
Perfect (Parallel) Broadcast in Constant Expected

Rounds via Statistical VSS∗

Gilad Asharov
Gilad.Asharov@biu.ac.il

Anirudh Chandramouli
Anirudh.Chandramouli@biu.ac.il

Department of Computer Science
Bar-Ilan University

March 13, 2024

Abstract

We study broadcast protocols in the information-theoretic model under optimal con-
ditions, where the number of corruptions t is at most one-third of the parties, n. While
worst-case Ω(n) round broadcast protocols are known to be impossible to achieve, protocols
with an expected constant number of rounds have been demonstrated since the seminal work
of Feldman and Micali [STOC’88]. Communication complexity for such protocols has grad-
ually improved over the years, reaching O(nL) plus expected O(n4 log n) for broadcasting a
message of size L bits.

This paper presents a perfectly secure broadcast protocol with expected constant rounds
and communication complexity of O(nL) plus expected O(n3 log2 n) bits. In addition, we
consider the problem of parallel broadcast, where n senders, each wish to broadcast a message
of size L. We show a parallel broadcast protocol with expected constant rounds and com-
munication complexity of O(n2L) plus expected O(n3 log2 n) bits. Our protocol is optimal
(up to expectation) for messages of length L ∈ Ω(n log2 n).

Our main contribution is a framework for obtaining perfectly secure broadcast with an
expected constant number of rounds from a statistically secure verifiable secret sharing.
Moreover, we provide a new statistically secure verifiable secret sharing where the broad-
cast cost per participant is reduced from O(n log n) bits to only O(poly log n) bits. All our
protocols are adaptively secure.

Keywords: Perfect Secure Computation, Broadcast, Byzantine Agreement, Verifiable Secret
Sharing

∗This research is sponsored by the Israel Science Foundation (grant No. 2439/20). Asharov is additionally
sponsored by JPM Faculty Research Award, and by the European Union’s Horizon 2020 research and innovation
programme under the Marie Sk lodowska-Curie grant agreement No. 891234.

Contents

1 Introduction 3
1.1 Our Results . 3
1.2 Related Work . 6

2 Technical Overview 7
2.1 Efficient Oblivious Leader Election . 7
2.2 Efficient Statistical VSS . 10
2.3 Putting it All Together . 13

3 Preliminaries 14
3.1 Security Definition . 14
3.2 Bivariate Polynomials . 15
3.3 Ideal Functionalities for Broadcast and Byzantine Agreement 16

4 Statistical Verifiable Secret Sharing 16
4.1 Sharing Attempt . 16
4.2 Reconstructing Shares . 22
4.3 Statistical VSS Protocol . 24
4.4 Batched Verifiable Secret Sharing . 26

5 Multi-Moderated Verifiable Secret Sharing 27
5.1 Batched Multi-Moderated VSS . 32
5.2 Reconstruction with Moderators . 34
5.3 Gradecast . 35

6 Oblivious Leader Election 37

7 Broadcast, and Parallel Broadcast 40
7.1 Broadcast . 41
7.2 Parallel broadcast . 42

References 42

A Glossary: Broadcast in Expected Constant Rounds 46

1 Introduction

Broadcast is a fundamental building block in secure computation, serving as a crucial primitive.
It enables a designated party (a sender) to transmit a message while ensuring that all participants
receive an identical message and reach a consensus on its content. However, this task becomes
particularly challenging when dealing with potentially corrupted parties, as they may deceive
others about the messages they have received, or a corrupted sender may transmit inconsistent
messages.

The primary focus of this paper is to address the realization of the broadcast primitive
over point-to-point (ideal private) channels, in the most demanding scenario: achieving perfect
security with optimal resilience. Perfect security means that the protocol cannot rely on any
computational assumption and that the error probability is zero. Optimal resilience means
that the number of corrupted parties is at most t < n/3, which is tight by the lower bounds
of [LSP82,PSL80].

For broadcasting a message of size L, the best one can hope for is O(nL); since each party
has to receive a message of size L, then the total bits transmitted is at least nL. Broadly,
broadcast protocols can be characterized into two categories:

• Succinct protocols but with a high number of rounds: In this family, broadcast-
ing a message of size L takes O(nL+n2 log n) total communication complexity with Θ(n)
rounds [CW89,BGP92,Che21]. Broadcasting a single bit requires Ω(n2) bits of communica-
tion, when the protocol is deterministic [DR82], or randomized, against strongly-adaptive
adversaries1 [ACD+23].

• More communication, but with an expected constant number of rounds: It
has been shown that for any broadcast protocol with perfect security, there exists an
execution that requires t + 1 rounds [FL82]. This implies that a protocol with a strict
constant number of rounds is impossible to achieve, and this limitation can be overcome by
using randomization [Rab83,Ben83]. This family of protocols, originated by Feldman and
Micali [FM88] followed by the impressive improvement of Katz and Koo [KK06], results
in O(n2L) bits plus expected O(n6 log n) bits in expectation for broadcasting a message of
size L, with an expected constant number of rounds. This result was recently improved by
Abraham et al. [AAPP22], which requires communication complexity of O(nL) bits plus
expected O(n4 log n) bits, with an expected constant number of rounds.

Since broadcast is such a fundamental primitive, narrowing the gap between these two families
of protocols is of high importance. This has a potential impact on the complexity of secure
computation protocols.

Parallel broadcast. In secure protocols, we often witness the communication pattern in which
n parties have to broadcast messages in parallel at the same round. For instance, in verifiable
secret sharing, the parties often complain (in parallel) about messages sent by the dealer, or
vote (in parallel) whether to accept or reject the shares of the dealer. Since each party has
to receive O(nL) bits in total, the best we can hope for is O(n2L) communication complexity,
with an expected constant number of rounds, and in that case, we say that the protocol is
“asymptotically-free”. The protocol of [KK06] shows an asymptotically-free parallel broadcast
for messages of size ≈ n4, while [AAPP22] is asymptotically-free for messages of size ≈ n2.
Explicitly, the former is a parallel broadcast with expected O(n2L + n6 log n) communication
complexity and the latter is O(n2L+ n4 log n).

1.1 Our Results

Our main result is an asymptotically-free parallel broadcast for messages of size ≈ n. We show:

1Strongly adaptive adversary means that at the same round, the adversary can see the message sent by an
honest party, corrupt it, and remove (and switch) the other messages being sent at the same round by that party.

3

Theorem 1.1. There exists a perfectly secure, balanced, parallel-broadcast protocol with optimal
resilience which allows n senders to distribute each a message of size L, at the communication
cost of O(n2L) bits plus expected O(n3 log2 n) bits, and expected constant number of rounds.

By “balanced” we mean that each party sends or receives roughly the same amount of
information, and so each party sends or receives O(nL) bits plus expected O(n2 log2 n) bits in
our protocol. On the other hand, we mentioned that every parallel broadcast protocol must
incur Ω(n2L). In addition, strict constant round parallel broadcast is impossible [FL82], and so
our protocol is optimal up to expectation for messages of size L ≥ Ω(n log2 n).

The best prior requires either O(n2L) plus expected O(n4 log n) with constant expected num-
ber of rounds [AAPP22], orO(n2L+n3 log n) but withO(n) rounds (easily derived from [Che21]).

Giving a coarse analysis, and just evaluating the terms in the asymptotic notation, for 1024
parties, even if each party has to broadcast just a single bit (e.g., voting whether to accept
the shares of the dealer), in the protocol of [AAPP22] each party has to send or receive about
1.34GB whereas in our protocol it has to send or receive about 13MB.

Ordinary broadcast. In classical broadcast, where there is a single sender, we provide an
improvement of almost a factor of n in the communication complexity of broadcast with perfect
security and optimal resilience:

Theorem 1.2 (Informal). There exists a perfectly secure, balanced, broadcast protocol with op-
timal resilience that requires communication of O(nL) plus expected O(n3 log2 n) bits for broad-
casting a message of size L bits, with an expected constant number of rounds.

That is, our protocol falls in the second category of protocols where the best previous result
is that of Abraham et al. [AAPP22], which requires O(nL) bits plus expected O(n4 log n) bits.
As such, our protocol is asymptotically-free also for much shorter messages.

The protocol of Abraham et al. [AAPP22] is asymptotically free for messages L ∈ Ω(n3 log n).
Our protocol is asymptotically free for messages of size L ∈ Ω(n2 log2 n). E.g., ignoring constant
factors and just evaluating the terms in the asymptotic notation, for broadcasting 1KB and 512
parties, each party in [AAPP22] has to send or receive ≈144MB; ours is ≈2.65MB.

Main Technical Contributions

Our result is obtained from the following technical contributions.

Efficient oblivious leader election (OLE). The broadcast protocols in [FM88, KK06,
AAPP22] rely on a primitive called oblivious leader election (OLE). The goal in OLE is that all
parties would randomly pick one of them as a leader, and reach an agreement on the identity of
that leader. The desired outcome is that the chosen leader would be one of the honest parties.
The protocol might fail with some constant probability (either, a non-honest leader is chosen,
or there is no agreement on who is the chosen leader). We show:

Theorem 1.3. There exists a perfectly secure, oblivious leader election, with total communica-
tion of O(n3 log2 n) bits over point-to-point channels and strict constant number of rounds.

The oblivious leader election of [KK06] requires O(n6 log n) bits over point-to-point chan-
nels; the leader election of [AAPP22] requires O(n4 log n) cost over point-to-point channels. Our
conceptual contribution is that, at least at the intuitive level, the embedded error in the func-
tionality of OLE allows it to be implemented from weaker primitives. Our improved OLE is
achieved via two improvements:

• OLE from Statistical VSS: OLE uses verifiable secret sharing as a sub-protocol. Since
the oblivious leader election may fail regardless with some constant probability, it be-
comes possible to build it using a statistically secure VSS as a sub-protocol rather than
a perfectly secure one. Essentially, the negligible security error introduced to the statis-
tical VSS is shifted into the constant failure probability of the oblivious leader election,
resulting in negligible degradation in the round complexity (which still remains constant
in expectation).

4

• Less VSSes: The oblivious leader election in [KK06,AAPP22] requires all parties to run
VSS in parallel, while each party has to share O(n) secrets. Our OLE requires each party
to share only O(poly log n) secrets. This introduces an error, which is again shifted into
the constant failure probability of the OLE.

Those improvements open the door to significantly reducing the communication complexity.

Broadcast efficient statistically-secure verifiable secret sharing. The protocol of [AAPP23]
has low overhead per secret – but only for a relatively high number of secrets. Even if we use an
ideal broadcast (that is impossible to achieve – i.e., O(nL) and constant round) in the protocol
of [AAPP23], we get O(n3 log n) total communication for sharing O(n2) secrets, i.e., overhead of
O(n) per secret. But if one wants to share only, say O(log n) secrets, the cost, even when using
an ideal broadcast, still remains O(n3 log n), i.e., overhead of O(n3) per secret. The same is true
also for other VSS protocols such as [BGW88,Fel88,AAPP22] in the perfect setting and in the
statistical setting [PCR08]. We show a protocol that has low overhead also for small number of
secrets.

Theorem 1.4. There exists a verifiable secret sharing protocol that allows a dealer to distribute
m secrets of O(log n) bits each, with a total communication complexity of O(m · n2 log n) bits
over the point-to-point channels; the dealer broadcasts O(n log n) bits, and each party broadcasts
O((m + log(n/ε)) · log n) bits. The protocol has an error probability of ε in case of a corrupted
dealer. The protocol tolerates up to t < n/3 malicious parties and is adaptively secure.

Putting it differently, using an ideal broadcast, our protocol achieves a lower cost than [AAPP23]
when the number of secrets m ∈ o(n). Specifically, for our oblivious leader election, each one of
the n parties broadcasts m = log n secrets. Using the VSS of [AAPP23] this results in O(n4 log n)
bits in total (for all n dealers). Using our VSS, this results in O(n3 log2 n), which leads to the
cost of the OLE mentioned in Theorem 1.3. We achieve this improvement by letting all parties
broadcast together Õ(n) bits over the broadcast channel, instead of Ω̃(n2) by previous works.

For our OLE, it suffices to have VSS that fails with probability ε = 1/poly(n). We also use
m = log n, and thus we get that each participant broadcasts O((m+log(n/ε)) · log n = O(log2 n)
bits. Theorem 1.2 is reported in that light.

An important challenge that we overcome is that the protocol is adaptively secure (even
strongly-adaptively secure). Existing statistically-secure VSS protocols [Rab94,CDD+99,PCRR09,
Kum12] are not suitable for our needs due to either not being adaptively secure (see [CDD+99])
or not incurring the above costs. Furthermore, several common techniques for achieving statis-
tical security, such as dynamically electing a small (for instance, of size o(n)) committee are also
not acceptable, as an adaptive adversary can corrupt the elected committee dynamically.

Discussions

Applications. Protocols in the MPC literature are usually given in the broadcast-hybrid
model, and improving broadcast automatically improves the complexity of protocols or other
building blocks. For example, the VSS protocol of [AAPP23], when using the broadcast protocol
of [AAPP22], results in O(m · n log n + n4 log n) for sharing m secrets. In particular, it means
that if one has to share m = n2 log2 n secrets, the protocol runs in O(n4 log n), i.e., an overhead
of ≈ O(n2) per secret. The same protocol of [AAPP23], using our broadcast, results in O(m ·
n log n + n3 log2 n) bits for sharing m secrets, that is, for the same m as before it runs in
O(n3 log2 n), i.e., an overhead of O(n) per secret.

Worst-case number of rounds. Broadcast protocols [FM88, KK06, AAPP22] in expected
constant number of rounds work by repeating some randomized process (oblivious leader elec-
tion) that succeeds with a constant probability. If not succeeded, there is a repetition. This
leads to a protocol that might never terminate. Such protocols can be transformed into proto-
cols in strict polynomial time, using the approach of Goldreich and Petrank [GP90]. E.g., after
O(log n) unsuccessful iterations, the parties can run the O(n) rounds protocol for broadcast

5

with guaranteed termination. This results in a protocol that is perfectly secure and runs in an
expected constant number of rounds, and O(n) rounds in the worst case.

Adaptive security. It is well known that any perfectly secure protocol that is secure against
a static adversary, (and in addition satisfies some natural properties) is also adaptively se-
cure [CDD+01]. Therefore, at first sight, it seems unclear why in Theorem 1.4 we require
that the statistically-secure protocol would be adaptively secure. We remark that the approach
of [CDD+01] does not necessarily preserves the communication complexity. Moreover, we obtain
perfect security (and thus also adaptive security) only after following the approach of Goldreich
and Petrank [GP90]. For instance, assume an OLE which is not adaptively secure, and thus a
corrupted adversary can make the OLE to always fail (we stress that this is not the case in our
protocol, but we give it just as an example). As a result, after O(n) unsuccessful iterations, the
parties would always have to run the O(n) rounds protocol with guaranteed termination. The
resulting protocol is perfectly secure with an expected O(1) rounds against a static adversary,
but with Θ(n) rounds against an adaptive adversary. Using adaptively-secure VSS guarantees
that we successfully terminate after (expected) O(1) rounds even when the adversary is adaptive.
This is why in all statistically-secure sub-protocols that we have, we explicitly require adaptive
security.

Simultaneous termination. Any broadcast protocol with o(t) expected rounds cannot guar-
antee simultaneous termination. This raises a difficulty when sequentially composing such proto-
cols – parties are not necessarily synchronized. This issue was addressed in Lindell, Lysyanskaya
and Rabin [LLR02], Katz and Koo [KK06] and Cohen, Coretti, Garay and Zikas [CCGZ19], and
we refer the reader there for further details.

We use a standalone, simulation-based definition as in [Can00]. This definition does not
capture rounds in the ideal functionality or that there is no simultaneous termination. The work
of [CCGZ19] shows that one can compile a protocol using deterministic termination hybrids (as
the ideal functionality that we provide) into a protocol that uses an expected constant number
of rounds protocol for emulating those hybrids.

1.2 Related Work

Broadcast is an essential primitive and was studied extensively over the years. It is known that
perfect byzantine agreement and broadcast are impossible for t ≥ n/3 [LSP82,PSL80]. Fischer
and Lynch [FL82] showed that in any deterministic broadcast, there exists an execution that
takes at least t+1 rounds. Rabin [Rab83] and Ben-Or [Ben83] studied the effect of randomization
on round complexity, and Feldman and Micali [FM88] gave the first protocol with an expected
constant round protocol for byzantine agreement with optimal resilience. We report the progress
of broadcast protocols over the years in Table 1.

Gradecast was introduced by Feldman and Micali [FM88], and was improved over the years
(e.g., [AAPP22,AA22]). Gradecast is used as a building block for multiple consensus algorithms,
e.g., multi-consensus, approximate agreement [BDH10], or for Phase-King [ALP22].

Verifiable secret sharing was introduced by Chor et al. [CGMA85]. The first perfectly secure
verifiable secret sharing was presented by Ben Or, Goldwasser, and Wigderson [BGW88] and by
Feldman [Fel88]. Abraham et al. [AAPP22] showed how to distribute O(n) secrets at the same
cost as one VSS invocation, which led to reduce the cost of Broadcast as well. In another work,
Abraham et al. [AAPP23] showed how to batch many instances of VSS together while keeping
the same broadcast cost among all instances as just a single instance, to reduce the cost of MPC
protocols in the perfect settings. The protocol of [AAPP23] serves as our starting point for the
VSS protocol, as it reduces the broadcast cost of the dealer from O(n2 log n) to O(n log n).

Our lower bound holds for parallel broadcast of a message of size L bits, where L ≥ n.
Interestingly, the parallel broadcast protocol of [TLP22] for L = 1, incurs a total communication
O(n2κ4) assuming a trusted PKI, where κ is the security parameter.

6

Protocol Total Communication Rounds

Broadcast

Coan et al. [CW89], Berman et al. [BGP92] O(n2L)
O(n)

[CW89], [BGP92]+Chen [Che21] O(nL+ n2 log n)

Katz and Koo [KK06] O(n2L) + E(O(n6 log n))
[KK06] + Nayak et al. [NRS+20] O(nL) + E(O(n7 log n)) Expected

Abraham et al. [AAPP22] O(nL) + E(O(n4 log n)) Constant
Our Work O(nL) + E(O(n3 log2 n))

Parallel Broadcast

Chen [Che21] O(n2L+ n3 log n) O(n)

Katz and Koo [KK06] O(n2L) + E(O(n6 log n))

Abraham et al. [AAPP22] O(n2L) + E(O(n4 log n))
Expected
Constant

Our Work O(n2L) + E(O(n3 log2 n))

Table 1: The complexity of our protocols and comparison to previous works of broadcast and
parallel broadcast. Total communication is given in bits.

2 Technical Overview

The construction of broadcast in an expected constant number of rounds is quite complex and
consists of several different building blocks. We provide a glossary for the different primitives
in Appendix A, which can be used as a reference when reading other parts of the paper. In the
following, we overview our contributions in two primitives, each can be studied and analyzed in-
dependently and regardless to broadcast. We overview our oblivious leader election (Section 2.1)
and our statistically secure VSS (Section 2.2). We provide some conclusions in Section 2.3.

2.1 Efficient Oblivious Leader Election

Oblivious leader election is a protocol where the parties try to elect one of them as a leader,
uniformly at random. Each party has no input, and each party outputs an index in {1, . . . , n}.
We might have three possible outcomes: (1) All parties output the same index j ∈ {1, . . . , n},
and Pj is honest; (2) All parties agree on the same index i ∈ {1, . . . , n}, but Pi is corrupted;
(3) There is no agreement on the output index. The goal is to achieve outcome (1) with some
constant probability (and a strict constant number of rounds). Once outcome (1) occurs, then
the broadcast protocol terminates successfully. If (2) or (3) occur, then we re-run OLE, leading
to an overall broadcast protocol that runs in expected constant number of rounds.

