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Abstract. The Partial Vandermonde (PV) Knapsack problem is an
algebraic variant of the low-density inhomogeneous SIS problem. The
problem has been used as a building block for various lattice-based
constructions, including signatures (ACNS’14, ACISP’18), encryptions
(DCC’15,DCC’20), and signature aggregation (Eprint’20). At Crypto’22,
Boudgoust, Gachon, and Pellet-Mary proposed a key distinguishing at-
tack on the PV Knapsack exploiting algebraic properties of the problem.
Unfortunately, their attack doesn’t offer key recovery, except for worst-
case keys.

In this paper, we propose an alternative attack on the PV Knapsack prob-
lem which provides key recovery for a much larger set of keys. Like the
Crypto’22 attack, it is based on lattice reduction and uses a dimension re-
duction technique to speed-up the underlying lattice reduction algorithm
and enhance its performance. As a side bonus, our attack transforms the
PV Knapsack problem into uSVP instances instead of SVP instances in
the Crypto’22 attack. This also helps the lattice reduction algorithm,
both from a theoretical and practical point of view.

We use our attack to re-assess the hardness of the concrete parameters
used in the literature. It appears that many contain a non-negligible
fraction of weak keys, which are easily identified and extremely suscep-
tible to our attack. For example, a fraction of 2−19 of the public keys of
a parameter set from ACISP’18 can be solved in about 30 hours on a
moderate server using off-the-shelf lattice reduction. This parameter set
was initially claimed to have a 129-bit security against key recovery at-
tack. Its security was reduced to 87-bit security using the distinguishing
attack from Crypto’22. Similarly, the ACNS’14 proposal also includes a
parameter set containing a fraction of 2−19 of weak keys; those can be
solved in about 17 hours.

1 Introduction

The PV Knapsack problem, previously called the partial Fourier recovery prob-
lem, was introduced in [HPS+14] as a new lattice-based assumption for post-
quantum cryptography. The efficiency and rich algebraic properties underly-
ing the PV Knapsack problem make it an attractive choice. As a result, the
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problem has been used as a building block for various primitives, such as en-
cryptions [HS15,BSS22], signatures [HPS+14,LZA18], and aggregatable signa-
tures [DHSS20].

Let Rq := Zq[x]/(g(x)) be a quotient polynomial ring, where g splits linearly
over Zq for some prime q. In the literature, g is commonly either xn − 1 with
prime n or xn+1 with power-of-two n. In the rest of the paper, we assume that
g corresponds to one of these choices. Denote by Ω the set of all the primitive
roots of g over Zq. Consider Ωt, a uniformly selected random subset of Ω of size
t. The PV Knapsack problem (informally) states the following:

It is hard to recover a uniform ternary f(x) ∈ Rq, given only the evaluations
of f(x) at ω ∈ Ωt when t ≈ ⌊n/2⌋.

The PV Knapsack problem also has a decisional version, which asks to dis-
tinguish between the evaluations of arbitrary f(x) and ternary f(x) at ω ∈ Ωt.

The main approach to solving the problem has been the lattice reduction
algorithms [HPS+14]. Recently, the authors of [BGP22] proposed an algebraic
method that reduces the cost of the lattice reduction for solving the decisional
problem.

The distinguishing attack of [BGP22] doesn’t lead to a key recovery attack
in general. In Section 5 of [BGP22], key recovery is only obtained for a small
number of worst-case keys. Furthermore, their paper states: We note however
that this does not fully invalidate the claim made in [LZA18], since the 128
bit-security is claimed against search attackers, and not distinguishing attackers.

This quote is the starting motivation for this work. Indeed, it might be worth-
while – from an attacker’s viewpoint – to find a search attack against the PV
Knapsack. As far as we know, there are some lattice-based assumptions where
the search problem remains intractable, even though the decision problem is
easy; one example is the FFI problem [DJ23].

2 Preliminaries

2.1 Notations

For any integer N > 1, we write ZN to denote the ring of integers modulo N
and Z∗

N to denote the multiplicative subgroup of its units. In particular, when
q is prime, Zq is the finite field with q elements. We assume that q is odd and,
in that case, we represent elements of Zq by the unique representative belonging
to the interval [−(q − 1)/2, (q − 1)/2].

We let Rq = Zq[x]/(g) denote the quotient polynomial ring of Zq[x] by g(x),
where g(x) is either xn − 1 with n a prime or xn + 1 with n a power of two.
We insist that g splits into linear factors over Zq. We denote by Ω the set of all
primitive roots of g in Zq. When n is a prime, Ω contains all roots of g except
1; when n is a power of two, Ω contains all roots of g. In both cases, for any
ω ∈ Ω and any root ω′ of g in Zq, ω

′ can be written as a power of ω, say ωiω′ . In
particular, when n is prime 1 = ω0 in Zq. Note that for a prime value of n, the
exponent iω′ can take all values in Zn. When n is a power of two, the exponent
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iω′ takes all odd values in Z2n. As a consequence, if we exclude the non-primitive
root 1, the exponents iω′ belong to Z∗

n when n is prime and Z∗
2n when n is a

power of two. To lighten notations, we use U(n) as a shorthand for Z∗
n when n

is prime and Z∗
2n when n is a power of two.

As a consequence, it is convenient to choose an arbitrary primitive root ω1

of g in Zq and write:

Ω = {ωi = ωi
1 | i ∈ U(n)}.

Remark 1. The condition that g splits in Zq implies that q = 1 mod n when n
is prime and that q = 1 mod 2n when n is a power of two.

