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Abstract. The Alternating Trilinear Form Equivalence (ATFE) prob-
lem was recently used by Tang et al. as a hardness assumption in the
design of a Fiat-Shamir digital signature scheme ALTEQ. The scheme
was submitted to the additional round for digital signatures of the NIST
standardization process for post-quantum cryptography.

ATFE is a hard equivalence problem known to be in the class of equiv-
alence problems that includes, for instance, the Tensor Isomorphism
(TI), Quadratic Maps Linear Equivalence (QMLE) and the Matrix Code
Equivalence (MCE) problems. Due to the increased cryptographic inter-
est, the understanding of its practical hardness has also increased in the
last couple of years. Currently, there are several combinatorial and al-
gebraic algorithms for solving it, the best of which is a graph-theoretic
algorithm that also includes an algebraic subroutine.

In this paper, we take a purely algebraic approach to the ATFE prob-
lem, but we use a coding theory perspective to model the problem. This
modelling was introduced earlier for the MCE problem. Using it, we im-
prove the cost of algebraic attacks against ATFE compared to previously
known ones.

Taking into account the algebraic structure of alternating trilinear forms,
we show that the obtained system has less variables but also less equa-
tions than for MCE and gives rise to structural degree-3 syzygies. Under
the assumption that outside of these syzygies the system behaves semi-
regularly, we provide a concrete, non-asymptotic complexity estimate of
the performance of our algebraic attack. Our results show that the com-
plexity of our attack is below the estimated security levels of ALTEQ by
more than 20 bits for NIST level I (and more for the others), thus the
scheme requires reparametrization for all three NIST security levels.
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1 Introduction

NIST’s announcement of reopening the call for post-quantum digital signature
proposals specifies the need for shorter signatures whose security is based on
problems outside the realm of structured lattices. One family of problems that
has recently been brought to focus by the quest for alternative signatures is the
family of equivalence problems. The reason behind the rising interest in these
problems is that they typically can be used to construct a cryptographic group
action. Once we have a cryptographic group action, the vectorization problem
is used to build a Sigma protocol that, through the Fiat-Shamir transform, can
be transformed into a digital signature scheme. For instance, if we take the set
comprised of k-tuples of multivariate polynomials together with the group of
isomorphisms acting on this set, then we obtain the cryptographic group action
underlying the IP signature scheme proposed by Patarin [Pat96]. The original
proposition of this scheme is based on the inhomogenous quadratic variant of the
isomorphism of polynomials (IP) problem, that is, the case where the polynomials
have quadratic, linear and constant terms. This subclass of IP turned out to be
easy to solve in practice and hence the IP signature scheme is considered to
be broken [FP06]. However, this would not be case if it were instantiated with
another subclass of IP, such as the homogenous quadratic variant, also referred
to as the Quadratic Maps Linear Equivalence (QMLE) problem.

Recently, as a result of several optimization techniques [DFG19, BKP20,
BMPS20, BBPS21] Patarin’s construction became attractive again. It was re-
vived through two new signature schemes based on the hardness of two prob-
lems closely related to QMLE. A signature scheme based on the hardness of
the alternating trilinear form equivalence (ATFE) problem was introduced at
Eurocrypt 2022 [TDJ+22], whereas matrix code equivalence (MCE) was used
in the more recently proposed construction called MEDS [CNP+22]. Both of
these schemes, the first under the name of ALTEQ, were latter submitted to the
additional round for digital signatures of the NIST standardization process for
post-quantum cryptography [BDN+23, CNP+23].

Because of this attention, the understanding of the practical hardness of both
ATFE and MCE also significantly improved. An adaptation of Bouillaguet et al.
graph-theoretic algorithm for the IP problem [BFV13, Bou11] to the case of
ATFE provides an upper bound of Õ(q2n/3) and this one was used to choose
parameters for the scheme from [TDJ+22]. The authors of [TDJ+22] also an-
alyzed the problem purely algebraically, but their model and assumptions on
the obtained algebraic system gave worse estimates of O(26ωn log2(n)). They fur-
ther provided a basic collision based approach similar in nature to the one in
[BFV13] but looking at low rank codewords as in Leon’s algorithm for the Ham-
ming metric [Leo82, Beu20]. This basic attack was subsequently improved by
Beullens [Beu22] to Õ(qmax (n−5)/2,n−7) for odd n and Õ(qmax (n−4)/2,n−4) for
even n. For some special cases of weak keys, even better results were presented
leading to practical polynomial time attacks. If such weak keys are avoided, the
attack performs better in the odd n case. Later, Beullens’ attack [Beu22] was
used as the basis for setting parameters for ALTEQ [BDN+23].
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Similar approaches were taken into account for the MCE problem which was
analyzed in [RST22, CNP+22]. In [RST22], Bouillaguet et al.’s algorithm was
transformed into an algorithm of complexity Õ(q4n/3). Using a different property
for building the graph, the authors proposed an improvement resulting in a
complexity of Õ(qn). Currently the best algorithms against MCE were developed
in [CNP+22, CNP+23] and they take nontrivial approaches in adapting Leon’s
algorithm to the rank metric and modeling the problem algebraically but from
a coding theory viewpoint. The focus of this work is related to this improved
algebraic modeling.

