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Abstract—A Bitcoin miner who owns a sufficient amount of
mining power can perform selfish mining to increase his relative
revenue. Studies have demonstrated that the time-averaged profit
of a selfish miner starts to rise once the mining difficulty level
gets adjusted in favor of the attacker. Selfish mining profitability
lies in the fact that orphan blocks are not incorporated into
the current version of Bitcoin’s difficulty adjustment mechanism
(DAM). Therefore, it is believed that considering the count
of orphan blocks in the DAM can result in selfish mining
unprofitability. In this paper, we disprove this belief by providing
a formal analysis of the selfish mining time-averaged profit. We
present a precise definition of the orphan blocks that can be
incorporated into calculating the next epoch’s target and then
introduce two modified versions of DAM in which both main-
chain blocks and orphan blocks are incorporated. We propose
two versions of smart intermittent selfish mining, where the
first one dominates the normal intermittent selfish mining and
the second one results in selfish mining profitability under the
modified DAMs. Moreover, we present the orphan exclusion
attack with the help of which the attacker can stop honest miners
from reporting the orphan blocks. Using combinatorial tools, we
analyze the profitability of selfish mining accompanied by the
orphan exclusion attack under the modified DAMs. Our result
shows that even when considering the orphan blocks in the DAM,
normal selfish mining can still be profitable; however, the level
of profitability under the modified DAMs is significantly lower
than that observed under the current version of Bitcoin DAM.

Index Terms—Selfish mining, Bitcoin, Blockchain.

I. INTRODUCTION

One of the major challenges in designing blockchain net-
works is the underlying consensus mechanism that helps the
ledger get extended in a distributed manner. In fact, the
consensus mechanism ensures that all the blockchain users
agree upon a unified ledger without the help of any central
entity [1]. The consensus mechanism used in Bitcoin is called
Proof-of-Work (PoW). In PoW-based blockchains, miners try
to solve a cryptographic puzzle, and the miner who manages
to solve the puzzle faster than the others can add a new
block to the blockchain. To incentivize miners to participate
in the energy-consuming PoW-based consensus mechanisms,
the miner of each block is rewarded with a specific amount of
cryptocurrency. In Bitcoin, the cryptographic puzzle is to find
a nonce that makes the hash of the block less than a specified
difficulty target [2]. At the end of each epoch, the duration in
which 2016 Bitcoin blocks are mined, there exists a difficulty
adjustment mechanism (DAM) that aims to recalculate the
difficulty target based on an estimation of the available mining
power to ensure a relatively constant transaction throughput.

Since the emergence of Bitcoin, several attacks have been
introduced that can threaten the progress of Bitcoin. In Bit-
coin’s design, it was assumed as long as more than half of
the total mining power follows the protocol, the probability
that a miner can obtain the next block reward is proportional
to his computational power [3]. However, the selfish mining
attack, presented in 2014 by Eyal and Sirer [4], has disproved
the mentioned assumption. In this paper [4], the authors have
shown that an attacker who owns more than 25% of the
total mining power can increase his relative revenue, i.e., the
ratio of the attacker’s reward to the total reward, by deviating
from mining honestly. In selfish mining, once the attacker
mines a new block, he does not publish it immediately to
the other mining nodes. Instead, he continues mining on his
secret block. By doing so, the attacker can make honest
nodes continue mining on top of the public chain whose
height is less than the attacker’s secret chain, and thus, some
part of the honest miners’ mining power gets wasted. As a
result of this attack, the number of orphan blocks, the blocks
that are correctly mined but not included in the main chain,
increases. Due to an increase in the number of orphaned honest
blocks, the attacker’s profit while performing selfish mining
can surpass his profit while mining honestly. It is shown that
the selfish mining strategy presented in this paper [4] is not
the best possible strategy for the attacker to follow. In 2016,
Sapirshtein et al. presented an MDP-based algorithm to calcu-
late the optimal selfish mining strategy based on the attacker’s
mining power and communication capability [5]. Since the
introduction of selfish mining, several countermeasures such
as [3], [4], [6]–[9] have been proposed that aim to keep the
selfish miner’s relative revenue as close as possible to his
relative revenue while mining honestly, i.e., proportional to
his mining power. Most of these countermeasures either make
fundamental changes to block validity rules or propose a new
fork-resolving policy [3]. For more information regarding the
selfish mining defenses, one can refer to [3], [10], [11].

In 2018, Grunspan and Pérez-Marco presented the time
analysis of selfish mining [12]. The authors of the paper
argue that the previous selfish mining papers have used the
Markov model [13] to analyze the selfish mining attack and
thus ignored the time considerations in their analysis. More
precisely, they mention that the relative revenue is not a proper
benchmark for the attacker’s profitability; and in order to
analyze the attacker’s profitability, one should consider the
attacker’s profit per unit of time, which we refer to as time-
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averaged profit. Note that in the remainder of the paper,
we always use the concept of time-averaged profit to assess
profitability. The authors in this paper [12] have shown that
before a difficulty adjustment mechanism, no mining strategy
is more profitable than mining honestly; and to make selfish
mining profitable, the difficulty level should be adjusted.
Once the difficulty gets adjusted, the time-averaged profit
of selfish mining starts to increase, and since then selfish
mining becomes profitable. The authors [12] conclude that the
selfish mining attack exploits the current difficulty adjustment
mechanism of Bitcoin and suggest the idea of incorporating the
count of orphan blocks in the difficulty adjustment mechanism
to mitigate the attack.

Selfish mining was often considered to be impractical since
it was thought that selfish mining needs to be continued
for a couple of epochs to become profitable. However, the
authors in [14] introduced the intermittent selfish mining
strategy, where the selfish miner alternates between selfish and
honest mining at every difficulty mechanism. They showed
that by conducting selfish mining for just one epoch and then
switching to honest mining for the next epoch, the selfish
miner can gain a greater time-averaged profit in the course of
two epochs compared to when he mines honestly in both of the
epochs. The concept of intermittent selfish mining is similar to
smart mining [15], where the attacker switches between honest
mining and idling.

Knowing that selfish mining can raise the attacker’s
relative revenue, in this paper, we take a closer look at the
time-averaged profit of selfish mining. Although the authors
in [12] have suggested incorporating the count of orphan
blocks in DAM, the precise definition of the orphan blocks
in Bitcoin needs yet to be addressed. While it is believed
that orphan inclusion in DAM can make selfish mining
non-profitable, in this paper, we challenge this belief by
introducing two attacks: smart intermittent selfish mining and
the orphan exclusion attack. These two attacks demonstrate
that selfish mining can still be profitable even when orphan
blocks are included in the DAM. Our contributions include:

Formal analysis of intermittent selfish mining: Although
the intermittent selfish mining attack is introduced in [14], the
authors have not presented a formal analysis of the attack. This
paper provides a comprehensive analysis of the time-averaged
profit for different selfish mining strategies including inter-
mittent selfish mining. Besides, we present an attack called
smart intermittent selfish mining (version 1) that dominates
the normal one introduced in [14].
Precise definition of orphan blocks: Authors in [12] intro-
duced a new difficulty adjustment mechanism to incorporate
orphaned blocks; however, they did not present a formal
definition for the orphan blocks. In this paper, we introduce
uncle blocks—orphan blocks in the same epoch—to spec-
ify the properties of the valid orphan blocks that can be
incorporated in the difficulty adjustment mechanism. After
defining the uncle blocks, we present two modified versions
of the difficulty adjustment mechanism (the modified DAM)
for Bitcoin in which, in addition to the main-chain blocks, the
count of uncle blocks affects the mining difficulty of the next

epoch.
Smart intermittent selfish mining (version 2): We introduce
an attack called smart intermittent selfish mining (version 2)
that disproves the belief that incorporating the orphan blocks
in the DAM can result in the unprofitability of selfish mining.
Orphan exclusion attack: We introduce another attack, called
orphan exclusion attack, with the help of which the attacker
can prevent the honest miners from reporting the orphan blocks
in the main chain. We show that selfish mining accompanied
by the orphan exclusion attack can be profitable under the
modified DAMs.

II. PRELIMINARIES

In this section, we first present our system model. Then,
we define the concepts of relative revenue and time-averaged
profit. Finally, we discuss the effect of the difficulty adjustment
mechanism on selfish mining profitability.

A. System model and definitions

In this paper, we use the system model introduced in [16].
We assume the system comprises a set of honest miners
denoted by H and an adversarial miner denoted by A. We
denote by αH and αA the total honest mining power share
and the adversarial mining power share, respectively, where
αA + αH = 1. In our model, time is divided into rounds
denoted by r. In each round, a miner can calculate multiple
mining (hash) queries, the number of which is proportional
to his mining power. We assume our system model is syn-
chronous, i.e., the block published by one of the miners in
round r will be delivered to all the other miners at the end of
round r.
Communication capability: We denote by γA the communi-
cation capability of attacker A. This means, in the case of a
block race, where two blocks are published simultaneously by
attacker A and an honest miner, the fraction of total honest
miners that receive the block proposed by the attacker first
is equal to γA. The honest miners who receive the block
proposed by the attacker first mine on top of the attacker’s
block.

The honest miners follow the honest strategy πH, which is
explained as follows:
Honest strategy: At the start of a new round, a miner chooses
to mine on top of the longest chain available in his view. If the
miner manages to mine a new block, he immediately publishes
the block to all the other miners.

Attacker A may, however, deviate from the honest strategy
and mine in a selfish way. In recent years, different selfish
mining strategies have been presented such as Eyal and
Sirer’s selfish mining strategy πSM1 introduced in [4], the
optimal selfish mining strategy πOSM introduced in [5], and the
intermittent selfish mining strategy πISM introduced in [14].
Strategies πSM1 and πOSM are specifically designed to increase
a miner’s relative revenue, while strategy πISM aims to increase
a miner’s time-averaged profit. A summary of selfish mining
strategies πSM1 and πOSM is presented in Appendix A. Note
that when referring to the selfish mining attack in a general
context, we represent it using the notation πSM.
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Definition 1 (Relative revenue). The relative revenue of at-
tacker A following strategy π is defined as follows:

RelRevr
A(π) =

Nr
A∑

M∈{A,H} N
r
M

, and

RelRevA(π) = lim
r→∞

RelRevr
A(π),

(1)

where Nr
M for M ∈ {A,H} denotes the number of blocks

added to the main chain by miner M during interval [1, r].

We denote by RA(r) and CA(r) the revenue and the mining
cost of attacker A in round r, respectively. We denote by λ
a system constant related to the block generation rate, where
1
λ represents the average number of rounds it takes for the
whole system to mine a new block. If all the miners including
attacker A follow the honest strategy, the average per-round
revenue of attacker A can be obtained as follows:

E[RA(r)] = αA · λK , (2)

where K denotes the value of the mining reward per block.
If attacker A mines with his whole mining power, his average
mining cost per round can be obtained as follows:

E[CA(r)] = αA · cA , (3)

where cA denotes the average normalized mining cost of miner
A per round. The profitability factor of attacker A is denoted
by ωA and defined as follows:

ωA :=
E[RA(r)]

E[CA(r)]
=

λK

cA
. (4)

The profitability factor ωA represents the amount of return per
each unit of money invested by attacker A provided that all
the miners follow the honest strategy.

Definition 2 (Time-averaged profit). The time-averaged profit
(per-round profit) of attacker A following strategy π is defined
as follows:

Profitr
A(π) =

∑r
r′=1

(
RA(r

′)− CA(r
′)
)

r
, and

ProfitA(π) = lim
r→∞

Profitr
A(π) .

(5)

If assuming that time is divided into a set of round intervals
denoted by cycle, according to the renewal reward process
theorem, the time-averaged profit defined in Definition 2 can
be obtained as follows:

ProfitA(π) =
E
[
RA(cycle)

]
− E

[
CA(cycle)

]
E[t(cycle)]

, (6)

where t(cycle) represents the duration of cycle, and
RA(cycle) and CA(cycle) denote the revenue and the
mining cost of attacker A within the cycle, respectively.

III. BACKGROUND

a) Unprofitability of selfish mining before a difficulty
adjustment mechanism: In Bitcoin, an interval of rounds in
which a set of L = 2016 consecutive blocks is added to the
main chain is called an epoch. At the end of each epoch, there
is a difficulty adjustment mechanism (DAM), which calculates

the difficulty target of the upcoming epoch based on the hash
power estimation of the previous epoch. Assume attacker A
starts the selfish mining attack at the beginning of epoch1. As
it is discussed in [12] and [14], the time-averaged profit of at-
tacker A under selfish mining cannot exceed his time-averaged
profit under the honest strategy during epoch1, i.e., before
the next DAM. To illustrate this fact, we need to compare
the attacker’s profitability when following the honest strategy
versus the selfish strategy. Note that the mining difficulty of
epoch1 is specified before the start of epoch1, and thus, the
attacker’s strategy during epoch1 cannot change the epoch’s
mining difficulty. If attacker A follows the honest strategy
in epoch1, he can mine a new block every 1

λαA
rounds on

average, and if ignoring the natural orphan occurrence, all
of his blocks will be added to the main chain. If attacker
A performs the selfish mining attack during epoch1, since
the mining difficulty is the same as the former scenario, his
average mining rate is still equal to 1

λαA
; however, in this

scenario, some of the attacker’s blocks may get orphaned and
remain out of the main chain due to the block races caused
by the selfish mining attack. Therefore, before a DAM, the
time-averaged profit of selfish mining cannot exceed the time-
averaged profit of honest mining. Note that selfish mining can
potentially increase the attacker’s relative revenue in epoch1.
However, despite this increase in relative revenue, the attacker
cannot gain a higher time-averaged profit during the first epoch
of the attack.

b) The effect of DAM on selfish mining profitability: In
Bitcoin, DAM is responsible for adjusting the block generation
rate to ensure that, on average, it takes 10 minutes for the
system to mine a new block. Therefore, the average epoch
duration is equal to 2 weeks. Let epoch1 and epoch2 denote
two consecutive epochs. If attacker A starts selfish mining in
epoch1, some of the both honest and adversarial blocks will
get orphaned in epoch1. Consequently, the duration in which
L blocks are added to the main chain will be extended. This
implies that the duration of epoch1 will increase, exceeding
the standard two-week period. At the end of epoch1, there
is a DAM that calculates the mining difficulty of epoch2

based on the hash power estimation of epoch1. Since the
current version of Bitcoin DAM does not consider orphan
blocks when estimating the active hash power of the previous
epoch, the increase in the length of epoch1 will result in a
decrease in the mining difficulty of epoch2. Therefore, during
epoch2, attacker A can mine a new block, on average, within
a shorter period than 1

λαA
rounds. This shows that starting

from epoch2, the attacker’s time-averaged profit begins to
increase.

c) Selfish mining profitability after the adjustment of
mining difficulty: Assume attacker A has started selfish mining
in epoch1. Therefore, the mining difficulty of the next epoch,
i.e., epoch2, is adjusted in favor of the attacker. The time-
averaged profit of attacker A in epoch2 under the selfish
mining strategy can be obtained as follows:

ProfitA(π
SM) = λK · RelRevA(π

SM)− αAcA . (7)
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Note that the time-averaged profit of attacker A under the
honest strategy is equal to:

ProfitA(π
H) = αA(λK − cA) . (8)

This shows that if the attacker’s selfish mining relative rev-
enue is greater than his honest mining relative revenue, i.e.,
RelRevA(π

SM) > αA, the selfish mining strategy dominates
the honest strategy after the adjustment of mining difficulty. It
has been shown that attacker A with a normal communication
capability γA = 0.5 needs to own more than 25% of the total
mining power to achieve RelRevA(π

SM) > αA [4].
Knowing that selfish mining profit can surpass honest min-

ing profit, a question arises as to why miners are unwilling
to perform the selfish mining attack. One of the main reasons
that answer this question is the belief that an attacker should
perform selfish mining for a relatively long time to gain profit.
Once the attacker starts selfish mining in epoch1, since some
of the attacker’s blocks get orphaned, his gained profit in
epoch1 will be lower than his profit under honest mining.
Therefore, to consider selfish mining as a profitable strategy,
the gained profit by the attacker in epoch2 (or even later
epochs) should compensate for the loss the attacker has faced
in epoch1. However, if the attacker continues selfish mining
for a considerable number of epochs, honest miners may
decide to stop mining to avoid financial losses.

d) Intermittent selfish mining: The authors in [14] intro-
duced the intermittent selfish mining (ISM) attack in which the
attacker’s time-averaged profit over two consecutive epochs
surpasses the honest mining time-averaged profit. ISM dis-
proves the belief that it is necessary to perform selfish mining
for a significant number of epochs to compensate for the
loss experienced during the initial selfish mining epoch. In
ISM strategy, the attacker alternates between selfish mining
and honest mining at every DAM. In other words, for two
consecutive epochs denoted by epoch1 and epoch2, the
attacker applies the selfish mining attack in epoch1 and
returns to honest mining in epoch2. As already discussed,
by mining in a selfish way in epoch1, the attacker cannot
increase his time-averaged profit immediately in epoch1;
however, the selfish mining attacks in epoch1 can lead to
a decrease in the mining difficulty of epoch2, resulting in
an increase in the attacker’s time-averaged profit over the two
consecutive epochs.

