−0.5

∣∣∣∣∣
(c)
=

1

rn

n∑
j=1

(
r∑

i=1

|Sj(Pi)− 0.5| −

∣∣∣∣∣
r∑

i=1

Sj(Pi)− 0.5

∣∣∣∣∣
)

(d)
=

1

rn

n∑
j=1

(∑
i∈MBig

j

|Sj(Pk)− 0.5| +
∑

i∈MSmall
j

|Sj(Pk)− 0.5|

−
∑

i∈MBig
j

|Sj(Pk)− 0.5| +
∑

i∈MSmall
j

|Sj(Pk)− 0.5|
)

(e)
=

2

rn

n∑
j=1

∑
i∈MSmall

j

|Sj(Pi)− 0.5.|

The single steps of the calculation are justified as follows:
Step (a) follows from the definitions of I2O1 and A2O1 in Test
2, and Step (b) is implied by the definition of Sj in the same
test. Step (c) results from rearranging terms, in particular from
putting 0.5 into the absolute value. Step (d) is the perhaps
most critical step, eventually following from the definition

of MBig
j and MSmall

j . Note here that the union of MBig
j and

MSmall
j contains all indices i that lead to non-zero values for

the expression Sj(Pi) − 0.5. This explains the first, left part
of the term rearrangement in this step. For the second, right
part of the term transformation, please note that for all j,∣∣∣∣∣

r∑
i=1

Sj(Pi)− 0.5

∣∣∣∣∣
=
∑

i∈MBig
j

|Sj(Pk)− 0.5| −
∑

i∈MSmall
j

|Sj(Pk)− 0.5|.

Step (e) is then again simple arithmetic.

The above technical efforts will now pay off, and will
strongly simplify the proof of the following theorem.

Theorem 1. Let P1, . . . ,Pr be r Strong PUF instances with
challenges of length n and single-bit responses. Then the
following holds:
T1 I2O1 ≥ A2O1.
T2 I2O1 ̸= A2O1 if and only if there exists (at least) a

challenge position j ∈ {1, . . . , n}, and (at least) two
PUF-instances Pa and Pb among the P1, . . . ,Pr, such
that Sj(Pa) > 0.5 and Sj(Pb) < 0.5.

Proof. T1 immediately follows from the fact that the right-
hand side in Equation 5 is non-negative.

For T2, let us start with the forward direction: We assume
that I2O1 ̸= A2O1. By Equation 5, this means that MSmall

j

is a non-empty set. This, in turn, implies by the definition of
MSmall

j that also MBig
j is non-empty. Therefore also both M+

j

and M−
j are non-empty. Via the definition of M+

j and M−
j ,

this means that there are PUF-instances Pa and Pb, such that
Sj(Pa) > 0.5 and Sj(Pb) < 0.5, as desired.

For the reverse direction of T2, note that if there is such
a challenge position j and instances Pa and Pb, then M+

j

and M−
j must both be non-empty sets. This means that also

MSmall
j , which is either equal to M+

j or M−
j , is non-empty.

This implies that the right-hand side of Equation 5 is non-zero,
and that I2O1 ̸= A2O1.

Lemma 1 and Theorem 1 jointly enable us to address several
important practical questions on the I2O1- and A2O1-scores.
To begin with, we can observe that for many examined PUF-
sets of this paper, I2O1 = A2O1. This holds, for example, for
the six (or 100) BR PUF instances of Figures 11 (or 13), and
the and six (or 100) 4-XOR BR PUF instances of Figures 12
(or 14). The reason is that none of the PUF-instances studied
there possesses any Sj-scores larger than 0.5. By statement
T2 of Theorem 1, this implies that I2O1 = A2O1. In all those
cases of equality, using just one score (namely I2O1) instead
of two different scores is trivially justified, of course.

For any examined designs from the Arbiter PUF family,
however, T2 tells us that I2O1 and A2O1 will not be equal:
The reason is that for any of those designs, there exist j ∈
{1, . . . , n} such that the Sj-values of different PUF-instances

12

lie on both sides of the 0.5-line. Illustrating examples are given
in Figures 1 to 5, 7, 8 and 10.