Our contribution. In this work, we take advantage of the relation between
the two equivalence problems – ATFE and MCE to improve the cryptanalysis of
ATFE. Namely, an alternating trilinear form can easily be represented as a matrix
code. A reduction from ATFE to MCE directly follows from the reduction results
in [TDJ+22] and [RST22]. Theorem 2 in [TDJ+22] states that ATFE is tensor
isomorphism complete and thus equivalent to QMLE and Theorem 11 in [RST22]
shows a reduction from QMLE (the bilinear case) to MCE. Specifically, an MCE
instance with a pair of matrix codes derived from a positive ATFE instance, has
a solution of the form (A⊤,A), where the matrix A is a solution to the original
ATFE instance.

Viewing ATFE as a problem on matrix codes enables us to model the problem
using coding theory techniques. In particular, we model ATFE algebraically in a
nontrivial way using the approach from [CNP+22] forMCE. This model improves
the cost of an algebraic attack compared to previously known models as for
example described in [TDJ+22] and the ALTEQ specifications [BDN+23].

Taking into account the algebraic structure of alternating trilinear forms,
we show that the obtained system has less variables but also less equations
than for MCE. In particular we can model ATFE as a system of n(

(
n
2

)
− n)

equations in n2 variables. For our complexity analysis, we first show the existence

of (n+1)(n−1)(n−3)
3 structural degree-3 syzygies in such systems. Then, under the

assumption that outside of these syzygies the system behaves semi-regularly, we
show that the complexity is below the estimated security levels of the signature
scheme in [TDJ+22] and the proposed parameter sets of ALTEQ [BDN+23]
for all three NIST security levels. Our results for the parameters proposed in
[TDJ+22] and [BDN+23] are given in Table 1. Hence in order to attain the
claimed NIST security levels, the parameter n of ALTEQ needs to be increased.

Organization. The paper is organized as follows. Section 2 introduces the nec-
essary preliminaries and Section 3 reviews state-of-the-art algorithms for solving
ATFE. In Section 4, we show how a positive ATFE instance is transformed into
a positive MCE instance and we explore the structure of the matrix codes ob-
tained from this transformation. In Section 5 we show algebraic modellings for
the ATFE problem and in Section 6 we give a complexity analysis for solving
the systems from our proposed variant. Finally, in Section 7 we show our exper-
imental results.
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Table 1. Comparison of the concrete complexities (in log2 scale) of different algorithms
for solving ATFE. The superscript a means that the estimate was obtained from an
algebraic model, and b from a graph-based birthday model. The column ‘Our work’
includes the cost of field operations estimated as O(⌈log2 q⌉

2) bit operations.

NIST n q Tang et al. Beullens ALTEQ specs. Our work

Sec. level [TDJ+22] [Beu22] [BDN+23]

— 9 218 − 1 133 38 — 99

— 10 217 − 1 133 122 — 105

— 11 216 − 5 138 85 — 109

I 13 232 − 5 — — 143a 120

III 20 232 − 5 — — 219a 165

V 25 232 − 5 — — 252b 203

2 Preliminaries

Let Fq be the finite field of q elements. GLn(q) and AGLn(q) denote respectively
the general linear group and the general affine group of degree n over Fq. We
use bold letters to denote vectors a, c,x, . . . , and matrices A,B, . . . . The entries
of a vector a are denoted by ai, and we write a = (a1, . . . , an) for a (column)
vector of dimension n over some field. Similarly, the entries of a matrix A are
denoted by aij . We denote by e1, . . . , en the vectors of the canonical basis of
Fnq . If b1, . . . ,bn is a basis for a vector space, we denote by b∗

1, . . . ,b
∗
n the

corresponding dual basis. We denote by Sn the symmetric group of degree n.
Finally, we denote the set of all m× n matrices over Fq by Mm,n(Fq).

Cryptographic group actions.

Definition 1. Let X be a set and (G, ·) be a group. A group action is a mapping

⋆ : G×X → X
(g, x) 7→ g ⋆ x

such that the following conditions hold for all x ∈ X:

– e ⋆ x = x, where e is the identity element of G.
– g2 ⋆ (g1 ⋆ x) = (g2 · g1) ⋆ x, for all g1, g2 ∈ G.

A cryptographic group action commonly refers to a group action that has
some additional properties that are useful for cryptographic applications. To
begin with, there are some desirable properties of computational nature. Namely,
the following procedures should be efficient:

– Evaluation: given x and g, compute g ⋆ x.
– Sampling : sample uniformly at random from G.
– Membership testing : verify that x ∈ X.

The crucial property that distinguishes cryptographic group actions is that
the corresponding vectorization problem should be hard:
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Problem 1. GroupActionVectorization(X,x1, x2):
Input: The pair x1, x2 ∈ X.
Question: Find – if any – g ∈ G such that g ⋆ x1 = x2.

Early constructions using this paradigm are based on the action of finite groups
of prime order, for which the vectorization problem is the discrete logarithm
problem. Notable isogeny-based constructions can be found, for instance, in the
work of Couveignes in [Cou06] and later by Rostovtsev and Stolbunov [RS06].
Recently, a general framework based on group actions was explored in more
detail by [ADFMP20], allowing for the design of several primitives.

The Alternating Trilinear Form Equivalence problem. A k-linear form
is a function ϕ : Fnq × · · · × Fnq → Fq that is linear in each argument: if we fix
k−1 arguments, it is linear in the remaining argument. A k-linear form is called

– symmetric: if ϕ(x1, . . . ,xk) = ϕ(xπ(1), . . . ,xπ(k)) for any permutation π ∈
Sk;

– skew-symmetric: if ϕ(x1, . . . ,xk) = ϕ(xτ(1), . . . ,xτ(k)) for any transposition
τ ∈ Sk;

– alternating if ϕ(x1, . . . ,xk) = 0 whenever xi = xj for some i ̸= j.