The main idea in [FM88, KK06, AAPP22] to elect a leader is to pick a random value cj for
each one of the parties Pj . The value cj is chosen collectively by all parties. Then, the elected
leader is the one for which cj is minimal. Towards that end, in [FM88, KK06, AAPP22] each
party Pi chooses n random values uniformly at random, ci→1, . . . , ci→n, where each ci→j should
be interpreted as the contribution of Pi to Pj . The parties define the value cj =

∑n
i=1 ci→j to

be the random value associated with Pj . This guarantees that even if some corrupted parties
contribute values that are not uniformly random, each cj is still random.

To make this idea work and prevent the corrupted parties from biasing those random values,
we need to implement a mechanism that achieves hiding and binding, like a commitment scheme.
A mechanism that allows exactly that in the information-theoretic setting is a verifiable secret
sharing. Each party Pi verifiably secret shares ci→1, . . . , ci→n. Then, after all parties share their
values, all parties reconstruct all secrets. Hiding guarantees that the shares do not provide any
information about the secrets, which means that the adversary must choose its contributions
independently of the contributions of the honest parties. Binding guarantees that once the

7

sharing phase is concluded, the dealer cannot change its decision, and reconstruction is always
guaranteed. Therefore, the adversary cannot bias the result by either opening different values
than what it initially committed to, or selectively failing particular reconstructions.

Our OLE. Our conceptual contribution is that, at least at the intuitive level, the embed-
ded error in the functionality of OLE allows us to use statistically secure building blocks to
realize OLE. Specifically, all we care about is that outcome (1) occurs with a constant proba-
bility. Therefore, we can relax the requirements from the protocol, and achieve a more efficient
construction.

Reducing the amount of secrets. When designing a perfectly secure protocol, we have
to guarantee that for each party Pi, there is at least one honest party Pj that contributed to
the value ci. Since the number of corrupted parties might be up to n/3, it implies that each
party must receive at least n/3 + 1 contributions, i.e., we have O(n2) secrets in total that have
to be shared. This is why each party just contributes to all other parties in the protocols
of [FM88, KK06, AAPP22]. However, when designing a statistically secure protocol, it suffices
that with high enough probability, for each party Pi there is at least one honest party Pj that
contributed cj→i to the value ci. This guarantees that ci is uniform.

Towards that end, instead of each Pj picking n random values, we instruct it to just pick
O(poly log n) random values, together with O(poly log n) random parties that it contributes to.
The identities of which parties Pj contributes to are secret shared as well to guarantee that the
adversary cannot pick which parties to contribute to after seeing the choices made by the honest
parties. We show that this simple mechanism suffices to guarantee that with high probability, all
parties have at least one honest party that contributed to their value, and therefore, all values
c1, . . . , cn are random.

Moderated VSS. The above description is oversimplified. Specifically, one problem that arises
is that the VSS itself uses broadcast as a primitive while we use OLE to implement broadcast.
To avoid this circularity, the broadcast inside the VSS is replaced with a weaker primitive called
gradecast. Gradecast (see the glossary in Appendix A) is a relaxation of broadcast where the
sender sends a message M to all parties, and each party Pi outputs some message together with
a grade. The guarantee is that if the sender is honest, then all honest parties output the same
message (agreement) and with a high grade; but this is not necessarily true if the sender is
corrupted. In that case, different parties might receive different messages (and with low grades).
It is essential to note that the substitution of gradecast for broadcast within the VSS framework
introduces a degree of uncertainty. This uncertainty stems from the fact that parties may not
unanimously agree on whether to accept or reject the shared information, leading to potential
divergence of outcomes within the VSS protocol.

The protocol of [KK06] works by having a designated party, called “a moderator”, to be
responsible for all gradecasts, so that if something goes wrong, we can know who is to blame
(somewhat similar to the concept of identifiable abort in secure computation). Namely, whenever
the VSS instructs a party to broadcast a message – that party gradecasts it; Moreover, the
moderator then has to repeat the message (i.e., gradecast it), and parties proceed with the
message gradecasted by the moderator. At the end of the sharing phase, each party outputs,
together with the shares, a grade for the moderator in {0, 1}. For instance, if a party Pj sees
that the moderator repeats a different message than the one gradecsated by some party Pk (and
was previously received with a high grade) – then clearly the moderator is malicious, and Pj
sets the grade of the moderator to be 0.

At the end of this step, we have the guarantee that if the moderator is honest, all honest
parties give grade 1 to the moderator, and we will always have an agreement on the VSSes it
moderates. This is true for both the case where the dealer is honest, or the case where the dealer
is corrupted, regardless of whether the parties accept or reject the shares. If the moderator is
dishonest, then we might not have an agreement, but it is enough that one honest party believes
that the moderation was successful to guarantee that the underlying VSS was successful (i.e., all
parties do agree whether to accept or reject the shares, but some might be uncertain of whether
moderation was successful).

8

The protocol of [KK06] proceeds as follows:

1. For every (i, j) ∈ [n2] run a moderated VSS where Pi is the dealer and Pj is the moderator,
and the secret is some random ci→j chosen by Pi.

2. Reconstruct all secrets.

3. Each Pk sets Successfulk = ∅; Add j to Successfulk if Pj successfully moderated all the n
instances it moderated, and set cj =

∑n
`=1 c`→j .

4. Each Pk chooses as a leader Pj for which cj is minimal among all indices in Successfulk.

All honest parties are included in all Successfulk for every honest k, and they see the same
value cj . If some honest party added to Successfulk some corrupted party Pi, then ci must be
uniform. A simple argument shows that an honest leader is chosen and agreed upon among all
honest parties with some constant probability.

Reducing the amount of VSSes. In [KK06] there are n2 independent instances of moder-
ated VSS. As mentioned, we reduced the number of different secrets to O(n log n). Moreover,
each party (a dealer) chooses randomly which O(log n) parties (moderators) it contributes to.
Furthermore, we mentioned that which parties Pj contributes to must be kept secret at the shar-
ing phase. This means that a party cannot know in advance which instances it has to moderate
– those are chosen dynamically by the different dealers.

We address this challenge by implementing a novel moderation approach. Instead of assigning
a single moderator to oversee each instance of VSS, all participating parties collectively assume
the role of moderators for every instance. That is, we can envision each VSS execution as n
parallel executions, with the same dealer, the same secret, but each instance is moderated by a
different moderator. The moderation mechanism relies on the fact that at least two-thirds of the
moderators are honest. As a result, we can look at the majority of the n different executions.
If the dealer is honest, then all honest parties output, at the end of the reconstruction phase,
the secret that the dealer shared. If the dealer is dishonest, then we might have disagreements
as different moderators can make the VSS go into different directions. However, if one honest
party believes that the moderation of some Pj was successful, then all honest parties unanimously
output the same secret in the instance where Pj moderated.

Efficiency. The above mechanism is now problematic from an efficiency perspective. In
particular, we tried to reduce the number of VSS executions from n2 to O(n log n); instead,
in each instance we have n moderators, and so we get O(n2 log n) executions! Each VSS has
O(n2 log2 n) bits over point-to-point and O(n log n) bits gradecasted, which results in a total of
O(n4 log n) bits over point-to-point.

To circumvent this issue, we first note that the point-to-point messages should not be re-
peated between the n different moderators inside a VSS execution. Moreover, following the
idea of [AAPP22], we let the dealer moderate all messages except for the last message in which
the execution “forks” into n different executions, corresponding to the n moderators. Each
moderator echos just the last round (a vote on whether to accept or reject the shares of the
dealer).

However, this idea alone does not fully address our requirements. Even echoing the last
message proves to be prohibitively costly. To put it into perspective, echoing n bits of votes
across n dealers, overseen by n moderators, results in the gradecast of n3 bits. When accounting
for the inherent overhead of gradecast, we are confronted once again with a total communication
cost of O(n4).

To achieve the desired communication efficiency, we implement a batching mechanism wherein
a single message is echoed by each moderator, applicable to the n distinct dealers they over-
see. In essence, this identical message is utilized across multiple VSS executions, providing a
substantial reduction in communication complexity. In [FM88], there are n2 independent exe-
cutions, one for each (i, j) ∈ [n]2 where Pi is the dealer, and Pj is the moderator. In [AAPP22],
there are n independent executions, for every Pi, i ∈ [n], where each execution is one dealer
with n moderators at the same time. In our case, we have one big execution that contains

9

O(n log n) secrets. That is, in our case, all the different VSSes intertwine - the same message of
the moderator is used across the different dealers.

More precisely, each moderator gradecasts a single message of size O(n), and this message is
shared across all executions, serving as a universal indicator for which dealers’ shares should be
accepted or rejected. In the context of the n moderators, our approach results in a gradecast of
Õ(n2) bits, which, when factoring the gradecast overhead, totals to Õ(n3). This optimization
substantially improves the overall communication complexity. We refer the reader to Sections 5
and 6 for more details.

2.2 Efficient Statistical VSS

We show a statistically secure VSS with low broadcast cost. We start with a brief overview of the
VSS protocol of Ben Or, Goldwasser and Wigderson [BGW88]; we then overview the VSS proto-
col of Abraham et al. [AAPP23] and proceed to our protocol. At a very high level, in [BGW88],
each party broadcasts O(n log n) bits and the dealer might broadcast up to O(n2 log n) bits.
The work of [AAPP23] shows how to reduce the broadcast cost of the dealer to O(n log n). Our
goal is to reduce the cost of all parties except the dealer to O(log2 n) bits, albeit achieving only
statistical security (or even O(log n) bits, with a one over poly error probability). Thus, in total
we have O(n log n) bits broadcasted.

In this overview, we describe a statistically-secure protocol with negligible error probability
(in n), while for our OLE it suffices to have a one over poly error.

Overview of the VSS of [BGW88]. To share a secret s, the dealer chooses a bivariate
polynomial S(x, y) =

∑t
k=0

∑t
`=0 sk,`x

ky` of degree t in both x and y, where s0,0 = s. The
protocol is as follows:

1. Sharing: The dealer gives to each Pi its shares (fi(x), gi(y)) = (S(x, i), S(i, y)).

2. Pairwise consistency check: Pi sends to Pj the points (fi(j), gi(j)) = (S(j, i), S(i, j)) =
(gj(i), fj(i)). If Pi sees that the shares it received from the dealer do not agree with the
points it received from Pj it publicly broadcasts a complaint complaint(i, j, fi(j), gi(j)).

3. The dealer resolves complaints: Note that in each complaint, Pi is supposed to pro-
vide the values it received from the dealer, not those that it received from Pj . If the
dealer notices some public complaint that is wrong, i.e., contains points that it did not
provide Pi, it completely reveals the shares of that complaining party, by broadcasting
(i, S(x, i), S(i, y)).

4. If a party Pj sees that (1) all polynomials that the dealer made public agree with its private
share; (2) its share was not made public; (3) if there is a joint complaint - two parties Pk
and P` that disagree with one another, then the dealer must publicly reveal the share of
one of them. If all those conditions are met, then Pi is happy. If there are 2t + 1 parties
that are happy, then the shares are accepted.

If the dealer is honest, then their shares are always consistent and honest parties never complain
on honest parties; Moreover, all honest parties are happy. Furthermore, the adversary learns
nothing new in the verification process – note that all possibly revealed shares are shares of
corrupted parties, which the adversary has anyways.

If the dealer is corrupted, then 2t+1 parties that are happy implies that there is a core set of
at least t+ 1 honest parties that are happy. The shares of these honest parties must agree with
each other; otherwise, those parties would have raised a complaint and the dealer must have
publicly reveal one of them. The shares of those happy honest parties uniquely define a bivariate
polynomial S′(x, y) of degree t in both variables. Moreover, all other honest parties must hold
shares on that polynomial – if some honest Pi initially held a polynomial that disagrees with
some Pj that is in the core set, then both Pi and Pj raised a complaint. Since Pj is in the core
set, then the dealer must have resolved this complaint by revealing the share of Pi, and the
entire core verified this polynomial (and therefore, it must agree with S′(x, y)).

10

Costs, and the VSS protocol of [AAPP23]. All broadcasts in the above protocol are
marked in bold: Each party might broadcast up to O(n) complaints; The dealer might broadcast
O(n2 log n) bits (e.g., revealing the shares of t parties). The protocol of [AAPP23] provides a
key improvement that we borrow: it reduces the broadcast cost of the dealer from O(n2 log n)
to O(n log n). The goal was to allow batching of many parallel instances of VSS (with the same
dealer) with the same broadcast cost of just one instance. Towards that end, all broadcasts
made by the dealer should not be instance specific (e.g., revealing shares), but information that
is useful across multiple instances. We use batching and benefit from this reduction in the
broadcast cost of the dealer.

To elaborate further, instead of the dealer broadcasting the shares of each party that falsely
complained, [AAPP23] let the dealer just broadcast a set CONFLICTS of the identities of par-
ties that raised false complaints. In a sense, the dealer “revokes” the shares of all parties in
CONFLICTS. Yet, the parties cannot conclude the protocol unless all parties in CONFLICTS
receive correct shares. At this point, there are three possible outcomes:

1. Discard the dealer - this might occur when there is a joint complaint that was not resolved
(Pi complaint against Pj but none of them is in CONFLICTS), or when the dealer broadcasts
a set CONFLICTS that contains more than t parties.

2. If |CONFLICTS| > t/2 then there are too many shares “to correct”. Instead of publicly
broadcasting the shares of those parties, they are all just set to be 0, and the protocol
is restarted while the dealer chooses a new bivariate polynomial where all the shares of
all parties in CONFLICTS are set to be 0. In that case, the dealer, in a sense, publicly
reveals their shares, but without broadcasting them. In the next iteration, parties do
not expect to receive shares from parties in CONFLICTS, and each party Pi verifies that
fi(j) = gi(j) = 0 for j ∈ CONFLICTS. Formally, the parties maintain a public set ZEROS
of parties whose shares are set to be 0 and before the next iteration ZEROS is updated to
ZEROS ∪ CONFLICTS. Note that we can restart only once as restarting twice means that
the dealer tries to revoke > t/2 + t/2 = t parties (|ZEROS| > t/2 and |CONFLICTS| > t/2)
and is being discarded.

3. Otherwise, the parties proceed to a sub-protocol where they reconstruct all shares of parties
in CONFLICTS, with the help of the dealer. We elaborate on this part later below.

Our goal: reducing the broadcast cost. Note that if the parties decide to proceed, then
we have binding – there is a unique bivariate polynomial S(x, y) of degree at most t in x and y,
such that all honest parties that are not in CONFLICTS hold shares on S(x, y). This is because
each pair of honest parties that disagree with each other must have raised a joint complaint,
and the dealer must have included at least one of them in CONFLICTS. Therefore, all shares
of honest parties not in CONFLICTS must agree, and thus define a bivariate polynomial of the
appropriate degree. Moreover, note that all honest parties that are not in CONFLICTS have
shares, and that |CONFLICTS| < t/2; as such, at least t + t/2 + 1 honest parties have shares
(as opposed to just t + 1 as the core set in [BGW88]) – not only that there is a well defined
polynomial, but there is also some redundancy.

For reconstructing the shares of parties in CONFLICTS, it is crucial that all honest parties
that are not in CONFLICTS have shares that agree with each other. However, this is achieved
using the fact that each party complains against each party that they did not agree with. But
this requires a high broadcast cost.

To reduce the broadcast cost, we instruct each party to limit the number of complaints they
file. Specifically, each party now randomly samples O(log2 n) complaints out of the O(n) that
it might have. This raises two questions – (1) why O(log2 n) complaints suffice; (2) What if Pi
chooses Pj but Pj picked other parties? In that case, we would not have a joint complaint, and
the dealer can just ignore complaints without being discarded.

Addressing the second question is easy. We just add one more round of complaints – if a
party Pi complains against Pj , and Pj did not choose to complain against Pi in the first round
of complaints, then it complains against it at the second round of complaints. This approach

11

effectively doubles the number of complaints, maintaining the overall count at O(log2 n) per
party. However, this additional step guarantees that if two honest parties disagree, and one
picks the other in its random choices, then all parties will see a joint complaint, forcing the
dealer to resolve it.

To address the first question, we claim that with high probability – O(log2 n) complaints by
each party suffice to have binding with overwhelming probability (in n). To see why it holds,
consider for simplicity the case where all honest parties (that are not in CONFLICTS) agree
with each other, except for some party Pi. In that case, we have a set of t+ t/2 honest parties
that agree with each other. Moreover, Pi has a polynomial of degree t – and therefore, it must
disagree with at least t/2 parties in the core, and not just one. Each one of these parties picks
O(log2 n) random complaints – the probability that none of those random choices made by

either i, or by those t/2 parties that disagree with Pi, is bounded by ((1− 1/n)t/2)log
2 n, which

is negligible in n. This argument is generalized to other cases beyond this simple case of all
honest parties agreeing but one. We remark again that for our purpose of broadcast, it suffices
that each party chooses O(log n) complaints out of the O(n) that it might have; this results in
an error probability of O(1/polyn).

Reconstruction of shares for parties in CONFLICTS. In the second stage of the protocol,
the parties face the challenge of reconstructing the shares of all parties within the CONFLICTS
set on the bivariate polynomial S(x, y). We cannot simply adopt the approach used in [BGW88],
where the dealer broadcasts these shares, because doing so would require a broadcast ofO(n2 log n)
bits by the dealer. Moreover, it’s not feasible for each party Pk (for k /∈ CONFLICTS) to directly
transmit the value fk(j) to each party Pj (for j ∈ CONFLICTS), as in the worst-case scenario,
where we have t + t/2 + 1 correct points and possibly t errors, party Pj might fail to decode
its share. Similarly, public reconstruction (utilizing the dealer to eliminate errors) is not viable
either, as it would necessitate each party (k /∈ CONFLICTS) to broadcast O(n log n) bits, once
again resulting in a total broadcast of O(n2 log n) bits. We remark that public reconstruction
is the approach taken in [AAPP23]. Here we take a different route to reduce the broadcast
complexity.

Instead of reconstructing the f and g polynomials of parties in CONFLICTS as in [AAPP23],
we reconstruct just the points gj(0) = S(j, 0) for each party j ∈ CONFLICTS. This suffices,
as together with the shares of the parties that are in CONFLICTS, the parties can reconstruct
the polynomial S(x, 0) in the reconstruction phase, which suffices for reconstructing S(0, 0).
As an immediate consequence, our protocol for the reconstruction of the shares for parties in
CONFLICTS requires each of the parties to broadcast only O(log n) bits.

Assume without loss of generality, and for simplicity of notation, that the set CONFLICTS =
{1, . . . , c} where c ≤ t/2. Consider the c× t bivariate polynomial V (x, y) =

∑c
j=1 x

j−1 · S(j, y).

Our goal is to publicly reconstruct the degree c univariate polynomial fV0 (x) := V (x, 0) :=∑c
j=1 x

j−1 · S(j, 0). Observe that the coefficients for this polynomial are S(j, 0) for every j ∈
CONFLICTS. The parties will reconstruct this polynomial V (x, 0) publicly, and then they can
recover S(1, 0), . . . , S(c, 0), as required. Moreover, note that this is a polynomial of degree at
most c ≤ t/2.