In those cases where I2O1 ̸= A2O1, this leads to the
pressing question which of the two scores will better capture
the quality of a given set of PUFs. This may be answered best
by an extreme, but illustrating example. Consider, for the sake
of our argument, two hypothetical PUFs P1 and P2, where it
holds for all challenge bit positions j ∈ {1, . . . , n} that

Sj(P1) := j mod 2

and
Sj(P2) := j + 1 mod 2.

For the two PUF-instances P1,P2, it then applies that
A2O1 = 0 and I2O1 = 0.5, as readers may confirm by a
quick calculation following Test 2. I.e., the score A2O1 takes
the minimal possible value, signalling good PUF-quality, while
I2O1 takes the maximal possible value, indicating strong PUF-
vulnerabilities. Only one of these statements can be correct, of
course. Indeed, it is not difficult to see that our hypothetical
P1,P2 are trivially breakable: Their challenge bits either have
no influence (whenever Sj = 0), or always flip the response
(whenever Sj = 1). Therefore simple computation of the
parity of all the influential challenge bits, plus knowledge
of a single other CRP, will eventually allow prediction of
all responses. The good A2O1-score hence is unjustified and
misleading.

Analogous considerations also apply to less extreme ex-
amples: Whenever I2O1 ̸= A2O1, and whenever some Sj-
scores of certain considered PUF-instances lie on both sides
of the 0.5-line, some unwanted “nullification” will take place
when computing A2O1: The deviations and non-idealities on
opposite sides of the 0.5-line will partly cancel out instead of
adding up. This puts the A2O1-score closer to the ideal value
of 0 than it should be, unjustly signalling good PUF-quality.
The computation of I2O1 differs notably: Here, solely absolute
terms of the form |Sj − 0.5| ≥ 0 are summed up, preventing
unwanted cancellation. This renders I2O1 the preciser score
whenever I2O1 ̸= A2O1.

Overall, this suggests using I2O1 in our analyses, and
completely dropping A2O1 from them, as we did in this paper.

B. Non-Linearities and Single Challenge Bit Flips

The second important observation of this section reveals an
unexpected relation between the (non-)linearities of a given
PUF and its Sj-scores. We start by repeating three (probably
already known) definitions:

Definition 1. Let n be a positive integer. For all j ∈
{1, . . . , n}, the j-th unit vector enj ∈ {0, 1}n is defined as

enj := 0j−1 || 1 || 0n−j .

If n is clear from the context, we may write ej instead of enj .

Definition 2. A Boolean function is a function that maps n-
bit strings to single bits, for some positive integer n. For any

fixed n, the set of all Boolean functions with n-bit inputs is
denoted by Bn

1 .

Definition 3. A Boolean function F ∈ Bn
1 is called linear if

F (x⊕ y) = F (x)⊕F (y) for all x, y ∈ {0, 1}n. Furthermore,
F ∈ Bn

1 is called affine if F (x ⊕ y) = F (x) ⊕ F (y) ⊕ a for
all x, y ∈ {0, 1}n and for some (fixed) a ∈ {0, 1}.

Linear and affine functions are strongly related: An affine
function could be seen as a linear function plus some fixed
“transposition”, which is expressed by the additive con-
stant a. Due to this similarity, the terms linear/affine (and
nonlinear/non-affine) are sometimes used laxly and inter-
changeably in the literature. Concerning cryptographic secu-
rity, both affine and linear functions must be considered as
equally insecure.

Definition 4. Let P be a PUF with challenge length n
and single-bit responses. Then FP : {0, 1}n → {0, 1},
FP(Ci) := Ri is called the function associated with P.

Having recapitulated the above definitions now allows us to
formulate and prove our first main theorem.

Theorem 2. Let P be a PUF with challenge length n and
single-bit responses, and let FP be its associated function.
Then FP is affine if and only if Sj ∈ {0, 1} for all j ∈
{1, . . . , n}.