IV. FORMAL ANALYSIS OF INTERMITTENT SELFISH
MINING

In this section, we first present a formal analysis of the
intermittent selfish mining attack. Then, we introduce the
smart ISM attack that can dominate the normal ISM.

A. Normal intermittent selfish mining

Despite the introduction of ISM in [14], the authors
have not presented a formal analysis of ISM. We de-
note by πISM the ISM strategy. In the ISM strategy,
the attacker performs selfish mining in odd epochs, i.e.,
{epoch1,epoch3, · · · }, and applies honest mining in even
epochs, i.e., {epoch2,epoch4, · · · }. Using equation 6, the

attacker’s time-averaged profit under the intermittent selfish
mining can be obtained as follows:

ProfitA(π
ISM) =

E
[
RA(epochodd)

]
− E

[
CA(epochodd)

]
E[t(epochodd)] + E[t(epocheven)]

+

E
[
RA(epocheven)

]
− E

[
CA(epocheven)

]
E[t(epochodd)] + E[t(epocheven)]

.

(9)

For simplicity, we refrain from using the expected value
notation, denoted as E[·], throughout the rest of the paper.
The average revenue gained by the attacker in epochodd and
his mining cost in epochodd can be obtained as follows:

RA(epochodd) = RelRev
(
πSM
)
· LK ,

CA(epochodd) = αAcA · t(epochodd) .
(10)

Similarly, the average revenue gained by the attacker in
epocheven and his mining cost in epocheven can be obtained
as follows:

RA(epocheven) = αA · LK ,

CA(epocheven) = αAcA · t(epocheven) .
(11)

We denote by Mtotal
odd and Mmain-chain

odd the normalized ac-
tive mining power in epochodd and the normalized effec-
tive mining power extending the main chain in epochodd,
respectively. As there is no idle power in epochodd, we
have Mtotal

odd = 1. The effective mining power Mmain-chain
odd

represents the ratio of the number of main-chain blocks
in epochodd to the total number of blocks mined during
epochodd. Due to the selfish mining attack in epochodd
and orphan occurrence, some part of the mining power in
epochodd gets wasted and does not contribute to extending
the main chain. This implies that Mmain-chain

odd is less than
1. We define Mmain-chain

SM to be the normalized effective
mining power under selfish mining. We have Mmain-chain

odd =
Mmain-chain

SM . In Appendix A, the methods for calculat-
ing Mmain-chain

SM under both selfish mining strategies πSM1

and πOSM are explained. Similar terms can be defined for
epocheven. Since all the miners follow the honest strategy in
epocheven, we have Mmain-chain

even = Mtotal
even = 1. According

to the design of the current version of Bitcoin’s DAM, the
duration of epochodd can be calculated as follows:

t(epochodd) = tideal · M
main-chain
even

Mmain-chain
odd

=
L

λMmain-chain
SM

,

(12)
where tideal represents the ideal epoch duration and is equal
to L

λ . Note that under the current version of Bitcoin DAM,
the epoch duration t(epochodd) is inversely related to the
epoch’s main-chain effective power Mmain-chain

odd . The greater
the amount of mining power working to extend the main chain
within an epoch, the shorter the time it takes for the epoch
to complete. However, the epoch duration t(epochodd) is
directly related to the previous epoch’s main-chain effective
power Mmain-chain

even . The reason is that a lower amount of
main-chain effective mining power in the previous epoch
results in a decrease in the mining difficulty and consequently
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the duration of the current epoch. Similarly, the duration of
epocheven can be calculated as follows:

t(epocheven) = tideal · M
main-chain
odd

Mmain-chain
even

=
LMmain-chain

SM

λ
.

(13)
Therefore, the attacker’s time-averaged profit under intermit-
tent selfish mining can be obtained as follows:

ProfitA(π
ISM) =

λK
(
RelRev

(
πSM
)
+ αA

)
1

Mmain-chain
SM

+Mmain-chain
SM

− αAcA .

(14)

Mining power threshold values: We aim to address the
question of how much mining power is required to make
the intermittent selfish mining strategy more profitable than
the honest strategy. By fixing the attacker’s communication
capability γA, we want to calculate the minimum amount
of the attacker’s mining power that satisfies the following
inequality:

ProfitA(π
ISM) > ProfitA(π

H) . (15)

Using equations 8 and 14, we can obtain that to achieve the
inequality above, the following inequality should hold:

RelRev
(
πSM
)
> (

1

Mmain-chain
SM

+Mmain-chain
SM − 1)αA .

(16)
As the coefficient of αA is greater than 1 in the inequality
above, the minimum amount of mining power that makes
ISM profitable is more than that in normal selfish mining. For
instance, for a normal communication capability γA = 0.5,
the minimum amount of mining power share that makes ISM
profitable is equal to 0.2773.

B. Smart intermittent selfish mining (version 1)
In intermittent selfish mining, the attacker performs the

attack every other epoch. This shows that the ratio of the
selfish mining period length (measured by the number of
blocks added to the main chain) to the main-chain length
is equal to 1

2 . In the smart intermittent selfish mining attack
(version 1) denoted by SISM1, the attacker gains a higher
amount of profit while his ratio of selfish mining period length
to the main-chain length is still equal to 1

2 . Assume epochodd
and epocheven are two consecutive epochs in which 2L
blocks are added to the main chain. In SISM1, the attacker
performs selfish mining for (1−η)L blocks in epochodd and
for ηL blocks in epocheven, where 0 ≤ η ≤ 0.5. For the
remaining blocks in these two epochs, the attacker follows the
honest mining strategy. It is clear that in SISM1, the ratio of
selfish mining period length to the main-chain length is equal
to 1

2 . Note that if η = 0, SISM1 is the same as the normal
intermittent selfish mining attack. The duration of epochodd
and epocheven in SISM1 can be calculated as follows:

t(epochodd) = tideal
η + 1−η

Mmain-chain
SM

1− η + η
Mmain-chain

SM

,

t(epocheven) = tideal
1− η + η

Mmain-chain
SM

η + 1−η
Mmain-chain

SM

.

(17)

Therefore, the attacker’s time-averaged profit under SISM1 is
equal to:

ProfitA(π
SISM1) =

λK
(
RelRev

(
πSM
)
+ αA

)
η+ 1−η

Mmain-chain
SM

1−η+ η

Mmain-chain
SM

+
1−η+ η

Mmain-chain
SM

η+ 1−η

Mmain-chain
SM

− αAcA . (18)

The maximum amount of the attacker’s time-averaged profit
under SISM1 occurs when η = 0.5:

ProfitA
(
πSISM1|η = 0.5

)
=

λK
(
RelRev

(
πSM
)
+ αA

)
2

− αAcA .

(19)

Comparing equations 14 and 19, it is clear that the optimal
SISM1 dominates the normal intermittent selfish mining strat-
egy, i.e., ProfitA

(
πSISM1|η = 0.5

)
> ProfitA

(
πISM

)
.

One can consider the optimal SISM1 as the normal intermittent
selfish mining with the difference that the DAM is exactly
placed in the middle of the selfish mining period. Therefore,
the optimal SISM1 is equivalent to performing selfish mining
for half of each epoch. This shows that to increase his time-
averaged profit, the attacker should keep the mining difficulty
level constant and avoid inducing fluctuations. Note that the
minimum amount of mining power that makes the optimal
SISM1 profitable is the same as that in normal selfish mining.
This implies that for a normal communication capability
γA = 0.5, the minimum amount of mining power share that
makes SISM1 profitable is equal to 0.25.

The normalized time-averaged profit, which is equal to
ProfitA(π)

λK , is depicted in Figure 1 for multiple strategies.
In this figure, the profitability factor ωA is set to 2, and
the optimal selfish mining strategy πOSM is used to calculate
RelRev

(
πSM
)

and Mmain-chain
SM . An interesting observation

regarding Figure 1 is that the time-averaged profit of in-
termittent selfish mining does not necessarily increase with
the amount of mining power. The reason is that πOSM is
specifically designed to maximize the relative revenue of
selfish mining. However, ProfitA(π

ISM) not only depends
on RelRev

(
πSM
)
, but it also depends on Mmain-chain

SM , a point
that is not considered in the design of πOSM. This shows that
the strategy optimizing the time-averaged profit of intermittent
selfish mining differs from the strategy that maximizes its
relative revenue. Finding the optimal time-averaged profit can
be an interesting future research direction.

V. PROFITABILITY OF SELFISH MINING UNDER THE
MODIFIED DAM

In this section, we introduce two modified versions of DAM,
which are similar to the period-based DAM currently used
in Bitcoin. In these modified DAMs, both main-chain blocks
and orphan blocks are incorporated in the mining difficulty
calculation of the upcoming epoch. We first provide a precise
definition of the orphan blocks that can be incorporated into
the modified DAM. Then, we present the modified DAMs and
assess their impact on the profitability of the normal selfish
mining attack.
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Fig. 1. Time-averaged profit under the Bitcoin’s DAM

A. The uncle blocks

The current Bitcoin DAM is presented in Appendix B. To
present the modified DAMs, we first need to define the uncle
blocks. In the modified DAMs, we aim to consider the orphan
blocks in the hash rate estimation. The uncles are the orphan
blocks that are mined during the same epoch.

Definition 3 (Uncle). A block B1 is considered an uncle of
another block B2 if all of the following conditions are met:
(1) they are in the same epoch, sharing the same difficulty;
(2) height(B2) > height(B1); (3) B1’s parent is already
embedded in B2’s chain, either as a main-chain block or as
an uncle; and (4) B2 is the first block in its chain to refer to
B1.

Condition (1) enables uncles to contribute to a more ac-
curate hash rate estimation, which will be exploited in our
DAM. A violation of (2) contradicts the longest-chain rule.
Condition (3) is to ensure that two blockchain instances with
different genesis blocks do not accidentally recognize each
other’s blocks as uncles. Besides, B1’s parent is needed to
verify the validity of B1. Condition (4) is to prevent honest
miners from reporting the same uncle multiple times.

Incorporating uncles. Miners are requested to refer to
uncles—orphaned blocks in the same epoch—by embedding
their hashes in the blocks. Embedding uncles contributes to
a more accurate estimation of the network hash rate, thus
contributing to the system’s selfish mining resistance. Even
a single honest block can report all previously unreported
uncles in the same epoch. Note that our uncle’s definition
differs from that of Ethereum’s deprecated PoW version [17]
in that our uncle’s validity does not consider how far away
the uncle and the nephew’s first common ancestor is. The
reward distribution regarding uncles is also different from
that of Ethereum. Our design issues neither uncle rewards to
compensate uncle miners, nor nephew rewards to incentivize
miners to embed uncles. This is because uncle and nephew
rewards raise the selfish mining profit and lower the mining
power threshold to perform the attack [18], [19].

In the following, two versions of the modified DAM are
introduced. These two versions differ from each other in their

definition of the epoch, the period at the end of which the
DAM is applied. Note that our modified DAMs are nearly the
same as the DAM introduced in [12], with the difference that
our modified DAMs only incorporate the orphan blocks that
satisfy Definition 3. In the remainder of this paper, we use the
terms uncle and orphan blocks interchangeably.

B. Modified DAM with a fixed total number of blocks per
epoch

Let L denote the length of each epoch in the current version
of Bitcoin DAM, i.e., L = 2016. In this version of the modified
DAM, denoted by DAMmodified

1 , an epoch is defined as an
interval of rounds in which a set of L blocks (comprising both
main-chain and orphan blocks) are mined and subsequently
reported in the main chain. Let CNTmain-chain

i , CNTorphan
i ,

and CNTtotal
i denote the number of main-chain blocks, the

number of orphan blocks embedded in the main chain, and
the total number of both main-chain and reported orphan
blocks mined during epoch i, respectively. Note that if
assuming that all the orphan blocks are reported, the ratio
CNTmain-chain

i /(CNTorphan
i + CNTmain-chain

i ) represents
the epoch’s effective main-chain power, i.e., Mmain-chain.
According to the definition of epoch in DAMmodified

1 , we
have CNTtotal

i = L and CNTmain-chain
i ≤ L. This indicates

that in DAMmodified
1 , the total number of blocks mined

per epoch is fixed; however, the total amount of distributed
reward per epoch can vary across different epochs.

Inputs and outputs. Similar to the Bitcoin DAM, our modi-
fied DAM is executed at the end of every epoch. It takes two
inputs: the last epoch’s target denoted by TGTi and the last
epoch’s duration—the timestamp difference between epoch i
and i − 1’s last blocks—denoted by ti. Note that TGTi is
decided by the last DAM iteration, and ti is measured after
the epoch ends. The algorithm outputs the next epoch’s target
denoted by TGTi+1.

To adjust the target TGT based on the network hash rate, the
modified DAMmodified

1 is triggered at the end of each epoch
as follows:

TGTi+1 =


TGTi · 1

τ , ti <
1
τ · tideal

TGTi · τ, ti > τ · tideal

TGTi · ti
tideal

, otherwise

, (20)

where i is the epoch number, and τ is a dampening filter to
prevent rapid changes of TGT. Similar to the Bitcoin DAM,
we assume tideal for DAMmodified

1 is two weeks.