Towards that end, each party Pk for k 6∈ CONFLICTS can locally compute

fVk (x) := V (x, k) =

c∑
j=1

xj−1 · S(j, k) =

c∑
j=1

xj−1 · fk(j) .

Each Pk sends fVk (i) to each party Pi for i 6∈ CONFLICTS. Now each such party Pi tries to
reconstruct V (i, y) from all the points (fVk (i))k 6∈CONFLICTS that it received. Note that V (i, y) is
of degree t, and since |CONFLICTS| ≤ t/2, Pi receives at least t + t/2 + 1 correct points, but
might receive up to t incorrect points. Once received more than t/2 incorrect points, there is no
unique reconstruction. In that case, Pi broadcasts complaint(i). If Pi successfully learns V (i, y),
then it can compute fV0 (i) = V (i, 0) and publish it. The dealer (which knows V (x, y)) listen
to all published messages, and add to a set Bad all parties that complaints or that published
incorrect values. The dealer broadcasts Bad.

12

Broadcast

O(nL+ n4 logn)

Gradecast

O(nL+ n3 logn)

Byzantine Agreement

O(n4 logn)

Oblivious Leader Election

O(n4 logn)

n-Packed Moderated VSS

×n

Moderated VSS

O(n2 logn) p2p + O(n2 logn)

gradecast =⇒ O(n3 logn)

(a) Before our work.

Broadcast

O(nL+ n3 log2 n)

Gradecast

O(nL+ n2 logn)

Byzantine Agreement

O(n3 log2 n)

Oblivious Leader Election

O(n3 log2 n)

logn-Batched Moderated VSS

×n

Moderated VSS

O(n2 logn) p2p + O(n log2 n)

gradecast =⇒ O(n2 log2 n)

(b) After our work.

Figure 1: The structure of Broadcast, including costs before and after our improvements. Our improve-
ments are in oblivious leader election and in (moderated) batched VSS. We use the gradecast protocol
of [ZLC23] which we denote in blue.

The parties discard the dealer if Bad is too large, or restart the protocol if |Bad| > t/2.
Otherwise, |Bad| ≤ t/2, and the dealer “confirmed” n− |CONFLICTS| − |Bad| ≥ n− t/2− t/2 ≥
2t + 1 points on a univariate polynomial fV0 (x). All the points on this polynomial are public,
and the dealer must take care that all points (for those it did not include in Bad) must lie on
a unique univariate polynomial of degree at most c ≤ t/2 (by including parties in Bad if some
point is incorrect). If not, then the dealer is publicly discarded. Therefore, we are guaranteed
that all parties have fV0 (x), and from its coefficients, all parties learn the values g1(0), . . . , gc(0).

We note that the above share reconstruction protocol is perfectly secure (as opposed to the
first part, which was just statistically secure). Moreover, each party broadcasts just O(log n)
bits, and the dealer broadcasts O(n log n) bits, leading to a total of O(n log n) bits broadcasted.

2.3 Putting it All Together

We now present our overall broadcast protocol, which follows the paradigm of [FM88, KK06].
We also refer the reader to Appendix A for an overview of the different primitives. To broadcast
a message L:

1. The sender gradecasts the message L. Each party receives a message Li with a grade
gi ∈ {0, 1, 2}.

2. The parties run Byzantine agreement on the grade gi. If gi = 2 then the input of the
Byzantine agreement is 1. Otherwise, it is 0. Byzantine agreement intuitively works as
follows:

(a) The parties try to see if they all hold the same bit as input. Along the way, they send
to each other the input bit. If they agree - they halt and output that bit.

(b) If there is no agreement – they obliviously elect a leader. They run the protocol again
with the leader’s value that was sent in the previous step.

Gradecasting a message of size L requires O(nL+ n2 log n) communication [ZLC23]. Our OLE
requires O(n3 log2 n), and the additional messages of Byzantine agreement require O(n2) bits per
iteration. Overall we get O(nL) plus expected O(n3 log2 n) with an expected constant number
of rounds. The costs are described in Figure 1. We denote the costs that we improve in red in
Figure 1a and in green in Figure 1b.

Parallel broadcast. For our parallel broadcast, we can follow the idea of Fitzi and Garay [FG03]
and use a single election across all instances. That is, each party gradecasts its message, and then
the parties run n instances of Byzantine agreement where they use the same leader across all n
instances. Once an honest leader is chosen, all instances can reach agreement. Since we have n

13

gradecasts, we get cost of O(n2L+n3 log n) for the gradecasts, and in addition O(n3 log2 n) per
instance of OLE, leading to O(n2L) plus expected O(n3 log2 n) with expected constant number
of rounds.

Organization. The rest of the paper is organized as follows. In Section 3, we provide the
preliminaries. In Section 4 we provide our statistical verifiable secret sharing, and in Section 5
we provide our batched multi-moderated VSS. We present the OLE protocol in Section 6 and
the broadcast protocol and parallel broadcast Section 7.

3 Preliminaries

We consider the set of parties represented by identities in [n] := {1, . . . , n} who are connected
by pair-wise private and authenticated channels. We alternate as convenient between referring
to parties by their identity i ∈ [n] or as Pi where i ∈ [n]. In our verifiable secret sharing protocol
we assume the parties have access to a broadcast channel as well. Up to t < n/3 of the parties
are maliciously corrupted by a computationally unbounded active adversary A. Our security
proofs are all in the standalone model for a static adversary. The standalone security implies
adaptive security with inefficient simulation [CDD+01] and universal composability [Can00] due
to [KLR06].

We also assume for our protocols the existence of a finite field F where |F| > n+ 1 and the
set of values {0, 1, . . . , n} is a distinct set of elements known apriori to all the parties.

We also provide additional definitions, including statistical security, hybrid model and com-
position, and some properties on bivariate polynomials. We also provide the ideal functionalities
for our final primitives – Broadcast and Byzantine agreement.

3.1 Security Definition

As mentioned before, we state and prove security for our protocols in the standalone model
[Can00, AL17]. Let f : ({0, 1}∗)n 7→ ({0, 1}∗)n be an n-party functionality and let π be a
protocol over the parties [n] where the parties are connected pair-wise private and authenticated
channels. The adversary A has auxiliary input z, and let I ⊂ [n]. The real and ideal executions
are defined as follows:

• The real execution: In this world, the parties run the protocol π where the adversary A
maliciously corrupts the parties in I. The adversary can see the messages of the honest par-
ties before sending messages for the corrupted parties, that is, it is rushing. By definition,
the messages between the honest parties on the point-to-point channels are hidden from the
adversary. The random variable RealπA(z),I(x̄) denotes the transcript of messages as seen
by A in the execution (including the corrupted parties’ inputs and internal randomness)
and the honest parties outputs, where the parties start with inputs x̄ = (x1, . . . , xn).

• The ideal execution : The ideal model consists of honest parties, a trusted party or ideal
functionality, and an ideal adversary SIM controlling the same subset I of parties. The
honest parties send their inputs to the ideal functionality. SIM receives the auxiliary
input z and the inputs of the corrupted parties. SIM may substitute the inputs of
the corrupted parties (as long as the length of the inputs remains the same). The ideal
functionality then receives all the inputs x1, . . . , xn where SIM may have replaced some
inputs and computes the output (y1, . . . , yn) = f(x1, . . . , xn) and sends yj to Pj for the
honest parties and hands the outputs of the corrupted parties to the adversary. The
random variable IdealfSIM(z),I(x̄) denotes the output of SIM and the honest parties.

Adaptive security. As mentioned, we need to prove the security of our statistical primitives
against an adaptive adversary (else, adaptive security of our broadcast protocol cannot be de-
rived for free from [CDD+01]). We follow the definition of adaptive corruptions from [ACS22].
However, our statistical primitives are reactive and we need to make slight changes to the def-
inition from [ACS22]. [ACS22, Section 2.4] defines adaptive corruptions for a computation at

14

each of the following stages: (1) before inputs; and (2) after inputs and computation; and (3)
post-execution. It thus suffices to allow the adaptive ideal world adversary perform adaptive
corruptions (1) before a reactive interaction; and (2) after the reactive interaction; and (3) after
the ideal functionality has finished executing. Note that for an ideal functionality with exactly
one interaction (non-reactive) the above is identical to the adaptive definition of [ACS22].

Definition 3.1. A protocol π perfectly realizes a functionality f , if for every adversary A in the
real world, there exists an ideal adversary SIM such that for each I ⊂ [n] with |I| ≤ t, it holds
that

{IdealfSIM(z),I(x̄)} ≡ {RealπA(z),I(x̄)}

where x̄ ∈ ({0, 1}∗)n such that |x1| = . . . = |xn|.

Statistical security. For certain protocols π (specifically, for the verifiable secret sharing pro-
tocol used to construct the oblivious leader election), we show that the distributions on the real
and ideal executions are statistically close instead of identical. Furthermore, we give an upper
bound on the distance ε between the real and ideal executions. We term the aforementioned
notion as statistical security and define it as follows:

Definition 3.2. A protocol π statistically realizes a functionality f , if for every adversary A in
the real world, there exists an ideal adversary SIM such that for each I ⊂ [n] with |I| ≤ t, it
holds that

∆
(
{IdealfSIM(z),I(x̄)}, {RealπA(z),I(x̄)}

)
≤ ε

where x̄ ∈ ({0, 1}∗)n such that |x1| = . . . = |xn|,

∆(X,Y) =
1

2

∣∣∣∣∣∑
v∈V

Pr [X = v]− Pr [Y = v]

∣∣∣∣∣
denotes the statistical distance between the ensembles X and Y that are taken values in V (i.e.,
V is the union of the supports of X and Y), and 0 ≤ ε < 1 is called the statistical error for
protocol π.

By definition, a protocol with statistical error ε = 0 is perfectly secure.

Hybrid model and composition. For modularity, we use the hybrid model. In a protocol in
the πfg in the f -hybrid model, the parties have access to a trusted party that ideally computes

the function f for them. The composition theorem due to [Can00] states that if a protocol πfg
securely implements g, and a protocol πf securely implements f , then when replacing in the

protocol πfg all invocations of f with the protocol πf , then the resulting protocol also securely
implements g.

For statistical security, suppose that πfg in the f -hybrid model perfectly realizes some func-
tionality g, and let T bounds the number of times it invokes f in all executions; moreover,
suppose πf realizes f in the plain model with statistical error ε. Then, there exists a protocol π
that implements g in the plain model with statistical error T · ε.

3.2 Bivariate Polynomials

A degree (`,m)-bivariate polynomial over F is of the form S(x, y) =
∑`

i=0

∑m
j=0 bijx

iyj where

each bij ∈ F. The polynomials fi(x) = S(x, i) and gi(y) = S(i, y) are called ith row and column
polynomials of S(x, y) respectively. In our protocol, we use (t, t)-bivariate polynomials where
the ith row and column polynomials are associated with the party Pi.

Lemma 3.3 (Pair-wise Consistency Lemma [CCP22]). Let {fi1(x), . . . , fiq(x)} and {gj1(y), . . . ,
gjr(y)} be degree ` and degree m polynomials respectively where q ≥ m + 1, r ≥ ` + 1 and
where i1, . . . , iq, j1, . . . , jr ∈ {1, . . . , n}. Moreover, let for every i ∈ {i1, . . . , iq} and every
j ∈ {j1, . . . , jr}, the condition fi(αj) = gj(αi) holds. Then there exists a unique degree-(`,m)
bivariate polynomial S∗(x, y), such that the polynomials fi1(x), . . . , fiq(x) and gj1(y), . . . , gjr(y)
lie on S∗(x, y).

15

3.3 Ideal Functionalities for Broadcast and Byzantine Agreement

We provide here ideal functionalities for broadcast and byzantine agreement, as those are our
final objectives. We introduce other functionalities along the way in the technical sections.

Broadcast. In broadcast, we have a sender that holds a message M , and all honest parties
are supposed to agree on the message. It requires: (1) validity:

Its ideal functionality is therefore simple.

Functionality 3.4: FBC

The functionality is parameterized by a value L.

1. The dealer (sender) sends to the functionality its message M ∈ {0, 1}L.

2. The functionality sends M to all the parties.

Byzantine agreement. In Byzantine agreement, each party holds as input a message Mi ∈M
from some message spaceM and output a message where it is guaranteed that all honest parties
output the same message (consistency). Furthermore, it is also guaranteed that if all honest
parties held the same input message M , then M is the output (validity).

Functionality 3.5: FBA: Byzantine Agreement

The functionality is parameterized by the set of corrupted parties I ⊂ [n] and a message space
M.

1. The functionality receives from each honest party Pj its input Mj ∈M. The functionality
sends (Mj)j 6∈I to the adversary.

2. The adversary sends a message M̂ .

3. If there exists a message M such that Mj = M for each j 6∈ I, then set y = M . Otherwise,
set y = M̂ .

4. The functionality gives y to all parties.

In case where the message spaceM is {0, 1} we call this primitive “bit-Byzantine agreement”.

4 Statistical Verifiable Secret Sharing

In this section, we provide our statistically secure verifiable secret sharing, which has low broad-
cast cost. In Section 4.1, we give the sharing attempt protocol, where the dealer tries to share
its secret, but it might fail. At the end of an execution of the sharing attempt, there exists a set
CONFLICTS of parties of size at most t/2 such that each honest party Pj 6∈ CONFLICTS holds
fj(x), gj(y) where fj(x) = S(x, j), gj(y) = S(j, y) for some unique degree-(t, t) bivariate polyno-
mial S(x, y). Furthermore, if the dealer was honest, no honest party is included in CONFLICTS.
Specifically, at the end of a sharing attempt, one of the following outcomes occurs:

1. If |CONFLICTS| > t/2, then the protocol is restarted (after publicly fixing the shares of
the parties in CONFLICTS).

2. The dealer is discarded;

3. |CONFLICTS| ≤ t/2. In this case, the protocol proceeds to reconstruct the shares of the
parties in CONFLICTS. See Section 4.2.

4.1 Sharing Attempt
We realize the sharing attempt functionality FShareAttempt (Functionality 4.1) with only statistical
security and hence we need to additionally prove the adaptive security of our protocol. In the

16

ideal execution, the adversary may adaptively corrupt parties after each interaction between the
parties and the ideal functionality.

Functionality 4.1: FShareAttempt

The functionality is parameterized by the set of corrupted parties, I ⊆ [n].

1. All the parties send to FShareAttempt a set ZEROS ⊆ [n]. For an honest dealer, it holds that
ZEROS ⊆ I.

2. FShareAttempt sends the set ZEROS to the adversary.

3. The dealer sends a polynomial S(x, y) to FShareAttempt. When either the polynomial is
not of degree at most t in x and y, or for some i ∈ ZEROS it holds that S(x, i) 6= 0 or
S(i, y) 6= 0, FShareAttempt executes Step 6c to discard the dealer.

4. For every i ∈ I, FShareAttempt sends (S(x, i), S(i, y)) to the adversary.

5. Receive a set CONFLICTS from the adversary such that CONFLICTS ∩ ZEROS = φ. If
the dealer is honest, then CONFLICTS ∪ ZEROS ⊆ I. If |CONFLICTS ∪ ZEROS| > t for a
corrupt dealer, then FShareAttempt executes Step 6c to discard the dealer.

6. Output:

(a) Detect: If |CONFLICTS| > t/2, then send (detect,CONFLICTS) to all parties

(b) Proceed: Otherwise, send (proceed, S(x, i), S(i, y),CONFLICTS) to every i 6∈ CONFLICTS
and (proceed,⊥,⊥,CONFLICTS) to every i ∈ CONFLICTS.

(c) Discard: send discard to all the parties.

Protocol 4.2: ΠShareAttempt

Input: All parties input ZEROS ⊂ [n]. The dealer, denoted as the party P for simplicity, inputs
a polynomial S(x, y) with degree t in x and y, such that for each Pi ∈ ZEROS it holds that
S(x, i) = 0 and S(i, y) = 0.
The protocol:

1. (Dealing shares): The dealer P sends (fi(x), gi(y)) = (S(x, i), S(i, y)) to Pi 6∈ ZEROS.
Each Pi ∈ ZEROS sets (fi(x), gi(y)) = (0, 0).

2. (Pairwise Consistency Checks):

(a) Each Pi 6∈ ZEROS sends (fi(j), gi(j)) to every Pj 6∈ ZEROS. Let (fji, gji) be the
values received by Pi from Pj .

(b) Initialize a set Complaintsi = ∅. If it holds that fji 6= gi(j) or gji 6= fi(j) then add j
to Complaintsi.

(c) If there exists a j ∈ ZEROS for which fi(j) 6= 0 or gi(j) 6= 0, then broadcast
(complaint, i).

3. (Random Complaints):

(a) Pi samples a set Si by choosing m elements from [n] (with replacements).

(b) For every j ∈ Complaintsi ∩ Si, the party Pi broadcasts
(complaint, i, j, fi(j), gi(j)).

4. (Confirming Random Complaints):

(a) For each Pj that broadcast (complaint, j, i, ·, ·), if j ∈ Complaintsi and Pj broadcasted
at mostR complaints in the previous step, then Pi also broadcasts (complaint, i, j, fi(j), gi(j)).

5. (Conflict Resolution):

(a) P sets CONFLICTS = φ. Add i 6∈ ZEROS to CONFLICTS if one of the following
occurs: (a) Pi broadcasted (complaint, i); (b) Pi broadcasted more than m complaints
in Step 3b; (c) Pi broadcasted (complaint, i, j, u, v) such that u 6= S(j, i) or v 6= S(i, j).

(b) P broadcasts CONFLICTS.

6. (Output):

17

(a) Each Pi outputs discard if any one of the following does not hold: (i) ZEROS ∩
CONFLICTS = φ; (ii) |ZEROS ∪ CONFLICTS| ≤ t; (iii) if Pi broadcasts (complaint, i)
but i 6∈ CONFLICTS; (iv) If Pi broadcasted more than m complaints in Step 3b
but i 6∈ CONFLICTS; (v) If Pi broadcasted (complaint, i, j, ui, vi) and Pj broadcasted
(complaint, i, j, uj , vj) with ui 6= vj or vi 6= uj , and neither i or j in CONFLICTS.

(b) If |CONFLICTS| > t/2, then each Pi outputs (detect,CONFLICTS).

(c) Else, Pi ∈ CONFLICTS outputs (proceed,⊥,⊥,CONFLICTS) and Pi 6∈ CONFLICTS
outputs (proceed, fi(x), gi(y),CONFLICTS).

The simulation for the sharing attempt protocol of [AAPP23] can be repurposed to work
for our protocol; however, it is conditioned on the following event: all conflicts between honest
parties is resolved by the dealer. Towards that end, we first provide an upper bound on the
probability that the above event occurs (Claim 4.3) and then prove the security of Protocol 4.2
(Theorem 4.4).

To formalize the above event, we first define a clique. A set C ⊆ [n] is a clique if for each
ordered pair i, j ∈ C it holds that the parties Pi and Pj agreed with each other in Step 2c, i.e.,
Pi did not include Pj in Complaintsi.

Claim 4.3. The probability that all honest parties (at the end of the protocol) output proceed but
there is no clique C ⊆ H among the honest parties (H is the set of parties that remain honest
until the end of the protocol) that are not in CONFLICTS is at most ε = n · e−m/6. Recall that
m is the size of the set Si chosen by each party Pi in Step 3b.

