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Abstract. Weak forward secrecy (wFS) of authenticated key exchange (AKE) protocols is a pas-
sive variant of (full) forward secrecy (FS). A natural mechanism to upgrade from wFS to FS is
the use of key confirmation messages which compute a message authentication code (MAC) over
the transcript. Unfortunately, Gellert, Gjøsteen, Jacobson and Jager (GGJJ, CRYPTO 2023) show
that this mechanism inherently incurs a loss proportional to the number of users, leading to an
overall non-tight reduction, even if wFS was established using a tight reduction.

Inspired by GGJJ, we propose a new notion, called one-way verifiable weak forward secrecy
(OW-VwFS), and prove that OW-VwFS can be transformed tightly to FS using key confirmation
in the random oracle model (ROM). To implement our generic transformation, we show that several
tightly wFS AKE protocols additionally satisfy our OW-VwFS notion tightly. We highlight that
using the recent lattice-based protocol from Pan, Wagner, and Zeng (CRYPTO 2023) can give us
the first lattice-based tightly FS AKE via key confirmation in the classical random oracle model.
Besides this, we also obtain a Decisional-Diffie-Hellman-based protocol that is considerably more
efficient than the previous ones.

Finally, we lift our study on FS via key confirmation to the quantum random oracle model
(QROM). While our security reduction is overall non-tight, it matches the best existing bound
for wFS in the QROM (Pan, Wagner, and Zeng, ASIACRYPT 2023), namely, it is square-root-
and session-tight. Our analysis is in the multi-challenge setting, and it is more realistic than the
single-challenge setting as in Pan et al..

Keywords: Authenticated key exchange · forward secrecy · key confirmation · tight security ·
(quantum) random oracles.

1 Introduction

Forward secrecy (FS) is an essential security requirement for authenticated key exchange (AKE) pro-
tocols. It states that even if an active adversary corrupts a user’s long-term secret key, all session keys
agreed before should remain secret to the adversary. A weaker form of FS is called weak FS (wFS),
where an adversary is not allowed to perform active attacks, namely, it does not actively interfere with
the protocol transcripts of the session that it attacks.

Key confirmation is simple and arguably the most efficient way in achieving FS and has been used
in many works, e.g., [Kra05,FGSW16,CCG+19]. Essentially, it generically transforms an AKE protocol
with wFS to FS. More precisely, two parties firstly run a wFS AKE protocol to agree on a session
key k, and then they exchange key confirmation messages derived from k. These messages are usually
message authentication codes (MAC) on the protocol transcripts using k as the MAC key. Apart from
key confirmation, one can use a digital signature scheme to sign a passively secure key exchange protocol
as in the signed Diffie-Hellman protocol [PQR22,GJ18] to provide FS. Considering that using a MAC
or hash function is much more efficient than digital signatures, the signature-based approach is often
inefficient and less desirable.
Security Models for AKE. Defining the security for AKE protocols is a complex task, and there are
many different security models for AKE (e.g., [BR94,CK01,LLM07]). In this paper, we consider active
adversaries that can modify, drop, or inject some messages. Moreover, they may adaptively corrupt
users’ long-term secret keys via Corr oracle and reveal session keys via Reveal oracle. Some of the
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models even allow adversaries to learn ephemeral states (which are usually randomness in generating
protocol messages) via Rev-State oracle. We formalize key secrecy via Test, where an adversary A
chooses a fresh session, receives either a real or random key for it, and shall distinguish between the
two. We consider the single-bit guessing, multi-challenge security, namely, A can query Test multiple
times and each time Test responds using the same bit in deciding real or random. Composability for
this notion was initially proven for password-based key exchange [AFP05], and we refer to [JKRS21] for
further discussion on why this is the realistic and meaningful notion. For forward secrecy, keys of these
Test-sessions must be computed before Corr is queried to either parties of a Test-session. Depending
on the type of forward secrecy, freshness is defined differently. If it is wFS, then A must perform only
passive attacks on this fresh session. Otherwise, A can perform active attacks, for instance, modify or
inject some messages.

Security Loss for FS via Key Confirmation. The complexity of AKE models makes it challeng-
ing to prove security of an AKE protocol, in particular, giving tight security proofs for AKE. The security
of modern cryptographic protocols is often proven by reductions. A reduction R uses an adversary A
against protocol Π to break the security of the underlying primitive P. By doing so, we can conclude
the concrete security bound, εA ≤ ℓ · εR, where εA and εR are the success probability of A and R,
respectively. ℓ is called the security loss. Assuming A and R have roughly the same running time, if ℓ is
a small constant, we say protocol Π has tight security, and non-tight security, otherwise. A tight security
reduction is highly desirable, since it allows protocols to be instantiated with optimal parameters without
compensation for the security loss.

A natural question to ask is whether the key confirmation approach preserves the tightness of the
underlying wFS AKE. Due to its high efficiency, it would be ideal to have an affirmative answer to this
question, since it means that we do not need to increase the security parameter of the wFS AKE to
compensate any security loss.

Intuitively, there should not be a tightness loss when going from wFS to FS, which was even falsely
claimed by the work of Cohn-Gordon et al. [CCG+19] previously. At CRYPTO 2023, Gellert, Gjøsteen,
Jacobsen, and Jager (GGJJ) [GGJJ23] identified a flaw in [CCG+19] and proposed a fix by using a
selective variant of wFS (called selective key secrecy in [GGJJ23]). The selective wFS is essentially the
same as wFS, except that an adversary A has to select a user of which A will not corrupt the long-term
secret key. Unfortunately, when we construct a reduction R to prove FS based on this selective wFS,
R has to guess the non-corrupted user, which leads to a security loss of O(µ) where µ is the maximal
number of users. This security loss is proven to be inherent (and thus optimal) in [GGJJ23] when starting
from a wFS AKE with key indistinguishability.

However, a linear loss in the number of users is undesirable, since in the real world the number of
users can be massive. According to the impossibility result in [CCG+19], it seems inherent to have this
security loss. Hence, it motivates us to propose a different modularization that potentially requires strong
security for the underlying wFS AKE in achieving tight FS.

1.1 Our Contribution I: Tight Forward Secrecy via Key Confirmation

We revise the security proof for the wFS-to-FS transformation.

Tight FS from Verifiable wFS. We propose a new variant of wFS, called One-Wayness against
key Verification attacks and weak Forward Secrecy (OW-VwFS). In the OW-VwFS security game, an
adversary has the same capability as in the usual wFS game, but additionally it can verify whether
a session key is the valid one of a particular session. Hence, the adversary capability of OW-VwFS is
stronger than that of wFS and it is the main reason why we bypass the optimality result from Gellert
et al. [GGJJ23]. In terms of security goals, OW-VwFS is weaker than wFS, namely, OW-VwFS only
requires an adversary cannot compute the session key of a fresh session, while wFS requires a session key
to be indistinguishable from a random key.

Using key confirmation, we prove that OW-VwFS tightly implies FS in the random oracle model. Our
transformation is the same as the standard wFS-to-FS transformation, but ours preserves the tightness of
the underlying OW-VwFS protocol, and it enables tight FS in contrast to the selective notion in [GGJJ23].
An important consequence of our work is that the future AKE design can aim at OW-VwFS, since its
transformation to FS is the same as the standard wFS-to-FS one, but tightness-preserving. Moreover,
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our analysis considers security against (ephemeral) state reveals. Such a strong form of attacks was not
considered in the work of Gellert et al. [GGJJ23], which is why we bypass their impossibility.
Constructing (Tightly) Verifiable wFS. Furthermore, we show that several tightly wFS protocols
satisfy our new OW-VwFS notion tightly, in particular, the lattice-based protocol of Pan, Wagner, and
Zeng [PWZ23a]4. Subsequently, this yields the first AKE protocol with tight FS from lattices.

Essentially, we show that a One-Way Checkable against Chosen-Ciphertext Attacks (OW-ChCCA)
[PWZ23a] secure key encapsulation mechanism (KEM) tightly implies a OW-VwFS AKE protocol. Once
again, our analysis allows adversaries to reveal ephemeral state in the AKE protocol. Roughly speaking,
the OW-ChCCA game is a multi-user, multi-challenge variant of the standard IND-CCA game: Besides
the oracles provided by the standard IND-CCA security, it allows adversaries to corrupt some of the
user’s decryption keys and decrypt some of the challenge ciphertexts, and, most importantly, it allows
an adversary to check if a key is valid with respect to a ciphertext. The adversary goal is to invert a
fresh challenge ciphertext. As shown in [PWZ23a], we can construct OW-ChCCA KEM tightly from
the Decisional Diffie-Hellman (DDH) and Learning-With-Errors (LWE) assumptions, respectively. As a
technical note, our proof requires only a slightly weaker version of OW-ChCCA, where adversaries are
not allowed to ask for a decryption, but to verify whether a ciphertext can be decapsulated.
Efficiency Comparison among DDH-based Protocols. Besides having the first lattice-based AKE
with tight FS, we also obtain the most efficient DDH-based protocol against state reveal attacks. In
Table 1, we compare efficiency among well-known DDH-based AKE with tight or “optimal” tight FS
(namely, with security loss O(µ)) to show the practicality of our work. Our estimation focuses on com-
munication and computation complexity for both parties to agree on a session key. For computation
complexity, we only count the number of exponentiations, since they are the most costly operations. For
concrete efficiency, we instantiate the protocols at 128-bit security and assume that the number of users
µ ≈ 230. This is about the number of monthly active users in a social media app5. We instantiate the
fully tight protocols with a NIST P256 curve and “optimal” tight ones with a NIST P384 (since they
require a 158-bit hard DLog assumption). Our benchmarks for an exponentiation in a P256 and P384
are 0.5 ms and 1 ms, using Apple M1 Max, 32GB of RAM and macOS Ventura 13.3.1 (a).

We observe that the DDH-based non-committing KEM in [JKRS21] is tightly OW-ChCCA secure (cf.
[PWZ23a, Footnote 1]). Our analysis shows that the wFS JKRS in [JKRS21] is tightly OW-VwFS, and
after adding key confirmation to the wFS JKRS in [JKRS21] we get JKRSKC that is tightly FS. According
to Table 1, our tight security proofs allow one to implement JKRSKC with about 30% shorter transcripts
and 50% faster speed than the one with the “optimal”, non-tight proofs in [GGJJ23] at 128-bit security.
Considering security against State Reveals, JKRSKC is the most efficient DDH-based protocol, due to our
tight security proofs. It is worth mentioning that the CCGJJKC has shorter protocol transcripts, but it is
insecure under State Reveals.

Interestingly, although the signature-based JKRS uses relatively inefficient primitives as signatures, its
tight security proof allows an instantiation that is slightly more efficient than the non-tight, signature-less
JKRS (namely, JKRSKC with proofs in [GGJJ23]).
Relation to the work of Gellert et al. [GGJJ23]. We circumvent the impossibility result of
Gellert et al. [GGJJ23] by using a different wFS notion, OW-VwFS, and random oracles. As discussed
earlier, the key checking oracle makes our notion stronger. The security definition in [GGJJ23] does not
have such an oracle and thus their impossibility result does not apply to our proof. At the same time,
we opted for the weakest definition which allows a tight reduction (i.e., one-wayness and also no Reveal
oracle), which makes our definition and that of [GGJJ23] incomparable (neither implies the other).
Moreover, their impossibility is in the standard model, while ours is in the random oracle model. For
these reasons, our results do not contradict the impossibility result in [GGJJ23], but rather provides an
alternative way to prove security while enabling full tightness.

One might wonder whether the impossibility result persists at all when moving to the (programmable)
random oracle model. The authors of [GGJJ23] provide some indication that this is the case and we want

4 Their lattice-based protocol is almost tight (similar to [CW13]), since it needs to lose a factor of O(λ) to the
LWE assumption, where λ is the security parameter. We call it tight as well, but specify the concrete loss in
our theorems and proofs.

5 Cf. https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-world
wide/.
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Protocol Comm.
(G, H , Sign, other) Bytes Exp. Time

(ms) #Msg. State
Reveal

Security
loss

TLS 1.3 [DG21,DJ21] (2, 2, 2, 512) 384 32 16 3 no O(1)
GJ [GJ18] (2, 1, 2, 0) 288 32 16 3 no O(1)
LLGW [LLGW20] (3, 0, 2, 0) 288 35 17.5 2 no O(1)
JKRS [JKRS21] (5, 1, 1, 0) 288 29 14.5 2 yes O(1)
PQR [PQR22] (2, 0, 2, 0) 256 32 16 2 no O(1)
CCGJJKC [CCG+19] (2,2,0,0) 160 8 8 3 no O(µ)
JKRSKC [GGJJ23] (5,2,0,0) 304 15 15 3 yes O(µ)
JKRSKC (Ours) (5,2,0,0) 224 15 7.5 3 yes O(1)

Table 1. Comparison of Diffie-Hellman-based AKE protocols with (tight or “optimal” tight) FS. Concrete effi-
ciency is estimated for 128-bit security. “JKRSKC [GGJJ23]” is transforming the implicitly authenticated JKRS
[JKRS21] via key confirmation. We estimate its efficiency, according to the “optimal”, non-tight security bound
by Gellert et al. [GGJJ23]. The last row is the same construction as the second last one, but with our tight
security proof (cf. Theorem 4). In the upper arrows, schemes are using signatures, and we estimate the concrete
bytes with the most efficient signature scheme in [DGJL21]. Comm. counts values exchanged during the proto-
col execution. G counts the number of group elements, H the number of hashes or MACs, ‘Sign’ the number of
signatures, and ‘other’ the additional data in bits. Bytes counts total data in bytes by instantiating G with NIST
P256 or P384 (for the non-tight JKRSKC). Exp. counts the total numbers of exponentiation (which is the most
costly computation in an AKE protocol) from both parties in agreeing a session key, and Time is the estimated
time of computing those exponentiation in milliseconds.

to give a short discussion as well. For this note that a reduction (in the key indistinguishability game)
will be able to simulate key confirmation messages by picking tags at random. If the session key is known
at a later point in time (e.g., because the adversary asks to reveal the session key which allows the
reduction to reveal the key as well), the reduction can patch the random oracle accordingly. However, if
the adversary does not explicitly ask to reveal the key and instead manages to query the random oracle
on an unknown session key, the reduction will not able to identify such a query to make the simulation
consistent. This explains why we require one-way security (such a strategy requires the adversary to
compute the session key) and the key verification oracle to identify such a query without tightness loss.

1.2 Our Contribution II: Forward Secrecy via Key Confirmation in the QROM

Our second contribution is proposing the first security proof for FS via key confirmation in the quantum
random oracle model (QROM) [BDF+11], where a quantum adversary can have quantum access to the
hash function. Our analysis considers the KEM-based AKE protocol (via key confirmation) and assumes
a Multi-User, Multi-Challenge Chosen-Ciphertext Attacks (MUC-CCA) KEM and a Multi-Challenge
CCA (MC-CCA) KEM. The main reason of doing so is that we do not know how to tightly prove OW-
VwFS implies FS in the QROM, since it will trigger the Oneway-to-Hiding Lemma [Unr14] and lead to
a square-root-loss such as

√
ε, where ε is the advantage of breaking the underlying KEM. We still think

that our tight lattice-based protocol in the classical ROM is interesting, since it is the first protocol
with tight FS from post-quantum assumptions. Of course, one may alternatively rephrase our analysis
in the classical ROM with the suitable KEMs, but it may lower the readability. More importantly, our
OW-VwFS notion is more generic and gives more freedom to designers to construct their OW-VwFS
protocols that will lead to FS in a tightness-preserving manner.

Our security bound in the QROM is unfortunately non-tight. More precisely, ignoring the statistically
negligible terms, our security bound for FS in the QROM is

εour
FS ≤ O(µ) · εMC-CCA + O(1) · εMUC-CCA. (1)

where µ is the number of users, εMC-CCA is the advantage of MC-CCA, and εMUC-CCA is that of MUC-
CCA. It matches the best known bound for wFS in the QROM proposed by Pan, Wagner, and Zeng
(PWZ) [PWZ23b]. In this sense our FS bound preserves the tightness of the KEM-based AKE protocol
with wFS. It is worth mentioning that, as shown in [PWZ23b], we can tightly instantiate MC-CCA and
MUC-CCA from the LWE assumption in the QROM.

We also improve PWZ’s analysis in the sense that their analysis considers only one single Test
query, but our security bound (as stated in Equation (1)) is established in the context of multiple
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challenges, where an adversary is allowed to query Test multiple times. The multi-challenge setting is
more realistic and well-established for public-key primitives [BBM00,FHKP13,GHKW16,CCG+19], since
in the real world, an adversary usually wants to attack multiple instances of a primitives. Although the
security bound of PWZ can be extended to the multi-Test setting with a multiplicative factor t (which
is the number of Test-queries), ours does not need to lose such a factor. In practice, t can be up to the
total number of established sessions, which can be much larger than the number of users. We stress that
the analysis of PWZ is only for wFS, and transforming it to FS, it may lose another multiplicative factor
µ by applying the analysis of GGJJ [GGJJ23]. Hence, combining the analysis of PWZ and GGJJ leads
to a bound for FS in the QROM as

εPWZ & GGJJ
FS ≤ O(µ2t) · εMC-CCA + O(µt) · εMUC-CCA. (2)

Strictly speaking, the bound above is only an estimation and not theoretically sound, since the analysis
of GGJJ is in the classical setting. Their bound may change, if an adversary can query the hash function
or key derivation function with a quantum state.
More Related Work in the QROM. Another work on the KEM-based AKE protocol in the QROM
is due to Hövelmanns, Kiltz, Schäge, and Unruh [HKSU20], and it has a square-root-loss, namely, its
security bound is

O(S2 + S · µ) ·
(

εCPA +
√

Q · εCPA

)
, (3)

where S , µ, and Q are the numbers of total sessions, users, and random oracle queries, respectively,
and εCPA is the advantage of breaking the underlying CPA secure PKE. Similar to the work of PWZ,
Equation (3) is only for wFS and in the single-Test setting. Upgrading to FS in the multi-Test setting
requires an additional multiplicative loss in µt. It is usually less desirable to have the square-root-loss as
in Equation (3), since it reduces the security guarantee of the underlying PKE in half.

2 Preliminaries

For n ∈ N, let [n] = {1, . . . , n}. For a finite set S, we denote the sampling of a uniform random element
x by x $← S. By JBK we denote the bit that is 1 if the evaluation of the Boolean statement B is true and
0 otherwise.
Algorithms. For an algorithm A which takes x as input, we denote its computation by y := A(x) if A
is deterministic, and y ← A(x) if A is probabilistic. We assume all the algorithms (including adversaries)
in this paper to be probabilistic unless stated differently. We denote an algorithm A with access to an
oracle O by AO. In terms of running time, if a reduction’s running time t′ is dominated by that of an
adversary t (more precisely, t′ = t + s where s ≪ t), we write t′ ≈ t.
Games. We use code-based games [BR06] to present our definitions and proofs. We implicitly assume all
Boolean flags to be initialized to 0 (false), numerical variables to 0, sets to ∅ and strings to ⊥. We make
the convention that a procedure terminates once it has returned an output. GA ⇒ b denotes the final
(Boolean) output b of game G running adversary A, and if b = 1 we say A wins G. The randomness in
Pr[GA ⇒ 1] is over all random coins in game G. More generically, we write Pr[Event : G] to denote the
probability that Event happens in the game G. If the context is clear, we simply write it as Pr[Event].
Within a procedure, “abort” means that we terminate the run of an adversary A.