Proof. Let us start with the forward direction: If FP is affine,
then for all PUF-challenges Ci and challenge positions j ∈
{1, . . . , n},

FP(Ci ⊕ ej) = FP(Ci)⊕ FP(ej)⊕ a.

Now, we know that the term FP(ej) ⊕ a obviously is
independent of Ci, and that it is either equal to 0 or 1. If
FP(ej) ⊕ a = 0, then flipping the challenge bit in position
j (regardless of the challenge Ci) never has an impact on
the response, and thus Sj = 0. If, on the other hand,
FP(ej) ⊕ a = 1, then flipping the challenge bit in position j
(regardless of Ci) always flips the response, whence Sj = 1.
This proves the forward direction.

Let us next show the inverse direction, assuming that for
all j, Sj ∈ {0, 1} for the considered PUF P. By the definition
of Sj in Test 1, the fact Sj ∈ {0, 1} implies that for any
challenges Ci and all challenge positions j:

F (Ci ⊕ ej) = F (Ci)⊕ Sj . (6)

Furthermore, we know from basic algebra (or from obvious
evidence) that any y ∈ {0, 1}n can be written as

y =
⊕
j∈Iy

ej , (7)

where Iy ⊆ {1, . . . , n} is a suitably chosen index set. This
implies that for all x, y ∈ {0, 1}n:

13

FP

(
x⊕ y

) (a)
= FP

(
x
⊕
j∈Iy

ej

)
(b)
= FP

(
x
) ⊕

j∈Iy

Sj

(c)
= FP

(
x
) ⊕

j∈Iy

Sj ⊕ FP

(
0n
)
⊕ FP

(
0n
)

(d)
= FP

(
x
)
⊕ FP

(⊕
j∈Iy

ej ⊕ 0n
)
⊕ FP

(
0n
)

(e)
= FP

(
x
)
⊕ FP

(
y
)
⊕ a.

This proves that FP is affine and completes the inverse
direction of our proof. The single steps in the computation
are justified as follows: Step (a) follows from Equation 7.
Step (b) from repeated application of Equation 6. Step (c) is
allowed since FP(0

n) ⊕ FP(0
n) = 0. Step (d) is obtained

by repeated “backwards” application of Equation 6. Step (e)
follows from Equation 7 and from setting a := FP(0

n).

Theorem 2 gently suggests the hypothesis that the closer the
Sj are to the ideal value of 0.5, the more nonlinear/non-affine
a PUF behaves in its j-th challenge bit position. If true, this
would be a very important insight: It would directly relate the
PUF’s nonlinearities, which are essential for its ML-resilience
[14], to its Sj-scores. The upcoming definitions, propositions,
and theorems follow this trace. They fully spell out and prove
the above hypothesis (and a bit more).

Definition 5. Let P be a PUF with challenge length n and
single-bit responses, and let FP be its associated function.
Then for all j ∈ {1, . . . , n}, the “fraction of j-affine chal-
lenges of FP”, or δAffj (FP) for short, is defined as

δAffj

(
FP

)
= 2−n· max

aj∈{0,1}

∣∣∣{Ci ∈ {0, 1}n : (8)

FP(Ci ⊕ ej) = FP(Ci)⊕ FP(ej)⊕ aj
}∣∣∣.

Likewise, the “fraction of j-nonaffine challenges of FP”, or
δNAj (FP), is defined as

δNAj

(
FP

)
= 2−n· min

aj∈{0,1}

∣∣∣{Ci ∈ {0, 1}n : (9)

FP(Ci ⊕ ej) ̸= FP(Ci)⊕ FP(ej)⊕ aj
}∣∣∣.

Put in everyday language, the value δAffj (FP) tells us how
close the behavior of FP is to that of an affine function in its
j-th challenge bit, i.e., with respect to the addition of ej to its
input challenge. It straightforwardly “counts” the fraction of
challenges for which such an affine behavior occurs. At that,
the additive constant aj in the affine function is chosen from
{0, 1} such that said fraction is maximized. Likewise, δNAj (FP)
tells us how far apart FP is from such an affine behavior. The
following proposition collects a first interesting fact:

Proposition 1. Let P be a PUF with challenge length n and
single-bit responses, FP be its associated function, and j ∈
{1, . . . , n}. Then it holds that

δAffj (FP) + δNAj (FP) = 1.