Every alternating form is skew-symmetric, and if q ≥ 3, every skew-symmetric
form is alternating. In the following, we will focus on the k = 2 and k = 3 cases:
bilinear and trilinear forms.

An alternating trilinear form can be represented as
∑

1⩽i<j<s⩽n
cijs(e

∗
i ∧ e∗j ∧

e∗s), where cijs ∈ Fq, ei is the ith canonical basis vector, e∗i is the linear form
sending u = (u1, ..., un) ∈ Fnq to ui and ∧ denotes the wedge product. Hence,

e∗i ∧e∗j ∧e∗s is an alternating form sending (x,y, z) to the determinant

∣∣∣∣∣∣
xi yi zi
xj yj zj
xs ys zs

∣∣∣∣∣∣.
From this representation it is clear that an alternating trilinear form can be
stored using

(
n
3

)
entries: one for each coefficient cijs.

The alternating trilinear form equivalence problem is formally defined as
follows:

Problem 2. ATFE(n, ϕ, ψ):
Input: Two alternating trilinear forms ϕ, ψ.
Question: Find – if any – A ∈ GLn(q) such that ψ(x,y, z) = ϕ(Ax,Ay,Az).

The ATFE-based group action is defined by the action of the general linear
group GLn(q) on the set of all alternating trilinear forms defined over Fnq . The
vectorization problem is the ATFE problem defined above. Since ATFE is a hard
problem, we obtain a cryptographic group action.

Array representation of bilinear and trilinear forms. It is common to
represent a bilinear form as x⊤My, where M is a matrix where the (i, j) entry
holds the coefficient of the term xiyj . Similarly, trilinear forms can be represented
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with a 3-way array where the (i, j, s) entry holds the coefficient of xiyjzs. In this
representation, we implicitly choose e1, . . . , en as a basis for Fnq . Alternating
bilinear and trilinear forms can be represented in such a way, although it is
not the most efficient representation. The array representation of an alternating
bilinear form is a skew-symmetric matrix with zeros on the main diagonal. The
array representation of a trilinear form has even more redundancy. Notice from
the ’determinant representation’ above that for all permutations of the index
triple (i, j, s), the terms xiyjzs have the same coefficient, up to sign. Specifically,
if we denote by Mijs the (i, j, s) entry of the 3-way array, then Mijs = −Misj =
Msij = −Mjis = Mjsi = −Msji. This is the key property that makes all of the
terms cancel out (and hence the form evaluate to zero) whenever two arguments
are the same.

The Matrix Code Equivalence problem. A matrix code is a subspace C
of m × n matrices over Fq endowed with the rank metric defined as d(A,B) =
Rank(A − B). We denote by k the dimension of C as a subspace of Fm×n

q and

its basis by (C(1), . . . ,C(k)) where C(i) ∈ Fm×n
q are linearly independent.

The matrix code equivalence problem is formally defined as follows:

Problem 3. MCE(k, n,m, C,D):
Input: Two k-dimensional matrix codes C,D ⊂ Mm,n(Fq).
Question: Find – if any – A ∈ GLm(q),B ∈ GLn(q) such that for all C ∈ C, it
holds that ACB ∈ D.

Algebraically, the MCE problem corresponds to the problem of finding the un-
known entries of matrices A,B,T such that

D(i) =
∑

1⩽j⩽n

tjiAC(j)B, ∀i, 1 ⩽ i ⩽ n

is satisfied. The matrix T ∈ GLk(q) corresponds to a change of basis of ACB.
The MCE problem also gives rise to a group action: the group GLm(q) ×

GLn(q) acts on the set formed by the k-dimensional matrix codes of size m× n
over the base field Fq. The vectorization problem is MCE, and since this is a
hard problem, we obtain a cryptographic group action.

Exterior powers and extending trilinear forms. For combinatorial analysis
it can be useful to work with linear maps instead of trilinear maps. To this end
we introduce, for every k, the exterior powers of a vector space. These are vector
spaces generated by wedge products:∧k

Fnq := {
∑
i

(x1)i ∧ . . . ∧ (xk)i | (xj)i ∈ Fnq }.

These vector spaces have dimension
(
n
k

)
. Furthermore, linear transformations

A : Fnq → Fnq also act on
∧k Fnq by

A(x1 ∧ . . . ∧ xk) = Ax1 ∧ . . . ∧Axk.
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Now each alternating k-linear form ϕ : Fnq × . . . × Fnq → Fq can be extended to

a linear form ϕ̂ :
∧k Fnq → Fq where the map is given by:

ϕ̂

(∑
i

(x1)i ∧ . . . ∧ (xk)i

)
=
∑
i

ϕ ((x1)i, . . . , (xk)i) .

This extension is unique and is in fact a natural bijection between k-linear forms
and linear forms on the kth exterior power. Therefore we will abuse notation and
write ϕ for both maps. The number of arguments will indicate what is meant.

This can also be used to partly linearize a k-linear form in the first l argu-
ments. In this case, an alternating k-linear form ϕ : Fnq × . . .× Fnq → Fq can be
extended to a (k − l + 1)-linear form

ϕ̂ :
∧l

Fnq ×
k−l times︷ ︸︸ ︷

Fnq × . . .× Fnq → Fq
(x1 ∧ . . . ∧ xl,xl+1, . . .xk) 7→ ϕ(x1, . . .xk).

This extension is again unique. Note that this extension has arguments from
different spaces so it is not alternating any more. We will again denote both
forms by ϕ, the number and type of arguments should indicate what is meant.
For our use case, k = 3, this implies the following equations:

ϕ(x,y, z) = ϕ(x ∧ y, z) = ϕ(x ∧ y ∧ z).