C. Modified DAM with a fixed number of main-chain blocks
per epoch

We use the same notations as those introduced in the
DAMmodified

1 explanation. In this version of the modified
DAM, denoted by DAMmodified

2 , an epoch is defined as an
interval of rounds in which a set of L consecutive blocks
is added to the main chain. According to the definition of
epoch in DAMmodified

2 , we have CNTmain-chain
i = L and

CNTtotal
i ≥ L. This indicates that in DAMmodified

2 , the total
amount of distributed reward per epoch is fixed; however,
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the total number of blocks mined per epoch may vary across
different epochs.

Inputs and outputs. The modified DAM takes three inputs:
the last epoch’s target denoted by TGTi, the last epoch’s
duration—the timestamp difference between epoch i and i−1’s
last blocks—denoted by ti, and the last epoch’s orphaned
block count—the number of uncles embedded in epoch i’s
main chain—denoted by CNTorphan

i . Among these inputs,
TGTi is decided by the last DAM iteration, while ti and
CNTorphan

i are measured after the epoch ends.
To adjust the target TGT based on the network hash rate, the

modified DAMmodified
2 is triggered at the end of each epoch

as follows:

TGTi+1 =


TGTi · 1

τ , ti <
1
τ · T

TGTi · τ, ti > τ · T
TGTi · ti

T , otherwise

, (21)

where tideal is two weeks, and period T is defined as follows:

T =
CNTorphan

i + CNTmain-chain
i

CNTmain-chain
i

· tideal (22)

In both versions of the modified DAM, in addition to the
main-chain blocks, the count of orphan blocks is considered
in the calculation of the mining target. In the remainder of the
paper, whenever we want to refer to a DAM that incorporates
the orphan blocks, we will use the term ”the modified DAM”
without explicitly indicating its exact version.

D. Normal selfish mining under the modified DAM

In this section, we analyze the normal selfish mining prof-
itability under the modified DAM. By normal selfish mining
attack, we mean that the attacker follows the selfish mining
strategy continuously for all the epochs.

1) Analysis under DAMmodified
1 : We first obtain the av-

erage revenue gained by the attacker in each epoch and his
mining cost. Note that due to the selfish mining attack and
the definition of epoch in DAMmodified

1 , the average number
of main-chain blocks in each epoch is equal to Mmain-chain

SM L.
As a result, the total amount of distributed reward per epoch
is equal to Mmain-chain

SM LK.

RA(epochi) = RelRev
(
πSM
)
·Mmain-chain

SM LK ,

CA(epoch) = αAcA · t(epochi) .
(23)

Then, we calculate the epoch duration. Note that Mtotal
i−1 =

Mtotal
i = 1. According to the design of DAMmodified

1 , the
duration of each epoch can be calculated as follows.

t(epochi) = tideal ·
Mtotal

i−1

Mtotal
i

=
L

λ
. (24)

Therefore, the time-averaged profit of normal selfish mining
under DAMmodified

1 is equal to:

ProfitA(π
SM,DAMmodified

1 ) =

λK
(
RelRev

(
πSM
)
Mmain-chain

SM

)
− αAcA .

(25)

2) Analysis under DAMmodified
2 : According to the defi-

nition of epoch in DAMmodified
2 , the number of main-chain

blocks and the total amount of distributed reward in each epoch
are equal to L and LK, respectively. Therefore, the average
revenue gained by the attacker in each epoch and his mining
cost can be obtained as follows:

RA(epochi) = RelRev
(
πSM
)
· LK ,

CA(epoch) = αAcA · t(epochi) .
(26)

To calculate the epoch duration, one should consider that
Mtotal

i−1 = 1 and Mmain-chain
i = Mmain-chain

SM . According
to the design of DAMmodified

2 , the duration of each epoch can
be calculated as follows.

t(epochi) = tideal ·
Mtotal

i−1

Mmain-chain
i

=
L

λMmain-chain
SM

. (27)

Therefore, the time-averaged profit of normal selfish mining
under DAMmodified

2 is equal to:

ProfitA(π
SM,DAMmodified

2 ) =

λK
(
RelRev

(
πSM
)
Mmain-chain

SM

)
− αAcA .

(28)

3) Profitability of normal selfish mining under the modified
DAM: As can be seen in equations 25 and 28, the time-
averaged profit of normal selfish mining under both versions
of the modified DAM is the same. In this section, we show
that the time-averaged profit of normal selfish mining under
the modified DAM is less than the honest strategy time-
averaged profit, which can be calculated as ProfitA(π

H) =
λKαA − αAcA. To prove this claim, we need to show that:

RelRev
(
πSM
)
Mmain-chain

SM ≤ αA . (29)

Let Mmain-chain
SM,A and Mmain-chain

SM,H denote the normalized
adversarial and honest mining power share extending the main
chain during the selfish mining attack, respectively. Therefore,
the total power share extending the main chain during the at-
tack is equal to Mmain-chain

SM = Mmain-chain
SM,A +Mmain-chain

SM,H .
The attacker’s relative revenue under selfish mining can be
obtained as follows:

RelRev
(
πSM
)
=

Mmain-chain
SM,A

Mmain-chain
SM,A +Mmain-chain

SM,H
. (30)

Therefore,

RelRev
(
πSM
)
Mmain-chain

SM = Mmain-chain
SM,A . (31)

Note that due to the selfish mining attack, some of the adver-
sarial blocks may get orphaned, and as a result Mmain-chain

SM,A ≤
αA. This proves the correctness of equation 29.

VI. SMART INTERMITTENT SELFISH MINING (VERSION 2)

In the previous section, we showed that the normal selfish
mining attack is unprofitable under the modified DAM. In
this section, we present a new version of the selfish mining
attack called smart intermittent selfish mining (version 2),
which can be profitable even under the modified version of
DAM. This attack can be considered as the combination of
smart mining [15] and ISM. In the smart intermittent selfish
mining (version 2) denoted by SISM2, during epocheven ∈
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{epoch0,epoch2, · · · }, attacker A divides his mining power
share αA into two parts: the idle mining power and the
honest mining power. We assume the attacker’s idle mining
power share and honest mining power share are equal to
eαA and (1 − e)αA, where 0 ≤ e ≤ 1. However, during
epochodd ∈ {epoch1,epoch3, · · · }, attacker A uses all his
mining power share to perform selfish mining. Our goal is to
show that SISM2 can be more profitable than honest mining
under the modified DAM. Note that for the analysis of this
section, we assume that all the orphan blocks are reported,
and thus, incorporated in the modified DAM.

A. Analysis under DAMmodified
1

The average revenue gained by the attacker in epocheven
and his mining cost in epocheven can be obtained as follows:

RA(epocheven) =
(1− e)αA

1− eαA
· LK ,

CA(epocheven) = (1− e)αAcA · t(epocheven) .

(32)

Note that due to the selfish mining in epochodd and the
definition of epoch in DAMmodified

1 , the number of main-
chain blocks in epochodd is equal to Mmain-chain

SM L. As a
result, the total amount of distributed reward in epochodd is
equal to Mmain-chain

SM LK. The average revenue gained by the
attacker in epochodd and his mining cost in epochodd can
be obtained as follows.

RA(epochodd) = RelRev
(
πSM
)
·Mmain-chain

SM LK ,

CA(epochodd) = αAcA · t(epochodd) .
(33)

Note that Mtotal
odd = 1 and Mtotal

even = 1− eαA. According to
the design of DAMmodified

1 , the duration of epocheven and
epochodd can be calculated as follows:

t(epocheven) = tideal · M
total
odd

Mtotal
even

=
L

λ(1− eαA)
, (34)

and

t(epochodd) = tideal · M
total
even

Mtotal
odd

=
L(1− eαA)

λ
. (35)

Therefore, the time-averaged profit of SISM2 under
DAMmodified

1 is equal to:

ProfitA(π
SISM2,DAMmodified

1 ) =

λK
(
RelRev

(
πSM
)
Mmain-chain

SM + (1−e)αA
1−eαA

)
1− eαA + 1

1−eαA

+
eαAcA · 1

1−eαA

1− eαA + 1
1−eαA

− αAcA .

(36)

B. Analysis under DAMmodified
2

The average revenue gained by the attacker in epocheven
and his mining cost in epocheven can be obtained as follows:

RA(epocheven) =
(1− e)αA

1− eαA
· LK ,

CA(epocheven) = (1− e)αAcA · t(epocheven) .

(37)

According to the definition of epoch in DAMmodified
2 ,

the number of main-chain blocks and the total amount of
distributed reward in epochodd are equal to L and LK,
respectively. The average revenue gained by the attacker in
epochodd and his mining cost in epochodd can be obtained
as follows.

RA(epochodd) = RelRev
(
πSM
)
· LK ,

CA(epochodd) = αAcA · t(epochodd) .
(38)

Note that Mtotal
odd = 1 and Mtotal

even = 1− eαA. According to
the design of DAMmodified

2 , the duration of epocheven and
epochodd can be calculated as follows:

t(epocheven) = tideal · Mtotal
odd

Mmain-chain
even

=
L

λ(1− eαA)
,

(39)
and

t(epochodd) = tideal · Mtotal
even

Mmain-chain
odd

=
L(1− eαA)

λMmain-chain
SM

.

(40)
Therefore, the time-averaged profit of SISM2 under
DAMmodified

2 is equal to:

ProfitA(π
SISM2,DAMmodified

2 ) =

λK
(
RelRev

(
πSM
)
+ (1−e)αA

1−eαA

)
+ eαAcA · 1

1−eαA

1−eαA
Mmain-chain

SM
+ 1

1−eαA

− αAcA .

(41)

C. Profitability of SISM2 under the modified DAM

In this section, we show that SISM2 can be more profitable
than honest mining even under the modified DAM (when the
orphan blocks are reported). We first define the profitability
advantage of strategy π, which is denoted by Padv(π), as
follows:

Padv(π) :=
ProfitA(π)− ProfitA(π

H)

λK
. (42)

Padv(π) > 0 indicates that strategy π is more profitable than
honest mining. Depending on the profitability factor ωA, the
mining power share αA, the communication capability γA, and
the version of the modified DAM, the amount of attacker’s
idle mining power share in epocheven that maximizes the
SISM2 time-averaged profit may vary. The maximum amount

Fig. 2. Profitability advantage of SISM2 under DAMmodified
1
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Fig. 3. Profitability advantage of SISM2 under DAMmodified
2

of profitability advantage of SISM2 under DAMmodified
1 and

under DAMmodified
2 are depicted in Figure 2 and Figure 3,

respectively. These figures represent the profitability advantage
as a function of αA and ωA for two distinct values of
communication capability. Note that to draw these figures, we
have used the optimal selfish mining strategy [5] to calculate
the attacker’s relative revenue and main-chain effective power
in epochodd. As can be seen, at some points in the maps
depicted in Figure 2 and Figure 3, Padv(πSISM2) > 0, showing
that selfish mining can be profitable even when the orphan
blocks are incorporated into the DAM.
Intuition behind SISM2 profitability SISM2 profitability lies
in the fact that the idle mining power in epocheven results in
a decrease in the mining difficulty of epochodd. As a result,
the attacker can mine a new block in a shorter period of time
during epochodd, which leads to collecting a greater reward.
If the extra collected reward in epochodd can compensate
for the loss of being idle in epocheven, the attack becomes
profitable. For the attackers whose profitability factor ωA is
relatively low, being idle does not cause a huge profit loss,
and consequently, SISM2 can be more profitable than honest
mining. At the time of writing on February 26, 2024, the
average Bitcoin profitability factor is equal to 1.071 [20].
In Appendix C, we show that under DAMmodified

1 , SISM2
cannot be more profitable than smart honest mining [15], in
which the miner switches between honest mining and being
idle. However, under DAMmodified

2 , SISM2 can even be more
profitable than smart honest mining.

VII. ORPHAN EXCLUSION ATTACK

As already shown in the previous section, an intelligently
executed selfish mining attack can be more profitable than
honest mining even if orphan blocks are considered in the
DAM. In the analysis of the previous section, we have as-
sumed that all the orphan blocks get reported by the honest
miners and subsequently incorporated in the modified DAM.
However, the attacker can impose an attack, we refer to as
the orphan exclusion attack (OEA), that stops honest miners
from reporting some of the orphan blocks. By performing the
orphan exclusion attack, a selfish miner can increase his time-
averaged profit under the modified DAM. In this section, we
explain the orphan exclusion attack and try to analyze for how
long the attacker can prevent the honest miners from reporting
the orphan blocks.

A. The attack explanation

In this attack, the attacker tries to orphan a set of consecutive
honest blocks at the end of each epoch including the last honest
block of the epoch. Whenever a few blocks are left to the end
of each epoch, the attacker starts orphaning the public chain.
To do so, the attacker separates his private chain from the
public chain, i.e., forks the public chain, and tries to extend
his private chain. The attack is considered to be successful if
the following two conditions are satisfied:

1) Starting from the fork point, the attacker’s private chain
manages to orphan the public chain.

2) The last block of the epoch is included in the attacker’s
private chain.

By performing this attack, the attacker manages to orphan
some of the honest blocks that will never be reported inside
the other honest blocks of the main chain. The scenario of
the orphan exclusion attack is depicted in Figure 4. Assume
the attacker starts the attack when LOEA

1 blocks are left to
the end of epoch i and manages to orphan the public chain
after LOEA blocks, where LOEA

1 ≤ LOEA. We use LOEA to
denote the length of the orphan exclusion attack. As a result
of the attack, LOEA

1 blocks get orphaned at the end of epoch i.
Because there is no honest block included in the main chain
from the start of the attack till the end of epoch i, these LOEA

1

orphaned honest blocks cannot be reported and consequently
cannot be incorporated in the DAM deciding the difficulty of
epoch i + 1. In addition, if assuming LOEA = LOEA

1 + LOEA
2 ,

the attacker manages to orphan LOEA
2 honest blocks at the

start of epoch i + 1. According to condition (3) in the uncle
definition, prior to reporting the LOEA

2 honest blocks orphaned
at the start of epoch i + 1, the honest miners should report
their ancestors, i.e., the LOEA

1 honest blocks orphaned at the
end of epoch i. However, according to condition (1) in the
uncle definition, the honest blocks in epoch i+1 cannot report
the orphaned blocks of the previous epochs. As a result, these
LOEA
2 orphaned honest blocks cannot be reported by the honest

blocks in epoch i+1 and consequently cannot be incorporated
in the DAM deciding the difficulty of epoch i+2. Therefore,
by imposing a successful orphan exclusion attack, in total,
LOEA orphaned honest blocks cannot be reported in the current
and next epochs. The orphan exclusion reduces the mining
difficulty calculated by the modified DAM in favor of the
attacker, which can result in an increase in the selfish mining
time-averaged profit.