To represent polynomial in Rq, we use the polynomial basis {1,x, . . . ,xn−1}.
Since we are working modulo g, for any polynomial f in Rq, we can interpret
f(1/x) as a polynomial. More precisely, if f(x) = f0 + f1x + · · · + fn−1x

n−1,
we define:

f(1/x) =

{
f0 + f1x

n−1 + · · ·+ fn−1x when n is prime

f0 − f1x
n−1 − · · · − fn−1x when n is a power of two

It is easy to verify that for any root ω of g, the evaluation of f(x) at ω−1

coincides with the evaluation of f(1/x) at ω, thus justifying our definition.

Since we have specified a basis for polynomials in Rq, we can identify a poly-
nomial with the vector of its coefficients in this basis. We use this identification
extensively in the descriptions of the various attacks. For any vector v (or poly-
nomial using the vector identification), we write ∥v∥ (resp. ∥v∥∞) to denote
the ℓ2 norm (resp. ℓ∞ norm) of v. We also write A = (A1|A2) to denote the
concatenation of two matrices A1 and A2, with the same number of rows.

2.2 The PV Knapsack problem

Let Ωt be a subset of t ≤ ⌊n/2⌋ distinct random elements from Ω. Let f(x) be a
polynomial in Rq whose coefficients are sampled uniformly at random from the
set {−1, 0, 1}.

Definition 1 (PV Knapsack problem). Given Rq and {(ω,f(ω)) | ω ∈ Ωt},
recover f(x).

Instead of identifying a PV Knapsack instance by Ωt, it is often simpler to
identify it by the corresponding index set St ⊂ U(n). The PV Knapsack instance
then becomes {(i,f(ωi

1) | i ∈ St} for some arbitrary primitive root ω1 of g.

Remark 2. When n is prime, we have to assume the evaluation of f at 1 is never
included, as this provides a simple distinguishing attack on the PV Knapsack
problem. This explains why we choose Ω to only contain primitive roots.
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2.3 Lattice Reduction

Any (full rank) matrix B ∈ Zn×n generates a lattice L of dimension n, which is
the set L(B) = {Bz : z ∈ Zn}. A lattice is called q-ary when it contains qZn as
a sublattice. The volume of the lattice L(B) is defined as Vol = |det(B)|.

The key computational problem involving lattices is to find the shortest non-
zero vector (SVP) in the lattice L. Minkowski’s theorem yields the following
upper bounds on the norms of the shortest non-zero vector v of any lattice of
dimension n and volume Vol:

∥v∥∞ ≤ Vol1/n and ∥v∥ ≤
√
nVol1/n.

Definition 2 (q-ary Kernel lattice). Let A ∈ Zt×n
q be any (full rank) matrix

with n > t. We define the q-ary Kernel lattice of A as

L⊥
A,q = {v ∈ Zn : Av = 0 mod q}.

If we write A = (A1|A2), where A1 ∈ Zt×t
q ,A2 ∈ Zt×n−t

q , then assuming that

A1 is invertible, L⊥
A,q has a basis(

qIt −A−1
1 A2

0 In−t

)
.

If A1 is not invertible, we can simply re-order the columns to make A start
with a t× t invertible matrix. The lattice L⊥

A,q has dimension n and volume qt.
Finding a short vector in this lattice, i.e., a short element in the kernel of A, is
usually referred to as the short integer solution (SIS) problem.

Let λi denotes the smallest radius of a closed ball containing at least i linearly
independent vectors in the lattice L. If λ2 > γλ1 for some γ ≥ 1, then the lattice
contains a γ-unique SVP (uSVP) solution.

Definition 3 (uSVPγ problem). Given a lattice L, with the promise that λ2 >
γλ1 for γ ≥ 1, the uSVPγ problem asks to find v such that ∥v∥ = λ1. The γ is
referred to as the uniqueness gap of the uSVP problem.

In order to find short solutions in a lattice, we rely on the lattice reduc-
tion algorithms. LLL [LLL82] is a polynomial time algorithm, but only gives
an exponential approximation solution. For cryptanalysis, it is often required
for better solutions, which is done using stronger (and so slower) lattice reduc-
tion algorithms. For our purpose, we use the implementation of the Blockwise
Korkine-Zolotarev (BKZ) algorithm [SE91] given in the fplll software [The23].

According to the analysis of [GN08], the uSVP problem, with uniqueness
gap γ in dimension n, can be solved using a lattice reduction algorithm that
achieves a root Hermite factor close to δ = γ1/n. In particular, when γ is
large enough, the value of δ becomes achievable with practical lattice reduc-
tion [ADPS16,AGVW17]. With high enough values of δ, the uSVP problem be-
comes efficiently solvable.
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3 Previous Attacks

In this section, we briefly describe the attacks that were considered in prior
works. Based on the approach of the attacks, we can characterise them as primal
and dual attacks in the context of the PV Knapsack problem.

3.1 Direct Primal Attack [HPS+14]

The problem can be expressed as a structured variant of the low-density inho-
mogeneous SIS (or LWE) problem by expressing the evaluation f(ω) in terms of
powers of ω, which is stated below.

Given a (partial) Vandermonde matrix V ∈ Zt×n
q (with rows generated by

powers of ω for ω ∈ Ωt) and b ∈ Zt
q (with elements f(ω)), find f with ∥f∥∞ ≤ 1

such that
V f = b mod q, (1)

The authors proposed the strategy of finding the uSVP solution (following Kan-
nan’s embedding [LSL13]) on the kernel lattice

L⊥
V ′,q = {v ∈ Zn+1 : V ′v = 0 mod q}

where V ′ = (V |b). Note that, (f | − 1)T is a vector in the lattice L⊥
V ′q, which

is a solution to the uSVP problem1. In practice, this direct attack is used as a
baseline to choose the parameters, with the understanding that they should be
selected to ensure that finding the uSVP solution remains intractable both on
classical and quantum computers.

