
Integrating Causality in Messaging Channels

Shan Chen1 Marc Fischlin2

1 Southern University of Science and Technology, Shenzhen, China.∗
dragoncs16@gmail.com

2 Cryptoplexity, Technische Universität Darmstadt, Darmstadt, Germany
www.cryptoplexity.de

marc.fischlin@tu-darmstadt.de

Abstract.
Causal reasoning plays an important role in the comprehension of communication, but it has been
elusive so far how causality should be properly preserved by instant messaging services. To the best of
our knowledge, causality preservation is not even treated as a desired security property by most (if not
all) existing secure messaging protocols like Signal. This is probably due to the intuition that causality
seems already preserved when all received messages are intact and displayed according to their sending
order. Our starting point is to notice that this intuition is wrong.
Until now, for messaging channels (where conversations take place), both the proper causality model
and the provably secure constructions have been left open. Our work fills this gap, with the goal to
facilitate the formal understanding of causality preservation in messaging.
First, we focus on the common two-user secure messaging channels and model the desired causality
preservation property. We take the popular Signal protocol as an example and analyze the causality
security of its cryptographic core (the double-ratchet mechanism). We show its inadequacy with a
simple causality attack, then fix it such that the resulting Signal channel is causality-preserving, even in
a strong sense that guarantees post-compromise security. Our fix is actually generic: it can be applied
to any bidirectional channel to gain strong causality security.
Then, we model causality security for the so-called message franking channels. Such a channel addi-
tionally enables end users to report individual abusive messages to a server (e.g., the service provider),
where this server relays the end-to-end-encrypted communication between users. Causality security in
this setting further allows the server to retrieve the necessary causal dependencies of each reported
message, essentially extending isolated reported messages to message flows. This has great security
merit for dispute resolution, because a benign message may be deemed abusive when isolated from the
context. As an example, we apply our model to analyze Facebook’s message franking scheme. We show
that a malicious user can easily trick Facebook (i.e., the server) to accuse an innocent user. Then we
fix this issue by amending the underlying message franking channel to preserve the desired causality.

Keywords. Causality · Secure messaging · Signal · Message franking

∗Shan Chen is affiliated with both the Research Institute of Trustworthy Autonomous Systems and the Department of
Computer Science and Engineering of SUSTech.

1

https://orcid.org/0000-0003-0597-8297

Contents
1 Introduction 3

1.1 Causality in Cryptographic Channels . 4
1.2 Our Contributions . 5
1.3 Further Related Work . 7

2 Causality Graphs 7

3 Preliminaries 9

4 Bidirectional Channels and Causality Preservation 9
4.1 Bidirectional Channels . 9
4.2 Local Graph and its Update Function . 10
4.3 Causality Preservation . 10
4.4 Causality Preservation with Post-Compromise Security . 12
4.5 Relations to Integrity Notions . 13

5 Causality Preservation of TLS 1.3 14
5.1 The TLS 1.3 Channel and its Insecurity . 15
5.2 Integrating Causality in TLS 1.3 . 16

6 Causality Preservation of Signal 18
6.1 The Signal Channel and its Insecurity . 19
6.2 Integrating Causality in Signal . 20

7 Message Franking Channels and Causality Preservation 23
7.1 Message Franking Channels . 23
7.2 Causality Preservation of Message Franking Channels . 24

8 Causality Preservation of Facebook’s Message Franking 26
8.1 Facebook’s Message Franking Channel and its Insecurity . 26
8.2 Integrating Causality in Facebook’s Message Franking . 27

9 Conclusion 28

A Preliminary Definitions 31
A.1 Authenticated Encryption with Associated Data . 31
A.2 Message Authentication Code . 32
A.3 Commitment Scheme with Verification . 33

B Notion Relations 33

C The Causal Signal Channel and its Security 34
C.1 The Message-Borne Causal Signal Channel . 34
C.2 SCP Security of the Message-Borne Causal Signal Channel 36

D Examples for Using the Causal Channel 36
D.1 A Toy User Interface Example . 36
D.2 Communication Pattern Examples . 36

2

E Security Proofs 37
E.1 Proof of Theorem 5.1 . 37
E.2 Proof of Theorem 6.1 . 38
E.3 Proof of Theorem 8.2 . 38

1 Introduction
Causality deals with the relationship of cause and effect. In computer systems causality preservation should
ensure that events are processed in the right order. This is a long-standing topic in the area of distributed
computing, e.g., Lamport’s seminal work on logical clocks [Lam78] and follow-up works on determining
consistent global snapshots [CL85] and state recovery [SY85]. The ideas in these works, e.g., the ability
to reconstruct the global state from local information, are still valid today.

Causality preservation has meanwhile also entered the area of cryptography. In particular, it was
recently identified as a desired security property for secure instant messaging protocols, as discussed
informally in [UDB+15, RMS18]. However, there the goal of causality preservation is quite weak: “im-
plementations can avoid displaying a message before messages that causally precede it” [UDB+15]. This
may seem correct at first glance as it borrows the same intuition from distributed computing for ordering
events, but a closer look shows that such a guarantee is actually not sufficient for secure messaging (SM).
The reason is that message dependencies are much more subtle than event dependencies: the user’s com-
prehension of a received message may be influenced by any messages displayed before it, even if some of
them are causally independent. We illustrate this with a classic example below.

Alice Bob
“buy?”

“yes!”
“sell?”

Alice’s view
Alice Bob

“buy?”

“yes!”“sell?”

What really happened
Alice Bob

“buy?”
“yes!”
“sell?”

Bob’s view

Figure 1: Classic causality confusion example

As shown in Figure 1, Alice asks Bob for investment advice using an instant messaging application. At
first, Alice asks if she should buy a stock and Bob confirms, but Bob’s response got delayed (e.g., due to
network issues or attacks). From Alice’s view, Bob remains silent, so Alice thinks he is currently offline.
After a while, Alice tries to reach Bob again but this time she asks if she should sell the stock. Then, Alice
receives Bob’s response and mistakenly sells her stock.

It is worth noting that in the above example all messages are delivered and displayed in the correct
order, so the causality confusion is not caused by out-of-order message display. The reason is that the
message order cannot represent the exact causal relations of the real communication. In particular, the
“yes!” response from Bob does not tell Alice which of her messages he replied to. One may then be tempted
to address this issue with a “reply-to” feature provided by some instant messaging applications, however,
Bob did not know that he had to “reply-to” the “buy?” message because his view was not ambiguous at all
(i.e., only the “buy?” message was received before his response). Even if users are required to “reply-to”
all messages, which significantly hampers usability, this feature usually cannot handle a response that
depends on multiple messages.

Therefore, to resolve or mitigate causality confusion, it is better (or at least as a useful complement)
to enable SM applications to extract the necessary causal information from their “channel-layer” protocols
(through which users transmit application messages). This idea is formulated as a causality-preserving
property in our model, which roughly captures an SM channel user’s ability to locally reconstruct the

3

global causal relations of the communication. Note that such security is against active man-in-the-middle
attacks, so it cannot be guaranteed by unauthenticated transport-layer protocols like TCP. Besides, our
causality-preserving feature does not affect the immediate decryption property [ACD19] usually required
by SM channels. That is, when appended with the associated causal information, each received message
can still be immediately decrypted upon receipt; meanwhile not only its sending order but also the exact
message dependencies are reconstructed by the receiver.

Furthermore, compared to SM applications, it is probably more urgent and necessary to integrate
causality in the so-called message franking schemes. Such a scheme additionally enables users to report
abusive messages to the middle server who relays their end-to-end-encrypted communication. Clearly,
the causal dependencies (i.e., the context) of an individually reported message is crucial for the server to
determine if it is abusive.

For instance, a response to the question “what was the worst insult you have ever heard?” should be
treated as benign, but it looks abusive when isolated from the context. A direct mitigation is to utilize
timestamps that the server (e.g., Facebook) adds to each relayed message: the accused person can report
the above question and argue that the seemingly abusive message is just a response to that question, as
justified by their associated timestamps. However, this approach is not perfect, because timestamps reflect
only the order of messages received by the server rather than the exact causal relations of the end-to-end
conversation. For example, in Figure 1 the server may still mistakenly view concurrent messages “sell?”
“yes!” as sequential ones (i.e., as in either Alice’s view or Bob’s view). As another example, when Bob
sends “my friend was insulted like this” followed by a message with abusive words, Alice can accuse Bob
by reporting only the second message. Then, since in message franking only the message receiver (Alice)
is allowed to report, the timestamp of the reported message does not help the server determine if Bob has
ever sent a message right before the reported message.

In order to resolve causality issues in abuse reporting, one can enable the server to extract the en-
tire (or necessary) context associated with the reported message. This is formulated as report causality
preservation in our model.

1.1 Causality in Cryptographic Channels

Following previous work [JS18, ACD19], we treat (two-party) SM channels as bidirectional channels. In
this work, we focus on their causality-preserving property.

In the cryptographic literature, channels were often defined as a unidrectional primitive where one
party only sends messages and the other party only receives. For this simplified setting, the desired
channel security is usually modeled with respect to a cryptographic primitive called stateful authenti-
cated encryption. This primitive was proposed by Bellare et al. [BKN02] and later adopted or refined
by follow-up works [KPB03, PRS11, JKSS12, BHMS16], mainly used to analyze the Transport Layer Se-
curity (TLS) record protocol. Recently, Marson and Poettering [MP17] initialized the formalization of
bidirectional channels and their security, and showed how to securely combine two unidirectional chan-
nels to construct a bidirectional channel. Their results have later been extended to analyze multi-party
broadcast channels [EMP18], SM channels [JS18], and message-franking channels [HDL21]. What all these
approaches have in common is that they considered only channels on top of reliable networks (e.g., their
constructions cease further functionality when a single message got lost). This however does not match the
typical design of SM channels that could operate on unreliable networks, for which permanent message loss
is possible. To tolerate message loss and meanwhile enable immediate decryption, Alwen et al. [ACD19]
extended the model for SM channels and applied it to analyze Signal’s channel protocol, but they did not
consider causality issues.

There were two formal analyses aiming to model causality for multi-party cryptographic chan-
nels [Mar17, EMP18], but neither is satisfactory even for two parties. In particular, [Mar17] defines

4

causality as implied by ciphertext integrity, which should not be the case for a well-defined causality no-
tion, e.g., Signal is proved to achieve ciphertext integrity [ACD19] but causality confusions can still occur
(e.g., the example in Figure 1). The other work [EMP18] focuses on a different object called broadcast
channel, but their security notion captures only the aforementioned weak causality preservation goal (i.e.,
to avoid displaying a message before messages that causally precede it). Besides, neither work handles
message loss or immediate decryption. Therefore, both the proper model of causality preservation for SM
channels and the provably secure constructions remain open.

The other setting we consider for causality preservation is secure abuse reporting (also known as message
franking). Here secure messaging is extended to enable users to report abusive messages to a server (e.g.,
the service provider), who relays their encrypted communication. Message franking was named and first
introduced by Facebook’s end-to-end-encrypted message system [Fac17]. Its rough idea is to add message
commitments to the underlying SM channel and let the server tag the encrypted messages transmitted
through it. Formal analysis of message franking was initiated by Grubbs et al. [GLR17] and continued
by follow-up works on attachment franking [DGRW18] and asymmetric message franking [TGL+19], all
of which treat message franking as an unidirectional primitive. Recently, bidirectional message franking
channels were modeled in [HDL21]. However, prior works on message franking essentially treat reported
messages individually so do not consider their causality.

1.2 Our Contributions

The main contribution of our work is a formal study of the proper causality preservation model for mes-
saging channels. We focus on two settings: two-party secure messaging and message franking. In each
setting, we define a security model for it and propose provably secure constructions by adding causality to a
popular real-world protocol. We hope that our formal results can help to clarify the subtleties of causality
issues and facilitate the integration of causality in messaging channels. More details are summarized as
follows.
Modeling causality preservation for bidirectional channels. Intuitively, causality is preserved by
a bidirectional channel if the communicating parties are able to locally reconstruct the global view of
their conversation. Such a global view is formalized in Section 2 as a so-called causality graph, a bipartite
graph where each vertex represents a sending or receiving action and each edge represents a message
transmission. It can be viewed as a simplified two-party version of the multi-party communication graph
defined in [Mar17]. With such a causality graph, we model causality preservation for bidirectional channels
in Section 4. To match the practical design of SM channels, our model incorporates two important aspects
that were not considered by previous causality works:
• Our model is compatible with unreliable networks, i.e., tolerating message loss and out-of-order

delivery;

• Our causality security in its strong version captures post-compromise security, i.e., causality can be
recovered even after a state compromise if the adversary stays passive during recovery [CCG16]; this
property is critical for SM channels since here a session may last for a very long time (e.g., months).

Relations to integrity notions. So far, all previous works on causality preservation essentially de-
fined it as implied by ciphertext integrity. However, as mentioned before, this should not be the case if
causality preservation is properly defined. In Section 4.5, we show that our causality preservation notion
is completely separate from ciphertext integrity, as expected. Note that causality preservation, however,
implies plaintext integrity, as otherwise the attacker can manipulate the message dependencies by simply
modifying the messages (and causality becomes meaningless if the associated messages can be changed).
Causality preservation of TLS 1.3. Before applying our model to analyze Signal, we first investigate a
simpler bidirectional channel — the TLS 1.3 record protocol [Res18]. Since mitigating causality confusion

5

for TLS may not seem very important, we do not claim this as our main contribution and discuss it briefly
in Section 5. Nevertheless, adding causality to the TLS channel turns out to be very simple and practical,
making it appealing to identify suitable use cases (a toy example is described in Section 5).

Formally, we first show that the TLS 1.3 channel cannot preserve causality even in our basic model (i.e.,
with no post-compromise security and assuming reliable in-order message delivery). Our causality attack
essentially reflects the causality confusion illustrated in Figure 1. To address that, we propose efficient fixes
that add necessary causal information to each transmitted message, such that the resulting causal TLS 1.3
channels provably achieve causality preservation. Thanks to reliable in-order message delivery, one only
has to add the number of consecutively received ciphertexts, denoted by δ, along with each sent message.
This elegant idea has already appeared in [Mar17, Remark 5, p.79] for constructing causal channels in
their model, but not yet applied to any real-world protocols. For TLS 1.3, we show that δ can be securely
added as part of the message, of the associated data, or even of the local nonce; the former two are very
practical.
Causality preservation of Signal. In Section 6, we analyze Signal’s channel protocol (the double-ratchet
mechanism [PM16]) with our strong causality preservation model that captures unreliable network and
post-compromise security. First, we show that the Signal channel also suffers from a similar causality attack
as in the TLS case, which actually implies its insecurity even in our weak model. To fix it, we also add
necessary causal information to each transmitted message. However, since Signal may operate on unreliable
networks, transmitting only δ is not enough to derive all causal dependencies of the communication. We
resolve this by using a first-in-first-out queue Q to record the entire causal information before each sent
message. As transmitting all previous causal information may incur too much overhead (i.e., linear in the
number of exchanged messages), we further show how Q can be shortened such that in common scenarios
the overhead is small enough for practical use. The resulting causal Signal channel is proved to preserve
strong post-compromise causality. It turns out that our proposed fix is generic, i.e., it can be applied to
any bidirectional channel to provide strong causality security. Finally, we show a concrete way for SM
applications to integrate causality in their application-layer user interfaces.
Modeling causality preservation for message franking channels. In Section 7, we present our
causality preservation model for message franking channels. It captures two types of attackers. The first
type considers a malicious server (which relays the end-to-end-encrypted communication) against honest
users. Our security notion for this type is called channel causality preservation, which captures the security
of the underlying SM channel and is defined in the same way as for bidirectional channels described above.
The second type considers a malicious user that tries to fool the reporting system by tampering with
causality. Causality preservation against such attacks is modeled as report causality preservation, which
guarantees that successfully received messages must be reportable and successfully reported messages must
be honest and carry the correct causal information. Note that, unlike the first type, here the second-type
attacker knows the secret state used to encrypt and decrypt messages.
Causality preservation of Facebook’s message franking. Finally, in Section 8 we apply our model
to analyze Facebook’s message franking scheme. First, we show that it does not preserve channel causality,
as the same causality attack against Signal works here. Then, we show that the scheme does not preserve
report causality either, even if it uses our causal Signal channel. This is because no causal information
associated with the reported message is carried in the report. We fix this in our provably secure generic
construction by adding and committing the missing causal information (kept in a queue similar to the
Signal case). Our construction allows the defendant to prove with causality that the reported abusive
message has been taken out of context.

6

1.3 Further Related Work

Alwen et al. [ACD19] formalized the property of immediate decryption. This property says that the
receiver of a message can decrypt a ciphertext obtained from the sender instantaneously upon arrival, even
in settings with out-of-order delivery. Moreover, the recipient can also identify the ordinal number in the
sequence of received messages. The notion has later been refined in [PP22, CZ22]. Immediate decryption
thus focuses on a functional property, with some weak aspects of reliable ordering of received messages at
a party’s site. The bilateral (or potentially multilateral) view of causality, capturing dependencies between
sent and received messages in communication, is thus orthogonal.