3 Three-Message Authenticated Key Exchange

We recall the AKE security model from [JKRS21] and adapt it to three-message protocols. A three-
message key exchange protocol AKE := (Setup, GenAKE, InitI, InitR, DerI, DerR) consists of five algorithms
which are executed interactively by two parties as shown in Figure 1.

Setup is the setup algorithm for the system parameters. We denote the party which initiates the
session by Pi and the party which responds to the session by Pr . The key generation algorithm GenAKE
outputs a key pair (pk, sk) for one party. The initiator’s initialization algorithm InitI inputs the initiator’s
long-term secret key ski and the responder’s long-term public key pkr , and outputs a message mi,1 and
the initiator’s state sti . The responder’s initialization algorithm InitR inputs the responder’s long-term
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Party Pi (pki , ski) Party Pr (pkr , skr)

(mi,1, sti)← InitI(ski , pkr)
(mr , str)← InitR(skr , pki , mi,1)

(mi,2, Ki)← DerI(ski , pkr , mr , sti)
Kr := DerR(skr , pki , mi,2, str)

mi,1

mr

mi,2

sti

str

Fig. 1. Running a three-message AKE protocol between two parties.
secret key skr and the initiator’s long-term public key pki , and outputs a message mr and the responder’s
state str . The initiator’s derivation algorithm DerI takes as input ski , pkr , a message mr and the state
sti . It computes the final message mi,2 and a session key K . The responder’s derivation algorithm DerR
takes as input the skr , pki , a message mi,2 and the state str . It computes the session key K . Here K can
be ⊥ meaning that the session is rejected during the execution. Correctness of an AKE protocol states
that an honest execution between two parties should yield the same session key.

Definition 1 (Correctness of three-message AKE). Let AKE := (Setup, GenAKE, InitI, InitR, DerI,
DerR) be a three-message AKE protocol. We say AKE is ρ-correct if

Pr

Ki = Kr ̸= ⊥ :

par← Setup(1λ),
(pki , ski)← GenAKE(par), (pkr , skr)← GenAKE(par),
(mi,1, sti)← InitI(ski , pkr),
(mr , str)← InitR(skr , pki , mi,1),
(mi,2, Ki)← DerI(ski , pkr , mr , sti),
Kr := DerR(skr , pki , mi,2, str)

 ≥ ρ ,

where the probability is taken over the randomness of Setup, GenAKE, InitI, InitR, and DerI.

We give a security game written in pseudocode focusing on (full) forward secrecy, rather than im-
plicit or explicit authentication. We refer readers to [DFW20] for more details on different types of
authentication for key exchange protocols, and their connections to forward secrecy in [GGJJ23].
Execution Environment. We consider µ parties P1, . . . , Pµ with long-term key pairs (pkn, skn), n ∈
[µ]. When two parties A and B want to communicate, the initiator, say, A first creates a session. To
identify this session, we increase the global identification number sID and assign the current state of
sID to identify this session owned by A. The state of sID will increase after every assignment. Moreover,
a message will be sent to the responder. The responder then similarly creates a corresponding session
which is assigned the current state of sID. Hence each conversation includes two sessions. We then define
variables in relation to the identifier sID:

– Init[sID] ∈ [µ] denotes the initiator of the session.
– Resp[sID] ∈ [µ] denotes the responder of the session.
– Type[sID] ∈ {“In”, “Re”} denotes the session’s view, i. e. whether the initiator or the responder com-

putes the session key.
– MsgI,1[sID] denotes the first message that was computed by the initiator.
– MsgR[sID] denotes the message that was computed by the responder.
– MsgI,2[sID] denotes the final message that was computed by the initiator.
– ST[sID] denotes the (secret) state information, i. e. ephemeral secret keys.
– SK[sID] denotes the session key. If the session terminates without a valid session key, we set this

variable to the special string “reject”.
To establish a session between two parties, the adversary is given access to oracles SessionI and SessionR,
where the first one starts a session of type “In” and the second one of type “Re”. In order to complete
a session, oracles DerI and DerR have to be queried.The adversary has also access to oracles Corr,
Reveal and Rev-State to obtain secret information. (The latter is only available if state reveal attacks
are considered.) We use the following boolean values to keep track of which queries the adversary made:

– cor[n] denotes whether the long-term secret key of party Pn was given to the adversary.
– peerPreCor[sID] denotes whether the peer of the session was corrupted and its long-term key was

given to the adversary before the owner’s session key was computed, which is important for forward
security.
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GAME IND-FS, IND-FS-St
00 for n ∈ [µ]
01 (pkn , skn)← GenAKE
02 b $← {0, 1}
03 b′ ← AO(pk1, · · · , pkµ)
04 for sID∗ ∈ Stest

05 if Fresh(sID∗) = false �session not fresh
06 or Valid(sID∗) = false �no valid attack
07 return b
08 return Jb = b′K
SessionR((i, r) ∈ [µ]2, mi,1)
09 cntS ++
10 sID := cntS
11 (Init[sID], Resp[sID]) := (i, r)
12 Type[sID] := “Re”
13 (mr , str)← InitR(skr , pki , mi,1)
14 (MsgI,1[sID], MsgR[sID]) := (mi,1, mr)
15 st[sID] := str
16 return (sID, mr)

DerR(sID ∈ [cntS], mi,2)
17 if SK[sID] ̸= ⊥ or Type[sID] ̸= “Re”
18 return ⊥ �no re-use
19 (i, r) := (Init[sID], Resp[sID])
20 str := ST[sID]
21 peerPreCor[sID] := cor[i]
22 K := DerR(skr , pki , mi,2, str)
23 if K ̸= ⊥
24 SK[sID] := K
25 else
26 SK[sID] := “reject”
27 MsgI,2[sID] := mi,2
28 return ε

Rev-State(sID)
29 revST[sID] := true
30 return ST[sID]

SessionI((i, r) ∈ [µ]2)
31 cntS ++
32 sID := cntS
33 (Init[sID], Resp[sID]) := (i, r)
34 Type[sID] := “In”
35 (mi,1, sti)← InitI(ski , pkr)
36 (MsgI,1[sID], ST[sID]) := (mi,1, sti)
37 return (sID, mi,1)

DerI(sID ∈ [cntS], mr)
38 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In”
39 return ⊥ �no re-use
40 (i, r) := (Init[sID], Resp[sID])
41 sti := ST[sID]
42 peerPreCor[sID] := cor[r ]
43 (mi,2, K)← DerI(ski , pkr , mr , sti)
44 (MsgR[sID], MsgI,2[sID]) := (mr , mi,2)
45 if K ̸= ⊥
46 SK[sID] := K
47 else
48 SK[sID] := “reject”
49 return mi,2

Reveal(sID)
50 revSK[sID] := true
51 return SK[sID]

Corr(n ∈ [µ])
52 cor[n] := true
53 return skn

Test(sID)
54 if sID ∈ Stest return ⊥ �already tested
55 if SK[sID] ∈ {⊥, “reject”} return ⊥
56 Stest := Stest ∪ {sID}
57 K∗

0 := SK[sID]
58 K∗

1
$← K

59 return K∗
b

Fig. 2. Games IND-FS and IND-FS-St for AKE. Rev-State is only available in IND-FS-St. In IND-FS, A has
access to oracles O := {SessionI,SessionR,DerI,DerR,Reveal,Corr,Test}. In IND-FS-St, A has access to
the oracles in IND-FS and the Rev-State oracle. Helper procedures Fresh and Valid are defined in Figure 3.
If there exists any test session which is neither fresh nor valid, the game will return b.

Fresh(sID∗)
00 M(sID∗) := Match(sID∗)
01 if revSK[sID∗] or

(∃sID ∈M(sID∗) : revSK[sID] = true)
02 return false
03 if ∃sID ∈M(sID∗) s. t. sID ∈ Stest

04 return false
05 return true

Valid(sID∗)
06 M(sID∗) := Match(sID∗)
07 P(sID∗) := PartialMatch(sID∗)
08 if |M(sID∗)| > 1 or |P(sID∗)| > 1 return true
09 for attack ∈ Table 2 and attack ∈ Table 4
10 if attack = true return true
11 return false

Match(sID∗) �matching sessions
12 M(sID∗) := {sID | (Init[sID], Resp[sID]) = (Init[sID∗], Resp[sID∗]) ∧ (MsgI,1[sID], MsgR[sID],

MsgI,2[sID]) = (MsgI,1[sID∗], MsgR[sID∗], MsgI,2[sID∗]) ∧ Type[sID] ̸= Type[sID∗]}
13 return M(sID∗)

PartialMatch(sID∗) �partially matching sessions
14 P(sID∗) := {sID | (Init[sID], Resp[sID]) = (Init[sID∗], Resp[sID∗]) ∧ (MsgI,1[sID], MsgR[sID]) =

(MsgI,1[sID∗], MsgR[sID∗]) ∧ Type[sID] ̸= Type[sID∗] ∧ Type[sID] = “Re”}
15 return P(sID∗)

Fig. 3. Helper procedures Fresh and Valid for games IND-FS and IND-FS-St defined in Figure 2. Procedure
Fresh checks if the adversary performed some trivial attack. In procedure Valid, each attack is evaluated by
the set of variables shown in Table 2 (for game IND-FS) or Table 4 (for game IND-FS-St) and checks if an allowed
attack was performed, where the latter includes session-state reveal attacks. If the values of the variables are set
as in the corresponding row, the attack was performed, i. e. attack = true, and thus the session is valid.
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A gets (Initiator, Responder) co
r[

i∗
]

co
r[

r∗
]

pe
er

Pr
eC

or
[s

ID
∗
]

Ty
pe

[s
ID

∗
]

|M
(s

ID
∗
)|

|P
(s

ID
∗
)|

1. (long-term, long-term) – – – “In” – 1
2. (long-term, long-term) – – – “Re” 1 –
5. (long-term, long-term) – – F “In” – 0
6. (long-term, long-term) – – F “Re” 0 –

Table 2. Table of attacks for adversaries against three-message protocols with FS. An attack is regarded as an
AND conjunction of variables with specified values as shown in the each line, where “–” means that this variable
can take arbitrary value and F means “false”. This table is obtained from Table 3 by excluding all trivial attacks.

– revST[sID] denotes whether the session state was given to the adversary.
– revSK[sID] denotes whether the session key was given to the adversary.

The adversary can forward messages between sessions or modify them. By that, we can define the
relationship between two sessions:

– Matching Session: Two sessions sID and sID′ match if the same parties are involved, the messages
sent and received are the same they are of different types (cf. line 12 in Figure 3).

– Partially Matching Session: A session sID has a partially matching session sID′ if the same parties
are involved, the messages sent and received are the same without considering the last message and
they are of different types, where sID′ is of type “Re” (cf. line 14 in Figure 3).

Finally, the adversary is given access to oracle Test which can be queried multiple times and which will
return either the session key of the specified session or a uniformly random key. We use one bit b for all
queries, and store test sessions in a set Stest. For each test session, we require that the adversary does
not issue queries such that the session key can be trivially computed. In Figure 3 we define the properties
of freshness and validity which all test sessions have to satisfy:

– Freshness: A (test) session is called fresh if the session key was not revealed. Furthermore, if there
exists a matching session, we require that this session’s key is not revealed and that this session is
not also a test session.

– Validity: A (test) session is called valid if it is fresh and the adversary performed any attack which
is defined in the security model. For game IND-FS-St, we capture this with attacks listed in Table 4
in Appendix B. For game IND-FS, we use Table 2 to capture valid attacks.

If the protocol does not use appropriate randomness, it should not be considered secure. In this case,
there can be multiple matching sessions to a test session, which an adversary can take advantage of.
We capture this as part of the validity property (cf. line 08). For an honest run of the protocol, the
underlying min-entropy ensures that this attack will only happen with negligible probability.

We define validity of different attack strategies in Table 2, using variables to indicate which queries
the adversary may (not) make. The purpose is to make our proofs precise by listing all the possible
and non-trivial attacks. Attacks covered in the IND-FS model capture forward secrecy (FS) and key
compromise impersonation (KCI) attacks. We provide a more detailed description of Table 2 and the full
table for IND-FS-St in Appendix B. For all test sessions, at least one attack has to evaluate to true. Then,
the adversary wins if he distinguishes the session keys from uniformly random keys which he obtains
through queries to the Test oracle.

Definition 2 (Key Indistinguishability of AKE). We define games IND-FS and IND-FS-St as in
Figures 2 and 3. We say AKE is (t, ε, µ, S , T , QCor)-IND-FS-secure resp. (t′, ε′, µ, S , T , QCor, QSt)-IND-FS-St-
secure if for all adversaries A attacking the protocol in time t resp. t ′ with µ users, S sessions, T test
queries, QCor corruptions, and QSt state reveals, we have∣∣∣∣Pr[IND-FSA

AKE ⇒ 1]− 1
2

∣∣∣∣ ≤ ε resp.
∣∣∣∣Pr[IND-FS-StA

AKE ⇒ 1]− 1
2

∣∣∣∣ ≤ ε′ .
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GAME OW-VwFS, OW-VwFS-St
00 for n ∈ [µ]
01 (pkn , skn)← Gen′

02 (sID∗, k∗)← AO(pk1, · · · , pkµ)
03 if sID∗ > cntS or Valid(sID∗) = false
04 return 0
05 return KVer(sID∗, k∗)

Der′
R((i, r) ∈ [µ]2, mi)

06 cntS ++
07 sID := cntS
08 (Init[sID], Resp[sID]) := (i, r)
09 Type[sID] := “Re”
10 (mr , k)← Init′

R(skr , pki , mi)
11 (MsgI[sID], MsgR[sID]) := (mi , mr)
12 SK[sID] := k
13 return (sID, mr)

Corr′(n ∈ [µ])
14 cor[n] := true
15 return skn

KVer(sID, k)
16 if k = ⊥ return ⊥
17 return JSK[sID] = kK
Rev-State′(sID)
18 revST[sID] := true
19 return ST[sID]

Session′
I((i, r) ∈ [µ]2)

20 cntS ++
21 sID := cntS
22 (Init[sID], Resp[sID]) := (i, r)
23 Type[sID] := “In”
24 (mi , sti)← Init′

I(ski , pkr)
25 (MsgI[sID], ST[sID]) := (mi , sti)
26 return (sID, mi)

Der′
I(sID ∈ [cntS], mr)

27 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In”
28 return ⊥ �no re-use
29 (i, r) := (Init[sID], Resp[sID])
30 sti := ST[sID]
31 k := Der′

I(ski , pkr , mr , sti)
32 (MsgR[sID], SK[sID]) := (mr , k)
33 return ε

Valid′(sID∗) �Helper procedure
34 (i, r) := (Init[sID], Resp[sID])
35 if Type[sID∗] = “In”

and revST[sID∗] = false
36 if cor[r ] = false or M(sID∗) ̸= ∅
37 return true
38 if Type[sID∗] = “Re”
39 if cor[i] = false or P(sID∗) ̸= ∅
40 return true
41 return false

Fig. 4. Games OW-VwFS (without dashed boxes) and OW-VwFS-St (including dashed boxes) for AKE′. A
has access to oracles O := {Session′

I,Der′
R,Der′

I,Corr′,KVer}. In OW-VwFS-St, A also has access to
Rev-State′. In two-message AKE, responder sessions do not have state. So, Rev-State′(sID) will return ⊥
if sID is a responder session. Further, partially matching session is defined as P(sID∗) := {sID | Type[sID] =
“In” ∧ (Init[sID], Resp[sID]) = (Init[sID∗], Resp[sID∗]) ∧ MsgI[sID] = MsgI[sID∗]}.

Note that if there exists a session which is neither fresh nor valid, the game outputs the bit b, which
implies that Pr[IND-FSA

AKE ⇒ 1] = 1
2 or Pr[IND-FS-StA

AKE ⇒ 1] = 1
2 , giving the adversary an advantage

equal to 0. This captures that an adversary will not gain any advantage by performing a trivial attack.

4 Verifiable Authenticated Key Exchange

To build a tightly secure three-message AKE protocol with key confirmation from a two-message AKE
protocol, we define two security notions of the two-message protocol: The first one is One-Way against key
Verification attacks and weak Forward Secrecy, or OW-VwFS for short, and the second one is OW-VwFS
with state-reveal attacks, or OW-VwFS-St for short.

We define the syntax of a two-message key exchange protocol in a similar fashion as the three-message
AKE. Let AKE′ := (Setup′, Gen′, Init′

I, Init′
R, Der′

I), where Setup′, Gen′ and Init′
I are defined exactly as in

the three-message protocol. instead of a state, the responder’s algorithm Init′
R computes a session key K .

The initiator’s algorithm Der′
I does not output a second message, but only the session key. Correctness

is defined similarly to the three-message case.

Definition 3 (Correctness of two-message AKE). Let AKE′ := (Setup′, Gen′, Init′
I, Init′

R, Der′
I) be

an AKE protocol. We say AKE′ is ρ-correct if

Pr

Ki = Kr ̸= ⊥ :

par′ ← Setup′(1λ),
(pki , ski)← Gen′(par), (pkr , skr)← Gen′(par),
(mi , sti)← Init′

I(ski , pkr),
(mr , Kr)← Init′

R(skr , pki , mi),
Ki := Der′

I(ski , pkr , mr , sti)

 ≥ ρ,

where the probability is taken over the randomness of Setup′, Gen′, Init′
I, and Init′

R.
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OW-VwFS is similar to the standard weak forward secrecy, but an adversary is additionally allowed
to check if a key corresponds to some generated transcripts. The security notion OW-VwFS-St, based
on OW-VwFS, allows the adversary to reveal session states. Moreover, these two security notions do not
have Reveal and Test oracles. Our notion is motivated by the one-wayness against honest and key
verification attacks in [PQR22], but it is stronger in the sense that it allows active attacks. These are
formally defined by Definition 4 with security games OW-VwFS and OW-VwFS-St as in Figure 4.

Definition 4 (OW-VwFS and OW-VwFS-St security). A two-message authenticated key exchange
protocol AKE′ is (t, ε, µ, S , QCor, QVer)-OW-VwFS secure resp. (t′, ε′, µ, S , QCor, QVer , QSt)-OW-VwFS-St
secure, where µ is the number of users, S is the number of sessions, QVer is the number of calls to KVer
and QSt is the number of calls to Rev-State′, if for all adversaries A attacking the protocol in time at
most t resp. t ′, we have

Pr[OW-VwFSA
AKE′ ⇒ 1] ≤ ε resp. Pr[OW-VwFS-StA

AKE′ ⇒ 1] ≤ ε′ .