Proof. Let K = H \CONFLICTS where H is the set of honest parties at the end of the protocol.
Since |CONFLICTS| ≤ t/2 and |H| ≥ 2t+ 1, we have that |K| ≥ t+ t/2 + 1. Let Bad denote the
following events:

Bad: The parties output proceed but there is no clique among K; Namely, all
parties in K output proceed but the maximal clique C ⊆ K is of size < |K|, where
C is a clique if for every i, j ∈ C it holds that i 6∈ Complaintsj and j 6∈ Complaintsi.

Badc: The parties output proceed but the maximal clique C ⊆ K is of size c, where
C is a clique if for every i, j ∈ C it holds that i 6∈ Complaintsj and j 6∈ Complaintsi.

It is easy to see that Bad =
⋃|K|−1
c=1 Badc.

Bounding the probability of Badc. We define different cases according to the size of c (the
maximal clique). We start as a warm up with the case of c = |K| − 1:

The case of c = |K| − 1. In this case, the shares of the parties in C define a unique
bivariate polynomial of degree t × t. In particular, this means that there exists some Pj that
can agree with at most t parties in C, that is, |Complaintsj ∩ C| ≥ |C| − t = |K| − 1 − t.
When Pj broadcasts its complaints, it did not pick any one of those parties, and likewise, those
|K| − 1− t ≥ t+ t/2 + 1− 1− t ≥ t/2 parties did not complain against Pj . Otherwise, we must
have a joint complaint, and the dealer must have included one of the two parties in CONFLICTS
or be discarded. In particular, each one of those ≥ t/2 chose m elements in [n], none of them is
j. Therefore,

Pr
[
Bad|K|−1

]
≤
((

n− 1

n

)m)t/2
≤
((

1− 1

n

)n)m/6
≤ e−m/6 .

The case of c ≥ t + 1. As in the previous case, the shares of the parties in C define a
unique bivariate polynomial of degree t× t. Moreover, there is a set J of at least |K| − c honest
parties that are not in the clique C. Each one of those Pj , for j ∈ J has |Complaintsj ∩ C| ≥ 1,
as otherwise we would have a larger clique. In fact, since the degree of the polynomial is t,
Pj can agree with at most t parties in C. As such, |Complaintsj ∩ C| ≥ c − t (≥ 1) When
randomly choosing the complaints, each Pj did not pick the c− t parties it disagreed with from

18

C. Likewise, there are at least c− t parties in C that did not pick a corresponding (at least one)
element in J , and the parties in C did not pick those parties in J . We get:

Pr [Badc] ≤
((

n− 1

n

)m)|K|−c
·
((

n− 1

n

)m)c−t
≤
((

n− 1

n

)m)t/2
≤ e−m/6 ,

where we use the fact that |K| ≥ t+ t/2 + 1 and so |K| − t ≥ t/2.
The case of c < t + 1. In that case, there is a set of |K| − c ≥ t/2 parties, and each

one of them disagrees with at least one party in C, and does not pick a disagreeing party when
complaining. We have:

Pr [Badc] ≤
((

n− 1

n

)m)t/2
· e−m/6 .

Putting it all together. By a simple union bound, we can bound:

Pr [Bad] ≤
∑|K|−1

c=1 Pr [Badc] ≤ n · e−m/6 = ε.

As mentioned before, the simulator constructed in the proof of security for the sharing
attempt protocol of [AAPP23] can be re-purposed to work for our protocol. However, as our
protocol is only statistically secure we cannot derive adaptive security directly from [CDD+01].
We provide the adaptive simulation security proof for our statistical sharing attempt protocol
in the following theorem.

Theorem 4.4. Protocol ΠShareAttempt (Protocol 4.2), securely computes the functionality FShareAttempt

(Functionality 4.1) with statistical security, in the presence of a malicious adaptive adversary
controlling at most t < n/3 except with probability ε = n · e−m/6. The total communication com-
plexity is O(n2 log n) bits over point-to-point channels; The dealer broadcasts O(n log n) bits,
and each other party broadcasts O(m log n) bits.

Proof. Regarding efficiency, by inspection, each party sends or receives O(n log n) over the point-
to-point channels.

Protocol ΠShareAttempt (Protocol 4.2), securely computes the functionality FShareAttempt (Func-
tionality 4.1) with statistical security, in the presence of a malicious adversary controlling at most
t < n/3 except with probability ε = n·e−m/6. The total communication complexity is O(n2 log n)
bits over point-to-point channels; The dealer broadcasts O(n log n) bits, and each other party
broadcasts O(m log n) bits.

We now show that conditioned on that Bad does not occur, then the protocol securely
computes the functionality FShareAttempt with perfect security. To that end, we construct a
simulator considering two cases on the adversary strategy: the dealer is honest at the end
of the protocol and the dealer is corrupted by the end of the protocol. Note that the two
cases include any post-execution adaptive corruptions made by the adversary, i.e., in the first
case, the adversary does not corrupt the dealer even after the execution and in the second
case, the adversary may corrupt the dealer after the execution. The simulator maintains a
set Î of adaptively corrupted parties during the simulation and updates it upon receiving a
(corrupt, i ∈ [n]) request from the adaptive adversary.
The case of an honest dealer. The simulator performs the following:

1. Invoke the adversary with an auxiliary input and initialize the sets CONFLICTS = φ and
Î = φ.

2. For each corruption (corrupt, i) requested by the adversary, adaptively corrupt party Pi in
the ideal execution and include i ∈ Î.

3. Receive from the ideal functionality the set ZEROS. Once again, for each corruption
(corrupt, i) requested by the adversary, adaptively corrupt party Pi in the ideal execution
and include i ∈ Î.

4. Receive from the ideal functionality the leaked shares corresponding to the currently
corrupted parties, (fi(x), gi(y))i∈Î where ZEROS ⊆ Î and fi(x) = gi(y) = 0 for each
i ∈ ZEROS.

19

5. Now simulate the steps of the protocol using the values (fi(x), gi(y))i∈Î received from the
ideal functionality. Note that in each round of the protocol, the messages the adversary
sees from the honest parties can be computed from just the polynomials (fi(x), gi(y))i∈Î .

Patching. After each round r of the protocol simulation, the adaptive adversary may
make an adaptive corruption (corrupt, i). Upon receiving such a request, perform the
following:

(a) Include i ∈ Î and adaptively corrupt i in the ideal execution.

(b) Receive from the ideal functionality the polynomials fi(x), gi(y).

(c) Append to the adversary’s view, the messages sent and received until round r by the
simulated honest party Pi that received polynomials fi(x), gi(y) from the dealer.

6. In the final step of the simulation, include i ∈ CONFLICTS if the adversary broadcast
complaint(i, j, ui, vi) such that ui 6= fi(j) and vi 6= gi(j) or if the adversary broadcast
(complaint, i) or if Pi broadcasted more than R complaints. The honest dealer’s broadcast
is then simulated.

7. Send CONFLICTS to the ideal functionality. For each adaptive corruption (corrupt, i)
requested by the adversary, execute the same steps as in Step 5 to patch the adversary’s
view.

8. Receive the outputs from the ideal functionality. If the output is
(detect,CONFLICTS), then send it to the adversary. Else, send
(proceed, fi(x), gi(y),CONFLICTS) for each i ∈ Î \ CONFLICTS and
(proceed,⊥,⊥,CONFLICTS) for each i ∈ CONFLICTS.

9. At this stage, the adaptive adversary may make further adaptive corruptions with a request
(corrupt, i) for i 6∈ Î (these are the post-execution adaptive corruptions and i cannot be
the dealer). Once again, the simulator performs the steps as in Step 5 to patch the view
of the adversary.

The simulator samples the random complaints from the same distribution as the honest parties
in the real execution of the protocol. Additionally, after each adaptive corruption (corrupt, i)
requested by the adversary after round r, the simulator patches (see Step 5) the view of the
adversary with the messages sent and received by the simulated honest party Pi until round r.
This holds for the patched view for post-execution adaptive corruptions as well. Note that the
simulator can execute such a patching as it receives from the ideal functionality the shares of each
adaptively corrupted party after corrupting it in the ideal execution. As the adaptive adversary
may make up to t adaptive corruptions of parties excluding the dealer (including post-execution)
and from Lemma 3.3, the adversary’s view in the real execution and the simulated execution
must be identically distributed (the rest of the simulation is deterministic). It now suffices to
show that the outputs of the honest parties are identical in the real and ideal execution.

All honest parties input ZEROS ⊆ I and the dealer invokes the ideal functionality with a valid
degree-(t, t) bivariate polynomial S(x, y) with S(x, i) = S(i, y) = 0 for each i ∈ ZEROS. Hence,
the honest parties never discard the honest dealer and the output is either (detect,CONFLICTS)
or (proceed, fi(x), gi(y),CONFLICTS) where CONFLICTS ⊆ I.

In the real execution, the honest dealer sends the valid shares on S(x, y) to the honest
parties who will not disagree with each other. Suppose the party Pj stays honest till Step 2c,
|Complaintsj | ≤ t and for each i ∈ ZEROS it holds that fi(x) = gi(y) = 0. Hence, Pj does
not broadcast (complaint, j) and then broadcasts up to O(m) complaints against corrupted
parties. Since the complaints are made public, all the parties (including the honest dealer)
can identify whether to include the corrupted party in CONFLICTS. The dealer broadcasts
CONFLICTS ⊆ I. Note that even after updating CONFLICTS, CONFLICTS ⊆ I still holds as
only corrupted parties are included in CONFLICTS by the honest parties (in both the simulated
execution and the real execution). Furthermore, under these conditions, an honest dealer cannot
be discarded as all the complaints are resolved correctly. Since, CONFLICTS is known to all
honest parties (all the required values are broadcast), the honest parties agree on whether to
output (detect,CONFLICTS) or (proceed, fi(x), gi(y),CONFLICTS). Note that in this case, the

20

randomness used to choose the complaints changes whether the honest parties output proceed
or detect. Clearly, the outputs are identical to the ideal execution. For the case of an honest
dealer, clearly, the event Bad does not occur as all honest parties will definitely agree with each
other (also, CONFLICTS ⊆ I).

The case of a corrupted dealer. In this case, the dealer may be corrupted at any stage
of the computation, including after the execution. Critically, if the dealer is honest until some
step of the simulation and then is corrupted, the prior interactions with the ideal functionality
cannot be modified. The simulator performs the following:

1. Invoke the adversary with an auxiliary input and initialize the sets CONFLICTS = φ and
Î = φ.

2. For each corruption (corrupt, i) requested by the adversary, adaptively corrupt party Pi in
the ideal execution and include i ∈ Î.

3. Receive from the ideal functionality the set ZEROS. Once again, for each corruption
(corrupt, i) requested by the adversary, adaptively corrupt party Pi in the ideal execution
and include i ∈ Î.

4. Now simulate the steps of the protocol as the honest parties interacting with the adversary.

Patching. After each round r of the protocol simulation, the adaptive adversary may
make an adaptive corruption (corrupt, i). Upon receiving such a request, perform the
following:

(a) Include i ∈ Î and adaptively corrupt i in the ideal execution.

(b) Append to the adversary’s view, the messages sent and received until round r by the
simulated honest party Pi.

5. We consider three cases:

(a) If some simulated honest party output discard, then send S(x, y) = yt+1 to the ideal
functionality with CONFLICTS = φ.

(b) If some simulated honest party output (detect,CONFLICTS), it must hold that |CONFLICTS| >
t/2 and hence send S(x, y) = yt with CONFLICTS to the ideal functionality.

(c) Else, let J be an arbitrary set of t + 1 honest parties that are not in CONFLICTS.
Note that since |CONFLICTS| ≤ t/2 at least n − t/2 ≥ 5t/2 + 1 parties are not in
CONFLICTS out of which ≥ 3t/2 + 1 > t+ 1 must be honest. Interpolate a bivariate
S(x, y) such that S(x, j) = fj(x) for each j ∈ J and send S(x, y) with CONFLICTS
to the ideal functionality.

The simulator only simulates the honest parties in the protocol and patches the adversaries view
with the appropriate transcripts of the simulated honest parties for each adaptive corruption.
Hence, the view of the adversary must be identically distributed in the real and ideal execution.
Recall that we condition the security on the event that Bad does not occur. In the following
analysis, we call the honest parties at the end of the execution as just honest parties for brevity.
It must hold that either some honest party outputs detect or discard or the honest parties output
proceed and the honest parties that are not in CONFLICTS agree with each other.

• Some honest party outputs detect or discard. Since the choice to output is based
on messages that are broadcast, all honest parties output either (detect,CONFLICTS)
where |CONFLICTS| > t/2 or discard. If the output is discard, the simulator sends input
S(x, y) = yt+1 to the ideal functionality which results in all honest parties receiving output
discard which is identical to the real execution. Similarly, if one simulated honest party
outputs (detect,CONFLICTS), which is given by the simulator to the ideal functionality
with S(x, y) = yt. The ideal functionality gives as output (detect,CONFLICTS) to all the
honest parties which is identical to the real execution.

• All honest parties output proceed. but honest parties not in CONFLICTS agree
with each other. Once again, note that the honest parties must agree on the set
CONFLICTS such that |CONFLICTS| ≤ t/2 and the honest parties not in CONFLICTS agree

21

with each other. There are n− t− t/2 ≥ 3t/2+1 > t+1 honest parties not in CONFLICTS
who agree with each other. Hence, Lemma 3.3 implies that there exists a unique bivari-
ate S(x, y) such that for each honest i 6∈ CONFLICTS, it holds that S(x, i) = fi(x) and
S(i, y) = gi(y). The simulator computes exactly this bivariate and gives S(x, y) with
CONFLICTS to the ideal functionality. The ideal functionality gives i 6∈ CONFLICTS, the
output (proceed, fi(x), gi(y),CONFLICTS) and (proceed,⊥,⊥,CONFLICTS) to i ∈ CONFLICTS.
Clearly, the honest parties output the same in the real execution as well.

Hence, if Bad does not occur, the protocol perfectly computes the functionality FShareAttempt.
From Claim 4.3, we have that Bad occurs with probability at most ε = n · e−m/6 which gives us
the required result.

4.2 Reconstructing Shares

In the reconstruction phase, each party j ∈ CONFLICTS is able to reconstruct a share sj =
S(j, 0). Note that the parties not in CONFLICTS do not learn their entire share but just sj .
Moreover, this is sufficient to guarantee reconstruction of S(0, 0). Looking ahead, one of the
following is possible after an execution of Protocol 4.6:

1. The parties in CONFLICTS successfully reconstruct their shares. In this case, the parties
hold a sharing on the polynomial q(x) = S(x, 0) (where the secret is q(0) = S(0, 0) as
required).

2. At most t/2 additional conflicts are identified. In this case, the protocol is restarted from
the sharing attempt (Protocol 4.2).

3. More than t/2 additional conflicts are identified. In this case, the dealer is discarded.

Functionality 4.5: Frec-shares: Reconstructing shares

1. Input: All honest parties send to the functionality Frec-shares the sets ZEROS ⊆ [n] and
CONFLICTS ⊆ [n], each honest j 6∈ CONFLICTS sends (fj(x), gj(y)). Let S(x, y) be the
unique bivariate polynomial of degree at most t in x and y that satisfies fj(x) = S(x, j)
and gj(y) = S(j, y) for every j 6∈ CONFLICTS. Moreover, it holds that n−|CONFLICTS| ≥
2t+ t/2 + 1.

2. Frec-shares sends the (ZEROS,CONFLICTS, (S(x, i), S(i, y))i∈I) to the adversary. If the
dealer is corrupted, Frec-shares sends S(x, y) as well.

3. It receives back from the adversary a message M .

4. Output:

(a) If M = discard and the dealer is corrupted, then Frec-shares sends discard to all parties.

(b) If M = (detect,Bad) with Bad ∩ (ZEROS ∪ CONFLICTS) = φ and |Bad| > t/2, and
with Bad ⊆ I in the case of an honest dealer, then Frec-shares sends (detect,Bad) to
all the parties.

(c) If M = proceed, then Frec-shares sends (proceed, S(j, 0)) to each party Pj .

Protocol 4.6: Πrec-shares: A Protocol for Reconstructing the shares

Input: All parties hold the same set CONFLICTS and ZEROS. Each honest party not in
CONFLICTS holds a pair of polynomials (fi(x), gi(y)), and it is guaranteed that all the shares
of honest parties lie on the same bivariate polynomial S(x, y) with degree at most t in x and y.
Without loss of generality, let CONFLICTS = {1, . . . , c} where c ≤ t/2.
The protocol:

1. Every party sets HAVE-SHARES = [n] \ (ZEROS ∪ CONFLICTS).

2. Computing fVi (x):

22

(a) Each party Pi 6∈ CONFLICTS computes the degree c polynomial:

fVi (x) :=

c∑
k=1

xk−1 · fi(k) .

It sends to each party Pj for j 6∈ CONFLICTS the value ui→j = fVi (j).

3. Computing gVi (y):

(a) Let uj→i be the value that Pj sent Pi in the previous step (and take uj→i = 0 for
j ∈ ZEROS). Pi attempts to find a unique polynomial gVi (y) of degree at most t
satisfying gVi (j) = uj→i for every j 6∈ CONFLICTS, with at most t/2 errors.

(b) If there is no unique reconstruction, then Pi broadcasts complaint(i).

(c) If there is a unique reconstruction, then Pi broadcasts reveal(i, gVi (0)).

4. Dealer – Complaint Resolution

(a) The dealer sets Bad = φ. For each complaint(i) broadcasted by Pi, add i to Bad.

(b) For every reveal(i, ui) broadcasted by Pi, the dealer checks if

ui =
c∑

k=1

ik−1 · S(k, 0)

If not, then it adds i to Bad. The dealer broadcasts Bad.

5. Output:

(a) Discard: discard the dealer if any one of the following holds: (1) There exists Pi
that broadcasted complaint(i) but i 6∈ Bad; (2) If ZEROS ∩ Bad 6= ∅; (3) |ZEROS ∪
CONFLICTS∪Bad| > t; (4) If the set of points K = {(j, uj)}j 6∈(CONFLICTS∪Bad∪ZEROS)∪
{(j, 0)}j∈ZEROS not all lie on a univariate polynomial fV0 (y) of degree c.
If any one of the above holds, output discard.

(b) Large detection: Otherwise, if |Bad| > t/2 then output (detect,Bad).

(c) Proceed: Otherwise, if Pi for i 6∈ CONFLICTS outputs gi(0). Pi for i ∈ CONFLICTS
reconstructs fV0 (x) from the set of points K as above, and outputs the coefficient of
the xi−1 term.

We now prove the security of Protocol 4.6 with the following theorem:

Theorem 4.7. Πrec-shares (Protocol 4.6) securely computes the functionality Frec-shares Func-
tionality 4.5) with perfect security, in the presence of a malicious adversary controlling at most
t < n/3 parties. The total communication complexity is O(n2 log n) bits over point-to-point
channels; The dealer broadcasts O(n log n) bits and each other party broadcasts O(log n) bits.

Proof. We consider two cases.
The case of an honest dealer. The simulator executes the following steps:

1. Invokes the adversary with the auxiliary input z.

2. Receives ZEROS, CONFLICTS and the shares of the corrupted parties, that is, S(x, i), S(i, y)
for each i ∈ I.

3. Simulate the execution of the protocol steps according to the messages sent by the adver-
sary. Since CONFLICTS ⊆ I (as the dealer is honest), the messages of the honest parties
to the corrupted parties can be computed from S(x, i), S(i, y) for i ∈ I. Specifically,

(a) Corresponding to each honest j 6∈ CONFLICTS and corrupted i 6∈ CONFLICTS, the
simulator sends the message uj→i as in Step 2a, where

uj→i = fVj (i) =

c∑
k=1

xk−1 · fj(k) =

c∑
k=1

xk−1 · S(k, j)

The simulator can compute each of the values uj→i, since it holds the polynomial
S(k, y) for every k ∈ CONFLICTS ⊆ I.