Continuing the line of research about immediate decryption, Barooti et al. [BCC+23] defined the notion
of recovering with immediate decryption (RID), as an extension of the notions in [DV19a, CDV21]. The
receiver version of the RID notion, denoted as r-RID, demands that the receiver can detect if a previously
received ciphertext has been maliciously injected by the adversary. The sender version, s-RID, requires that
the sender can detect that the receiver has obtained such a malicious ciphertext. The noteworthy extension
in [BCC+23] is that the authors consider communication channels with out-of-order delivery. While RID
is primarily an integrity notion, the solutions in [BCC+23] themselves share the idea of including history
information in the ciphertexts with our constructions—which ultimately can be traced back to [Mar17].
Namely, in [BCC+23] the receiver transmits the list of received ciphertexts (for r-RID) or a hash thereof
(for s-RID). Our security goal, however, and the details of our constructions are different: we do not
consider active attack detection while they do not handle causality.

Formal security treatments of out-of-order delivery in cryptographic channels can be found in [KPB03,
BHMS16, RZ18]. Recently, Fischlin et al. [FGJ24] defined a more fine-grained robustness property for
channels over unreliable networks. Robustness complements the classical integrity notion and states that
maliciously injected ciphertexts on the network cannot disturb the receiver’s expected behavior. The
notion in [FGJ24] is defined over the ciphertexts (via a support predicate). In contrast, causality addresses
dependencies on the message level, thus aiming at a different scope. One could, nonetheless, integrate a
robustness notion as in [FGJ24] on top, on the channel level. Indeed, the Signal protocol already has
robustness built in: as [FGJ24] argued for the QUIC protocol, for robustness it suffices to show that for
an illegitimate ciphertext the state of the receiver remains unchanged and the ciphertext is recognized as
invalid. This is the case for Signal.

2 Causality Graphs
In order to formally define the causality preservation security, we introduce the notion of a causality graph
associated with an interactive communication (often called a session) between two parties, say Alice (A)
and Bob (B). We follow the idea of multi-party communication graphs described in [Mar17], but focus on
the two-party case and extract the most relevant aspects from their notions.1

Intuitively, a causality graph unambiguously identifies all causal information, i.e., dependencies of
sending and receiving actions, in the associated communication session. Note that here only successful
receiving actions are considered in the graph, i.e., each receiving action corresponds to an accepted message.
The graph is not static: it grows with ongoing communications within the session and always reflects all
dependencies of already performed actions. Formally, we have the following definition for the two-party
case.

Definition 2.1 The causality graph G = (VA, VB, E, <) associated with a two-party communication ses-
sion is a bipartite graph with two strict (or irreflexive) total orders respectively on the disjoint vertex sets

1We note that [Mar17] defined a notion called causal graph. This looks similar but is actually for reliable networks, while
our causality graph captures unreliable networks.

7

VA, VB, and a strict partial order on all vertices, where the notation < is overloaded to denote all orders.
Each vertex represents either a sending action (called a sending vertex) or a receiving action (called

a receiving vertex) performed by some party and VA, VB respectively denote the vertex sets of party A, B.
The edge set E consists of only directed edges from sending to receiving vertices, each edge representing the
transmission of a message. The orders on VA and on VB are naturally defined according to the increasing
occurrence times of the represented actions. The order on VA ∪ VB is the transitive closure of the orders
on VA, VB and the order implied by the directed edges (i.e., (x, y) ∈ E ⇒ x < y).2

G is correct if and only if 1) the above defined order on VA ∪ VB is a strict partial order and 2) each
receiving vertex is connected to exactly one sending vertex and each sending vertex is connected to at most
one receiving vertex.

With the strict partial order on VA ∪ VB, the above causality graph unambiguously identifies all de-
pendencies of the already performed sending and receiving actions. We say two edges (x1, y1), (x2, y2) ∈ E
are concurrent if 1) they are in opposite directions (i.e., x1, x2 cannot both belong to VA or to VB) and 2)
y1 ̸< x2 and y2 ̸< x1; the latter means x1, y1, x2, y2 cannot be totally ordered. Intuitively, two concurrent
edges do not depend on each other. We also say a (sending) vertex is isolated if it is not connected to any
edge, which could happen when the message has not been delivered or got lost during transmission.

a1 b1

a2 b2

a3 b3

a4
b4 isolated

a5
b5

a6
b6

a7
b7

a8
b8

concurrent

order/time

causality graph G

a1 b1

a2 b2

a3 b3

a4
b4

a5
b5

a6
b6

a7

a8

restricted graph G|A

a1 b1

a2 b2

a3 b3

a4
b4

a5
b5

a6
b6

b7

b8

restricted graph G|B

Figure 2: An example causality graph G and the restricted graphs G|A, G|B of Alice (left party) and Bob (right party).

A pictorial description of an example causality graph is given in Figure 2 (left). In the dashed box,
we see two pairs of concurrent edges: (a1, b3), (b1, a2) as well as (a1, b3), (b2, a3). An example of a non-
concurrent edge pair is (a5, b5) from Alice to Bob together with (b6, a7) from Bob to Alice in the lower
part, where the latter edge depends on the former one. The figure also shows two (dotted) isolated sending
vertices a8 and b4.
Graph addition. In order to model dynamic updates of the causality graph, we define a binary addition
operation + that inputs a graph and an action and outputs an updated graph. Let (S, P) denote a sending
action of party P ∈ {A, B}. We write G ← G + (S, P) to express that G is updated by capturing (S, P),
i.e., adding a new sending vertex v to the vertex set VP (then v will be the largest vertex in VP with respect
to <). Let (R, P, i) denote a receiving action of party P , with the associated sending action represented by
the i-th sending vertex v̄i in VP̄ , where P̄ = {A, B}\P ; here v̄i exists because this sending action occurred
before (R, P, i). Similarly, we write G ← G + (R, P, i) to express that G is updated by capturing (R, P, i):
first add a new receiving vertex v to VP and then add a directed edge (v̄i, v).
Restricted graph. Intuitively, the restricted graph G|P of party P captures the causality graph G
restricted to P ’s view. Let v be the largest vertex in VP . Formally, G|P is a subgraph of G that consists of
v, all vertices in VA ∪ VB that are smaller than v, and all edges between those vertices; this is also known
as the v-prefix of G as defined in [MP17]. G|P can be efficiently derived from G.

2This is actually the strict partial order derived from Lamport’s logical clock [Lam78].

8

Note that G|P excludes any edge (and its receiving vertex) that is concurrent to, or larger than, the
last edge from P̄ to P . Consider the example causality graph G shown in Figure 2. The restricted graph
G|A of Alice excludes edges (a4, b7), (a6, b8) (and vertices b7, b8) because they are concurrent to (b6, a7)
(which is the last edge from Bob to Alice). This reflects the fact that Alice does not know whether the
messages sent at a4, a6 have been delivered to Bob because she has not received any response regarding
those messages yet. Alice at a7 received a message sent from Bob at b6; however, this receiving action
only confirms the delivery of Alice’s messages sent at a1, a5 but not those sent at a4, a6, since the latter
are received after b6. Similarly, the restricted graph G|B of Bob excludes edge (b6, a7) and vertex a7. It
also does not include vertex a8 because it is not smaller than b8 (the largest vertex in VB); this reflects
the fact that Bob is not yet aware of Alice sending at a8.

3 Preliminaries

Notations. Let ⊥ denote an invalid element. The output of a function or algorithm is all ⊥(s) if any of
its input is ⊥. Let . denote the member access operation, e.g., a.x denotes the x element of a. However, in
the figures that depict the security experiments and protocols shown later, the state prefixes are omitted
for simplicity, e.g., if a state st contains an element x then we simply write x instead of st.x.

In Appendix A, we recall the definitions of authenticated encryption with associated data (AEAD),
message authentication codes (MACs), and commitment schemes with verification, as well as their corre-
sponding advantage measures that this work focuses on: Advauth

AEAD, Adveuf-cma
MAC , and Advv-bind

CS .

4 Bidirectional Channels and Causality Preservation
In this section we formalize the causality preservation security for bidirectional channels. We define two
causality preservation notions, one for the simpler case where no state corruption is allowed and the other
in the strong sense that captures post-compromise security.

4.1 Bidirectional Channels

A bidirectional channel allows two parties (or users), Alice (A) and Bob (B), to securely communicate
with each other, where each party P ∈ {A, B} can send messages to the other party P̄ = {A, B} \ P , and
receive messages sent by P̄ . For security reasons, the sending party transforms messages to ciphertexts
before transmitting them and the ciphertexts are later transformed back to messages by the receiving
party. Both parties can keep states across their sending and receiving actions. Formally, we have the
following definition based on the bidirectional channel notion proposed by [MP17].

Definition 4.1 A bidirectional (cryptographic) channel is a three-tuple Ch = (Init, Snd, Rcv) associated
with a key space KCh, a state space ST , a message space M, and an index space I:
Init(P, k)→ stP : takes P ∈ {A, B}, k ∈ KCh, and outputs the initial state of P ;

Snd(P, st, m) $→ (st′, c): takes P ∈ {A, B}, st ∈ ST , m ∈M, and outputs an updated state st′ ∈ ST and
a ciphertext c ∈ {0, 1}∗;

Rcv(P, st, c)→ (st′, m, i): takes P ∈ {A, B}, st ∈ ST , c ∈ {0, 1}∗, and outputs an updated state st′ ∈ ST
and a message m ∈M∪ {⊥} with index i ∈ I.

Correctness requires that each party outputs the messages sent by the other party together with the correct
index that indicates their sending order.

9

We say a party accepts a message m (and the ciphertext c) if Rcv processing c is successful, i.e., it
outputs m ̸= ⊥. If the channel runs over an unreliable network, we follow [ACD19] to require that (i) state
st remains unchanged if Rcv outputs m = ⊥; (ii) Rcv never accepts two messages with the same index;
and (iii) index i can be efficiently extracted from the ciphertext c (denoted by c.i).

Note that the message index i can be either a simple ordinal number in N that matches a send counter,
or of any form as long as the indices are strictly ordered. For instance, in the SM syntax of [ACD19], an
index is a two-tuple that consists of an epoch number and a send counter within that epoch. However, due
to the bijective mapping between indices and ordinals, our definitions for simplicity do not differentiate
them explicitly.
Definitional differences from [MP17]. First, our channel algorithms have the acting party’s identity
as an explicit input to capture the different behaviors of the communicating parties when running the same
algorithm with the same inputs, e.g., TLS client and server use different components of the same session key
(part of the input state) for encryption (in Snd) and decryption (in Rcv). Furthermore, for conciseness our
Snd and Rcv algorithms do not take as input unencrypted application-level associated data, i.e., channel
parties require the entire input message to be encrypted, which is often the case for real-world bidirectional
channels (e.g., TLS 1.3, Signal, etc.). As we will show, there may be some associated data formed by the
bidirectional channels and authenticated by their underlying authenticated encryption schemes, but such
associated data is not specified by the channel users. However, it is easy to extend our definition to capture
the application-level associated data if desired. Finally, our Rcv algorithm additionally outputs an index i
to determine the sending order of received messages, which is necessary to model out-of-order delivery or
message loss, but often omitted if the channel is over a reliable in-order network.

4.2 Local Graph and its Update Function

Our security definitions utilize the notion of a local graph GP to represent the causal information derived
by a party P . The local graph can be constructed from the party’s local protocol execution. Causality
preservation of a channel should imply that each party’s local graph always matches its restricted graph,
i.e., GP = G|P . Intuitively, this means that local protocol execution is consistent with the party’s expected
view on causality: What the parties knows about the causality structure is accurate (up to what can be
guaranteed).

A local graph update function localG is a function invoked after each successful Rcv execution. Function
localG inputs a local graph and the Rcv execution’s transcript TRcv and outputs an updated local graph.
Note that the transcript consists of all the input, output, random coins, internal states, etc., used in
the considered Rcv execution. The intuition behind localG is to update the local graph with the causal
information extracted from the successful receiving action. Such a function is necessary because extracting
causal information from received ciphertexts is the only way for a party P to correctly order the other
party P̄ ’s sending and receiving actions in its local graph GP , as P does not have access to P̄ ’s view.
Furthermore, we define localG to concern only receiving actions because successful sending actions can be
trivially added to the local graph in an unambiguous way, which is denoted by GP ← GP + S.

4.3 Causality Preservation

Now, we formally define the security notion of causality preservation (CP). The idea is that the adversary
wins if it makes some party’s local graph GP deviate from the restricted graph G|P , i.e., if the party’s
internal view on causality differs from the actual (local) view. We note that the adversary also wins (event
Bad below) if it makes the receiver accept a malicious message, either one that has not been sent (if Ch
is designed for unreliable networks) or one that has not been sent or is delivered in wrong order (if Ch is
designed for reliable in-order networks). The former event occurs if the receiver outputs a message m with

10

index i which has not been put on the wire, and the latter event further checks if the index i is as expected.
Note that in the first case we cannot stipulate more since transmissions may get lost or be delivered later.
Augmenting the security game by the Bad events ensures that the content of the message remains intact,
thus guaranteeing that responses correspond to the right information.
Security experiment. In Figure 3, we depict the security experiment (or game) for causality preservation
Expcp

Ch,localG,A(1λ) that is executed between a challenger and an adversary A. The experiment is associated
with a bidirectional channel Ch = (Init, Snd, Rcv) and a local graph update function localG.

Expcp
Ch,localG,A(1λ) :

1: k
$← KCh

2: stA ← Init(A, k)
3: stB ← Init(B, k)
4: sA, sB , rA, rB ← 0
5: G, GA, GB ← ε
6: R← ∅
7: ASend,Recv

8: terminate with 0

Send(P, m) :
1: (stP , c) $← Snd(P, stP , m)
2: if c = ⊥ then return ⊥
3: G← G + (S, P), GP ← GP + S
4: add (P, sP , m, c) to R, sP ← sP + 1
5: return c

unreliable networks:
Bad = [(P̄ , i, m, ·) ̸∈ R]

reliable in-order networks:
Bad = [(P̄ , i, m, ·) ̸∈ R or i ̸= rP]

Recv(P, c) :
1: (stP , m, i)← Rcv(P, stP , c) //TRcv: transcript
2: if m = ⊥ then return ⊥,⊥
3: if Bad then
4: terminate with 1 (A wins)
5: G← G + (R, P, i)
6: GP ← localG(GP , TRcv)
7: if GP ̸= G|P then
8: terminate with 1 (A wins)
9: delete (P̄ , i, ·, ·) from R, rP ← rP + 1

10: return m, i

Figure 3: Security experiment for causality preservation

In the beginning, the challenger samples a random channel key k and calls Init with it to derive the
initial states. All the states used in the game are also properly initialized, where in particular sA, sB, rA, rB

are used to count sending and receiving actions. Then, A is given access to two oracles Send and Recv:
Send takes a party identity and a message, calls Snd on the input message, updates the graphs, records the

message, and outputs the derived ciphertext. Note that for reliable in-order networks when a receiving
action fails the state stP may be set to ⊥ by Rcv, and if so Snd(P, stP , ·) will always output (⊥,⊥).

Recv takes a party identity and a ciphertext and calls Rcv on the input ciphertext. If the accepted message
triggers the Bad event discussed above, A wins. Otherwise, the party’s local graph GP and the (global)
causality graph G are updated. Then, A wins if the local graph does not match the restricted graph.
Finally, the oracle removes the accepted message from the record and outputs the message with its
index.

Advantage measure. The advantage is defined as Advcp
Ch,localG(A) = Pr[Expcp

Ch,localG,A(1λ) ⇒ 1] for
any arbitrary localG. We say a bidirectional channel Ch preserves causality (or is CP-secure) if one can
construct an efficiently computable function localG⋆ such that, for any efficient adversary A, the advantage
Advcp

Ch,localG⋆(A) is negligible.
The above security definition may look a bit elusive due to its reliance on the constructibility of localG⋆

(which may not be unique), but the intuition is not complicated. Note that constructibility is a stronger
requirement than existence because an existing function may be very hard to find (e.g., a function to
output hash collisions). By definition, each party in a CP-secure channel can use localG⋆ to extract all
correct causal information associated with an ongoing session in the presence of an active attacker, which
is impossible for an insecure channel due to the non-constructibility (or even non-existence) of localG⋆.

Note that a CP-secure channel only guarantees that each party is in principle able to derive all causal
information captured by its restricted graph, which corresponds to the constructibility of some localG⋆.
However, this does not imply that all correct causal information is indeed derived and utilized by the
channel parties, e.g., they may use arbitrary functions to extract the necessary portion of causal infor-
mation. This actually gives the practical channel constructions more flexibility for utilizing causality, i.e.,
it may be sufficient for a party to extract only partial causal information (rather than the entire local
graph) to perform its causality-related functionality (see Section 5for example). In the future sections, we
will illustrate in our analysis how exactly causality can be utilized to improve security for our proposed
constructions.

11

4.4 Causality Preservation with Post-Compromise Security

The above basic causality preservation notion is sufficient to analyze secure connection protocols like TLS
1.3 (see Section 5), for which state corruption leads to no security.3 However, post-compromise security is
an important concern for secure messaging (SM) protocols like Signal, since their sessions typically last for
a long time (e.g., months). In order to capture this type of bidirectional channels, we define the notion of
strong causality preservation (SCP) that recovers security after state compromise (and defaults to the basic
weaker notion for uncompromised executions). Here for simplicity only unreliable networks are considered,
as popular practical SM protocols like Signal usually do not assume reliable in-order message delivery.
Epochs. In order to formalize post-compromise security, we follow the prior work to associate each party
with a sequence of incrementing epochs t = 0, 1, 2, . . . that represents consecutive time periods. Each
transmitted message and ciphertext are also associated with the same epoch as that of the party when it
sent them. We assume that the epoch number t is part of the party’s state stP (denoted by stP .t) and can
be efficiently extracted from the ciphertext c (denoted by c.t). Then, for any ciphertext c accepted by a
party P , we assume that c.t ≤ stP .t + 1. We will see that Signal satisfies the above assumptions. Finally,
we let (GP)≥t and (G|P)≥t respectively denote subgraphs of GP and G|P that consist of only vertices (and
edges between them) created at epochs larger than or equal to t.