Fig. 4. Orphan exclusion attack
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The attacker should decide on the starting and ending time
of the orphan exclusion attack. The greater the length of the
orphan exclusion attack, the more profitable the selfish mining.
However, increasing the length of the orphan exclusion attack
reduces the success probability of the attack. Assume the
attacker starts the attack when a few blocks are left to the end
of an epoch. If during the attack until the end of the epoch, the
attacker’s private chain always has a lead over the public chain,
the attacker can easily orphan the public chain and finish the
attack successfully. However, there is a possibility that in the
middle of the attack and before reaching the end of the epoch,
the public chain gets a lead over the attacker’s private chain. In
this situation, the attacker should decide whether he wants to
continue mining on top of his private chain or stop the orphan
exclusion attack and join the public chain. On the one hand, if
the attacker decides to stop the attack before reaching the end
of the epoch, regardless of whether he managed to orphan the
honest blocks or not, the attack cannot cause a reduction in
the difficulty level specified by the upcoming modified DAM
because the remaining honest blocks added to the main chain
before the end of the epoch can report the orphaned blocks.
On the other hand, if the attacker decides to continue mining
on top of his private chain, he will risk losing more blocks.
Therefore, the attacker should devise a strategy for the orphan
exclusion attack that can maximize the length of the orphan
exclusion attack.

In the remainder of the paper, we aim to calculate the at-
tacker’s time-averaged profit under the modified DAMs while
performing both selfish mining and orphan exclusion attacks.
The first step towards calculating the attacker’s time-averaged
profit is to calculate the length of the orphan exclusion attack.
This length represents the period during which the attacker can
prevent the honest miners from adding an honest block to the
blockchain and reporting the orphaned blocks. It is obvious
that if the attacker’s mining power is less than the honest
miners’, the attacker cannot continue orphaning all the honest
blocks forever, and there will be an honest block that gets
added to the blockchain and terminates the orphan exclusion
attack [21]. Note that the concept of honest block exclusion is
similar to the suppression concept introduced in [22], where
the attacker tries to suppress the honest blocks and put them
out of the main chain. While the authors in [22] have focused
on calculating the number of suppressed honest blocks, in this
paper, we try to find the length of consecutive suppressed
honest blocks.

B. The length of the orphan exclusion attack under
DAMmodified

1

In this section, we aim to calculate the average length of the
orphan exclusion attack performed by attacker A at the end of
each epoch under the modified DAMs. To calculate the length
of the longest possible orphan exclusion attack, we assume
attacker A enjoys the highest communication capability and
can predict future block miners. We first explain the impact
of communication capability and predictability on the orphan
exclusion attack.

Definition 4 (Mining sequence). A mining sequence, which
is denoted by S, is an ordered list of blocks that specifies
the miner of each block. BH

i (BA
i ) is used to represent the

ith honest (adversarial) block in the mining sequence S. The
blocks in S are ordered by the time at which they are mined.

Note that not all the blocks of S are included in the main
chain since some of them may get orphaned. We assume all
the orphans in S are caused by the attack, namely, there is no
naturally orphaned block in S. We first explain the predictive
capability.
Predictive capability: The attacker can predict the elements
of mining sequence S in advance. In other words, the attacker
knows which of the upcoming blocks are mined either by
himself or by the honest miners.

Note that, in Bitcoin, no miner knows who is the next
block proposer until they solve the puzzle or receive a new
block from the blockchain network, i.e., no miners enjoy
the predictive capability. In Appendix D, we discuss how
an attacker without the predictive capability can perform the
OEA attack. In this section, to calculate the maximum length
of the orphan exclusion attack, we assume that A enjoys
the predictive capability and his communication capability
(γA) is equal to 1. We argue that in such a scenario, A
can impose the longest possible orphan exclusion attack at
the end of each epoch. Possessing the predictive capabil-
ity helps A not only to successfully finish all the orphan
exclusion attacks but to impose the longest possible attack
at the end of each epoch. Consider the mining sequence
S = {BH

1 , B
A
1 , BH

2 , B
H
3 , B

A
2 , BA

3 , BA
4 , BH

4 , B
H
5 , · · · } depicted

in Figure 5. Assume a real-world attacker, who has mined
block BA

1 , decides to keep the block secret and start the orphan
exclusion attack. Since the next block, i.e., BH

2 , is mined by the
honest miners, the block race situation occurs. In this case, the
real-world attacker should decide whether he wants to publish
block BA

1 or continue the orphan exclusion attack. Continuing
the attack can increase the risk of losing mined blocks for the
real-world attacker. However, since A is aware of the mining
sequence, he knows he will eventually win the chain race and
successfully finish the attack. Therefore, at the end of each
epoch, A either does not start the orphan exclusion attack or
imposes a successful one. Moreover, at the end of each epoch,
there is a possibility that an attacker can impose successful
orphan exclusion attacks of different lengths. For instance,

Fig. 5. Comparison of the orphan exclusion attack imposed by a real-world
attacker and A
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TABLE I
THE LENGTH OF THE ORPHAN EXCLUSION ATTACK

mining power share 0.25 0.3 0.35 0.4 0.45

LOEA (DAMmodified
1 ) 1.45 2.99 6.83 18.36 87.02

LOEA (DAMmodified
2 ) 15.48 23.87 40.02 78.67 225.79

assume after block BH
5 , there exist a long set of consecutive

blocks mined by honest miners. In this scenario, the attacker
can start a successful orphan exclusion attack both at block
BA

1 and block BA
2 . However, the length of the former attack

is equal to 4 and the length of the latter one is equal to 3.
This shows that A can specify the start and end points of the
attack in a way that maximizes the length of the attack. Having
γA = 1 helps A to orphan the maximum possible number of
honest blocks (the same number as the orphan exclusion attack
length).

A comprehensive analysis for calculating the length
of the orphan exclusion attack under DAMmodified

1 and
DAMmodified

2 are presented in Appendix E and Appendix F,
respectively. Table I presents the average length of the or-
phan exclusion attack under DAMmodified

1 and DAMmodified
2

performed by attacker A, who enjoys the predictive capabil-
ity and the highest possible communication capability. The
results presented in Table I show that the length of orphan
exclusion attack under DAMmodified

2 is longer than that under
DAMmodified

1 . This indicates that selfish mining accompanied
by the orphan exclusion attack can be more profitable under
DAMmodified

2 compared to that under DAMmodified
1 .

VIII. SELFISH MINING ACCOMPANIED BY THE ORPHAN
EXCLUSION ATTACK

In this section, we aim to assess the effect of the orphan
exclusion attack on selfish mining profitability under the
modified DAM. As shown in Section V-D, the normal selfish
mining attack in which the attacker follows selfish mining
continuously for all the epochs is not profitable under the
modified DAM. Here, we show that applying the orphan
exclusion attack can make the normal selfish mining attack
profitable under the modified DAM. For our analysis in this
section, we assume that the attacker manages to perform a
successful orphan exclusion attack at the end of each epoch,
where the attack length is denoted by LOEA. This indicates
that the last LOEA blocks of the main chain in each epoch
are adversarial, and LOEA honest blocks get orphaned without
being reported in each epoch.

A. Analysis under DAMmodified
1

We first calculate the average revenue gained by the attacker
in each epoch and his mining cost. Note that out of the first
Lepoch−LOEA blocks of the epoch, only Mmain-chain

SM (Lepoch−
LOEA) blocks are added to the main chain, out of which
RelRev

(
πSM
)
Mmain-chain

SM (Lepoch −LOEA) blocks are adver-

sarial. The last LOEA blocks of the epoch that are added to the
main chain are adversarial blocks.

RA(epochi) =

RelRev
(
πSM
)
Mmain-chain

SM (Lepoch − LOEA)K + LOEAK ,

CA(epochi) = αAcA · t(epochi) .
(43)

According to the design of the modified DAM introduced
in section V-B, the target of epochi can be calculated as
follows:

TGTi = TGTi−1
t(epochi−1)

tideal
. (44)

Since the total amount of mining power and the miners’ strat-
egy are consistent throughout the whole epochs, the duration
and the mining target of all the epochs would be the same, i.e.,
TGTi = TGTi−1 and t(epochi) = t(epochi−1). Therefore,
by using equation 44, the duration of each epoch can be
calculated as follows:

t(epochi) = tideal =
Lepoch

λ
. (45)

Therefore, the time-averaged profit of normal selfish min-
ing accompanied by the orphan exclusion attack under
DAMmodified

1 is equal to:

ProfitA(π
SM-OEA,DAMmodified

1 ) =

λK
(
RelRev

(
πSM
)
Mmain-chain

SM

(Lepoch − LOEA

Lepoch

)
+

LOEA

Lepoch

)
− αAcA .

(46)
B. Analysis under DAMmodified

2

We first calculate the average revenue gained by the attacker
in each epoch and his mining cost. Note that out of the first
Lepoch−LOEA main-chain blocks, only RelRev

(
πSM
)
(Lepoch−

LOEA) blocks are adversarial. The last LOEA blocks of the main
chain are adversarial blocks.

RA(epochi) = RelRev
(
πSM
)
(Lepoch − LOEA)K + LOEAK ,

CA(epochi) = αAcA · t(epochi) .
(47)

According to the design of the modified DAM introduced
in section V-C, the target of epochi can be calculated as
follows:

TGTi = TGTi−1
t(epochi−1)

CNTorphan-total
i +Lepoch−LOEA

Lepoch
tideal

, (48)

where CNTorphan-total
i represents the total number of both

reported and non-reported orphan blocks in epochi. Since
the total amount of mining power and the miners’ strategy
are consistent throughout the whole epochs, the duration and
the mining target of all the epochs would be the same, i.e.,
TGTi = TGTi−1 and t(epochi) = t(epochi−1). Therefore,
by using equation 48, the duration of each epoch can be
calculated as follows:

t(epochi) =
CNTorphan-total

i + Lepoch − LOEA

Lepoch
tideal .

(49)
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Fig. 6. The profitability advantage of strategy πSM-OEA under the modified
DAM

As Mmain-chain
SM =

Lepoch

CNTorphan-total
i +Lepoch

, we have:

t(epochi) =
Lepoch −Mmain-chain

SM LOEA

Mmain-chain
SM Lepoch

·
Lepoch

λ
. (50)

Therefore, the time-averaged profit of normal selfish min-
ing accompanied by the orphan exclusion attack under
DAMmodified

2 is equal to:

ProfitA(π
SM-OEA,DAMmodified

2 ) =

λK
( Mmain-chain

SM Lepoch

Lepoch −Mmain-chain
SM LOEA

)
×(

RelRev
(
πSM
)(Lepoch − LOEA

Lepoch

)
+

LOEA

Lepoch

)
− αAcA .

(51)

C. Profitability of normal selfish mining accompanied by the
orphan exclusion attack under the modified DAM

Due to the orphan exclusion attack, the mining difficulty of
the subsequent epoch decreases, which results in an increase
in selfish mining profitability. In Figure 6, the profitability
advantage of normal selfish mining accompanied by the orphan
exclusion attack is depicted as a function of epoch length
Lepoch for the attacker with αA = 0.4 and γA = 1 under both
versions of the modified DAM. As can be seen in Figure 6,
Padv(πSM-OEA) > 0, indicating that the normal selfish mining
attack can be profitable even if the orphans are incorporated
in the DAM. Additionally, it can be observed that a reduction
in the epoch length can result in a more destructive selfish
mining attack. This highlights a trade-off in the design of the
DAM between resistance to selfish mining and sensitivity to
hash rate fluctuations.

IX. DISCUSSION

There has been a significant debate surrounding selfish
mining, one of the most influential attacks against Bitcoin,
regarding its lack of occurrence. Although it is proved that
selfish mining in Bitcoin under the current DAM is profitable,
Bitcoin has been running smoothly without strong evidence of

this attack for almost a decade. In fact, we have high confi-
dence that the attack has not happened because the observable
orphan rate is relatively low. This raises the question of
why miners have refrained from deploying the selfish mining
attack despite its potential profitability. The most influential
argument is miners’ goodwill to keep the network secure [23].
Although a miner can gain a greater amount of cryptocurrency
(reward) on average by performing the selfish mining attack,
due to the decrease in the cryptocurrency price caused by the
detection of the attack, the miner cannot obtain a financial
profit. However, if the attacker manages to perform selfish
mining with an acceptable forking rate, the attack cannot be
detected easily [24]. Additionally, it may happen that with
the passage of time and updating the underlying protocols,
the cryptocurrency can recover its price, making the reward
gathered by selfish mining in the past valuable again.

Although we argued that selfish mining can still be prof-
itable even when the orphans are incorporated in the DAM,
as can be seen in Figure 6, the modified versions of the
DAM introduced in this paper can significantly limit the
increase in the real-world attacker’s selfish mining time-
averaged profit, especially when the epoch length is relatively
long. The absence of the selfish mining attack in Bitcoin so
far is not sufficient evidence to dismiss the possibility of its
occurrence in the future. Therefore, implementing a solution
to defend against selfish mining can be a reasonable decision
provided that the overhead caused by the proposed solution
does not exceed its benefits. Compared to the Bitcoin DAM,
the modified DAM imposes higher communication and storage
costs to the Bitcoin network because referring to orphans in the
honest blocks would increase the block size. However, firstly
since only the hash of orphan blocks is reported, and secondly,
due to the very low forking rate in the normal situation, the
added network and storage costs by the modified DAM would
be negligible. Therefore, by applying the modified DAM, at
the cost of a very small increase in communication and storage
costs, we can significantly decrease selfish mining profitability.

As a comparison between two versions of the modified
DAM introduced in this paper, it is worth mentioning that
under DAMmodified

1 , the smart intermittent selfish mining
(version 2) profitability cannot surpass smart honest mining
profitability. However, under DAMmodified

2 , SISM2 profitabil-
ity can surpass smart honest mining profitability. Moreover,
the average length of the orphan exclusion attack under
DAMmodified

1 is less than that under DAMmodified
2 . There-

fore, between these two versions of the modified DAM,
DAMmodified

1 seems to be the superior choice to implement.
Although it is shown in this paper that the modified DAM

is relatively secure against selfish miners, it is advisable
to formally analyze the behavior of the modified DAM in
the presence of Byzantine adversaries to strongly justify the
modified DAM adoption beyond its help with mitigating the
selfish mining attack. In this paper, we tried to carefully define
the uncle block properties in a way that mitigates Byzantine
behaviors. As a future work, one can use the Bitcoin back-
bone model introduced in [25] to demonstrate that under the
introduced modified DAM and uncle block definition, Bitcoin
can satisfy common-prefix and chain-quality properties.
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Note that in this paper, we analyzed selfish mining prof-
itability under period-based difficulty adjustment mechanisms.
By period-based, we mean that the DAM is applied at the
end of a fixed period [14]. However, there exist other types of
difficulty adjustment mechanisms such as DAMs with a sliding
window that can be modified to incorporate the orphan blocks.
Note that the orphan exclusion attack introduced in this paper
is not specific to period-based DAMs and can also be applied
to DAMs with a sliding window. As a future work, one can
analyze selfish mining profitability under a DAM with a sliding
window that incorporates the orphan blocks.