23

(b) The simulator simulates the broadcast of reveal(j, gVj (0)) in Step 3c on behalf of each
honest party j 6∈ CONFLICTS where

gVj (0) =
c∑

k=1

jk−1 · S(k, 0)

which can be computed from S(k, y) for each k ∈ I ∩ CONFLICTS.

(c) The simulator can compute the set Bad based on the messages of the corrupted
parties: include corrupted i ∈ Bad if Pi broadcasted complaint(i) or if Pi broadcasted
reveal(i, ui) where ui 6=

∑c
k=1 i

k−1 · S(k, 0) which can be computed from S(k, y) for
each k ∈ I∩CONFLICTS. The simulator now simulates the dealer’s broadcast of Bad.

(d) If |Bad| > t/2, then the simulator sends (detect,Bad) to the ideal functionality. Else,
it sends proceed.

Since the simulator simulates exactly the protocol and the protocol is deterministic, the adver-
sary’s view is distributed identically in the real and ideal executions. It now suffices to argue that
the honest parties output identically in the real and ideal executions. For an honest dealer, all
the honest parties will be able to interpolate the polynomial for the parties in CONFLICTS ⊂ I.
Hence, Bad ⊆ I and the dealer is never discarded as the simulator follows the steps of the pro-
tocol (as does an honest dealer). If the honest parties output (detect,Bad ⊆ I) they must agree
in the real execution due to the properties of broadcast. Else, the honest parties will definitely
output proceed with the valid shares. Clearly, the outputs of the honest parties are identical in
the real and ideal executions.
The case of a corrupted dealer. The simulator executes the following:

1. Invokes the adversary with the auxiliary input z.

2. Receives ZEROS, CONFLICTS and the bivariate S(x, y).

3. Simulate the execution of the protocol steps according to S(x, y) and the adversary’s
messages. Send M to the ideal functionality according to the following cases:

(a) If the output of some simulated honest party is discard then send discard.

(b) If the output of some simulated honest party is (detect,Bad) then send (detect,Bad).

(c) If the output of some simulated honest party is proceed, then send proceed.

Once again, the simulator executes the same steps as in the protocol. Hence, the adversary’s view
is identical in the real and ideal execution. It suffices to show that the honest party’s outputs are
identical in the two executions. Once again, from the properties of broadcast, it must hold that
if one honest party outputs either detect or discard, the honest parties agree on the output, and
therefore, the outputs of the honest parties are identical in both executions. Suppose that all
honest parties decide to proceed. We claim that in the real world, each honest i 6∈ CONFLICTS

outputs gj(0) = S(j, 0). Each honest i 6∈ CONFLICTS sends ui→j =
c∑

k=1

jk−1 · fi(k) =
c∑

k=1

jk−1 ·

S(k, i). Hence, each j 6∈ CONFLICTS receives a codeword of size at least n − t/2. There are
at least n − t/2 − t ≥ 3t/2 + 1 correct values received from the honest parties. Therefore, if
an honest party Pj does not broadcast complaint(j), then Pj must broadcast reveal(j, uj) where

uj = gVj (0) =

c∑
k=1

jk−1 ·S(k, 0). Since there are at most t/2 parties in Bad and the set K defines a

unique polynomial fV0 (x) =

c∑
k=1

xk−1 ·S(k, 0) (else, the dealer would have been discarded), each

honest party i ∈ CONFLICTS outputs the coefficient of the xi−1 term, that is, S(i, 0). Clearly,
the outputs of the honest parties in the real and ideal executions, completing our proof.

4.3 Statistical VSS Protocol

In our VSS scheme, the parties can only compute their share of the dealer’s secret but not
the entire row and column polynomials. Hence, the VSS functionality from [AAPP23] must be

24

modified. However, the changes are minute and our protocol also follows the same mechanism
as the VSS protocol from [AAPP23].

We first present the modified functionality FVSS and then present our VSS protocol ΠVSS in
the (FShareAttempt,Frec-shares)-hybrid model.

Functionality 4.8: FVSS

The functionality is parameterized by the set of corrupted parties, I ⊆ [n].

1. Input: All the parties send to FVSS a set ZEROS ⊆ [n] such that |ZEROS| ≤ t. For an
honest dealer, it holds that ZEROS ⊆ I.

2. Honest Dealer: The dealer sends s ∈ F to FVSS. The functionality sends ZEROS to the
adversary who replies with (fi(x), gi(y))i∈I under the constraint that fi(x) = gi(y) = 0
for each i ∈ ZEROS. The functionality chooses a random bivariate polynomial S(x, y) of
degree t in x and y under the constraints that (i) s = S(0, 0); (ii) S(x, i) = fi(x) and
S(i, y) = gi(y) for each i ∈ I.

3. Corrupted dealer: The functionality sends ZEROS to the adversary, which responds
with S(x, y). FVSS verifies that S(x, y) is of degree t in x and y, and that for every
i ∈ ZEROS it holds that S(x, i) = S(i, y) = 0. If not, FVSS replaces S(x, y) = ⊥.

4. Output: FVSS sends to each party Pj the share sj = S(j, 0).

Protocol 4.9: Secret sharing in the (FShareAttempt,Frec-shares)-hybrid model – ΠVSS

The parties initially set ZEROS = φ. The dealer holds as input s ∈ F.
The protocol:

1. Dealing the shares.

(a) The dealer chooses a random bivariate polynomial S(x, y) of degree t in x and y such
that s = S(0, 0) and S(x, i) = S(i, y) = 0 for each i ∈ ZEROS.

(b) The parties invoke Functionality 4.1, FShareAttempt, where the dealer inputs S(x, y)
and all the parties input ZEROS:

i. If the output is discard, then proceed to Step 3a.

ii. If the output is (detect,CONFLICTS) then set ZEROS = ZEROS ∪ CONFLICTS.
If |ZEROS| > t then proceed to Step 3a. Else, repeat from Step 1a.

iii. If the output is (proceed, fi(x), gi(y),CONFLICTS) with |CONFLICTS| ≤ t/2 and
for i ∈ CONFLICTS fi(x) = gi(y) = ⊥, then proceed to the next step.

2. Reconstruct the shares: The parties invoke Functionality 4.5, Frec-shares with inputs
(ZEROS,CONFLICTS, fi(x), gi(y)).

(a) If the output is discard, then proceed to Step 3a.

(b) If the output is (detect,Bad) then set ZEROS = ZEROS ∪ Bad. If |ZEROS| > t then
proceed to Step 3a. Else, repeat from Step 1a.

(c) If the output is (proceed, gi(0),CONFLICTS), then proceed to Step 3b.

3. Output:

(a) Discard: All parties output ⊥.

(b) Successful: Output si = gi(0).

Theorem 4.10. Protocol ΠVSS (Protocol 4.9), perfectly securely computes the functionality FVSS

(Functionality 4.8), in the (FShareAttempt,Frec-shares)-hybrid model (Functionality 4.1,4.5), in the
presence of a malicious adaptive adversary controlling at most t < n/3.

Proof. There are two differences between Protocol 4.9 and the packed secret sharing of [AAPP23]

25

1. In Protocol 4.9 the parties do not start with ZEROS as input and the dealer uses a degree-
(t, t) bivariate polynomial instead of a degree-(3t/2, t+ t/4) bivariate polynomial.

2. In Protocol 4.9 the parties output only the share si = gi(0) computed from the polynomials
received from the last call to FShareAttempt. The properties of Frec-shares guarantee that the
parties output si = gi(0) = S(i, 0) where the dealer chooses the degree-(t, t) bivariate
S(x, y).

The proof from [AAPP23] can be used with minor changes to reflect the above differences.

Statistical security after composition. Protocol ΠVSS in the (FShareAttempt,Frec-shares)-
hybrid model perfectly realizes FVSS. However, the protocol ΠShareAttempt (Protocol 4.2) realizes
FShareAttempt (Functionality 4.1) with statistical security in the case of a corrupted dealer. Since
we proved the adaptive security of ΠShareAttempt, protocol ΠVSS is also adaptively secure. As
described in Section 3.1, we can state the following corollary:

Corollary 4.11. There exists a protocol that statistically realizes the functionality FVSS against
t < n/3 adaptive corruptions such that the statistical error for the protocol is ε < 2n · e−m/6.

Note that in each invocation to ΠVSS, there is a statistical error of at most n · e−m/6 and due
to the repetitions the number of invocations to FShareAttempt is at most 2. From the definition
of statistical security, it holds that the statistical error for the composed sharing protocol is at
most 2n · e−m/6.

4.4 Batched Verifiable Secret Sharing

The protocol ΠVSS (Protocol 4.9) incurs a communication complexity of O(n2 log n) bits over
the point-to-point channels. Additionally, each party broadcasts O(m log n) bits (= poly log n)
and the dealer broadcasts O(n log n) bits. Towards reducing the cost while running multiple
instances of ΠVSS, we batch the broadcast costs among multiple instances. We first present the
batched VSS ideal functionality FbVSS, before discussing our techniques for batching.

Functionality 4.12: FbVSS

The functionality is parameterized by the set of corrupted parties, I ⊆ [n].

1. Input: All the parties send to FbVSS a set ZEROS ⊆ [n] such that |ZEROS| ≤ t. For an
honest dealer, it holds that ZEROS ⊆ I.

2. Honest Dealer: The dealer sends s(1), . . . , s(L) ∈ F to FbVSS. The functionality sends

ZEROS to the adversary who replies with (f
(`)
i (x), g

(`)
i (y))i∈I for ` = 1, . . . , L under the

constraint that f
(`)
i (x) = g

(`)
i (y) = 0 for each i ∈ ZEROS. The functionality chooses L

random bivariate polynomial
S(1)(x, y), . . . , S(L)(x, y) of degree t in x and y under the constraints that (i) s(`) =

S(`)(0, 0); (ii) S(`)(x, i) = f
(`)
i (x) and S(`)(i, y) = g

(`)
i (y) for each i ∈ I and each ` =

1, . . . , L.

3. Corrupted dealer: The functionality sends ZEROS to the adversary, which responds with
S(1)(x, y), . . . , S(L)(x, y). FbVSS verifies that for each ` = 1, . . . , L it holds that S(`)(x, y) is
of degree t in x and y, and that for every i ∈ ZEROS it holds that S(`)(x, i) = S(`)(i, y) = 0.
If not, FbVSS replaces S(`)(x, y) = ⊥ for each ` = 1, . . . , L.

4. Output: FbVSS sends to each party Pj the share s
(`)
j = S(`)(j, 0) for each ` = 1, . . . , L.

1. Batching broadcast in the sharing attempt. The dealer inputs L bivariate polyno-
mials, and the same set ZEROS is used across all instances, that is, each bivariate has
zero shares for parties in the set ZEROS. The parties chooses R elements and broadcasts
complaints with respect to one of the bivariates where there was a conflict. The complaint
is now of the form (complaint, i, j, `, f `i (j), g

`
i (j)) where S`(x, y) is the `th bivariate. The

26

parties confirm the random complaints as before with ` included in the complaint. The
dealer then computes a single CONFLICTS set after checking the complaints with each
bivariate. As discussed in [AAPP23], a joint complaint in some instance (say the lexi-
cographically smallest index) must be resolved by the dealer and consistency must hold
across all bivariates.

2. Batching dealer’s broadcast in the share reconstruction. We note that our share
reconstruction protocol already batches the reconstruction of the shares of parties in
CONFLICTS by embedding all the shares of parties in CONFLICTS in a polynomial u(y)
and robustly reconstructing u(0). Thus, our protocol already performs a batching of the
reconstruction of |CONFLICTS| = O(n) values and it is unclear how the same technique
can be extended to the reconstruction of O(nL) values. However, the dealer computes
a single Bad set by checking the parties’ broadcasted values with each bivariate. After
removing the parties in the dealer’s broadcasted Bad set, the broadcasted values must de-
termine a unique polynomial for each instance (else, the dealer is discarded). Hence, all the
reconstructed shares must be correct on each bivariate. The dealer broadcasts O(n log n)
bits however each party broadcasts O(m log n) bits.

As discussed above, we perform batching primarily to allow the dealer to broadcast a com-
mon set CONFLICTS in the sharing attempt (see Protocol 4.2) and a common set Bad in the
share reconstruction (see Protocol 4.6). Note that this idea is identical to the batching idea
in [AAPP23] and their proof carries over directly in our case. Hence, we state the following
corollary:

Corollary 4.13. Protocol ΠbVSS securely computes FbVSS (Functionality 4.12), in the presence
of a malicious adaptive adversary controlling at most t < n/3. The communication complexity
of ΠbVSS is O(Ln2 log n) bits on the point-to-point channels, the dealer broadcasts O(n log n) bits
and each party broadcasts O(m log n) bits. The protocol is statistically secure, with statistical
error ε < 2n · e−m/6.

Efficiency: The cost of the batched VSS is O(Ln2 log n) bits on the point-to-point channels,
the dealer broadcasts O(n log n) bits and each party broadcasts O(m log n) bits. Looking ahead,
we will set m = poly log n and L = m which allows us to achieve the reduced cost for oblivious
leader election.

5 Multi-Moderated Verifiable Secret Sharing

As mentioned in the overview (Section 2.1), we replace the broadcast in the VSS with a grade-
cast [ZLC23]. However, we need the help of moderators to make this substitution more robust.
We use all parties as moderators. Corresponding to each moderator Mj , each party Pk holds a
pair of flags vkMj

and dkMj
:

• The flag vkMj
∈ {0, 1} indicates if Pk believes that Mj moderated the broadcasts correctly,

that is, if the parties agree on the outputs of the moderated broadcasts. If at least one
honest party Pk holds vkMj

= 1, then the moderated broadcast of Mj are identical to the

actual broadcast. If Mj is honest, then each honest party Pk holds vkMj
= 1.

• The flag dkMj
∈ {0, 1} indicates if Pk accepts the dealer’s share based on the simulated

broadcast messages of Mj .

We first present the ideal functionality formalizing the above properties.

Functionality 5.1: Fmm-VSS

The functionality is parameterized by the set of corrupted parties, I ⊆ [n].

1. Input: The dealer holds as input a secret s ∈ F.

27

2. Honest Dealer: The dealer sends s to Fmm-VSS. The adversary sends (fi(x), gi(y))i∈I to
Fmm-VSS. The functionality chooses a random bivariate S(x, y) of degree t in x and y such
that (i) s = S(0, 0); (ii) S(x, i) = fi(x) and S(i, y) = gi(y) for each i ∈ I.

3. Corrupted dealer: The adversary sends S(x, y) to Fmm-VSS. Fmm-VSS verifies that
S(x, y) is of degree t in x and y. If not, the functionality sets S(x, y) = ⊥.

4. Moderators: For each party Mj ∈ [n] acting as a moderator:

(a) If the moderator Mj is honest, then set vkMj
= 1 for each k ∈ [n]. Furthermore,

i. If the dealer is honest, then set dkMj
= 1 for each k ∈ [n].

ii. If the dealer is corrupted, then set dkMj
= 1 for each k ∈ [n] if and only if the

ideal functionality sets S(x, y) 6= ⊥ in Step 3.

(b) If the moderator Mj is corrupted, then receive a message mj from the adversary.
i. If mj = (Agreement, (v̂kMj

)k 6∈I , dMj) where dMj ∈ {0, 1}, and for some k 6∈ I

it holds that vkMj
= 1, then for every k 6∈ I set vkMj

= v̂kMj
, as received from

the adversary. If the ideal functionality sets S(x, y) 6= ⊥ in Step 3, then set
dkMj

= dMj for every k 6∈ I. Else, set dkMj
= 0 for every k 6∈ I.

ii. If mj = (NoAgreement, (d̂kMj
)k 6∈I) where each dkMj

∈ {0, 1}, then set vkMj
= 0 for

every k ∈ [n] and (d1Mj
, . . . , dnMj

) = (d̂1Mj
, . . . , d̂nMj

) as received from the adversary.

5. Output: Fmm-VSS sends to each party Pj the output S(j, 0) and the flags (vjM , d
j
M)M∈[n].

Our multi-moderated VSS protocol below is exactly the same as our VSS protocol with the
broadcasts carefully replaced by simulated broadcasts. Until the output has to be computed, the
dealer acts as the moderator for the broadcasts of the parties, that is, for each message m that
needs to be broadcasted by a party, the party gradecasts m followed by the dealer’s gradecast of
the same message. Once the protocol reaches the output stage, we artificially add an additional
round of public voting by the parties which is then moderated by every other party acting as
a moderator. This additional round allows us to compress the size of the messages that the
different n parties have to moderate.

Each party gradecasts the decision on the dealer (accept or reject). Each party acting as a
moderator, then gradecasts the decision d on the dealer and a set of parties Bad such that:

1. d = 1 if and only if t+ 1 at least accept votes were received with grade 2.

2. k ∈ Bad if and only if Pk’s vote was received with a grade < 2.

The flags for each moderator are then set by the parties based on the grades in the gradecast
decisions and (d,Bad). Specifically, an honest party sets a high grade for a moderator if and
only if any party that sent a vote with grade 0 is included in Bad and the decision d is consistent
with the votes of parties not in Bad.

Protocol 5.2: Πmm-VSS

Initialization: Each party Pi sets a happy bit happyi = 1.

The parties run Protocol 4.9 with the following modifications:

Simulating broadcast in ΠVSS: Simulating broadcast of a party Pj

1. Party Pj: When Pj wishes to broadcast a message m, it first gradecasts it.

2. The dealer: Let (m, g) be the message and g its associated grade. The dealer grade-
casts m.

3. Each party Pi: Let (m′, g′) be the message gradecasted by the dealer. Use m′ as the
message broadcasted by Pj in the protocol. Moreover, if g′ 6= 2; or if g = 2 but m′ 6= m,
then Pi sets happyi = 0.

Instead of Step 3 in ΠVSS — Voting:

28

1. Each party Pi: If happyi = 1 and the decision in ΠVSS is to accept the dealer (non-⊥
shares), then gradecast accept; else gradecast reject. Let si denote the share output in
ΠVSS.
At this point, we fork into n executions, one per moderator Mj ∈ [n] as follows:

2. The moderator Mj:

(a) Let (a1, . . . , an) be the decisions of all parties as received from the n gradecasts.

(b) Initialize BadMj = φ and include k in BadMj if ak is received from Pk with grade < 2.

(c) If at least t + 1 accepts in (ak)k 6∈BadMj
, i.e., at least t + 1 accepts that were received

with grade 2, set dMj = 1. Else, set dMj = 0.

(d) Gradecast (dMj ,BadMj).

3. Each party Pi:

(a) Let (a1, . . . , an) be the decisions of all parties as received from the gradecasts in
Step 1.

(b) For every moderator Mj ∈ [n]:
i. Let (d′Mj

,Bad′Mj
) be the message gradecasted by the moderator Mj with associ-

ated grade g′ from Step 2d.

ii. Set diMj
= d′M as gradecasted, and decide on viMj

:

A. Set expectedDiMj
= 1 if and only if there are at least t + 1 accept’s in

(ak)k 6∈Bad′Mj
were received with grade ≥ 1.

B. Set viMj
= 1 iff all of the following hold: (i) g′ = 2; and (ii) expectedDiMj

=

d′Mj
; and (iii) For every k such that ak was received with grade 0 it holds

that k ∈ Bad′Mj
; and (iv) |Bad′Mj

| ≤ t.