Expscp
Ch,∆,localG,A(1λ) :

1: k
$← KCh

2: stA ← Init(A, k)
3: stB ← Init(B, k)
4: G, GA, GB ← ε
5: tc ← −∞
6: R,Rc ← ∅
7: ASend,Recv,Corr

8: terminate with 0
Corr(P) :
1: add R.get(P̄) to Rc
2: tc ← max(stA.t, stB .t)
3: return stP

Send(P, m) :
1: (stP , c) $← Snd(P, stP , m)
2: if c = ⊥ then return ⊥
3: G← G + (S, P), GP ← GP + S
4: add (P, c.i, m, c) to R
5: if c.t < tc + ∆ then
6: add (P, c.i, m, c) to Rc
7: return c

Invalid = [min(stA.t, stB .t) < tc + ∆
and (P̄ , ·, ·, c) ̸∈ R]

Bad = [min(stA.t, stB .t) ≥ tc + ∆
and (P̄ , i, m, ·) ̸∈ R
and (P̄ , i, ·, ·) ̸∈ Rc]

Recv(P, c) :
1: if Invalid then
2: return ⊥,⊥
3: (stP , m, i)← Rcv(P, stP , c) //TRcv: transcript
4: if m = ⊥ then return ⊥,⊥
5: if Bad then
6: terminate with 1 (A wins)
7: if (P̄ , i, m, ·) ∈ R then
8: G← G + (R, P, i)
9: GP ← localG(GP , TRcv)

10: if (GP)≥tc+∆ ̸= (G|P)≥tc+∆ then
11: terminate with 1 (A wins)
12: delete (P̄ , i, ·, ·) from R,Rc
13: return m, i

Figure 4: Security experiment for strong causality preservation

Security experiment. In Figure 4 we depict the security experiment (or game) for strong causality
preservation Expscp

Ch,∆,localG,A(1λ) that is executed between a challenger and an adversary A. The experi-
ment is additionally associated with a parameter ∆ ≥ 0 that indicates how fast (in terms of epochs) parties
recover from state compromise. Intuitively, strong causality preservation guarantees that even if at some
epoch a party is corrupted, after ∆ epochs the channel protocol resurrects causality again.

The experiment is more complicated than the CP experiment due to state compromise. In the begin-
ning, the challenger initializes two additional states, tc that stores the most recent (i.e., largest) compro-
mised epoch and Rc that records the compromised messages (with the corresponding ciphertexts). Then,
A is given oracle access to Send, Recv, Corr, where Corr is for state corruption.
Corr takes a party identity and outputs the party’s current state; it also records all the outstanding

messages sent by the other party as compromised (i.e., adding them to Rc) and updates tc.

Send works as before except that: if the party is still recovering from state compromise, i.e., c.t < tc + ∆,
then the sent message and ciphertext are recorded as compromised.

Recv becomes more complicated to handle corruption, but it downgrades to the Recv oracle in the CP
experiment when no corruption occurs (then tc = −∞ and Rc = ∅). In the beginning, the Invalid
3For secure connection protocols, our work focuses on their security within a basic connection, where no post-compromise se-

curity is guaranteed, but such protocols (e.g., TLS 1.3) could achieve post-compromise security across resumed sessions [Sca20].

12

condition is checked, which ensures that the adversary performs passively during channel recovery (i.e.,
no malicious ciphertext can be processed when either party’s current epoch is less than tc +∆). Then, if
the ciphertext is successfully transformed to a message (i.e., the message is accepted), the Bad event is
checked. Bad occurs if after recovery a party accepts a malicious message that was neither sent by the
other party nor associated with a compromised epoch, and hence in this case A wins. Otherwise, the
local graph GP and (global) causality graph G are updated, where the latter is updated only when the
accepted message is not modified since message dependencies captured by G are meaningless without the
correct messages. Then, A wins if the after-recovery subgraph of either party’s local graph (GP)≥tc+∆
does not match that of the party’s restricted graph (G|P)≥tc+∆. Finally, the oracle removes the accepted
message from the records and outputs the message with its index.
We remark that our model does not capture forward secrecy for causality. The key observation is that,

even after state recovery, the part of a causality graph that corresponds to a previous uncompromised
epoch may still be affected by a compromised message that carries malicious causal information. However,
causality for already received messages is still guaranteed upon corruption.
Advantage measure. The advantage is defined as Advscp

Ch,∆,localG(A) = Pr[Expscp
Ch,localG,∆,A(1λ)⇒ 1] for

any arbitrary localG. We say a bidirectional channel Ch preserves ∆-strong causality (or is ∆-SCP-secure)
if one can construct an efficiently computable function localG⋆ such that, for any efficient adversary A, the
advantage Advscp

Ch,∆,localG⋆(A) is negligible. Similarly, a ∆-SCP-secure channel also guarantees that each
party is in principle able to derive all causal information captured by its restricted graph in epochs after
recovery, but parties may choose to extract only partial causal information.
SCP ⇒ CP and CP ̸⇒ SCP. For SCP ⇒ CP, we note that SCP downgrades to CP if the adversary
makes no corruption query, in which case tc = −∞ and Rc = ∅. The other direction is not true, e.g.,
causal TLS 1.3 channels (details in Section 5.2) offer no post-compromise security.

4.5 Relations to Integrity Notions

Our (S)CP notions are clearly orthogonal to confidentiality (i.e., causal relations can be simply observed
by a network attacker), but one may think of them as complements to integrity. We show that this is not
quite the case.

Expint-ptxt/int-ctxt
Ch,A (1λ) :

1: k
$← KCh

2: stA ← Init(A, k)
3: stB ← Init(B, k)
4: sA, sB , rA, rB ← 0, R← ∅
5: ASend,Recv

6: terminate with 0

Send(P, m) :
1: (stP , c) $← Snd(P, stP , m)
2: if c = ⊥ then return ⊥
3: sP ← sP + 1
4: add (P, sP , m, c) to R
5: return c

Recv(P, c) :
1: (stP , m, i)← Rcv(P, stP , c)
2: if m = ⊥ then return ⊥,⊥
3: if Badptxt/Badctxt then
4: terminate with 1 (A wins)
5: rP ← rP + 1, delete (P̄ , i, ·, ·) from R
6: return m, i

Figure 5: Security experiments for plaintext and ciphertext integrity, where Badptxt = Bad as defined in Figure 3, Badctxt =
[(P̄ , i, ·, c) ̸∈ R] for unreliable networks and Badctxt = [(P̄ , i, ·, c) ̸∈ R or i ̸= rP] for reliable in-order networks.

First, in Figure 5 we formalize the security experiments of plaintext integrity (INT-PTXT) and cipher-
text integrity (INT-CTXT) for bidirectional channels.4 Their advantage measures are defined naturally
and denoted by Advint-ptxt

Ch (A) and Advint-ctxt
Ch (A) respectively.

Then, in Figure 6 we define the security experiments for strong plaintext integrity (S-INT-PTXT) and
strong ciphertext integrity (S-INT-CTXT) that offer post-compromise security for bidirectional channels.
Similarly, we denote their advantage measures by Advs-int-ptxt

Ch,∆ (A) and Advs-int-ctxt
Ch,∆ (A) respectively.

To clarify the relationship of the above two notions, we define a notion called robust correctness (ROB-
CORR) to capture correctness in a robust sense: after state recovery, decrypting ciphertexts created in

4[MP17] initialized the formal security definitions for bidirectional channels, but their notions do not capture unreliable
networks.

13

Exps-int-ptxt/ctxt
Ch,∆,A (1λ) :

1: k
$← KCh

2: stA ← Init(A, k)
3: stB ← Init(B, k)
4: tc ← −∞
5: R,Rc ← ∅
6: ASend,Recv,Corr

7: terminate with 0

Send(P, m) :
1: (stP , c) $← Snd(P, stP , m)
2: if c = ⊥ then return ⊥
3: add (P, c.i, m, c) to R
4: if c.t < tc + ∆ then
5: add (P, c.i, m, c) to Rc
6: return c

Recv(P, c) :
1: if Invalid then return ⊥,⊥
2: (stP , m, i)← Rcv(P, stP , c)
3: if m = ⊥ then return ⊥,⊥
4: if Bads-ptxt/Bads-ctxt then
5: terminate with 1 (A wins)
6: delete (P̄ , i, ·, ·) from R,Rc
7: return m, i

Figure 6: Security experiments for strong plaintext integrity and strong ciphertext integrity, where Corr, Invalid and Bads-ptxt =
Bad are defined in Figure 4 and Bads-ctxt = [min(stA.t, stB .t) ≥ tc + ∆ and (P̄ , i, ·, c) ̸∈ R and (P̄ , i, ·, ·) ̸∈ Rc].

a compromised epoch and decryption failure do not affect the correctness requirement, i.e., an honest
ciphertext is always decrypted to the original message and index.5 Its security experiment is the same as
Figure 6, except that the Bad event is replaced by Badrob-corr = [min(stA.t, stB.t) ≥ tc +∆ and (P̄ , i, ·, c) ∈
R and (P̄ , i, m, ·) ̸∈ R and (P̄ , i, ·, ·) ̸∈ Rc]. The advantage measure is denoted by Advrob-corr

Ch,∆ (A).
In Appendix B, we investigate the relations among the above integrity notions and our (S)CP notions;

the results are summarized in Figure 7.

SCP

CP

S-INT-PTXT

INT-PTXT

S-INT-CTXT

INT-CTXT

+ ROB-CORR

Figure 7: Notion relations. Solid arrows mean an implication, dotted (crossed out) arrows mean a separation.

5 Causality Preservation of TLS 1.3
In this section, we first describe the TLS 1.3 record protocol [Res18] as a bidirectional channel and show
its insecurity for preserving causality, then amend it to provably achieve the desired CP security. We
assume all (causal) TLS channels discussed in this section run on top of a communication network that
guarantees reliable in-order message delivery if no attackers are considered (i.e., exchanged messages are
never dropped and always received in their sending order), which in practice is realized by TCP.
Toy example. Before the formal analysis, we describe a toy example of how causality preservation of
TLS 1.3 might be beneficial in some real-world scenarios. Consider playing a multiplayer game online via
a TLS channel, where a smooth game flow is a significant economic factor. Some causal effects such as
making a move or killing a monster, if delayed, may sometimes confuse the player. For instance, imagine
in Figure 1 Alice is the player and Bob is the game server, and the two messages from Alice correspond to
two different keyboard combos and the response from Bob corresponds to the resulting move displayed to

5This notion is loosely connected to the idea behind the robust notion for unreliable channels recently put forward in
[FGJ24], namely that malicious ciphertexts do not disturb the expected behavior. However, in our case the notion is closer
to a correctness property after recovery. A similar correctness security notion was also defined in [ACD19].

14

Alice. Then, Alice could mistake the second combo as yielding the displayed move, while the true combo
is the first one.

5.1 The TLS 1.3 Channel and its Insecurity

The TLS 1.3 channel. Following our bidirectional channel syntax (see Definition 4.1), we present the
TLS 1.3 record protocol as a bidirectional channel ChTLS in Figure 8, based on its underlying nonce-
based AEAD scheme AEAD = (K, Enc, Dec) (which can be instantiated with AES-GCM [MV04a] or other
schemes as documented in [Res18]).

Init(P, k):
1: (s, r)← (064, 064)
2: return (k, s, r)

Snd(P, st, m):
1: if st = ⊥ then return ⊥,⊥
2: (kA, kB , ivA, ivB)← k
3: a← (0x23, 0x0303, clen(|m|))
4: e← EnckP (ivP ⊕ (032∥s), a, m)
5: s← s + 1
6: return st, (a, e)

Rcv(P, st, c):
1: if st = ⊥ then return ⊥,⊥,⊥
2: (kA, kB , ivA, ivB)← k, (a, e)← c
3: m← DeckP̄

(ivP̄ ⊕ (032∥r), a, e)
4: if m = ⊥ then return ⊥,⊥,⊥
5: r ← r + 1
6: return st, m, r − 1

Figure 8: The TLS 1.3 channel ChTLS

The TLS 1.3 channel key k consists of two random κ-byte (κ ∈ {16, 32}) AEAD keys and two random
96-bit secret IVs, with one AEAD key and one secret IV for each direction. The associated data a consists
of 3-byte fixed values and a 2-byte AEAD ciphertext length clen(|m|) (in bytes), where the latter is a
simple function of the message length and some pre-defined channel parameters (like the padding length).
AEAD uses a 96-bit per-record nonce derived from the exclusive OR of a 96-bit random secret IV and a
64-bit send counter s prepended with 32-bit 0s. Note that party P uses kP and ivP for encryption and kP̄

and ivP̄ for decryption. Rcv outputs the receive counter value r − 1 used for decryption as the message
index. As our main focus is causality preservation, we consider only the basic record protection of the
TLS 1.3 channel and omit its more advanced features (e.g., key updates as analyzed in [GM17]). The
correctness of ChTLS follows from the correctness of AEAD and the assumption that ChTLS runs on top of
a reliable in-order network (which in practice is usually supported by TCP).
Causality insecurity of ChTLS. In order to show that causality preservation does not hold for ChTLS,
we construct an efficient adversary A as follows. First, A samples a random bit b $← {0, 1}. Then, consider
the following queries for any messages m1, m2 ∈ M: ➀ c1

$← Send(A, m1), ➁ (m1, 1) ← Recv(B, c1), ➂

c2
$← Send(B, m2), ➃ (m2, 1) ← Recv(A, c2). If b = 0, A runs ➀➁➂➃; otherwise b = 1, A runs in a

different order ➀➂➁➃, swapping ➁ and ➂. The two cases are displayed in Figure 9. It is easy to see that
the cases result in different causality graphs (and different restricted graphs for Alice): in the left world
(b = 0) Bob sent m2 after receiving m1 while in the right world (b = 1) it is the opposite.

c1

c2

c1

c2

Figure 9: Causality attack against TLS. The adversary chooses one of the two execution flows randomly. Since both parties
use individual counters for sending and receiving, Alice’s views (in the dashed box) are identical in both cases. In contrast,
the restricted graph of the left party in the first case is given by the entire graph, whereas in the second case it does not
contain Bob’s last vertex.

Now note that, according to the protocol description in Figure 8 both parties use different state
information for sending and receiving. Hence, for Alice’s receiving action on c2 it does not matter if Bob

15

has created ciphertext c2 before receiving c1 or after that. Both worlds look exactly the same to Alice,
i.e., resulting in the same Rcv execution transcript. This means that Alice’s local view is identical in both
cases. However, the restricted graph of Alice contains all four vertices in the case ➀➁➂➃ but excludes the
final vertex on Bob’s side in the other case ➀➂➁➃ (because this vertex is not smaller than the final node
of Alice). Therefore, no matter what localG function is chosen we have GA ̸= G|A with probability at least
1/2, i.e., Advcp

ChTLS,localG(A) ≥ 1/2 for any localG. By definition, ChTLS does not preserve causality.

5.2 Integrating Causality in TLS 1.3

Recall from prior works [GM17, CJJ+21] that TLS 1.3 guarantees that all accepted messages (ciphertexts)
are received reliably in their sending order. To derive the full causal relations when accepting a message
m, the party P only needs to further know the number of consecutive messages accepted by P̄ before m
was sent, i.e., the number of accepted messages before P̄ sent m and after it sent the last message (if
any) before m. This number is denoted by δ (resp. δ̄) for a message sent by P (resp. P̄). Therefore, one
can modify the TLS 1.3 channel to somehow transmit the associated δ-value of each sent message. We
note that the idea of sending δ with each sent message was briefly mentioned in [Mar17], but her work
does not consider real-world protocols like TLS. In this section, we propose three constructions for TLS
1.3 and respectively call them the message-borne, associated-data-borne, and nonce-borne causal TLS 1.3
channels, indicating where δ is borne.
The message-borne causal TLS 1.3 channel. As shown in Figure 10, the message-borne causal TLS
1.3 channel Chm

cTLS simply encrypts δ with the input message, enlarging the ciphertext length by 8 bytes.
That is, for encryption we encode the number δ as 64 bits, matching the length of the send counter and
the maximal number of messages. A noteworthy property of the construction is that the receiver P does
not need to process the decrypted number δ̄ in Rcv; it is only used in the CP security argument to update
the local graph GP .