3.2 Dual Attack [BGP22]

Here, we give a simplified version of the attack proposed in [BGP22]. For this
purpose, we need to restate the PV Knapsack problem as an instance of the
Bounded Distance Decoding (BDD) problem in the following manner. Let z ∈ Zn

be any solution to the system of linear equations satisfying V z = b mod q, then
the PV Knapsack problem asks to find u ∈ L⊥

V ,q (i.e., V u = 0 mod q) such that
∥u−z∥∞ ≤ 1, i.e., the vector u−z = f . Algebraically, the element u(x) belongs
to the ideal IΩt of Rq, where IΩt =

∏
ω∈Ωt

(x−ω). So, the PV Knapsack problem
can be considered a BDD problem in the ideal IΩt

.
Let u′(x) be an element in the ideal IΩ\Ωt

=
∏

ω′∈Ω\Ωt
(x−ω′) with “some-

what” small norm.2 Then the product u′(x)z(x) = u′(x)f(x) in Rq is expected

1 The ternary choice of f makes the vector (f | − 1)T extremely short in the lattice
L⊥

V ′,q. As a consequence, with high probability, it is significantly shorter than any
vector that should normally occur in a lattice with this dimension and volume, which
justifies the uniqueness assumption on the shortest vector.

2 The elements of the ideal IΩ\Ωt correspond to the vectors of the q-ary Kernel lattice
generated by the Vandermonde matrix with rows powers of ω′ for ω′ ∈ Ω \Ωt. Note
that the lattice doesn’t contain any unusually short vector, so we can expect the
shortest vector to have a norm predicted by Minkowski’s theorem.
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to be small3 (with coefficients < q/4) for a PV Knapsack instance – a highly un-
likely event for a uniform instance. This gives a key distinguishing attack. The
cost of the dual attack depends on finding the small u′(x), which can be improved
using the algebraic methods.

Let Ω2t1 be the largest subset of Ωt that remains invariant under the com-
putation of inverses. In other words, Ω2t1 contains t1 pairs (ω, ω−1) with both
ω and ω−1 in Ωt. This set Ω2t1 is easily constructed by removing any element
of Ωt whose inverse is not in Ωt. Thus, 2t1 ≤ t and t1 ≤ ⌊t/2⌋. By our choice
of g, all the roots in Ω can be paired with their inverse. As a consequence, the
complement set Ω \Ω2t1 is also made of such pairs.

This symmetry can be leveraged to find a small element in the ideal IΩ\Ω2t1
,

by looking for a small polynomial u′(x) ∈ IΩ\Ω2t1
with the extra requirement

that:
for all ω ∈ Ω : u′(ω) = u′(ω−1).

This is easily achieved by creating u′(x) using a basis of halved dimension ob-
tained from the symmetrisation of {1,x, . . . ,x⌊n/2⌋}. For such a polynomial,
when x is a root, so is 1/x. Thus we can guarantee that u′ vanishes on Ω2t1

using only t1 linear conditions. As a consequence, a small u′(x) can be found
using lattice reduction in a (Kernel) lattice of reduced dimension.

Furthermore, if t1 is not too small, the PV Knapsack problem still reduces
to a BDD problem in the ideal IΩ2t1

. The condition of t1 not being too small
comes from considering the volume of the lattice, which decreases with t1 and
needs to be large enough for the reduction to BDD work. When t1 is sufficient,
considering the product u′(x)z(x) again gives a distinguishing attack. The au-
thors of [BGP22] (experimentally) show that this occurs with non-negligible
probability and thus improves the cost of solving the decisional PV Knapsack
problem.

As an extension of this attack, and for some choices of n, one can also aim at
exploiting higher order symmetries to reduce to a lattice problem of even smaller
dimension. Unfortunately, in general, this reduces the number of evaluations at
the roots after symmetrisation too much. So the reduction to BDD no longer
works. However, if Ωt can be adversarially chosen, we obtain a degraded version
of the PV Knapsack problem. This is called a worst-case Ωt in [BGP22]. In this
worst-case, Ωt contains a large subset Ωrt0 , which remains invariant under a
symmetry of order r (instead of 2). 4 With such a forced symmetry inside, this
allows the PV Knapsack to remain a BDD instance in the ideal IΩrt0

.
Like before, the set Ω \Ωrt0 also remains invariant under the transformation,

so the problem of finding a short solution u′ in the ideal IΩ/Ωrt0
can be reduced

3 Note that, the product uu′ = 0 in Rq. For the prime n case, we need to include
the factor (x − 1) in the product u′(x)z(x) to make uu′ = 0 in Rq. Furthermore,
the choice of g (sparse with small coefficient) leads to O(n) coefficient growth of the
product u′(x)f(x).

4 For example, the power of two n allows the use of a subgroup of maximal order
r = n/2, while the prime n of the form n − 1 = 0 mod 3 from the parameters
of [HPS+14] allows the use of a subgroup of order up to r = (n− 1)/3.
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to a lattice of (very) small dimension. Since finding an SVP solution is known
in such a small dimension, e.g., using LLL lattice reduction algorithm, then,
(hopefully) the product u′(x)z(x) ∈ Rq has all coefficients < q/2 in absolute
value (i.e., no wrap-around modulo q happens for the product polynomial), which
also gives a key recovery attack.