Valid attacks are defined via Valid′. For the session sID∗ for which the adversary aims to compute the
session key, we basically allow two types of attacks: If there is a (partially) matching session, then both
parties may be corrupted. Otherwise, the adversary must not corrupt the peer of the session. Additionally
for the model with state reveal attacks, the state for sID∗ must not be revealed in any case.
Min-Entropy. We require that public keys have γ bits of min-entropy, i. e., for all (pk0, sk0) ← Gen′,
(pk1, sk1) ← Gen′, we have Pr[pk0 = pk1] ≤ 2−γ . Similarly, we require that messages have α bits of
min-entropy, i. e., for all messages m′ we have Pr[m = m′] ≤ 2−α, where m is output by either Init′

I or
Init′

R.

5 AKE with Key Confirmation

We now build a three-message AKE protocol AKEKC with key confirmation from a two-message AKE
protocol AKE′ and three hash functions GI, GR, H. An overview is given in Figure 5. Hash functions GI,
GR and H are defined as follows: GI, GR : {0, 1}∗ → {0, 1}λ and H : {0, 1}∗ → K, where λ is the length of
key confirmation tags and K is the key space of AKEKC.6

Let AKE′ = (Setup′, Gen′, Init′
I, Init′

R, Der′
I). We define AKEKC as follows: Setup, GenAKE, InitI will be

the same as Setup′, Gen′ and Init′
I, respectively. InitR first runs Init′

R to obtain the responder’s message
mr and the key k of AKE′, where the latter is used to derive the final session key and key confirmation
messages. In particular, the responder first computes the key confirmation tag πr := GR(k, ctxt), where
ctxt is defined as the two parties’ public keys and the initial messages (cf. Figure 5). It then also computes
the expected key confirmation tag π′

i and session key K ′ using GI and H on the same input. It sends
(mr , πr) to the initiator and keeps (π′

i , K ′) as state. The initiator runs DerI which is defined as follows:
First, it runs Der′

I to get k and then performs the same computations as the responder to compute key
confirmation tags πi , π′

r and the final session key K . It accepts K if π′
r = πr and sends πi as the final

message. The responder’s derivation algorithm DerR checks whether the key confirmation tag is valid,
i. e., πi = π′

i , and if this is the case it sets the session key to K ′.
Whenever an equality check fails or the underlying algorithms of AKE′ return ⊥, the parties terminate

the session, i. e., they reject, and return ⊥.
Correctness. The correctness of AKEKC follows directly from the correctness of AKE′. In particular, if
AKE′ is (1− δ)-correct, then so is AKEKC.
Security. We prove IND-FS security of AKEKC based on OW-VwFS security of AKE′ and modeling GI,
GR and H as random oracles.

Theorem 1. Let AKE′ be (1− δ)-correct and have public keys with γ bits of entropy and messages with
α bits of entropy. Let AKEKC be as defined in Figure 5, where GI, GR : {0, 1}∗ → {0, 1}λ and H : {0, 1}∗ →

6 We define three different hash functions here which allows us to model them as independent random oracles.
When instantiating the hash functions with the same function, one would need to use appropriate domain
separation.
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Party Pi (pki , ski) Party Pr (pkr , skr)

(mi , sti)← Init′
I(ski , pkr)

(mr , k)← Init′
R(skr , pki , mi)

πr := GR(k, ctxt)

π′
i = GI(k, ctxt)

k ← Der′
I(ski , pkr , mr , sti) K ′ := H(k, ctxt)

πi ← GI(k, ctxt)

π′
r = GR(k, ctxt)

if πr = π′
r : K := H(k, ctxt) if πi = π′

i : K := K ′

mi

mr , πr

πi

sti

π′
i , K ′

Fig. 5. AKE protocol AKEKC from AKE′ and key confirmation. The context is defined as ctxt := (pki , pkr , mi , mr).
GI, GR and H are independent random oracles.

K are modelled as random oracles. For every adversary A that breaks the (t, ε, µ, S , T , QCor)-IND-FS-
security of AKEKC, there exists an adversary B that breaks the (t′, ε′, µ, S , QCor, QVer)-OW-VwFS security
of AKE′ with t ′ ≈ t and

ε ≤ ε′ + 2S · δ + (S + S2) · 2−λ + µ2 · 2−γ + S(S + QGI + QGR + QH) · 2−α ,

where QGI , QGR and QH are the number of queries to random oracles GI, GR and H and QVer ≤ S +QGI +
QGR + QH.

The idea of the proof is that we can simulate the key confirmation tags and session keys without knowing
the key k of the underlying two-message protocol as long as it has not been queried to (one of) the random
oracles. For this we have to keep track of whether the adversary trivially knows k because the session
is not fresh anymore. We can handle this case and still simulate correctly using KVer oracle. The only
way to win the game is to compute k for a fresh and valid session, thus breaking one-wayness of the
underlying protocol. We now prove the theorem formally.

Proof. Let A be an adversary against IND-FS security of AKEKC. We consider the sequence of games
G0-G3 in Figures 6 and 7.
Game G0. The first game G0 is the original IND-FS security game, however we exclude that public keys
or messages collide (which means that if such events happen, then the game will abort and return a
random bit). This also includes the key confirmation tags. Thus we get

Pr[GA
0 ⇒ 1] ≤ Pr[IND-FSA

AKEKC
⇒ 1] + µ2 · 2−γ + S2 · 2−α + S2 · 2−λ .

Note that this means there can be at most one (partially) matching session for each session.
Game G1. In game G1, we want to ensure that πr , πi and K have not been queried to the respective
random oracle before they are determined. Note that all three values will be determined in SessionR
when mr and k are computed. Thus, whenever SessionR is queried, we check whether there already
exists a query (k ′, pki , pkr , mi , mr) to GR, GI or H for some k ′ (line 19). If this is the case, we raise flag
BadEntropy and abort. If BadEntropy is not raised, we draw fresh values for πr , πi and K and explicitly
assign them to the corresponding entry of the respective random oracle (lines 21-24). We make this
explicit here to prepare for the next step where we have to do a case distinction. Note that G0 and G1
are the same, except if BadEntropy is raised. Thus,

|Pr[GA
0 ⇒ 1]− Pr[GA

1 ⇒ 1]| ≤ Pr[BadEntropy] ≤ S(QGR + QGI + QH) · 2−α ,

where we bound the event by the entropy of AKE′. The message mr is computed by the game directly
before we check for this event. We then use the union bound over the maximum number of sessions S .
Game G2. In game G2, we want to compute πr , πi and K without using k explicitly and prepare for the
reduction to OW-VwFS. For this, we have to make a distinction between fresh and non-fresh sessions.
We add two additional variables ctxt[sID] and k[sID] for each session which store the context and the
session key of the underlying AKE′. When SessionR is queried, we no longer assign the random oracle
entries [k, pki , pkr , mi , mr ]. Instead, we use a special placeholder symbol for the key k. In particular, if the
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GAMES G0-G3
00 for n ∈ [µ]
01 (pkn , skn)← Gen′

02 b $← {0, 1}
03 b′ ← AO(pk1, · · · , pkµ)
04 for sID∗ ∈ Stest

05 if Fresh(sID∗) = false
or Valid(sID∗) = false

06 return b
07 return Jb = b′K
SessionR((i, r) ∈ [µ]2, mi)
08 cntS ++
09 sID := cntS
10 (Init[sID], Resp[sID]) := (i, r)
11 Type[sID] := “Re”
12 (mr , k)← Init′

R(skr , pki , mi)
13 if k = ⊥
14 SK[sID] := “reject”
15 return ⊥
16 πr := GR(k, pki , pkr , mi , mr) �G0
17 πi := GI(k, pki , pkr , mi , mr) �G0
18 K := H(k, pki , pkr , mi , mr) �G0
19 if ∃k′ s. t. GR[k′, pki , pkr , mi , mr ] ̸= ⊥ �G1-G3

or GI[k′, pki , pkr , mi , mr ] ̸= ⊥ �G1-G3
or H[k′, pki , pkr , mi , mr ] ̸= ⊥ �G1-G3

20 BadEntropy := true; abort �G1-G3
21 πr

$← {0, 1}λ, πi
$← {0, 1}λ, K $← K �G1-G3

22 GR[k, pki , pkr , mi , mr ] := πr �G1
23 GI[k, pki , pkr , mi , mr ] := πi �G1
24 H[k, pki , pkr , mi , mr ] := K �G1
25 ctxt[sID] := (pki , pkr , mi , mr) �G2-G3
26 k[sID] := k �G2-G3
27 if ∃sID′ s. t. ctxt[sID′] = (pki , pkr , mi ,⊥)

or cor[i] = false �G2-G3
28 GR[⋄, pki , pkr , mi , mr ] := πr �G2-G3
29 GI[⋄, pki , pkr , mi , mr ] := πi �G2-G3
30 H[⋄, pki , pkr , mi , mr ] := K �G2-G3
31 else �G2-G3
32 GR[⊕, pki , pkr , mi , mr ] := πr �G2-G3
33 GI[⊕, pki , pkr , mi , mr ] := πi �G2-G3
34 H[⊕, pki , pkr , mi , mr ] := K �G2-G3
35 (MsgI,1[sID], MsgR[sID]) := (mi , (mr , πr))
36 ST[sID] := (πi , K)
37 return (sID, (mr , πr))

SessionI((i, r) ∈ [µ]2)
38 cntS ++
39 sID := cntS
40 (Init[sID], Resp[sID]) := (i, r)
41 Type[sID] := “In”
42 (mi , sti)← Init′

I(ski , pkr)
43 (MsgI,1[sID], ST[sID]) := (mi , sti)
44 ctxt[sID] := (pki , pkr , mi ,⊥) �G2-G3
45 return (sID, mi)

DerI(sID ∈ [cntS], (mr , πr))
46 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In” return ⊥
47 (i, r) := (Init[sID], Resp[sID])
48 sti := ST[sID]
49 peerPreCor[sID] := cor[r ]
50 k := Der′

I(ski , pkr , mr , sti)
51 if k = ⊥
52 SK[sID] := “reject”
53 return ⊥
54 if πr ̸= GR(k, pki , pkr , mi , mr) �G0-G1
55 SK[sID] := “reject” �G0-G1
56 return ⊥ �G0-G1
57 πi := GI(k, pki , pkr , mi , mr) �G0-G1
58 K := H(k, pki , pkr , mi , mr) �G0-G1
59 k[sID] := k �G2-G3
60 Replace ⊥ in ctxt[sID] with mr �G2-G3
61 if ∃sID′ s. t. ctxt[sID′] = ctxt[sID] �G2-G3
62 if πr ̸= GR[⋄, pki , pkr , mi , mr ] �G2-G3
63 SK[sID] := “reject” �G2-G3
64 return ⊥ �G2-G3
65 πi := GI[⋄, pki , pkr , mi , mr ] �G2-G3
66 K := H[⋄, pki , pkr , mi , mr ] �G2-G3
67 else �G2-G3
68 if GR[k, pki , pkr , mi , mr ] = πr �G2-G3
69 if cor[r ] = false �G3
70 QueryRO := true; abort �G3
71 πi := GI(k, pki , pkr , mi , mr) �G2-G3
72 K := H(k, pki , pkr , mi , mr) �G2-G3
73 else �G2-G3
74 GR[⋄, pki , pkr , mi , mr ] $← {0, 1}λ �G2-G3
75 if πr = GR[⋄, pki , pkr , mi , mr ] �G2-G3
76 RandKC := true; abort �G2-G3
77 SK[sID] := “reject” �G2-G3
78 return ⊥ �G2-G3
79 (MsgR[sID], MsgI,2[sID]) := (mr , πi)
80 SK[sID] := K
81 return πi

Fig. 6. Games G0-G3 for the proof of Theorem 1. A has access to oracles O := {SessionI,SessionR,DerI,DerR,
Reveal,Corr,Test, GI, GR, H}. Helper procedures Fresh and Valid are defined in Figure 3.

session is still fresh and valid (i. e., there exists a session with a matching context up to this point, or the
intended peer is not (yet) corrupted), we use the symbol ⋄ (lines 28-30). Otherwise, in case the session
is not valid, we use the symbol ⊕ (lines 32-34). This distinction will be necessary to patch the random
oracle correctly. Note that an adversary might be able to compute the correct key k for a non-valid
session.

We describe how the random oracles are patched below. First, we explain how to change DerI and
DerR accordingly. For each query to DerI, we first update the context with the message mr that was used
to query the oracle. Then we check whether there exists a potential partnered session with the same
context (line 61). In this case we know the corresponding values πr , πi and K which are stored with the
symbol ⋄. We check whether the tag πr is correct (if not, the session rejects) and assign the session key
(lines 62-66). If there is no other session with the same context, we have to make another case distinction.
In the first case, we use k explicitly to check whether there has been a query to the random oracle GR
such that the tag πr matches (line 68). In this case, we proceed normally. Looking ahead, this will be a
critical point in the next game modification. If there exists no such query to GR, then the game makes
the query and chooses a tag uniformly at random (line 74). If this tag is the same as the one provided
by the adversary, we raise flag RandKC and abort (line 76). Otherwise, the session simply rejects. We
modify DerR in the exact same way, except that we are now looking at πi (Figure 7, lines 09-24).
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DerR(sID ∈ [cntS], πi)
00 if SK[sID] ≠ ⊥ or Type[sID] ̸= “Re”
01 return ⊥
02 (i, r) := (Init[sID], Resp[sID])
03 (π′

i , K ′) := ST[sID]
04 peerPreCor[sID] := cor[i]
05 if πi ̸= π′

i �G0-G1
06 SK[sID] := “reject” �G0-G1
07 return ⊥ �G0-G1
08 K := K ′ �G0-G1
09 if ∃sID′ s. t. ctxt[sID′] = ctxt[sID] �G2-G3
10 if πi ̸= GI[⋄, pki , pkr , mi , mr ] �G2-G3
11 SK[sID] := “reject” �G2-G3
12 return ⊥ �G2-G3
13 K := H[⋄, pki , pkr , mi , mr ] �G2-G3
14 else �G2-G3
15 if GI[k, pki , pkr , mi , mr ] = πi �G2-G3
16 if cor[i] = false �G3
17 QueryRO := true; abort �G3
18 K := H(k, pki , pkr , mi , mr) �G2-G3
19 else �G2-G3
20 GI[⋄, pki , pkr , mi , mr ] $← {0, 1}λ �G2-G3
21 if πi = GI[⋄, pki , pkr , mi , mr ] �G2-G3
22 RandKC := true; abort �G2-G3
23 SK[sID] := “reject” �G2-G3
24 return ⊥ �G2-G3
25 (MsgI,2[sID], SK[sID]) := (πi , K)
26 return ε

GR(k, pki , pkr , mi , mr)
27 if GR[⋄, pki , pkr , mi , mr ] = π ̸= ⊥ �G2-G3
28 S := {sID | ctxt[sID] = (pki , pkr , mi , mr)} �G2-G3
29 for sID ∈ S � note |S| ≤ 2 �G2-G3
30 if k[sID] = k �G2-G3
31 QueryRO := true; abort �G3
32 return π �G2-G3
33 elseif GR[⊕, pki , pkr , mi , mr ] = π ̸= ⊥ �G2-G3
34 Find sID s. t. ctxt[sID] = (pki , pkr , mi , mr) �G2-G3
35 if k[sID] = k �G2-G3
36 Replace ⊕ with k �G2-G3
37 return π �G2-G3
38 if GR[k, pki , pkr , mi , mr ] = π ̸= ⊥
39 return π
40 π $← {0, 1}λ

41 GR[k, pki , pkr , mi , mr ] := π
42 return π

Corr(n ∈ [µ])
43 cor[n] := true
44 return skn

Test(sID)
45 if sID ∈ Stest return ⊥
46 if SK[sID] ∈ {⊥, “reject”} return ⊥
47 Stest := Stest ∪ {sID}
48 K∗

0 := SK[sID]
49 K∗

1
$← K

50 return K∗
b

Fig. 7. Oracles for games G0-G3 for the proof of Theorem 1. GI and H are defined analogously to GR.

Before bounding RandKC, we explain the simulation of random oracles as described in Figure 7.
We explain GR in more detail. (GI and H are modeled in exactly the same way.) For each query
(k, pki , pkr , mi , mr), we first check for entries with the special symbol. More specifically, if there ex-
ists an entry with the given context and the symbol ⋄, we look for the sID with this context. Note
that there can be at most two sessions (one of type “In” and one of type “Re” which will be matching
sessions), which we capture by computing a set S containing the corresponding sID(s) (line 29). If the
key k of the random oracle query corresponds to the one stored in k[sID]7, then GR simply outputs the
stored value π (line 32). We do the same for special symbol ⊕ (line 34, note that here sID is always
unique), except that we also update the entry accordingly, i. e., replace ⊕ with k if k = k[sID] (line 36).
This way, the simulation is consistent with the other oracles.

Overall, the two games only differ when flag RandKC is raised. Note that we can bound the probability
that a tag is valid without the random oracle being queried by the length of the tag. Union bound over
S session gives us

|Pr[GA
1 ⇒ 1]− Pr[GA

2 ⇒ 1]| ≤ Pr[RandKC] ≤ S · 2−λ + S · δ .

Game G3. In the final game G3, we raise flag QueryRO if the adversary ever queries the random oracle
on a key k of a fresh session. Depending on the order of queries, this event can occur for different oracles:
DerI (Figure 6, line 70), DerR (Figure 7, line 17) or one of the random oracles (Figure 7, line 31). First,
we look at sessions that do not have a matching session with the same context. For queries to oracle DerI

we check the validity of πr in line 68. If the peer r is not corrupted, then the session is still fresh and
valid. Thus, we raise QueryRO if there has been a query to GR on the correct key and context such that
the output is indeed πr . We proceed similarly for responder sessions when DerR is queried, checking for
queries to GI. This means that all sessions where the peer is uncorrupted and no session with a matching
context exist will reject (or abort).

We now look at sessions that have a session with matching context and whose relevant random oracle
entries are marked with ⋄. Whenever one of the random oracles is queried, we check whether the key
matches the one stored in k[sID] (as described earlier) and if this is the case, we also raise QueryRO and
abort.
7 Since we cannot check correctness efficiently in the reduction which we will build in the next step, we explicitly

perform the test here for all sessions in S. However, if S indeed contains two sessions, then by correctness, this
key (and thus the outcome) will be the same.
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We claim that
|Pr[GA

2 ⇒ 1]− Pr[GA
3 ⇒ 1]| ≤ Pr[QueryRO] ≤ ε′ + S · δ .

Before proving the claim, note that in G3 we have Pr[GA
3 ⇒ 1] = 1/2 . For this, observe that all sessions

must have a (partially) matching session and that random oracle H is never queried on k for any of those
sessions. Thus, the session key is indistinguishable from a uniformly random key.
Bounding event QueryRO. We now describe an adversary B against OW-VwFS security of the under-
lying AKE′ to bound event QueryRO. A pseudocode description is given in Figure 8. The idea is that
whenever A queries one of the random oracles on the underlying key k of a fresh and valid session (either
in order to forge a key confirmation tag or to distinguish the actual session key), we can use this to break
OW-VwFS security of AKE′, where the verification oracle KVer is used to simulate the random oracles
consistently.