Init(P, k):
1: (s, r, δ)← (064, 064, 064)
2: return (k, s, r, δ)

Snd(P, st, m):
1: if st = ⊥ then return ⊥,⊥
2: (kA, kB , ivA, ivB)← k
3: a← (0x23, 0x0303, clen(|m|))
4: e← EnckP (ivP ⊕ (032∥s), a, (m, δ))
5: s← s + 1, δ ← 0
6: return st, (a, e)

Rcv(P, st, c):
1: if st = ⊥ then return ⊥,⊥,⊥
2: (kA, kB , ivA, ivB)← k, (a, e)← c
3: (m, δ̄)← DeckP̄

(ivP̄ ⊕ (032∥r), a, e)
4: if m = ⊥ then return ⊥,⊥,⊥
5: r ← r + 1, δ ← δ + 1
6: return st, m, r − 1

Figure 10: The message-borne causal TLS 1.3 channel Chm
cTLS

The correctness of Chm
cTLS follows from the correctness of AEAD and the assumption that Chm

cTLS runs
on top of a reliable in-order network. For security, consider a function localG⋆

m that updates GP as follows.
First, it extracts the decrypted number δ̄ from the input transcript TRcv. Then, it iterates δ̄ times the
following procedure (see Figure 11): on the i-th (1 ≤ i ≤ δ̄) iteration, it first adds a new receiving vertex
v̄i to VP̄ (such that v̄i is the largest vertex in VP̄), then adds a directed edge from the smallest isolated
sending vertex in VP to v̄i. Finally, it updates GP to capture the just accepted message (i.e., the output
message in TRcv): it first adds a new sending vertex v̄′ to VP̄ and a new receiving vertex v′ to VP , then
adds an edge (v̄′, v′).

With localG⋆
m, it is not hard to see that GP = G|P always holds for a correct Chm

cTLS execution that runs
on top of a reliable in-order communication network (e.g., TCP). The reason is that the function adds all
edges from isolated send vertices step by step, and for the in-order delivery for the reliable network we know
that the outgoing messages from these vertices must arrive in this order. In the following theorem with
the proof in Appendix E.1, we show that causality preservation of Chm

cTLS can be reduced to authenticity
of AEAD. The latter holds when AEAD is instantiated with AES-GCM [MV04b].

16

δ̄ = 2

graph

δ̄ = 2

local graph

δ̄ = 2

iteration #1

δ̄ = 2

iteration #2

δ̄ = 2

finalizing

Figure 11: Building local graph in Chm
cTLS. The first figure shows the actual communication graph where the left party receives

a ciphertext with δ̄ = 2. Starting from its local graph (2nd figure) it iterates δ̄ = 2 times, each time finds the smallest isolated
vertex in its local graph, adding the receiving vertex as the largest vertex in the other party’s vertex set and the edge (3rd
and 4th figure). It finalizes the update by adding the vertices and edge of the final action (5th figure).

Theorem 5.1 For any efficient adversary A, there exists an efficient adversary B such that

Advcp
Chm

cTLS,localG⋆
m

(A) ≤ 2 ·Advauth
AEAD(B).

The associated-data-borne causal TLS 1.3 channel. The associated-data-borne causal TLS 1.3
channel Chad

cTLS authenticates δ as part of the associated data a rather than encrypting it as with Chm
cTLS.

Note that making δ public is not an issue because a network attacker can easily derive the δ-value by
observing the (encrypted) communications, i.e., the order of the sending and receiving actions. We omit
the description of Chad

cTLS due to its high similarity to Chm
cTLS. It is easy to see that Chad

cTLS is also correct.
By considering a function localG⋆

ad that extracts δ̄ from TRcv and then proceeds as localG⋆
m, one can also

reduce causality preservation of Chad
cTLS to authenticity of AEAD similar to Theorem 5.1.

The nonce-borne causal TLS 1.3 channel. We show the nonce-borne causal TLS 1.3 channel ChN
cTLS

in Figure 12, which incorporates the δ-value to derive the AEAD nonce instead of transmitting it.

Init(P, k):
1: (s, r, δ, r̄)← (064, 064, 032, 064)
2: return (k, s, r, δ, r̄)

Snd(P, st, m):
1: if st = ⊥ then return ⊥,⊥
2: (kA, kB , ivA, ivB)← k
3: a← (0x23, 0x0303, clen(|m|))
4: e← EnckP (ivP ⊕ (δ∥s), a, m)
5: s← s + 1, δ ← 0
6: return st, (a, e)

Rcv(P, st, c):
1: if st = ⊥ then return ⊥,⊥,⊥
2: (kA, kB , ivA, ivB)← k, (a, e)← c
3: for δ̄ = s− r̄ to 0 do
4: m← DeckP̄

(ivP̄ ⊕ (δ̄∥d), a, e)
5: if m ̸= ⊥ then break
6: if m = ⊥ then return ⊥,⊥,⊥
7: r ← r + 1, δ ← δ + 1, r̄ ← r̄ + δ̄
8: return st, m, r − 1

Figure 12: The nonce-borne causal TLS 1.3 channel ChN
cTLS

Since δ is not transmitted, when processing a received ciphertext, each party has to guess the correct δ̄
value used by the other party to get that ciphertext and then reconstruct the same nonce to decrypt it. It
guesses from the largest possible value s− r̄ to the smallest 0 (see the subprocedure in line 3 in Rcv), where
r̄ denotes the number of messages already received by P̄ from P ’s view. Note that the δ-value is included
as the leading 32 bits prepended to the 64-bit counter (see line 4 in Snd), together matching the 96 bits
of the IV. So δ (and hence δ̄) has length of only 32 bits rather than 64 bits, as in previous constructions,
restricting the number of sent messages to 232 (which is not a severe restriction in practice).

The correctness of ChN
cTLS follows from not only the correctness but also the authenticity of AEAD.

This is because for the for-loop (i.e., lines 3-5) to perform correctly, the decryption must fail (with high
probability) for incorrect δ̄ values; this is guaranteed by authenticity of AEAD since any incorrect δ̄ value

17

corresponds to a new nonce (i.e., never used by encryption). For security, consider a function localG⋆
N

that extracts from TRcv the correct δ̄ value (after the for-loop) and then proceeds as localG⋆
m. Similar to

Theorem 5.1, one can reduce causality preservation of ChN
cTLS to authenticity of AEAD.

Performance analysis. We compare the performance of the above three causal TLS 1.3 channels as well
as the basic TLS 1.3 channel; the results are summarized in Table 1.

Table 1: Performance comparison of (causal) TLS 1.3 channels

Channel Computation State size (κ = 16) Ciphertext overhead
Snd Rcv (in bytes) (in bytes)

ChTLS 1 Enc 1 Dec 72 -
Chm

cTLS 1 Enc 1 Dec 72 + 8 8
Chad

cTLS 1 Enc 1 Dec 72 + 8 8
ChN

cTLS 1 Enc 1 ∼ (s− r̄) Dec 72 + 12 0

First, we see that Chm
cTLS and Chad

cTLS both introduce 8-byte overhead to each transmitted ciphertext for
carrying the δ value, but such overhead is negligible compared to a typical TLS record of hundreds of bytes
(16 KB at a maximum). Besides, the per-session state size is increased by 8 bytes too, which is negligible
for storage. The computational cost is almost unchanged except that the encryption and decryption each
processes one more block for δ, for which Chm

cTLS is slightly less efficient than Chad
cTLS as AES-GCM takes

longer time to process message than associated data.
On the other hand, ChN

cTLS incurs no overhead for record size and negligible overhead for state size, but
the computational cost is more expensive due to the trial-and-error guesses of the correct δ̄ value. That
is, Rcv may have to run decryption multiple times until the correct δ̄ is found: recall that δ̄ is guessed
from the largest possible value s − r̄ to the smallest 0. Nevertheless, we remark that in some real-world
scenarios the computational overhead can be much reduced, e.g., when the causality graph contains very
few concurrent edges (i.e., the graph is of roughly a zig-zag shape). This is the case when each party
prefer sending new messages only after receiving most messages already sent by the other party (e.g.,
when TLS 1.3 is used for web browsing) and few exchanged ciphertexts were long-delayed (e.g., due to
network connection issues or attacks). Note that an invalid ciphertext can trivially cause maximum s− r̄
times of decryption executions, but this will also destroy the session due to the decryption error.

To summarize, one can choose one construction from Chm
cTLS and Chad

cTLS for causality preservation
with negligible overhead.
Application-layer causality utilization. Recall that CP security ensures that the channel parties are
only in principal able to derive the correct causal information. Here we specify a way for each party to
extract and utilize the causal information. We note that a typical TLS 1.3 session (e.g., web browsing)
should not result in many concurrent edges in the causality graph, since each party tends to send new
messages after receiving all or most messages responded by the other party. Therefore, the channel parties
can raise warning flags to the application if too many concurrent edges occur, e.g., by setting a threshold.
In order to detect a concurrent edge, each party could check if δ̄ equals the number of already sent but
not accepted messages; this can be done, for instance, by keeping a counter r̄ recording the number of
messages accepted by the other party and checks if δ̄ = s− r̄.

6 Causality Preservation of Signal
In this section, we analyze causality preservation of the Signal protocol [MP16, PM16]. We focus on its
double-ratchet component [PM16] without considering the X3DH key agreement [MP16] used to derive
the initial shared key. The double-ratchet algorithm is considered as the most ingenious cryptographic

18

construction of Signal that attracts abundant recent works [BSJ+17, PR18, JS18, ACD19, JMM19, DV19b,
BFG+22].

First, we show that Signal as a bidirectional channel does not even achieve the basic CP security.
Then, we propose simple fixes to construct SCP-secure causal Signal channels and describe a potential
user interface for the SM applications to display the causal dependencies to end users. Unlike the TLS
channels discussed in Section 5, Signal channels considered in this section may run on top of an unreliable
communication network (i.e., exchanged messages could be received out-of-order or even get lost in correct
protocol executions).

6.1 The Signal Channel and its Insecurity

The Signal channel. According to our defined syntax (see Definition 4.1), we can view Signal as a
bidirectional channel, denoted by ChSignal. Here we briefly summarize its main cryptographic design, and
refer to Appendix C.1 for a more detailed description of the Signal channel based on its core building
blocks.

Signal performs a so-called continuous key agreement (CKA) protocol to generate a series of shared
secrets, such that after state compromise the channel parties are able to recover security with a fresh
shared secret. Parties in the Signal channel send and receive messages in alternate epochs, with odd
epochs for Alice to send and Bob to receive, and even epochs for Bob to send and Alice to receive.
Therefore, concurrent messages sent by different parties are associated with distinct epochs. Recall that
in Section 4.4 we assume each party P keeps the epoch number t in its local state stP and the associated
epoch number can be efficiently extracted from the ciphertext; this is the case for Signal.6

The epoch numbers of both parties are initialized as 0. For each party P , its epoch number stP .t is
incremented from t to t + 1 in two cases: (1) after P receives from the other party a message with epoch
number t + 1 (e.g., when stB.t = 0 and Bob receives a message associated with epoch t = 1, Bob updates
stB.t = 1); or (2) before P sends a message while t is not the epoch for P to send (e.g., when stA.t = 2
and Alice wants to send a message, the epoch number is incremented to stA.t = 3 because Alice can only
send messages in odd epochs). This design matches our assumption in Section 4.4 that each bidirectional
channel party P accepts only ciphertexts with epoch number ≤ stP .t + 1.

The above CKA also provides forward secrecy, which for Signal roughly means that state corruption
does not affect the security of the (encrypted) messages already transmitted in previous epochs. Actually,
forward secrecy guaranteed by Signal is more fine-grained, i.e., even within the same epoch the already
sent messages remain safe. To achieve such security, each party in Signal further updates its sending (or
receiving) key after each sending (or receiving) action, such that past keys cannot be derived from new
keys.

The message index of ChSignal is hence a two-tuple (t, s), where t is the epoch number and s is the sent
message counter within epoch t.
Causality insecurity of ChSignal. We first note that the same attack against the TLS 1.3 channel does not
immediately work for Signal, because Alice can tell if Bob has received her first message m1 by retrieving
the epoch number t̄ from the received ciphertext c2. More precisely, if t̄ = 0, then Bob did not receive m1;
otherwise t̄ = 2, then Bob has received m1. However, this works only because m2 may lie in two different
epochs depending on whether m1 was received.We can follow the idea reflected in Figure 1 to construct an
efficient adversary A against causality preservation of ChSignal. First, A samples a random bit b $← {0, 1}.
Then, consider the following queries for any three messages m1, m2, m3 ∈ M: ➀ c1

$← Send(A, m1), ➁

(m1, (1, 0)) ← Recv(B, c1), ➂ c2
$← Send(A, m2), ➃ (m2, (1, 1)) ← Recv(B, c2), ➄ c3

$← Send(B, m3), ➅

6Actually, Signal exploits the uniqueness of the latest CKA message (authenticated but not encrypted, as shown in
Figure 18, Appendix C.1) to index epochs. For simplicity, we follow [ACD19] to assume an explicit epoch number is used.

19

(m3, (2, 0)) ← Recv(A, c3). If b = 0, A runs ➀➁➂➃➄➅; otherwise b = 1, A runs in a different order:
➀➁➂➄➃➅. These two cases are depicted in Figure 13.

t = 1
t̄ = 1

t = 1
t̄ = 1

t̄ = 2
t = 2

t = 1
t̄ = 1

t = 1
t = 2

t̄ = 2
t̄ = 1

c1

c2

c3

c1

c2

c3

Figure 13: Causality attack against Signal. Each ciphertext contains the epoch t for sending actions and the obtained epoch
value t̄ for receiving actions. The send counters are irrelevant for the attack and are omitted. The adversary chooses one of
the execution flows randomly. Then, Alice’s views (in the dashed boxes) in both cases are identical, whereas Alice’s restricted
graphs are different: the right hand side does not contain Bob’s last vertex.

Clearly, the above two cases result in two different causality graphs (and different restricted graphs for
Alice): in the left world (b = 0) Bob sent m3 after receiving m2 but in the right world (b = 1) that is not
the case. Note that in both worlds Bob has received m1 before sending m3, so m3 must belong to epoch
t = 2.7 Since c3 carries no information about whether m2 has been received, both worlds look identical to
Alice. (This can be verified by checking the detailed description of ChSignal in Figure 18, Appendix C.1.)
Therefore, GA ̸= G|A happens with probability at least 1/2, i.e., Advcp

ChSignal,localG(A) ≥ 1/2 for any possible
update function localG. By definition, ChSignal does not preserve causality.

6.2 Integrating Causality in Signal

Since Signal allows for out-of-order message delivery and message loss, transmitting only the δ value (i.e.,
the number of consecutively accepted messages before the sent message, more details discussed in Section 5)
as for TLS is not enough to reconstruct the full causal relations. The problem can been seen in Figure 11
for TLS. If one of the two first sent messages of Alice has not been delivered, and only the number δ̄ = 1
of meanwhile received ciphertexts is returned, then Alice cannot determine which of the two messages was
received.In order for the parties to build the correct restricted graph, along with each sent message the
entire causal information before this message (that has not been known by the receiving party) has to
be transmitted. We store this information in a queue Q (with the usual methods enq, deq, and front to
enqueue and dequeue elements, and to read the front element without dequeuing it). Then, we propose
a so-called message-borne causal Signal channel, indicating where Q is borne. Analogously, one can also
construct an associated-data-borne causal Signal channel, by authenticating Q as part of the associated
data rather than encrypting it.8

A generic causal channel compiler. In Figure 14, we show a generic compiler that transforms an ar-
bitrary bidirectional channel Ch = (Init, Snd, Rcv) into a message-borne causal channel Chm. In particular,
when Ch is instantiated with ChSignal, we get the message-borne causal Signal channel Chm

cSignal.
As shown in Figure 14, Chm keeps indices iS , iR and queue Q as three additional states and encrypts the

latter two states with the sent message. Formally, Q is a (first-in-first-out) queue that records a sequence
of actions before the sent message in their correct time order: each action is recorded as the index of the
associated sent or received message. We require that one can distinguish a sending index from a receiving
index. Clearly, the receiving party is able to construct the correct restricted graph if all actions before the

7Note that if Bob sends a message m before receiving any messages from Alice, then this message m belongs to epoch
t = 0.

8As far as we know, the associated data is rarely used by instant messaging services for handling application-level data, so
the message-borne version seems easier to understand and implement. It also matches our bidirectional channel syntax well.

20

Chm.Init(P, k):
1: stCh ← Ch.Init(P, k)
2: iS , iR ← −1, Q← ∅
3: return (stCh, iS , iR, Q)

update(Q, ī, iS , iR, īR):
1: Q.enq(̄i)
2: if iR < ī then iR ← ī
3: if iS < īR then
4: while Q.front() ̸= īR do
5: Q.deq()
6: if |Q| = 0 then abort
7: Q.deq(), iS ← īR

Chm.Snd(P, st, m):
1: (stCh, c) $← Ch.Snd(P, stCh, (m, iR, Q))
2: if stCh = ⊥ then return ⊥,⊥
3: Q.enq(c.i)
4: return st, c

Chm.Rcv(P, st, c):
1: (stCh, (m, īR, Q̄), ī)← Ch.Rcv(P, stCh, c)
2: if m = ⊥ then return st,⊥,⊥
3: update(Q, ī, iS , iR, īR)
4: return st, m, ī

Figure 14: The message-borne causal channel Chm (with dashed boxes highlighting the added causality-related operations).
It deploys a queue Q and two indices iS , iR whose current values are always kept in the augmented state st = (stCh, iS , iR, Q).
Barred values represent the data output by the receiver of the underlying channel (as opposed to internal states). The value
Q̄ is not returned by Rcv, but it is part of the Rcv transcript TRcv so can be used by localG to update the local graph. When
Ch = ChSignal, message indices are of the form (t, s) and ordered lexicographically (with −1 denoting a minimum).

sent message are recorded in Q. However, this may incur too much overhead, e.g., a Signal communication
session may last for months and hence involve many actions.