X. CONCLUSION

While it was widely believed that incorporating the count
of the orphan blocks in the difficulty adjustment mechanism
of Bitcoin can make selfish mining unprofitable, in this paper,
we disproved the mentioned belief by proposing two attacks:
the smart intermittent selfish mining attack and the orphan
exclusion attack. These two attacks make selfish mining more
profitable compared the the honest strategy even when the
orphan blocks are incorporated in the DAM. In this paper, we
calculated the profitability of different selfish mining strategies
under different DAMs. Besides, to analyze the effect of the
orphan exclusion attack on the profitability of selfish mining,
we used probability analysis and combinatorial tools to cal-
culate bounds for the length of the orphan exclusion attack.
Knowing the orphan exclusion attack length, we obtained the
timed-averaged profit of selfish mining accompanied by the
orphan exclusion attack under the modified DAMs.
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APPENDIX A
SELFISH MINING STRATEGIES

A. Eyal and Sirer’s selfish mining strategy

The authors in [4] presented the first selfish mining strategy
πSM1 that increases the attacker’s relative revenue. In this
paper, the Markov chain is used to analyze the strategy πSM1.
Let lA and lH denote the length of the attacker’s chain and
the length of the honest chain, respectively. The set of actions
is composed of four different actions, which are adopt,
overwrite, match, and wait. adopt means the selfish
miner leaves his secret chain and continues mining on top
of the honest chain. overwrite represents that the attacker
publishes his secret chain that is longer than the honest chain.
match means once the honest miners mine a new block, the
attacker publishes a conflicting block with the same height.
And finally, wait means that the attacker continues mining
on top of his secret chain. The attacker’s strategy is as follows:

• lH > lA: adopt
• lH = lA = 1: match
• lH = lA − 1 ≥ 1: overwrite
• Otherwise: wait

Formulas for calculating the attacker’s relative revenue
RelRevA(π

SM1) and the effective active mining power
Mmain-chain

SM1 are presented in [4].

B. Optimal selfish mining

The optimal selfish mining strategy πOSM introduced in [5]
aims to maximize the attacker’s relative revenue. The authors
have used Markov Decision Process (MDP) to find the optimal
strategy. Each state of selfish mining can be represented using
a tuple (lA, lH,fork), where lA denotes the length of the
attacker’s chain, lH is the length of the honest chain, and fork
gives information regarding the miner of the latest block. The
set of actions is similar to πSM1. The implementation presented
in [26] can be used to calculate the attacker’s relative rev-
enue RelRevA(π

OSM) and the effective active mining power
Mmain-chain

OSM .

APPENDIX B
BITCOIN DAM

To mine a new block, miners try to find a nonce for
which the block hash is smaller than a target TGT, which
is computed by the last iteration of DAM at the end of the
previous epoch. DAM aims to maintain the block production
rate constant, which results in relatively stable transaction
throughput regardless of the total mining power available in
the network.

To adjust the target TGT based on the network hash rate,
a DAM is triggered after every epoch of Lepoch main-chain
blocks [25]:

TGTi+1 =


TGTi · 1

τ , ti <
1
τ · tideal

TGTi · τ, ti > τ · tideal

TGTi · ti
tideal

, otherwise

, (52)

where i is the epoch number, tideal is the ideal time duration
of an epoch, τ is a dampening filter to prevent rapid changes

of TGT, and ti is the actual time duration of the last epoch,
as reported in the blocks. In Bitcoin, Lepoch = 2016, τ = 4,
and tideal is two weeks.

APPENDIX C
COMPARISON BETWEEN SISM2 AND SHM

In the smart honest mining [15] denoted by SHM, during
epocheven, attacker A divides his mining power into two
parts: the idle mining power and the honest mining power.
We assume the attacker’s idle mining power share and honest
mining power share are equal to eαA and (1 − e)αA, where
0 ≤ e ≤ 1. However, attacker A mines honestly in epochodd.
Therefore, the SHM time-averaged profit is equal to:

ProfitA(π
SHM) =

λK
(
αA + (1−e)αA

1−eαA

)
+ eαAcA · 1

1−eαA

1− eαA + 1
1−eαA

− αAcA .
(53)

If the attacker enjoys the highest possible communication
capability γA = 1, SISM2 time-averaged profit under
DAMmodified

1 is the same as smart honest mining time-
averaged profit obtained in equation 53. However, if attacker
enjoys the highest possible communication capability γA = 1,
SISM2 time-averaged profit under DAMmodified

2 is equal to:

ProfitA(π
SISM2,DAMmodified

2 ) =

λK
(

αA
1−αA

+ (1−e)αA
1−eαA

)
+ eαAcA · 1

1−eαA

1−eαA
1−αA

+ 1
1−eαA

− αAcA .
(54)

For all the values of e greater than zero, we have:
ProfitA(π

SISM2,DAMmodified
2 ) > ProfitA(π

SHM). The
intuitive reason is that the relative revenue gained in
epocheven and the duration of epocheven are the same
in both strategies. Therefore, the key difference lies in
epochodd. The time-averaged profit during epochodd is the
same for both strategies. However, the duration of epochodd
in SISM2 under DAMmodified

2 is longer than that in SHM.
Since the time-averaged profit during epochodd is greater
than that during epocheven, the longer duration of epochodd
in SISM2 under DAMmodified

2 makes SISM2 more profitable
than smart honest mining.

APPENDIX D
ORPHAN EXCLUSION ATTACK PERFORMED BY A

REAL-WORLD ATTACKER

Let A be an attacker who does not possess the predictive
capability. To perform the orphan exclusion attack, attacker A
follows the subsequent strategy:

• Keep the adversarial chain secret whenever the length
of the adversarial chain is greater than the length of the
honest chain.

• Publish the adversarial chain once the length of the honest
chain becomes equal to the length of the adversarial
chain.

If the attacker’s communication capability γA is equal to 1,
the attacker does not risk losing any blocks while performing



15

the orphan exclusion attack. If the epoch end is placed in
the middle of one of the chain race iterations, the attack is
considered to be successful.

APPENDIX E
THE ORPHAN EXCLUSION ATTACK LENGTH UNDER

DAMMODIFIED
1

As the first step toward obtaining the orphan exclusion
attack length, we define the terms ”chain race” and ”longest
dominant chain”.

Definition 5 (Chain race). For two adversarial blocks
BA

i , BA
j ∈ S, where i ≤ j, the chain race started at BA

i

and ended at BA
j is the race between A’s private chain and

the public chain that satisfies the following properties:
• Before BA

i , both the private chain and the public chain
share the same chain denoted as C⌈BA

i .
• A’s private chain is C⌈BA

i ||{BA
i , · · · , BA

j }, where
{BA

i , · · · , BA
j } is the set of consecutive adversarial

blocks in mining sequence S starting at BA
i and ending

at BA
j .

• The public chain is C⌈BA
i ||{BH

i′ , · · · , BH
j′}, where

{BH
i′ , · · · , BH

j′} is the set of consecutive honest blocks
in mining sequence S starting at BH

i′ and ending at BH
j′ ,

where BH
i′ as well as BH

j′ are respectively the first honest
block after BA

i and the last honest block before BA
j in

S.
We say A wins the chain race starting at BA

i and ending at
BA

j if the length of the set {BA
i , · · · , BA

j } is grater than the
length of the set {BH

i′ , · · · , BH
j′}. The length of a chain race

is defined as the length of the adversarial fork.

The expression ”A wins the chain race starting at BA
i and

ending at BA
j ” indicates that if A forks the main chain at BA

i ,
he can orphan the honest miners’ consecutive blocks mined
after BA

i and before BA
j .

Definition 6 (Longest dominant chain). The longest dominant
chain of an adversarial block BA

i , which is represented by
LDC(BA

i ), is a set of consecutive adversarial blocks sampled
from the mining sequence S that satisfies the following prop-
erties:

• LDC(BA
i ) starts at BA

i and ends at an adversarial
block, e.g., BA

j , where i ≤ j. We have LDC(BA
i ) =

{BA
i , · · · , BA

j }.
• A wins the chain race starting at BA

i and ending at BA
j .

• There is no k > j such that A wins the chain race starting
at BA

i and ending at BA
k .

Let LLDC(BA
i ) denote the length of the longest dominant

chain starting at BA
i , i.e., LLDC(BA

i ) = |LDC(BA
i )|. Note

that min(LLDC(BA
i )) = 1, and this occurs when LDC(BA

i )
comprises only BA

i .

Theorem 1. The average length of the longest dominant chain
starting at an adversarial block, e.g., BA

i , can be calculated
as follows:

E[LLDC(BA
i )] =

2α(1− α)

(1− 2α)2
+ 1 . (55)

Fig. 7. The mining path starting at (0, 0) and never reaching the line y = x
at x ≥ 1

Note that through this paper, we use a two-dimensional
(x, y)-grid to depict the chain race as shown in Figure 8.
The mining sequence is represented by a path on this grid.
Whenever the honest miners mine a new block, the mining
path moves one step up, and whenever A mines a new block,
the mining path moves one step to the right. The grid-based
chain race representation provides us with a strong tool to
analyze different event probabilities within blockchains. To
prove Theorem 2, we first need to present Lemma 1.

Lemma 1. The probability of the event that the mining path
starting at (0, 0) never reaches the line y = x for x ≥ 1,
which is denoted by PNR, is equal to 1− 2α.

Proof of Lemma 1. This lemma can be proved using straight-
forward methods such as a normal random walk. However, as
a warm-up, we use the grid-based chain race representation to
prove this theorem. Later in this paper, we will use the grid-
based approach to prove other complicated theorems where the
straightforward methods are insufficient. Consider the mining
path represented in Figure 7. We first calculate the probability
of the complementary event. The complementary event occurs
when the mining path for at least one time reaches one of the
cross marks depicted in Figure 7. At the start, if the mining
path moves one to the right, it reaches the cross mark in
point (1, 0). To reach the other cross marks, the path needs
to move one up and reach the first blue dot in point (0, 1).
The number of paths that start from the blue dot in (0, 1) and
reach one of the cross marks for the first time at (i, i), for
i ≥ 1, is equal to the number of paths from (0, 1) to the blue
dot in (i − 1, i) without passing below the line y = x + 1.
The latter one is equal to the i− 1th Catalan number [27].
The ith Catalan number, denoted by Ci, can be calculated as
Ci =

1
i+1

(
2i
i

)
[28]. Therefore, we have:

PNR = α+ α(1− α)

∞∑
i=0

Ci(α(1− α))i = 2α . (56)

The result of the series above is presented in [29]. Finally, we
have:

PNR = 1− PNR = 1− 2α . (57)
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Fig. 8. Chain race representation

Proof of Theorem 1. The chain race starting at BA
i is depicted

in Figure 8. Since the chain race starts with an adversarial
block, i.e., BA

i , the mining path always moves to the right,
i.e., point (1, 0), as the first step. Assume LLDC(BA

i ) = n,
where n ≥ 1. This indicates that the mining path reaches
the line y = x − 1 for the last time at point (n, n − 1).
The number of paths from point (1, 0) to point (n, n − 1) is
equal to

(
2(n−1)
n−1

)
. Therefore, the probability that the mining

path starting at point (0, 1) reaches the point (n, n − 1) is
equal to

(
2(n−1)
n−1

)(
α(1 − α)

)n−1
. According to Lemma 1,

the probability that the mining path starting at (n, n − 1)
never reaches the line y = x − 1 again is equal to 1 − 2α.
As a result, the probability that LLDC(BA

i ) = n is equal to(
2(n−1)
n−1

)(
α(1 − α)

)n−1
(1 − 2α). Finally, the expected value

of LLDC(BA
i ) can be obtained as follows:

E
[
LLDC(BA

i )
]
=

∞∑
n=1

n

(
2(n− 1)

n− 1

)
(α(1− α))n−1(1− 2α)

=

∞∑
n=1

(n− 1)

(
2(n− 1)

n− 1

)
(α(1− α))n−1(1− 2α)

+

∞∑
n=1

(
2(n− 1)

n− 1

)
(α(1− α))n−1(1− 2α)

=

∞∑
n=0

n

(
2n

n

)
(α(1− α))n(1− 2α)

+

∞∑
n=1

(
2n

n

)
(α(1− α))n(1− 2α) =

2α(1− α)

(1− 2α)3
(1− 2α)

+
1

1− 2α
(1− 2α) =

2α(1− α)

(1− 2α)2
+ 1 .

(58)

Formulas to solve the series above, which involve central
binomial coefficients, are presented in [29].

In order to have a successful orphan exclusion attack at
the end of epochi, there should exist an adversarial block

BA in epochi whose longest dominant chain includes the
epoch end. The existence of such a longest dominant chain
LDC(BA) indicates that a subset of adversarial blocks within
LDC(BA) forms the last main-chain blocks of epochi. In
other words, there is no honest block that can get added to
the main chain after LDC(BA) within epochi. Consequently,
the honest blocks that get orphaned by the adversarial fork
LDC(BA) cannot be reported and included in the modified
DAM. Let BS = {BA

1 , · · · , BA
N} be the set of adversarial

blocks within epochi whose longest dominant chains can
result in a successful orphan exclusion attack. Note that not
all the adversarial blocks in epochi can be the starting
block of a successful orphan exclusion attack. For instance,
the orphan exclusion attack starting at one of the adversarial
blocks that is far from the epoch end has almost no chance of
being successful since the epoch end would not be included
in that longest dominant chain. To maximize his profit, the
attacker should perform the longest possible orphan exclusion
attack. Therefore, the length of the orphan exclusion attack
is equal to the length of the longest LDC among the set
{LDC(BA

i )|BA
i ∈ BS}.

Here, we first define a promising block within epochi,
characterized by having one of the longest LDCs that can
result in a successful orphan exclusion attack. The longest
dominant chain of this block can help us calculate a lower
bound and upper bound for the length of the orphan exclusion
attack.

Definition 7 (Block height). Let S = {B0, B1, B2, · · · } be
the mining sequence, where the block miners can be honest or
adversarial. Let hi denote the height of block Bi. We define
the height of genesis block B0 to be equal to 0. The height of
the block Bi for i ≥ 1 can be obtained as follows:

hi =

{
hi−1 − 1 , if block Bi is adversarial.
hi−1 + 1 , if block Bi is honest.

(59)

The height of the block Bi with respect to the block Bj is
defined to be equal to hi − hj .

Definition 8 (Epoch promising block). Let Bend ∈ S represent
the last block of epochi under the condition that all the blocks
within the mining sequence get added to the main chain. The
promising block of epochi is defined to be an adversarial
block that has the highest height among all the adversarial
blocks before and including block Bend. If multiple of these
blocks exist, the one that is farthest from Bend is considered
the promising block.

As an example, assume Si = {· · · , BH
n−9, B

H
n−8, B

H
n−7,

BH
n−6, B

A
n−5, B

A
n−4, B

H
n−3, B

A
n−2, B

A
n−1, B

H
n } represent the

mining sequence of epochi. The height of blocks within
mining sequence Si with respect to the last block of epochi,
i.e., BH

n , is as follows: {· · · ,−1, 0, 1, 2, 1, 0, 1, 0,−1, 0}. As
can be seen, the highest height among adversarial blocks
belongs to block BA

n−5 with hn−5 = 1. Note that since the
adversarial mining power share is less than half, the height of
blocks has an increasing pattern in a long-term perspective.
This indicates that the height of blocks before BH

n and after
BH

n with respect to BH
n converge to −∞ and ∞, respectively.
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Therefore, if assuming that there is no other adversarial block
before BA

n−5 whose height with respect to BH
n is greater

than or equal to hn−5 = 1, BA
n−5 is the promising block

of epochi.

Lemma 2. Let BA
i and BA

j denote two adversarial blocks,
where j > i. The attacker can win the chain race starting at
BA

i and ending at BA
j if and only if hi ≥ hj .