We now describe B in more detail. It gets as input µ public keys and forwards them to A. B simulates
queries to oracle SessionI in a straightforward way by querying its own oracle Session′

I which returns
(sID, mi). After assigning the corresponding variables, B forwards the output to A. Queries to SessionR
are simulated as in game G3. B first queries Der′

R to receive (sID, mr). Instead of checking whether
k = ⊥, B checks whether mr = ⊥. If this is the case, it rejects and outputs ⊥. Otherwise, it proceeds
as described in G3, preparing random oracle assignments by assigning fresh values to πi , πr and K and
returning (sID, (mr , πr)).

When A queries DerI, B queries Der′
I. B will not be able to explicitly check whether the session

key was computed successfully, however, we will argue that the simulation is consistent by correctness
of AKE′ and the validity of the key confirmation tag. Thus, B directly proceeds as described in G3.
Whenever there exists a session with the same context, then the key confirmation tag must be the same
as the one computed by that session, up to correctness of AKE′. Thus the simulation is perfect except
with probability S · δ. Whenever there exists no (partially) matching session, B needs to check whether
GR was already queried on the correct k. For this it checks all random oracle queries that have output
πr provided by A. If such a query exists, it will be unique since we excluded collisions in the first game.
B checks whether the respective key of the query is the correct key using its oracle KVer. If this is the
case, we further distinguish two cases, based on whether the session still qualifies for a valid test session
or not. If the peer of the session has not been corrupted yet, then this is a valid session and B outputs
(sID, k) as solution in its own game. Otherwise, it proceeds. Oracle DerR is simulated similarly, looking
at GI instead of GR.

Oracle Reveal and Corr can be simulated in a straightforward way. The latter requires B to query
its own oracle Corr′. Queries to Test will always return the real session key. Note that this is a perfect
simulation since session keys are perfectly hidden unless QueryRO happens in which case B stops because
it breaks OW-VwFS security.

It remains to describe the simulation of random oracles. The simulation works similar for all three
oracles and we will describe oracle GR here. As in G3, B first checks whether there exists an entry with
the special symbol ⋄. If this is the case, it finds the corresponding sID and uses the KVer oracle to check
whether the key k provided by A belongs to this session. Since ⋄ is used to mark sessions that have a
(partially) matching session, B can always use this key to win the OW-VwFS game. If there is no entry
with ⋄ but one with ⊕, B again queries the KVer oracle, but this time it updates the corresponding
entry with the correct key (if KVer returns true). This way, B can perfectly simulate non-test sessions.
If none of these cases happen or KVer has returned false, then B proceeds as usual by lazy sampling.

This concludes the description of B. Note that if QueryRO happens in game G3, i. e., there exists a
random oracle query for a fresh and valid session with correct key k, then B wins game OW-VwFS. We
get Pr[QueryRO] ≤ ε′ + S · δ.

Further, note that B issues at most (S + QGI + QGR + QH) to KVer since we have excluded collisions
of tags in the first game. The number of queries to all other oracles is preserved. This completes the
proof of Theorem 1.
AKE with Key Confirmation against State Reveal. Based on AKEKC, we build a three-message
AKE protocol AKEstKC that is secure against state-reveal attacks (cf. Definition 2). Since AKEstKC has a
similar structure with AKEKC, we follow the notations used in defining AKEKC (cf. Figure 5). An overview
of AKEstKC is given in Figure 9.

AKEstKC uses the state-encryption technique [JKRS21,PWZ23a] to protect session states. Concretely,
let GstI : {0, 1}κ × {0, 1}κ → {0, 1}dI and GstR : {0, 1}κ × {0, 1}κ → {0, 1}dR be two hash functions.
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BSession′
I,Der′

R,Der′
I,Corr′,KVer(pk1, · · · , pkµ)

00 b′ ← AO(pk1, · · · , pkµ)
01 return ⊥

SessionR((i, r) ∈ [µ]2, mi)
02 (sID, mr)← Der′

R((i, r), mi)
03 (Init[sID], Resp[sID]) := (i, r)
04 Type[sID] := “Re”
05 if mr = ⊥
06 SK[sID] := “reject”
07 return ⊥
08 if ∃k′ s. t. GR[k′, pki , pkr , mi , mr ] ̸= ⊥

or GI[k′, pki , pkr , mi , mr ] ≠ ⊥
or H[k′, pki , pkr , mi , mr ] ̸= ⊥

09 abort
10 πr

$← {0, 1}λ, πi
$← {0, 1}λ, K $← K

11 ctxt[sID] := (pki , pkr , mi , mr)
12 if ∃sID′ s. t. ctxt[sID′] = (pki , pkr , mi ,⊥)

or cor[i] = false
13 GR[⋄, pki , pkr , mi , mr ] := πr
14 GI[⋄, pki , pkr , mi , mr ] := πi
15 H[⋄, pki , pkr , mi , mr ] := K
16 else
17 GR[⊕, pki , pkr , mi , mr ] := πr
18 GI[⊕, pki , pkr , mi , mr ] := πi
19 H[⊕, pki , pkr , mi , mr ] := K
20 (MsgI[sID], MsgR[sID]) := (mi , (mr , πr))
21 return (sID, (mr , πr))

DerR(sID, πi)
22 if SK[sID] ̸= ⊥ or Type[sID] ̸= “Re” return
⊥
23 (i, r) := (Init[sID], Resp[sID])
24 peerPreCor[sID] := cor[i]
25 if ∃sID′ s. t. ctxt[sID′] = ctxt[sID]
26 if πi ̸= GI[⋄, pki , pkr , mi , mr ]
27 SK[sID] := “reject”
28 return ⊥
29 K := H[⋄, pki , pkr , mi , mr ]
30 else
31 if ∃k s. t. GI[k, pki , pkr , mi , mr ] = πi

and KVer(k, sID)
32 if peerPreCor[sID] = false
33 Stop with (sID, k)
34 K := H(k, pki , pkr , mi , mr)
35 else
36 GI[⋄, pki , pkr , mi , mr ] $← {0, 1}λ

37 if πi = GI[⋄, pki , pkr , mi , mr ] abort
38 SK[sID] := “reject”
39 return ⊥
40 (MsgI,2[sID], SK[sID]) := (mi,2, K)
41 return ε

Reveal(sID)
42 revSK[sID] := true
43 return SK[sID]

Corr(n ∈ [µ])
44 cor[n] := true
45 skn ← Corr′(n)
46 return skn

SessionI((i, r) ∈ [µ]2)
47 (sID, mi)← Session′

I(i, r)
48 (Init[sID], Resp[sID]) := (i, r)
49 Type[sID] := “In”
50 MsgI,1[sID] := mi
51 ctxt[sID] := (pki , pkr , mi ,⊥)
52 return (sID, mi)

DerI(sID, (mr , πr))
53 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In”
54 return ⊥
55 (i, r) := (Init[sID], Resp[sID])
56 peerPreCor[sID] := cor[r ]
57 Der′

I(sID, mr)
58 Replace ⊥ in ctxt[sID] with mr
59 if ∃sID′ s. t. ctxt[sID′] = ctxt[sID]
60 if πr ̸= GR[⋄, pki , pkr , mi , mr ]
61 SK[sID] := “reject”
62 return ⊥
63 πi := GI[⋄, pki , pkr , mi , mr ]
64 K := H[⋄, pki , pkr , mi , mr ]
65 else
66 if ∃k s. t. GR[k, pki , pkr , mi , mr ] = πr

and KVer(k, sID)
67 if cor[r ] = false
68 Stop with (sID, k)
69 πi := GI(k, pki , pkr , mi , mr)
70 K := H(k, pki , pkr , mi , mr)
71 else
72 GR[⋄, pki , pkr , mi , mr ] $← {0, 1}λ

73 if πr = GR[⋄, pki , pkr , mi , mr ] abort
74 SK[sID] := “reject”
75 return ⊥
76 (MsgR[sID], MsgI,2[sID]) := (mr , πi)
77 SK[sID] := K
78 return πi

Test(sID)
79 if sID ∈ Stest return ⊥
80 if SK[sID] ∈ {⊥, “reject”} return ⊥
81 Stest := Stest ∪ {sID}
82 return SK[sID]

GR(k, pki , pkr , mi , mr)
83 if GR[⋄, pki , pkr , mi , mr ] = π ̸= ⊥
84 S := {sID | ctxt[sID] = (pki , pkr , mi , mr)}
85 for sID ∈ S
86 if KVer(sID, k)
87 Stop with (sID, k)
88 elseif GR[⊕, pki , pkr , mi , mr ] = π ̸= ⊥
89 Find sID s. t. ctxt[sID] = (pki , pkr , mi , mr)
90 if KVer(sID, k)
91 Replace ⊕ with k
92 return π
93 if GR[k, pki , pkr , mi , mr ] = π ̸= ⊥
94 return π
95 π $← {0, 1}λ

96 GR[k, pki , pkr , mi , mr ] := π
97 return π

Fig. 8. Adversary B against OW-VwFS. A has access to oracles O := {SessionI,SessionR,DerI,DerR,Reveal,
Corr,Test, GI, GR, H}. Helper procedures Fresh and Valid are defined in Figure 3. GI and H are defined
analogously to GR.

We assume that any initiator session state of the underlying two-message AKE protocol AKE′ can be
encoded as a dI-bit string and dR = 2λ (the length of key confirmation tag plus the length of session
key derived by AKE′). AKEstKC proceeds the same as AKEKC except that (1) the long-term secret key
of user i in AKEstKC also include a uniformly random key si ∈ {0, 1}κ, and (2) each session will sample
a one-time key IV uniformly at random and encrypt the session state of AKEKC via XORing with the
one-time pad GstI(si , IV). Now the session state (that the adversary can reveal in the state-reveal AKE
model) is (IV, φ). Dashed parts in Figure 9 shows how this technique works.
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Party Pi (pki , (ski , si )) Party Pr (pkr , (skr , sr ))

(mi , sti)← Init′
I(ski , pkr)

IVi ← {0, 1}κ, φi := GstI(si , IVi)⊕ sti (mr , k)← Init′
R(skr , pki , mi)

πr := GR(k, ctxt)

π′
i = GI(k, ctxt), K ′ := H(k, ctxt)

sti := GstI(si , IVi)⊕ φi IVr ← {0, 1}κ, φr := GstR(sr , IVr)⊕ (π′
i , K ′)

k ← Der′
I(ski , pkr , mr , sti)

πi ← GI(k, ctxt)

π′
r = GR(k, ctxt) (π′

i , K ′) := φr ⊕ GstR(sr , IVr)

if πr = π′
r : K := H(k, ctxt) if πi = π′

i : K := K ′

mi

mr , πr

πi

(IVi , φi)

(IVr , φr)

Fig. 9. AKE protocol AKEstKC from AKE′, key confirmation, and state encryption. The context is defined as
ctxt := (pki , pkr , mi , mr). GI, GR, and H are independent random oracles. Dashed parts show how we use the
state encryption technique to protect the session states. GstI and GstR are independent random oracles used for
state encryption.

Correctness. Similar to AKEKC, the correctness of AKEstKC follows directly from the correctness of
AKE′. If AKE′ is (1− δ)-correct, then so is AKEstKC.
Security. In Theorem 2, we prove IND-FS-St security of AKEKC based on OW-VwFS-St security of AKE′

and modeling GI, GR, H, GstI, and GstR as random oracles. Here we sketch the proof idea. By using the
state encryption technique, the adversary cannot learn the unencrypted states of the underlying two-
message AKE, unless it reveals the encrypted session state and corrupts the owner of the session. But
this makes the session invalid and thus, it cannot be tested. Therefore, for valid sessions, state-reveal
queries do not give any advantage to the adversary, and thus we can use the proof idea of Theorem 1.
The full proof of Theorem 2 is postponed to Appendix C.

Theorem 2. Let AKE′ be (1−δ)-correct and have public keys with γ bits of entropy and messages with α
bits of entropy. Let AKEstKC be as defined in Figure 5, where GI, GR : {0, 1}∗ → {0, 1}λ, H : {0, 1}∗ → K,
GstI : {0, 1}κ × {0, 1}κ → {0, 1}dI ,and GstR : {0, 1}κ × {0, 1}κ → {0, 1}dR are modeled as random oracles.
For every adversary A that breaks the (t, ε, µ, S , T , QCor, QSt)-IND-FS-St-security of AKEstKC, there exists
an adversary B that breaks the (t′, ε′, µ, S , QCor, QVer , S)-OW-VwFS-St security of AKE′ with t ′ ≈ t and

ε ≤ ε′ + 2S · δ + (µ2 + S2 + µQGstI + 2SQGstI) · 2−κ

+ µ2 · 2−γ + (S + S2) · 2−λ + (QGR + QGI + QH + S) · S · 2−α,

where Qh is the number of queries to the respective random oracle h and QVer ≤ S + QGI + QGR + QH.

6 Applying our Results to Existing Protocols

We first show how to construct verifiable AKE from KEMs which gives us tight AKE with key confir-
mation and perfect forward secrecy from lattices and DDH. The advantage is that we do not have to
consider random oracles and the proofs are comparably simpler than those of full AKE security. We
then show how we can recover the optimal tightness bound for the CCGJJ protocol [CCG+19] using our
modular transformation rather than that of [GGJJ23].

6.1 AKE from KEMs

We provide results for KEM-based AKE secure without and with state reveal, where the former allows
for weaker assumptions. The protocol, denoted by AKE′

kem, to which we want to apply our compiler from
the previous section is given in Figure 10. Each party holds long-term keys of a KEM scheme KEM1 and
in each session, an ephemeral key using KEM0 is exchanged. The session key then simply consists of three
KEM keys. We also denote its variant with key confirmation by AKEkem (i. e., combining Figure 10 with
Figure 5) and the one resisting state reveals by AKEst,kem (i. e., combining Figure 10 with Figure 9).
One-Way Security of KEM. Depending on whether the KEM is used for long-term keys or ephemeral
keys and whether state reveals are allowed, we need a different variant of one-way security: multi-user
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Party Pi (pki , ski) Party Pr (pkr , skr)

(p̃k, s̃k)← Gen0(par0)
(cr , kr)← Encaps1(pkr)

(̃c, k̃)← Encaps0(p̃k)
(ci , ki)← Encaps1(pki)
kr := Decaps1(skr , cr)

k̃ := Decaps0(s̃k, c̃) k := (k̃, ki , kr)
ki := Decaps1(ski , ci)

k := (k̃, ki , kr)

p̃k, cr

c̃, ci

(pkr , p̃k, s̃k, cr , kr)

Fig. 10. AKE protocol AKE′
kem from KEM schemes KEM1, KEM0.

one-way security under plaintext checking and ciphertext validity attacks without (OW-PCVA) or with
corruptions (OW-PCVA-C), and with corruptions and reveal queries (OW-PCVA-CR). These notions are
weaker variants of OW-ChCCA security from Pan, Wagner and Zeng [PWZ23a] and are tightly implied
by OW-ChCCA. The formal security definitions are given in Appendix A.
Analysis of AKE′

kem and AKEkem. We prove that AKE′
kem protocol is a secure verifiable AKE protocol.

When not considering state reveals, we can use weaker assumptions, namely OW-PCVA and OW-PCVA-C.
We also prove security with state-reveals which uses the definition of OW-PCVA-CR security. We then
apply Theorem 1 resp. 2 to obtain AKEkem which has full forward secrecy.
Correctness and Entropy. Let KEM0 be (1−δ0)-correct and have public keys with γ0 bits of entropy
and messages with α0 bits of entropy. Let KEM1 be (1− δ1)-correct and have public keys with γ1 bits of
entropy and messages with α1 bits of entropy. Then AKE′

kem is (1 − δ0 − 2δ1)-correct. Further, AKE′
kem

has public keys with γ1 bits of entropy and messages with at least min(γ0, α0, α1 − 1) bits of entropy.
We now establish OW-VwFS and OW-VwFS-St security of AKE′

kem and defer the proofs to Ap-
pendix D.1.

Lemma 1. For every adversary A that breaks the (t, ε, µ, S , T , QCor, QVer)-OW-VwFS security of AKE′
kem,

there exist adversaries B1 and B2 that break (t1, ε1, S , S , S , QVer)-OW-PCVA security of KEM0 and
(t2, ε2, µ, S , S , 2QVer , QCor)-OW-PCVA-C security of KEM1 with t1 ≈ t2 ≈ t and ε ≤ ε1 + ε2.

Lemma 2. For every adversary A that breaks the (t, ε, µ, S , T , QCor, QVer , QSt)-OW-VwFS-St security
of AKE′

kem, there exist adversaries B1 and B2 that break (t1, ε1, S , S , S , QVer , QSt)-OW-PCVA-C security
of KEM0 and (t2, ε2, µ, S , S , 2QVer , QCor, QSt)-OW-PCVA-CR security of KEM1 with t1 ≈ t2 ≈ t and
ε ≤ ε1 + ε2.

We now add key confirmation to AKE′
kem as described in Figure 5 resp. Figure 9. The following theorem

then follows from combining Theorem 1 with Lemma 1 resp. Theorem 2 with Lemma 2.

Theorem 3. Let KEM0 be (1−δ0)-correct and have public keys with γ0 bits of entropy and messages with
α0 bits of entropy. Let KEM1 be (1−δ1)-correct and have public keys with γ1 bits of entropy and messages
with α1 bits of entropy. Let AKEkem resp. AKEst,kem be defined as described above by combining Figure 10
with Figure 5 resp. Figure 9, where GI, GR : {0, 1}∗ → {0, 1}λ, H : {0, 1}∗ → K, GstI : {0, 1}κ×{0, 1}κ →
{0, 1}dI and GstR : {0, 1}κ × {0, 1}κ → {0, 1}dR are modeled as random oracles. Let Qh be the number of
queries to the respective random oracle h.

For any A against the (t, ε, µ, S , T , QCor)-IND-FS-security of AKEkem, there exist adversaries B1
and B2 that break (t1, ε1, S , S , S , QVer)-OW-PCVA security of KEM0 and (t2, ε2, µ, S , S , 2QVer , QCor)-
OW-PCVA-C security of KEM1, where QVer ≤ S + QGI + QGR + QH, with t1 ≈ t2 ≈ t and

ε ≤ ε1 + ε2 + 2S · (δ0 + 2δ1) + (S + S2) · 2−λ + µ2 · 2−γ1

+ S(S + QGI + QGR + QH) · (2−γ0 + 2−α0 + 2−α1+1) .

Further, for every adversary A that breaks the (t, ε, µ, S , T , QCor, QSt)-IND-FS-St-security of AKEst,kem,
there exist adversaries B1 and B2 that break (t1, ε1, S , S , S , QVer , QSt)-OW-PCVA-C security of KEM0 and
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Party Pi (Xi , (xi,1, xi,2)) Party Pr (Xr , (xr,1, xr,2))

x̃1, x̃2, s $← Zp, X̃ := gx̃1 hx̃2

kr := H1(Xr , gs, hs, X s
r )

t $← Zp; k̃ := H0(X̃ , gt , ht , X̃ t)

ki := H1(Xi , gt , ht , X t
i )

kr := H1(Xr , gs, hs, (gs)xr,1 (hs)xr,2 )

k̃ := H0(X̃ , gt , ht , (gt)x̃1 (ht)x̃2 ) k := (k̃, ki , kr)

ki := H1(Xi , gt , ht , (gt)xi,1 (ht)xi,2 )

k := (k̃, ki , kr)

X̃ , (gs, hs)

(gt , ht)

(x̃1, x̃2), kr

Fig. 11. AKE protocol JKRS. H0, H1 are independent random oracles. Protocol JKRSKC is obtained by adding
the transformation from Figure 9.