To mitigate overhead, we use indices iS , iR to update Q such that it records only the actions performed
by party P but whose delivery has not yet been confirmed, i.e., P has not accepted any ciphertext sent from
P̄ that confirms the delivery of those actions. Let iS denote, in P ’s view, the largest index of messages
accepted by P̄ , then Q only needs to record P ’s actions after its iS-th sending action, because earlier
actions have been recorded and transmitted along with the sent messages accepted by P̄ . For instance,
consider the message sent by Bob at b6 in Figure 2. This message has index 4 and queue Q consists of the
(sending) message indices associated with b3, b4, b5, i.e., Q = (1̄, 3, 3̄) (where ī indicates a receiving index),
because the received message at b5 already confirmed the delivery of messages sent at b1 and b2. In order
to easily update iS , we transmit an additional state iR of P that records the largest index of accepted
messages sent by P̄ , then iS can be updated by comparing to īR (i.e., the largest index of P̄ ’s accepted
messages sent by P) decrypted from ciphertexts sent by P̄ . This generalizes the idea of δ value, where
it suffices to count the processed message in between; here we record all message indices since the last
confirmation.

The actual procedures involving iS , iR, Q are described in the boxed content of Figure 14. In Init,
(iS , iR) are both initialized to −1, the minimum message index; Q is initialized to the empty queue. In
Snd, (iR, Q) are encrypted with the sent message, and after the encryption the message index (extracted
from the ciphertext c) is recorded by Q. In Rcv, (̄iR, Q̄) are decrypted along with the message from the
received ciphertext, and if the decryption succeeds (Q, iS , iR) are updated by running update. This update
function first records the index ī of the accepted message, then updates iR when it is smaller than ī; next,
if iS < īR (i.e., some of P ’s early actions currently recorded by Q have been known by P̄), then it deletes
those early actions and updates iS .

Note that Chm remains correct since the causality-related operations (dash-boxed in Figure 14) do not
affect the input of Snd nor the output of Rcv.
SCP security of Chm. Consider a function localG⋆

m that updates GP as follows. First, it extracts the
decrypted queue Q̄ and the output index ī from the input transcript TRcv. Then, it processes Q̄ from its
front (oldest) element to its back (latest) element one by one. Recall that each element ei in Q̄ is a message
index that represents an action. Consider the i-th element ei in Q̄. If ei represents a sending action, the
function checks if the ei-th sending vertex in VP̄ has been added, and if not adds it and connects it to the
corresponding receiving vertex (if any) in VP . If ei represents a receiving action, the function checks if the
ei-th sending vertex in VP already connects to some receiving vertex in VP̄ , and if not adds a new receiving

21

(largest) vertex v̄ to VP̄ and a directed edge from the ei-th sending vertex of VP to v̄. After processing the
entire queue Q̄, it adds the ī-th sending vertex v̄′ to VP̄ (if not yet added) and a new receiving (largest)
vertex v′ to VP , then adds the edge (v̄′, v′). We illustrate the above procedures with a simple example in
Figure 15.

i = 1

i = 2

ī = 1̄

i = 3

Q̄ = (1, 2̄)

i = 1

x

ī = 2̄

i = 2

ī = 3̄

graph

Q̄ = (1, 2̄)

local graph

Q̄ = (2̄)

iteration #1

add edge for the
final action

finalizing

Figure 15: Building local graph in Chm. The first figure shows the actual communication graph (with its first message being
dropped on the network) where the left party eventually receives a ciphertext with queue Q̄ = (1, 2̄). Starting from its local
graph (2nd figure) it iterates over the queue Q̄, skipping the first sending vertex 1 (as it has been received) and adding the
receiving vertex 2̄ as the largest vertex in the other party’s vertex set and the edge (3rd figure). It finalizes the update by
adding the vertices and edge of the final action (4th figure).

With localG⋆
m, it is not hard to see that: (1) GP = G|P always holds for a correct Chm execution and

(2) (GP)≥tc+∆ = (G|P)≥tc+∆ always holds for a correct Chm execution after recovery; we call this the
correctness of localG⋆

m. In the following theorem (with proof in Appendix E.2), we show that the SCP
security of the generic causal channel Chm can be reduced to the S-INT-CTXT and ROB-CORR security
of its underlying bidirectional channel Ch.
Theorem 6.1 For any ∆ > 0 and efficient adversary A, there exist efficient adversaries B, C such that

Advscp
Chm,∆,localG⋆

m
(A) ≤ Advs-int-ctxt

Ch,∆ (B) + Advrob-corr
Ch,∆ (C).

When Ch is instantiated with ChSignal, in Appendix C.2 we show that Chm
cSignal provably achieves SCP

security with ∆ = 3.
Integrating causality in application user interfaces. Recall that SCP security ensures that the
channel parties are in principal able to derive the correct causal information, but how to utilize it is up to
the SM applications. Here for completeness, we show a concrete method for application user interfaces to
visualize causality offered by our causal channel.

Consider a message m accepted by a user, say, Alice. A causal channel can provide a causality feature
that allows Alice to view which of her sent messages m depends on. To do this, the channel extracts
the decrypted Q̄ from the Rcv execution that outputs m, collects the recorded indices of messages sent
by Alice, and returns those message indices along with m to the application. Then, the feature can be
realized by highlighting the messages returned from the channel when Alice does a “press and hold” on
the accepted message m. A toy example is described in Appendix D.1.

Such a causality-preserving feature helps users reduce or avoid misunderstanding caused by insufficient
or incorrect causal dependencies displayed on a regular user interface (that does not preserve causality).
There could be other more elegant ways to visualize causality, but finding the best visualization method
and performing usability testing are beyond the scope of our work.
On the size of Q. Recall that Q records all performed actions (as message indices) whose delivery has not
yet been confirmed. From Figure 14, we see that index queue Q dominates all overhead (computation, stor-
age and communication). More precisely, all overhead is linear to the queue size |Q|. Clearly, |Q| depends

22

on the communication patterns of the conversations, for which we show two examples in Appendix D.2.
In practice, a straightforward way to limit such overhead is to set a threshold for the maximum number
of elements in Q, similar to how Signal limits the maximum number of cached encrypted messages. Here,
however, the causality security is slightly weakened to protect only the actions recorded in Q, for which a
formal confirmation is left for future work.

7 Message Franking Channels and Causality Preservation

7.1 Message Franking Channels

In a message franking channel, besides exchanging messages the users are also allowed to report abusive
messages to a third party (e.g., the messaging service provider). This additional functionality is called
message franking (MF) by Facebook Messenger [Fac17]. Such a setup concerns three parties: two users
Alice (A), Bob (B), and a third party that we call a server (S). S routes (encrypted) messages exchanged
between users (and hence S is referred to as a router in [HDL21]). The role of the server is to authenticate
the franking tag c.cf included in any ciphertext c routed through the server, such that the receiver (reporter)
has a proof for the server to check that the other user has indeed sent that ciphertext.

A message franking channel (MFC) has been formalized by [HDL21]. Similar to the discussion in
Section 4.1, we extend their definition to capture the acting party’s identity and the received index of the
sending action (wrapped into the message auxiliary information), meanwhile ignoring the application-level
associated data, sometimes referred to as a header. Besides, to match our bidirectional channel syntax
and for better understanding, our definition is not nonce-based.

Definition 7.1 A message franking channel is a five-tuple MFCh = (Init, Snd, Rcv, Tag, Rprt) associated
with a channel key space KCh, a server key space KS, a state space ST , a message space M, an auxiliary
information space U , an index space I, an opening key space Kf , a franking tag space Cf , and a tag space
T :

Init(P, k)→ stP : takes P ∈ {A, B, S} and a key k, where k ∈ KCh for P ∈ {A, B} and k ∈ KS for P = S,
and outputs the initial state of P ;

Snd(P, st, m) $→ (st′, c) takes P ∈ {A, B}, st ∈ ST , m ∈ M, and outputs an updated state st′ ∈ ST and
a ciphertext c ∈ {0, 1}∗, where the ciphertext contains a franking tag c.cf ∈ Cf and a message index
c.i ∈ I;

Rcv(P, st, c) → (st′, m, u, kf) takes P ∈ {A, B}, st ∈ ST , c ∈ {0, 1}∗, and outputs an updated state
st′ ∈ ST , a message m ∈ M ∪ {⊥} with auxiliary information u ∈ U that contains message index
u.i ∈ I, and an opening key kf ∈ Kf ;

Tag(stS , P, cf) → (st′
S , τ): takes stS ∈ ST , (sender identity) P ∈ {A, B}, cf ∈ Cf , and outputs an

updated state st′
S ∈ ST and a server tag τ ∈ T ;

Rprt(stS , P, m, u, kf , cf , τ) → (st′
S , b) takes stS ∈ ST , (reporter identity) P ∈ {A, B}, m ∈ M, u ∈ U ,

kf ∈ Kf , cf ∈ Cf , τ ∈ T , and outputs an updated state st′
S ∈ ST and a verification bit b ∈ {0, 1}.

Let Ch = (Init′, Snd, Rcv′) be the underlying bidirectional channel of MFCh, where Init′ is Init with input
P ∈ {A, B} and Rcv′ is Rcv with output (st′, m, u.i). Correctness requires that 1) Ch is correct and 2) all
received messages can be successfully reported (i.e., b = 1).

A message franking channel MFCh extends its underlying bidirectional channel in several ways: (i) Init
further initializes the secret state of the server; (ii) Snd and Rcv respectively further output a franking tag

23

and an opening key used by the server to verify authenticity of user messages; (iii) Rcv outputs auxiliary
information (in addition to the message index) to capture potential causality information of the received
message; and (iv) Tag and Rprt are used by the server to tag encrypted messages and verify reported
messages.

7.2 Causality Preservation of Message Franking Channels

As briefly explained in the introduction, there are two types of causality preservation one would expect
from a message franking channel. One is security for honest users against a malicious server that acts
as a network attacker, resembling our causality preservation for bidirectional channels. The other one is
security for an honest server against one malicious user who knows the channel key and tries to fool the
reporting system by tampering with causality.
Trust model. Before defining security, we first clarify the trust model for message franking channels. It
is usually assumed that the server-user communications are mutually authenticated, which in practice can
be realized by, e.g., server-authenticated TLS connections with user login. In particular, if the server is not
authenticated, a user can send abusive messages that cannot be reported; if the user is not authenticated,
a user can forge and successfully report abusive messages never sent by the other user. Note that such
mutual authentication guarantees message integrity against network attackers, i.e., only a malicious server
is able to play man-in-the-middle attacks.
Channel Causality Preservation. First, as with bidirectional channels, we define security notions to
model causality preservation for honest users, which we call channel causality preservation (CCP) notions.
The goal of the adversary is the same as the bidirectional channel case, i.e., to make some user’s local
view on causality deviate from the actual case or to make some user accept a malicious message. Under
our trust model, the adversary is a malicious server that mirrors a network attacker in the bidirectional
channel setting.

The security experiments for both the basic and strong causality preservation of a message franking
channel MFCh are defined in the same way as depicted in Figure 3 and Figure 4, except that the bidirec-
tional channel algorithms Init, Snd, Rcv are replaced by those of MFCh and the message index is extracted
from the accepted auxiliary information. The corresponding advantage measures Advcp

MFCh,localG(A) and
Advscp

MFCh,∆,localG(A) are also defined in the same way. Note that the server-related algorithms Tag, Rprt
do not show up in the above security definitions because the adversary plays the role of a malicious server
and knows the server secrets. One can also define the integrity notions for message franking channels as
with Figure 5 and Figure 6 and derive similar relationship between CCP notions and integrity notions as
with Figure 7.
Report Causality Preservation. Then, we model the causality security that is directly related to
the “message franking” functionality, which we call report causality preservation (RCP). To define such
security, it is convenient to view the adversary as either a malicious sender or a malicious receiver (reporter),
like [GLR17, HDL21] defining sender-binding and receiver-binding notions for message franking schemes.
Sender binding guarantees that no malicious user can make the other user accept a message that cannot
be reported (and hence the correct causal information cannot be reported); receiver binding guarantees
that no malicious user can successfully report a message that is never sent by the other user. Similarly,
we split our RCP notion into two parts: RCP-S and RCP-R.

Our RCP-S notion (see Figure 16 for its security experiment Exprcp-s
MFCh,A(1λ)) is equivalent to the

sender binding notion defined in [HDL21], except that we add a Send oracle to allow an honest party
to send messages and our MFC syntax uses probabilistic AEAD and ignores headers. This notion is a
“bidirectional channel” extension of the “unidirectional” sender-binding property defined in [GLR17], and
the adversarial goal in our model is again to make an honest user accept an unreportable message. Note

24

that in Exprcp-s
MFCh,A(1λ), the Recv oracle is required to process only ciphertexts with valid tags output by

Tag, because the trust model assumes that users can only receive messages through the server (otherwise
RCP-S is easy to break). Also note that although a malicious sender can manipulate the global causality
graph, once the local graph is settled on the honest receiver side, this graph is deemed correct and cannot be
modified; therefore, causality-related functionality is irrelevant to the definition of RCP-S. More detailed
description of RCP-S is omitted here due to its high similarity to [HDL21]. The RCP-S adversarial
advantage of a message franking channel MFCh is defined as Advrcp-s

MFCh(A) = Pr[Exprcp-s
MFCh,A(1λ)⇒ 1]. We

say MFCh is RCP-S-secure if its RCP-S advantage is negligible for any efficient adversary A.
Our RCP-R notion (formally defined later) also follows the receiver-binding definitions [GLR17,

HDL21], but it is extended to further allow the adversary to win if it successfully reports a message that
carries wrong or insufficient causal information. As explained in the introduction, such information is very
important for message franking because a benign message may look abusive when taken out of context. By
design, RCP-R obviously implies receiver binding, which is defined as RCP-R excluding causality-related
parts. Such a receiver binding notion (omitted here for conciseness) is essentially equivalent to receiver
binding defined in [HDL21]. However, the other direction is not true, i.e., receiver binding does not imply
RCP-R. For instance, as shown in Section 8.1, Facebook’s message franking channel MFChFB does not
achieve RCP-R security, but with a theorem very similar to Theorem 8.2 (shown in Section 8.2) one can
prove that MFChFB satisfies receiver binding.

We say a message franking channel preserves report causality (or is RCP-secure) if it is both RCP-S-
secure and RCP-R-secure. In the following, we show the formal definition of our RCP-R security.
Message-dependency graph and its extractor. First, we clarify what causal information is considered
sufficient for a message m sent by an honest party P and reported by a malicious user P̄ . Ideally, the entire
causal information until the sending action of the reported message could be carried by the m’s auxiliary
information, but this leads to expensive communication overhead. Instead, it suffices to carry only the
causal information not yet confirmed by P̄ in P ’s view, because the confirmed causal information has
already been carried by the auxiliary information of messages accepted by P and hence can be reported.
The above not-yet-confirmed causal information is exactly what queue Q records in the causal channel
Chm (see Figure 14) appended with the index i of the reported message m. We call the causality graph
that represents the above causal information associated with each message the message-dependency graph.
Let G|iP denote the message-dependency graph of the i-th message sent by party P , which is a subgraph of
G|P . For instance, consider the message sent by Bob at b6 in Figure 2. This message has index 4 and G|4B
consists of (a1, b3), b4, (a5, b5), and b6, because the received message at b5 already confirmed the delivery of
messages sent at b1 and b2. Note that G|iP is necessary for the server to construct the restricted causality
graph G|P of the accused honest party P . A message-dependency graph extractor Extr is a function that
takes a message’s auxiliary information and outputs a message-dependency graph.
Security experiment for RCP-R. On the bottom of Figure 16, we depict the RCP-R secu-
rity experiment Exprcp-r

MFCh,Extr,A(1λ), which is associated with a message franking channel MFCh =
(Init, Snd, Rcv, Tag, Rprt) and a message-dependency graph extractor Extr.

In the beginning, the challenger samples a random server key kS and the adversary outputs an arbitrary
channel key kCh, then the Init algorithm is executed to derive the initial states. All the states used in the
game are also properly initialized. Then, A inputs the channel key kCh and is given access to three oracles
SendTag, Recv and Report:

SendTag takes a user identity and a message, calls Snd on the input message, updates the graph, calls
Tag on the franking tag (included in the derived ciphertext), records useful information in R and Rf ,
and returns the derived ciphertext and server tag. This oracle models a user sending messages honestly
through the server. Recall that malicious senders are already captured by RCP-S, whose goal is to make
the other user accept unreportable messages.