Because of this worst-case, it appears that the uniformly random choice of Ωt

makes more sense in the definition of the PV Knapsack problem. This approach
is used in [BSS22,LZA18], while [HPS+14] doesn’t explicitly mention the choice
of Ωt. In the rest of the paper, we concentrate on the key recovery attack for a
uniformly random Ωt.

4 Our Contribution

Our main goal is to find an alternative dimension reduction strategy work-
ing with the primal attack instead of the dual attack. Indeed, the primal at-
tack corresponds to a uSVP instance, which is believed to be comparatively
easier to solve than an SVP instance, both in theory [LSL13], and in prac-
tice [GN08,ADPS16,AGVW17].

We achieve this goal by proposing a new dimension reduction primal attack
on the PV Knapsack problem. For this, we exploit the symmetries of the ring
Rq in a new way. This allows us to solve several PV Knapsack instances from
the literature in a reasonable time, faster than what was previously thought to
be possible.

As in [BGP22], we consider the largest subset Ω2t1 of Ωt that remains invari-
ant under the computation of inverses. For any ω in Ω2t1 , we know the evaluation
of f both at ω and ω−1. Hence we can compute f(ω) ± f(ω−1). This gives t1
distinct evaluations of the two polynomials f(x)± f(1/x) at ω ∈ Ω2t1 . We aim
to recover f(x)± f(1/x) as uSVP solutions from lattices of smaller dimensions
and do the linear algebra to recover the secret f(x).

Let ψ+(x) = f(x) + f(1/x) and ψ−(x) = f(x) − f(1/x). The polynomi-
als ψ+(x), and ψ−(x) can be generated by a basis of order n+ = ⌈n/2⌉ and
n− = ⌊n/2⌋, respectively. These bases are easy to compute from the polynomial
basis. Also, if f(x) has coefficients in the set {−1, 0, 1}, ψ±(x) has coefficients
in the set {−2,−1, 0, 1, 2}. Then the PV Knapsack problem reduces to two in-
dependent problems of finding ψ±(x) from t1 evaluations. This can be achieved
by recovering uSVP solutions in lattices of dimensions n±.

There are a few important observations from the above attack.

1. The cost of recovering ψ± as a uSVP solution (using lattice reduction al-
gorithm) depends on the volume of the lattice in reduced dimension. The
volume is proportional to the number of distinct evaluations t1, which makes
the problem easier as t1 increases. When Ωt is randomly chosen, the value
of t1 is randomised. If the system is used by many users, each one with its
own set Ωt , some of them will pick weak keys, i.e., weak sets Ωt, which are
easier to attack because of their larger value of t1. To analyse our attack,
two ingredients are needed: an attack that works when t1 is large enough
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and a probability analysis of this weak-key event.

2. Note that, when a PV Knapsack instance is given, an adversary can compute
t1 easily. This only requires reading Ωt to detect pairs of the form (ω, ω−1).
As a consequence, the adversary can focus on the keys that are easy enough
to attack with lattice techniques. This can be done, for example, by using
LWE estimators [APS15,DDGR20] before starting the attack.

3. Since the two uSVP problems for finding ψ± are independent, the corre-
sponding lattice reductions can be performed in parallel. Hence, the running
time of the attack is directly obtained by estimating the cost of the largest
of the two uSVP instances.

4. We also study symmetries of order > 2 and their application to a direct at-
tack to solve PV Knapsack. Unfortunately, for random choices of Ωt, it turns
out that the symmetry of order 2 is optimal for the parameters proposed in
the literature.

In Section 5, we formally describe the attack sketched above. In Section 6,
we provide experimental results that indicate that several proposed instances
of the PV Knapsack problem can be solved in practice. In Section 7, we give a
generalized version of the attack using symmetries of higher order. We hope that
despite their inefficiency for the random case, their analysis can be of indepen-
dent interest.

5 Proposed Attack

In this section, we propose a new key recovery attack on the PV Knapsack prob-
lem. The key idea is to use symmetry in a new way, thanks to the following
lemma.

Lemma 1. Let f(x) be any polynomial in Rq, then ψ±(x) = f(x) ± f(1/x)
can be generated by a basis of order n±, where n+ = ⌈n/2⌉ and n− = ⌊n/2⌋.
Moreover, if the coefficients of f(x) are sampled uniformly at random from the
set {−1, 0, 1}, then the expected squared-norm of ψ±(x) is upper-bounded by
4n±/3 in the new basis representation.

Proof. The mapping

xi → xi + 1/xi for 0 ≤ i ≤ ⌊n/2⌋

is well-defined. Hence, by linearity, the polynomial ψ+(x) = f(x) + f(1/x)
can be generated by a basis of order n+, as required. In particular, for prime n,
since 1/x = xn−1, ψ+(x) is generated by the basis

{2, (x+ xn−1), . . . , (x⌊n/2⌋ + x⌊n/2⌋+1)}
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For power of two n, since 1/x = −xn−1, ψ+(x) is generated by the basis

{2, (x− xn−1), . . . , (x(n/2−1) − x(n/2+1)}

Similarly, the mapping

xi → xi − 1/xi for 1 ≤ i ≤ ⌊n/2⌋

is well-defined. Hence, by linearity, the polynomial ψ−(x) = f(x)− f(1/x) can
be generated by a basis of order n−, as required. In particular, for prime n,
ψ−(x) is generated by the basis