(t2, ε2, µ, S , S , 2QVer , QCor, QSt)-OW-PCVA-CR security of KEM1, where QVer ≤ S + QGI + QGR + QH,
with t1 ≈ t2 ≈ t and

ε ≤ ε1 + ε2 + 2S · (δ0 + 2δ1) + (µ2 + S2 + µQGstI + 2SQGstI) · 2−κ + µ2 · 2−γ1

+ (S + S2) · 2−λ + S(QGR + QGI + QH + S) · (2−γ0 + 2−α0 + 2−α1+1) .

Instantiation with Non-Committing KEM. We can use a non-committing KEM as defined in
[JKRS21] to instantiate a verifiable AKE protocol very efficiently, e. g., from DDH (cf. protocol JKRS
in Figure 11). We can easily show that a non-committing KEM implies OW-PCVA-CR security of that
KEM. In Appendix A, we recall the formal definition of NC-CCA security for KEMs from [JKRS21] and
show the implication. Adding key confirmation as described in Figure 9 then yields protocol JKRSKC.
Security of JKRSKC. We now establish security of protocol JKRSKC. Since the JKRS protocol is per-
fectly correct, so is JKRSKC. Further, public keys and messages have log(p) bits entropy. Security is based
on the DDH assumption which asks to distinguish between (gx , gy, gxy) and (gx , gy, gz) for x, y, z $← Zp.

Theorem 4. Let JKRSKC be defined as in Figure 11, where GI, GR : {0, 1}∗ → {0, 1}λ, H : {0, 1}∗ → K,
H0 : {0, 1}∗ → KEM0.K, H1 : {0, 1}∗ → KEM1.K, GstI : {0, 1}κ × {0, 1}κ → {0, 1}dI ,and GstR : {0, 1}κ ×
{0, 1}κ → {0, 1}dR are modeled as random oracles.

For every adversary A that breaks the (t, ε, µ, S , T , QCor, QSt)-IND-FS-St-security of JKRSKC, there
exists an adversary B that breaks (t′, ε′)-DDH with t ′ ≈ t and

ε ≤ ε′ + (µ2 + S2 + µQGstI + 2SQGstI) · 2−κ + µ2 · 2− log(p)

+ (S + S2) · 2−λ + S(QGR + QGI + QH + QH0 + QH1 + S + 1) · 2− log(p) ,

where Qh is the number of queries to the respective random oracle h.

The theorem follows from Theorems 2 and 6 and Lemma 2 in combination with [JKRS21, Theorem 5],
where the latter deals with the optimization that only one ciphertext is sent in the second round.
Instantiation from Lattices. We can also instantiate the KEM-based verifiable AKE protocol using
lattices assumptions. The scheme KEMLWE described in [PWZ23a, Section 3] satisfies OW-ChCCA security
which implies OW-PCVA-CR security. This gives us an AKE protocol with key confirmation from LWE
secure in the random oracle model.

6.2 The CCGJJ Protocol and its Isogeny-based Variant

It is easy to see that the core protocol from Cohn-Gordon et al. (CCGJJ) [CCG+19] is a verifiable AKE
protocol, ignoring the session key hash. For completeness, we provide a formal treatment in Appendix F.
Isogeny-based AKE. The isogeny-based AKE protocol which was independently analyzed by de Kock,
Gjøsteen and Veroni [dKGV20] and Kawashima et al. [KTAT20] follows the same blueprint as the CCGJJ
protocol, relying on the group action structure of CSIDH [CLM+18] rather than prime-order groups.
Thus, we also get an AKE protocol with key confirmation from isogenies, based on the same assumptions
as the analysis in [dKGV20,KTAT20]. This is particularly interesting because the only group action based
and tightly-secure signature scheme supporting adaptive corruptions [PW22] is rather inefficient.
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7 KEM-based AKE with Key Confirmation in the QROM

We analyze FS via key confirmation in the quantum random oracle model (QROM). Following [PWZ23b],
we use IND-CCA-secure KEMs in the multi-user, multi challenge settings as building blocks. By the key
confirmation technique, we lift the result of Pan, Wagner, and Zeng [PWZ23b] to FS in the QROM. The
work of Pan, Wagner, and Zeng only achieves weak FS in the QROM. Our result not only preserves
the security loss of their protocol, but also achieves FS and allows multiple Test queries with single
challenge bit, while [PWZ23b] allows at most one single Test query.

We recall the MC-IND-CCA security and MUC-IND-CCA security of KEMs in Appendix A. We
use notations introduced in Section 5 to present our protocol AKEkem. Let KEM1 and KEM0 be two
KEM schemes and GI, GR : {0, 1}∗ → {0, 1}λ, and H : {0, 1}∗ → K be hash functions, where λ is the
length of key confirmation tags and K is the key space of AKEkem. An overview of our AKE construction
AKEkem is given in Figure 12. AKEkem is essentially the KEM-based AKE protocol in [PWZ23b] adding
key confirmation, namely, it is obtained from combining Figure 10 and Figure 5.

Party Pi (pki , ski) Party Pr (pkr , skr)

(p̃k, s̃k)← Gen0(par0)
(cr , kr)← Encaps1(pkr)

(̃c, k̃)← Encaps0(p̃k)
(ci , ki)← Encaps1(pki)
kr := Decaps1(skr , cr)

πr := GR((k̃, ki , kr), ctxt)

k̃ := Decaps0(s̃k, c̃) π′
i := GI((k̃, ki , kr), ctxt)

ki := Decaps1(ski , ci) K ′ := H((k̃, ki , kr), ctxt)

πi := GI((k̃, ki , kr), ctxt)

π′
r := GR((k̃, ki , kr), ctxt)

if πr = π′
r : K := H((k̃, ki , kr), ctxt) if πi = π′

i : K := K ′

p̃k, cr

c̃, ci , πr

πi

(pkr , p̃k, s̃k, cr , kr)

(π′
i , K ′)

Fig. 12. AKE protocol AKEkem from KEM schemes KEM1, KEM0, and key confirmation. The context is defined
as ctxt := (pki , pkr , p̃k, c̃, ci , cr). GI, GR, and H are independent random oracles.

Correctness. The correctness of AKEkem is due to KEM1 and KEM0. Each session of AKEkem includes
two ciphertexts of KEM1 and one ciphertext of KEM0. If KEM1 is (1− δ1)-correct and KEM0 is (1− δ0)-
correct, then by the union bound, AKEkem is (1− 2δ1 − δ0)-correct.

Security. We prove IND-FS security of AKEkem based on the MC-IND-CCA security of KEM1, the
MUC-IND-CCA security of KEM0, and modeling GI, GR, and H as quantum-accessible random oracles,
as stated in Theorem 5. The proof of Theorem 5 is postponed to Appendix E.

Theorem 5. Let KEM0 be (1 − δ0)-correct and have public keys with γ0 bits of entropy and messages
with α0 bits of entropy. Let KEM1 be (1 − δ1)-correct and have public keys with γ1 bits of entropy and
messages with α1 bits of entropy. K0 and K1 are the KEM key spaces of KEM0 and KEM1, respectively.

Let AKEkem be as defined in Figure 12, where Let GI, GR : {0, 1}∗ → {0, 1}λ and H : {0, 1}∗ → K.
For every adversary A that breaks the (t, ε, µ, S , T , QCor)-IND-FS-security of AKEKC, there exists an
adversary B0 that breaks the (t′

0, ε′
0, S , S)-MUC-IND-CCA security of KEM0 and an adversary B1 that

breaks the (t′
1, ε′

1, S)-MC-IND-CCA security of KEM1 with t ′
0 ≈ t′

1 ≈ t and

ε ≤ 2ε′
0 + 2µε′

1 + 2S(δ0 + µδ1) + µ22−γ1 + µS2−λ+1

+ S2(2−α1 + 2−γ0 + 2−α0) + 2µ(QGR + QGI)
√

S√
|K1|

+ 2QH
√

S√
|K0|

,

where QGI , QGR and QH are the number of quantum-superposition queries to GI, GR and H.
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Remark 1 (Implicit Rejection). Following [PWZ23b], when proving Theorem 5, we assume KEM1 and
KEM0 have implicit rejection [BP18], namely, if the input ciphertext is invalid, then the decapsulation
algorithm returns a pseudorandom KEM key. We use implicit-rejection KEM because it simplifies our
AKE proof.

To adapt the proof of Theorem 5 to the one that uses explicit-rejection KEMs, we can add extra
codes in the games sequence to deal with explicit rejections from KEM. Concretely, upon receiving an
invalid KEM ciphertext, the session oracle (e.g., SessionR, DerR, or DerI) simply sets the session key
as “reject” and returns ⊥. This can be tightly simulated by MUC-IND-CCA and MC-IND-CCA secure
KEMs with explicit rejection, and thus the security bound in Theorem 5 also applies to explicit-rejection
KEMs.

Remark 2 (Instantiations with LWE). In [PWZ23b], Pan et al. proposed lattice-based instantiations of
MC-IND-CCA-secure KEM and MUC-IND-CCA-secure KEM that have (almost-)tight reduction from
the well-known Learning With Errors (LWE) problem in the QROM. Here we only discuss the security
loss of these KEM schemes and give the final security loss of our AKE protocol instantiated with these
KEM schemes.

Let εlwe be the best computational advantage against LWE assumptions and λ be the security param-
eter (which decides the security level, the length of message, etc.). The two KEM schemes proposed in
[PWZ23b] have asymptotic bounds ε′

1 ≤ Θ(λ) · εlwe and ε′
0 ≤ Θ(λ) · εlwe, where ε′

1 and ε′
0 are the compu-

tational advantages against MC-IND-CCA security and MUC-IND-CCA security of the KEM schemes
in [PWZ23b], respectively. By combining these bounds with the bounds given in Theorem 5, we have

ε ≤ Θ(λ) + Θ(µ) ·Θ(λ) · εlwe = Θ(µ) ·Θ(λ) · εlwe,

where ε is the computational advantage against the resulting AKE protocol. This gives us a session-tight
and square-root-tight (namely, does not suffer from the square-root security loss) LWE-based instantia-
tion of AKE with full forward secrecy in the QROM.
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A Definition of KEM

Definition 5 (KEM). A key encapsulation mechanism (KEM) scheme KEM consists of four algo-
rithms (Setup, Gen, Encaps, Decaps) and a key space K that is assumed to be efficiently recognizable. The
algorithms work as follows:

– The setup algorithm Setup, on input the security parameter λ, outputs system parameters par.
– The key generation algorithm Gen, on input the parameter par, outputs a public and secret key pair

(pk, sk). We assume that par is publicly accessible by other algorithms; therefore, for the sake of
simplicity, we do not explicitly include par in inputs of the following two algorithms.

– The encapsulation algorithm Encaps, on input pk, outputs a ciphertext c and a key k ∈ K.
– The decapsulation algorithm Decaps, on input sk and a ciphertext c, outputs a key k ∈ K or a rejection

symbol ⊥ /∈ K.

Definition 6 (Correctness of KEM). A KEM scheme KEM = (Setup, Gen, Encaps, Decaps) is ρ-
correct if

Pr

Decaps(sk, c) = k :
par← Setup(1λ),
(pk, sk)← Gen(par),
(c, k)← Encaps(pk)

 ≥ ρ,

where the probability is taken over the randomness of Setup, Gen, and Encaps.

To construct the KEM-based AKE in the classical ROM in Section 6, we define three one-way security
of KEM: OW-PCVA, OW-PCVA-C, and OW-PCVA-CR. The latter is a weaker variant of OW-ChCCA
security from [PWZ23a] since it does not require the decryption oracle but only has a ciphertext validity
oracle.

Definition 7 (OW Security of KEM). Let ATK ∈ {PCVA, PCVA-C, PCVA-CR}. We define games
OW-ATK in Figure 13. Let µ be the number of users and QEnc be the number of queries to Enc, QCv be
the number of queries to Cvo, QCh be the number of queries to Check, QCor be the number of queries
to Corr, and QRev be the number of queries to Reveal.

A KEM is (t, ε′, µ, QEnc, QCv, QCh, QCor, QRev)-OW-ATK-secure if for all adversaries A attacking the
protocol in time t, we have ∣∣Pr[OW-ATKA

KEM ⇒ 1] ≤ ε′ .

GAMES OW-PCVAKEM OW-PCVA-CKEM OW-PCVA-CRKEM

00 par← Setup
01 for i ∈ [N ] :
02 (pki , ski)← Gen
03 O := {Enc,Check, Corr , Reveal }
04 (i∗, c∗, K∗)← AO(par, pk1, · · · , pkN )
05 if (i∗, c∗, K∗) /∈ LEnc : return 0
06 if i∗ ∈ LCorr : return 0

07 if (i∗, c∗) ∈ LReveal : return 0
08 return 1

Check(i, c, K)
09 return JDecaps(ski , c) = KK
Corr(i)
10 LCorr := LCorr ∪ {i}
11 return ski

Encaps(i)
12 (c, K)← Encaps(pki)
13 LEnc := LEnc ∪ {(i, c, K)}
14 return c

Cvo(i, c′)
15 if ∃K ′ s. t. (i, c′, K ′) ∈ LEnc : return ⊥
16 K ′ := Decaps(ski , c)
17 return JK ′ ∈ KK
Reveal(i, c)
18 if ∃K s. t. (i, c, K) ∈ LEnc :
19 LReveal := LReveal ∪ {(i, c)}
20 return K
21 return ⊥

Fig. 13. Games OW-PCVA, OW-PCVA-C (with code in solid boxes) and OW-PCVA-CR (with code in solid and
dashed boxes) for KEM.
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Remark 3. By definition we have QCor = 0 if ATK = PCVA as well as QRev = 0 if ATK ∈ {PCVA, PCVA-C},
so we will simply omit the parameters in these cases. It is easy to see that PCVA-CR security implies
OW-PCVA-C security which implies OW-PCVA security.

We also define Non-Committing KEMs [JKRS21] and show the relation to OW-PCVA-CR security
which we use for protocol JKRSKC.

Definition 8 (µ-Receiver Non-Committing KEM). Let KEM = (Setup, Gen, Encaps, Decaps) be a
key encapsulation mechanism which is relative to a simulator Sim = (SimGen, SimEncaps, SimHash). We
define games NCreal and NCsim as in Figure 14. The simulator Sim is only used in NCsim.

Let µ be the number of users and QEnc be the number of queries to Encaps, QOpen be the number of
queries to Open, QDec be the number of queries to Decaps, QncRO be the number of queries to random
oracles.

We say a KEM is (t, ε′, µ, QEnc, QOpen, QDec, QncRO)-NC-CCA-secure if for all adversaries A attacking
the protocol in time t, we have∣∣∣Pr[NCA

real(λ)⇒ 1]− Pr[NCA
sim(λ)⇒ 1]

∣∣∣ ≤ ε′

GAMES NCA
real(λ) and NCA

sim(λ)

00 par← Setup(1λ)
01 for i ∈ [N ] :
02 (pki , ski)← Gen(par)
03 (pki , ski)← SimGen(par)
04 openedi := false
05 Di := ∅, Ci := ∅, CKi := ∅,Hi := ∅
06 b ← AO(par, (pki)i∈[µ])
07 return b

Hi(M ) // i ∈ [µ]

08 if ∃h s.t. (M , h) ∈ Hi : return h
09 h $← {0, 1}κ

10 if opened[i]:

11 h ← SimHash(pki , ski , CKi ,Di ,Hi , M )

12 else h ← SimHash(pki , ski , Ci ,Di ,Hi , M )
13 Hi := Hi ∪ {(M , h)}
14 return h

Open(i ∈ [µ])
15 opened[i] := true
16 return ski

Encaps(i ∈ [µ])
17 (c, K)← EncapsHi (pki)
18 c← SimEncaps(pki , ski)

19 K $← K
20 CKi := CKi ∪ {(c, K)}
21 Ci := Ci ∪ {c}
22 return (c, K)

Decaps(i ∈ [µ], c)
23 if c ∈ Ci : return ⊥
24 K := DecapsHi (ski , c)
25 Di := Di ∪ {c}
26 return K

Fig. 14. NCA
real(λ) and NCA

sim(λ) for an adversary A and KEM = (Setup, Gen, Encaps, Decaps) with simulator
algorithms (SimGen, SimEncaps, SimHash). Each user i is related to a random oracle Hi , and random oracles
H1, ..., Hµ are independent. Algorithms Encaps and Decaps running on user i have oracle access to Hi , but not
SimEncaps. A has access to O := {H1, ..., Hµ, Encaps, Decaps, Open}. Highlighted lines are only executed in
NCA

sim(λ).

Theorem 6. For every adversary A that breaks the (t, ε, µ, QEnc, QCh, QCor, QRev)-OW-PCVA-CR secu-
rity of KEM, there exists an adversary B that breaks (t′, ε′, µ, QEnc, QCh, QCor)-NC-CCA security of KEM
with t ′ ≈ t and ε ≤ ε′.

Proof (Sketch). The proof is straightforward so we only sketch it here. Let A be an adversary against
OW-PCVA-CR. Then we construct an adversary B aiming to distinguish whether it is in the NCreal game
or in the NCsim game as follows. B gets µ public keys from its challenger and forwards them to A. It
also forwards encryption queries to its own encryption oracle, receives (c, k) and gives c to A. Corruption
queries can be forwarded. For reveal queries, B just outputs the key k it received earlier. The non-
committing property ensures that this is the correct key in case the user is corrupted. For check queries,
B either asks its decryption oracle (if c is new) or (if c is a challenge) just compares to k it received and
again relies on the non-committing property. When A outputs a candidate k′, B decides it is in the real
game if k′ equals the key it received from encryption and otherwise it decides it is in the simulated game.
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Finally, we define MC-IND-CCA security and MUC-IND-CCA security of KEMs, which will be used
to construct the KEM-based AKE in the QROM in Section 7.

GAME MC-IND-CCAKEM,b

00 par← Setup(1λ)
01 (pk, sk)← Gen(par)
02 Lct := {}
03 inp := (par, pk)
04 b′ ← AEnc,Dec(inp)
05 return b′

GAME MUC-IND-CCAKEM,b

06 par← Setup(1λ)
07 Lkey := {} �Record challenge key pairs
08 for n ∈ [µ]
09 (pkn , skn)← Gen(par)
10 Lkey := Lkey ∪ {(pkn , skn)}
11 Lct := {}
12 inp := (par, pk1, ..., pkµ)
13 b′ ← AEnc,Dec(inp)
14 return b′

Enc( pk )

15 if (pk, ·) /∈ Lkey

16 return ⊥ �Not challenge pk
17 (c, k)← Encaps(pk)
18 Lct := Lct ∪ {(pk, c)}
19 if b = 1: k $← K
20 return (c, k)

Dec( pk, c)

21 if (pk, ·) /∈ Lkey

22 return ⊥ �Not challenge pk
23 Let sk s.t. (pk, sk) ∈ Lkey

24 if (pk, c) ∈ Lct
25 return ⊥ �c is from Enc(pk)
26 k := Decaps(sk, c)
27 return k

Fig. 15. Games MC-IND-CCA and MUC-IND-CCA. µ is the number of user in the game MUC-IND-CCA. List Lct
is used to record all challenge ciphertexts generated by Enc. Dashed parts in Enc and Dec are only executed in
game MUC-IND-CCA.