25

Exprcp-s
MFCh,A(1λ) :

1: kS
$← KS

2: kCh
$← A(1λ)

3: stS ← Init(S, kS)
4: stA ← Init(A, kCh)
5: stB ← Init(B, kCh)
6: Rt,Rr ← ∅
7: ASend,Recv,Tag,Report(kCh)
8: terminate with 0

Send(P, m) :
1: (stP , c) $← Snd(P, stP , m)
2: if c = ⊥ then return ⊥
3: return c

Recv(P, c, τ) : (require (P̄ , c.cf , τ) ∈ Rt)
1: (stP , m, u, kf)← Rcv(P, stP , c)
2: if m ̸= ⊥ then
3: add (P, m, u, kf , c.cf , τ) to Rr

4: return m, u, kf

Tag(P, cf) :
1: (stS , τ)← Tag(stS , P, cf)
2: add (P, cf , τ) to Rt

3: return τ

Report(P, m, u, kf , cf , τ) :
1: (stS , b)← Rprt(stS , P, m, u, kf , cf , τ)
2: if b = 0 and (P, m, u, kf , cf , τ) ∈ Rr then
3: terminate with 1 (A wins)
4: return b

Exprcp-r
MFCh,Extr,A(1λ) :

1: kS
$← KS

2: kCh
$← A(1λ)

3: stS ← Init(S, kS)
4: stA ← Init(A, kCh)
5: stB ← Init(B, kCh)
6: R,Rf ← ∅, G← ε
7: ASendTag,Recv,Report(kCh)
8: terminate with 0

SendTag(P, m) :
1: (stP , c) $← Snd(P, stP , m)
2: if c = ⊥ then return ⊥
3: G← G + (S, P)
4: (stS , τ)← Tag(stS , P, c.cf)
5: add (P, c, τ) to R
6: add (P, c.i, m, c.cf) to Rf

7: return c, τ

Recv(P, c, τ) : (require (P̄ , c, τ) ∈ R)
1: (stP , m, u, kf)← Rcv(P, stP , c)
2: if m ̸= ⊥ then G← G + (R, P, u.i)
3: return m, u, kf

Report(P, m, u, kf , cf , τ) :
1: (stS , b)← Rprt(stS , P, m, u, kf , cf , τ)
2: if b = 1 and [(P̄ , u.i, m, cf) ̸∈ Rf or Extr(u) ̸= G|u.i

P̄
] then

terminate with 1 (A wins)
3: return b

Figure 16: Security experiments for report causality preservation

Recv takes a user identity, a ciphertext and a server tag, calls Rcv on the input ciphertext, updates the
graph, and outputs the derived message with auxiliary information and the derived opening key. Note
that this oracle does not give the adversary much additional ability, because as a malicious receiver it
already knows the secret user state to decrypt any ciphertext. The purpose of this oracle is to allow an
honest party receive messages (through the server) and to update the global causality graph G (used
to detect maliciously reported causal information). Therefore, we can require the oracle to only process
ciphertexts and server tags output by SendTag queries.

Report takes a reporter (receiver) identity, a message with auxiliary information, an opening key, a frank-
ing tag, and a server tag, calls Rprt on the oracle input, and returns the derived verification bit b. The
adversary wins if it reports successfully (b = 1) with either a message never output by an honest sender
((P̄ , u.i, m, cf) ̸∈ Rf) or incorrect causal information (Extr(u) ̸= G|u.i

P̄
).

Advantage measure of RCP-R. The RCP-R advantage is defined as Advrcp-r
MFCh,Extr(A) =

Pr[Exprcp-r
MFCh,Extr,A(1λ) ⇒ 1] for any arbitrary extractor Extr. We say a message franking channel MFCh

is RCP-R-secure if one can construct an efficiently computable function Extr⋆ such that, for any efficient
adversary A, the advantage Advrcp-r

MFCh,Extr⋆(A) is negligible. That is, a RCP-R-secure message franking
channel guarantees that the server can use Extr⋆ to derive all causal information captured by the associ-
ated message-dependency graph of each successfully reported message.
Remark on RCP-R security. Note that RCP-R security both guarantees the authenticity of the
reported message and extends it to the message flow. The reported flow itself, however, does not include
the content of previous messages but only contains information about the related causal relations (to
reduce the overhead). In case of a dispute, the accused party can then report the content of the previous
messages for the server to reconstruct the communication. We discuss this process in more detail for the
concrete case of Facebook Messenger at the end of Section 8.2.

8 Causality Preservation of Facebook’s Message Franking
In this section, we first describe Facebook Messenger’s message franking scheme [Fac17] and show its
insecurity for preserving report causality, then amend it to provably achieve the desired security.

8.1 Facebook’s Message Franking Channel and its Insecurity

26

Facebook’s message franking channel. Following our message franking channel syntax (see Defini-
tion 7.1), we present Facebook’s MFC as a message franking channel MFChFB in Figure 17, in a generic
style for the benefit of modular design. That is, we abstract MFChFB as constructed with a bidirectional
channel Ch = (Init, Snd, Rcv), a commitment scheme with verification CS = (Com, VerC), and a MAC
MAC = (K, Mac, Ver), where Facebook Messenger uses Signal as the underlying bidirectional channel pro-
tocol (i.e., Ch = ChSignal) and instantiates both CS and MAC with HMAC-SHA-256 HMAC [BCK96].
Correctness of MFChFB follows from that of its building blocks Ch, MAC, and CS.

Init(P, k):
1: if P = S then
2: return k
3: stCh ← Ch.Init(P, k)
4: s← 1, iS , iR ← −1
5: Q← ∅
6: return (stCh, s, iS , iR, Q)

Snd(P, st, m):
1: if P = S or st = ⊥ then return st,⊥
2: (kf , cf)← Com((m, s, Q))
3: (st, ce) $← Ch.Snd(P, stCh, (m, iR, Q , kf))
4: Q.enq(s), s← s + 1
5: return st, (ce, cf)

Tag(st, P, cf):
1: if P = S or st = ⊥ then return st,⊥
2: τ ← Mac(st, cf∥P∥P̄)
3: return st, τ

Rcv(P, st, c):
1: if P = S or st = ⊥ then return st,⊥,⊥,⊥
2: (st, (m, īR, Q̄ , kf), ī)← Ch.Rcv(P, stCh, c.ce)
3: if m = ⊥ or VerC((m, ī, Q̄), kf , c.cf) = 0 then
4: return st,⊥,⊥,⊥
5: update(Q, ī, iS , iR, īR)

6: return st, m, (̄i, Q̄), kf

Rprt(st, P, m, u, kf , cf , τ):
1: if P = S or st = ⊥ then return st, 0
2: return st, Ver(st, cf∥P̄∥P, τ) ∧ VerC((m, u), kf , cf)

Figure 17: Facebook’s message franking channel MFChFB (without boxed content) and the causal message franking channel
MFChcFB (with boxed content). The update function is the same as defined in Figure 14.

Causality insecurity of MFChFB. First, as shown in Section 6.1, we know MFChFB does not preserve
channel causality when Ch is instantiated with ChSignal. Then, in the following we show that MFChFB does
not achieve RCP security (more specifically, RCP-R security) either, even if Ch is instantiated with our
proposed causal Signal channel Chm

cSignal. The key observation is that the server receives only the reported
message and its index, but not any other causal information. For instance, for the two execution flows
considered in our Signal causality attack depicted in Figure 13, when the message m3 associated with c3 is
reported, the server cannot distinguish the two flows (that lead to different message-dependency graphs).
That is, any extractor Extr will output an incorrect message-dependency graph associated with m3 with
probability at least 1/2, i.e., Advrcp-r

MFChFB,Extr(A) ≥ 1/2 for any possible extractor Extr. By definition,
MFChFB does not achieve RCP-R security.

8.2 Integrating Causality in Facebook’s Message Franking

The causal message franking channel. As shown in Figure 17 with boxed content, our causal message
franking channel MFChcFB amends Facebook’s message franking channel by adding a queue Q (defined in
Section 6.2) to the auxiliary information of each sent message. This is quite similar to the Signal case, so
the performance overhead introduced by MFChcFB is also linear in |Q| as discussed in Section 6.2. It is
also easy to check that MFChcFB remains correct.
CCP security of MFChcFB. Consider a local graph update function localG⋆ that extracts Q̄ and ī from
the input transcript TRcv and proceeds as localG⋆

m for Chm. With a proof (omitted here) very similar to
that of Theorem 6.1, we have the following theorem showing that the SCP security of our proposed causal
message franking channel MFChcFB can be reduced to the S-INT-CTXT and ROB-CORR security of the
underlying bidirectional channel Ch.9 In particular, the latter holds for ∆ = 3 when Ch is instantiated
with ChSignal (e.g., for Facebook Messenger), as discussed in Appendix C.2.

Theorem 8.1 For any ∆ > 0 and any efficient adversary A, there exist efficient adversaries B, C such
that

Advscp
MFChcFB,∆,localG⋆(A) ≤ Advs-int-ctxt

Ch,∆ (B) + Advrob-corr
Ch,∆ (C).

9A similar theorem (omitted here) holds for the case of basic causality preservation.

27

RCP security of MFChcFB. First, for almost the same reason why Facebook’s message franking scheme
satisfies perfect sender binding in [GLR17], we can conclude that MFChcFB achieves perfect RCP-S security
(i.e., Advrcp-s

MFChcFB
(A) = 0). This is because Recv in the RCP-S security game (see top of Figure 16)

processes only ciphertexts with a valid server tag (i.e., sent through the server) and Rcv runs the same
VerC check as in Rprt before accepting a message. Actually, with the same argument one can show
that the original Facebook’s MFC MFChFB is also RCP-S-secure. Then, for RCP-R security, consider a
message-dependency graph extractor Extr⋆ that takes (̄i, Q̄) from the input auxiliary information u and
then proceeds as localG⋆

m for Chm, but now updating an empty local graph. The following theorem (proved
in Appendix E.3) shows that MFChcFB preserves report causality if its underlying MAC and CS schemes
are secure. The latter holds when both instantiated with HMAC [Bel06, GLR17].

Theorem 8.2 For any efficient adversary A, there exist efficient adversaries B, C such that

Advrcp-r
MFChcFB,Extr⋆(A) ≤ Adveuf-cma

MAC (B) + Advv-bind
CS (C).

Improving dispute handling with causality. Here we show how causality can be utilized by a message
franking server to handle disputes in a more reliable way. In particular, the MFChcFB server can construct
Extr⋆ to extract the message-dependency graph when dealing with abuse reports. Since now the server
knows how the reported message depends on previous messages (without knowing the content), the server
can ask the users to report those messages for further consideration if the accused user wants to defend
himself. This process can continue until the fact is clear, which is always viable because in the worst case
the entire communication with the correct causal information is revealed.

For instance, consider the attack discussed in the introduction: Alice asks Bob “what was the worst
insult you have ever heard?” and reports the received response. The server now gets the exact message
dependencies of the reported message (which may be visualized as a causality graph or something similar)
and knows that Bob indeed received some message from Alice before sending the reported message, so it
can ask Bob if he wants to report that message to defend himself. In this way, the above causality attack
can be prevented.

9 Conclusion
We have seen that causality in two-user messaging channels can be preserved if one transmits sufficient
information on the channel to be able to reconstruct the restricted graph. This coincides with the original
idea in distributed computing to recover global states from local snapshots. It is an interesting open
problem to investigate how causality can be integrated in secure group messaging. Another interesting
problem to explore is to determine a lower bound on the time and space overhead for channels to guarantee
causality security.

We remark that, from a channel perspective, we assume the atomic sending of messages, while for
example TLS 1.3 is rather a stream-based interface [FGMP15]. Although it may seem first that our
notion of causality is related only to an application-level viewpoint with atomic message processing, it is
nonetheless tied to the receiving action Rcv of the channel protocol.

Finally, while not the focus of this work, it is certainly worthwhile to investigate how causality can be
better visualized for users; one should also scrutinize how users respond to such designs.
Acknowledgments. We thank the anonymous reviewers for valuable comments. Shan Chen is funded by
the research start-up grant by the Southern University of Science and Technology. Marc Fischlin is funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - SFB 1119 - 236615297.

28

References
[ACD19] J. Alwen, S. Coretti, and Y. Dodis. The double ratchet: Security notions, proofs, and modu-

larization for the Signal protocol. In EUROCRYPT 2019, Part I, pages 129–158, 2019. (Cited
on pages 4, 5, 7, 10, 14, 19, 34, and 36.)

[BCC+23] K. Barooti, D. Collins, S. Colombo, L. Huguenin-Dumittan, and S. Vaudenay. On active
attack detection in messaging with immediate decryption. In CRYPTO 2023, Part IV, pages
362–395, 2023. (Cited on page 7.)

[BCK96] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication.
In CRYPTO’96, pages 1–15, 1996. (Cited on page 27.)

[Bel06] M. Bellare. New proofs for NMAC and HMAC: Security without collision-resistance. In
CRYPTO 2006, pages 602–619, 2006. (Cited on page 28.)

[BFG+22] A. Bienstock, J. Fairoze, S. Garg, P. Mukherjee, and S. Raghuraman. A more complete analysis
of the Signal double ratchet algorithm. In CRYPTO 2022, Part I, pages 784–813, 2022. (Cited
on page 19.)

[BHMS16] C. Boyd, B. Hale, S. F. Mjølsnes, and D. Stebila. From stateless to stateful: Generic authenti-
cation and authenticated encryption constructions with application to TLS. In CT-RSA 2016,
pages 55–71, 2016. (Cited on pages 4 and 7.)

[BKN02] M. Bellare, T. Kohno, and C. Namprempre. Authenticated encryption in SSH: Provably fixing
the SSH binary packet protocol. In ACM CCS 2002, pages 1–11, 2002. (Cited on page 4.)

[BSJ+17] M. Bellare, A. C. Singh, J. Jaeger, M. Nyayapati, and I. Stepanovs. Ratcheted encryption and
key exchange: The security of messaging. In CRYPTO 2017, Part III, pages 619–650, 2017.
(Cited on page 19.)

[CCG16] K. Cohn-Gordon, C. J. F. Cremers, and L. Garratt. On post-compromise security. In CSF
2016 Computer Security Foundations Symposium, pages 164–178, 2016. (Cited on page 5.)

[CDV21] A. Caforio, F. B. Durak, and S. Vaudenay. Beyond security and efficiency: On-demand ratch-
eting with security awareness. In PKC 2021, Part II, pages 649–677, 2021. (Cited on page 7.)

[CJJ+21] S. Chen, S. Jero, M. Jagielski, A. Boldyreva, and C. Nita-Rotaru. Secure communication
channel establishment: TLS 1.3 (over TCP Fast Open) versus QUIC. Journal of Cryptology,
34(3):1–41, 2021. (Cited on page 16.)

[CL85] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of dis-
tributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985. (Cited on page 3.)

[CZ22] C. Cremers and M. Zhao. Provably post-quantum secure messaging with strong compromise
resilience and immediate decryption. Cryptology ePrint Archive, Report 2022/1481, 2022.
https://eprint.iacr.org/2022/1481. (Cited on page 7.)

[DGRW18] Y. Dodis, P. Grubbs, T. Ristenpart, and J. Woodage. Fast message franking: From invisible
salamanders to encryptment. In CRYPTO 2018, Part I, pages 155–186, 2018. (Cited on page 5.)

[DV19a] F. B. Durak and S. Vaudenay. Bidirectional asynchronous ratcheted key agreement with linear
complexity. In IWSEC 2019, pages 343–362, 2019. (Cited on page 7.)

29

https://eprint.iacr.org/2022/1481

[DV19b] F. B. Durak and S. Vaudenay. Bidirectional asynchronous ratcheted key agreement with linear
complexity. In IWC 2019, pages 343–362, 2019. (Cited on page 19.)

[EMP18] P. Eugster, G. A. Marson, and B. Poettering. A cryptographic look at multi-party channels.
In CSF 2018, pages 31–45, 2018. (Cited on pages 4 and 5.)

[Fac17] Facebook. Messenger secret conversations – technical whitepaper. 2017. (Cited on pages 5, 23,
and 26.)

[FGJ24] M. Fischlin, F. Günther, and C. Janson. Robust channels: Handling unreliable networks in
the record layers of QUIC and DTLS 1.3. J. Cryptol., 37(2):9, 2024. (Cited on pages 7 and 14.)

[FGMP15] M. Fischlin, F. Günther, G. A. Marson, and K. G. Paterson. Data is a stream: Security of
stream-based channels. In CRYPTO 2015, Part II, pages 545–564, 2015. (Cited on page 28.)

[GLR17] P. Grubbs, J. Lu, and T. Ristenpart. Message franking via committing authenticated encryp-
tion. In CRYPTO 2017, Part III, pages 66–97, 2017. (Cited on pages 5, 24, 25, and 28.)

[GM17] F. Günther and S. Mazaheri. A formal treatment of multi-key channels. In CRYPTO 2017,
Part III, pages 587–618, 2017. (Cited on pages 15 and 16.)

[HDL21] L. Huguenin-Dumittan and I. Leontiadis. A message franking channel. In ICISC 2021, pages
111–128, 2021. (Cited on pages 4, 5, 23, 24, and 25.)

[JKSS12] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security of TLS-DHE in the standard
model. In CRYPTO 2012, pages 273–293, 2012. (Cited on page 4.)

[JMM19] D. Jost, U. Maurer, and M. Mularczyk. Efficient ratcheting: Almost-optimal guarantees for
secure messaging. In EUROCRYPT 2019, Part I, pages 159–188, 2019. (Cited on page 19.)

[JS18] J. Jaeger and I. Stepanovs. Optimal channel security against fine-grained state compromise:
The safety of messaging. In CRYPTO 2018, Part I, pages 33–62, 2018. (Cited on pages 4 and 19.)

[KPB03] T. Kohno, A. Palacio, and J. Black. Building secure cryptographic transforms, or how to
encrypt and MAC. Cryptology ePrint Archive, Paper 2003/177, 2003. https://eprint.
iacr.org/2003/177. (Cited on pages 4 and 7.)

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications,
1978. (Cited on pages 3 and 8.)