4. Output: Pi outputs si, (d
i
M1
, . . . , diMn

) and (viM1
, . . . , viMn

).

Theorem 5.3. Protocol Πmm-VSS (Protocol 5.2), perfectly securely computes the functionality
Fmm-VSS (Functionality 5.1), in the presence of a malicious adversary controlling at most t < n/3
except with probability ε < 2n · e−m/6.

Proof. We consider two cases for the simulator:
The case of an honest dealer. Let SVSS be the simulator of ΠVSS (Protocol 4.9). The
simulator for Πmm-VSS, denoted as Smm-VSS executes the same steps as SVSS with the following
modifications:

1. Replacing Broadcasts by Simulated Gradecasts (Functionality 5.8):
First, note that SVSS must simulate the broadcasts by the honest parties in ΠVSS (including
the honest dealer). Let Pj be an honest party that broadcasts a message m in ΠVSS.
Smm-VSS executes the following instead of simulating a broadcast of m by Pj :

(a) Simulate the messages of ΠGradecast where Pj gradecasts m.

(b) Simulate the messages of ΠGradecast where the dealer gradecasts the same message m.

Consider a corrupted party Pi that broadcasts a message m in ΠVSS. In Πmm-VSS, the
corrupted party gradecasts m and the honest dealer gradecasts the message m′ it received.
Smm-VSS must also simulate this as follows:

(a) Simulate the messages of the honest parties in ΠGradecast where Pi gradecasts m.

(b) Let (m′, g′) be the message and associated grade received by the simulated honest
dealer. Simulate the messages of ΠGradecast where the dealer gradecasts the mes-
sage m′.

2. Simulating the Moderation:

(a) Compute the happy bits for each simulated honest party and simulate the messages
of ΠGradecast where each honest party Pk gradecasts accept if and only if the simulated
honest party Pk held happyk = 1.

29

(b) Simulate the messages of the honest parties in ΠGradecast where each corrupted party
Pi gradecasts some decision ai.

(c) For each honest moderator Mj , compute dMj and the set BadMj as in the protocol
and simulate the messages of ΠGradecast where Mj sends the message (dMj ,BadMj).

(d) For each corrupted moderator Mj , simulate the messages of the honest parties in
ΠGradecast where Mj gradecasts (dMj ,BadMj). Compute the outputs of each simulated

honest party Pk as per Πmm-VSS denoted as vkMj
, dkMj

.

i. If for some simulated honest party P` it holds that v`Mj
= 1, then send mj =

(Agreement, (vkMj
)k 6∈I , d

`
Mj

) to the ideal functionality.

ii. Else, send mj = (NoAgreement, (dkMj
)k 6∈I) to the ideal functionality.

By inspection, and from the fact that the changes to the ΠVSS protocol are deterministic (and
the same are the corresponding changes in the simulation), the view generated by the simulator
is identical to the real execution of Πmm-VSS. Hence, from the above and the security of ΠVSS

(Theorem 4.10) we have that the view generated by Smm-VSS is identical to a real execution
of Πmm-VSS. We now claim that the outputs are identical in the real and simulated execution.
From the security of ΠVSS, we already know that the shares output by the honest parties must
be identical in the real and simulated executions. It now suffices to show that the flags v, d for
each moderator are identical.

Consider a party Pj that broadcasts m in ΠVSS and hence gradecasts m in Πmm-VSS. The
honest dealer will gradecast whichever message m′ was received in the gradecast of Pj by the
dealer. All honest parties will take the dealer’s gradecast of some m′ with grade 2 as Pj ’s
broadcasted message. When Pj is honest, it must hold that m′ = m. Furthermore, the honest
dealer gradecasts each message with grade 2 to all honest parties. Hence, even if an honest party
Pk received a different message in the dealers gradecast and Pj ’s gradecast, it will set happyk = 1.
Clearly, each honest party Pk must have gradecasted accept. For each party Mj ∈ [n] acting
as a moderator, we consider the following cases to show that the outputs are identical in the
simulated execution and the real execution:

1. If the moderator Mj is honest, then all honest parties receive dkMj
= 1 and vkMj

= 1. In

the real execution, the honest moderator Mj will gradecast (dMj ,BadMj) with grade 2 to
each of the honest parties such that Bad ⊆ I and dMj = 1 as all honest parties must have
gradecasted accept with grade 2 (there are n − t > t + 1 honest parties). Hence, each
honest party Pk will set vkMj

= 1 and dkMj
= dMj = 1.

2. If Mj is corrupted and some simulated honest party P` held v`Mj
= 1, then the simulator

looks at the outputs of the simulated honest parties, and extracts from them the values
(vkMj

)k 6∈I . Then, it sends to the trusted party mj = (Agreement, (vkMj
)k 6∈I , d

`
Mj

). The

trusted party sends to each honest party Pk the values d`Mj
and vkMj

.
We claim that the output of all honest parties is the same as in the real execution. Specif-
ically, the simulator sends vkMj

as the outputs that were generated in the simulated execu-

tion. The only difference is that the trusted party sets dkMj
= d`Mj

for all honest parties.

Since the simulated honest party P` outputs v`Mj
= 1, it must have received (dMj ,BadMj)

from the moderator with grade 2. Since all honest parties output the value dkMj
as received

from the gradecasted message, and all honest parties received the exact same message, we
have that dkMj

= d`Mj
.

3. If Mj is corrupted and all simulated honest parties hold vkMj
= 0 at the end of the simulated

execution, then the simulator sends mj = (NoAgreement, (dkMj
)k 6∈I) to the trusted party,

where dkMj
are the outputs of the simulated honest parties in the simulated execution. The

outputs of the honest parties in the ideal execution are vkMj
= 0 and dkMj

as determined
by the simulator.
In the real, the outputs are clearly the same – all honest parties output vkMj

= 0 (as the

simulated honest parties in the ideal execution), and the values dkMj
that were sent to the

30

trusted party were also determined by the output of the simulated honest parties.

The case of a corrupted dealer. In this case, the honest parties have no input and hence,
and simulation is easy – we just run the protocol with the adversary while perfectly simulating
the honest parties. To determine the polynomial S(x, y) to send to Fmm-VSS, we follow the same
strategy as the simulator of FVSS. Moreover, it computes the outputs of the simulated honest
parties as in the protocol. For each corrupted moderator Mi ∈ I:

1. If there is a simulated honest party Pk with output vkMi
= 1, then send the message

mi = (Agreement, (vjMi
)j 6∈I , d

k
Mi

) to the trusted party.

2. If all simulated honest parties Pk have output vkMi
= 0, then send to the trusted party the

message mi = (NoAgreement, (dkMi
)k 6∈I).

It is clear that the view of the adversary is identically distributed in both executions. We
now show that the outputs in the real and ideal executions are identical by considering two cases
on the moderators:

Honest moderator Mj.: If the moderator Mj is honest, then in the ideal execution we
have that each honest party Pk holds vkMj

= 1 and dkMj
= dMj for some dMj ∈ {0, 1}. Moreover,

if the dealer is not discarded then dkMj
= 1 for all honest parties and sk = S(k, 0) for some

unique degree-(t, t) bivariate polynomial S(x, y).
In the real execution, we first show that all honest parties Pk hold vkMj

= 1 by showing that

each of the conditions required for Pk to set vkMj
= 1 in Step 3(b)iiB hold:

1. g′ = 2: The moderator is honest, and therefore when gradecasting (dMj ,BadMj) in Step 2d
of the Voting phase, this message is received with grade 2 by each honest party Pk.

2. expectedDk
Mj

= dMj : From the validity of gradecast, it holds that all honest parties

receive the same message (dMj ,BadMj). Furthermore for each party Pk 6∈ BadMj the
moderator Mj must have received the gradecast of ak with grade 2. From the validity
and agreement of gradecast, we have that each honest party must have received the same
decision ak from Pk’s gradecast with grade ≥ 1. Hence, the moderator Mj and each honest
party Pk agree on the decisions in (a`)`6∈BadMj

(some honest parties may have received up

to t decisions from parties in BadMj with grade 1). Furthermore, the moderator Mj and
each honest party Pk agree on the number of accept messages they have received with
sufficient grade (2 for Mj and ≥ 1 for Pk). Hence, the decisions they each compute must
also be the same, that is, for each honest party Pk it holds that expectedDkMj

= dMj .

3. For every i such that ai was received with grade 0 it holds that i ∈ Bad′Mj
:

Consider a corrupted party Pi that gradecasted a decision with grade ≤ 1 to all the honest
parties. Mj must have included Pi in BadMj . If an honest party Pk received ai from Pi’s
gradecast with grade 0, then Mj must have included i ∈ BadMj .

4. |Bad′Mj
| ≤ t: Finally, note that only corrupted parties are included in BadMj as the

decisions gradecasted by each honest party Pk must have been received by Mj with grade
2. Hence, |BadMj | ≤ |I| ≤ t.

Note that from the validity of gradecast, each honest party Pk sets dkMj
= dMj where dMj is

gradecasted by the dealer. We now complete the proof for this case by showing that if dMj = 1 is
gradecasted by the moderator, the shares lie on a unique bivariate. If the value gradecasted by
the moderator, dMj , is 1, there must have been at least one honest party, say P`, that gradecast
accept (as at least t + 1 accept decisions must have been received by Mj). Thus, happy` = 1
and P` must have held grade 2 in each of the dealer’s gradecasts and the dealer must not have
been discarded by P` (non-⊥ shares). Additionally, the dealer must have gradecasted the same
message gradecasted by each party (else, P` must have set happy` = 0). Clearly, in this case,
the moderated gradecasts emulate the functionality of broadcast (Functionality 3.4) and from
the security of ΠVSS we know that for each share sk output by an honest party Pk, it must hold
that sk = S(k, 0) on some unique degree-(t, t) bivariate S(x, y).

31

Corrupted moderator Mi.: We consider three sub-cases based on the flags of the honest
parties:

1. Case 1: In the ideal execution, there exists some simulated honest party Pk with vkMi
= 1

and dkMi
= 1. In this case, note that the simulator sets mi = (Agreement, (vjMi

)j 6∈I , dMi = 1)
and sends it to the trusted party. In the ideal execution, each honest party Pj receives

the same flag djMi
= 1 and shares on a unique degree-(t, t) bivariate polynomial S(x, y)

(computed by the simulator), together with the flag vjMi
determined by the simulator.

In the real execution, since vkMi
= 1, the following must hold: (1) Pk received the mod-

erator’s gradecast of (dMi ,BadMi) with grade 2; and (2) for each decision received from
Pj with grade < 1, j ∈ BadMi ; and (3) expectedDk = dMi ; and (4) |BadMi | ≤ t. From
the agreement of gradecast, all honest parties also receive the same message (dMi ,BadMi).
Since dkMi

= 1 it must hold that expectedDkMi
= dMi = 1. Hence, each honest party Pj sets

djMi
= dMi = 1, regardless of whether or not vjMi

= 1 or 0. Note that the simulator makes
the exact same decisions as the honest parties in the real, and therefore if some simulated
honest party Pj sets vjMi

= b for some b ∈ {0, 1}, the honest party Pj sets vjMi
= b in the

real with the exact same value.
Once again, we complete the proof for this case by showing that the shares output by the
honest parties lie on a unique degree-(t, t) bivariate S(x, y). Pk must have received at least
t+ 1 accept’s from parties not in BadMi with grade ≥ 1 out of which at least t+ 1− t = 1
must have been sent by an honest party, say P`. Therefore, it must hold that happy` = 1
and that P` sets non-⊥ shares in ΠVSS. P` must have received grade 2 in each of the dealer’s
gradecasts and from the agreement of gradecast, the moderated gradecasts are identical to
actual broadcasts and the guarantees of VSS hold (Functionality 4.8). Hence, there exists
a unique degree-(t, t) bivariate S(x, y) (which will be computed by the simulator and sent
to the trusted party) such that each honest party Pj sets sj = S(j, 0).

2. Case 2: In the ideal execution, there exists some simulated honest party Pk with vkMi
= 1

and d`Mi
= 0. In this case, the simulator sets mi = (Agreement, (vjMi

)j 6∈I , dMi = 0) and
sends it to the trusted party. In the ideal execution, each honest party Pj receives the

same flag djMi
= 1, and the flag vjMi

as determined by the simulator.

In the real execution, since vkMi
= 1, the following must hold: (1) Pk received the mod-

erator’s gradecast of (dMi ,BadMi) with grade 2; and (2) for each decision received from
Pj with grade < 1, j ∈ BadMi ; and (3) expectedDk = dMi ; and |BadMi | ≤ t. From the
agreement of gradecast, all honest parties also receive the same message (dMi ,BadMi).
Since dkMi

= 0 it must hold that expectedDk = dMi = 0. Hence, each honest party Pj sets

djMi
= dMi = 0.

3. Case 3: For all simulated honest parties Pk, v
k
Mj

= 0.
In this case, there is no agreement and the simulator sets
mj = (NoAgreement, (dkMj

)k 6∈I) (the flags are defined by the outputs of the simulated

honest parties) and the honest parties output those flags together with vkMj
= 0.

In the real execution, we get exactly the same – the flags are exactly the same as the
simulated honest parties in the ideal.

The error of Πmm-VSS follows from the error for the compiled ΠVSS protocol.

Efficiency: The protocol Πmm-VSS (Protocol 5.2) incurs a communication complexity ofO(n3 log n)
bits over the point-to-point channels. However, we will utilize certain batching techniques to
maintain a communication complexity of O(n3 log n) bits when running Πmm-VSS in parallel for
multiple dealers.

5.1 Batched Multi-Moderated VSS

Looking ahead in our oblivious leader election, each party P` is required to share m (= poly log n)
uniformly random values. We now show how each moderator Mj can batch the gradecast in

32

the moderation phase (Phase II) across multiple instances of (moderated) sharing where each
party P` acts as a dealer.

1. Before the moderation phase (Phase II), each party Pk gradecasts a bit a`k denoting the
decision on the instance of sharing where P` acts as a dealer.

2. Mj computes a single set BadMj across all the instances. Specifically, Mj includes i ∈
BadMj if the gradecast of a`i for any ` ∈ [n] by Pi yielded a grade < 2 for the moderator
Mj .

3. Mj computes the majority decision among a`k for each ` ∈ [n] and k 6∈ BadMj and denotes

it as d`Mj
.

4. Mj gradecasts
(
d`Mj

)n
`=1

,BadMj .

Each moderator Mj gradecasts Θ(n) bits (the n decisions d`Mj
and the set BadMj) which incurs

a total communication of O(n2 log n) bits for Mj and O(n3 log n) bits across all moderators.
Naively gradecasting n different sets BadMj requires each moderator Mj to gradecast Θ(n2)
bits which yields a total communication O(n3 log n) bits for Mj and O(n4 log n) bits across all
moderators (which is not suitable in our case).

As in the VSS, we present a corresponding batched multi-moderated VSS functionality
Fmm-bVSS and then present our protocol.

Functionality 5.4: Fmm-bVSS

The functionality is parameterized by the set of corrupted parties, I ⊆ [n].

1. Input: The dealer holds as input m secrets s(1), . . . , s(m) ∈ F.

2. Honest Dealer: The dealer sends s(1), . . . , s(m) to Fmm-bVSS. The adversary sends
(f `i (x), g`i (y))i∈I to Fmm-bVSS for ` = 1, . . . ,m. The functionality chooses m random bi-
variate S1(x, y), . . . , Sm(x, y) of degree t in x and y such that for each ` = 1, . . . ,m (i)
s(`) = S`(0, 0); (ii) S`(x, i) = f `i (x) and S`(i, y) = g`i (y) for each i ∈ I.

3. Corrupted dealer: The adversary sends S1(x, y), . . . , Sm(x, y) to Fmm-bVSS. Fmm-bVSS
verifies that each S`(x, y) is of degree t in x and y. If not, the functionality sets S`(x, y) = ⊥
for each ` = 1, . . . ,m.

4. Moderators: For each party Mj ∈ [n] acting as a moderator:

(a) If the moderator Mj is honest, then set vkMj
= 1 for each k ∈ [n]. Furthermore,

i. If the dealer is honest, then set dkMj
= 1 for each k ∈ [n].

ii. If the dealer is corrupted, then set dkMj
= 1 for each k ∈ [n] if and only if the

ideal functionality sets each S`(x, y) 6= ⊥ in Step 3 for each ` = 1, . . . ,m.

(b) If the moderator Mj is corrupted, then receive a message mj from the adversary.
i. If mj = (Agreement, (v̂kMj

)k 6∈I , dMj) where dMj ∈ {0, 1}, and for some k 6∈ I

it holds that vkMj
= 1, then for every k 6∈ I set vkMj

= v̂kMj
, as received from

the adversary. If the ideal functionality sets S`(x, y) 6= ⊥ in Step 3 for each
` = 1, . . . ,m, then set dkMj

= dMj for every k 6∈ I. Else, set dkMj
= 0 for every

k 6∈ I.

ii. If mj = (NoAgreement, (d̂kMj
)k 6∈I) where each dkMj

∈ {0, 1}, then set vkMj
= 0 for

every k ∈ [n] and (d1Mj
, . . . , dnMj

) = (d̂1Mj
, . . . , d̂nMj

) as received from the adversary.

5. Output: Fmm-VSS sends to each party Pj the outputs S1(j, 0), . . . , S`(j, 0) and the flags

(vjM , d
j
M)M∈[n].

As discussed in Section 4.4, the batching modifications for the VSS do not affect the security
due to the argument in [AAPP23]. We now show that the same holds true for the batching of
the moderator’s gradecasts.

33

Recall the definition of the BadMj set for a moderator Mj . If i ∈ BadMj , then Pi gradecasted

some decision a`i before the moderation phase, with grade < 2 received by Mj . As a consequence,
it holds that BadMj ⊆ I for an honest moderator Mj . If a corrupted party Pi is not included
in BadMj by an honest moderator Mj , then Mj must have received a grade 2 in all of the
gradecasts initiated by Pi. From the properties of gradecast, all honest parties must have
received the same decision from Pi with grade ≥ 1. Hence, even across instances, it holds that
there is agreement for the honest parties on the decisions gradecasted by each party k 6∈ Mj

(which yields the required properties for multi-moderated VSS). We denote by Πmm-bVSS the
corresponding batched multi-moderated VSS protocol.

Corollary 5.5. Protocol Πmm-bVSS securely computes Fmm-bVSS (Functionality 5.4), in the pres-
ence of a malicious adaptive adversary controlling at most t < n/3. The communication
complexity of Πmm-bVSS is O(n3 log2 n) bits on the point-to-point channels. The protocol is sta-
tistically secure, with statistical error ε < 2n · e−m/6.

5.2 Reconstruction with Moderators

Protocol 5.6: ΠRec
mm-VSS

Input: Each party Pi holds si, (d
i
M)M∈[n] and (viM)M∈[n].

1. Each party sends si to all. Let (s′1, . . . , s
′
n) be the shares received.

2. If diMj
= 1 for at least n− t parties Mj acting as the moderator, then use Reed-Solomon

decoding to reconstruct the unique degree t polynomial g(y) that agrees with at least
2t+ 1 values s′1, . . . , s

′
n and set si = g(0). If no unique decoding exists or if less than n− t

moderators rejected, then set si = 0.

3. Output: Output si.

We show the properties of ΠRec
mm-VSS with the following theorem:

Theorem 5.7. If the dealer is honest, then all honest parties output the dealer’s secret s. Else,
if for each party Mj ∈ [n] acting as a moderator, there exists an honest party Pk with vkMj

= 1,

then each honest party Pk outputs the same secret sk = s′.