{(x− xn−1), . . . , (x⌊n/2⌋ − x⌊n/2⌋+1)}

For power of two n, ψ−(x) is generated by the basis

{(x+ xn−1), . . . , (xn/2−1 + xn/2+1), 2xn/2}

If individual coefficients of f are uniformly sampled from {−1, 0, 1}, then
sums of symmetric coefficients fi + fn−i are in {−2,−1, 0, 1, 2} and follow the
probability distribution given in Table 1.

fi + fn−i 0 1 −1 2 −2

Prob. 3/9 2/9 2/9 1/9 1/9

Table 1: Probability distribution of fi + fn−i

Now, if f(x) is sampled uniformly with ternary coefficients, most coefficients
of ψ±(x) follow the distribution of fi + fn−i. The exceptions being the special
coefficients associated to 2 and 2xn/2 which follow the initial uniform distribution
in {−1, 0, 1} and have a lower expectation of their squares. Hence, by linearity of
expectations, the expected squared-norm of ψ± in the new basis representation
is upper-bounded by 4n±/3.

This allows us to design a new low-density inhomogeneous SIS problem cor-
responding to the evaluation of ψ± at t1 values. In order to do this, let us create
a matrix W± with t1 rows and n± columns, whose entries are the evaluations
of each of the n± monomials at an arbitrary choice of t1 representatives for
the pairs (ω, ω−1) that occur in Ω2t1 . We also create a vector b± whose coeffi-
cients are the known evaluations of ψ± at each of the representative. With these
notations, we look for a solution of:

W±ψ± = b± mod q. (2)

Following the same strategy as in the direct primal attack, we search for a short
vector in the kernel lattice:

L⊥
W ′

±,q = {v ∈ Zn+1 :W ′
±v = 0 mod q}

whereW ′
± = (W±|b±). As before, (ψ±|−1)T is a very short vector in the lattice

and we expect that it yields a uSVP solution.
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5.1 Analysis of the new attack

As we already mentioned, to analyse the attack, we need two ingredients. First,
given t1, the number of pairs in Ωt, we need to estimate the cost of success-
fully conducting the uSVP computation. Second, for a random set Ωt, we need
to compute the probability of occurrence of a given value of t1. Since from a
public key, t1 can be computed extremely efficiently, this probability directly
corresponds to the fraction of users that can be attacked with the corresponding
uSVP problem.

Cost of the uSVP resolution. Thanks to the analysis of [GN08], we know
that the cost of solving a uSVP problem mostly depends on the root Hermite
factor that can be computed from the uniqueness gap γ. We recall that this
factor is δ = γ1/n.

In our attack, we do not really have a promise problem. However, since
the lattices we consider come from a cryptographic problem, we can follow a
standard heuristic approach and assume that they behave as randomly as it
can. More precisely, both for the direct primal attack of [HPS+14] and for our
new attack with dimension reduction, we consider a lattice in which a vector of
short length is guaranteed. The heuristic we use is to consider that other (linearly
independent) vectors in the lattice have a length which can be estimated from
Minkowski’s bound. In other words, given its volume V and dimension d, we
estimate the value of λ2 to be

√
d V 1/d. To estimate λ1, we use the square-

root of the expected squared-norm. Putting the two estimations together, it just
remains to compute γ = λ2/λ1 and take its d-th root to obtain the corresponding
δ.

Recall, in the (full) primal attack, the PV Knapsack gives a uSVP instance in
dimension n+1, and volume qt. We also have a short vector of expected squared-
norm 2n/3+1. As a consequence, the corresponding root Hermite factor can be
estimated by:

δfull =

(√
n+ 1 qt/(n+1)√

2n/3 + 1

)1/(n+1)

.

Similarly, in our attack, we get two lattices of dimensions n±+1 and volume
qt1 . In that case, the expected squared-norm of the shortest vector is 4n±/3+1.
Thus, we get an estimation of:

δ±new =

(√
n± + 1 qt1/(n±+1)√

4n±/3 + 1

)1/(n±+1)

.

Following [GN08], we need to compare δfull and δ±new to know when the new
attack beats the full primal attack. To do the comparison, we slightly simplify
the expression, replacing n± by n/2 and any instance of n+1 by n or n±+1 by
n±. After the simplification, we expect the new attack to become faster as soon
as: (√

3/2qt/n
)1/n

<
(√

3/4q2t1/n
)2/n

.
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Ignoring the small constants, this happens when 4t1 > t.

This estimation is somewhat pessimistic. Indeed, the dimension of the lat-
tice also counts when using lattice reduction, so even when the root Hermite
factors are equal, the newer lattice should be easier to reduce due to its smaller
dimension.

Distribution of t1. To study the probability distribution of t1, we perform
a standard combinatorial analysis. The total number of sets Ωt of t elements
chosen from the primitive roots is:(

2 ⌊n/2⌋
t

)
.

When t1 is a fixed integer in [0, ⌊t/2⌋], to choose a set of size t with exactly
t1 pairs, we need to take t1 pairs from the ⌊n/2⌋, followed by t − 2t1 unpaired
elements in the remaining pairs. Thus, the total number of possibilities is:(

⌊n/2⌋
t1

)(
⌊n/2⌋ − t1
t− 2t1

)
2t−2t1 .

As a consequence, the probability of getting t1 for a random Ωt is:

π1(t1) =

(⌊n/2⌋
t1

)(⌊n/2⌋−t1
t−2t1

)
2t−2t1(

2 ⌊n/2⌋
t

) .

When t = n/2, the distribution of the values of t1 is strongly concentrated
around t/4, which is precisely the tipping point between the direct primal attack
and our new attack. This is illustrated by Figure 1. However, we see that for
this typical case, t1 can deviate from t/4. This explains the existence of weak
instances vulnerable to our attack.