[Mar17] G. A. Marson. Real-World Aspects of Secure Channels: Fragmentation, Causality, and Forward
Security. PhD thesis, Technische Universität, 2017. (Cited on pages 4, 5, 6, 7, and 16.)

[MP16] M. Marlinspike and T. Perrin. The X3DH key agreement protocol. 2016. https://www.
signal.org/docs/specifications/x3dh/x3dh.pdf. (Cited on page 18.)

[MP17] G. A. Marson and B. Poettering. Security notions for bidirectional channels. IACR Trans.
Symm. Cryptol., 2017(1):405–426, 2017. (Cited on pages 4, 8, 9, 10, and 13.)

[MV04a] D. McGrew and J. Viega. The galois/counter mode of operation (gcm). submission to NIST
Modes of Operation Process, 20:0278–0070, 2004. (Cited on page 15.)

[MV04b] D. A. McGrew and J. Viega. The security and performance of the Galois/counter mode (GCM)
of operation. In INDOCRYPT 2004, pages 343–355, 2004. (Cited on page 16.)

30

https://eprint.iacr.org/2003/177
https://eprint.iacr.org/2003/177
https://www.signal.org/docs/specifications/x3dh/x3dh.pdf
https://www.signal.org/docs/specifications/x3dh/x3dh.pdf

[PM16] T. Perrin and M. Marlinspike. The double ratchet algorithm. 2016. https://signal.org/
docs/specifications/doubleratchet/doubleratchet.pdf. (Cited on pages 6 and 18.)

[PP22] J. Pijnenburg and B. Poettering. On secure ratcheting with immediate decryption. In ASI-
ACRYPT 2022, Part III, pages 89–118, 2022. (Cited on page 7.)

[PR18] B. Poettering and P. Rösler. Towards bidirectional ratcheted key exchange. In CRYPTO 2018,
Part I, pages 3–32, 2018. (Cited on page 19.)

[PRS11] K. G. Paterson, T. Ristenpart, and T. Shrimpton. Tag size does matter: Attacks and proofs
for the TLS record protocol. In ASIACRYPT 2011, pages 372–389, 2011. (Cited on page 4.)

[Res18] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, 2018. (Cited
on pages 5, 14, and 15.)

[RMS18] P. Rösler, C. Mainka, and J. Schwenk. More is less: On the end-to-end security of group chats
in Signal, WhatsApp, and Threema. In EuroS&P, pages 415–429, 2018. (Cited on page 3.)

[Rog02] P. Rogaway. Authenticated-encryption with associated-data. In ACM CCS 2002, pages 98–107,
2002. (Cited on pages 31 and 32.)

[RZ18] P. Rogaway and Y. Zhang. Simplifying game-based definitions - indistinguishability up to
correctness and its application to stateful AE. In CRYPTO 2018, Part II, pages 3–32, 2018.
(Cited on page 7.)

[Sca20] M. Scarlata. Post-compromise security and TLS 1.3 session resumption. 2020. (Cited on page 12.)

[Sho04] V. Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptol-
ogy ePrint Archive, Paper 2004/332, 2004. https://eprint.iacr.org/2004/332. (Cited on
page 38.)

[SY85] R. E. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM Trans. Comput.
Syst., 3(3):204–226, 1985. (Cited on page 3.)

[TGL+19] N. Tyagi, P. Grubbs, J. Len, I. Miers, and T. Ristenpart. Asymmetric message franking:
Content moderation for metadata-private end-to-end encryption. In CRYPTO 2019, Part III,
pages 222–250, 2019. (Cited on page 5.)

[UDB+15] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, and M. Smith. SoK: Secure
messaging. In 2015 IEEE Symposium on Security and Privacy, pages 232–249, 2015. (Cited on
page 3.)

A Preliminary Definitions

A.1 Authenticated Encryption with Associated Data

We recall the syntax and security for an authenticated encryption with associated data (AEAD) scheme
defined in [Rog02].
Syntax. A nonce-based AEAD scheme AEAD is a three-tuple (K, Enc, Dec) associated with a nonce space
N ⊆ {0, 1}∗, a message space M⊆ {0, 1}∗, and an associated data space AD ⊆ {0, 1}∗:

• K: key space;

31

https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://eprint.iacr.org/2004/332

• Enc: deterministic encryption algorithm that takes k ∈ K, N ∈ N , ad ∈ AD, m ∈M and outputs a
ciphertext c ∈ {0, 1}∗;

• Dec: deterministic decryption algorithm that takes k ∈ K, N ∈ N , ad ∈ AD, c ∈ {0, 1}∗ and outputs
m ∈M∪ {⊥}, where ⊥ indicates decryption failure.

Correctness requires that for any k ∈ K, N ∈ N , ad ∈ AD, m ∈ M: Deck(N, ad, Enck(N, ad, m)) = m.
Here the input key k is written as an subscript, e.g., Enck(N, ad, m) = Enc(k, N, ad, m).
Security. Security for an AEAD scheme AEAD is defined in two parts: privacy and authenticity. Consider
the following security experiments associated with an efficient adversary A that is nonce-respecting, i.e., it
never repeats nonce to its encryption oracle queries.

For privacy, the challenger samples a random key k $← K and a random bit b $← {0, 1}, then gives A
access to a left-or-right encryption oracle LREnc(·, ·, ·, ·), which takes N ∈ N , ad ∈ AD, m0, m1 ∈ M and
outputs a ciphertext cb = Enck(N, ad, mb) according to the secret bit b. In the end, A outputs a bit b′ as
its guess of b. The advantage is defined as Advpriv

AEAD(A) = |2 Pr[b = b′] − 1|, or equally Advpriv
AEAD(A) =

|Pr[b′ = 1 | b = 0]−Pr[b′ = 1 | b = 1]|. Note that Rogaway [Rog02] actually demands something stronger,
namely, that ciphertexts look random. We settle here for the weaker indistinguishability requirement which
usually suffices to build secure channels.

For authenticity, the challenger samples a random key k $← K and then gives A access to the encryption
oracle Enck(·, ·, ·) and the decryption oracle Deck(·, ·, ·). We sayA wins if and only if it ever queries (N, ad, c)
to Deck(·, ·, ·) such that Deck(N, ad, c) ̸= ⊥ and c was not output by a previous Enck(N, ad, m) query made
by A for some m. The advantage measure Advauth

AEAD(A) is defined as the probability that A wins.
Probabilistic AEAD. AEAD can also be defined without nonces, but then the encryption algorithm
Enck must be probabilistic to allow for security against multiple encryption queries. For such an AEAD
scheme, the correctness requires that Deck(ad, Enck(ad, m)) = m holds for any k ∈ K, ad ∈ AD, m ∈ M.
Security is defined in a similar way but without nonces, which no longer requires A being nonce-respecting.
We overload the notation AEAD to denote either a nonce-based or a probabilistic AEAD, which can be
easily distinguished by whether the nonce is an input to the encryption and decryption algorithms.

A.2 Message Authentication Code

Syntax. A message authentication code (MAC) MAC is a three-tuple (K, Mac, Ver) associated with a
message space M and a tag space T :

• K: key space;

• Mac: tagging algorithm that takes k ∈ K, m ∈M and outputs a tag τ ∈ T ;

• Ver: deterministic verification algorithm that takes k ∈ K, m ∈ M, τ ∈ T and outputs a bit
b ∈ {0, 1} indicating if the tag is valid.

Correctness requires that for any k ∈ K, m ∈M: Ver(k, m, Mac(k, m)) = 1.
Security. Consider the following existentially unforgeability under chosen message attack (EUF-CMA)
security experiment associated with an efficient adversary A. The challenger first samples a random key
k $← K and then give A access to oracles Mack(·) = Mac(k, ·) and Verk(·, ·) = Ver(k, ·, ·). In the end, A
outputs a message-tag pair (m, τ) and wins if 1) Verk(m, τ) = 1 and 2) m was not queried to the Mack(·)
oracle. The advantage measure Adveuf-cma

MAC (A) is defined as A’s winning probability.

32

A.3 Commitment Scheme with Verification

Syntax. A commitment scheme with verification CS is a two-tuple (Com, VerC) associated with a message
space M, an opening key space K, and a commitment space C:

• Com: probabilistic commitment algorithm that takes m ∈ M and outputs an opening key k ∈ K
and a commitment c ∈ C;

• VerC: deterministic verification algorithm that takes m ∈ M, k ∈ K, c ∈ C and outputs a bit
b ∈ {0, 1} indicating if the commitment is authentic.

Correctness requires that for any m ∈M: Pr[VerC(m, k, c) = 1 | (k, c) $← Com(m)] = 1.
Security. Security for a commitment scheme with verification CS is defined in two parts: binding and
hiding. Consider the following security experiments associated with an efficient adversary A.

For binding, the adversary A outputs a tuple (m, k, m′, k′, c) and wins if and only if m ̸= m′ and
VerC(m, k, c) = 1 = VerC(m′, k′, c). The advantage measure Advv-bind

CS (A) is defined as the probability
that A wins.

For hiding, the challenger samples a random bit b ∈ {0, 1} and then gives A access to a left-or-right
commitment oracle LRCom(·, ·). This oracle takes two messages m0, m1 ∈ M, runs (k0, c0) $← Com(m0),
(k1, c1) $← Com(m1), and outputs only the commitments (c0, c1). In the end, A outputs a bit b′ as its guess
of b. The advantage measure is defined as Advlor

CS(A) = |2 Pr[b = b′]− 1|.

B Notion Relations
First, we investigate the three basic notions: INT-PTXT, INT-CTXT, CP. Here, we focus on the notion
relations for the case of unreliable networks, and those for reliable in-order networks are similar.

We start our analysis by showing INT-CTXT ⇒ INT-PTXT. The experiments for these two notions
differ only in their bad events. It is sufficient to show if the adversary wins in the INT-PTXT experiment
then it also wins in the INT-CTXT experiment. We prove this by contradiction, i.e., say the adversary
wins in the INT-PTXT experiment but does not win in the INT-CTXT experiment. Then, the adversary
must have never triggered Badctxt, i.e., all malicious ciphertexts are decrypted to ⊥ and hence do not affect
the input state st (recall the requirements for Rcv below Definition 4.1). By correctness, this implies that
any honest ciphertext is always decrypted to the original message and index. Therefore, if the adversary
wins in the INT-PTXT experiment, then the ciphertext that triggered Badptxt must not be an honest
ciphertext, i.e., the adversary must also win in the INT-CTXT experiment. This concludes our proof.

Then, it is not hard to see that the INT-PTXT experiment is equivalent to the CP experiment that
excludes causality-related procedures (i.e., those related to causality graphs). We have CP ⇒ INT-PTXT
since a CP adversary wins when the Bad = Badptxt event occurs. This is reasonable because causality
becomes meaningless if the transmitted messages are changed. However, we have CP ̸⇒ INT-CTXT
because what really matters for semantic causality is the accepted messages rather than ciphertexts.
Actually, it is easy to modify a CP-secure channel to break INT-CTXT security but maintain CP security,
e.g., by attaching a void bit to the ciphertext. Note that this also shows INT-PTXT ̸⇒ INT-CTXT
because CP ⇒ INT-PTXT. For the other direction, we show in Section 6.1 that the Signal channel is not
CP-secure, but it achieves INT-CTXT as discussed in Appendix C.2. This also shows INT-PTXT ̸⇒ CP
since INT-CTXT ⇒ INT-PTXT.

Next, we consider notions with post-compromise security (i.e., S-INT-PTXT, S-INT-CTXT, SCP) and
show their relations to each other and to the above ones.

33

By definition, we have Bads-ptxt ⇒ Bads-ctxt ∨ Badrob-corr, which implies that S-INT-CTXT + ROB-
CORR ⇒ S-INT-PTXT. Similar to the discussion for the basic notions, we have SCP ⇒ S-INT-PTXT,
SCP ̸⇒ S-INT-CTXT, CP ̸⇒ S-INT-PTXT, and S-INT-PTXT ̸⇒ S-INT-CTXT. Then, as we will show in
Section 6, the Signal channel does not preserve causality (even in the weak sense) but it achieves S-INT-
CTXT; as a result, S-INT-CTXT does not imply SCP or even CP, and hence S-INT-PTXT does not imply
SCP or CP. On the other hand, we already know that SCP implies CP but not the other direction, and
for similar reasons we have that S-INT-CTXT ⇒ INT-CTXT and S-INT-PTXT ⇒ INT-PTXT but the
other directions do not apply. Now, due to transitivity of the implication relationship, we almost obtain
the complete pair-wise relations among all six notions. We are only left to show that SCP ̸⇒ INT-CTXT,
which is obvious as one can also modify a SCP-secure channel by attaching a void bit to the ciphertext
without affecting its SCP security but breaking INT-CTXT.

Figure 7 depicts the notion relations discussed in this section.

C The Causal Signal Channel and its Security

C.1 The Message-Borne Causal Signal Channel

Following our bidirectional channel syntax (see Definition 4.1), we present the Signal double-ratchet pro-
tocol as a bidirectional channel ChSignal in Figure 18 (excluding boxed content). It is based on the fol-
lowing building blocks (for which Signal’s instantiations and other potential constructions are described
in [ACD19]):
CKA is a continuous key agreement (CKA), CKA = (CKA-Init, CKA-S, CKA-R), consisting of the initial-

ization algorithm, an update algorithm CKA-S for the sender, and CKA-R for the receiver. Algorithm
CKA-S takes the sender’s state γ, updates the state, outputs some keying material I, and some message
T . Algorithm CKA-R takes the party’s state and the sender message T and outputs an updated state
and I. Security demands that I is pseudorandom for uncompromised state, and that the parties recover
after a compromise, at least if the adversary is temporarily passive.

P is a PRF-PRNG, P = (P-Init, P-Up), that resembles a pseudorandom function (PRF) and a pseudoran-
dom number generator (PRNG), where P-Init initializes a state σ and P-Up(σ, I) takes the state and some
(possibly empty) input I, updates the state, and produces some output w. Security says that P-Up(σ, ·)
acts as a PRF for high-entropy σ, and as a PRNG if I is random, independently of the entropy in σ.

In addition, the scheme uses a (regular) pseudorandom generator (PRG) G and an AEAD scheme AEAD =
(K, Enc, Dec).

The Signal channel is much more complicated than the TLS 1.3 channel in order to offer post-
compromise security.

Now, we describe the details of the Signal channel ChSignal as shown in Figure 18:

Init parses the shared channel key into two subkeys, one key krt for the PRF-PRNG P and the other key
kcka for the CKA scheme CKA. P-Init takes krt to initialize the root key σ; this root key is fed into P-Up
to derive a shared chain key w, which is further used by PRG G to derive the forward-secret AEAD
keys. Since epoch 0 is even, w is set to be Alice’s initial receiving chain key wR and Bob’s initial sending
chain key wS . Then, CKA-Init takes the party identity and kcka and outputs the party’s CKA state γ.
All other states are properly initialized to the empty string ε or 0.

Snd first checks if the specified sending party P is in its sending epoch; if not, it increments party P ’s
epoch t, sets l to the total number of sent messages in party P ’s previous sending epoch, resets the send
counter s, calls CKA-S to generate a public CKA message T and a new shared secret I, and calls P-Up

34

Init(P, k):
1: (krt, kcka)← k
2: σ ← P-Init(krt)
3: (σ, w)← P-Up(σ, ε)
4: if P = A then (wS , wR)← (ε, w)
5: if P = B then (wS , wR)← (w, ε)
6: γ ← CKA-Init(P, kcka)
7: l, t, s, r ← 0, T, D[]← ε
8: iS , iR ← −1, Q← ∅
9: return (σ, wS , wR, γ, T, D[],

l, t, s, r, iS , iR, Q)
skip(t, s):
1: while r < s do
2: (wR, K)← G(wR)
3: D[(t, r)]← K, r ← r + 1

Invalid = [(P = A and t̄ is odd)
or (P = B and t̄ is even)
or (t̄, s̄) was accepted before
or t̄ > t + 1]

Snd(P, st, m):
1: if (P = A and t is even)
2: or (P = B and t is odd) then
3: t← t + 1, l← s, s← 0
4: (γ, T, I) $← CKA-S(γ)
5: (σ, wS)← P-Up(σ, I)
6: (wS , K)← G(wS)
7: a← (t, s, T, l), s← s + 1
8: e

$← EncK(a, (m, iR, Q))
9: Q.enq((t, s))

10: return st, (a, e)
update(Q, i, iS , iR, īR):
1: Q.enq(i)
2: if iR < i then iR ← i
3: if iS < īR then
4: while Q.front() ̸= īR do
5: Q.deq()
6: if |Q| = 0 then abort
7: Q.deq(), iS ← īR

Rcv(P, st, c):
1: (a, e)← c, (t̄, s̄, T̄ , l̄)← a
2: if Invalid then
3: return st,⊥,⊥
4: if t̄ = t + 1 then
5: skip(t̄− 2, l̄)
6: t← t + 1, r ← 0
7: (γ, I) $← CKA-R(γ, T̄)
8: (σ, wR)← P-Up(σ, I)
9: K ← D[(t̄, s̄)], D[(t̄, s̄)]← ε

10: if K = ε then
11: skip(t̄, s̄− 1)
12: (wR, K)← G(wR), r ← r + 1
13: (m, īR, Q̄)← DecK(a, e)
14: if m = ⊥ then
15: roll back state st
16: return st,⊥,⊥
17: update(Q, (t̄, s̄), iS , iR, īR)
18: return st, m, (t̄, s̄)

Figure 18: The Signal channel ChSignal (without boxed content) and the message-borne causal Signal channel Chm
cSignal (with

boxed content). The latter deploys a queue Q and two indices iS , iR, as described in Section 6.2. Message indices (t, s)
consisting of the epoch and the send counter are ordered lexicographically, with the initial value −1 denoting a minimum. Q̄
is not returned in Rcv but is part of transcript TRcv, so it can be used by localG to update the local graph.

on input σ, I to derive the initial sending chain key wS for this new sending epoch. Recall that CKA
is used to continuously generate fresh shared secrets, which helps recover from state compromise (and
also provide forward secrecy because the old secrets got erased after use). Here the shared secret I is
essentially a shared key derived from the ephemeral Diffie-Hellman key exchange and T is the public
key share of the specified party P . Then, the idea of using a shared root key σ is to ensure that only
the honest parties can derive the shared secret I, preventing active man-in-the-middle attacks. After
the initial check and state updates, the PRG G takes the initial sending chain key and derives the
first AEAD encryption key K. This key is used by the AEAD encryption algorithm Enc to generate a
ciphertext e, where Enc encrypts the input message m and takes the public states as the associated data
a. Finally, the send counter is incremented and (a, e) is returned.