Proof. Let n denote the number of adversarial blocks in the
adversarial fork starting at BA

i and ending at BA
j . hi ≥ hj

indicates that the number of honest blocks in the mining
sequence between two adversarial blocks BA

i and BA
j is less

than or equal to n−1. Therefore, the attacker can win the chain
race starting at BA

i and ending at BA
j . The reverse direction

can be proved in an analogous way.

We first explain why the longest dominant chain starting at
the epoch promising block is among the longest LDCs that
can result in a successful orphan exclusion attack. Since the
promising block of an epoch is located near the epoch end,
its longest dominant chain has a relatively high probability
of ending after and including the epoch end. Therefore, the
LDC starting at the epoch promising block has a high chance
of leading to a successful orphan exclusion attack. Moreover,
the LDC starting at the epoch promising block is among
the longest LDCs that start prior to the epoch end and end
afterward. According to Lemma 2, the LDC starting at the
promising block continues as long as the height of subsequent
adversarial blocks remains less than or equal to that of the
promising block. Since the promising block has the highest
height among the adversarial blocks before the epoch end, a
relatively long list of blocks after the epoch end is required to
exceed the epoch’s promising height.

To find a lower bound and an upper bound for the length
of the orphan exclusion attack, we use the grid-based repre-
sentation of the mining path. In the grid-based representation,
we assume that point (0, 0) represents the end of epochi.
This implies that the mining path in the upper right quadrant
and in the lower left quadrant belong to the mining sequence
within epochi+1 and epochi, respectively. The mining path
in epochi+1 starts at point (0, 0) and moves forward within
the upper right quadrant. For epochi which is located in the
lower left quadrant, we define the term ”reversed mining path”.
The reversed path originates at point (0, 0), which corresponds
to the last block of epochi, and moves backward within the
lower left quadrant, towards the previous blocks in epochi.
Let moving to point P on the mining path represent a block
B. To find the height of block B with respect to the last block
of epochi in the grid representation, one should draw a line
with slop 1 at point P . The y-intercept of the line is equal to
the height of block B with respect to the last block of epochi.

Lemma 3. Let r ≥ 1 and s ≥ 0. The probability that the
reversed mining path (within the lower left quadrant) starting
at (0, 0) reaches the line y = x+ r for the last time at point
(−s − r,−s) without never passing the line y = x + r is
denoted by P 1(r, s) and can be obtained as follows:

P 1(r, s) =

(
r + 2s

s

)
r + 1

r + s+ 1
αr+s(1−α)s(1−2α) . (60)

Fig. 9. Mining path representation

Proof. We first find the number of paths from point (0, 0) to
point (−s−r,−s) without passing the line y = x+r. Consider
the mining path depicted in Figure 9. The total number of paths
from point (0, 0) to point (−s−r,−s) is equal to

(
r+2s

s

)
. Some

of these
(
r+2s

s

)
paths, however, pass the line y = x+r, which

we refer to as bad paths. Being a bad path implies that the
path reaches the line y = x+ r+ 1 before reaching the point
(−s−r,−s). For each bad path P , we define the initial part of
the path to be equal to the part of the path P before reaching
the line y = x + r + 1. For each bad path P , we define a
new path P ′ by reflecting the initial part of the path across
the line y = x + r + 1 as depicted in Figure 9. By doing
so, we can generate a one-to-one mapping between the bad
paths and the reflected paths that start at point (−r−1, r+1)
and end at point (−s− r,−s). Therefore, the number of bad
paths is equal to

(
r+2s
s−1

)
. Consequently, the number of paths

from point (0, 0) to point (−s − r,−s) without passing the
line y = x+ r can be obtained as follows:(

r + 2s

s

)
−
(
r + 2s

s− 1

)
=

(
r + 2s

s

)
r + 1

r + s+ 1
. (61)

The probability that the reversed mining path starting at (0, 0)
reaches point (−s− r,−s) without passing the line y = x+ r
is equal to

(
r+2s

s

)
r+1

r+s+1α
r+s(1−α)s. According to Lemma 1,

the probability that the reversed mining path starting at (−s−
r,−s) never reaches the line y = x+ r again in the future is
equal to 1 − 2α. Therefore, the probability that the reversed
mining path starting at (0, 0) reaches the line y = x+r for the
last time at point (−s− r,−s) without never passing the line
y = x+ r is equal to

(
r+2s

s

)
r+1

r+s+1α
r+s(1−α)s(1−2α).

Lemma 4. Let r ≥ 0 and s ≥ 1. The probability that the
reversed mining path (within the lower left quadrant) starting
at (0, 0) reaches the point (0,−r) and afterward reaches the
line y = x− r for the last time at point (−s− r,−s) without
never passing the line y = x − r is denoted by P 2(r, s) and
can be obtained as follows:

P 2(r, s) =

(
2s

s

)
1

s+ 1
αs(1− α)r+s(1− 2α) . (62)

Proof. The probability that the reversed mining path starting
at (0, 0) reaches the point (0,−r) is equal to (1 − α)r. The
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number of paths from point (0,−r) to point (−s,−r − s)
without passing the line y = x− r is equal to the sth Catalan
number, which can be obtained as

(
2s
s

)
1

s+1 . The probability
that the reversed mining path starting at (0, 0) reaches the
point (0,−r) and afterwards reaches the point (−s − r,−s)
without never passing the line y = x − r is equal to(
2s
s

)
1

s+1α
s(1−α)s+r. According to Lemma 1, the probability

that the reversed mining path starting at (−s − r,−s) never
reaches the line y = x − r again in the future is equal to
1 − 2α. Therefore, the probability that the reversed mining
path starting at (0, 0) reaches the point (0,−r) and afterward
reaches the line y = x − r for the last time at point
(−s − r,−s) without never passing the line y = x − r is
equal to

(
2s
s

)
1

s+1α
s(1− α)r+s(1− 2α).

Lemma 5. Let r ≥ 1 and k ≥ 0. The probability that the
mining path (within the upper right quadrant) starting at (0, 0)
passes the line y = x+ r for the last time at point (k, k + r)
is denoted by P 3(r, k) and can be obtained as follows:

P 3(r, k) =

(
r + 2k − 1

k

)
αk(1− α)r+k−1(1− 2α) . (63)

Proof. The number of paths from point (0, 0) to point (k, k+
r−1) is equal to

(
r+2k−1

k

)
. Therefore, the probability that the

mining path starting at (0, 0) reaches the point (k, k+r−1) is
equal to

(
r+2k−1

k

)
αk(1−α)r+k−1. The event that the mining

path starting at (0, 0) passes the line y = x + r for the last
time at point (k, k + r) is equivalent to the event that the
mining path starting at (0, 0) reaches the point (k, k + r − 1)
and afterward never reaches the line y = x + r − 1 again.
According to Lemma 1, the probability that the mining path
starting at (k, k+ r− 1) never reaches the line y = x+ r− 1
again in the future is equal to 1−2α. Therefore, the probability
that the mining path starting at (0, 0) passes the line y = x+r
for the last time at point (k, k+r) is equal to

(
r+2k−1

k

)
αk(1−

α)r+k−1(1− 2α).

Lemma 6. Let r ≥ 0 and k ≥ 1. The probability that the
mining path (within the upper right quadrant) starting at (0, 0)
gets below the line y = x − r (reaches the line y = x − r −
1) and then passes the line y = x − r for the last time at
point (k + r, k) is denoted by P 4(r, k) and can be obtained
as follows:

P 4(r, k) =

(
r + 2k − 1

r + k

)
αr+k(1− α)k−1(1− 2α) . (64)

The proof of Lemma 6 is similar to the proof of Lemma 5.
1) A lower bound for the length of the orphan exclusion

attack under DAMmodified
1 : Assume LDC(B∗

i ) contains NA
i+1

adversarial blocks belonging to epochi+1 and orphans NH
i

honest blocks belonging to epochi. If NA
i+1 ≥ NH

i , the epoch
end is included in LDC(B∗

i ), and therefore, LDC(B∗
i ) results

in a successful orphan exclusion attack. Let LOEA-min denote
a lower bound for the length of the orphan exclusion attack.
We consider as follows:

• If LDC(B∗
i ) does not result in a successful orphan

exclusion attack, LOEA-min = 0.
• If LDC(B∗

i ) results in a successful orphan exclusion
attack, LOEA-min = LLDC(B∗

i ).

Fig. 10. Mining path representation

Let B∗
i and h∗

i denote the epochi’s promising block and its
height with respect to the last block of epochi, respectively.
We analyze the orphan exclusion attack in both scenarios
where h∗

i is non-negative and negative.
Assume the scenario in which h∗

i = r− 1, where r ≥ 1. In
this case, h∗

i is non-negative. The illustration of this scenario is
depicted in Figure 10. Assume further that the promising block
is located where the mining path moves from point (−r −
s,−s) to point (−r− s+1,−s). This implies that LDC(B∗

i )
starts at point (−r−s,−s). The event that LDC(B∗

i ) starts at
point (−r− s,−s) is equivalent to the event that the reversed
mining path starting at point (0, 0) reaches the line y = x+ r
at x < 0 for the last time at point (−r − s,−s) without
never passing the line y = x+ r at x < 0. LDC(B∗

i ) ends at
an adversarial block that is the last adversarial block located
below the line y = x + r. Let the mining path in the upper
right quadrant pass the line y = x + r for the last time at
point (k, k + r). This implies that the length of LDC(B∗

i ) is
equal to r+s+k. Note that the longest dominant chain of the
promising block B∗

i does not necessarily lead to a successful
orphan exclusion attack. To have a successful attack, the final
block of epochi should be included in LDC(B∗

i ). Based on
our assumption, LDC(B∗

i ) starts when there are r+2s blocks
left to the end of the epoch. To include the epoch end, the
length of LDC(B∗

i ) should be equal to or greater than r+2s.
Note that LDC(B∗

i ) result in orphaning s honest blocks of
epochi. Therefore, to complete r+2s remaining blocks, the
number of adversarial blocks within LDC(B∗

i ) belonging to
epochi+1 should be equal or greater than s. As a result, to
have a successful orphan exclusion attack starting at B∗

i , the
condition k ≥ s should be satisfied.

If k ≥ s, the lower bound of the orphan exclusion attack
length is equal to LOEA-min = r+s+k. Otherwise, LOEA-min =
0. The probability that the reversed mining path starting at
point (0, 0) in the lower left quadrant reaches the line y = x+r
for the last time at point (−r − s,−s) without never passing
the line y = x+ r is equal to P 1(r, s) presented in Lemma 3.
The probability that the mining path starting at point (0, 0)
in the upper right quadrant passes the line y = x + r for the
last time at point (k, k + r) is equal to P 3(r, k) presented in
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Fig. 11. Mining path representation

Lemma 5. Therefore, in the case where h∗
i is non-negative, the

expected lower bound for the length of the orphan exclusion
attack can be calculated as follows:

E(LOEA-min
1 ) =

∞∑
r=1

∞∑
s=0

∞∑
k=s

(r + s+ k)P 1(r, s)P 3(r, k) .

(65)

Assume the scenario in which h∗
i = −r − 1, where r ≥ 0.

In this case, h∗
i is negative. The illustration of this scenario is

depicted in Figure 11. Assume further that the promising block
is located where the mining path moves from point (−s,−r−
s) to point (−s+1,−r−s). The event that the promising block
is located where the mining path moves from point (−s,−r−
s) to point (−s + 1,−r − s) is equivalent to the event that
the reversed mining path starting at (0, 0) reaches the point
(0,−r) and afterward reaches the line y = x− r for the last
time at point (−s,−r− s) without never passing the line y =
x− r, the probability of which is equal to P 2(r, s) presented
in Lemma 4. LDC(B∗

i ) ends at an adversarial block that is
the last adversarial block located below the line y = x−r. To
ensure that LDC(B∗

i ) leads to a successful orphan exclusion
attack, the mining path in the upper right quadrant needs to
get below the line y = x− r; and if assuming that the mining
path passes the line y = x − r for the last time at point
(r + k, k), the inequality k ≥ s must hold. k ≥ s guarantees
that LDC(B∗

i ) ends at the subsequent epoch. In this scenario,
if k ≥ s, the lower bound of the orphan exclusion attack length
is equal to LOEA-min = r + s + k. Otherwise, LOEA-min = 0.
The probability that the mining path starting at point (0, 0)
in the upper right quadrant passes the line y = x − r for the
last time at point (k + r, k) is equal to P 4(r, k) presented in
Lemma 6. Therefore, in the case where h∗

i is negative, the
expected lower bound for the length of the orphan exclusion
attack can be calculated as follows:

E(LOEA-min
2 ) =

∞∑
r=0

∞∑
s=1

∞∑
k=s

(r + s+ k)P 2(r, s)P 4(r, k) .

(66)

Finally, the lower bound of the orphan exclusion attack can
be obtained as follows:

E(LOEA-min) = E(LOEA-min
1 ) + E(LOEA-min

2 ) , (67)

where E(LOEA-min
1 ) and E(LOEA-min

2 ) are calculated in equa-
tions 65 and 66, respectively.

2) An upper bound for the length of the orphan exclusion
attack under DAMmodified

1 : Assume LDC(B∗
i ) contains NA

i+1

adversarial blocks belonging to epochi+1 and orphans NH
i

honest blocks belonging to epochi. Let LOEA-max denote an
upper bound for the length of the orphan exclusion attack. We
consider as follows:

• If NA
i+1 ≤ NH

i , LOEA-max = LLDC(B∗
i ).

• If NA
i+1 > NH

i , LOEA-max = LLDC(B∗
i )+ (NA

i+1−NH
i −

1).

We first explain why LOEA-max defined above is an upper
bound for the length of the orphan exclusion attack. Let
h∗
i = r − 1, where LDC(B∗

i ) starts at point (−r − s,−s)
and ends at point (k, k+ r). This indicates that NA

i+1 = k and
NH

i = s.
If k ≤ s, we claim there is no adversarial block before

B∗
i whose longest dominant chain can result in a successful

orphan exclusion attack. Let B denote a block before B∗
i .