Proof. The statement follows from the insight that the value
aj ∈ {0, 1} that maximizes the cardinality of the set on the
right-hand side of Equation 8 is the very same value that
minimizes the cardinality of the set on the right-hand side of
Equation 9. This eventually implies that the union of the said
two sets is equal to {0, 1}n. So, δAffj (FP)+ δNAj (FP) = 1.

Now, we can formulate and prove our second main theorem:

Theorem 3. Let P be a PUF with challenge length n and
single-bit responses, and let FP be its associated function.
Then it holds for all j ∈ {1, . . . , n} that
T3 δAffj (FP) = 0.5 + |Sj − 0.5|.
T4 δNAj (FP) = 0.5− |Sj − 0.5|.

Proof. Please note we need to prove only one of the two
statements T3 and T4; the other one follows via Proposition
1. We choose to prove T3, and start by showing that

0.5 + |Sj − 0.5| = max{Sj , 1− Sj}. (10)

This can be accomplished by a standard case analysis: Assume
(as case 1) that Sj ≥ 0.5. Then 0.5+ |Sj − 0.5| = 0.5+Sj −
0.5 = Sj = max{Sj , 1 − Sj}. An analogous analysis holds
for the second case Sj < 0.5, proving Equation 10.

It remains to show that δAffj (FP) = max{Sj , 1− Sj}. This
can be seen as follows:

δAffj

(
FP

)
=

(a)
= 2−n · max

aj∈{0,1}

∣∣∣{Ci ∈ {0, 1}n :

FP(Ci ⊕ ej) = FP(Ci)⊕ FP(ej)⊕ aj
}∣∣∣.

(b)
= 2−n ·max

{∣∣∣{Ci ∈ {0, 1}n :

FP(Ci ⊕ ej) = FP(Ci)⊕ FP(ej)⊕ 0
}∣∣∣ ,∣∣∣{Ci ∈ {0, 1}n :

FP(Ci ⊕ ej) = FP(Ci)⊕ FP(ej)⊕ 1
}∣∣∣}

(c)
= max{Sj , 1− Sj}.

The steps in the derivation can be justified as follows: Step
(a) is due to the definition of δAffj (see Definition 5). Step
(b) spells out the two possibilities aj = 0 and aj = 1 inside
the max-operation. Step (c) holds as one of the two values
FP(ej) ⊕ 0 and FP(ej) ⊕ 1 must be equal to one (for all
challenges Ci, i.e., independently of Ci), while the other value
is necessarily equal to zero. For the value that is equal to one,

14

the resulting set
{
Ci ∈ {0, 1}n : FP(Ci ⊕ ej) = FP(Ci) ⊕

1
}

has cardinality 2n · Sj . For the value equal to zero, the
resulting set

{
Ci ∈ {0, 1}n : FP(Ci ⊕ ej) = FP(Ci) ⊕ 0

}
has cardinality 2n ·(1−Sj). Multiplication with the value 2−n

from outside the max-operation yields the desired result.

The theorem has a simple corollary:

Corollary 1. Let P be a PUF with challenge length n and
single-bit responses, and let FP be its associated function.
Then it holds for all j ∈ {1, . . . , n} that

0 ≤ δNAj (FP) ≤ 0.5 and 0.5 ≤ δAffj (FP) ≤ 1.

Proof. By Proposition 1, it suffices to show one of the two
statements. The second statement that 0.5 ≤ δAffj (FP) ≤ 1
follows from T3 of Theorem 3 and Sj ∈ [0, 1].

Theorem 3 can be subsumed as follows: Among various
other things, our bit flip scores Sj also implicitly assess the
linearities and nonlinearities (or the affine and non-affine be-
havior) of FP in the j-th position. This theoretically pinpoints
one of several reasons for the surprisingly high predictive
power of the Sj-scores for a PUF’s ML-resilience, which
we empirically demonstrated over previous sections. Please
note that the exact computation of the nonlinearities of a
PUF-under-test with medium or large challenge lengths is
practically infeasible [37]. This necessitates some form of
nonlinearity estimation or approximation. Our bit flip scores
in passing provide such an estimation, with relatively little
computational efforts and CRP-consumption.

