
Preimage Attacks on Reduced-Round
Ascon-Xof⋆

Seungjun Baek1, Giyoon Kim1, and Jongsung Kim1,2

1 Department of Financial Information Security, Kookmin University, Republic of
Korea

{hellosj3,gi0412,jskim}@kookmin.ac.kr
2 Department of Information Security, Cryptology, and Mathematics, Kookmin

University, Republic of Korea

Abstract. Ascon, a family of algorithms that supports authenticated
encryption and hashing, has been selected as the new standard for
lightweight cryptography in the NIST Lightweight Cryptography Project.
Ascon’s permutation and authenticated encryption have been actively
analyzed, but there are relatively few analyses on the hashing. In this
paper, we concentrate on preimage attacks on Ascon-Xof. We focus
on linearizing the polynomials leaked by the hash value to find its in-
verse. In an attack on 2-round Ascon-Xof, we carefully construct the
set of guess bits using a greedy algorithm in the context of guess-and-
determine. This allows us to attack Ascon-Xof more efficiently than
the method in Dobraunig et al., and we fully implement our attack to
demonstrate its effectiveness. We also provide the number of guess bits
required to linearize one output bit after 3- and 4-round Ascon’s per-
mutation, respectively. In particular, for the first time, we connect the
result for 3-round Ascon to a preimage attack on Ascon-Xof with a
64-bit output. Our attacks primarily focus on analyzing weakened ver-
sions of Ascon-Xof, where the weakening involves setting all the IV
values to 0 and omitting the round constants. Although our attacks do
not compromise the security of the full Ascon-Xof, they provide new
insights into their security.

Keywords: NIST · Ascon· Ascon-Xof· hash function · preimage at-
tack

1 Introduction

As the Internet of Things has grown, related fields such as sensor networks,
healthcare, distributed control systems, and virtual physical systems have evolved,
and the use of small devices is also increasing considerably. Small devices provide
convenience and usability to users, but these advantages are meaningful only if
there are no concerns regarding the security of the devices. The transition from
desktop computers to small devices engenders a wide range of new security and
⋆ This paper has been accepted by Designs, Codes and Cryptography.

2 S. Baek et al.

privacy concerns, primarily owing to the lack of resources in small devices, which
are also known as constrained devices.

The National Institute of Standards and Technology (NIST) has been work-
ing on a Lightweight Cryptography (LWC) Standardization Process to standard-
ize one or more Authenticated Encryption with Associated Data (AEAD) and
hashing schemes suitable for constrained devices [28]. NIST selected 56 first-
round candidates in April 2019 and 32 second-round candidates in August 2019.
In March 2021, NIST announced ten finalists for the final round of the selec-
tion process. Finally, in February 2023, NIST decided to standardize Ascon [12]
through the NIST mailing list.

Ascon is not only the NIST LWC selection algorithm, but also the primary
choice for lightweight applications in the final portfolio of the CAESAR com-
petition [9]. The Ascon family supports authenticated ciphers Ascon-128, As-
con-128a, and Ascon-80pq, hash functions Ascon-Hash and Ascon-Hasha,
and extendable output functions Ascon-Xof and Ascon-Xofa. All schemes
commonly use 320-bit Ascon’s permutation, wherein three AEAD schemes and
four hashing schemes are based on duplex construction [3] and sponge construc-
tion [4], respectively. Isap [6], one of the NIST LWC finalists, also uses Ascon’s
permutation, which can be directly affected by Ascon analysis.

Since the CAESAR competition, the cryptography community has conducted
extensive studies on Ascon, including the analysis of the underlying permuta-
tion [8, 7, 33, 19, 22, 1, 36, 18, 5, 17, 27] and Ascon AEAD [20, 8, 14, 24, 25,
26, 18, 31]. However, Ascon-Hash and Ascon-Xof have not been comprehen-
sively studied. The designers of Ascon proposed preimage attacks on Ascon-
Xof, revealing that it is possible to linearize 2-round Ascon’s permutation to
find preimages of round-reduced Ascon-Xof [10]. They provided noteworthy
insights into the attack, but the attack process and complexity analysis were not
covered in detail. In addition, they noted that an upper bound on the degree
of the round-reduced Ascon’s permutation can be used to marginally speed up
a brute-force search for preimages by using a large amount of memory, as sug-
gested by Bernstein [2]. Zong et al. [37] proposed a collision attack on 2-round
Ascon-Hash and Ascon-Xof, and the latter could be attacked within a prac-
tical amount of time. Gerault et al. [18] improved the collision attack on 2-round
Ascon-Hash by using a differential trail with a higher probability than the ex-
isting one found based on Constraint Programming. Qin et al. [29, 30] proposed
preimage attacks on 3- and 4-round Ascon-Xof with a 128-bit output using a
meet-in-the-middle approach. Very recently, Li et al. [23] improved Qin et al.’s
results by employing a SAT-based automatic preimage attack framework that
uses a linearize-and-guess approach.

An extendable output function (XOF) is a function on bit strings (also called
messages) in which the output can be extended to any desired hash length [16].
The XOF can be seen as a generalization of hash functions where the output
length is not fixed, but is potentially infinite. This property allows anyone who
wants to output a long- or short-length hash, including a 256-bit hash, using

Preimage Attacks on Reduced-Round Ascon-Xof 3

XOF. XOF functions can be used as key derivation functions, stream ciphers,
and mask generation functions for RSA-OAEP style padding.

SHAKE128 and SHAKE256 [15] are the first XOFs that NIST has standard-
ized, and there is no standardized XOF thereafter. As Ascon is selected as the
final algorithm of NIST LWC, it is highly likely that Ascon-Xof will be officially
standardized as XOF. Weatherley [34] proposed and implemented a mode using
Ascon-Xof as a primitive of an algorithm such as KMAC [21]. In addition,
cSHAKE128 [21] supports 64-bit hash required by Drone Remote Identification
Protocol (DRIP) entity tag authentication formats and protocols for broadcast
remote ID [35], which is currently being standardized, but Ascon-Xof can also
be applied here. Given the usefulness of XOF, it is important to evaluate the
security of Ascon-Xof.

Our Contributions. In this paper, we analyze reduced-round Ascon-Xof.
We present a preimage attack on the 2-round Ascon-Xof, which improves upon
Dobraunig et al.’s attack. We analyze that the attack complexity can be reduced
by carefully selecting the guess bits based on a greedy algorithm in the context
of guess-and-determine. Our attack lowers the complexity of Dobraunig et al.’s
attack to 234, and we have fully implemented and verified our attack.3 We also
provide the number of guess bits required to linearize one output bit after 3-
and 4-round Ascon’s permutation, respectively. We then connect the results to
preimage attacks on Ascon-Xof. Our contributions are summarized as follows:

1. Analysis of the number of guess bits required to linearize one out-
put bit after 3- and 4-round Ascon’s permutation
Given that the algebraic degree of Ascon’s S-box is 2, the algebraic degree
after 3 and 4 rounds can be up to 8 and 16, respectively, so linearizing
the output bits is not an easy task. Interestingly, we observe that if the
linearization of the polynomials is performed carefully and the characteristics
of Ascon’s S-box are properly considered, the output bits can be linearized
beyond 3-round to 4-round Ascon-Xof. We mainly focus on the approach
of linearizing quadratic or higher-order terms with the fewest possible bit
guesses. We show that the number of guess bits required to linearize one
output bit after 3-/4-round Ascon-Xof is 22 and 60, respectively.

2. First preimage attacks on 3-round Ascon-Xof with a 64-bit out-
put
Preimage attacks on 3-/4-round Ascon-Xof with a 64-bit output have not
been proposed thus far. Based on the number of guess bits to linearize one
output bit, we perform an exhaustive search on combinations of output bits
to be linearized, selecting combinations that require the least number of
guess bits. In our attack on 3-round Ascon-Xof, we need to guess 56 bits
to linearize 8 output bits, and then we can recover a preimage with a time
complexity of 256 by solving a system of linear equations. Since we need to
guess 60 bits to linearize just one output bit in the 4-round Ascon’s permu-
tation, the preimage attack on Ascon-Xof is required a time complexity

3 Recently, [23] independently developed a preimage attack on 2-round Ascon-Xof.

4 S. Baek et al.

Table 1. Comparison of Preimage Attacks on Ascon-Xof. Our attacks on Ascon-
Xof are equally applicable to Ascon-Xofa. We do not claim that 4-round Ascon-
Xof with a 64- and 128-bit output is broken by our attacks, since the advantage of
ours is small. MitM = Meet-in-the-Middle attack.