Since B∗
i is the promising block of the epoch, the number

of honest blocks belonging to epochi that get orphaned by
LDC(B) is greater than s, and the number of adversarial
blocks belonging to epochi+1 that are included in LDC(B)
is less than or equal to k. As we have k ≤ s, LDC(B) cannot
result in a successful orphan exclusion attack. The longest
dominant chains of adversarial blocks after B∗

i may result
in a successful attack; however, their length is shorter than
LLDC(B∗

i ). Therefore, in case where k ≤ s, LLDC(B∗
i ) is an

upper bound for the length of orphan exclusion attack.
If k > s, there may exist plenty of adversarial blocks before

B∗
i whose longest dominant chain is longer than LDC(B∗

i ).
Let B denote a block before B∗

i . The number of adversarial
blocks belonging to epochi+1 that are included in LDC(B)
is less than or equal to k. Therefore, if the number of honest
blocks belonging to epochi that are included in LDC(B)
exceeds k, LDC(B) cannot result in a successful orphan
exclusion attack. There exist s honest blocks between B∗

i and
the epochi’s end. Therefore, the number of honest blocks
between B and B∗

i should be less than or equal to k − s.
Knowing that there exist at most k−s honest blocks between B
and B∗

i , we want to find the maximum number of adversarial
blocks that can exist between blocks B and B∗

i , including
block B itself. Since B∗

i is the promising block of epochi,
the reversed mining path starting at point (−r− s,−s) within
the lower left quadrant never reaches the line y = x+r again.
As a result, while the reversed mining path moves k− s steps
downward, it can move at most k − s − 1 steps to the left,
showing that block B is at most k − s− 1 adversarial blocks
away from block B∗

i .
Therefore, the upper bound for the length of the orphan
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TABLE II
THE LENGTH OF THE ORPHAN EXCLUSION ATTACK UNDER DAMMODIFIED

1

mining power share 0.25 0.3 0.35 0.4 0.45

E[LOEA-min] 1.2859 2.5963 5.7596 15.6328 63.6105
E[LOEA] (simulation result) 1.4594 2.9917 6.8328 18.3697 87.0262

E[LOEA-max] 2.2870 4.8142 10.9720 30.2100 123.0720

exclusion attack can be obtained as follows:

E[LOEA-max] =

∞∑
r=1

∞∑
s=0

s∑
k=0

(r + s+ k)P 1(r, s)P 3(r, k)

+

∞∑
r=1

∞∑
s=0

∞∑
k=s+1

(r + 2k − 1)P 1(r, s)P 3(r, k)

+

∞∑
r=0

∞∑
s=1

s∑
k=0

(r + s+ k)P 2(r, s)P 4(r, k)

+

∞∑
r=0

∞∑
s=1

∞∑
k=s+1

(r + 2k − 1)P 2(r, s)P 4(r, k) .

(68)

In Table II, we provide a comparison among the lower
bound calculated in equation 67, the upper bound calculated
in equation 68, and the average length of the orphan exclusion
attack under DAMmodified

1 obtained from the simulation.

APPENDIX F
THE ORPHAN EXCLUSION ATTACK LENGTH UNDER

DAMMODIFIED
2

In this section, we first discuss why the orphan exclusion
attack under DAMmodified

2 can be more severe than that under
DAMmodified

1 . Then, we calculate an upper bound for the
length of the orphan exclusion attack under DAMmodified

2 .
When there is no selfish mining and orphan exclusion attack,

after every Lepoch blocks in the mining sequence S, an epoch
ends and the DAM is applied. Under difficulty adjustment
mechanism DAMmodified

2 , performing selfish mining during
the epoch can shift the epoch end in mining sequence S and,
consequently, affect the length of the orphan exclusion attack
at the end of the epoch. Let LS

epoch represent the number of con-
secutive blocks consumed from the sequence S to generate one
epoch. According to the epoch definition in DAMmodified

2 , the
epoch ends when the number of main-chain blocks gets equal
to Lepoch. If there is no selfish mining and no orphan exclusion
attack, Lepoch is equal to LS

epoch. However, if the attacker
performs selfish mining during the epoch and tries to orphan
some of the honest blocks, Lepoch ≤ E(LS

epoch) ≤
Lepoch

1−αA
. The

lower bound occurs when there is no selfish mining, and the
upper bound occurs when A orphans one honest block for each
of his blocks. This shows that there is a level of freedom for
A to decide when to end the epoch. By orphaning the honest
blocks during the epoch, A can adjust the end of the epoch
in a way that increases the length of the orphan exclusion
attack. For instance, consider the mining sequence depicted in
Figure 12. If A does not perform selfish mining during the
epoch, he cannot impose a successful orphan exclusion attack
at the end of the epoch. However, if A decides to orphan 7

honest blocks during the epoch, he can shift the epoch end
7 blocks ahead and impose a successful attack. This shows
that adjusting the epoch end can help A to impose a longer
orphan exclusion attack. Note that, under difficulty adjustment
mechanism DAMmodified

1 , performing selfish mining during
the epoch cannot shift the epoch end in mining sequence S.
This is due to the fact that in DAMmodified

1 , the epoch ends
when the total number of main-chain and orphan blocks gets
equal to Lepoch.

High-level proof overview We first present a road map for
calculating an upper bound for the average length of the
orphan exclusion attack under DAMmodified

2 :

• In the first step, we calculate the probability that the
length of the longest dominant chain for an adversarial
block is less than or equal to a specific amount in
Theorem 2.

• In the second step, we assume there exist several inde-
pendent adversarial blocks that are sampled from separate
mining sequences. Each of these adversarial blocks has
its own longest dominant chain. Using the probability
calculated in Theorem 2, we calculate the average length
of the longest chain among all the available longest
dominant chains in Theorem 3.

• In the next step, we assume there exists a set of consec-
utive adversarial blocks sampled from the same mining
sequence. Each of these adversarial blocks has its own
longest dominant chain. However, these longest dominant
chains are dependent on each other. Using the result of
Theorem 3, we calculate an upper bound for the average
length of the longest chain among all the dependent
longest dominant chains in Theorem 4.

• In the last step, using Theorem 4, we find an upper bound
for the average length of the orphan exclusion attack
under DAMmodified

2 in Theorem 5.

Fig. 12. The effect of selfish mining during the epoch on the end of the
epoch
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Fig. 13. Chain race representation

A. The length of the longest dominant chain

Theorem 2. The probability of the event that the length of the
longest dominant chain for an adversarial block, e.g., BA

i , is
less than or equal to n can be calculated as follows:

Pr(LLDC(BA
i ) ≤ n) = 1− 2Iα(n, n) , (69)

Where I is the regularized incomplete beta function.

Proof of Theorem 2. The chain race starting at BA
i is depicted

in Figure 13. Since the chain race starts with an adversarial
block, i.e., BA

i , the first move is always to the right. In order
to have LLDC(BA

i ) ≤ n, the mining path should never reach
the cross marks depicted in Figure 13. Otherwise, there exists
an adversarial dominant chain whose length is greater than n.
All the acceptable paths pass through at least one of the green
dots. Assume LLDC(BA

i ) = l, where l ≤ n. This means the
last time that the mining path visits the line y = x−1 happens
at the lth green dot in point (l, l − 1). The probability that A
can win a chain race whose length is equal to l is denoted by
P l

WCR. Winning a chain race with length l is equivalent to the
event that the mining path reaches the lth green dot. P l

WCR can
be calculated using the equation below:

P l
WCR =

(
2(l − 1)

l − 1

)
(α(1− α))l−1 . (70)

The probability of the event that after the mining path reaches
the lth green dot in the diagonal line y = x−1, it never reaches
the line again is equal to PNR, calculated in Lemma 1. Note
that PNR is independent of l. Having P l

WCR and PNR, we can
calculate the probability that the length of the longest dominant
chain is equal to l:

Pr(LLDC(BA
i ) = l) = P l

WCR · PNR

=

(
2(l − 1)

l − 1

)
(α(1− α))l−1(1− 2α) .

(71)

Finally, the probability that the length of the longest dominant
chain at BA

i is less than or equal to n can be calculated as
below:

Pr(LLDC(BA
i ) ≤ n) =

n∑
l=1

(
2(l − 1)

l − 1

)
(α(1− α))l−1(1− 2α)

=

n−1∑
i=0

(
2i

i

)
(α(1− α))i(1− 2α) = 1− 2Iα(n, n) .

(72)

In this part, we try to simplify equation 72. We define a
function F (·) as F (x) =

∑n−1
i=0

(
2i
i

)
xi. Taking the derivative

of F (x) results in:

F ′(x) =

n−1∑
i=1

i

(
2i

i

)
xi−1 =

n−2∑
i=0

2(2i+ 1)

(
2i

i

)
xi

= −n

(
2n

n

)
xn−1 +

n−1∑
i=0

2(2i+ 1)

(
2i

i

)
xi .

(73)

Therefore, we obtain the following differential equation:

F ′(x) = −n

(
2n

n

)
xn−1 + 2F (x) + 4xF ′(x) . (74)

By solving equation 74, we obtain:

F (x) =
1√

1− 4x

(
1− n

(
2n

n

)∫ x

0

un−1

√
1− 4u

du
)

. (75)

Using the variable substitution u = z(1− z), we can modify
the integral above as below:

F (x) =
1− n

(
2n
n

) ∫ 1−
√

1−4x
2

0
zn−1(1− z)n−1 dz

√
1− 4x

=
1√

1− 4x

(
1− n

(
2n

n

)
B
(1−√

1− 4x

2
;n, n

))
.

(76)

In the equation above, B(·) is the incomplete beta function
which is defined as [30]:

B(x; a, b) =
∫ x

0

ta−1(1− t)b−1 dt . (77)

The incomplete beta function is a generalization of the
complete beta function which is defined as B(a, b) =∫ 1

0
ta−1(1− t)b−1 dt. I(·) is the regularized incomplete beta

function and is defined as below:

Ix(a, b) =
B(x; a, b)
B(a, b)

. (78)

Since we have n
(
2n
n

)
B(x;n, n) = 2Ix(n, n), equation 76 can

be simplified as follows:

F (x) =
1√

1− 4x

(
1− 2I 1−

√
1−4x
2

(n, n)
)

. (79)

Since Pr(Li ≤ n) = (1− 2α)F
(
α(1− α)

)
, we finally obtain

the following result:

Pr(LLDC(BA
i ) ≤ n) = 1− 2Iα(n, n) . (80)
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B. The longest chain among independent LDCs

Definition 9 (Longest LDC). Assume there exist N adversar-
ial blocks denoted by BA

i , 1 ≤ i ≤ N . These adversarial
blocks can be sampled from the same or separate mining
sequences. The longest LDC of the adversarial block set
BS = {BA

1 , · · · , BA
N}, which is denoted by LLDC(BS), is

the longest chain(s) among the set {LDC(BA
i )|BA

i ∈ BS}.

LLLDC
BS denotes the length of the longest LDC chain of the

adversarial block set BS, i.e., LLLDC
BS = |LLDC(BS)|.

Theorem 3. Assume there exist N independent mining se-
quences, where each of them starts with an adversarial block
denoted by BA

i , 1 ≤ i ≤ N . Let BS = {BA
1 , · · · , BA

N} and
LDC(BA

i ) denote the longest dominant chain of adversarial
block BA

i . The average length of the longest LDC among the
set {LDC(BA

i )|BA
i ∈ BS} can be calculated as follows:

E
[
LLLDC
BS

]
=

∞∑
n=1

nPr
(
LLLDC
BS = n

)
, (81)

where

Pr
(
LLLDC
BS = n

)
={

(1− 2α)N , n = 1(
1− 2Iα(n, n)

)N −
(
1− 2Iα(n− 1, n− 1)

)N
, n > 1

.

(82)

Proof of Theorem 3. LLLDC
BS = 1 means that the length of

LDC(BA
i ) = 1 for all BA

i ∈ BS. The event that the length of
the longest dominant chain is 1 happens when the chain race
starting at (1, 0) never reaches the line y = x−1 again. There-
fore, using Lemma 1, we have Pr(LLDC(BA

i ) = 1) = 1− 2α,
and since there exist N adversarial blocks in BS, we have
Pr
(
LLLDC
BS = 1

)
= (1− 2α)N .

In order to have LLLDC
BS = n, where n > 1, there should exist

one or more adversarial blocks whose longest dominant chain
length is equal to n, and for the other remaining adversarial
blocks, the longest dominant chain length should be less than
n. Assume Pn and P≤n respectively represent the probability
that the length of the longest dominant chain is exactly equal
to n and the probability that the length of the longest dominant
chain is less than or equal to n. For n > 1, we have:

Pr
(
LLLDC
BS = n

)
=

N∑
i=1

(
N

i

)
P i
nP

N−i
≤n−1

= (Pn + P≤n−1)
N − PN

≤n−1 = PN
≤n − PN

≤n−1

=
(
1− 2Iα(n, n)

)N −
(
1− 2Iα(n− 1, n− 1)

)N
, n > 1 .

(83)

The second equality holds based on the Binomial theorem,
and the last equality is obtained from Theorem 2. Having
Pr
(
LLLDC
BS = n

)
for all values of n, the expected length can

be calculated as
∑∞

n=1 nPr
(
LLLDC
BS = n

)
.

C. The longest chain among dependent LDCs:

One can use Theorem 3 to calculate E
[
LLLDC
BS

]
, provided

that the mining sequences of all the adversarial blocks in BS

are independent. However, if we sample a set of N consecutive
adversarial blocks from the mining sequence S to generate
the adversarial block set BS, the longest dominant chains of
those N adversarial blocks in BS are dependent on each other.
Due to the dependency, the average length of the longest LDC
will significantly decrease. In this part, we aim to calculate an
upper bound for E

[
LLLDC
BS

]
, where BS is a set of consecutive

adversarial blocks sampled from the same mining sequence.

Theorem 4. Assume that LLLDC
BS′ (N ; ind.) represents

|LLDC(BS′)|, where BS′ consists of N adversarial
blocks whose longest dominant chains are independent of
each other, and LLLDC

BS (N ; dep., S) represents |LLDC(BS)|,
where BS consists of N consecutive adversarial blocks
sampled from the mining sequence S whose longest dominant
chains are dependent on each other. We have:

E
[
LLLDC
BS (N ; dep., S)

]
≤ E

[
LLLDC
BS′

(
N/
( 1− α

1− 2α

)2
; ind.

)]
,

(84)

where E
[
LLLDC
BS′

(
N/
(

1−α
1−2α

)2
; ind.

)]
can be calculated using

Theorem 3.

First, we review some definitions and lemmas.

Definition 10 (Chain race advantage). For a chain race
starting at the adversarial block BA

i and ending at BA
j ,

where C
BA

i ,BA
j

A = C⌈BA
i ||{BA

i , · · · , BA
j } and C

BA
i ,BA

j

H =

C⌈BA
i ||{BH

i′ , · · · , BH
j′} are respectively A’s private chain and

the public chain, the chain race advantage is denoted by
δB

A
i ,BA

j and defined as follows:

δB
A
i ,BA

j = |CBA
i ,BA

j

A | − |CBA
i ,BA

j

H | . (85)

Note that BH
i′ as well as BH

j′ are respectively the first honest
block after BA

i and the last honest block before BA
j in S.

Lemma 7. If δB
A
i ,BA

j > 0, then LLDC
(
{BA

i , BA
j }
)

=
LDC

(
BA

i

)
.

Proof. If δB
A
i ,BA

j > 0, we have LDC(BA
j ) ⊂ LDC(BA

i ).
Therefore, LLDC

(
{BA

i , BA
j }
)

is always equal to the longest
dominant chain starting at BA

i .

Lemma 8. Let S be a mining sequence starting with BA
i .

The average number of adversarial blocks, e.g., BA
j , in S

that satisfy δB
A
i ,BA

j > 0 is equal to
(

1−α
1−2α

)2
.

Proof. Consider the chain race starting at BA
i and ending at

BA
j whose length is equal to n. In order to have δB

A
i ,BA

j > 0,
the first time that the mining path reaches the line x = n
should happen in a point with y < n. Note that the chain
race always passes through the point (1,0). For n ≥ 2, the
probability that a mining path starts at (1, 0) and reaches
the line x = n for the first time in point (n, i) is equal
to
(
i+n−2
n−2

)
αn−1(1 − α)i. Therefore, the probability that the
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advantage of a chain race with length n, which is denoted by
δn, is greater than 0 is calculated as follows:

Pr(δn > 0) =

n−1∑
i=0

(
i+ n− 2

n− 2

)
αn−1(1− α)i . (86)

The average number of adversarial blocks that satisfy
δB

A
i ,BA

j > 0 is equal to

∞∑
n=1

Pr(δn > 0) = 1 +

∞∑
n=2

n−1∑
i=0

(
i+ n− 2

n− 2

)
αn−1(1− α)i .