Proof. By the properties of Functionality 5.1, if the dealer is honest, each honest party Pk
holds dkMj

= 1 corresponding to each honest moderator Mj . Furthermore, each honest party

Pk holds sk = S(k, 0) where S(x, y) is the bivariate chosen by the honest dealer. As there are
≥ n− t ≥ 2t+ 1 honest parties, there are sufficient shares from the honest parties to reconstruct
s = S(0, 0).

For a corrupted dealer, by the properties of Functionality 5.1, if there exists an honest party
Pk that holds vkMj

= 1 for a party Mj acting as a moderator, then all honest parties hold the

same flag dMj (we omit the superscript in the ensuing discussion). Furthermore, for an honest

party Mj acting as a moderator each honest party Pk holds vkMj
= 1. Suppose that the above

holds even for each corrupted party Mi acting as a moderator (note that it may not be the same
honest party Pk corresponding to each corrupted party Mi acting as a moderator). We consider
two cases:

1. If dMj = 0 for more than t moderators Mj , then each honest party Pk sets sk = 0 = s′.

2. Else, each honest party Pk must hold dMj = 1 for at least n − t moderators Mj and all
honest parties hold shares on a unique bivariate S′(x, y) of degree t in x and y, that is,
for each honest party Pk, it holds that sk = S′(k, 0). Furthermore, g(y) = S(y, 0) is of
degree t. Since there are ≥ n − t ≥ 2t + 1 correct points, the honest parties will be able
to reconstruct the unique g(y) where sk = g(k) for each honest party Pk. Hence, they will
all output the same sk = g(0) = s′.

The choice of s′ is clearly fixed at the end of Πmm-VSS based on the flags and shares output by
the honest parties.

34

Efficiency: The protocol ΠRec
mm-VSS (Protocol 5.6) incurs a communication complexity ofO(n2 log n)

bits over the point-to-point channels.

5.3 Gradecast

We now present the gradecast functionality that we use in our broadcast. Moreover, we also
re-state the protocol of [ZLC23], which we use. The protocol in [ZLC23] is proven with respect
to a property-based definition. We use those properties to show that it also works with our
gradecast functionality.

Functionality 5.8: FGradecast

The functionality is parametrized by the set of corrupted parties, I ⊆ [n].

1. If the dealer is honest: the dealer sends m to the functionality, and all parties receive
(m, 2) as output.

2. If the dealer is corrupted then it sends some message M to the functionality.

(a) If M = (ExistsGrade2,m, (gj)j 6∈I) for some m ∈ {0, 1}∗ and each gj ∈ {1, 2}, then
verify that gj ≥ 1 and that at least one honest party receives grade 2. Send (m, gj)
to each party Pj .

(b) If M = (NoGrade2, (mj , gj)j 6∈I) where each mj ∈ {0, 1}∗ and gj ∈ {0, 1}, then verify
that for every j, k 6∈ I with gj = gk = 1 it holds that mj = mk. Then, send (mj , gj)
to each party Pj .

Balancing the protocol. Additionally, we note that the protocol of [ZLC23] is not balanced,
i.e., the sender sends O(nL+n log n) bits, whereas each party sends O(n log n) bits. To balance
the communication in the protocol (such that each party sends/receives O(L + n log n)), we
perform the following:

1. At the start of the protocol, the sender interprets its input as a polynomial of degree t/5
f(x) and sends f(i) to each party. Note that in the gradecast protocol of [ZLC23], the
sender sends f(x) to all the parties.

2. Each party Pj upon receiving f(i), sends f(i) to everyone.

3. Each party denotes by f ′(1), . . . , f ′(n) the points received in the previous step and executes
Reed Solomon decoding to reconstruct the unique polynomial of degree t/5 that agrees
with at least 2t+ 1 of the points received.

4. At this point, each party either receives some unique polynomial or is unable to interpo-
late a unique polynomial. The latter case can be interpreted as a corrupted sender not
delivering the polynomial to some party in Round 1 of the protocol in [ZLC23]. Hence,
the parties proceed with the protocol in [ZLC23] with the values they have received.

Protocol 5.9: Balanced ΠGradecast

Input: The dealer P holds a degree d polynomial f(x) over a field F as input that it wishes to
distribute. All other parties have no input.
The protocol:

1. Dealer’s distribution: P sends f(i) to every Pi. Let f(i) denote the value received from
the dealer by Pi.

2. Interpolating the input polynomial:

(a) Pi sends f(i) to each Pj .

(b) Let f ′(1), . . . , f ′(n) denote the points received in the previous step.

(c) Run Reed Solomon decoding to reconstruct the unique polynomial of degree t/5
that agrees with at least 2t + 1 of the points received. Let fi(x) denote the unique
polynomial. If such a polynomial does not exist, then set fi(x) = ⊥.

35

3. Exchange:

(a) Pi sends (fi(j), fi(i)) to each Pj .

4. Set Agree1i :

(a) Let (uj,i, vj,i) be the values Pi received from Pj . If (uj,i, vj,i) = (fi(i), fi(j)) (=
fj(i), fj(j)), then add j to Agree1i .

(b) If |Agree1i | ≥ n− t then send OK1 to everyone.

5. Set Agree2i :

(a) Initialize Agree2i = Agree1i . If OK1 was not received from Pj ∈ Agree1i then remove j
from Agree2i . If |Agree2i | ≥ n− t then send OK2 to everyone.

6. Update Agree3i :

(a) Initialize Agree3i = Agree2i . If OK2 was not received from Pj ∈ Agree2i then remove j
from Agree3i . If |Agree3i | ≥ n− t then send OK3 to everyone.

7. Set COREi:

(a) Define COREi as the set of all parties Pj from which Pi received a message OK3.

(b) If i ∈ COREi then set yi = fi(i). If i 6∈ COREi then define yi as the majority value
among the set {uj,i | j ∈ COREi}, where uj,i is the value Pi received from Pj in
Step 4a. If no majority value exists, then define yi = ⊥.

(c) Send yi to every party Pj .

Output: Run Reed Solomon decoding of a polynomial of degree d on the values (y1, . . . , yn)
received in the previous step. Let f ′i(x) be the resulting polynomial.

1. If i ∈ COREi and |COREi| ≥ n− t, then output (f ′i(x), 2).

2. If i 6∈ COREi and |COREi| ≥ n− t, then output (f ′i(x), 1).

3. Otherwise, output (⊥, 0).

We show that the protocol realizes the FGradecast-functionality, given the property-based proof
of [ZLC23]:

1. An honest dealer. In this case, the honest dealer sends m to the functionality FGradecast

and all parties receive output (m, 2). The simulator, therefore, receives the message (m, 2)
from the trusted party. Since no other party has any input to the protocol, and since
the simulator has m, it simulates the protocol by just executing it with the input m
of the dealer, and it generates the view of the corrupted parties. Since the protocol is
deterministic, the view of the adversary in the simulated execution and the real execution
must be identical. The output of the ideal and real are the same as follows from the
validity of the protocol [ZLC23, Lemma 3].

2. A corrupt dealer. In this case, the honest parties have no input, and the simulator can
again perfectly simulate the honest parties interacting with the corrupt parties (adversary).
At the end of the simulated execution, the simulator holds the outputs corresponding to
the honest parties, that is, (mj , gj) for each j 6∈ I. Clearly, the adversary’s view is identical
in the simulated and real execution as the protocol is deterministic. By showing that the
non-equivocation [ZLC23, Lemma 4] and agreement [ZLC23, Lemma 5] properties hold in
the protocol, then the output of the simulated execution also satisfies those properties,
and the simulator can generate the appropriate message M to send to the trusted party.
I.e., if there is one honest party that outputs grade 2 in the simulated execution, then it
sends the message ExistsGrade2, and if not then it sends NoGrade2, all are together with
the outputs of the honest parties. Since agreement and non-equivocation hold, the trusted
party accepts the message that the simulator sends and the output of the honest parties
in the ideal execution is exactly the same as in the simulated honest parties in the ideal
execution (which is the same as the real execution).

36

6 Oblivious Leader Election

As mentioned before, we realize the same oblivious leader election functionality as in [AAPP22].
Formally, oblivious leader election defines a secure sampling from some family D of distribu-
tions. The adversary is required to choose one of the distributions D ∈ D and the ideal func-
tionality samples randomness r and delivers to each party Pi the output `i ∈ {1, . . . , n} where
(`1, . . . , `n) = D(r). Following the notation in [KK06, AAPP22], we say that D is valid if the
following holds:

Prr[D(r) = (j, . . . , j) | j 6∈ I] ≥ δ

for some constant δ > 0.

Functionality 6.1: FOLE

The functionality is parameterized by the set of corrupted parties I ⊂ [n] and the family of
distributions D.

1. The functionality receives from the adversary a sampler D and verifies that D ∈ D. If not,
then it takes some default sampler in D ∈ D.

2. The functionality chooses a random r ← {0, 1}poly(n) and samples (`1, . . . , `n) = D(r).

3. The functionality gives r to the adversary and it gives `i to each Pi.

Protocol 6.2: ΠOLE

1. Choose random hidden moderators: Each party Pi samples a set of hidden modera-
tors Mi by choosing m < n elements from [n] (with replacements).

2. Choose and commit weights: Each party Pi acts as a dealer and chooses ci→j as
random values in {1, . . . , n4}, for every j ∈ Mi. Pi then runs the following m times in
parallel, for each ` ∈ [m], where Pi acts as a dealer in each instance:

(a) The dealer distributes the values (j, ci→j) for each j ∈ Mi using Fmm-VSS where Pi
is the dealer.

(b) Each party Pk gets as output a share si,`k , outputs dki,j and a flag vki,j for each party
Pj acting as moderator.

Note that the above is run for all dealers P1, . . . , Pn in parallel, where each dealer has m
parallel instances (in total m · n invocations). Upon completion, let Successfuli be the set
of moderators for which Pi holds a flag v = 1 in all executions, that is, Successfuli = {j |
vid,j = 1 for all dealers d ∈ [n]}.

3. Reconstruct the weights and recipients and pick a leader: The reconstruction
phase, ΠRec

mm-VSS (Protocol 5.6) of each of the above mn instances of multi-moderated
secret sharing is run in parallel to reconstruct the secrets previously shared.

(a) Let Mk
i and the values ci→j for each i ∈ [n], j ∈ Mk

i denote Pk’s view of the set Ri
and ci→j for each i ∈ [n], j ∈ Mi, that is, the reconstructed value for the instance
where Pi was the dealer and chose j ∈ Mi as a hidden moderator (included in the
reconstructed value for Pi’s instance).

(b) Pk sets ckj =
∑

i,j∈Mk
i

ci→j mod n4 and outputs j that minimizes ckj among all j ∈

Successfulk (break ties arbitrarily).

The proof from [KK06, AAPP22] carries over almost verbatim in our case, conditioned on the
following event: For each party Pj which succeeds in the moderation, some honest party Pk
included Pj in its hidden moderator set Mi. We first present only the bound on the above
event. To that end, we define: Successful =

⋃
k∈H Successfulk, where H is the set of all parties

that were honest at the end of phase 2. We now define Badj for j ∈ Successful which defines the
event that the party j was not chosen as a hidden moderator by any honest dealer.

37

Badj: No Pk ∈ H chose j ∈Mk.

We then define the event Bad as the disjunction of the events Badj over all j ∈ Successful. If
Bad does not occur, then for each j ∈ Successful there exists some honest party Pk that chose Pj
as a hidden moderator, that is, j ∈Mi. Note that this is exactly the informal event we describe
above.

Bad:
⋃
j∈Successful Badj.

We now give a bound on the probability of Bad occurring.

Claim 6.3. The probability that Bad occurs is at most n · e−2m/3 where each party chooses m
hidden moderators in Protocol 6.2.

Proof. We first upper bound Pr[Badj] and use a union bound over all parties in Successful to
give an upper bound on Pr[Bad]. The probability that no k ∈ H chooses j ∈Mk is 1− 1/n for
each independent sample. For t < n/3, it holds that |H| ≥ 2n/3 and hence,

Pr[Badj] ≤
((

1− 1

n

)m)|H|
≤
((

1− 1

n

)n)2m/3

≤ e−2m/3.

From the definition of Bad and the fact that |H| ≤ n, it must hold that Pr[Bad] ≤ n ·Pr[Badj] ≤
n · e−2m/3.

We now prove the security of ΠOLE in the following theorem:

Theorem 6.4. Protocol ΠOLE (Protocol 6.2), perfectly securely computes the functionality FOLE,
(Functionality 6.1), in the presence of a malicious adversary controlling at most t < n/3 parties.

Proof. The simulator first simulates the call to Fmm-VSS (Functionality 5.1) for all the secret
sharings of the honest dealers. The simulator receives the adversary’s shares (fi(x), gi(y))i∈I
and gives them to the ideal functionality. For each honest moderator Pj , the simulator sets
dki,j = accept and flag vki,j = 1 for each Pk. For a corrupted moderator Pj , the adversary’s
message can be used to simulate the appropriate outputs. For an honest moderator the parties
reconstruct the honest dealer’s secret and for a corrupt moderator they may reconstruct either
the dealer’s secret or 0. Now the simulator simulates the calls to Fmm-VSS (Functionality 5.1)
for all the secret sharings of the corrupted dealers. In this case, the simulation is trivial as
the simulator can just run the steps of the ideal functionality as per the messages sent by the
adversary. The simulator is now required to give to FOLE a sampling algorithm D ∈ D. The
sampler D is constructed from the adversary’s message denoting the flags for the corrupted
moderators and the simulated honest party’s outputs for the honest moderators. Note that the
sampler holds Mk

i and cki→j for each corrupted dealer Pi, each hidden moderator j ∈ Mk
i and

corresponding to the view of the simulated honest party Pk. Given these values and the flags,
D is defined as follows:

1. Receive input r which corresponds to a uniformly random value ci→j ∈ {1, . . . , n4} and a
uniformly random set of hidden moderatorsMi (sampled from [n] with replacements) for
each honest dealer Pi and each j ∈Mi.

2. Based on the flags, simulated moderator messages and honest moderator definition, com-
pute cki→j , v

k
i,j , d

k
i,j for each honest dealer Pi, each hidden moderator Pj and each party

Pk.

3. Compute the output `k for each party Pk as per the protocol description.

The simulator can now simulate the reconstruction phase using the randomness r and the
adversary’s chosen shares in the simulated multi-moderated secret sharing. Since the sampler is
constructed from the simulated protocol execution, it must hold that the outputs of the honest
parties after the reconstruction are identical to the outputs of the simulated honest parties which
is in turn identical to the output of the sampler. As in [KK06,AAPP22], it now suffices to show
that the sampler Dhybrid defined above is valid.

38

Proving that Dhybrid is valid. Recall that we have to prove that

Prr[D
hybrid(r) = (j, . . . , j) | j 6∈ I] ≥ δ

for some constant δ > 0. In the hybrid model, the properties Fmm-VSS hold perfectly (with
probability 1). We first define:

Successful =
⋃
k∈H

Successfulk ,

where H is the set of all parties that were honest at the end of phase 2. From the properties
of Fmm-VSS, even if a single honest party Pk holds vkd,j = 1 for some dealer Pd and some party
Pj acting as the moderator, then the honest parties agree on all values reconstructed from Pd’s
sharing. Hence, if reconstruction is successful and k ∈ Successful, then for any honest Pi, Pj and

any dealer d, it holds that Mi
d =Mj

d and cid→k = cjd→k, that is, the honest parties agree on the
dealers’ hidden moderators and chosen weights. We can thus omit the superscripts i and j.
We now utilize the bound derived in Claim 6.3 to compute the success probability of the sampler
in the hybrid model. We denote by Bad the event defined in Claim 6.3. Recall that Bad is the
event that no honest party chooses any party j ∈ Successful as a hidden moderator.

Prr[D
hybrid(r) = (j, . . . , j) | j 6∈ I]

= Prr[D
hybrid(r) = (j, . . . , j) | j 6∈ I,Bad] · Pr[Bad]

= Prr[D
hybrid(r) = (j, . . . , j) | j 6∈ I,Bad] · (1− Pr[Bad])

≥ Prr[D
hybrid(r) = (j, . . . , j) | j 6∈ I,Bad] · (1− ne−2m/3)

Conditioned on the event that Bad does not occur, each j ∈ Successful was chosen as a hidden
moderator by some honest dealer Pk. Hence, ck→j must be uniformly random and secret until
phase 2. Furthermore, for every corrupted dealer Pk that also chose j ∈Mk, the value ck→j must
have been chosen independently of the other weights. Hence, the value cj for each j ∈ Successful
must be uniformly distributed in {1, . . . , n4} and following similar analysis as in [KK06,AAPP22]
for the probability that an honest party is chosen from uniformly random weights cj for parties
in Successful. For completeness, we repeat the same and first define the event HonestChosen.
Let HonestChosen be the event where the index k for which ck is minimal among all parties in
Successful is an index of an honest party.

Pr[HonestChosen] ≥ Pr[HonestChosen | ∀i, j ∈ Successful ci 6= cj]

· Pr[∀i, j ∈ Successful ci 6= cj]

≥ n− t
n
· (1− Pr[∃i, j ∈ Successful ci 6= cj)

≥ n− t
n
·
(

1− n2 · 1

n4

)
≥ n− t

n
− 1

n2
≥ 1

2

In our setting we have that,

Prr[D
hybrid(r) = (j, . . . , j) | j 6∈ I,Bad] = Pr[HonestChosen]

Applying the same in our bound, we have

Prr[D
hybrid(r) = (j, . . . , j) | j 6∈ I] ≥ 1

2
· (1− ne−2m/3)

It is sufficient if the success probability is constant, say 1/4. We can compute an appropriate

39

setting for the parameter m to allow for the constant success probability.

1

2
· (1− ne−2m/3) ≥ 1

4

1− ne−2m/3 ≥ 1

2

ne−2m/3 ≤ 1

2

−2m

3
≤ − log 2n

m ≥ 3

2
log 2n

For instance, m = 2 log 2n yields constant success probability and completes our proof in the
hybrid model.

Note that the above analysis applies for the distribution generated by the sampler Dhybrid

where the parties have access to Fmm-VSS. We denote by D the sampler where the calls to
Fmm-VSS are replaced by calls to the protocol Πmm-VSS. Proving that D is valid after

composition. After realizing Fmm-VSS with statistical security where the statistical error of
the protocol is ε, it must hold that the sampler D succeeds in the event that Dhybrid succeeds
and there is no error in any of the n instances of Πmm-VSS. As the two events are disjoint, the
success probability of D is the product of the success probability of Dhybrid and the probability
that there is no error in any of the n instances Πmm-VSS. From a union bound, it holds that the
probability that there is no error in any of the n instances of Πmm-VSS is at least 1−n · ε. Hence,

Prr[D(r) = (j, . . . , j) | j 6∈ I] ≥ (1− n · ε) · Prr[Dhybrid(r) = (j, . . . , j) | j 6∈ I]

≥ (1− n · ε) · 1

4

Note that if we have 1 − n · ε ≥ 1/2, that is, n · ε ≤ 1/2, we have that even after composition
D still defines a valid sampling algorithm. Critically, inverse polynomial error (1/poly(n)) was
sufficient for the multi-moderated secret sharing to construct oblivious leader election. From
Theorem 5.3 we have that the statistical error of the protocol Πmm-VSS is ε = 2n · e−m/6. We
can thus provide a different lower bound on the parameter m

n · ε ≤ 1/2

2n2 · e−m/6 ≤ 1/2
−m

6
≤ − log 4n2

m ≥ 12 log 2n

Once again, m = 12 log 2n (> 2 log 2n) yields inverse polynomial statistical error and completes
our proof.