Rcv blocks “bad” ciphertexts with the Invalid predicate such that a “good” ciphertext corresponds to a
receiving epoch of the specified receiving party P , was not accepted before with the same index, and was
sent in an epoch t̄ no larger than t + 1 (where t is party P ’s current epoch). If epoch t̄ is equal to party
P ’s next epoch (i.e., t̄ = t + 1), party P proceeds to its next receiving epoch t̄. To do so, skip(t̄ − 2, l̄)
is executed to derive the remaining unused AEAD decryption keys (one for each ciphertext) in epoch
t̄−2 and record them in a dictionary D keyed with ciphertext indices, then t is incremented, the receive
counter r is reset, CKA-R is called on input T̄ (which is the other party’s public key share) to derive the
new shared secret I, and P-Up is called on input σ, I to derive the initial receiving chain key wR for this
new receiving epoch. After the above if condition, the decryption key is retrieved and then erased from
D; if failed (which means that the decryption key has not been derived yet), then run skip(t̄, s̄ − 1) to
derive and record the first s̄ − 1 decryption keys in epoch t̄, run G again to derive the decryption key
K for the input ciphertext c with index (t̄, s̄), and increment the receive counter r. This key is used by
the AEAD decryption algorithm Dec to decrypt c; if decryption fails (i.e., m = ⊥), then roll back the
party state, otherwise, return the decrypted message m with its index (t̄, s̄).

Correctness of ChSignal is implied by that of its building blocks.
The message-borne causal Signal channel Chm

cSignal is also shown in Figure 18, with boxed content
for the added causality-related operations; such operations are explained in Section 6.2 except that the
message index is an epoch-counter pair (t, s). Note that one can easily adapt the above message-borne

35

causal Signal channel to construct the associated-data-borne version, by adding (iR, Q) to the associated
data a of the AEAD scheme.

C.2 SCP Security of the Message-Borne Causal Signal Channel

With Theorem 6.1, it is only left to show that ChSignal achieves S-INT-CTXT and ROB-CORR security
for some ∆ > 0.

First, our ROB-CORR security for ChSignal is semantically the same as the correctness security defined
in [ACD19], except that their notion additionally captures maliciously controlled randomness and allows
the adversary to win when an honest ciphertext cannot be successfully decrypted. They proved in [ACD19]
that ChSignal achieves their correctness security for ∆ = 3, which implies that ChSignal achieves our ROB-
CORR security (as a weaker notion than theirs) for ∆ = 3.

Then, our S-INT-CTXT security of ChSignal is implied by its secure messaging (SM) security defined
in [ACD19]. Here we omit a semantic comparison between our S-INT-CTXT security experiment (see
Figure 6) and their SM security experiment (see Figure 2 in [ACD19]), but it is not hard to see that
the former can be reduced to the latter. In particular, SM security is an all-in-one notion that further
captures confidentiality and maliciously controlled randomness.10 In [ACD19] the authors proved that
ChSignal achieves SM security for ∆ = 3, so ChSignal achieves S-INT-CTXT for ∆ = 3 (and hence also
achieves INT-CTXT by notion relations).

D Examples for Using the Causal Channel

D.1 A Toy User Interface Example

Take the restricted graphs in Figure 2 for example. If we replace the a vertices on the left side of G|A
with their associated messages, the resulting sequence of messages represents Alice’s view displayed by a
typical instant messaging application. Similarly, one can derive Bob’s view by replacing the b vertices on
the right side of G|B with their associated messages, except that the message received at b7 may be moved
on top of the message at b5 to restore their sending order for better understanding. Note that the views of
Alice and Bob are different, which is reasonable because some messages are concurrent and some even got
lost. Now, for instance, when Alice does a “press and hold” on the message at a7, the channel returns the
message indices at b3 and b5, because by definition Q̄ consists of actions b3, b4, b5 and only b3, b5 correspond
to messages sent by Alice (at a1, a5); then, the application will highlight Alice’s messages at a1, a5.

D.2 Communication Pattern Examples

In a typical use case of instant messaging applications for two-party communication, the users usually send
messages in alternate rounds. For instance, as shown on the left of Figure 19, in round 1 Alice sends a
few messages, then in round 2 she waits for Bob to send a few, and then in round 3 Alice sends again, etc.
In such a common scenario with a zigzag-shaped communication pattern, we only need Q to record the
message indices within the latest two rounds because messages in earlier rounds are already confirmed by
the received messages. If a user, say Alice, receives no message from some round i (due to message loss or
delay), then she should use Q to also record messages in round i−1 (if any), until Alice receives a message
that confirms her messages in round i−1. Though this increases the size of Q a bit, on average |Q| should

10It is worth noting that our post-compromise security notions (including S-INT-CTXT) is more general than SM in the
sense that we do not restrict the parties to have alternate sending epochs like Signal, but when analyzing (causal) Signal
channels our notions downgrade to theirs in this regard.

36

...
...

Alice Bob

common case bad case
Alice Bob

Figure 19: Two examples of communication patterns. Long arrows indicate a message is received. Short arrows (for bad case)
indicate a message loss or delay.

be a small number, e.g., less than 20. This is because, for a common scenario, only several messages are
sent within one round and there should not be many lost or delayed messages.

However, in some bad scenarios, |Q| can be quite long or even unbounded. For instance, consider the
case shown on the right of Figure 19, where Alice and Bob both send messages but Bob never receives any
message from Alice (due to connection issues or attacks). In this case, messages sent from Alice are never
confirmed by Bob’s messages, so the queue Q on Alice’s side keeps increasing and its size equals to the
total number of messages in the conversation. Note that a network attacker can easily make this happen,
as all it has to do is to drop all messages sent from Alice to Bob. Although theoretically this leads to an
infinite |Q| overhead, in practice it may not be a big issue, because Alice should not keep sending messages
when none of them is confirmed by Bob.

In any case, as mentioned at the end of Section 6.2, a straightforward and practical way to limit
overhead is to set a threshold for the maximum Q size.

E Security Proofs

E.1 Proof of Theorem 5.1

Proof: By definition of the causality preservation game (see Figure 3), A wins if and only if Bad or
GP ̸= G|P occurs, where both cases result in a tuple (N∗, ad∗, c∗) that has been successfully decrypted
(in Rcv by P) such that c∗ was never output by previous encryptions of the form EnckP̄

(N∗, ad∗, ·). Note
that Bad implies a party accepting a new message never sent by the other party and GP ̸= G|P implies a
modified δ̄ value as part of the decrypted plaintext, so both result in a valid malicious ciphertext c∗.

Now, we construct an efficient adversary B that simulates A’s view in the game as follows. First, B
samples a random AEAD key k $← {0, 1}8κ, two random IVs iv, iv′ $← {0, 1}96 and guesses with probability
1/2 the party P that decrypts the tuple (N∗, ad∗, c∗). Then, B simulates Send(P, ·, ·) and Recv(P̄ , ·, ·)
queries with its sampled k and iv, and simulates Send(P̄ , ·, ·) and Recv(P, ·, ·) queries with its AEAD
encryption and decryption oracles and iv′. It is not hard to see that B simulates A’s view perfectly and B
wins if its guess is correct and A wins. Therefore, we have 1/2 ·Advcp

Chm
cTLS,localG⋆

m
(A) ≤ Advauth

AEAD(B) and
the proof is concluded. □

37

E.2 Proof of Theorem 6.1

Proof: By definition, SCP (see Figure 4) downgrades to S-INT-PTXT (see Figure 6) if all graph operations
are excluded. Besides, S-INT-PTXT and S-INT-CTXT experiments differ only at their definitions of the
Bad events. Therefore, we can construct an efficient adversary B against the S-INT-CTXT security of Ch
to simulate A’s view using B’s oracles. Actually, B can derive the entire causality graph G from A’s queries
(and their order), which reflects the fact that in practice causal relations are not private to the parties
but accessible to attackers that passively observe the entire (encrypted) communication. According to G,
B can easily derive the correct iS , iR, Q values and then use them to simulate A’s view perfectly (when B
does not win).

In the following, we show that if A wins then B wins or the robust correctness is broken (i.e., Badrob-corr
occurs), where the probability of the latter can be bounded by Advrob-corr

Ch,∆ (C) for an efficient adversary C
against the ROB-CORR security of Ch.

Recall that by definition we have Bad = Bads-ptxt ⇒ Bads-ctxt ∨ Badrob-corr. That is, if Bad occurs (in
which case A wins), then B wins or Badrob-corr occurs. Therefore, we are only left to consider the event
where Bad does not occur but SCP’s second winning condition (GP)≥tc+∆ ̸= (G|P)≥tc+∆ is triggered; we
denote this event by E. Then, A wins if and only if either Bad or E occurs.

By definition, when event E occurs, all the following conditions hold: 1) the received ciphertext c is
valid (m ̸= ⊥), 2) Bad does not occur, and 3) c.t ≥ tc + ∆ (otherwise processing c will not affect the
graphs (GP)≥tc+∆, (G|P)≥tc+∆). Then, c.t ≥ tc + ∆ further implies that after c was accepted both the
sender and the receiver have reached some epoch ≥ tc + ∆, i.e., min(stA.t, stB.t) ≥ tc + ∆, which also
means both parties have recovered from the state compromise. We further note that c cannot correspond
to a compromised record when ∆ > 0. This is because by definition c was added to Rc if and only if
c.t < tc + ∆ (which contradicts the c.t ≥ tc + ∆ condition) or the party that accepts c was corrupted.
In the latter case, we have c.t ≤ tc because tc is set equal to the maximum epoch of the channel parties
when the corruption occurs. Therefore, if ∆ > 0, we have c.t < tc + ∆ that contradicts the c.t ≥ tc + ∆
condition.

To summarize, if event E occurs, then both min(stA.t, stB.t) ≥ tc + ∆ and (P̄ , i, ·, ·) ̸∈ Rc hold. Since
Bad does not occur when E occurs, comparing Bad with the above two conditions yields that (P̄ , i, m, ·) ∈ R
must hold. This means that the global causality graph G is updated correctly. However, recall that event
E triggers SCP’s second winning condition (GP)≥tc+∆ ̸= (G|P)≥tc+∆. By correctness of localG⋆

m, the
accepted ciphertext must not be the honest ciphertext output by the honest party, i.e., (P̄ , i, ·, c) ̸∈ R,
because otherwise GP will also be updated correctly and match the restricted graph. This means that if
E occurs, then Bads-ctxt occurs (i.e., E ⇒ Bads-ctxt) and hence B wins.

The above shows that if A wins then B wins or Badrob-corr occurs, so we have Advscp
Chm,∆,localG⋆

m
(A) ≤

Advs-int-ctxt
Ch,∆ (B) + Advrob-corr

Ch,∆ (C). □

E.3 Proof of Theorem 8.2

This proof follows the game-playing technique [Sho04] that considers a sequence of games (i.e., security
experiments) associated with an adversary. Each pair of consecutive games are “close” enough such that
the difference between the adversary’s “winning” probabilities in the two games can be properly bounded.
When two consecutive games operate in the same way until some “bad” event occurs, one can bound their
adversarial probability difference by the probability of that “bad” event.
Proof: Consider a sequence of games (i.e., security experiments) and let Pri, i ≥ 0 denote the winning
probability of A in Game i.
Game 0: This is the original RCP-R experiment, so Pr0 = Advrcp-r

MFChcFB,Extr⋆(A).

38

Game 1: This game is identical to Game 0, except that it aborts if A wins with a Report(P, m, u, kf , cf , τ)
query such that (P̄ , ·, ·, cf) ̸∈ Rf . Let E denote this event and in the following we construct an efficient
adversary B against the EUF-CMA security of MAC such that Pr[E] ≤ Adveuf-cma

MAC (B).
It is not hard to see that B can use its MAC oracles Mack(·) and Verk(·, ·) to perfectly simulate

A’s view in the RCP-R game. B just samples kCh to initialize the secret states of the users and then
instead of sampling kS it derives server tags (in SendTag queries) and checks their validity (in Report
queries) by making Mack(·) and Verk(·, ·) queries. By definition, if event E occurs, then A wins with a
Report(P, m, u, kf , cf , τ) query such that (P̄ , ·, ·, cf) ̸∈ Rf . Note that if A wins then the above Report
query must return 1, so by construction of MFChcFB we have Verk(cf∥P̄∥P, τ) = 1, i.e., τ is its valid MAC
tag for the message cf∥P̄∥P . Then, (P̄ , ·, ·, cf) ̸∈ Rf implies that cf∥P̄∥P was not queried to Mack(·), i.e.,
B wins its EUF-CMA game by outputting (cf∥P̄∥P, τ). The above shows that if E occurs then B wins, so
we have |Pr0−Pr1 | ≤ Pr[E] ≤ Adveuf-cma

MAC (B).
Final analysis: Now we construct an efficient adversary C against the binding security of CS such that
Pr1 ≤ Advv-bind

CS (C).
It is easy to see that C can simulate Game 1 perfectly. Actually, C just performs like the challenger

but in the end outputs a tuple for its binding security experiment. In Game 1, A can only win with a
Report(P, m, u, kf , cf , τ) query such that (P̄ , ·, ·, cf) ∈ Rf . So, before this winning Report query, A must
have made a (c′, τ ′) ← SendTag(P̄ , m′) query such that (P̄ , cf) ∈ Rf with cf = c′.cf . Furthermore, by
correctness of MFChcFB, we know (m′, u′, k′

f)← Recv(P, c′, τ ′) holds with u′.i = c′.i. Then, by definition,
if A wins then (P̄ , u.i, m, cf) ̸∈ Rf or Extr⋆(u) ̸= G|u.i

P̄
holds. Next, we show that either of these two cases

implies (m, u) ̸= (m′, u′). The former case (P̄ , u.i, m, cf) ̸∈ Rf implies that (u.i, m) ̸= (c′.i, m′) = (u′.i, m′)
and hence (m, u) ̸= (m′, u′). The latter case Extr⋆(u) ̸= G|u.i

P̄
implies u ̸= u′ because by construction

Extr⋆(u′) = G|u′.i
P̄

always holds for a correct execution of MFChcFB’s underlying bidirectional channel. Note
that correctness of the commitment scheme CS = (Com, VerC) ensures that VerC((m′, u′), k′

f , cf) = 1.
Furthermore, by definition, if A wins with a Report(P, m, u, kf , cf , τ) query, then Rprt in this winning
query outputs 1, so by construction of MFChcFB we have VerC((m, u), kf , cf) = 1 holds. As a result, if A
wins in Game 1, then C also wins by outputting ((m′, u′), k′

f , (m, u), kf , cf).
Therefore, we have Pr1 ≤ Advv-bind

CS (C) and the entire proof is concluded by a union bound. □

39

	Introduction
	Causality in Cryptographic Channels
	Our Contributions
	Further Related Work

	Causality Graphs
	Preliminaries
	Bidirectional Channels and Causality Preservation
	Bidirectional Channels
	Local Graph and its Update Function
	Causality Preservation
	Causality Preservation with Post-Compromise Security
	Relations to Integrity Notions

	Causality Preservation of TLS 1.3
	The TLS 1.3 Channel and its Insecurity
	Integrating Causality in TLS 1.3

	Causality Preservation of Signal
	The Signal Channel and its Insecurity
	Integrating Causality in Signal

	Message Franking Channels and Causality Preservation
	Message Franking Channels
	Causality Preservation of Message Franking Channels

	Causality Preservation of Facebook's Message Franking
	Facebook's Message Franking Channel and its Insecurity
	Integrating Causality in Facebook's Message Franking

	Conclusion
	Preliminary Definitions
	Authenticated Encryption with Associated Data
	Message Authentication Code
	Commitment Scheme with Verification

	Notion Relations
	The Causal Signal Channel and its Security
	The Message-Borne Causal Signal Channel
	SCP Security of the Message-Borne Causal Signal Channel

	Examples for Using the Causal Channel
	A Toy User Interface Example
	Communication Pattern Examples

	Security Proofs
	Proof of Theorem 5.1
	Proof of Theorem 6.1
	Proof of Theorem 8.2