(87)
We use σ to represent the double sum above. We have:

σ =

∞∑
n=0

n+1∑
i=0

(
i+ n

n

)
αn+1(1− α)i

=

∞∑
n=0

αn+1
n+1∑
i=0

(
i+ n

n

)
(1− α)i .

(88)

We define a function G(·) as G(x) =
∑n+1

i=0

(
i+n
n

)
xi. Taking

the derivative, we obtain:

G′(x) =

n+1∑
i=1

i

(
i+ n

n

)
xi−1 =

n∑
i=0

(n+ 1 + i)

(
i+ n

n

)
xi

= −(2n+ 2)

(
2n+ 1

n+ 1

)
xn+1 +

n+1∑
i=0

(n+ 1 + i)

(
i+ n

n

)
xi .

(89)

Therefore, we obtain the following differential equation:

G′(x) = −(2n+2)

(
2n+ 1

n+ 1

)
xn+1+(n+1)F (x)+xF ′(x) .

(90)
Solving equation 90 results in:

G(x) =

(
1− (2n+ 2)

(
2n+1
n+1

) ∫ x

0
un+1(1− u)n du

)
(1− x)n+1

=
1− (2n+ 2)

(
2n+1
n+1

)
B(x;n+ 2, n+ 1)

(1− x)n+1
.

(91)

Since for positive integers w and z, we have B(z, w) =
z+w

zw(z+w
z )

, we can write G(x) as follows:

G(x) =

(
(2n+ 2)

(
2n+1
n+1

) ∫ 1

1−x
un+1(1− u)n du

)
(1− x)n+1

=
1

(1− x)n+1

(
2(2n+ 1)

(
2n

n

)∫ 1

1−x

un+1(1− u)n du
)

.

(92)

Therefore, we can calculate σ as follows:

σ =

∞∑
n=0

αn+1F (1− α)

=

∞∑
n=0

2(2n+ 1)

(
2n

n

)∫ 1

1−α

un+1(1− u)n du

=

∫ 1

1−α

2u

∞∑
n=0

(
2n

n

)(
u(1− u)

)n
du

+

∫ 1

1−α

4u

∞∑
n=0

n

(
2n

n

)(
u(1− u)

)n
du

=

∫ 1

1−α

( 2u

−(1− 2u)
+

8u2(1− u)

−(1− 2u)3

)
du

=

∫ 1

1−α

− 2u

(1− 2u)3
du =

α(1− α)

(1− 2α)2
+

α

1− 2α
.

(93)

Finally,
∞∑

n=1

Pr(δn > 0) =
( 1− α

1− 2α

)2
. (94)

To better understand the effect of LDC dependencies on
E
[
LLLDC
BS

]
, consider the following example. Let BS1 be a set

of consecutive adversarial blocks sampled from the mining
sequence S, which starts with BA

i , and BS2 = {BA
j ∈

S|δB
A
i ,BA

j > 0} \ {BA
i }. Assume BS1 is sufficiently long

to have BS2 ⊂ BS1. In this case, according to Lemma 7,
we have LLDC(BS1) = LLDC(BS1 \ BS2). Therefore,
according to Lemma 8, if we have already considered the
longest dominant chain of BA

i in calculation of |LLDC(BS1)|,
in average, there exist

(
1−α
1−2α

)2
− 1 other adversarial blocks

in BS1, i.e., members of BS2, whose longest dominant chain
has no chance to increase |LLDC(BS1)|.

Definition 11 (Future advantage). For an adversarial block
BA

i , the future advantage is denoted by ∆BA
i ⌉ and defined as

follows:
∆BA

i ⌉ = max
i≤k

δB
A
i ,BA

k . (95)

Lemma 9. If assuming the number of paths in a mining grid
from start point (0, 0) to the point (s, r + s) without passing
through the line y = x+ r is denoted by Cr

s , then we have:
∞∑
s=0

Cr
s

(
α(1− α)

)s
=

1

(1− α)r+1
,

∞∑
s=0

sCr
s

(
α(1− α)

)s
=

(r + 1)α

(1− 2α)(1− α)r+1
.

(96)

Proof. The set PSr =
{
(s, r + s)|s ∈ W

}
consists of all the

points on the line y = x+r. Since we have 1−α > α, all the
mining paths will finally pass through the line y = x + r in
one of the points in the set PSr. Therefore, the probabilities
that a mining path passes the line y = x+ r for the first time
in (s, r+s) for all s ∈ W should sum up to 1. The probability
that the mining path starting in (0, 0) passes through the line
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y = x + r for the first time in (s, r + s) ∈ PSr is equal to
(1− α)r+1Cr

s

(
α(1− α)

)s
. Therefore, we have:

(1− α)r+1
∞∑
s=0

Cr
s

(
α(1− α)

)s
= 1 ⇒

∞∑
s=0

Cr
s

(
α(1− α)

)s
=

1

(1− α)r+1
.

(97)

To prove the second equality in Lemma 9, we use the variable
substitution α(1− α) = x in the equality above. We have:

∞∑
s=0

Cr
sx

s =
1(

1+
√
1−4x
2

)r+1 . (98)

By taking the derivative from both sides, we obtain:
∞∑
s=0

sCr
sx

s−1 =
r + 1(

1+
√
1−4x
2

)r+2√
1− 4x

. (99)

By multiplying both sides to x and substituting x = α(1−α),
we obtain:

∞∑
s=0

sCr
s

(
α(1− α)

)s
=

(r + 1)α

(1− 2α)(1− α)r+1
. (100)

Lemma 10. The probability of the event that ∆BA
i ⌉ = r is

equal to (1− 2α) αr−1

(1−α)r .

Proof. ∆BA
i ⌉ = r means that the chain race starting at BA

i

reaches the line y = x−r but never passes it. Note that a chain
race always starts at point (1, 0). The number of paths from
point (1, 0) to point (r+s, s) without passing through the line
y = x− r is the same as Cr−1

s . Therefore, the probability of
reaching the point (r+ s, s) from point (1, 0) without passing
the line y = x − r is equal to αr−1Cr−1

s

(
α(1 − α)

)s
. The

probability that once the mining path reaches the point (r +
s, s) on the line y = x − r, it never reaches the line again
is 1 − 2α. Thus, the probability of reaching the line y =
x − r for the last time in the point (r + s, s) is equal to
αr−1Cr−1

s

(
α(1−α)

)s
(1−2α). Finally, the probability that a

chain race reaches the line y = x− r but never passes it can
be calculated as follows using Lemma 9:

αr−1
∞∑
s=0

Cr−1
s

(
α(1− α)

)s
(1− 2α) = (1− 2α)

αr−1

(1− α)r
.

(101)

Lemma 11. The average future advantage of an adversarial
block is calculated as follows:

E
[
∆BA

i ⌉
]
= 1 +

α

1− 2α
. (102)

Proof. We just need to calculate the expected value of ∆BA
i ⌉

over all the values of r. Using Lemma 10, we have:

E(∆BA
i ⌉) =

∞∑
r=1

r.Pr
(
∆BA

i ⌉ = r
)

=

∞∑
r=1

r.(1− 2α)
αr−1

(1− α)r
= 1 +

α

1− 2α
.

(103)

Lemma 12. Let BA
i and BA

j be two adversarial blocks
sampled from the same mining sequence, where j < i. We
have:

δB
A
j ,BA

i +∆BA
i ⌉ − 1 > 0 ⇐⇒ LDC(BA

j )∩LDC(BA
i ) ̸= ∅.

(104)

Proof. δB
A
j ,BA

i + ∆BA
i ⌉ − 1 > 0 means that there exist a

block, e.g, BA
k with i ≤ k, that satisfies both δB

A
j ,BA

k >

0 and δB
A
i ,BA

k = ∆BA
i ⌉ > 0. Therefore, the block set

{BA
i , · · · , BA

k } is a common subset of both LDC(BA
j ) and

LDC(BA
i ). The reverse direction can be proved in an analo-

gous way.

Proof of Theorem 4. It is obvious that:

E
[
LLLDC
BS (1; dep., S)

]
= E

[
LLLDC
BS′ (1; ind.)

]
. (105)

We first prove:

E
[
LLLDC
BS

(( 1− α

1− 2α

)2
; dep., S

)]
≤ E

[
LLLDC
BS′ (2; ind.)

]
.

(106)
Let BS3 = {BA

i , BA
i−1, · · · } be a set of consecutive adver-

sarial blocks sampled from the mining sequence S, whose
indexes are ordered in a descending way. Let BA

i−ℓ represent
the first block in BS3 that satisfies δB

A
j ,BA

i +∆BA
i ⌉ − 1 ≤ 0.

Let BS4 = {BA
i−ℓ+1, · · · , BA

i−1, B
A
i }. In this case:

∀ BA
j ∈ BS4 : δB

A
j ,BA

i +∆BA
i ⌉ − 1 > 0

Lemma 12−−−−−−−→
∀ BA

j ∈ BS4, LDC(BA
j ) ∩ LDC(BA

i ) ̸= ∅ .
(107)

Thus, the longest dominant chain of each of the adversarial
blocks in BS4 has an intersection with the longest dominant
chain of block BA

i . This means that for all BA
j ∈ BS4, the

longest dominant chains of BA
j and BA

i are dependent on each
other. Let BA

i′ be an adversarial block that has sampled from
a separate mining sequence S′, where the mining sequences
S and S′ are independent, and BS′ = {BA

i′ , B
A
i }. Therefore,

we have:

∀ BA
j ∈ BS4 :

E
[∣∣LLDC

(
{BA

j , BA
i }
)∣∣] ≤ E

[∣∣LLDC
(
{BA

i′ , B
A
i }
)∣∣]

⇒ E
[∣∣LLDC

(
BS4

)∣∣] ≤ E
[
LLLDC
BS′ (2; ind.)

]
⇒ E

[
LLLDC
BS4

(|BS4|; dep., S)
]
≤ E

[
LLLDC
BS′ (2; ind.)

]
.

(108)

Note that |BS4| = ℓ, Therefore, we just need to show E[ℓ] =(
1−α
1−2α

)2
.

Consider the chain race starting at BA
i−ℓ. Assume ∆BA

i ⌉ =
r. To have BA

i−ℓ be the first block in BS3 = {BA
i , BA

i−1, · · · }
that satisfies δB

A
j ,BA

i + r − 1 ≤ 0, block BA
i should be the

first adversarial block that appears after that the mining path
reaches the line y = x+ r for the first time. Note that a chain
race always starts from (1, 0). The number of paths from point
(1, 0) to the point (s, s + r − 1) for s ∈ N without passing
through the line y = x + r − 1 is equal to Cr

s−1. Therefore,
starting from point (1, 0), the number of paths to reach the
line y = x+ r for the first time at the point (s, s+ r) is equal
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TABLE III
COMPARISON BETWEEN SIMULATION AND THEORETICAL RESULTS

Mining power share (α) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Simulation result: E
[
LLLDC
BS

(⌊(
1−α
1−2α

)2⌋
; dep., S

)]
1.22 1.51 1.93 2.55 3.57 5.42 9.41 20.78 82.16

Theoretical result: E
[
LLLDC
BS (2; ind.)

]
1.31 1.67 2.11 2.72 3.99 6.00 9.74 21.60 82.83

to Cr
s−1. We aim to find the average distance to the y axis of

the point where the mining path reaches the line y = x + r

for the first time, i.e., E[ℓ]
∣∣∣
∆BA

i
⌉=r

:

E[ℓ]
∣∣∣
∆BA

i
⌉=r

=

∞∑
s=1

sCr
s−1α

s−1(1− α)s+r

=

∞∑
s=0

(s+ 1)Cr
sα

s(1− α)s+r+1

= (1− α)r+1

( ∞∑
s=0

Cr
sα(1− α)

s
+

∞∑
s=0

sCr
sα(1− α)

s

)
.

(109)

Using Lemma 9, we have:

E[ℓ]
∣∣∣
∆BA

i
⌉=r

= 1 +
(r + 1)α

(1− 2α)
. (110)

By taking expected value over variable r and using Lemma 10,
we can find E(ℓ) as follows:

E[ℓ] =
∞∑
r=1

E[ℓ]
∣∣∣
∆BA

i
⌉=r

.Pr
(
∆BA

i ⌉ = r
)

=

∞∑
r=1

(
1 +

(r + 1)α

(1− 2α)

)(
(1− 2α)

αr−1

(1− α)r

)
= 1 +

α

1− 2α
+

α(1− 2α)

(1− 2α)2
=
( 1− α

1− 2α

)2
.

(111)

Now assume M is the greatest number that satisfies:

E
[
LLLDC
BS

(
M ; dep., S

)]
≤ E

[
LLLDC
BS′ (N ; ind.)

]
. (112)

Using the same approach, we can show:

E
[
LLLDC
BS

(
M +

( 1− α

1− 2α

)2 − 1; dep., S
)]

≤

E
[
LLLDC
BS′ (N + 1; ind.)

]
.

(113)

Therefore, we obviously obtain equation 84.

A comparison between the simulation and theoretical results
of the LLDC length is presented in Table III.

D. An upper bound for the length of the orphan exclusion
attack

Theorem 5. Under the difficulty adjustment mechanism
DAMmodified

2 , the average length of the orphan exclusion
attack, i.e., E[LOEA], performed by an attacker who owns
predictive capability is upper bounded as follows:

E[LOEA] ≤ E

[
LLLDC
BS

(⌈
αLepoch(
1−α
1−2α

)2
⌉
; ind.

)]
, (114)

where Lepoch represents the standard epoch length, which is
equal to 2016 in Bitcoin.

Proof of Theorem 5. As already discussed, the attacker has
a level of freedom to decide when to end the epoch under
DAMmodified

2 . In favor of the attacker, we assume all the
longest dominant chains of adversarial blocks within epochi

can lead to a successful orphan exclusion attack. In other
words, we assume that the attacker can adjust the epoch end to
guarantee that it gets included in the longest LDC of the epoch.
The average number of adversarial blocks in each epoch is
equal to αLepoch. Therefore, the length of the orphan exclusion
attack is equal to the length of the longest LDC among the
LDCs that start in one of these αLepoch adversarial blocks.
Note that these αLepoch blocks form a set of consecutive
adversarial blocks all sampled from the same mining sequence.
Therefore, E[LOEA] = E

[
LLLDC
BS (αLepoch; dep., S)

]
. Using

Theorem 4, we obtain the upper bound in equation 114.

In Table IV, we provide a comparison between the upper
bound calculated in equation 114 and the average length of the
orphan exclusion attack under DAMmodified

2 obtained from the
simulation.

TABLE IV
THE LENGTH OF THE ORPHAN EXCLUSION ATTACK UNDER DAMMODIFIED

2

mining power share 0.25 0.3 0.35 0.4 0.45

E[LOEA] (simulation) 15.48 23.87 40.02 78.67 225.79
E[LOEA-max] 16.67 26.39 45.58 93.07 282.09
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