Rounds Hash Time Memory Method Reference

2/12

64
239 - Algebraic† [10]

231.56 - Algebraic [23]

234 - Algebraic‡ Section 3

128
2103 - Algebraic† [10]

298 - Algebraic‡ Section 3

3/12

64 256 - Algebraic† Section 4

128

2120.58 239 MitM [29]

2114.53 230 MitM [30]

2112.205 - Algebraic [23]

2120 - Algebraic† Section 4

4/12

64 263 - Algebraic† Section 4

128
2124.67 250 MitM [29]

2124.49 - Algebraic [23]

2127 - Algebraic† Section 4

† A setting that takes into account Ascon’s permutation without round constants and
initialization, where IV is set to 0.
‡ A setting that takes into account Ascon’s permutation without initialization, where
IV is set to 0.

of 263. Since some readers may not consider this an attack, we do not claim
that 4-round Ascon-Xof is broken by our attack.

Table 1 summarizes the preimage attacks on Ascon-Xof. Since our attacks
can be extended to 128-bit outputs in a straightforward way, we also provide
a comparison between our results and existing ones in the table. The original
target of our attacks is a 64-bit output hash; for a 128-bit output hash, the
complexities of our attacks are simply multiplied by 264.

Paper Organization. Section 2 describes the specifications of Ascon. Sec-
tion 3 describes our preimage analysis on 2-round Ascon-Xof. Section 4 de-
scribes how to find the number of guess bits required to linearize one output bit
after 3- and 4-round Ascon’s permutation, respectively. We use these results to
mount preimage attacks on 3- and 4-round Ascon-Xof. Section 5 presents our
conclusion and discussion.

Preimage Attacks on Reduced-Round Ascon-Xof 5

2 Description of Ascon

Ascon [11], designed by Dobraunig et al., consists of a permutation-based AEAD
and hashing schemes, whose core components are the 320-bit iterative permu-
tations pa and pb with a and b rounds, respectively. In hashing modes, a and b
are set to 12 (for Ascon-Hasha and Ascon-Xofa, set b = 8), and the mode
of operation is sponge construction [4] (see Figure 1). For the description and
application of the round transformations, the 320-bit state is split into five 64-bit
words Xi(0 ≤ i ≤ 4) as illustrated in Figure 2, where X0 is the MSB and X4

the LSB.

IV ∥0c

pa

Initialization

M1

r

pb

c

Ms

r

c

Absorb Message

pb

H1

r

pa

c

H⌈ℓ/r⌉

r

pa

c

Squeeze Hash

Fig. 1. Hashing modes of Ascon [13]

The 320-bit initial state of Ascon-Hash (Ascon-Hasha) and Ascon-Xof (Ascon-
Xofa) is defined by a constant IV that specifies the algorithm parameters, in-
cluding the rate r and round numbers a, and the value a− b, each written as an
8-bit integer. It is followed by the maximal output length of h bits as a 32-bit
integer with h = l = 256 for Ascon-Hash and Ascon-Hasha, h = 0 for un-
limited output in Ascon-Xof and Ascon-Xofa, and a 256-bit zero value. The
a-round permutation pa is applied to initialize the state S.

IVr,a,b,h ← 08∥r∥a∥a− b∥h =

00400C0000000100 for Ascon-Hash
00400C0400000100 for Ascon-Hasha
00400C0000000000 for Ascon-Xof
00400C0400000000 for Ascon-Xofa

S ← pa
(
IVr,a,b,h∥0256

)
(1)

Ascon’s hashing modes process the message M in blocks of r bits. The
padding process first appends a single 1 and then the smallest number of zeroes
to M such that the length of the padded message is a multiple of r bits. The
padded message is split into s blocks of r bits and satisfies the following:

M1, . . . ,MS ← r-bit blocks of M∥1∥0r−1−(|M | mod r) (2)

6 S. Baek et al.

The core permutation p consists of three functions: the addition of con-
stants pC , the substitution layer pS , and the linear diffusion layer pL (p =
pL ◦ pS ◦ pC). When representing a layer of the r-th round, we append it to
the subscript; for example, the substitution layer of the 1 round is denoted by
pS,1. The input state to the round permutation at the r-th round is denoted
by Xr = Xr

0 ||Xr
1 ||Xr

2 ||Xr
3 ||Xr

4 while the output state after the pS layer is given
by Y r = Y r

0 ||Y r
1 ||Y r

2 ||Y r
3 ||Y r

4 . One bit of each word is denoted by [·]. For ex-
ample, Xr

i [j] represents the j-th (starting from the left4) bit of word i at the
r-th round for j = 0, · · · , 63, and consecutive bits are denoted by Xr

i [j, . . . , k]
for 0 ≤ j < k ≤ 63. Throughout the paper, we implicitly represent indices as
modulo 64.

X0

X1

X2

X3

X4

0 1 · · · 63

⊕⊕⊕⊕⊕⊕⊕⊕

Fig. 2. Ascon’s state of 320=5×64 bits.

Addition of Constants (pC). An 8-bit constant is added to the X2[56, . . . , 63]
at each round (see Figure 2). The added constant changes depending on the
round.

Substitution Layer (pS). Each column of the 320-bit state is updated by
applying the Ascon’s 5-bit S-box (see Figure 3). The algebraic normal form
(ANF) of the S-box is given in Equation 3. As the algebraic degree of Ascon’s
5-bit S-box is 2, the algebraic degree of one round of permutation p is also 2.

Y0[j] = X4[j]X1[j]⊕X3[j]⊕X2[j]X1[j]⊕X2[j]⊕X1[j]X0[j]⊕X1[j]⊕X0[j]

Y1[j] = X4[j]⊕X3[j]X2[j]⊕X3[j]X1[j]⊕X3[j]⊕X2[j]X1[j]⊕X2[j]⊕X1[j]⊕X0[j]

Y2[j] = X4[j]X3[j]⊕X4[j]⊕X2[j]⊕X1[j]⊕ 1

Y3[j] = X4[j]X0[j]⊕X4[j]⊕X3[j]X0[j]⊕X3[j]⊕X2[j]⊕X1[j]⊕X0[j]

Y4[j] = X4[j]X1[j]⊕X4[j]⊕X3[j]⊕X1[j]X0[j]⊕X1[j]
(3)

Linear Diffusion Layer (pL). Each row of the 320-bit state is internally
diffused by a linear transformation

∑
i (see Figure 4), where

∑
i is given in

Equation 4. Here, ≫ is the right cyclic shift operation over a 64-bit word.
4 In the proposal paper of Ascon [11], the bit index for each word starts from the

right.

Preimage Attacks on Reduced-Round Ascon-Xof 7

X0

X1

X2

X3

X4

Fig. 3. Ascon’s substitution layer.

Y0 = Σ0 (Y0) = Y0 ⊕ (Y0 ≫ 19)⊕ (Y0 ≫ 28)

Y1 = Σ1 (Y1) = Y1 ⊕ (Y1 ≫ 61)⊕ (Y1 ≫ 39)

Y2 = Σ2 (Y2) = Y2 ⊕ (Y2 ≫ 1)⊕ (Y2 ≫ 6)

Y3 = Σ3 (Y3) = Y3 ⊕ (Y3 ≫ 10)⊕ (Y3 ≫ 17)

Y4 = Σ4 (Y4) = Y4 ⊕ (Y4 ≫ 7)⊕ (Y4 ≫ 41)

(4)

Y0

Y1

Y2

Y3

Y4

Fig. 4. Ascon’s linear diffusion layer with a 64-bit diffusion function
∑

i(Yi).

Rotational Symmetry of Ascon’s Permutation. We observe that the
bits composing the leaked polynomial from the hash value exhibit rotation-
invariance, in the sense that two distinct sets of bits forming the two output
bits (i.e., two polynomials) become identical after a specific number of rotations.
Using this property, it is sufficient to analyze only one representative bit to find
the set of guess bits needed to linearize one bit after a certain round of Ascon.
This property is implicitly taken into account when analyzing Ascon-Xof.

3 Preimage Attacks on 2-round Ascon-Xof

In this section, we present an attack on 2-round Ascon-Xof (with a 64-bit
output) without round constants and initialization, where IV is set to 0. This
setting is the same as that of the preliminary analysis of Ascon proposed by
Dobraunig et al.