VI. SUMMARY AND CONCLUSIONS

This paper belongs to a sequence of works that suggest com-
putationally efficient, easy-to-apply, and simple-to-standardize
security metrics for Strong PUF candidates. Their underlying
motivation is that purely ML-based security studies on Strong
PUFs alone and in isolation often have led to inconclusive or
short-lived results in the past. All our metrics deal with Strong
PUFs in a black-box fashion, i.e., they only require plain PUF-
CRPs, and neither assume knowledge of an internal mathemat-
ical model of the PUF, nor any expertise in machine learning
methods. Further, they require relatively little computational
efforts and small numbers of PUF-CRPs in their application.
All this makes them rather simple and effective to apply.

Our metrics can easily be used in initial Strong PUF security
assessments or in the iterative design optimization of Strong
PUF candidates. They can also serve as “PUF canaries” to
recognize and winnow vulnerable Strong PUF architectures
early on, avoiding periods of false security beliefs wherever
possible. In either case, their target is not to completely
replace, but to complement purely ML-based security studies
on Strong PUFs. At that, each metric brings along its own
view and perspective on a given design. The final assessment
of an examined Strong PUF candidate should then take all
available information into account, including both ML-studies
and all available metric scores.

This manuscript investigated a suggestive, but very im-
pactful metric: Namely the effect that flipping single bits
in PUF-challenges has on the corresponding PUF-responses.
We defined various concrete metric scores associated with
this idea. They included our Sj- and I2O1-values, which can
be applied to single PUF-instances, and the Sj-, I2O1-, and
A2O1-scores, which constitute average-based metrics for a
population of more than one PUF-instance. We mathematically
proved that I2O1 is a similar, but preferable metric over A2O1.
For this reason, all analyses of this paper were eventually
carried out using I2O1, not A2O1. This key result is presented
in V-A of the Supplementary Material on page 11.

In various exemplary studies, we then applied our new met-
rics to three popular and well-investigated Strong PUF families
as test cases, namely k-XOR Arbiter PUFs, Feed-Forward
Arbiter PUFs with l loops, and k-XOR Bistable Ring PUFs.
For all these architectures, we obtained strongly differing,
individual, and characteristic scores, indicating our metrics’
versatility and expressiveness. Our analyses demonstrated that
the metrics can systematically unearth non-optimal behaviour
and potential security weaknesses: The obtained scores were in
essentially perfect agreement with the long-known real-world
security of the examined PUFs against ML-attacks. One of
many reasons for this close agreement is that the Sj scores are
directly related to the nonlinearities of a given Strong PUF,
adding to their security relevance. A in-depth mathematical
proof of this central fact is given in Section V-B of the
Supplementary Material on page 13.

We stress again that our tests do not constitute a trivial
automatism in the sense that certain metric scores would
either unconditionally prove or disprove security. Instead,
the results need to be interpreted carefully on an individual
basis, and simplistic conclusions must be avoided. Among
others, an inconsiderate comparison of scores across different
challenge lengths, or among different design families, is not
recommended. It is also not too difficult to come up with
(artificial) mathematical functions that lead to high test scores,
but which would be insecure in practice as PUFs, and vice
versa. To name one example, Strong PUF candidates with
additional input functions [38] may lead to unreasonably high
metric scores. In such cases, both the PUF-scores with and
without the input function should be computed and assessed:
From a security viewpoint, they represent the realistic practical
scenarios in which an attacker can (or cannot) physically
circumvent said input function. Similar considerations apply
to various other, possibly constructed counterexamples. Our
metrics need to be handled and interpreted with care.