Fig. 1: π1(t1) for n = 512, t = 256
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6 Experimental Results

In this section, we analyse the effect of our attack on the concrete hardness of the
problem used in the literature. We ran all our experiments on an Intel Xeon CPU
E5-2683 v4 @ 2.10GHz 1200 MHz processor. The attack only depends on the
value of t1, and not on the choice of elements in Ω2t1 . So to perform experiments
on our attack, we first fix a value of t1. Then we sample a uniform primitive
root ω1 of g and characterise Ω2t1 by a random index set St1 ⊂ U(n) of size
t1 (distinct up to negation). The lattice reduction algorithms are performed in
parallel with fplll software [The23].

The running time of a BKZ lattice reduction algorithm is exponential on
the blocksize. In [CN11], the authors experimentally observed that most of the
progress is made in the initial rounds of the BKZ reductions for the (relatively)
large blocksize. In our experiments, the running time is the time taken by the
lattice reduction algorithm to discover the secret.

Since it is not feasible to run lattice reductions for every parameter, following
the common practice, we use LWE estimators [APS15,DDGR20] to predict the
running time of several instances. The LWE estimators heuristically predict the
lattice reduction strength (which is characterised by the block size of the BKZ
algorithm) required to find the secret in the primal attack.

HPSSW1 HPSSW2 HPSSW3 HPSSW4

n 433 577 769 1153
t 200 280 386 600
q 775937 743177 1047379 968521
λ << 62 << 80 76 ≥ 130
λ∗ 47 52 63 87

Table 2: Parameters: PASSRS [HPS+14]

6.1 PASSRS Signature from [HPS+14]

In this paper, the authors proposed PASSRS signature scheme following the Fiat-
Shamir with aborts strategy on the hardness of the PV Knapsack problem. The
scheme is defined for the prime n case of the problem. The proposed parameters
are given in Table 2.

The λ in the Table is the claimed bit security in the proposal. The λ∗ is
the re-evaluated bit security in the direct primal attack using the LWE estima-
tor [APS15],5 except for HPSSW1.

5 As asked in [APS15], we include the commit value used in this paper, which is
fd4a460.
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Direct primal attack: λ∗ = 52, BKZ block size 73

t1 Prob. Running time (in hrs) BKZ block size Bits operation

82 2−11 115 65 250

84 2−13 54 60 249

86 2−16 51 60 248

88 2−19 17 60 246

90 2−23 6 58 245

Table 3: Experimental results of our attack on the weak keys of HPSSW2.

Direct primal attack: λ∗ = 63, BKZ block size 112

t1 Prob. BKZ block size Bits operation

110 2−8 112 261

113 2−12 106 260

115 2−13 103 259

117 2−16 100 258

120 2−19 95 256

125 2−27 87 254

127 2−32 84 253

130 2−37 80 252

Table 4: Predicted cost of our attack on the weak keys of HPSSW3 using the
LWE estimator [APS15].

For HPSSW1, the bit security is achieved experimentally; we recovered the
secret within 25 hours (247-bits operation) using BKZ block size 55. For this
reason, we have excluded it in our attack analysis.

We ran experiments of our attack on the HPSSW2 weak keys. The experi-
mental results are given in Table 3. For the other parameters, we use the LWE
estimator from [APS15], the details are given in Table 4 and Table 5.

Direct primal attack: λ∗ = 87, BKZ block size 200

t1 Prob. BKZ block size Bits operation

167 2−6 196 285

170 2−7 191 283

172 2−8 188 282

177 2−12 180 280

182 2−17 172 278

187 2−23 165 276

192 2−30 158 274

198 2−39 151 272

Table 5: Predicted cost of our attack on the weak keys of HPSSW4 using the
LWE estimator [APS15].
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LZA1 LZA2

n 512 1024
t 256 512
q 216 + 1 216 + 1
λ 129 198
λ∗ 54 99

Table 6: Parameters: Signature scheme [LZA18]

6.2 Signature scheme from [LZA18]

In this paper, the authors proposed a signature scheme on the hardness of the PV
Knapsack problem following the PASSRS signature scheme, but for the power-of-
two n case. The proposed parameters are given in Table 6. The λ∗ is computed
using the LWE estimator [APS15].

Remark 3. Because of the huge difference between λ and λ∗, it is important to
look for the source of the discrepancy. The best explanation we found is that
the analysis in [LZA18] apparently considers the dimension of the lattice in the
direct primal attack as n+ t+ 1 (Section 4 [LZA18]), instead of n+ 1.

We ran experiments of our attack on the LZA1 weak keys. The experimental
results are given Table 7. For LZA2, we use the LWE estimator from [APS15],
the details are given in Table 8.

Direct primal attack: λ∗ = 54, BKZ block size 83

t1 Prob. Running time (in hrs) BKZ block size Bits operation

80 2−15 117 70 250

83 2−19 30 60 248

85 2−23 9.5 60 246

88 2−30 8 60 245

90 2−34 7.5 57 245

Table 7: Experimental results of our attack on the weak keys of LZA1.