For a more thorough treatment on exterior powers, alternating forms and
multilinear algebra in general we refer the reader to [Gre12].

3 Previous algorithms for solving ATFE

The state-of-the-art algorithms against ATFE build upon relatively old algo-
rithms against the Isomorphism of polynomials (IP) [Per05, BFFP11, BFV13].
We present the two most relevant below.

3.1 Graph-theoretic algorithm of Bouillaguet et al. [BFV13]

More than 10 years ago, Bouillaguet et al.[BFV13] proposed a birthday-based
graph-theoretic algorithm for solving the Quadratic Maps Linear Equivalence
(QMLE) problem. It is now known that the ATFE problem is polynomial-time
equivalent to the homogeneous version of QMLE [GQ21] implying that this al-
gorithm can be adapted for ATFE.

Specifically, two isomorphic alternating trilinear forms ϕ and ψ over Fnq can
be seen as two equivalent homogeneous quadratic maps F and P of n multivari-
ate polynomials in n variables over Fq. Furthermore, these quadratic maps are
alternating and bilinear, so they have a skew-symmetric matrix representation.
The main observation of the algorithm is that once a pair of vectors u,v ∈ Fnq

7



is known such that u = Av, this information is enough to find the isomorphism
with low complexity 3. Hence, the goal of the algorithm is to find this collision of
points, and different invariants under isomorphism can be used to achieve this.

For the case of ATFE, a useful invariant is the rank of the corresponding
bilinear form ϕv(w, z) = ϕ(v,w, z) which is preserved under the isomorphism
defined by A. The algorithm now proceeds as a standard collision-search algo-
rithm in two steps: First, create lists Lϕ and Lψ of size O(qn/3) elements in Fnq
of the same rank. Then, find a collision between these lists by calling the efficient
algorithm described above. The total complexity amounts to Õ(q2n/3) where we
neglect the estimated O(n9) cost of finding the isomorphism once one collision
is known.

3.2 Graph-theoretic algorithm of Beullens [Beu22]

Beullens [Beu22] improves generically upon the previous approach by further
using clever graph-walking techniques. The basic idea is to populate the lists
faster by exploiting the structure of a particular invariant graph for alternating
trilinear forms. This graph had been studied before and was used for complete
classification of trilinear forms of dimensions n = 8, 9. Namely, the structure of
the graph allows to find points of the same or lower rank in the neighborhood
of an identified point of a specified rank in polynomial time. Thus, one can first
find using brute force a point of higher rank (which is easier than finding one
of lower rank), and then by exploring the neighborhood can find points of lower
rank faster. In total, this costs Õ(q(n−5)/2) for odd n and Õ(q(n−4)/2) for even
n. The second part of the algorithm is as previous and consists of matching each
pair in the lists and checking whether it leads to the unknown isomorphism. This
part has a complexity of Õ(qn−7) for odd n and Õ(qn−4) for even n, and for
larger n, it becomes the dominating part of the algorithm.

4 A coding theory perspective of ATFE

A trilinear form can be seen as a matrix code and the other way around.
For an informal argument for the equivalence between these two objects, we

refer to their algorithmic representation. A matrix code is usually represented
by an array of the matrices forming its basis. This is a 3-way array, no different
than a 3-way array representing a trilinear form as described in Section 2. It is
then evident that we can obtain a matrix code from an (alternating) trilinear
form simply by choosing a basis for the code.

Indeed, let ϕ(i)(x,y) = ϕ(x,y, ei) be the bilinear form obtained by fixing the
third argument of a trilinear form ϕ to ei, where ei denotes the ith vector of the

3 In [BFV13] it was conjectured that this complexity is O(n9) i.e. polynomial. Later
in [Bou11, RST22] this was reevaluated and shown that the conclusion was made
based on some false assumptions. Nevertheless, even though there is no proof of the
polynomial behavior of this step, in practice it does finish in an expected polynomial
time.
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canonical basis (e1, . . . , en). With respect to this basis, a vector a =
∑
αiei can

be written as a = (α1, . . . , αn). If ϕ is alternating, then ϕ(i) is also alternating and
it holds that ϕ(i)(−, ei) = ϕ(i)(ei,−) = 0. Let C(i) be the matrix representation
of ϕ(i). Then, (C(1), . . . ,C(n)) is a basis of an n-dimensional matrix code. The
only piece left is to show the relation between the solutions of two such related
instances. Specifically, we show the following.

Lemma 1. Finding a solution of the form (A⊤, A) to an MCE instance derived
from an ATFE instance is equivalent to finding a solution A to the original ATFE
instance.

Proof. Let (n, ϕ, ψ) be an instance of ATFE and let C and D be matrix codes ob-
tained by applying the above transformation to ϕ and ψ respectively. If (n, ϕ, ψ)
is a positive instance of ATFE, then there existsA ∈ GLn(q) such that ψ(i)(x,y) =
ψ(x,y, ei) = ϕ(Ax,Ay,Aei) for all i ∈ {1, . . . , n}. Since Aei = (a1i, . . . , ani),
we have that ψ(i)(x,y) = ϕ(Ax,Ay, a1ie1 + · · ·+ anien). By linearity, we infer
that ψ(i)(x,y) =

∑
1⩽j⩽n

ajiϕ(Ax,Ay, ej) =
∑

1⩽j⩽n
ajiϕ

(j)(Ax,Ay). This can be

rewritten in matrix form as x⊤D(i)y =
∑

1⩽j⩽n
aji(Ax)⊤C(j)(Ay), ∀i, 1 ⩽ i ⩽ n.