Interestingly, the findings of this paper also illustrate that if
our metrics had been known at the time of the introduction
of certain Strong PUF candidates, such as the 2-XOR Arbiter
PUF [29], Feed-Forward Arbiter PUF [16], or Bistable Ring
PUF [33], they could have signalled the vulnerabilities of
these designs early on. As a consequence, these architecture
probably would not have been assumed secure for several
years before being eventually broken in 2010 [14] or 2015
[34]. This again corroborates the functionality of our metrics

15

as early “PUF canaries”. It also once more illustrates the
potential shortcomings of purely ML-based security analyses,
which merely apply the ML-algorithms most popular at a time
to a given Strong PUF candidate in the attempt to conclusively
assess its long-term vulnerabilities.

Finally, we have made all code for the computation and
graphical representation of our metrics publicly available to
foster simple and widespread application of our methods [28].

Future Work: Various research tasks arise from the
presented content. Firstly, it appears interesting to investigate
the effect of flipping z bits in a PUF-challenge (for z ≥ 2).
This can be expected to reveal yet other, “higher-dimensional”
weaknesses and imperfections in a PUF-under-test. It will
also require new techniques for the graphical representation
of the results. Another promising path is the application of
our metrics to other long-standing Strong PUF candidates,
verifying a natural relation between their scores and their
well-known real-world security. Thirdly, PUF-designers could
use our metrics to improve the security of their new Strong
PUF architectures in iterative design optimization. This might
become standard in future design cycles, and could prove
one of the most fruitful and important applications of our
techniques. Finally, optimization of the scores and analyses
of this paper, and introduction of entirely new metrics beyond
challenge bit flips, seems a natural expansion of our activities.

ACKNOWLEDGEMENTS

Y.W. acknowledges funding by the Stanford Graduate Fel-
lowship. D.M. thanks DST (India), C3i IIT Kanpur, and C-
HERD, Meity (India) for partially funding this work. U.R.
acknowledges support by the EU-project NEUROPULS.

REFERENCES

[1] R. Pappu et al., “Physical one-way functions,” Science, vol. 297, no.
5589, 2002.

[2] B. Gassend et al., “Silicon physical random functions,” in CCS, 2002.
[3] J. Guajardo et al., “Fpga intrinsic pufs and their use for ip protection,”

in CHES, 2007.
[4] B. Gassend et al., “Controlled physical random functions,” in CSAC,

2002.
[5] K. Kursawe et al., “Reconfigurable physical unclonable functions-

enabling technology for tamper-resistant storage,” in HOST, 2009.
[6] U. Rührmair, “Simpl systems: On a public key variant of physical

unclonable functions,” Cryptology ePrint Archive, 2009.
[7] N. Beckmann et al., “Hardware-based public-key cryptography with

public physically unclonable functions,” in IH, 2009.
[8] U. Rührmair, “Secret-free security: A survey and tutorial,” in Journal

of Cryptographic Engineering, 2022.
[9] U. Rührmair et al., “Pufs at a glance,” in DATE, 2014.

[10] C. Herder et al., “Physical unclonable functions and applications: A
tutorial,” Proceedings of the IEEE, vol. 102, no. 8, 2014.

[11] B. L. P. Gassend, “Physical random functions,” MSc Thesis, Mas-
sachusetts Institute of Technology (MIT), 2003.

[12] U. Rührmair, “Oblivious transfer based on physical unclonable func-
tions,” in TRUST, 2010.

[13] C. Brzuska et al., “Physically uncloneable functions in the universal
composition framework,” in CRYPTO, 2011.

[14] U. Rührmair et al., “Modeling attacks on physical unclonable functions,”
in CCS, 2010.

[15] D. Lim, “Extracting secret keys from integrated circuits,” Master
Thesis, Massachusetts Institute of Technology, 2004. [Online].
Available: https://dspace.mit.edu/handle/1721.1/18059

[16] B. Gassend et al., “Identification and authentication of integrated cir-
cuits,” CCPE, vol. 16, no. 11, 2004.

[17] R. Kumar et al., “On design of a highly secure puf based on non-linear
current mirrors,” in HOST, 2014.

[18] A. Vijayakumar et al., “A novel modeling attack resistant puf design
based on non-linear voltage transfer characteristics,” in DATE, 2015.