3.1 Dobraunig et al.’s Attack

First, we analyze the Dobraunig et al.’s attack in detail. In [10], the preimage
attack on 2-round Ascon-Xof with a 64-bit output was proposed. For simplicity,

8 S. Baek et al.

they consider the round-reduced variant of Ascon-Xof without round constants
and initialization, where IV is set to 0. The core of this attack is to linearize the
state bits after the substitution layer in round 2 by guessing some of the input
state bits in round 1. The overall configuration for their attack is presented in
Figure 5, where we add ∗ to the subscript of p to indicate permutation without
constants.

0320

M

64

p2∗
256

H

64

Fig. 5. Dobraunig et al.’s attack model

Let us take a closer look at the process of obtaining a preimage. As IV is set
to 0, X1

1 , X1
2 , X1

3 , and X1
4 in the input states are fixed to zero and an attacker

is free to choose the bits of X1
0 . This leads to two properties regarding the input

and output of Ascon’s S-box.

Property 1. Let X1[j], X2[j], X3[j], and X4[j] all be zero. Then, when X0[j] = 0
and X0[j] = 1, Y0[j] = Y1[j] = Y3[j] = 0 and Y0[j] = Y1[j] = Y3[j] = 1,
respectively.

Property 2. Let X1[j], X2[j], X3[j], and X4[j] all be zero. Then, Y2[j] = 1 and
Y4[j] = 0 always hold.

Due to the word-wise structure of Ascon’s linear layer, we only have to obey
the first bit of the ANF of the S-box. By Property 2, we get:

Y 2
0 [j] = X2

4 [j]X
2
1 [j]⊕X2

3 [j]⊕X2
2 [j]X

2
1 [j]⊕X2

2 [j]⊕X2
1 [j]X

2
0 [j]⊕X2

1 [j]⊕X2
0 [j]

= X2
1 [j]X

2
0 [j]⊕X2

0 [j]⊕X2
3 [j]⊕ 1

= (Y 1
1 [j]⊕ Y 1

1 [j − 61]⊕ Y 1
1 [j − 39])(Y 1

0 [j]⊕ Y 1
0 [j − 19]⊕ Y 1

0 [j − 28])

⊕ (Y 1
0 [j]⊕ Y 1

0 [j − 19]⊕ Y 1
0 [j − 28])⊕ (Y 1

3 [j]⊕ Y 1
3 [j − 10]⊕ Y 1

3 [j − 17])

⊕ 1
(5)

The only non-linear term in Y 2
0 [j] is X2

1 [j]X
2
0 [j], which can be linearized by

guessing 3 bits of X1
0 . Thus, if we do not take independencies into account, we

can get 1 additional linear equation in Y 2
0 per 3 guessed bits of X1

0 . After 48
guesses, we get 16 linear equations and can attempt to solve the system and
get a candidate solution for H. This can be further improved by considering
dependencies. For instance, if 39 consecutive bits in X1

0 are guessed, already 25

Preimage Attacks on Reduced-Round Ascon-Xof 9

pS,1

pL,1

pS,2

pL,2
guessed
uncertain
linearized

1
0H

0320

M

X1

Y 1

X2

Y 2

Fig. 6. Dobraunig et al.’s attack

linear equations can be derived (see Figure 6 for an example of simply guessing 39
consecutive bits of X1

0 [0, . . . , 38]). Taking the padding bit into account, we have
63 degrees of freedom. Furthermore, the remaining 25 bits of X1

0 that are not
guessed are included as variables in the set of 25 linear equations. Consequently,
on average, one block solution for a preimage can be found with 239 guesses.

Remark 1. Since the matrix representing the linear diffusion layer of Ascon has
full rank, Y 2

0 is uniquely determined according to H.

3.2 Our Improved Attack

Here, we propose an improved preimage attack on 2-round Ascon-Xof. Taking
the padding bit into account, we have only 63 degrees of freedom in our attacks,
as in [10]. It should be noted that this consideration applies equally to Section 4.

We first elaborate on the selection of the guess bits used in the attack. In
fact, the best attack strategy is to guess fewer bits and obtain as many bits as
possible to be linearized. Instead of the previous method of guessing consecutive
bits, we try to construct a more efficient attack using the greedy algorithm-based
guessing bit selection method.

Greedy Algorithm. A greedy algorithm is an algorithm that follows a prob-
lem solving heuristic for local optimal selection at each step to find a global
optimal value. For many problems, this algorithm does not always produce an
optimal solution, but nevertheless it can produce a solution that approximates

10 S. Baek et al.

a globally optimal solution in a reasonable amount of time. This algorithm has
been applied to select the H-representation of the convex hull of all possible dif-
ferential patterns of the S-box [32], and many cryptographic applications have
been developed since then. We use the greedy algorithm to find a set of guess
bits suitable for the preimage attack on 2-round Ascon-Xof.

Observation for Improvement. Dobraunig et al. simply select the guess bits
consecutively and then compute the number of linearized polynomials. It should
be noted that in Equation 5, for Y 2

0 [j] to be linearized, it is sufficient for only
one of X2

0 [j] and X2
1 [j] to be a constant. According to the word-wise structure of

Ascon’s linear layer, the guess bits required to make X2
0 [j] and X2

1 [j] constant
are widely spread over Y 1

0 and Y 1
1 . If the guess bits of X1

0 are dense, there may
be a case where only some of the 3 bits of Y 1

0 (resp. Y 1
1) required to make X2

0 [j]
(resp. X2

1 [j]) a constant are determined and the remaining bits must be guessed.
Thus, if the guess bits of X1

0 are selected consecutively, the bits of Y 2
0 are not

linearized as much as expected.
We first recall that the attacker can select the 63 bits corresponding to the

message M1 for the attack on Ascon-Xof (i.e., X1
0 can be adjusted, except for

the padding bit). When selecting 39 guess bits, the entire space of
(
63
39

)
≈ 257.1

must be searched. Furthermore, if the guess bits are reduced to less than 39 bits,
the number of search cases increases because the maximum value of

(
n
r

)
occurs

at (n − 1)/2 or at (n + 1)/2 when n is odd. We overcome this by designing an
algorithm based on the greedy algorithm for selecting guess bits. The greedy
algorithm helps us to linearize as many bits as we want in Y 2

0 , which is done by
finding a set with an index of the minimum bits required based on each 64-bit
position of X1

0 . Here, we have to look carefully at the first two rows of pL,1. If
we want X2

0 [j] to be a constant, we need to guess the bits of X1
0 [j], X1

0 [j − 19],
and X1

0 [j − 28], and if we want X2
1 [j] to be a constant, we have to guess the

bits of X1
0 [j], X1

0 [j − 61], and X1
0 [j − 39]. A case where X2

0 [j] and X2
1 [j] are

both constants can be considered, but it is not as effective in the overall attack
because it is necessary to guess five bits of X1

0 for one bit linearization. For
an effective attack, we consider the case where only one of them is a constant.
Consequently, we selected either X2

0 [j] or X2
1 [j] to be a constant that minimizes

the number of guess bits in X1
0 needed to linearize Y 2

0 [j] at each step of the
greedy algorithm. Algorithm 1 presents the process of selecting guess bits to
attack 2-round Ascon-Xof using the greedy algorithm in detail.

The following is a closer look at Algorithm 1.

1. In Step 5, we include 1 bit of Y 2
0 in the candidate set LC of the guess bits

first, and in step 7, we include 3-bit indices of X1
0 necessary to linearize the

(included) bit of LC in BC .
2. In Steps 8–14, we select the bit of Y 2

0 that becomes linear by guessing the
minimum bit of X1

0 at every moment through the greedy algorithm, and we
include the indices of 3 bits of X1

0 needed to make it constant in BC . We
repeat this process and stop selecting bits when |LC | = N holds.