Definition 9 (IND-CCA Security of KEM). We define games MC-IND-CCA and MUC-IND-CCA in
Figure 15. Let S be the number of queries to Enc and µ be the number of users in MUC-IND-CCA.

A KEM is (t, ε′, µ, S)-MUC-IND-CCA-secure if for all adversaries A attacking the protocol in time t
with µ users and S challenge ciphertexts, we have∣∣Pr[MUC-IND-CCAA

KEM,0 ⇒ 1]− Pr[MUC-IND-CCAA
KEM,1 ⇒ 1]

∣∣ ≤ ε′

Similarly, a KEM is (t, ε′, S)-MC-IND-CCA-secure if for all adversaries A attacking the protocol in
time t with S challenge ciphertexts, we have∣∣Pr[MC-IND-CCAA

KEM,0 ⇒ 1]− Pr[MC-IND-CCAA
KEM,1 ⇒ 1]

∣∣ ≤ ε′

B Additional Details for the AKE Security Model

We model valid attacks as in [JKRS21]. To cover all possible attacks, we consider four dimensions:
– whether the test session is on the initiator’s side (i.e., Type[sID∗] =“In”) or the responder’s side (i.e.,

Type[sID∗] =“Re”),
– all combinations of long-term secret key reveals, taking into account when a corruption happened

(cor and peerPreCor variables). For IND-FS-St, we also take state reveals into account.
– the number of matching sessions, i.e. whether the adversary acted passively (matching session) or

actively (no matching session).
Table 3 lists all possible attacks from an adversary in game IND-FS. Trivial attacks marked in gray

are shown for completeness and not considered valid. If the set of variables corresponding to a test session
is set as in any row of Table 3, this row will evaluate to true in line 10 in Figure 3. We now describe the
different attacks in Table 3 in more detail:
Row 1. Here the tested session has a partial matching session, is of type “In”, and both parties might be

corrupted. Since there is a partial matching session, the adversary has acted passively during the
execution of the protocol.8 Thus, even if both parties were corrupted during the execution, the

8 Considering partially matching sessions means that we do allow the adversary to drop or modify the last
message.
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A gets (Initiator, Responder) co
r[

i∗
]

co
r[

r∗
]

pe
er

Pr
eC

or
[s

ID
∗
]

Ty
pe

[s
ID

∗
]

|M
(s

ID
∗
)|

|P
(s

ID
∗
)|

1. (long-term, long-term) – – – “In” – 1
2. (long-term, long-term) – – – “Re” 1 –
3. (long-term, ⊥) – T T “In” – 0
4. (⊥, long-term) T – T “Re” 0 –
5. (long-term, long-term) – – F “In” – 0
6. (long-term, long-term) – – F “Re” 0 –

Table 3. Full table of attacks for adversaries against three-message protocols with IND-FS security. An attack
is regarded as an AND conjunction of variables with specified values as shown in the each line, where “–” means
that this variable can take arbitrary value and F means “false”. The trivial attacks where the session’s peer is
corrupted when the key is derived, and the corresponding variables are set to T, are marked with gray . The
⊥ symbol indicates that the adversary cannot query anything more from this party, as he already possesses the
long-term key.

adversary can not break the AKE security without breaking the passive security of the underlying
protocol. Hence it should make no difference if the parties were corrupted before or after the key
was computed, and the cor and peerPreCor columns can take any value.

Row 2. This attack is similar to the one above, the only difference is the session type and that a session
of type “Re” will have a (fully) matching session.

Row 3. Here, the responder of the session was corrupted when the initiator computed its key, and there
is no (partially) matching session. This means that the adversary has performed an active attack
and changed or reordered the message being sent. This can lead to a trivial attack, because
the adversary can impersonate the responder with the corrupted secret key. By knowing the
underlying message, he can compute the same session key as the initiator will compute, and
test the initiators session. Whether the adversary corrupts the initiator makes no difference, and
hence this column can take any value.

Row 4. Similar to the attack above, with the types switched, and hence the initiator was corrupted by
the time the responder computed the key. This leads to a trivial attack in the same way.

Row 5. Here there is no (partially) matching session, but we specify that the responder was not corrupted
when the initiator computed its key. The adversary can choose whether or not to corrupt the
initiator before the responder computes its key. The key point is that whether he can impersonate
the initiator or not, he does not know the internal state of the initiator, and to break security
he must either break the underlying key exchange protocol, or impersonate the responder and
break the authentication directly. Hence, this column can take any value. After the initiators key
is computed, it should not matter whether the responder gets corrupted or not, and hence this
column can also take any value.

Row 6. Similar to above, but with the types changed so that the initiator was not corrupted when the
responder computed its key.

Since rows (3.) and (4.) are trivial wins for the adversary, we exclude these rows and obtain a simplified
version Table 2.
Security with State Reveals. Similar ideas apply to Table 4 which captures valid attacks for ad-
versaries in game IND-FS-St.

In game IND-FS-St, we allow the adversary to reveal session states. Table 4 listed all attacks allowed
in game IND-FS-St. All these attacks capture FS, KCI, and state-reveal (ST) attacks. Similar to Table 2,
Table 4 is obtained from considering all possible attacks and then reducing all trivial attacks. In the
state-reveal model, if the adversary obtain both the session state and the long-term key of session owner,
then the session is trivially broken since there is no any secret information in the session.
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A gets (Initiator, Responder) co
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ST
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′ ]

1. (long-term, long-term) – – – “In” – F F 1 F
2. (long-term, long-term) – – – “Re” 1 F F – F
5. (long-term, long-term) – – F “In” – F n/a 0 n/a
6. (long-term, long-term) – – F “Re” 0 F n/a – n/a
7. (long-term, state) – F F “In” – F – – –
8. (long-term, state) – F – “Re” 1 – F – F
9. (long-term, state) – F F “Re” 0 – F – F
10. (state, long-term) F – – “In” – – F 1 F
11. (state, long-term) F – F “In” – – F 0 F
12. (state, long-term) F – F “Re” – F – – –
13. (state, state) F F F “In” – – – – –
14. (state, state) F F F “Re” – – – – –

Table 4. Table of attacks for adversaries against three-message protocols in IND-FS-St. This table is optimized,
namely, it is obtained from considering all possible attacks and then removing redundant row. An attack is
regarded as an AND conjunction of variables with specified values as shown in the each line, where “–” means
that this variable can take arbitrary value, F means “false”, and "n/a" indicates that there is no state which can
be revealed as no (partial) matching session exists.

C Proof of Theorem 2

Proof (Theorem 2). Let A be an adversary against IND-FS-St security of AKEstKC. We use the sequence
of games G0-G4 to finish the proof.
Game G0. This game is the original AKEstKC game, however we exclude collisions of public keys, messages,
and state encryption keys. Similar to the game G0 in the proof of Theorem 1, we have

Pr[GA
0 ⇒ 1] ≤ Pr[IND-FS-StA

AKEstKC
⇒ 1] + µ2(2−γ + 2−κ) + S2(2−α + 2−λ + 2−κ) .

This also means that, in G0, there can be at most one (partially) matching session for each session, and
every session sID has a unique state encryption one-time key IV corresponding.
Game G1. We postpone the computation of one-time pads used in encrypting session states (i.e.,
GstI(IV, s)). We also ensure that πr , πi , and K have not been queried to the respective random ora-
cle before they are determined (as we did in the G1 in the proof of Theorem 5).

Concretely, we generate the encrypted states φi by independently and uniformly sampling (cf. line 51).
We use a list ST′ to store the state information that will be used to simulate DerI (cf. line 61) and patch
GstI. In ST′, each entry ST′[i, IV] stores the session sID corresponding to IV, the encrypted state φi , and
the unencrypted state sti (cf. line 52). If A has found the one-time pad GstI(IVi , si) used to encrypt sti
(cf. lines 141 to 143), then we recover sti from the list ST′ and patch GstI(IVi , si) := φi ⊕ sti .

Similar to the game G1 in the proof of Theorem 1, since AKE′ has α bits of entropy of protocol
messages and IVi is sampled uniformly at random, we have

|Pr[GA
0 ⇒ 1]− Pr[GA

1 ⇒ 1]| ≤ (QGR + QGI + QH) · S · 2−α + QGstI · S · 2−κ

Game G2. We use a list queryOTP to record whether A has found the one-time pad for encrypting state
(cf. line 144), and if A found the one-time pad of session sID while the owner user of sID is uncorrupted
or the state of sID is unrevealed, then we raise a flag QuerySt and abort the game (cf. lines 41 to 42).

27



GAMES G0-G4
00 for n ∈ [µ]
01 (pkn , skn)← Gen′, sn

$← {0, 1}κ

02 b $← {0, 1}
03 b′ ← AO(pk1, · · · , pkµ)
04 for sID∗ ∈ Stest

05 if Fresh(sID∗) = false
06 or Valid(sID∗) = false
07 return b
08 return Jb = b′K
SessionR((i, r) ∈ [µ]2, mi)
09 cntS ++
10 sID := cntS
11 (Init[sID], Resp[sID]) := (i, r)
12 Type[sID] := “Re”
13 (mr , k)← Init′

R(skr , pki , mi)
14 if k = ⊥
15 SK[sID] := “reject”
16 return ⊥
17 πr := GR(k, pki , pkr , mi , mr) �G0
18 πi := GI(k, pki , pkr , mi , mr) �G0
19 K := H(k, pki , pkr , mi , mr) �G0
20 πr

$← {0, 1}λ, πi
$← {0, 1}λ, K $← K �G1-G4

21 GR[k, pki , pkr , mi , mr ] := πr �G1-G2
22 GI[k, pki , pkr , mi , mr ] := πi �G1-G2
23 H[k, pki , pkr , mi , mr ] := K �G1-G2
24 ctxt[sID] := (pki , pkr , mi , mr) �G3-G4
25 k[sID] := k �G3-G4
26 if ∃sID′ s. t. ctxt[sID′] = (pki , pkr , mi ,⊥)

or cor[i] = false �G3-G4
27 GR[⋄, pki , pkr , mi , mr ] := πr �G3-G4
28 GI[⋄, pki , pkr , mi , mr ] := πi �G3-G4
29 H[⋄, pki , pkr , mi , mr ] := K �G3-G4
30 else �G3-G4
31 GR[⊕, pki , pkr , mi , mr ] := πr �G3-G4
32 GI[⊕, pki , pkr , mi , mr ] := πi �G3-G4
33 H[⊕, pki , pkr , mi , mr ] := K �G3-G4
34 (MsgI,1[sID], MsgR[sID]) := (mi , (mr , πr))
35 IVr

$← {0, 1}κ, φr := GstR(IVr , sr)⊕ (πi , K)
36 ST[sID] := (IVr , φr)
37 return (sID, (mr , πr))

Reveal(sID)
38 if Type[sID] = “In” �G2-G4
39 n := Init[sID] �G2-G4
40 else n := Resp[sID] �G2-G4
41 if revSK[sID] = false

and cor[n] = false
and queryOTP[sID] = true �G2-G4

42 QuerySt := true; abort �G2-G4
43 revSK[sID] := true
44 return ST[sID]

SessionI((i, r) ∈ [µ]2)
45 cntS ++
46 sID := cntS
47 (Init[sID], Resp[sID]) := (i, r)
48 Type[sID] := “In”
49 (mi , sti)← Init′

I(ski , pkr)
50 IVi

$← {0, 1}κ, φi := sti ⊕ GstI(IVi , si) �G0
51 IVi

$← {0, 1}κ, φi
$← {0, 1}κ �G1-G4

52 ST′[i, IV] := (sID, φi , sti) �G1-G4
53 (MsgI,1[sID], ST[sID]) := (mi , (IVi , φi))
54 ctxt[sID] := (pki , pkr , mi ,⊥) �G3-G4
55 return (sID, mi)

DerI(sID ∈ [cntS], (mr , πr))
56 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In”
57 return ⊥
58 (i, r) := (Init[sID], Resp[sID])
59 (IVi , φi) := ST[sID]
60 sti := φi ⊕ GstI(IVi , si) �G0
61 (sID, φi , sti) := ST′[i, IV] �G1-G4
62 peerPreCor[sID] := cor[r ]
63 k := Der′

I(ski , pkr , mr , sti)
64 if k = ⊥
65 SK[sID] := “reject”
66 return ⊥
67 if πr ̸= GR(k, pki , pkr , mi , mr) �G0-G2
68 SK[sID] := “reject” �G0-G2
69 return ⊥ �G0-G2
70 πi := GI(k, pki , pkr , mi , mr) �G0-G2
71 K := H(k, pki , pkr , mi , mr) �G0-G2
72 k[sID] := k �G3-G4
73 Replace ⊥ in ctxt[sID] with mr �G3-G4
74 if ∃sID′ s. t. ctxt[sID′] = ctxt[sID] �G3-G4
75 if πr ̸= GR[⋄, pki , pkr , mi , mr ] �G3-G4
76 SK[sID] := “reject” �G3-G4
77 return ⊥ �G3-G4
78 πi := GI[⋄, pki , pkr , mi , mr ] �G3-G4
79 K := H[⋄, pki , pkr , mi , mr ] �G3-G4
80 else �G3-G4
81 if GR[k, pki , pkr , mi , mr ] = πr �G3-G4
82 if cor[r ] = false �G4
83 QueryRO := true; abort �G4
84 πi := GI(k, pki , pkr , mi , mr) �G3-G4
85 K := H(k, pki , pkr , mi , mr) �G3-G4
86 else �G3-G4
87 GR[⋄, pki , pkr , mi , mr ] $← {0, 1}λ �G3-G4
88 if πr = GR[⋄, pki , pkr , mi , mr ] �G3-G4
89 RandKC := true; abort �G3-G4
90 SK[sID] := “reject” �G3-G4
91 return ⊥ �G3-G4
92 (MsgR[sID], MsgI,2[sID]) := (mr , πi)
93 SK[sID] := K
94 return πi

Fig. 16. Games G0-G4 for the proof of Theorem 2. A has access to oracles O := {SessionI,SessionR,DerI,
DerR,Reveal,Corr,Test, GI, GR, H, GstI, GstR}. Helper procedures Fresh and Valid are defined in Figure 3.
GstR is defined as a usual RO simulation.
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DerR(sID ∈ [cntS], πi)
95 if SK[sID] ̸= ⊥ or Type[sID] ̸= “Re”
96 return ⊥
97 (i, r) := (Init[sID], Resp[sID])
98 (IVr , φr) := ST[sID]
99 (π′

i , K ′) := φr ⊕ GstI(IVr , sr)
100 peerPreCor[sID] := cor[i]
101 if πi ̸= π′

i �G0-G2
102 SK[sID] := “reject” �G0-G2
103 return ⊥ �G0-G2
104 K := K ′ �G0-G2
105 if ∃sID′ s. t. ctxt[sID′] = ctxt[sID] �G3-G4
106 if πi ̸= GI[⋄, pki , pkr , mi , mr ] �G3-G4
107 SK[sID] := “reject” �G3-G4
108 return ⊥ �G3-G4
109 K := H[⋄, pki , pkr , mi , mr ] �G3-G4
110 else �G3-G4
111 if GI[k, pki , pkr , mi , mr ] = πi �G3-G4
112 if cor[i] = false �G4
113 QueryRO := true; abort �G4
114 K := H(k, pki , pkr , mi , mr) �G3-G4
115 else �G3-G4
116 GI[⋄, pki , pkr , mi , mr ] $← {0, 1}λ �G3-G4
117 if πi = GI[⋄, pki , pkr , mi , mr ] �G3-G4
118 RandKC := true; abort �G3-G4
119 SK[sID] := “reject” �G3-G4
120 return ⊥ �G3-G4
121 (MsgI,2[sID], SK[sID]) := (πi , K)
122 return ε

GR(k, pki , pkr , mi , mr)
123 if GR[⋄, pki , pkr , mi , mr ] = π ̸= ⊥ �G3-G4
124 S := {sID | ctxt[sID] = (pki , pkr , mi , mr)} �G3-G4
125 for sID ∈ S � note |S| ≤ 2 �G3-G4
126 if k[sID] = k �G3-G4
127 QueryRO := true; abort �G4
128 return π �G3-G4
129 elseif GR[⊕, pki , pkr , mi , mr ] = π ̸= ⊥ �G3-G4
130 Find sID s. t. ctxt[sID] = (pki , pkr , mi , mr) �G3-G4
131 if k[sID] = k �G3-G4
132 Replace ⊕ with k �G3-G4
133 return π �G3-G4
134 if GR[k, pki , pkr , mi , mr ] = π ̸= ⊥
135 return π
136 π $← {0, 1}λ, GR[k, pki , pkr , mi , mr ] := π
137 return π
GstI(IV, s)

138 if GstI[IV, s] = y ̸= ⊥
139 return y
140 y $← {0, 1}dI

141 if (∃i s.t. si = s) and (ST′[i, IV] ̸= ⊥) �G1-G4
142 (sID, φi , sti) := ST′[i, IV] �G1-G4
143 y := φi ⊕ sti �G1-G4
144 queryOTP[sID] := true �G2-G4
145 GstI[IV, s] := y
146 return y

Fig. 17. Oracles for games G0-G4 for the proof of Theorem 1. GI and H are defined analogously to GR.

To trigger QuerySt, A has to queries GstI on (IVi , si) (for some user i) while the session state of sID
(the session that corresponds to IVi) is unrevealed or the user i is uncorrupted. Since both IVi and si are
generated independently and uniformly at random, if user i is uncorrupted (resp., sID is unrevealed),
then si (resp., IVi) is uniformly random in A’s view. Therefore, by a union bound, we have

|Pr[GA
1 ⇒ 1]− Pr[GA

2 ⇒ 1]| ≤ Pr[QuerySt] ≤ (µ + S) ·QGstI · 2−κ

By introducing this abort event, now we can assure that, unless A both corrupts the owner user and
reveals the session state, it cannot learn the unencrypted state generated by AKE′. This fact is crucial for
reduction to the OW-VwFS-St security of AKE′, since it forces that a fresh and valid session of AKEstKC
will correspond a fresh and valid session of AKE′.

Another important fact implied by this game is, unless A both corrupts the owner user and reveals
the session state, it cannot learn any useful information from state-reveal oracle, because the outputs of
the state-reveal oracle in this case are all uniformly random. This makes the remaining security proof of
AKEstKC similar to the one of AKEKC.
Game G3. This game is similar to the game G2 in the proof of Theorem 1, except that here we need to
handle states reveal. To prepare for the reduction to OW-VwFS-St, we use the proof strategy of G2 in
Theorem 1 to compute πr , πi and K without using k explicitly, and raise a flag RandKC if the adversary
successfully forges a valid key confirmation tag without the random oracle being queried. This change
forces that A cannot compute valid key confirmation tags of valid sessions without querying random
oracle.