Efficiency: Each instance of Πmm-VSS incurs a cost of O(n2 log n) bits on the point-to-point
channels and gradecast of O(m log n) bits by each party. Since there are O(mn) instances (which
have the required batching modifications), the total cost is thus O(mn3 log n) bits. Fixing m =
6 log 4n (suffices to realize oblivious leader election) yields a total communication complexity of
O(n3 log2 n).

7 Broadcast, and Parallel Broadcast

The protocols for Byzantine agreement, broadcast and parallel broadcast are identical to the
protocols of [FG03,KK06,AAPP22] and we present them here for the completeness of our result.

40

Protocol 7.1: ΠBA

Input: Each party Pi holds a bit bi.
Initialization: Each party initializes decidedi = false and openToAcceptRandom = false. Run
the following iteratively until termination:

1. Round I – each party Pi:

(a) Send bi to all parties.

(b) Let bj,i be the bit receive from Pj (if no value was received, use the value from the
previous iteration; at the start of the protocol, use a default value).

2. Round II – each party Pi:

(a) Set S0i := {j | bj,i = 0} and S1i := {j | bj,i = 1}.
(b) If |S0i | ≥ t+ 1 then set bi = 0. If |S0i | ≥ n− t then set decided = true.

(c) Send bi to all parties. If a value was received from party Pj , then store it as bj,i.

3. Round III – each party Pi:

(a) Update S0i and S1i according to the new values b1,i, . . . , bn,i.

(b) If |S1i | ≥ t+ 1 then set bi = 1. If |S1i | ≥ n− t then set decided = true.

(c) Send bi to all parties. If a value was received from party Pj , then store it as bj,i.

4. Round IV – each party Pi:

(a) If decidedi = false then set openToAcceptRandom = true.

(b) Update S0i and S1i according to the new values b1,i, . . . , bn,i.

(c) If |S0i | ≥ t+ 1 then set bi = 0. If |S0i | ≥ n− t then set openToAcceptRandom = false.

(d) Send bi to all parties. If a value was received from party Pj , then store it as bj,i.

5. Round V – each party Pi:

(a) Update S0i and S1i according to the new values b1,i, . . . , bn,i.

(b) If |S1i | ≥ t+ 1 then set bi = 1. If |S1i | ≥ n− t then set openToAcceptRandom = false.

(c) Send bi to all parties. If a value was received from party Pj , then store it as bj,i.

6. Round VI – each party Pi:

(a) All parties execute ΠOLE (Protocol 6.2) and let `i be the output of Pi.

(b) If openToAcceptRandomi = true, then set bi = b`i
(c) If decidedi = true, then output bi and terminate. Else, proceed to the next iteration.

Theorem 7.2. Protocol ΠBA (Protocol 7.1), perfectly securely computes the functionality FBA

(Functionality 3.5), in the presence of a malicious adversary controlling at most t < n/3 parties
and incurs a communication complexity of O(n3 log2 n) bits in expectation.

7.1 Broadcast

To realize this protocol, the dealer first gradecasts the message. Note that if any honest party
held grade 2, then the honest parties agree on some non-⊥ message m′ such that m′ = m when
the dealer is honest. It thus, suffices to have the parties agree on whether there was a grade 2
or not which can be performed at the cost of O(n3poly log n) bits in expectation.

Protocol 7.3: ΠBC

• Input: The dealer holds a message M ∈ {0, 1}L.

• Common input: A parameter L.

1. The dealer: Gradecast M .

2. Each party Pi: Let M ′ be the resultant message and let g be the associated grade.
All parties run Byzantine agreement where input of Pi is 1 if and only if g = 2.

41

• Output: If the output of the Byzantine agreement is 1, then output M ′. Else, output ⊥.

Theorem 7.4. Protocol ΠBC (Protocol 7.3), perfectly securely computes the functionality FBC

(Functionality 3.4), in the presence of a malicious adversary controlling at most t < n/3 parties.
For an input message M of length L bits, the protocol incurs a communication complexity of
O(nL) bits and an additional O(n3 log2 n) bits in expectation with O(1) rounds in expectation.

7.2 Parallel broadcast

Consider the case when each party wishes to broadcast some message of size L bits each. As
in [FG03, AAPP22], a single election can be used across the instances. Hence, we have the
following corollary:

Corollary 7.5. There exists a perfectly secure parallel-broadcast in the presence of a malicious
adversary controlling at most t < n/3 parties. For n parties to each broadcast L bits, the
protocol incurs a communication complexity of O(n2L) bits and an additional O(n3 log2 n) bits
in expectation with O(1) rounds in expectation.

References

[AA22] Ittai Abraham and Gilad Asharov. Gradecast in synchrony and reliable broadcast in
asynchrony with optimal resilience, efficiency, and unconditional security. In PODC
’22: ACM Symposium on Principles of Distributed Computing, Salerno, Italy, July
25 - 29, 2022, pages 392–398. ACM, 2022. 6

[AAPP22] Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra. Asymptotically
free broadcast in constant expected time via packed VSS. In Theory of Cryptogra-
phy - 20th International Conference, TCC 2022, volume 13747 of Lecture Notes in
Computer Science, pages 384–414. Springer, 2022. 3, 4, 5, 6, 7, 8, 9, 37, 38, 39, 40,
42

[AAPP23] Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra. Detect, pack
and batch: Perfectly-secure MPC with linear communication and constant expected
time. In Advances in Cryptology - EUROCRYPT 2023, volume 14005 of Lecture
Notes in Computer Science, pages 251–281. Springer, 2023. 5, 6, 10, 11, 12, 18, 19,
24, 25, 26, 27, 33

[ACD+23] Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling
Ren, and Elaine Shi. Communication complexity of byzantine agreement, revisited.
Distributed Comput., 36(1):3–28, 2023. 3

[ACS22] Gilad Asharov, Ran Cohen, and Oren Shochat. Static vs. adaptive security in perfect
mpc: A separation and the adaptive security of bgw. In Conference on Information-
Theoretic Cryptography - ITC 2022. (To Appear), 2022. 14, 15

[AL17] Gilad Asharov and Yehuda Lindell. A full proof of the bgw protocol for perfectly
secure multiparty computation. Journal of Cryptology, 2017. 14

[ALP22] Ittai Abraham and Andrew Lewis-Pye. Phase-king through the lens of gradecast:
A simple unauthenticated synchronous byzantine agreement protocol. Decentral-
ized Thoughts, Blog Post, 2022. https://decentralizedthoughts.github.io/

2022-06-09-phase-king-via-gradecast/. 6

42

https://decentralizedthoughts.github.io/2022-06-09-phase-king-via-gradecast/
https://decentralizedthoughts.github.io/2022-06-09-phase-king-via-gradecast/

[BDH10] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Brief announcement: Simple
gradecast based algorithms. In Nancy A. Lynch and Alexander A. Shvartsman,
editors, Distributed Computing, 24th International Symposium, DISC 2010, Cam-
bridge, MA, USA, September 13-15, 2010. Proceedings, volume 6343 of Lecture Notes
in Computer Science, pages 194–197. Springer, 2010. 6

[Ben83] Michael Ben-Or. Another advantage of free choice: Completely asynchronous agree-
ment protocols (extended abstract). In Proc. of the Annual Symposium on Principles
of Distributed Computing (PODC), 1983. 3, 6

[BGP92] Piotr Berman, Juan A Garay, and Kenneth J Perry. Bit optimal distributed con-
sensus. In Computer science. 1992. 3, 7

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In
Proceedings of Annual ACM Symposium on Theory of Computing, 1988. 5, 6, 10,
11, 12

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J.
Cryptol., 13(1):143–202, 2000. 6, 14, 15

[CCGZ19] Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic ter-
mination and composability of cryptographic protocols. J. Cryptol., 32(3):690–741,
2019. 6

[CCP22] Anirudh Chandramouli, Ashish Choudhury, and Arpita Patra. A survey on perfectly
secure verifiable secret-sharing. ACM Comput. Surv., 54(11s), sep 2022. 15

[CDD+99] Ronald Cramer, Ivan Damg̊ard, Stefan Dziembowski, Martin Hirt, and Tal Rabin.
Efficient multiparty computations secure against an adaptive adversary. In Inter-
national conference on the Theory and Applications of Cryptographic Techniques,
pages 311–326. Springer, 1999. 5

[CDD+01] Ran Canetti, Ivan Damg̊ard, Stefan Dziembowski, Yuval Ishai, and Tal Malkin. On
adaptive vs. non-adaptive security of multiparty protocols. In Advances in Cryptol-
ogy - EUROCRYPT 2001, International Conference on the Theory and Application
of Cryptographic Techniques, 2001. 6, 14, 19

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret
sharing and achieving simultaneity in the presence of faults (extended abstract). In
26th Annual Symposium on Foundations of Computer Science, Portland, Oregon,
USA, 21-23 October 1985, pages 383–395. IEEE Computer Society, 1985. 6

[Che21] Jinyuan Chen. Optimal error-free multi-valued byzantine agreement. In DISC 2021,
volume 209 of LIPIcs, pages 17:1–17:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. 3, 4, 7

[CW89] Brian A Coan and Jennifer L Welch. Modular construction of nearly optimal byzan-
tine agreement protocols. In ACM Symposium on Principles of distributed comput-
ing, 1989. 3, 7

[DR82] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine
agreement. In Robert L. Probert, Michael J. Fischer, and Nicola Santoro, editors,
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Ot-
tawa, CanadaAugust 18-20, 1982, pages 132–140. ACM, 1982. 3

[Fel88] Paul Neil Feldman. Optimal Algorithms for Byzantine Agreement. PhD thesis,
Massachusetts Institute of Technology, 1988. 5, 6

43

[FG03] Matthias Fitzi and Juan A. Garay. Efficient player-optimal protocols for strong and
differential consensus. In PODC, 2003. 13, 40, 42

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure
interactive consistency. Information Processing Letters, 1982. 3, 4, 6

[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, 1988. 3,
4, 5, 6, 7, 8, 9, 13

[GP90] Oded Goldreich and Erez Petrank. The best of both worlds: Guaranteeing ter-
mination in fast randomized byzantine agreement protocols. Inf. Process. Lett.,
36(1):45–49, 1990. 5, 6

[KK06] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for
byzantine agreement. In Annual International Cryptology Conference, 2006. 3, 4, 5,
6, 7, 8, 9, 13, 37, 38, 39, 40

[KLR06] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure
protocols and security under composition. In Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, 2006. 14

[Kum12] Ranjit Kumaresan. Broadcast and verifiable secret sharing: New security models
and round optimal constructions. University of Maryland, College Park, 2012. 5

[LLR02] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. Sequential composition of pro-
tocols without simultaneous termination. In Aleta Ricciardi, editor, Proceedings of
the Twenty-First Annual ACM Symposium on Principles of Distributed Computing,
PODC 2002, Monterey, California, USA, July 21-24, 2002, pages 203–212. ACM,
2002. 6

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals prob-
lem. ACM Trans. Program. Lang. Syst., 1982. 3, 6

[NRS+20] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. Im-
proved extension protocols for byzantine broadcast and agreement. arXiv preprint
arXiv:2002.11321, 2020. 7

[PCR08] Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Round efficient uncon-
ditionally secure multiparty computation protocol. In Dipanwita Roy Chowdhury,
Vincent Rijmen, and Abhijit Das, editors, Progress in Cryptology - INDOCRYPT
2008, 9th International Conference on Cryptology in India, Kharagpur, India, De-
cember 14-17, 2008. Proceedings, volume 5365 of Lecture Notes in Computer Science,
pages 185–199. Springer, 2008. 5

[PCRR09] Arpita Patra, Ashish Choudhary, Tal Rabin, and C. Pandu Rangan. The round
complexity of verifiable secret sharing revisited. In Shai Halevi, editor, Advances
in Cryptology - CRYPTO 2009, pages 487–504, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg. 5

[PSL80] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM (JACM), 1980. 3, 6

[Rab83] M. O. Rabin. Randomized byzantine generals. In 2013 IEEE 54th Annual Sympo-
sium on Foundations of Computer Science, 1983. 3, 6

[Rab94] Tal Rabin. Robust sharing of secrets when the dealer is honest or cheating. Journal
of the ACM (JACM), 41(6):1089–1109, 1994. 5

44

[TLP22] Georgios Tsimos, Julian Loss, and Charalampos Papamanthou. Gossiping for
communication-efficient broadcast. In Yevgeniy Dodis and Thomas Shrimpton, ed-
itors, Advances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryp-
tology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022,
Proceedings, Part III, volume 13509 of Lecture Notes in Computer Science, pages
439–469. Springer, 2022. 6

[ZLC23] Jianjun Zhu, Fan Li, and Jinyuan Chen. Communication-efficient and error-free
gradecast with optimal resilience. In 2023 IEEE International Symposium on In-
formation Theory (ISIT), pages 108–113, 2023. 13, 27, 35, 36

45

A Glossary: Broadcast in Expected Constant Rounds

Implementation of broadcast in constant expected number of rounds consists of several under-
lying building blocks. To understand the large picture, we provide an overview of the differ-
ent primitives and their interplay. This overview can be viewed as a glossary of the various
primitives, and therefore we also repeat several (informal) definitions of primitives we already
discussed.

Broadcast – See Section 3.3 Broadcast involves a distinguished party, a sender, that holds
a message M . The primary objective is to ensure that all n parties receive an identical message
M ′ (reaching agreement), while maintaining the condition that if the sender is honest, M =
M ′ (ensuring validity). To implement broadcast successfully, two fundamental primitives are
required: Gradecast and Byzantine agreement.

Gradecast – See Section 5.3 As we mention, Gradecast is a relaxation of Broadcast in which
there is a distinguished party with input message M , and all parties output some (M ′, g) – some
message together with a grade g ∈ {0, 1, 2}. If the sender is honest, then for all honest parties
the output is (M, 2). If the sender is corrupted but there exists an honest party with g = 2, then
all honest parties are guaranteed to have the same output message (but perhaps with a grade
1). In the absence of an honest party with a grade 2, all honest parties with a grade 1 must
receive an identical message, while other honest parties (with a grade 0) might have varying
output messages.

Byzantine agreement – See Section 3.3 In Byzantine agreement (of a single bit), the input
of each party Pi is some bit bi ∈ {0, 1}, and the output is also a bit. The desired properties
of Byzantine agreement are validity and consistency. Validity ensures that if all honest parties
have the same input bit, their output must be that input bit. Consistency guarantees that even
if honest parties have different input bits, they must still reach an agreement on a common
output bit.

Broadcast + Gradecast =⇒ Byzantine agreement. To implement Broadcast, the sender first
gradecasts its messageM , and then the parties run Byzantine agreement to find out whether they
all received as output grade 2. If this condition is met, they collectively output the message
received during gradecast. Otherwise, they output ⊥. Notably, if the sender is honest and
possesses input message M , all honest parties receive M with a grade 2 during gradecast.
Consequently, since they all have the same input for Byzantine agreement, they unanimously
output M . In the event that the sender is corrupted and no honest party receives a grade 2, they
uniformly input 0 for Byzantine agreement and unanimously agree on the output ⊥. When at
least one honest party has a grade 2, while others do not, the outcome of Byzantine agreement
becomes uncertain. However, gradecast guarantees that all honest parties possess the same
message (since there is an honest party with grade 2), resulting in the output potentially being
either ⊥ or M – but there is always an agreement.

Oblivious leader election (OLE) – See Section 2.1. Oblivious leader election (OLE) is
a randomized protocol designed to elect a leader among the set of parties, ensuring the process
remains oblivious to the adversary’s manipulation. The primary objective is for all parties to
reach a consensus on the identity of the elected leader. There are two possible outcomes: either
all parties agree on the chosen leader or they do not. However, it is important to note that even
if they do agree on the elected leader, there remains a possibility that the chosen leader is a
corrupted party. The goal of OLE is to develop a protocol that elects an honest leader with a
constant probability.

OLE =⇒ Byzantine agreement. Without getting into too many details, in the implementa-
tion of Byzantine agreement (see Protocol 7.1), the parties can essentially identify whether their
current value agrees. If they do not have an agreement, then they try to agree on some value.
Towards that end, they obliviously elect a leader, and verify whether they agree on the value the
leader had provided (i.e., since the elected leader might be corrupted, it might report different
messages as to what value it holds). Recall that the parties might not agree on the identity of

46

the leader, (in that case they would receive different values), or maybe the leader is corrupted
and provided different values to different parties. In that case, the protocol repeats. Once an
honest leader is elected then all parties reach an agreement in the next iteration. This random
process leads to “expected constant number of rounds”.

Verifiable secret sharing (VSS) – See Section 4. Verifiable secret sharing is a two-phase
protocol, that allows a dealer to distribute some secret such that each party receives a share.
In the second stage (the reconstruction phase), the parties can reconstruct the secret from their
shares. For our discussion, VSS can be viewed as the information-theoretic equivalence of a
commitment scheme. It provides hiding – the shares do not provide any information about the
secret, and binding – once the sharing phase is concluded, the dealer cannot change its decision,
and reconstruction is always guaranteed.

VSS =⇒ OLE. To implement an oblivious leader election, the idea is to run a “coin-tossing”
protocol. Specifically, each party is associated with a random value, and the party with the
largest party is the one elected. We cannot let each party choose its own value, as the adversary
would then always pick to itself the largest number. Therefore, we let each party contribute
to the value of some hidden and random subset of parties M ⊂ [n] of size O(poly log n). That
is, each party Pi provides the contribution ci→j to each j ∈ Mi. Then, the value of Pj is
cj =

∑
j∈Mi

ci→j . We choose the size of the set Mi to ensure that with sufficiently high
probability each party Pj receives a contribution from some honest party, where the probability
is taken over the randomness of all the parties that remain honest throughout the protocol. To
prevent the adversary from picking its own values as a function of the honest parties’ values, we
use VSS as a commitment; The parties first commit to their values, and later, after all parties
committed to their values, they reconstruct them and find who the leader is.

Multi-moderated VSS – See Section 5. A complication arises from the fact that VSS
uses broadcast to reach an agreement on whether the shares of the dealer should be accepted.
However, we cannot use broadcast here, as this would lead to a circular construction. This
was addressed in previous works by substituting all broadcasts with gradecasts. This does not
work directly and requires some more work since gradecast is too weak, and might lead to cases
in which the parties do not necessarily agree on the leader. We do not get into the details in
this overview, and just mention that the construction does not directly use VSS but rather a
primitive called “multi-moderated VSS” (with no broadcast).

47

	Introduction
	Our Results
	Related Work

	Technical Overview
	Efficient Oblivious Leader Election
	Efficient Statistical VSS
	Putting it All Together

	Preliminaries
	Security Definition
	Bivariate Polynomials
	Ideal Functionalities for Broadcast and Byzantine Agreement

	Statistical Verifiable Secret Sharing
	Sharing Attempt
	Reconstructing Shares
	Statistical VSS Protocol
	Batched Verifiable Secret Sharing

	Multi-Moderated Verifiable Secret Sharing
	Batched Multi-Moderated VSS
	Reconstruction with Moderators
	Gradecast

	Oblivious Leader Election
	Broadcast, and Parallel Broadcast
	Broadcast
	Parallel broadcast

	References
	Glossary: Broadcast in Expected Constant Rounds