Preimage Attacks on Reduced-Round Ascon-Xof 11

Algorithm 1: Process of selecting guess bits to attack 2-round Ascon-
Xof using the greedy algorithm

Input: N : Number of bits of Y 2
0 to be linearized (1 < N < 64)

Output: B: Set of bit indices to be guessed in X1
0

L: Set of bit indices to be linearized in Y 2
0

1: I := {0, 1, . . . , 63}
2: B := ∅, Ball := ∅, L := ∅, Lall := ∅
3: for j ∈ I do
4: T := I, BC := ∅, LC := ∅
5: LC ← LC ∪ {j}
6: T ← T − {j}
7: BC ← BC ∪ {j} ∪ {j − 19} ∪ {j − 28}
8: for cnt ∈ {0, 1, . . . ,N − 2} do
9: M← The bit index of Y 2

0 that can be linearized by guessing the least bit of
X1

0 (M∈ T)
10: Mbit ← The bit indices of X1

0 that linearizeM of Y 2
0

11: BC ← BC ∪ {Mbit}
12: LC ← LC ∪ {M}
13: T ← T − {M}
14: end for
15: for k ∈ I − LC do
16: if Y 2

0 [k] is linearized because of the elements of BC then
17: LC ← LC ∪ {k}
18: end if
19: end for
20: if there is any one of the bit indices of I − BC that cannot be included as a

variable in the linear equations generated from the bits of LC then
21: continue
22: else
23: Ball ← Ball ∪ {BC}
24: Lall ← Lall ∪ {LC}
25: end if
26: end for
27: Min← Minimum size of elements of Ball

28: Max← Of the elements of Ball whose size is Min, the maximum size of the
corresponding elements of Lall

29: B ← Element of Ball that has a size Min and has a size Max of an element of Lall

in that index
30: L ← Element of Lall that correspond to B
31: return B,L

3. In Steps 15–19, we check whether any bits of Y 2
0 excluding the selected bits

of LC can be linearized through BC , and if so, include the index of the bits
in LC .

4. In Steps 20–25, we check whether the two sets B and L can be used for
attacks. First, in Steps 20–21, we check whether the bits of I − BC that
were not guessed in X1

0 are included as variables in the linear equations

12 S. Baek et al.

generated in L. If included, include BC and LC as elements of Ball and Lall,
respectively, and proceed to the next step. If not included, we repeat from
Step 8 again.

5. In Step 27, we set the smallest size of the element Ball, the set of bit indices
to be guessed from X1

0 , as Min. In Step 28, we set the maximum size of the
set of the elements of Lall with respect to the elements of size Min of Ball
as Max.

6. In Steps 29–30, while having size Min in Ball, the element of Max size of Lall

of the corresponding index is set to B. The corresponding element of Lall is
set to L.

We performed Algorithm 1 with N set to 31, and when j = 25, the best
solution was provided by guessing 34 bits. For the remaining j, most of the
bits in the X1

0 position of I − BC were not included as variables of the linear
equations, or more than 35 bit guesses were required to find a preimage. B and
L (both j = 25) were found through this process, as presented in Table 2.

Table 2. Bits information for the preimage attack on 2-round Ascon-Xof

Guess bits of X1
0

(B, 34 bits)
0, 1, 3, 4, 6, 7, 9, 10, 12, 15, 16, 18, 19, 21, 24, 25, 27, 28,
29, 30, 31, 33, 34, 35, 37, 38, 40, 43, 44, 46, 49, 52, 55, 61

Linearized bits of Y 2
0

(L, 31 bits)
0, 1, 3, 4, 6, 7, 9, 10, 12, 15, 16, 18, 19, 21, 24, 25, 27,
28, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 46, 49, 52

For sets B and L consisting of found bit indices, the process of finding a
preimage for H1 is as follows.

1. Preprocessing phase: Store sets of bit indices of X1
0 that must be guessed

for X2
0 [j], X2

1 [j], and X2
3 [j] to become constants as elements of TX0

, TX1
,

and TX3
, where each is a set having 64 sets of 3 elements as elements. For

example, TX0
(3) is a set of bit indices of X1

0 that must be guessed in order
for X2

0 [3] to be a constant.
2. When constructing linear equations in a later process, information on bit

indices of X1
0 (especially, non-guessed bit indices) is required to calculate

X2
0 [j], X2

1 [j], and X2
3 [j](j ∈ L). Therefore, store these information in UX0

,
UX1

, and UX3
, respectively. For example, UX0

(3) is a set of bit indices of X1
0

that must be guessed to make X2
0 [3] constant, but are not guessed. Note that

at least one of UX0(j) and UX1(j) is empty, because X2
0 [j] or X2

1 [j] must be
constant.

3. Y 2
0 is calculated from the hash value H through p−1

L,2.
4. Guess phase: A possible value j ∈ {0, . . . 234−1} is fixed at the bit indices

in set B (|B| = 34). Based on this and Y 2
0 , linear equations are generated

according to Equation 5 at the indices of L. As |L| = 31 and |B| = 34 hold,
31 linear equations with 30 variables are created.

Preimage Attacks on Reduced-Round Ascon-Xof 13

5. We check whether the constructed linear equation system is unsolvable. If it
is unsolvable, we return to Step 4 and perform the same process for other j
values. If the system of linear equations is solvable, we go to Step 6.

6. Gauss–Jordan elimination is performed on the constructed system of linear
equations. If there is a free variable, 30 bits are determined for every number
of cases; if not, uniquely determined.

7. 2-round Ascon-Xof is run with a message that combines 30 determined
bits and 34 guessed bits, and we check if the calculated hash value matches
H. If the hash value does not match, we go back to Step 4 and perform the
same process for another j value.

It is crucial to verify that the linear equations constructed include all the
variables corresponding to the unknown bits of X1

0 , except for those guessed.
This is because, if these bits are not included as variables of the linear equa-
tions, they cannot be determined even if the linear equation system is solved
by Gauss–Jordan elimination, and the corresponding bits must be calculated
as the complexity that the attacker must guess. Our attack is valid because 30
bits, excluding the guessed bits of X1

0 , are all included as variables of 31 linear
equations. If we perform 234 guesses on the 34 bits of X1

0 , we can expect to find
a one-block solution for the preimage (see Figure 7). Our attack has been fully
implemented and verified, and we have made the attack tool publicly available
at https://github.com/pion2er/Preimage_Attacks_on_Ascon_2r.

pS,1

pL,1

pS,2

pL,2
guessed

uncertain
linearized

1
0H

0320

M

X1

Y 1

X2

Y 2

Fig. 7. Our improved preimage attack on 2-round Ascon-Xof

14 S. Baek et al.

3.3 Mitigating Assumption.

Thus far, we have analyzed the attack process for 2-round Ascon-Xof without
round constants and initialization, where IV is set to 0. However, according to
our analysis, considering the round constants does not affect the overall com-
plexity of the preimage attack. When we consider pC,1 and pC,2, which are addi-
tion of constants, for Ascon-Hash and Ascon-Xof (resp. Ascon-Hasha and
Ascon-Xofa), the 1-byte constant added at pC,1 is 0xf0 (resp. 0xb4), and for
pC,2, is 0xe1 (resp. 0xa5). The hamming weight of all 1-byte round constants
of Ascon is 4, so we have to deal with these 4 bits appropriately. For Ascon-
Hash and Ascon-Xof, if bits of X1

0 [56, . . . , 59] (resp. Y 2
0 [56, . . . , 58], Y 2

0 [63]),
which are Hamming weight indices corresponding to constant 0xf0 (resp. 0xe1),
are not included in B (resp. L), the preimage for hash can be found in the same
way as before. One thing to note is that when B and L in Table 2 are used,
Y 2
0 [0] cannot be made linear. This is because X2

2 [0] is not determined to be 1,
because the round constant is XORed on X1

0 [58], leaving Y 1
2 [58] as an unknown

number, not 1. However, given that 30 linear equations are still generated by
34 bits guessing, and 30 bits that are not guessed remain as variables of the
linear equations, the validity of the preimage attack is not affected. For Ascon-
Hasha and Ascon-Xofa, there are no sets of bit indices (B and L) satisfying
the above method by guessing 34 bits (the size of B must be 36 to satisfy this).
However, the preimage attack can be performed with the same complexity by
including some bits of X1

0 corresponding to the Hamming weights of constants
as guess bits.

4 Revealing the Level of Linearization of Ascon’s
Permutation for 3 and 4 Rounds

In this section, we reveal the level of linearization of Ascon’s permutation for
3 and 4 rounds. We then try to mount these results to preimage attacks on 3-
and 4-round Ascon-Xof. The overall framework of this attack is the same as
described in Section 3, in which the guess bits of X1

0 are selected and the non-
guessed bits are determined by solving the linear equation system that can be
generated in Y 2

0 .