[19] Q. Guo et al., “Efficient attack on non-linear current mirror puf with
genetic algorithm,” in ATS, 2016.

[20] J. Ye et al., “Poster: Attack on non-linear physical unclonable function,”
in CCS, 2016.

[21] M. Majzoobi et al., “Testing techniques for hardware security,” in ITC,
2008.

[22] P. H. Nguyen et al., “Security analysis of arbiter PUF and its lightweight
compositions under predictability test,” TODAES, vol. 22, no. 2, 2017.

[23] F. Ganji, “On the learnability of physically unclonable functions,” Ph.D.
dissertation, Technical University of Berlin, Germany, 2017.

[24] D. Chatterjee et al., “PUF-G: A CAD framework for automated as-
sessment of provable learnability from formal PUF representations,” in
ICCAD, 2020.

[25] F. Ganji et al., “Pufmeter a property testing tool for assessing the ro-
bustness of physically unclonable functions to machine learning attacks,”
IEEE Access, vol. 7, 2019.

[26] F. Kappelhoff et al., “Strong puf security metrics: Response sensitivity
to small challenge perturbations,” in 2022 23rd International Symposium
on Quality Electronic Design (ISQED), 2022.

[27] N. Wisiol et al., “pypuf: Cryptanalysis of physically unclonable
functions,” 2021. [Online]. Available: https://doi.org/10.5281/zenodo.
3901410

[28] W. Stefani et al., “Puf-security-metrics-single-bit-flips: Initial code
release (v1.0.0),” 2023. [Online]. Available: https://doi.org/10.5281/
zenodo.8364104

[29] G. E. Suh et al., “Physical unclonable functions for device authentication
and secret key generation,” in DAC, 2007.

[30] U. Rührmair et al., “Power and timing side channels for pufs and their
efficient exploitation,” Cryptology ePrint Archive, 2013.

[31] G. T. Becker, “The gap between promise and reality: On the insecurity
of xor arbiter pufs,” in CHES, 2015.

[32] U. Rührmair et al., “Puf modeling attacks on simulated and silicon data,”
TIFS, vol. 8, no. 11, 2013.

[33] Q. Chen et al., “The bistable ring puf: A new architecture for strong
physical unclonable functions,” in HOST, 2011.

[34] X. Xu et al., “Security evaluation and enhancement of bistable ring
pufs,” in RFIDSec, 2015.

[35] F. Ganji et al., “Strong machine learning attack against pufs with no
mathematical model,” in CHES, 2016.

[36] M. Majzoobi et al., “Lightweight secure pufs,” in IEEE/ACM ICCAD,
2008.

[37] D. Chatterjee et al., “Systematically quantifying cryptanalytic non-
linearities in strong pufs,” Cryptology ePrint Archive, 2022.

[38] M. Majzoobi et al., “Lightweight secure pufs,” in 2008 IEEE/ACM
International Conference on Computer-Aided Design, 2008.

16

https://dspace.mit.edu/handle/1721.1/18059
https://doi.org/10.5281/zenodo.3901410
https://doi.org/10.5281/zenodo.3901410
https://doi.org/10.5281/zenodo.8364104
https://doi.org/10.5281/zenodo.8364104

	Introduction
	Motivation and Overview
	Related Work
	Our Contributions

	Background: Examined Strong PUF Families and Numeric CRP-Generation
	k-XOR Arbiter PUFs
	Feed-Forward Arbiter PUFs with l Loops
	k-XOR Bistable Ring PUFs
	Simulation of CRP-Data

	Definition of Our Security Metrics
	Application of Our Security Metrics to Popular Strong PUF Families
	Single Bit Flip Test on k-XOR Arbiter PUFs
	Single Bit Flip Test on Feed-Forward Arbiter PUFs
	Single Bit Flip Test on k-XOR Bistable Ring PUFs

	Two Important Mathematical Observations
	Exact Relation between I2O1 and A2O1
	Non-Linearities and Single Challenge Bit Flips

	Summary and Conclusions
	References