We claim that state-reveal oracle does not help A to trigger RandKC. This is because both initiator
session state and responder session state do not include any information to help A to forge a valid
key confirmation tag without querying random oracle. Therefore, by the same arguments used in G2 in
Theorem 1, we have

|Pr[GA
2 ⇒ 1]− Pr[GA

3 ⇒ 1]| ≤ Pr[RandKC] ≤ S · 2−λ + S · δ .

Game G4. This game is similar to the game G3 in the proof of Theorem 1, except that here we need to
handle states reveal. We raise a flag QueryRO if the adversary ever queries the random oracle on a key
k of a fresh session.

We first claim that A does not have any advantage in this game. To see this, we consider all types of
valid sessions listed in Table 4.:
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– Types 1,2,5,6: These types of attacks do not use the state-reveal oracle, by the argument used in G3
of Theorem 1, A dose not have any advantage over test sessions of these types.

– Types 7,12: For type-7 (resp., type-12) test sessions, the peer users are uncorrupted. If such session
does not have a partially matching (resp., matching) session, then by line 83 (resp., line 113), A will
triggers QueryRO if it send valid key confirmation tags to such session. That is, unless A triggers
QueryRO, A cannot complete such session and thus cannot test it.

If such session has a matching session, then unless A queried the correct k of such session (which
will trigger QueryRO in line 127), A cannot distinguish whether the returned session key from test
oracle is real or random, since it is output of random oracle.

– Types 8,10: In these cases, the session has a (partially) matching session. Similar to types 7 and 12
(with partially matching or matching sessions), A cannot distinguish whether the returned session
key from test oracle is real or random unless it queried the correct key k of such session (and triggers
QueryRO).

– Types 9,11: A cannot complete such session unless it triggers QueryRO. For example, let us consider
a type-9 session sID. Since sID does not have matching session and the peer of sID is uncorrupted
when A tampers sID, A completes this session means that it sent a valid key confirmation tag to
sID, which will trigger QueryRO by line 113. Type 11 is symmetric to type 9, and thus a similar
argument applies to type-9 sessions.

– Types 13,14: Let sID be a type-13 session sID. By definition, both the owner user and peer user
of sID are uncorrupted. If sID has a partially matching session, then A has to queried the correct
key k of sID to distinguish. If sID does not have partially matching session, then A has to send the
valid key confirmation tag to sID to complete the session. Both cases will raise QueryRO. A similar
argument applies to type-14 sessions.
Therefore, for any valid session captured in Table 4, unless A triggers QueryRO, it does not have any

advantage to distinguish the outputs from the Test oracle. So, we have

Pr[GA
4 ⇒ 1] = 1/2.

Bounding event QueryRO. Now it remains to bound Pr[QueryRO]. We describe an adversary Bst
against OW-VwFS-St security of the underlying AKE′ to bound event QueryRO. Bst simulates G4 for
A and if A triggers QueryRO, then Bst outputs a solution of its OW-VwFS-St challenge.

A pseudocode description is given in Figure 18. Bst has a very similar structure with the adversary
B in Figure 8 except for the parts related to session states. For simplicity, here we only describe how Bst
simulate session states and the state-reveal oracle.
Bst gets as input µ public keys and forwards them to A. To use the state-encryption technique, Bst

also generates random key sn for each user n. Such keys are independent of Bst’s challenge public keys.
Bst can simulate queries to oracle SessionI in a straightforward way by querying its own oracle

Session′
I which returns (sID, mi). Since in the OW-VwFS-St game, Bst does not have the unencrypted

session state of AKE′, it simply leaves it as unknown (cf. line 61). Other parts are the same as in G4.
When A queries DerI, Bst forward the query to Der′

I. Although Bst does have the session state of AKE′,
it can still use Der′

I to finish the session. It needs to know such AKE′ state only if A found the one-time
pad for encrypting this state (which will be described later). Bst uses B’s technique (in Figure 8) to check
whether A found a one-way solution of Bst’s OW-VwFS-St challenge and simulate the session key and
key confirmation tag. Oracle SessionR and DerR are simulated similarly, looking at GI instead of GR.

Queries to Test will always return the real session key, which is a perfect simulation since session
keys are perfectly hidden unless A triggers QueryRO. Oracle Corr can be simulated in a straightforward
way by forwarding the query to Corr′. The simulation of GR. GI and H are also similar to the oracles
of B in Figure 8.

It remains to describe the simulation of Rev-State and GstI:
– Bst does not have the session states of AKE′, so it uses the Rev-State′ oracle provided by the

OW-VwFS-St game to respond the unencrypted session state. Concretely, if A both reveal a session
state and corrupt the owner and use this information to query GstI, then Bst also reveal the state of
corresponding session of AKE′ (cf. line 115) and patch GstI to make the simulation consistent.

– Rev-State is simulated as in G4. The abort event in Rev-State assures that Bst will not query
Rev-State′ unless A corrupted the owner user and revealed session state. If A did this, then the
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BSession′
I,Der′

R,Der′
I,Corr′,Rev-State′,KVer

st (pk1, · · · , pkµ)
00 for n ∈ [µ]: sn

$← {0, 1}κ

01 b′ ← AO(pk1, · · · , pkµ)
02 return ⊥

SessionR((i, r) ∈ [µ]2, mi)
03 (sID, mr)← Der′

R((i, r), mi)
04 (Init[sID], Resp[sID]) := (i, r)
05 Type[sID] := “Re”
06 if mr = ⊥
07 SK[sID] := “reject”
08 return ⊥
09 if ∃k′ s. t. GR[k′, pki , pkr , mi , mr ] ̸= ⊥

or GI[k′, pki , pkr , mi , mr ] ̸= ⊥
or H[k′, pki , pkr , mi , mr ] ̸= ⊥

10 abort
11 πr

$← {0, 1}λ, πi
$← {0, 1}λ, K $← K

12 ctxt[sID] := (pki , pkr , mi , mr)
13 if ∃sID′ s. t. ctxt[sID′] = (pki , pkr , mi ,⊥)

or cor[i] = false
14 GR[⋄, pki , pkr , mi , mr ] := πr
15 GI[⋄, pki , pkr , mi , mr ] := πi
16 H[⋄, pki , pkr , mi , mr ] := K
17 else
18 GR[⊕, pki , pkr , mi , mr ] := πr
19 GI[⊕, pki , pkr , mi , mr ] := πi
20 H[⊕, pki , pkr , mi , mr ] := K
21 (MsgI,1[sID], MsgR[sID]) := (mi , (mr , πr))
22 IVr

$← {0, 1}κ, φr := GstR(IVr , sr)⊕ (πi , K)
23 ST[sID] := (IVr , φr)
24 return (sID, (mr , πr))

Reveal(sID)
25 if Type[sID] = “In”: n := Init[sID]
26 else n := Resp[sID]
27 if revSK[sID] = false

and cor[n] = false
and queryOTP[sID] = true

28 abort
29 revSK[sID] := true
30 return SK[sID]

Corr(n ∈ [µ])
31 cor[n] := true
32 skn ← Corr′(n)
33 return (skn , sn)

DerR(sID, πi)
34 if SK[sID] ̸= ⊥ or Type[sID] ̸= “Re”
35 return ⊥
36 (i, r) := (Init[sID], Resp[sID])
37 (IVr , φr) := ST[sID]
38 (π′

i , K ′) := φr ⊕ GstI(IVr , sr)
39 peerPreCor[sID] := cor[i]
40 if ∃sID′ s. t. ctxt[sID′] = ctxt[sID]
41 if πi ̸= GI[⋄, pki , pkr , mi , mr ]
42 SK[sID] := “reject”
43 return ⊥
44 K := H[⋄, pki , pkr , mi , mr ]
45 else
46 if ∃k s. t. GI[k, pki , pkr , mi , mr ] = πi

and KVer(k, sID)
47 if peerPreCor[sID] = false
48 Stop with (sID, k)
49 K := H(k, pki , pkr , mi , mr)
50 else
51 GI[⋄, pki , pkr , mi , mr ] $← {0, 1}λ

52 if πi = GI[⋄, pki , pkr , mi , mr ] abort
53 SK[sID] := “reject”
54 return ⊥
55 (MsgI,2[sID], SK[sID]) := (mi,2, K)
56 return ε

SessionI((i, r) ∈ [µ]2)
57 (Init[sID], Resp[sID]) := (i, r)
58 Type[sID] := “In”
59 (sID, mi)← Session′

I(i, r)
60 IVi

$← {0, 1}κ, φi
$← {0, 1}κ

61 ST′[i, IV] := (sID, φi ,⊥)
62 (MsgI,1[sID], ST[sID]) := (mi , (IVi , φi))
63 ctxt[sID] := (pki , pkr , mi ,⊥)
64 return (sID, mi)

DerI(sID, (mr , πr))
65 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In”
66 return ⊥
67 (i, r) := (Init[sID], Resp[sID])
68 (sID′, φi ,⊥) := ST′[i, IV]
69 peerPreCor[sID] := cor[r ]
70 Der′

I(sID, mr)
71 Replace ⊥ in ctxt[sID] with mr
72 if ∃sID′ s. t. ctxt[sID′] = ctxt[sID]
73 if πr ̸= GR[⋄, pki , pkr , mi , mr ]
74 SK[sID] := “reject”
75 return ⊥
76 πi := GI[⋄, pki , pkr , mi , mr ]
77 K := H[⋄, pki , pkr , mi , mr ]
78 else
79 if ∃k s. t. GR[k, pki , pkr , mi , mr ] = πr

and KVer(k, sID)
80 if cor[r ] = false
81 Stop with (sID, k)
82 πi := GI(k, pki , pkr , mi , mr)
83 K := H(k, pki , pkr , mi , mr)
84 else
85 GR[⋄, pki , pkr , mi , mr ] $← {0, 1}λ

86 if πr = GR[⋄, pki , pkr , mi , mr ] abort
87 SK[sID] := “reject”
88 return ⊥
89 (MsgR[sID], MsgI,2[sID]) := (mr , πi)
90 SK[sID] := K
91 return πi

Test(sID)
92 if sID ∈ Stest return ⊥
93 if SK[sID] ∈ {⊥, “reject”} return ⊥
94 Stest := Stest ∪ {sID}
95 return SK[sID]

GR(k, pki , pkr , mi , mr)
96 if GR[⋄, pki , pkr , mi , mr ] = π ̸= ⊥
97 S := {sID | ctxt[sID] = (pki , pkr , mi , mr)}
98 for sID ∈ S
99 if KVer(sID, k)

100 Stop with (sID, k)
101 elseif GR[⊕, pki , pkr , mi , mr ] = π ̸= ⊥
102 Find sID s. t. ctxt[sID] = (pki , pkr , mi , mr)
103 if KVer(sID, k)
104 Replace ⊕ with k
105 return π
106 if GR[k, pki , pkr , mi , mr ] = π ̸= ⊥
107 return π
108 π $← {0, 1}λ, GR[k, pki , pkr , mi , mr ] := π
109 return π

GstI(IV, s)
110 if GstI[IV, s] = y ̸= ⊥
111 return y
112 y $← {0, 1}dI

113 if (∃i s.t. si = s) and (ST′[i, IV] ̸= ⊥)
114 (sID, φi ,⊥) := ST′[i, IV]
115 sti ← Rev-State′(sID)
116 y := φi ⊕ sti , queryOTP[sID] := true
117 GstI[IV, s] := y
118 return y

Fig. 18. Adversary Bst against OW-VwFS-St. A has access to oracles O := {SessionI,SessionR,DerI,DerR,
Reveal,Corr,Test, GI, GR, H, GstI, GstR}. Procedures Fresh and Valid are defined in Figure 3. Oracles GI and
H are defined analogously to GR. GstR is defined as a usual RO simulation.
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session is invalid. This abort event makes sure that all valid sessions during the reduction will always
correspond to a valid session of AKE′ in the game OW-VwFS-St.
This concludes the description of adversary Bst. If QueryRO happens during Bst’s simulation, i. e.,

there exists a random oracle query for a fresh and valid session and correct key k of AKE′, then Bst wins
the OW-VwFS-St game. We get

Pr[QueryRO] ≤ ε′ + Sδ .

Further, Bst issues at most S queries to Rev-State′ (since there are at most S sessions), and at most
(S + QGI + QGR + QH) to KVer. The number of queries to all other oracles is preserved. This completes
the proof of Theorem 2.

D Omitted Proofs from Section 6

D.1 Proof of Lemmas 1 and 2

Since the proofs are almost identical, we proof them together, only highlighting the additional changes
for Lemma 2.

Proof. For the proof of Lemma 1 let A be an adversary that breaks the (t, ε, µ, S , T , QCor, QVer)-
OW-VwFS-security of AKE′

kem. For that of Lemma 2 let A be an adversary that breaks the (t, ε, µ, S , T ,

QCor, QVer , QSt)-OW-VwFS-St-security of AKE′
kem. That is A computes the key k∗ = (k̃∗, k∗

i , k∗
r ) for a

fresh and valid sID∗ according to the game definition.
For the proof we will make a case distinction depending on whether sID∗ has a matching session and

which parties are corrupted. Recall that we have to consider the following three cases for valid attacks:
(1) there exists a matching session, or
(2) there does not exist a matching session, the session is of type “In” and the responder is not corrupted.
(3) there does not exist a matching session, the session is of type “Re” and the initiator is not corrupted.
We will handle case (2) and (3) in one step. Thus, we only have to analyze

ϵ ≤Pr[OW-VwFSA
AKE′

kem
⇒ 1 ∧ Case (1)],

+ Pr[OW-VwFSA
AKE′

kem
⇒ 1 ∧ (Case (2) or Case (3))]

and analogously for OW-VwFS-St which defines the same valid attacks, except that we also require that
the state has not been revealed.
Case (1). In order to analyze this case, we will construct an adversary against OW-PCVA (Lemma 1)
and against OW-PCVA-C (Lemma 2) of KEM0 with S users as given in Figure 19. It simulates all parts
related to the long-term keys itself and uses its input and oracles to simulate the ephemeral public keys
and ciphertexts. For this, it embeds p̃ki in the i-th session and whenever this public key is used in a
responder session that (partially) matches an initiator session, B1 queries its challenge oracle Enc to
obtain a ciphertext c̃. Responder sessions that do not have a partially matching session can be simulated
trivially. In order to simulate initiator sessions that do not have a matching session, B1 queries Cvo in
order to determine whether the ciphertext is valid. If this is the case, it stores a placeholder ⋄ for k1.

For Lemma 2, B1 needs to simulate the Rev-State′ oracle. Note that only initiator sessions have a
state and that the only unknown value is the corresponding s̃ki for p̃ki used in the i-th session. To obtain
s̃ki , B1 simply queries its Corr oracle on i.

Finally, we need to simulate queries to KVer. We use the same helper procedure FindMatch as in the
proof of Lemma 6 in order to decide whether the session has a (partially) matching session and to find
the corresponding ephemeral public key and ciphertext. If it exists, B1 queries Check. If the output is
true, it has found a solution to the OW-PCVA resp. OW-PCVA-C game. For the latter, we also require
that the state has not been revealed. If the output is false (or the state was revealed), it simply returns
the output of Check. If there does not exist a matching session, then B1 needs to simulate the initiator
session correctly. It does so by querying Check on the ciphertext the adversary used in that session.
Thus, B1 queries Check at most QVer times. We have Pr[OW-VwFSA

AKE′
kem
⇒ 1 ∧ Case (1)] ≤ εB1 and

analogously for OW-VwFS-St.
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B
Enc,Check,Cvo, Corr

1 (p̃k1, . . . , p̃kS)
00 for n ∈ [µ]
01 (pkn , skn)← Gen1

02 (sID∗, (k̃∗, k∗
i , k∗

r ))← AO(pk1, · · · , pkµ)
03 if sID∗ > cntS

or Valid(sID∗) = false
04 return 0
05 return KVer(sID∗, (k̃∗, k∗

i , k∗
r ))

Der′
R((i, r) ∈ [µ]2, mi)

06 cntS ++
07 sID := cntS
08 (Init[sID], Resp[sID]) := (i, r)
09 Type[sID] := “Re”
10 (p̃k, cr) := mi
11 (ci , ki)← Encaps1(pki)
12 kr := Decaps1(skr , cr)
13 if kr = ⊥
14 SK[sID] := “reject”
15 return (sID,⊥)
16 if ∃sID′ s. t. (Init[sID′], Resp[sID′]) = (i, r)

and MsgI[sID′] = mi
17 c̃← Enc(sID′)
18 k := (⋄, ki , kr)
19 else
20 (̃c, k̃)← Encaps0(p̃k)
21 k := (k̃, ki , kr)
22 mr := (̃c, ci)
23 (MsgI[sID], MsgR[sID]) := (mi , mr)
24 SK[sID] := k
25 return (sID, mr)

Corr′(n ∈ [µ])
26 cor[n] := true
27 return skn

Rev-State′(sID)
28 revST[sID] := true
29 if Type[sID] = “Re” return ⊥
30 s̃ksID ← Corr(sID)
31 Replace ⊥ in ST[sID] with s̃ksID
32 return ST[sID]

Session′
I((i, r) ∈ [µ]2)

33 cntS ++
34 sID := cntS
35 (Init[sID], Resp[sID]) := (i, r)
36 Type[sID] := “In”
37 (cr , kr)← Encaps1(pkr)
38 mi := (p̃kcntS

, cr)
39 (MsgI[sID], ST[sID]) := (mi , (⊥, kr))
40 return (sID, mi)

Der′
I(sID ∈ [cntS], mr)

41 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In”
42 return ⊥
43 (i, r) := (Init[sID], Resp[sID])
44 (·, kr) := ST[sID]
45 (̃c, ci) := mr
46 ki := Decaps1(ski , ci)
47 if ki = ⊥
48 SK[sID] := “reject”
49 return ε
50 if ∄sID′ s. t. mi [sID′] = (p̃ksID, ·)

and mr [sID′] = (̃c, ·)
51 if Cvo(sID, c̃) = false
52 SK[sID] := “reject”
53 return ε
54 k := (⋄, ki , kr)
55 (MsgR[sID], SK[sID]) := (mr , k)
56 return ε

KVer(sID, (k̃, ki , kr))
57 if SK[sID] = (⋄, ki , kr)
58 if FindMatch(sID) = (sID1, sID2) ̸= ⊥
59 (̃c, ·) := mr [sID2]
60 b ← Check(sID1, c̃, k̃)
61 if b and revST[sID1] = false

62 Stop with (sID1, c̃, k̃)
63 return b
64 else �Type[sID] = “In”
65 (̃c, ·) := mr [sID1]
66 return Check(sID1, c̃, k̃)
67 return JSK[sID] = (k̃, ki , kr)K

Fig. 19. Adversary B1 against OW-PCVA resp. OW-PCVA-C (including boxes) for the proof of Lemma 1
resp. Lemma 2. Highlight lines show how we embed the challenge from OW-PCVA resp. OW-PCA-C.