4.1 Preimage Attack on 3-round Ascon-Xof

We first have to choose the guess bits of X1
0 so that we can make the bits of Y 3

0

linear. The difficulty is that the algebraic degree of Ascon’s S-box is 2, so the
algebraic degree after 3 rounds can be up to 8. To linearize a non-linear term with
the algebraic degree of 8, we need to guess many bits of X1

0 . Nevertheless, this
obstacle can be overcome by exploiting Ascon’s S-box properties and effectively
linearizing the non-linear term of the polynomial that is leaked by the hash value.
Now, we show how many bits of X1

0 must be guessed to linearize one bit of Y 3
0 .

Preimage Attacks on Reduced-Round Ascon-Xof 15

Equation 6 can be obtained by expressing Y 3
0 [j] (0 ≤ j ≤ 63) in the ANF of

Ascon’s S-box.

Y 3
0 [j] = X3

4 [j]X
3
1 [j]⊕X3

3 [j]⊕X3
2 [j]X

3
1 [j]⊕X3

2 [j]⊕X3
1 [j]X

3
0 [j]⊕X3

1 [j]⊕X3
0 [j]

= (X3
4 [j]⊕X3

2 [j]⊕X3
0 [j]⊕ 1)X3

1 [j]⊕X3
3 [j]⊕X3

2 [j]⊕X3
0 [j]

(6)

We focus on making X3
1 [j] constant, by applying p−1

L,2 to X3
1 and expressing

it as the ANF of Ascon’s S-box, resulting in Equation 7.

X3
1 [j] = Y 2

1 [j]⊕ Y 2
1 [j − 61]⊕ Y 2

1 [j − 39]

= (X2
3 [j]X

2
1 [j]⊕X2

0 [j]︸ ︷︷ ︸
T0,j

⊕1)⊕ (X2
3 [j − 61]X2

1 [j − 61]⊕X2
0 [j − 61]︸ ︷︷ ︸

T1,j

⊕1)

⊕ (X2
3 [j − 39]X2

1 [j − 39]⊕X2
0 [j − 39]︸ ︷︷ ︸

T2,j

⊕1)

(7)

Let ST0,j
, ST1,j

, and ST2,j
be the sets containing the bits of X1

0 that must
be guessed to make T0,j , T1,j , and T2,j constants. If we guess the bits of X1

0

in the position of the union of ST0,j , ST1,j , and ST2,j , we can make T0,j , T1,j ,
and T2,j constants, and X3

1 [j] is also determined to be constant. Note that as
Ascon’s permutation is rotation-invariant, we consider only the case of j = 0
as a representative case. The bit indices to be guessed when j = 0 are presented
in Table 3.

Table 3. Indices of guess bits of X1
0 (j = 0)

ST0,0(7) 0, 3, 25, 36, 45, 47, 54
ST1,0(7) 3, 6, 28, 39, 48, 50, 57
ST2,0(7) 6, 8, 15, 25, 28, 50, 61

ST0,0 ∪ ST1,0 ∪ ST2,0(16) 0, 3, 6, 8, 15, 25, 28, 36, 39, 45, 47, 48, 50, 54, 57, 61

Let us guess the 16 bits of ST0,j
∪ST1,j

∪ST2,j
and denote the constant X3

1 [j]
as C. Then, by Property 2, Equation 6 is rewritten as follows.

16 S. Baek et al.

Y 3
0 [j] = (X3

4 [j]⊕X3
2 [j]⊕X3

0 [j]⊕ 1)C ⊕X3
3 [j]⊕X3

2 [j]⊕X3
0 [j]

= {(Y 2
4 [j]⊕ Y 2

4 [j − 7]⊕ Y 2
4 [j − 41])⊕ (Y 2

2 [j]⊕ Y 2
2 [j − 1]⊕ Y 2

2 [j − 6])

⊕ (Y 2
0 [j]⊕ Y 2

0 [j − 19]⊕ Y 2
0 [j − 28])⊕ 1}C ⊕ (X2

3 [j]⊕X2
3 [j − 10]⊕X2

3 [j − 17])

⊕ (X2
0 [j]⊕X2

0 [j − 1]⊕X2
0 [j − 6])⊕ (X2

0 [j]⊕X2
0 [j − 19]⊕X2

0 [j − 28])

= [{(X2
1 [j]X

2
0 [j]⊕X2

1 [j]⊕X2
3 [j])⊕ (X2

1 [j − 7]X2
0 [j − 7]⊕X2

1 [j − 7]⊕X2
3 [j − 7])

⊕ (X2
1 [j − 41]X2

0 [j − 41]⊕X2
1 [j − 41]⊕X2

3 [j − 41])} ⊕ (X2
1 [j]⊕X2

1 [j − 1]⊕X2
1 [j − 6])

⊕ {(X2
1 [j]X

2
0 [j]⊕X2

0 [j]⊕X2
3 [j]⊕ 1)⊕ (X2

1 [j − 19]X2
0 [j − 19]⊕X2

0 [j − 19]⊕X2
3 [j − 19]⊕ 1)

⊕ (X2
1 [j − 28]X2

0 [j − 28]⊕X2
0 [j − 28]⊕X2

3 [j − 28]⊕ 1)} ⊕ 1]C

⊕ {(X2
3 [j]X

2
0 [j]⊕X2

0 [j]⊕X2
1 [j]⊕X2

3 [j]⊕ 1)

⊕ (X2
3 [j − 10]X2

0 [j − 10]⊕X2
0 [j − 10]⊕X2

1 [j − 10]⊕X2
3 [j − 10]⊕ 1)

⊕ (X2
3 [j − 17]X2

0 [j − 17]⊕X2
0 [j − 17]⊕X2

1 [j − 17]⊕X2
3 [j − 17]⊕ 1)}

⊕ (X2
1 [j]⊕X2

1 [j − 1]⊕X2
1 [j − 6])⊕ {(X2

1 [j]X
2
0 [j]⊕X2

0 [j]⊕X2
3 [j] + 1)

⊕ (X2
1 [j − 19]X2

0 [j − 19]⊕X2
0 [j − 19]⊕X2

3 [j − 19]⊕ 1)

⊕ (X2
1 [j − 28]X2

0 [j − 28]⊕X2
0 [j − 28]⊕X2

3 [j − 28]⊕ 1)}

= [(X2
1 [j − 7]X2

0 [j − 7]︸ ︷︷ ︸
T3,j

⊕X2
1 [j − 7]⊕X2

3 [j − 7])

⊕ (X2
1 [j − 41]X2

0 [j − 41]︸ ︷︷ ︸
T4,j

⊕X2
1 [j − 41]⊕X2

3 [j − 41])

⊕X2
1 [j − 1]⊕X2

1 [j − 6]⊕ C ⊕ {(X2
1 [j − 19]X2

0 [j − 19]︸ ︷︷ ︸
T5,j

⊕X2
0 [j − 19]⊕X2

3 [j − 19])

⊕ (X2
1 [j − 28]X2

0 [j − 28]︸ ︷︷ ︸
T6,j

⊕X2
0 [j − 28]⊕X2

3 [j − 28])}]C

⊕ {C ⊕ (X2
3 [j − 10]X2

0 [j − 10]︸ ︷︷ ︸
T7,j

⊕X2
0 [j − 10]⊕X2

1 [j − 10]⊕X2
3 [j − 10])

⊕ (X2
3 [j − 17]X2

0 [j − 17]︸ ︷︷ ︸
T8,j

⊕X2
0 [j − 17]⊕X2

1 [j − 17]⊕X2
3 [j − 17])}

⊕ C ⊕ {(X2
1 [j − 19]X2

0 [j − 19]︸ ︷︷ ︸
T9,j

⊕X2
0 [j − 19]⊕X2

3 [j − 19])

⊕ (X2
1 [j − 28]X2

0 [j − 28]︸ ︷︷ ︸
T10,j

⊕X2
0 [j − 28]⊕X2

3 [j − 28])}

(8)
Note that there are eight parts denoted by Ti,j (3 ≤ i ≤ 10) in the above

expression. As Ti,j consists of quadratic terms, it is possible to linearize Y 3
0 [j] if

Preimage Attacks on Reduced-Round Ascon-Xof 17

we make those terms linear. Given that 16 bits of the set ST0,0
∪ST1,0

∪ST2,0
are

guessed, the indices of the guess bits of X1
0 required to make each Ti,0 constant

can be calculated, as presented in Table 4. This result depends on the nature of
Ascon’s linear diffusion layer and substitution layer, and 4 of the 8 quadratic
terms can be made linear even by guessing the bits of the set ST0,0

∪ST1,0
∪ST2,0

.