6.3 PASSEncrypt, PVRegevEncrypt schemes from [BSS22]

In this paper, the authors proposed PASSEncrypt, PVRegevEncrypt encryption
schemes based on the hardness of the PV Knapsack problem. The schemes are
defined for the power-of-two n case of the problem. While PASSEncrypt is a
modified version of the encryption scheme proposed in [HS15], PVRegevEncrypt
is a (partial) Vandermonde variant of the Regev-style encryption scheme. The
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Direct primal attack: λ∗ = 99, BKZ block size 243

t1 Prob. BKZ block size Bits operation

142 2−8 237 297

146 2−11 233 294

148 2−13 228 293

151 2−15 222 291

154 2−19 216 290

157 2−23 210 288

163 2−31 199 285

166 2−37 194 284

Table 8: Predicted cost of our attack on the weak keys of LZA2 using the LWE
estimator [APS15].

BSS1 BSS2

n 1024 2048
t 512 1024
q 12289 12289
λQ = λ∗

Q 79 188

Table 9: Parameters: PASSEncrypt, PVRegevEncrypt [BSS22]

proposed parameters are given in Table 9.

The concrete hardness of the parameters is computed using the LWE Leaky
estimator [DDGR20]. The BKZ algorithm with block size β uses an SVP oracle
in dimension β; the running time is evaluated using the core SVP hardness,
which is only the cost of one call to an SVP oracle in dimension β. They further
considered one SVP call cost 20.265β using a quantum algorithm. We also used
the same estimation model for analysing the hardness of the weak keys. The
details are given in Table 10 and Table 11.

7 Symmetries of higher order

In this section, we illustrate a generalized version of our attack to symmetries
of higher order by going to order 3. It is straightforward to go to other orders.
The case of order 3 naturally arises from the concrete parameters of [HPS+14].
Indeed, they use a prime n satisfying n − 1 = 0 mod 3 to do the fast Fourier
transformation.

Lemma 2. Let n be a prime satisfying n−1 = 0 mod 3, and let θ be an element
of order 3 in U(n), i.e., θ3 = 1 in U(n). For any polynomial f(x) ∈ Rq =

Zq[x]/(x
n − 1), ψ1(x) = f(x) + f(xθ) + f(xθ2

) can be generated by a basis of
order nθ = ⌈n/3⌉. Moreover, if the coefficients of f(x) are sampled uniformly
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Direct primal attack: λQ = λ∗
Q = 79, BKZ block size 298

t1 Prob. BKZ block size Quantum core SVP cost

144 2−9 290 277

148 2−13 280 274

150 2−14 276 273

153 2−18 269 271

155 2−20 264 270

158 2−24 258 268

162 2−30 250 266

165 2−35 244 264

Table 10: Predicted cost of our attack on the weak keys of BSS1 using the LWE
Leaky estimator [DDGR20].

Direct primal attack: λQ = λ∗
Q = 188, BKZ block size 710

t1 Prob. BKZ block size Quantum core SVP cost

266 2−5 692 2183

270 2−6 682 2180

276 2−8 668 2177

282 2−12 653 2173

288 2−15 640 2169

296 2−22 622 2164

300 2−26 614 2162

304 2−30 605 2160

308 2−35 597 2158

Table 11: Predicted cost of our attack on the weak keys of BSS2 using the LWE
Leaky estimator [DDGR20].

at random from the set {−1, 0, 1}, then the expected squared-norm of ψ1(x) is
upper-bounded by 2nθ in the new basis representation.

Proof. Let a be any primitive element of the group U(n) (i.e., a generator of
U(n)). Note that there are ϕ(ϕ(n)) many such elements, where ϕ(.) is Euler
phi-function; we can pick any of those. Let k = (n − 1)/3 and θ = ak ∈ U(n).
Then θ is an element of order 3.

Note that the mapping

xai

→ xai

+ xaiθ + xaiθ2

for 0 ≤ i ≤ k − 1

is well-defined, since U(n) is a disjoint union of:

{ai | 0 ≤ i ≤ k − 1}, {aiθ | 0 ≤ i ≤ k − 1}, and {aiθ2 | 0 ≤ i ≤ k − 1}.

Hence, by linearity, the polynomial ψ1(x) = f(x)+f(x
θ)+f(xθ2

) is gener-

ated by the basis {3,xai

+ xaiθ + xaiθ2} for 0 ≤ i ≤ k − 1 of order nθ = 1 + k,
as claimed.
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If individual coefficients of f are uniformly sampled from {−1, 0, 1}, then
sums of symmetric coefficients fai + faiθ + faiθ2 are in {−3,−2,−1, 0, 1, 2, 3}
and follow the probability distribution given in Table 12. So the coefficients of
ψ1(x) follow the distribution of fai+faiθ+faiθ2 , except for the special coefficient
associated to 3, which has a lower expectation of the square. Hence, by linearity
of expectations, the expected squared-norm of ψ1 in the new basis representation
is upper-bounded by 2nθ.

fai + faiθ + faiθ2 0 1 −1 2 −2 3 −3

Prob. 7/27 6/27 6/27 3/27 3/27 1/27 1/27

Table 12: Probability distribution of fai + faiθ + faiθ2

However, this only gives us one polynomial ψ1 in reduced dimension, which
is essentially the equivalent of ψ+ in the order 2 attack. We cannot directly
construct an equivalent of ψ−, so we use a different approach to get two other
polynomials in reduced dimension.

Let us define f2(x) = xf(x), f3(x) = x
2f(x), and ψ2(x) = f2(x)+f2(x

θ)+

f2(x
θ2

), ψ3(x) = f3(x) + f3(x
θ) + f3(x

θ2

). Then, if the coefficients of f(x)
are sampled uniformly at random from the ternary set, each ψi has an expected
squared-norm bounded by 2nθ in the new basis representation. Indeed, the choice
of g makes the coefficients of f , f2, and f3 only different shifts in the polynomial
basis representation. As a result, by linearity and from the distribution of the
sums of symmetric coefficients, each ψi provides the same expected squared-
norm in the new basis representation.