Since this holds for any (x,y), we have that

D(i) =
∑

1⩽j⩽n

ajiA
⊤C(j)A, ∀i, 1 ⩽ i ⩽ n. (1)

Taking (C(1), . . . ,C(n)) as a basis of a matrix code C and (D(1), . . . ,D(n)) as a
basis of a matrix code D, from Equation (1) we infer that

– The codes C and D are equivalent up to a change of basis represented by the
matrix A.

– (A⊤,A) is a solution to the MCE instance (n, n, n, C,D). ⊓⊔

Example 1. Let

ϕ(x,y, z) = x2y3z1 + 3x2y4z1 + 6x3y2z1 + 6x3y4z1 + 4x4y2z1 + x3y4z1+

+ 6x1y3z2 + 4x1y4z2 + x3y1z2 + 6x3y4z2 + 3x4y1z2 + x4y3z2 + x1y2z3+

+ x1y4z3 + 6x2y1z3 + x2y4z3 + 6x4y1z3 + 6x4y2z3 + 3x1y2z4 + 6x1y3z4+

+ 4x2y1z4 + 6x2y3z4 + x3y1z4 + x3y2z4

and

ψ(x,y, z) = 6x2y3z1 + 6x2y4z1 + x3y2z1 + x4y2z1 + x1y3z2 + x1y4z2+

+ 6x3y1z2 + 6x3y4z2 + 6x4y1z2 + x4y3z2 + 6x1y2z3 + x2y1z3 + x2y4z3+

+ 6x4y2z3 + 6x1y2z4 + x2y1z4 + 6x2y3z4 + x3y2z4

be two equivalent alternating trilinear forms over F7. The terms that are redun-
dant in a compact representation are written in green. An isomorphism between
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these two forms is, for instance,

A =


6 4 5 1
2 0 2 0
1 2 6 2
5 6 6 1

 .

The corresponding codes are

C =



0 0 0 0
0 0 1 3
0 6 0 6
0 4 1 0

 ,


0 0 6 4
0 0 0 0
1 0 0 6
3 0 1 0

 ,


0 1 0 1
6 0 0 1
0 0 0 0
6 6 0 0

 ,


0 3 6 0
4 0 6 0
1 1 0 0
0 0 0 0




and

D =



0 0 0 0
0 0 6 6
0 1 0 0
0 1 0 0

 ,


0 0 1 1
0 0 0 0
6 0 0 6
6 0 1 0

 ,


0 6 0 0
1 0 0 1
0 0 0 0
0 6 0 0

 ,


0 6 0 0
1 0 6 0
0 1 0 0
0 0 0 0


 .

We can check that (A⊤,A) is an isometry from C to D. Note that for such small
parameters (n = 4), there are probably many isometries from C to D.

The codes C and D have several properties intrinsic to their derivation from
alternating trilinear forms. For simplicity, we discuss all of them assuming the
choice of basis specified in the beginning of this section. All of the matrices
forming the basis of C are skew-symmetric with zeros on the main diagonal, hence
they are all of even rank. More generally, we have the following relations between

their entries: C
(s)
ij = −C(j)

is = C
(j)
si = −C(s)

ji = C
(i)
js = −C(i)

sj . The same holds
for the basis of D. The ith column and the ith row is zero in the ith matrix of
the basis, that is, the matrix corresponding to the bilinear form ϕ(i)(x,y) (resp.
ψ(i)(x,y) for D). These zero column and row vectors, as well as the zeros on
the diagonal, result from the property that in an alternating trilinear form, the
coefficient of a term xiyjzs is zero if any two of the three indices (i, j, s) are the
same. Finally, positive MCE instances derived from positive ATFE instances have
a specific solution. Instead of a pair of unrelated matrices, we have a solution
(A,B) such that A = B⊤. Hence ATFE can be reduced to a subclass of MCE.

5 Algebraic algorithms for solving ATFE

In view of the connection of ATFE to MCE we continue to use the matrix code
representation introduced in the previous section.

5.1 Direct modelling

A straightforward way to model this problem algebraically is to describe Equa-
tion (1) as a system of n ·

(
n
2

)
equations in n2 variables, corresponding to the
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coefficients of A. The resulting system is of degree three. Alternatively, we can
move one linear transformation to the other side of the equality and obtain∑

1⩽j⩽n

ãjiD
(i) = A⊤C(j)A, ∀i, 1 ⩽ i ⩽ n, (2)

where ãji is the (j, i) entry of A−1. When we rewrite the system like this, the
number of equations does not change and we double the number of variables, but
we obtain an inhomogenous quadratic system instead of a cubic one. Specifically,
the system is quadratic in the A-variables and linear in the A−1-variables. We
add to this the constraint AA−1 = I, which yields n2 equations that are bilinear
in A-variables and A−1-variables. We will refer to this approach as the direct
modelling. The direct modelling dates back to the work in [FP06] for solving
the QMLE problem, with further analysis in [BFV13, Bou11]. Recently, it was
analysed as a modelling for MCE in [CNP+22], before a more advanced approach
was introduced. The work in this paper shows that the improved modelling
introduced in [CNP+22] is even more relevant in the ATFE case. We describe
this approach in the following subsection.