Table 4. Indices of additional guess bits of X1
0 (j = 0)

ST3,0(2) 18, 60
ST4,0(2) 23, 26
ST5,0(0) -
ST6,0(0) -
ST7,0(2) 26, 35
ST8,0(1) 19
ST9,0(0) -
ST10,0(0) -

ST3,0 ∪ ST4,0 ∪ ST7,0 ∪ ST8,0(6) 18,19,23,26,35,60

As a result, by further guessing the six bits of ST3,0 ∪ ST4,0 ∪ ST7,0 ∪ ST8,0 ,
eight quadratic terms Ti,0 (3 ≤ i ≤ 10) can be made constant, so that all terms
constituting Y 3

0 [j] become linear terms. Therefore, if 22 bits of X1
0 are guessed,

Y 3
0 [j] becomes linear, which is shown in Property 3.

Property 3. For Ascon’s permutation, when X1
1 , X

1
2 , X

1
3 , X

1
4 and the round con-

stants are set to 0, 22 bits of X1
0 must be guessed to linearize one bit of Y 3

0 .

Based on this property, we first linearize the 4-th bit of the 64 bits of Y 3
0

by guessing the corresponding 22 bits of X1
0 . We then examine the number

of guessed bits of X1
0 according to all combinations of bits to be linearized

among the remaining bits of Y 3
0 . Specifically, we tried increasing the number

of linearization bits of Y 3
0 from 3 to 10 to find the number of guess bits of

X1
0 required. We found that linearizing 8 bits required 56 bits of guessing as

presented in Table 5, which gives us the lowest attack complexity. If we perform
256 guesses on the 56 bits of X1

0 , we can expect to find a one-block solution for
the preimage (see Figure 8). Our attack is valid because the not-guessed bits of
X1

0 are included as variables of the 8 linear equations.

4.2 Preimage Attack on 4-round Ascon-Xof

Here, we reveal to what extent the 4-round Ascon’s permutation is linearized.
As the algebraic degree is possible up to 16 after 4 rounds of the permutation,
the linearization process is more complicated than the analysis in Section 4.1.

After 4 rounds, one bit Y 4
0 of the output is expressed as:

Y 4
0 [j] = X4

4 [j]X
4
1 [j]⊕X4

3 [j]⊕X4
2 [j]X

4
1 [j]⊕X4

2 [j]⊕X4
1 [j]X

4
0 [j]⊕X4

1 [j]⊕X4
0 [j]

= (X4
4 [j]⊕X4

2 [j]⊕X4
0 [j]⊕ 1)X4

1 [j]⊕X4
3 [j]⊕X4

2 [j]⊕X4
0 [j]

(9)

18 S. Baek et al.

Table 5. Bits information for the preimage attack on 3-round Ascon-Xof

Guess bits of X1
0

(56 bits)

0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 38,
39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 61, 62

Linearized bits of Y 3
0

(8 bits) 4, 5, 7, 17, 30, 33, 36, 49

In Equation 9, we need to first make X4
1 [j] a constant to reduce the degree of

the overall equation. X4
1 [j] is expressed by the linear layer operation as follows:

X4
1 [j] = Y 3

1 [j]⊕ Y 3
1 [j − 61]⊕ Y 3

1 [j − 39] (10)

As Ascon’s permutation is rotation-invariant, determining the guess bits of
X1

0 to make Y 3
1 [j] a constant will also reveal the corresponding bits of Y 3

1 [j−61]
and Y 3

1 [j−39]. We also focus on the case of j = 0, which is representative of the
other cases we consider, consequently making Y 4

0 [0] a constant (accordingly, we
need to make Y 3

1 [0], Y 3
1 [3], and Y 3

1 [25] constant). Let us consider Y 3
1 [0].

Y 3
1 [0] = X3

4 [0]⊕X3
3 [0]X

3
2 [0]⊕X3

3 [0]X
3
1 [0]⊕X3

3 [0]⊕X3
2 [0]X

3
1 [0]⊕X3

2 [0]⊕X3
1 [0]⊕X3

0 [0]

= (X3
2 [0]⊕X3

1 [0])X
3
3 [0]⊕ (X3

1 [0]⊕ 1)X3
2 [0]⊕X3

4 [0]⊕X3
3 [0]⊕X3

1 [0]⊕X3
0 [0]

(11)
To reduce the degree of the overall equation, we need to make both X3

3 [0]
and X3

2 [0] constant. By Property 2, Equations 12 and 13 hold.

X3
3 [0] = Y 2

3 [0]⊕ Y 2
3 [54]⊕ Y 2

3 [47]

= (X2
3 [0]X

2
0 [0]⊕X2

3 [0]⊕X2
1 [0]⊕X2

0 [0]︸ ︷︷ ︸
T0

⊕1)

⊕ (X2
3 [54]X

2
0 [54]⊕X2

3 [54]⊕X2
1 [54]⊕X2

0 [54]︸ ︷︷ ︸
T1

⊕1)

⊕ (X2
3 [47]X

2
0 [47]⊕X2

3 [47]⊕X2
1 [47]⊕X2

0 [47]︸ ︷︷ ︸
T2

⊕1)

(12)

X3
2 [0] = Y 2

2 [0]⊕ Y 2
2 [63]⊕ Y 2

2 [58]

= X2
1 [0]⊕X2

1 [63]⊕X2
1 [58]︸ ︷︷ ︸

T3

(13)

Let ST0
, ST1

, ST2
and ST3

be the sets containing the bits of X1
0 that must

be guessed to make T0, T1, T2 and T3 constants. If we guess the bits of X1
0 in

the position of the union of ST0 , ST1 , ST2 and ST3 , we can make both X3
3 [0] and

X3
2 [0] constant. The bit indices to be guessed are presented in Table 6.

Refer to the description of Property 3 for calculating the guess bits required
to make X3

1 [0] a constant. X3
1 [0] can be made constant by additionally guessing

Preimage Attacks on Reduced-Round Ascon-Xof 19

pS,1

pL,1

pS,2

pL,2

pS,3

pL,3
guessed
uncertain
linearized

1
0H

0320

M

X1

Y 1

X2

Y 2

X3

Y 3

Fig. 8. Our preimage attack on 3-round Ascon-Xof

the three bits of the 6, 39 and 48 indices in addition to the 23 bits already
guessed. Thus, if X3

3 [0], X3
2 [0], and X3

1 [0] are set to C1, C2, and C3, respectively,
the following equation is obtained by guessing 26 bits of X1

0 .

Y 3
1 [0] = (X3

2 [0]⊕X3
1 [0])X

3
3 [0]⊕ (X3

1 [0]⊕ 1)X3
2 [0]⊕X3

4 [0]⊕X3
3 [0]⊕X3

1 [0]⊕X3
0 [0]

= X3
4 [0]⊕X3

0 [0]⊕ C1C2 ⊕ C1C3 ⊕ C2C3 ⊕ C1 ⊕ C2 ⊕ C3

(14)

By Property 2, Equation 15 holds.

20 S. Baek et al.

Table 6. Indices of guess bits of X1
0

ST0(7) 0, 3, 25, 36, 45, 47, 54
ST1(7) 15, 26, 35, 37, 44, 54, 57
ST2(7) 8, 19, 28, 30, 37, 47, 50
ST3(7) 0, 2, 3, 19, 24, 25, 58, 61, 63

ST0 ∪ ST1 ∪ ST2 ∪ ST3(23) 0, 2, 3, 8, 15, 19, 24, 25, 26, 28, 30, 35, 36, 37, 44,
45, 47, 50, 54, 57, 58, 61, 63

X3
4 [0]⊕X3

0 [0] = Y 2
4 [0]⊕ Y 2

4 [57]⊕ Y 2
4 [23]⊕ Y 2

0 [0]⊕ Y 2
0 [45]⊕ Y 2

0 [36]

= (X2
1 [0]X

2
0 [0]⊕X2

3 [0]⊕X2
0 [0]︸ ︷︷ ︸

T4

⊕1)

⊕ (X2
1 [57]X

2
0 [57]⊕X2

3 [57]⊕X2
0 [57]︸ ︷︷ ︸

T5

⊕1)

⊕ (X2
1 [23]X

2
0 [23]⊕X2

3 [23]⊕X2
0 [23]︸ ︷︷ ︸

T6

⊕1)

= (X2
1 [0]X

2
0 [0]⊕X2

1 [0]⊕X2
3 [0]︸ ︷︷ ︸

T7

⊕1)

⊕ (X2
1 [45]X

2
0 [45]⊕X2

1 [45]⊕X2
3 [45]︸ ︷︷ ︸

T8

⊕1)

⊕ (X2
1 [36]X

2
0 [36]⊕X2

1 [36]⊕X2
3 [36]︸ ︷︷ ︸

T9

⊕1)

(15)

Note that there are six parts denoted by Ti (4 ≤ i ≤ 9) in the above expres-
sion. We need to make these six terms constant to make X3

4 [0]⊕X3
0 [0] constant.