For the PV Knapsack problem, let Ω3t2 is the largest subset of Ωt that
remains invariant under the transformation of θ. In other words, Ω3t2 contains

t2 triplets (ω, ωθ, ωθ2

) with all ω, ωθ, and ωθ2

in Ωt, where t2 ≤ ⌊t/3⌋. For
any ω in Ω3t2 , we know the evaluations of f at ω, ωθ, and ωθ2

. Hence we can
compute t2 distinct evaluations of each of the polynomials ψi(x) at ω ∈ Ω3t2 .

This follows by writing ψ2(x) = xf(x) + xθf(xθ) + xθ2

f(xθ2

) and ψ3(x) =

x2f(x) + x2θf(xθ) + x2θ2

f(xθ2

).
This also allows to design a low-density inhomogeneous SIS problems to solve

PV Knapsack problem. We create a matrix Wθ with t2 rows and nθ columns,
whose entries are the evaluations of each of the nθ monomials at an arbitrary
choice of t2 representatives for the triplets in Ω3t2 . We create a vector bi whose
coefficients are the known evaluations of ψi at each representative. We look for
a solution of:

Wθψi = bi mod q. (3)

Like before, we search for a short vector in the Kernel lattice

L⊥
W ′

i ,q
= {v ∈ Zn+1 :W ′

iv = 0 mod q}
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where W ′
i = (Wθ|bi), and we expect (ψi| − 1)T yields a uSVP solution. The

knowledge of each ψi gives nθ (independent) linear equations of the (unknown)
coefficients of f(x). So by doing linear algebra, we recover f(x).

Distribution of t2. The total number of sets Ωt of t elements chosen from the
primitive roots is: (

3 ⌊n/3⌋
t

)
.

When t2 is a fixed integer in [0, ⌊t/3⌋], to choose a set of size t with exactly
t2 triplets, we need to take t2 triplets from the set of ⌊n/3⌋ triplets, followed
by t − 3t2 non-triplets from the remaining triplets. Now, a non-triplet element
can come as a combination of both pair and unpair. Thus, the total number of
possibilities is:(

⌊n/3⌋
t2

) s∑
i=0

(
⌊n/3⌋ − t2

i

)(
⌊n/3⌋ − t2 − i

t− 3t2 − 2i

)
3t−3t2−i.

where s = min{⌊(t− 3t2)/2⌋, ⌊n/3⌋ − t2}. So the probability of getting t2 for
a random Ωt is:

π2(t2) =

(⌊n/3⌋
t2

)∑s
i=0

(⌊n/3⌋−t2
i

)(⌊n/3⌋−t2−i
t−3t2−2i

)
3t−3t2−i(

3 ⌊n/3⌋
t

) .

Comparison with symmetries of order 2. We first would like to note that
the worst-case keys, which are fully symmetric of higher order, clearly outper-
forms the order 2 symmetry attack. This is even clearer if one adversarially
selects a key with symmetry of order 3 but no symmetry of order 2.

We keep this in mind; we now aim to compare the higher order symmetry
with the order 2 symmetry for randomly selected keys. Let us start by comparing
concrete examples of the attacks with symmetries of order 2 and 3.

For HPSSW2, when the value of t2 = 42, we have π2(t2) = 2−26. In this case,
we recovered the secret in 111 hours (249-bits operation) using BKZ block size
68. With π1(t1) = 2−26, we get the value of t1 = 92. In this case, we recovered the
secret in 6.5 hours (245-bits operation) using BKZ block size 58. Unfortunately,
we never recovered the secret for a smaller value of t2 running lattice reductions
for 7 days.

Similarly, we can do a comparison for HPSSW3, HPSSW4 by using the LWE
estimator [APS15], it is shown in Figure 2.

On these three examples, it is clear that the order 2 attack performs better
than the order 3 version. To understand why, let us consider a variant of the
PV Knapsack problem, where the number of evaluation points t is close to p n,
instead of n/2. Here p is an element in (0, 1).

In that case, the direct attack involves a lattice of dimension n+1 and volume
qp n. For the order 2 attack, we estimate the average of pairs to be p2 n/2. As
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Fig. 2: Comparison: Predicted bits operation vs πi(ti)
−1 (in log2 scale) for the

weak keys of HPSSW3 and HPSSW4.

a consequence, the attack involves a lattice of dimension ⌈n/2⌉+ 1 and volume

qp
2 n/2. For the order 3, we estimate the average of triplets to be p3 n/3 and get

an attack involving dimension ⌈n/3⌉+1 and volume qp
3 n/3. Ignoring constants,

we can compare the root Hermite factors of the three attacks by looking at the
three numbers:

p, 2 p2, and 3 p3.

The case p = 1/2 that we previously considered is the crossover point between
the direct attack and the order 2 symmetry attack. Similarly, the crossover point
between the direct attack and the order 3 symmetry attack is p = 1/

√
3 ≈ 0.58.

Finally, the crossover point between the order 2 and order 3 attacks is p = 2/3 ≈
0.67.

As a consequence, the higher symmetries only become worthwhile for random
keys when the number of evaluation points in the PV Knapsack problem is much
larger than what appears in practical parameters. We also see that by reducing
the number of evaluation points below n/2, one can circumvent the gain provided
by our main attack with symmetries of order 2.

Yet, since checking for symmetries is really fast, it cannot hurt a dedicated
adversary to check their existence before launching the lattice reduction part of
the attack.
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