A similar modelling was used in [TDJ+22] for the analysis of an algebraic
attack on ATFE. In fact, with the algebraic modelling in [TDJ+22] we obtain
a subset of the equations in the system arising from Equation (2). Due to the
compact representation of ATFE, the number of equations is

(
n
3

)
+ n2, which

is less than the n ·
(
n
2

)
+ n2 equations that we obtain from the corresponding

matrix representation. The complexity of this approach is analysed under the
assumption that the polynomials in the system form a semi-regular sequence.
Using the analysis techniques from [Bar04, BFSY05], the degree of regularity
is estimated to be 3n asymptotically, and the complexity is upper-bounded by
O(N3nω), where N = 2n2 is the number of variables and ω is the linear algebra
constant.

In [BDN+23], the direct modelling is improved by adding the equations aris-
ing from ∑

1⩽j⩽n

ajiC
(i) = (A−1)⊤D(j)A−1, ∀i, 1 ⩽ i ⩽ n,

and also A−1A = I. This is called the quadratic with inverse modelling and
results in a system of 2n(

(
n
2

)
+ n) equations in 2n2 variables. In [BDN+23], it

is used as reference for calculating the complexity of an algebraic attack on the
ATFE problem.

5.2 Improved matrix-code modelling

The improved modelling uses ideas from coding theory and its greatest advantage
is that all variables that occur linearly in the direct modelling are not present
in the improved system. In this description of the modelling, we will focus on
MCE instances derived from ATFE instances. For these instances, we obtain a
polynomial system in n2 variables, which is a significant improvement over the
system with 2n2 variables obtained from the direct modelling.
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Let G and G′ be the n×n2 generator matrices of C and D respectively. These
generator matrices are obtained by flattening the matrix code, in the following
manner. For a matrix C ∈ Mn,n(Fq), let vec be a mapping that sends a matrix

C to the vector vec(C) ∈ Fn2

q obtained by:

vec : C =

a1,1 . . . a1,n...
. . .

...
an,1 . . . an,n

 7→ vec(C) = (a1,1, . . . , a1,n, . . . , an,1, . . . , an,n).

Then G is constructed as follows

G :=

 vec(C1)
...

vec(Cn)

 .

The representation using generator matrices constructed as above allows us to
view a matrix code as an Fq-subspace of Fn

2

q . We can now describe the improved
modelling in three steps:

– Compute G′⊥, that is, the generator matrix of the dual code of D. This is an
(n2−n)×n2 matrix containing only constant values, and it can be computed
directly from G′.

– Compute G̃, that is, a generator matrix of D represented as A⊤CA for
A with unknown coefficients. This is an n × n2 matrix whose entries are
quadratic equations in the A-variables. It can be obtained either by com-
puting matrices A⊤CiA and flattening them to obtain the rows of G̃, or by
computing G̃ = G(A⊗A).

– Construct the system
G′⊥ · G̃⊤ = 0(n2−n)×n. (3)

Note that the system obtained from Equation (3) has n(n2 − n) equations, but
only n(

(
n
2

)
−n) of them are linearly independent because of the specific structure

of matrix codes obtained from alternating trilinear forms. Recall from Section 4
that we have the following relations between the entries of the matrices from

the basis: C
(s)
ij = −C(j)

is = C
(j)
si = −C(s)

ji = C
(i)
js = −C(i)

sj . This shows that any
generator matrix G of a matrix code derived from an alternating trilinear form
has

(
n
2

)
linearly independent columns. For an alternative view of this modelling

that is in the spirit of the minors modellings of MinRank [FdVP08, BBC+20],
we refer the reader to [CNP+22].

5.3 Removing invalid solutions

One drawback of the improved modelling is that it does not contain the con-
straint that the solution A has to be an invertible matrix. As a consequence,
the polynomial system can have solutions that do not correspond to solutions to
the ATFE instance, and this effect can significantly slow down the resolution of
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the system. Note that the direct modelling does not have this problem because
there are equations describing AA−1 = I.

As an example for invalid solutions we show that all rank-1 matrices A are
a solution to the improved modelling as is. Let A = ab⊤, then A⊤CiA =
ba⊤Ciab

⊤. But we know that Ci is skew-symmetric, hence a⊤Cia = 0. After
flattening, G̃ = 0 and our system is trivially satisfied.

In the following, we show how we can add the constraint that A has to be
invertible to the improved modelling and remove the invalid solutions without
introducing new variables.

First, we take some equations from the system in Equation (2) and use them
to express A−1 in terms of A. This is possible because the variables of A−1

appear only linearly and there are more that n2 equations in the system. Specif-
ically, we build the Macaulay matrix of the system, choosing an ordering such
that the linear A−1-variables correspond to the leading columns. Then, we find
the reduced row echelon form and take the first n2 equations. They all contain
only one linear A−1-variable, so the variable can be expressed as a quadratic
equation in A-variables. We use these terms to substitute the A−1-variables in
the system corresponding to AA−1 = I. This approach yields n2 − n homoge-
neous and n inhomogeneous cubic equations in the A-variables, that we add to
the system derived from Equation (3).

Since the new equations are all cubic, they do not influence greatly the
asymptotic complexity of solving the system using a Gröbner basis algorithm
like F4 [Fau99]. However, they are useful for eliminating the invalid solutions
and they improve the running times for practical sizes. Hence, we use these
equations in our experimental work, but we do not consider them in the com-
plexity analysis in Section 6, or rather, we assume that they can only improve
the solving complexity. It is commonly known that adding equations improves
the solving time of Gröbner basis algorithms, and our experiments (in Section 7)
show that this holds true for our case. In conclusion, we consider the following
complexity analysis to be an upper bound, and, asymptotically, we do not ex-
pect it to differ a lot from the complexity analysis that includes the added cubic
equations.