The bit indices to be guessed are presented in Table 6.

Table 7. Indices of additional guess bits of X1
0

ST4(0) -
ST5(5) 18, 29, 38, 40, 60
ST6(4) 4, 13, 23, 59
ST7(0) -
ST8(1) 17
ST9(1) 17

ST5 ∪ ST6 ∪ ST8 ∪ ST9(10) 4, 13, 17, 18, 23, 29, 38, 40, 59, 60

Therefore, we can make Y 3
1 [0] a constant by guessing 36 bits. The sets of

guess bits that make Y 3
1 [3] and Y 3

1 [25] constants can also be obtained through
simple rotation, each consisting of 36 bits. The union of these three sets of guess

Preimage Attacks on Reduced-Round Ascon-Xof 21

bits becomes the set of guess bits for making X4
1 [0] a constant, and the size of

the set is 57. Accordingly, we obtain the following property.

Property 4. For Ascon’s permutation, when X1
1 , X

1
2 , X

1
3 , X

1
4 and the round con-

stants are set to 0, 57 bits of X1
0 must be guessed to make X4

1 [j] a constant.

Now we turn to linearizing Y 4
0 [j] by observing X4

0 , X4
2 , X4

3 and X4
4 . This

proceeds similarly to the process of deriving Property 4.

X4
0 [0] = Y 3

0 [0]︸ ︷︷ ︸
Const

⊕Y 3
0 [45]⊕ Y 3

0 [36] (16)

Here, Y 3
0 [0] becomes a constant by the process of deriving Property 4. If

we analyze the guess bits required to linearize Y 3
0 [45], we can also find that for

Y 3
0 [36] as well. The four terms X4

0 , X4
2 , X4

3 and X4
4 are expanded as follows,

where the bit indices of X1
0 required to make the term constant are represented

under each term.

X4
0 [0] = Y 3

0 [0]︸ ︷︷ ︸
Const

⊕Y 3
0 [45]⊕ Y 3

0 [36]

= C ⊕X3
4 [45]
10

X3
1 [45]⊕X3

3 [45]⊕X3
2 [45]X

3
1 [45]⊕X3

2 [45]⊕X3
1 [45]X

3
0 [45]⊕X3

1 [45]⊕X3
0 [45]

⊕X3
4 [36]

10,12
X3

1 [36]⊕X3
3 [36]⊕X3

2 [36]X
3
1 [36]⊕X3

2 [36]⊕X3
1 [36]X

3
0 [36]⊕X3

1 [36]⊕X3
0 [36]

X4
2 [0] = Y 3

2 [0]︸ ︷︷ ︸
Const

⊕Y 3
2 [63]⊕ Y 3

2 [58]

= C ⊕X3
4 [63]X

3
3 [63]

12,14,34,46,56
⊕ X3

4 [63]
12,46,56

⊕X3
2 [63]⊕ X3

1 [63]
14,46,56

⊕ 1

⊕X3
4 [58]

12,34
X3

3 [58]⊕X3
4 [58]

12,34
⊕X3

2 [58]
52

⊕X3
1 [58]⊕ 1

X4
3 [0] = Y 3

3 [0]︸ ︷︷ ︸
Const

⊕Y 3
3 [54]⊕ Y 3

3 [47]

= C ⊕X3
4 [54]X

3
0 [54]⊕X3

4 [54]⊕X3
3 [54]
34

X3
0 [54]⊕X3

3 [54]
34

⊕X3
2 [54]

14,56
⊕X3

1 [54]⊕X3
0 [54]

⊕X3
4 [47]
12

X3
0 [47]⊕X3

4 [47]
12

⊕X3
3 [47]X

3
0 [47]⊕X3

3 [47]⊕X3
2 [47]
46

⊕X3
1 [47]⊕X3

0 [47]

X4
4 [0] = Y 3

4 [0]︸ ︷︷ ︸
Const

⊕Y 3
4 [57]⊕ Y 3

4 [23]

= C ⊕X3
4 [57]
52

X3
1 [57]⊕X3

4 [57]
52

⊕X3
3 [57]
12

⊕X3
1 [57]X

3
0 [57]

10,12
⊕X3

1 [57]

⊕X3
4 [23]

46,52
X3

1 [23]⊕X3
4 [23]

46,52
⊕X3

3 [23]⊕X3
1 [23]X

3
0 [23]⊕X3

1 [57]

(17)

22 S. Baek et al.

If we guess the 12, 46, and 56 bit indices, we can linearize Y 4
0 [0] in Equation

9. Overall, we can linearize one bit Y 4
0 [0] by guessing 57 bits in Property 4 and

an additional 3 bits. Finally, we get the following property.

Property 5. For Ascon’s permutation, when X1
1 , X

1
2 , X

1
3 , X

1
4 and the round con-

stants are set to 0, 60 bits of X1
0 must be guessed to linearize one bit of Y 4

0 .

Linearizing the two bits of the output requires at least 63 bit guesses. There-
fore, with 60 bits guesses for linearizing one bit and 3 bits random guesses, we
can expect to find a one-block solution for the preimage. However, we do not
claim that 4-round Ascon-Xof with a 64-bit output is broken by our attack,
as the advantage of our attack is relatively small.

5 Conclusion and Discussion

In this paper, we proposed security analysis for Ascon-Xof of the Ascon fam-
ily, which is the final selection algorithm of the NIST LWC. We improved the
complexity of the preimage attack on 2-round Ascon-Xof proposed by Ascon’s
designers by a factor of 25, and we developed this attack tool. Furthermore, we
demonstrated that Ascon’s permutation can be linearized up to 4 rounds, and
the preimages of 3- and 4-round Ascon-Xof can be found faster than the generic
complexity of 264. Our attacks primarily focus on analyzing the reduced-round
Ascon-Xof without initialization, with both IV and round constants set to 0,
and in some of the versions we attacked, actual round constants are considered.
In the future work, it would be interesting to investigate optimal selection sets of
guess bits by using automated tools, such as MILP and SAT, or ideas presented
in previous results, such as [23].

Our main idea is to linearize the leaked polynomials from the hash value
and then perform Gauss–Jordan elimination on them to determine the unknown
variables. Despite the internal diffusion within Ascon’s permutation, we demon-
strate that it is possible to linearize one output bit by guessing 60 bits of the
input, even after just 2 rounds of the function, and also up to 4 rounds. This
also shows that it is impossible to linearize one bit of the output in this way
by guessing less than 64 bits in more rounds than 4. Our results are important
as they reveal the level of linearization of Ascon’s permutation proposed by
Ascon’s designers in more depth and lead them to preimage attacks. Although
our attacks cannot be extended to the full version of the cipher, we believe that
our results will provide valuable insights into Ascon’s security.

Acknowledgements. This work was supported as part of Military Crypto Re-
search Center(UD210027XD) funded by Defense Acquisition Program Adminis-
tration(DAPA) and Agency for Defense Development(ADD).

Preimage Attacks on Reduced-Round Ascon-Xof 23

References

1. Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: Dlct: a new tool for
differential-linear cryptanalysis. In: EUROCRYPT 2019. pp. 313–342. Springer
(2019), https://doi.org/10.1007/978-3-030-17653-2_11

2. Bernstein, Daniel, J.: Second preimages for 6 (7 (8??)) rounds of keccak? Posted
on the NIST mailing list (2010), https://ehash.iaik.tugraz.at/uploads/6/65/
NIST-mailing-list_Bernstein-Daemen.txt

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Duplexing the sponge: single-
pass authenticated encryption and other applications. In: SAC 2011. pp. 320–337.
Springer (2011), https://doi.org/10.1007/978-3-642-28496-0_19

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT hash workshop. Citeseer (2007), https://csrc.nist.rip/groups/ST/
hash/documents/JoanDaemen.pdf

5. Civek, A.B., Tezcan, C.: Differential-linear attacks on permutation ciphers re-
visited: Experiments on ascon and drygascon. In: ICISSP 2022. pp. 202–209.
SCITEPRESS (2022), https://doi.org/10.5220/0010982600003120

6. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Mennink, B., Pri-
mas, R., Unterluggauer, T.: Isap. Submission as a Finalist to the NIST
Lightweight Crypto Standardization Process (2021), https://csrc.nist.gov/
Projects/lightweight-cryptography/finalists

7. Dobraunig, C., Eichlseder, M., Mendel, F.: Heuristic tool for linear cryptanaly-
sis with applications to caesar candidates. In: ASIACRYPT 2015. pp. 490–509.
Springer (2015), https://doi.org/10.1007/978-3-662-48800-3_20

8. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Cryptanalysis of as-
con. In: CT-RSA 2015. pp. 371–387. Springer (2015), https://doi.org/10.1007/
978-3-319-16715-2_20

9. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission
to Round 3 of the CAESAR competition (2016), https://competitions.cr.yp.
to/round3/asconv12.pdf

10. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Prelimi-
nary analysis of ascon-xof and ascon-hash. Technique Report (2019),
https://ascon.iaik.tugraz.at/files/Preliminary_Analysis_of_Ascon-Xof_
and_Ascon-Hash_v01.pdf

11. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: Lightweight
authenticated encryption and hashing. J. Cryptol. 34(3), 33 (2021), https://doi.
org/10.1007/s00145-021-09398-9

12. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2 submission
to nist. LWC Final round submission (2021), https://csrc.nist.gov/Projects/
lightweight-cryptography/finalists

13. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon resources (Accessed
Oct 2022), https://ascon.iaik.tugraz.at/resources.html

14. Dwivedi, A.D., Klouček, M., Morawiecki, P., Nikolic, I., Pieprzyk, J., Wöjtowicz,
S.: Sat-based cryptanalysis of authenticated ciphers from the caesar competition.
ICETE 2017 pp. 237–246 (2017), https://doi.org/10.5220/0006387302370246

15. Dworkin, M.: Sha-3 standard: Permutation-based hash and extendable-output
functions (2015), https://doi.org/10.6028/NIST.FIPS.202

16. Dworkin, M., Feldman, L., Witte, G.: Additional secure hash algorithm standards
offer new opportunities for data protection (2015), https://tsapps.nist.gov/
publication/get_pdf.cfm?pub_id=919417

24 S. Baek et al.

17. Erlacher, J., Mendel, F., Eichlseder, M.: Bounds for the security of ascon against
differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2022(1),
64–87 (2022), https://doi.org/10.46586/tosc.v2022.i1.64-87

18. Gerault, D., Peyrin, T., Tan, Q.Q.: Exploring differential-based distinguishers and
forgeries for ascon. IACR Trans. Symmetric Cryptol. 2021(3), 102–136 (2021),
https://doi.org/10.46586/tosc.v2021.i3.102-136

19. Göloğlu, F., Rijmen, V., Wang, Q.: On the division property of s-boxes. Cryptology
ePrint Archive (2016), http://eprint.iacr.org/2016/188

20. Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2 c/2 security in sponge-based au-
thenticated encryption modes. In: ASIACRYPT 2014. pp. 85–104. Springer (2014),
https://doi.org/10.1007/978-3-662-45611-8_5

21. Kelsey, J., Chang, S.j., Perlner, R.: Sha-3 derived functions:
cshake, kmac, tuplehash, and parallelhash. NIST special publi-
cation 800, 185 (2016), https://www.nist.gov/publications/
sha-3-derived-functions-cshake-kmac-tuplehash-and-parallelhash

22. Leander, G., Tezcan, C., Wiemer, F.: Searching for subspace trails and truncated
differentials 2018(1), 74–100 (2018), https://doi.org/10.13154/tosc.v2018.
i1.74-100

23. Li, H., He, L., Chen, S., Guo, J., Qiu, W.: Automatic preimage attack frame-
work on ascon using a linearize-and-guess approach. IACR Trans. Symmetric Cryp-
tol. 2023(3), 74–100 (2023), https://tosc.iacr.org/index.php/ToSC/article/
view/11185

24. Li, Y., Zhang, G., Wang, W., Wang, M.: Cryptanalysis of round-reduced ascon. Sci-
ence China Information Sciences 60(3), 1–2 (2017), https://doi.org/10.1007/
s11432-016-0283-3

25. Li, Z., Dong, X., Wang, X.: Conditional cube attack on round-reduced ascon. IACR
Trans. Symmetric Cryptol. 2017(1), 175–202 (2017), https://doi.org/10.13154/
tosc.v2017.i1.175-202

26. Liu, M., Lu, X., Lin, D.: Differential-linear cryptanalysis from an algebraic per-
spective. In: CRYPTO 2021. pp. 247–277. Springer (2021), https://doi.org/10.
1007/978-3-030-84252-9_9

27. Makarim, R.H., Rohit, R.: Towards tight differential bounds of ascon: A hybrid
usage of smt and milp. IACR Trans. Symmetric Cryptol. 2022(3), 303–340 (2022),
https://doi.org/10.46586/tosc.v2022.i3.303-340

28. NIST: Submission requirements and evaluation criteria for the lightweight
cryptography standardization process (2018), https://csrc.nist.
gov/CSRC/media/Projects/Lightweight-Cryptography/documents/
final-lwc-submission-requirements-august2018.pdf

29. Qin, L., Hua, J., Dong, X., Yan, H., Wang, X.: Meet-in-the-middle preimage at-
tacks on sponge-based hashing. In: EUROCRYPT 2023. Lecture Notes in Com-
puter Science, vol. 14007, pp. 158–188. Springer (2023), https://doi.org/10.
1007/978-3-031-30634-1_6

30. Qin, L., Zhao, B., Hua, J., Dong, X., Wang, X.: Weak-diffusion structure: Meet-in-
the-middle attacks on sponge-based hashing revisited. IACR Cryptol. ePrint Arch.
p. 518 (2023), https://eprint.iacr.org/2023/518

31. Rohit, R., Hu, K., Sarkar, S., Sun, S.: Misuse-free key-recovery and distinguishing
attacks on 7-round ascon. IACR Trans. Symmetric Cryptol. 2021(1), 130–155
(2021), https://doi.org/10.46586/tosc.v2021.i1.130-155

32. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: Application to simon,

Preimage Attacks on Reduced-Round Ascon-Xof 25

present, lblock, DES(L) and other bit-oriented block ciphers. In: ASIACRYPT
2014. Lecture Notes in Computer Science, vol. 8873, pp. 158–178. Springer (2014),
https://doi.org/10.1007/978-3-662-45611-8_9

33. Todo, Y.: Structural evaluation by generalized integral property. In: EU-
ROCRYPT 2015. pp. 287–314. Springer (2015), https://doi.org/10.1007/
978-3-662-46800-5_12

34. Weatherley, R.: Additional modes for lwc finalists technical report, version 1.0
(2021), https://rweather.github.io/lwc-finalists/lwc-modes-v1-0.pdf

35. Wiethuechter, A., Card, S.W., Moskowitz, R.: DRIP Entity Tag Authentication
Formats & Protocols for Broadcast Remote ID. Internet-Draft draft-ietf-drip-auth-
29, Internet Engineering Task Force (Feb 2023), https://datatracker.ietf.org/
doc/draft-ietf-drip-auth/29/, work in Progress

36. Yan, H., Lai, X., Wang, L., Yu, Y., Xing, Y.: New zero-sum distinguishers on full
24-round keccak-f using the division property. IET Information Security 13(5),
469–478 (2019), https://doi.org/10.1049/iet-ifs.2018.5263

37. Zong, R., Dong, X., Wang, X.: Collision attacks on round-reduced gimli-
hash/ascon-xof/ascon-hash. IACR Cryptol. ePrint Arch. p. 1115 (2019), https:
//eprint.iacr.org/2019/1115,

	Preimage Attacks on Reduced-Round Ascon-Xof