6 Complexity analysis

The system obtained from Equation (3) is a quadratic system of n · (
(
n
2

)
− n) =

n2 · n−3
2 equations in n2 variables. With the assumption that this system is semi-

regular, the asymptotic behavior of the degree of regularity can be estimated
using [BFSY05]. Then, with α = n−3

2 , the resulting degree of regularity would
grow as dreg ∼ n

4 . However, as we will shortly see, the system is not semi-regular.

6.1 Non-trivial syzygies

The exterior powers described in Section 2 hold a lot of extra structure. These
will allow us to find extra syzygies in our system. Consider the following vector
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space:

L(ϕ) := {ω ∈
∧2

Fnq | ϕ(ω, z) = 0, ∀z ∈ Fnq }.

This vector space can also be realized as the kernel of the following map:

∧2
Fnq → Fnq , ω 7→

ϕ(ω, e1)...
ϕ(ω, en)

 .
This vector space enables a different perspective on the improved matrix-code
modelling. The system described in Equation (3) is also generated by

{ϕi(Aω) | 1 ≤ i ≤ n, ∀ω ∈ L(ψ)}. (4)

Let us now consider the degree-3 elements of the ideal generated by the
system above. This is a vector space generated by elements {ajk · ϕi(Aω)}. For
any combination (ω, i) there is a specific linear combination given by∑

j

ajiϕj(Aω) = ϕ(Aω,Aei) = ϕ(A(ω ∧ ei)).

These linear combinations are all of the form ϕ(Aθ) where θ ∈
∧3 Fnq . More

specifically, 0 = ϕ(Aθ) = ψ(θ), must hold for every θ, therefore θ ∈ ker(ψ).
With this structure in consideration let us look at the map

ξψ : L(ψ)⊗ Fnq → ker(ψ), (ω,x) 7→ ω ∧ x (5)

Of special interest are elements in the kernel of ξψ. Let
∑
k ωk ⊗ eik ∈ ker ξψ

then ∑
k

∑
j

ajikϕj (Aω) =
∑
k

ϕ (Aωk,Aeik)

= ϕ

(
A

(∑
k

ωk ∧ eik

))
= ϕ (A(0))

≡ 0.

Thus, we get a syzygy for each vector in the kernel of ξψ. Let us call these wedge
syzygies.

Remark 1. Empirical analysis for n up to 25 shows that this map is surjective
for n ∈ {4, 5} ∪ {7, . . . , 25} for random alternating trilinear forms. In the case
n = 6, the image consistently has dimension one lower than ker(ψ). This might be
interesting to look at from a mathematical point of view. However, for practical
considerations we treat this as just a curiosity.

Now using the rank-nullity theorem we obtain the dimension for the module in
degree 3 generated by wedge syzygies:((

n

2

)
− n

)
· n−

((
n

3

)
− 1

)
=

(n+ 1)(n− 1)(n− 3)

3
.
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6.2 Hilbert series and the solving degree

We analyze how the system behaves under the block Wiedemann XL algorithm
[Cop94]. For this we need the Hilbert series, the generating function for the
monomials, and the density of our equations. In order to state the Hilbert series
we have to make an assumption about the syzygies appearing in our system.

Assumption 1. The syzygy module of the ideal in the system in Equation (4)
is generated by the trivial syzygies and the wedge syzygies.

Using this assumption we can state the Hilbert series for the ideal generated

by our system. To sum-up, we have a system of n2(n−3)
2 quadratic equations

in n2 variables with (n+1)(n−1)(n−3)
3 syzygies in degree 3. First let us give the

generating function for the amount of monomials in each degree as:

M(t) =
1

(1− t)n2 .

Here we denote by [tα]M the coefficient of tα in the series. Now we can state
the Hilbert series:

H(t) = (1− t2)
n2(n−3)

2 (1− t3)−
(n+1)(n−1)(n−3)

3 M(t).

Next let us look at the density of the equations in our system. In the modelling in
Equation (3) we take the product of the matrices G′⊥ and G(A⊗A). The dual
code of D is of dimension

(
n
2

)
− n in a vector space of dimension

(
n
2

)
. Therefore

it can be represented by a basis of skew-symmetric matrices with n+1 non-zero
entries in the upper-half triangle. Then taking the systematic form of G′⊥, we
obtain 2(n + 1) nonzero entries per row. On the other hand G(A ⊗ A) has a
linear combination of

(
n−1
2

)
terms aijai′j′ in every cell. Therefore, the density

per equation is at most 2(n+ 1)
(
n−1
2

)
.

The complexity for using the block Wiedemann XL algorithm is given by:

O
(

min
α,[tα]H≤0

3 · (n− 2)(n− 1)(n+ 1) · ([tα]M)2
)
.

Here the factor (n− 2)(n− 1)(n+1) is the density and 3 is a hidden constant of
the algorithm itself. Now a simple computation will give us the witness degree
and complexities for solving ATFE systems. These are summarized in Table 2.
In comparison, the ALTEQ specs provide an algebraic analysis resulting in the
numbers from Table 3.

Now, our results show that the parameters for ALTEQ need to be increased
to attain the claimed NIST security levels. In particular, Table 2 indicates that
for NIST level I, the size of the matrices needs to be increased to at least n = 17,
for NIST level III to at least n = 27, and for NIST level V to at least n = 37.
Note that we are not taking into account the possibility of existence of weak
keys, which may further increase parameters.
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Table 2. Solving degrees and complexities for ATFE instances using the improved
matrix-code modelling. The cost is given in terms of field operations.

n dwit log2 cost attack

8 9 83
9 9 90
10 9 95
11 9 101
12 9 105
13 9 110
14 10 123
15 10 127
17 10 135
18 11 148
20 11 155
25 13 193
27 13 199
28 13 202
30 14 219
35 15 245
37 16 263
38 16 265
40 17 283

Table 3. Comparison to the algebraic analysis from the ALTEQ specifica-
tions [BDN+23]. The cost is given in terms of field operations.

n
ALTEQ specs [BDN+23] This paper

d log2 cost d log2 cost

13 11 143 9 110
20 15 219 11 155
25 18 276 13 193

7 Experimental results

To confirm our theoretical findings, we implemented both the direct modelling
described in Section 5.1 and the improved modelling with our proposed variant
described in Section 5.3. Using this implementation, we perform experiments to
confirm the estimates in our complexity analysis. In addition, we solve random
instances of both modellings to compare the running times.

7.1 Computing syzygies

In order to find the structure of the system of equations, we ran experiments
to look for syzygies. This was done in two ways. In the first setting, we ran
experiments by computing the entire Macaulay matrix up to certain degrees.
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However, since these experiments are computationally heavy we considered also
another approach to be able to tell something for higher n. In the second setting,
we looked at the kernel of ξψ as in Equation (5), as these generate syzygies.

Using Macaulay matrices. We ran experiments on computing the Macaulay
matrices for several degrees and several values for n. For this, we first generate
the system of equations from our modelling. Next, we multiply all equations by
all monomials of the corresponding degrees. Then, we construct the Macaulay
matrix from this and finally, we row reduce in order to find the left nullity. The
left nullity will tell us the amount of syzygies in the corresponding degree. The
predicted amount of syzygies in each degree can be calculated from the Hilbert
series and correspond to the coefficients of the following series:

S(t) =
n
((
n
2

)
− n

)
t2

(1− t)n2 − (M(t)−H(t)).

For d = 3, 4 this corresponds to

[t3]S =
(n+ 1)(n− 1)(n− 3)

3

and

[t4]S = n2
(n+ 1)(n− 1)(n− 3)

3
+

(
n
((
n
2

)
− n

)
2

)
.

Note that the resources required to run these calculations are high and this lim-
its the size of n and d in our setup. The results can be found in Table 4.

Table 4. Experimental syzygies.

n
d = 3 d = 4

experiment prediction experiment prediction

5 16 16 906 700
6 72 35 4149 2691
7 64 64 7889 7889
8 105 105 20386 19440
9 160 160 42363 42363
10 231 231
11 320 320

From the results, we conclude that we correctly predict the amount of syzy-
gies in degree 3 for the n values that we tested (except for n = 6) and that we
correctly predict n ∈ {7, 9}, d = 4. As we can see, for n ∈ {5, 6, 8}, the pre-
dictions for d = 4 are off and extra syzygies appear. For n ∈ {5, 6} this is not
surprising as we know that the automorphism groups are non-trivial. Further-
more, the matrices ϕi are of rank at most 4 since they have to be even and at
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most n−1. This might also lead to extra syzygies in degree 4 for these two values
of n. For n = 8 the extra syzygies might indicate that there is more structure
in even degree that is worth exploring. The fact that the amount of syzygies for
n = 7 and n = 9 are a correct prediction should give us some reassurance for
higher n.

The function ξψ. Recall the function ξψ that we introduced in Equation (5).
Since every element in ker(ξψ) leads to a syzygy in degree three, it is worthwhile
to explore its size. Then we can give a lower bound on the amount of syzygies.
As stated before, we used experiments to verify that this is surjective for random
alternating trilinear forms for n up to 30 (except n = 6). For each of those we
computed the vector space L(ψ). Then we created a list of wedge products of
ω ∈ L(ψ) and canonical basis vectors ei. This results in a list of elements from∧3 Fnq . These are just 3-way arrays so we vectorized them to vectors of length
n3. Finally, we computed the dimension of the space spanned by these vectors
and verified this is the same dimension as ker(ψ). We conclude that the functions
ξψ are surjective for all these random instances and assume this holds for the
generic case.

7.2 Running Gröbner basis computations

As a final step in our experimental work, we solve concrete instances of the sys-
tems arising from the quadratic with inverse modelling from [BDN+23] and the
improved modelling, using the F4 [Fau99] implementation in MAGMA [BCP97].
For parameter sizes n = {5, 6, 7}, we generate 50 random instances of ATFE with
one planted solution. We do this by generating a random trilinear form ϕ and a
random invertible matrix A, and then applying the group action to compute ψ.
Note that for these parameter sizes (n < 9) we expect to have many solutions
to the systems, so instead of enumerating the solution space, we stop after the
computation of the Gröbner basis.

Table 5. Running times (in seconds) of F4 using two modellings of ATFE.

n Modelling in [BDN+23] Our modelling

5 64.20 0.64
6 > 200000 679.46

Results shown in Table 5 are an average of 50 runs. All of the instances are
over Fq with q = 3, however, we performed (fewer instances of) these experi-
ments with q = 31 and obtained comparable results. We see that the improved
modelling significantly outperforms the quadratic with inverse modelling, which
is in line with our theoretical findings. For n = 7, the computation for both
variants timed out after 72 hours. For n = 6, we were only able to solve the sys-
tems using the improved modelling. However, the authors of [BDN+23] report
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that they were able to solve the system for n = 6 in about 25 hours with the
quadratic with inverse modelling.
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