Case (2) and Case (3). In order to analyze the case where there is no matching session, we will rely
on OW-PCVA-C (Lemma 1) resp. OW-PCVA-CR (Lemma 2) security of the long-term KEM KEM1. We
construct an adversary B2 in Figure 20. The public keys that B2 receives will be the long-term public
keys. Then in each session B2 queries its challenge oracle Enc to receive ciphertext cr (in initiator sessions
with responder r) or ci (in responder sessions with initiator r). It queries Cvo to check validity of the
ciphertext whenever the ciphertext is new, i. e., it was not previously output by B2 in any session. Then
it sets the session key to (k̃, ⋄, ⋄). Queries to Corr′ are answered using the corrupt oracle Corr from
the OW-PCVA-C resp. OW-PCVA-CR game.

As in the previous case, we explain how B2 simulates the Rev-State′ oracle for Lemma 2. Here,
the only unknown value is the key kr for the ciphertext cr used in an initiator session. To obtain kr , B2
simply queries its Reveal oracle on (r , cr).

Queries to KVer are simulated as follows. Since B2 has not computed ki and kr , it needs to check
whether they are correct. Note that Amay trivially compute them, so either B2 just simulates the oracle’s
output or it stops to solve its own game. For this, B2 first queries Check for both ciphertexts ci and cr .
We denote the boolean outputs by bi and br . If the session is an initiator session and br is true and the
responder is not corrupted (this corresponds to case (2)), then B2 stops with (r , cr , kr) which is a valid
solution in the OW-PCVA-C game. For Lemma 2, we additionally require that the state is not revealed
and then the solution is valid in the OW-PCVA-CR game. B2 proceeds similar for responder sessions with
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B
Enc,Cvo,Check,Corr, Reveal

2 (pk1, . . . , pkµ)

00 (sID∗, (k̃∗, k∗
i , k∗

r ))← AO(pk1, · · · , pkµ)
01 if sID∗ > cntS

or Valid(sID∗) = false
02 return 0
03 return KVer(sID∗, (k̃∗, k∗

i , k∗
r ))

Der′
R((i, r) ∈ [µ]2, mi)

04 cntS ++
05 sID := cntS
06 (Init[sID], Resp[sID]) := (i, r)
07 Type[sID] := “Re”
08 (p̃k, cr) := mi
09 ci ← Enc(i)
10 if ∄sID′ s. t. Resp[sID′] = r and mi [sID′] = (·, cr)

or Init[sID′] = r and mr [sID′] = (·, cr)
11 if Cvo(r , cr) = false
12 SK[sID] := “reject”
13 return (sID,⊥)
14 (̃c, k̃)← Encaps0(p̃k)
15 k := (k̃, ⋄, ⋄)
16 mr := (̃c, ci)
17 (MsgI[sID], MsgR[sID]) := (mi , mr)
18 SK[sID] := k
19 return (sID, mr)

Corr′(n ∈ [µ])
20 cor[n] := true
21 skn ← Corr(n)
22 return skn

Rev-State′(sID)
23 revST[sID] := true
24 if Type[sID] = “Re” return ⊥
25 (r , (·, cr)) := (Resp[sID], MsgI[sID])
26 kr ← Reveal(r , cr)
27 Replace ⊥ in ST[sID] with kr
28 return ST[sID]

Session′
I((i, r) ∈ [µ]2)

29 cntS ++
30 sID := cntS
31 (Init[sID], Resp[sID]) := (i, r)
32 Type[sID] := “In”
33 (p̃k, s̃k)← Gen0
34 cr ← Enc(r)
35 mi := (p̃k, cr)
36 (MsgI[sID], ST[sID]) := (mi , (s̃k,⊥))
37 return (sID, mi)

Der′
I(sID ∈ [cntS], mr)

38 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In”
39 return ⊥
40 (i, r) := (Init[sID], Resp[sID])
41 (s̃k, ·) := ST[sID]
42 (̃c, ci) := mr

43 k̃ := Decaps0(s̃k, c̃)
44 if ∄sID′ s. t. Init[sID′] = i and mr [sID′] = (·, ci)

or Resp[sID′] = i and mi [sID′] = (·, ci)
45 if Cvo(i, ci) = false
46 SK[sID] := “reject”
47 return (sID,⊥)
48 k := (k̃, ⋄, ⋄)
49 (MsgR[sID], SK[sID]) := (mr , k)
50 return ε

KVer(sID, (k̃, ki , kr))
51 if SK[sID] = (k̃, ⋄, ⋄)
52 (i, r) := (Init[sID], Resp[sID])
53 ((·, cr), (·, ci)) := (MsgI[sID], MsgR[sID])
54 bi ← Check(i, ci , ki)
55 br ← Check(r , cr , kr)
56 if Type[sID] = “Re” and bi

and cor[i] = false
57 Stop with (i, ci , ki)
58 if Type[sID] = “In” and br

and cor[r ] = false
and revST[sID] = false

59 Stop with (r , cr , kr)
60 return Jbi and brK
61 return JSK[sID] = (k̃, ki , kr)K

Fig. 20. Adversary B2 against OW-PCVA-C resp. OW-PCVA-CR (including boxes) for the proof of Lemma 1
resp. Lemma 2. Highlight lines show how we embed the challenge from OW-PCVA-C resp. OW-ChCCA.

initiator i (which corresponds to case (3)). If it has not stopped, then it simply returns true if both
bi and br are true. Otherwise, it returns false. Note that the simulation is perfect and that B2 issues
at most 2QVer queries to Check. We have Pr[OW-VwFSA

AKE′
kem
⇒ 1 ∧ (Case (2) or Case (3))] ≤ εB2 and

analogously for OW-VwFS-St, which concludes the proofs of Lemmas 1 and 2.

E QROM Proof of Theorem 5

We first recall the notion of quantum random oracle model (QROM) and some lemmas of interest.

E.1 Quantum Random Oracle Model

In the quantum random oracle model (QROM), hash functions are modelled as publicly quantum-
accessible random oracles (see [BDF+11] for more details). Adversaries in the QROM can query ROs
on quantum superposition. Let qRO be a random oracle, we denote A with quantum access to qRO by
A|qRO⟩.

Lemma 3 ([AHU19] and [PWZ23b, Corollary 2.2]) gives a probabilistic bound for an adversary A (at
most q queries to |qRO⟩) to distinguish whether it is interacting with random oracle qRO0 or interacting
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with random oracle qRO1, where qRO0\S = qRO1\S (i.e., ∀x /∈ S, qRO0(x) = qRO1(x)) and S is an
independently and uniformly random set.

Lemma 3. Let X , Y, and S ⊆ X be sets. Let qRO0, qRO1 : X → Y be random functions satisfying
∀x /∈ S, qRO0(x) = qRO1(x). Let inp be some bitstring. (S, qRO0, qRO1, inp) may have arbitrary joint
distribution. Let A be an adversary issuing at most Qqro quantum-superposition queries to random oracle
and, on input inp, it outputs either 0 or 1.

If S is chosen independently and uniformly at random, then for any PPT adversary A, we have∣∣∣Pr[1← A|qRO0⟩(inp)]− Pr[1← A|qRO1⟩(inp)]
∣∣∣ ≤ 2Qqro

√
|S|/|X |

Remark 4 (Simulation of QROs). When constructing reduction in the QROM, we need to simulate ROs
such that the adversary can issue quantum-superposition queries. Unfortunately, unlike classical ROM,
efficient reduction algorithm in the QROM cannot use lazy sampling to simulate quantum random
oracles (QROs). Following [JZC+18,KLS18,SXY18,PWZ23b], we do not specify how to simulate QROs.
Instead, we assume that reductions have access to some internal quantum random oracles, which can be
instantiated by quantum-secure pseudo-random functions or real-world hash functions [KLS18,SXY18].

E.2 Proof of Theorem 5

Proof (Theorem 5). We use games sequence G0-G4 (shown in Figure 21) to prove Theorem 5. We only
present the codes of modified parts. The full codes of G0 can be found in Figure 24.
Game G0. This game is the same as IND-FSAKEkem , except that we exclude collisions of long-term key
pairs (pki , ski), ciphertexts c from KEM1, ephemeral key pairs (p̃k, s̃k) and ciphertexts c̃ from KEM0,
session keys, and key confirmation tags generated by the game. If such a collision happens at any time,
then we abort the game. For readability, we do not explicitly define such events in the game.∣∣∣Pr[IND-FSA

AKEkem
⇒ 1]− Pr[GA

0 ⇒ 1]
∣∣∣

≤ µ22γ1 + S2(2−α1 + 2−γ0 + 2−α0 + |K|−1 + 2−λ)

Now in G0, there can be at most one (partially) matching session for each session, and key confirmation
tags produced in non-(partially-)matching SessionR and SessionI queries are different to each other.
This implies that the adversary is unable to use key confirmation tags produced in initiator (respectively,
responder) sessions to complete non-(partially-)matching responder (respectively, initiator) sessions.
Game G1. If A tests a type-1 or type-2 session, then the Test oracle returns a random session key
(cf. lines 34 to 35). We bound the probability difference of G0 and G1 in Lemma 4. Since the proof is
straight-forward, for simplicity, we postpone the proof of Lemma 4 to Appendix E.3 and continue the
proof of Theorem 5.

Lemma 4. With the notations and assumptions from the proof of Theorem 5, there exists an adversary
B that breaks the (t′, ε′

0, S , S)-MUC-IND-CCA-security of KEM0 (that has key space K0 and error bound
δ0) with t ′ ≈ t and

∣∣Pr[GA
0 ⇒ 1]− Pr[GA

1 ⇒ 1]
∣∣ ≤ 2ε′

0 + 2µS · δ0 + 2QH
√

S√
|K0|

.

Game G2. We add an flag ForgeKCR which captures the event that the adversary successfully forges a
valid key-confirmation tag on behalf of some responder user r while r is uncorrupted and does not have
such session. If this flag is raised to true, then the game aborts.

Concretely, we use a list Lresp to record all key confirmation tags output by responder oracle SessionR
(cf. lines 01 and 26). We raise a boolean flag ForgeKCR (which is initialized as false in line 02) to true
if A sends a valid key-confirmation tag π to DerI where π is not output by SessionR and the intended
peer of this DerI query is not corrupted at the time when DerI receives π (cf. lines 51 to 53). Moreover,
if ForgeKCR is raised to true, then the game aborts and returns a random bit.
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GAMES G0-G4

00 par1 ← Setup1(1λ), par0 ← Setup0(1λ)
01 Lresp := ∅ �G2-G4
02 ForgeKCR := false �G2-G4
03 Linit := ∅ �G3-G4
04 ForgeKCI := false �G3-G4
05 for n ∈ [µ]: (pkn , skn)← Gen1(par1)
06 b $← {0, 1}
07 b′ ← AO(par1, par0, pk1, · · · , pkµ)
08 for sID∗ ∈ Stest

09 if Fresh(sID∗) = true
10 return b �session not fresh
11 if Valid(sID∗) = true
12 return b �no valid attack
13 return Jb = b′K
SessionR((i, r) ∈ [µ]2, mi,1)
14 cntS ++, sID := cntS
15 (Init[sID], Resp[sID]) := (i, r)
16 Type[sID] := “Re”
17 (p̃k, c) := mi,1

18 (̃c, k̃)← Encaps0(p̃k)
19 (ci , ki)← Encaps1(pki)
20 kr := Decaps1(skr , c)
21 ctxt := (pki , pkr , p̃k, c̃, ci , cr)
22 πr := GR((k̃, ki , kr), ctxt)
23 π′

i := GI((k̃, ki , kr), ctxt)
24 K ′ := H((k̃, ki , kr), ctxt)
25 mr := (̃c, ci , πr), str := (π′

i , K ′)
26 Lresp := Lresp ∪ {πr} �G2-G4
27 (MsgI,1[sID], MsgR[sID]) := (mi,1, mr)
28 st[sID] := str
29 return (sID, mr)

Test(sID)
30 if sID ∈ Stest : return ⊥ �already tested
31 if SK[sID] = ⊥: return ⊥
32 Stest := Stest ∪ {sID}
33 K∗

0 := SK[sID], K∗
1

$← K
34 if sID is type 1 or 2 in Table 2 �G1-G4
35 K∗

0
$← K �G1-G4

36 if sID is type 5 or 6 in Table 2 �G4
37 K∗

0
$← K �G4

38 return K∗
b

DerI(sID ∈ [cntS], mr)
39 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In”
40 return ⊥ �no re-use
41 (i, r) := (Init[sID], Resp[sID])
42 sti := ST[sID]
43 peerPreCor[sID] := cor[r ]
44 (̃c, c, π) := mr

45 sti := (pkr , p̃k, s̃k, cr , kr)
46 ki := Decaps1(ski , c), k̃ := Decaps0(s̃k, c̃)
47 ctxt := (pki , pkr , p̃k, c̃, ci , cr)
48 π′

r := GR((k̃, ki , kr), ctxt)
49 πi := GI((k̃, ki , kr), ctxt)
50 if π′

r = π
51 if peerPreCor[sID] = false and π′

r /∈ Lresp �G2-G4
52 ForgeKCR := true �G2-G4
53 abort �G2-G4

54 K := H((k̃, ki , kr), ctxt)
55 SK[sID] := K
56 else
57 SK[sID] := “reject”
58 return ⊥
59 mi,2 := πi
60 Linit := Linit ∪ {πi} �G3-G4
61 return mi,2

DerR(sID ∈ [cntS], mi,2)
62 if SK[sID] ̸= ⊥ or Type[sID] ̸= “Re”
63 return ⊥ �no re-use
64 (i, r) := (Init[sID], Resp[sID])
65 str := ST[sID]
66 peerPreCor[sID] := cor[i]
67 π := mi,2
68 (π′, K ′) := str
69 if π′ = π
70 if peerPreCor[sID] = false and π′

r /∈ Linit �G3-G4
71 ForgeKCI := true �G3-G4
72 abort �G3-G4
73 K := K ′

74 SK[sID] := K
75 else
76 SK[sID] := “reject”
77 return ⊥
78 MsgI,2[sID] := mi,2
79 return ε

Fig. 21. Games sequence in proving Theorem 5. A has access to oracles O := {SessionI,SessionR,DerI,DerR,
Reveal,Corr,Test, GR, GI, H}, whereA has quantum access to random oracles GR, GI, and H. Helper procedures
Fresh and Valid are defined in Figure 3. A clean description of G0 is given in Figure 24.

If ForgeKCR = false, then G1 proceeds identically with G2 and the winning probabilities of A in these
two games are the same. Therefore, we have∣∣Pr[GA

1 ⇒ 1]− Pr[GA
2 ⇒ 1]

∣∣ ≤ Pr[ForgeKCR],

where Pr[ForgeKCR] is the probability that ForgeKCR is raised to true in G1.
We use intermediate games G1,0-G1,2 (cf. Figure 22) to bound the probability of Pr[ForgeKCR].

- Game G1,0. G1,0 proceeds identically with G1 except that G1,0 outputs 1 if and only if the flag
ForgeKCR is raised to true (cf. lines 08 and 57) in G1. We have

Pr[ForgeKCR : GA
1 ] = Pr[GA

1,0 ⇒ 1].

- Game G1,1. In this game, we predict which responder user will be impersonated by the adversary
A when A causes ForgeKCR to be true, and if we guess wrong, then the game aborts with output 0.
Concretely, we guess a user r∗ uniformly at random before running A (cf. line 00), and the game aborts
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GAMES G1,0-G1,2

00 r∗ $← [µ] �G1,1-G1,2
01 L := ∅ �G1,2
02 par1 ← Setup1(1λ), par0 ← Setup0(1λ)
03 Lresp := ∅, ForgeKCR := false
04 for n ∈ [µ]: (pkn , skn)← Gen1(par1)
05 b $← {0, 1}
06 b′ ← AO(par1, par0, pk1, · · · , pkµ)
07 if ForgeKCR = true: return 1
08 else return 0

SessionR((i, r) ∈ [µ]2, mi,1)
09 cntS ++, sID := cntS
10 Type[sID] := “Re”
11 (Init[sID], Resp[sID]) := (i, r)
12 (p̃k, c) := mi,1

13 (̃c, k̃)← Encaps0(p̃k)
14 (ci , ki)← Encaps1(pki)
15 kr := Decaps1(skr , c) �G1,0-G1,1
16 if r = r∗ �G1,2
17 if ∃k s.t. (c, k) ∈ L: kr := k �G1,2
18 else kr := Decaps1(skr∗ , c) �G1,2
19 else kr := Decaps1(skr , c) �G1,2

20 ctxt := (pki , pkr , p̃k, c̃, ci , cr)
21 πr := GR((k̃, ki , kr), ctxt)
22 π′

i := GI((k̃, ki , kr), ctxt)
23 K ′ := H((k̃, ki , kr), ctxt)
24 mr := (̃c, ci , πr), str := (π′

i , K ′)
25 Lresp := Lresp ∪ {πr}
26 (MsgI,1[sID], MsgR[sID]) := (mi,1, mr)
27 st[sID] := str
28 return (sID, mr)

Corr(n ∈ [µ])
29 if n = r∗: abort �G1,1-G1,2
30 cor[n] := true
31 return skn

SessionI((i, r) ∈ [µ]2)
32 cntS ++, sID := cntS
33 (Init[sID], Resp[sID]) := (i, r)
34 Type[sID] := “In”
35 (p̃k, s̃k)← Gen0(par0)
36 (cr , kr)← Encaps1(pkr)
37 if r = r∗ �G1,2
38 kr

$← K1,L := L ∪ {(cr , kr)} �G1,2

39 MsgI,1[sID] := mi,1 := (p̃k, cr)
40 ST[sID] := (pkr , p̃k, s̃k, cr , kr)
41 return (sID, mi,1)

DerI(sID ∈ [cntS], mr)
42 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In”
43 return ⊥ �no re-use
44 (i, r) := (Init[sID], Resp[sID])
45 sti := ST[sID]
46 peerPreCor[sID] := cor[r ]
47 (̃c, c, π) := mr

48 sti := (pkr , p̃k, s̃k, cr , kr)
49 ki := Decaps1(ski , c), k̃ := Decaps0(s̃k, c̃)
50 ctxt := (pki , pkr , p̃k, c̃, ci , cr)
51 π′

r := GR((k̃, ki , kr), ctxt)
52 πi := GI((k̃, ki , kr), ctxt)
53 if π′

r = π
54 if peerPreCor[sID] = false and π /∈ Lresp

55 and r = r∗ �G1,1-G1,2
56 ForgeKCR := true
57 abort
58 K := H((k̃, ki , kr), ctxt)
59 SK[sID] := K
60 else
61 SK[sID] := “reject”
62 return ⊥
63 mi,2 := πi
64 return mi,2

Fig. 22. Games sequence G1,0-G1,2 in bounding Pr[ForgeKCR]. Different to G1, G1,0-G1,2 output 1 if and only
if A causes ForgeKCR to be true. For simplicity, we only present the codes that different from G1. All omitted
oracles are the same as in G1.

output 0 if A corrupts r∗ (cf. line 29). ForgeKCR now is raised to true only if the responder that A
impersonates is r∗ (cf. line 55).

We claim that Pr[GA
1,1 ⇒ 1] = 1

µ Pr[GA
1,0 ⇒ 1]. Suppose that A corrupted in total µ′ users in G1,0,

where 1 ≤ µ′ < µ is arbitrary, then the probability that ForgeKCR is raised to true (and thus the game
G1,0 outputs 1) and r∗ is the responder that A impersonates in triggering ForgeKCR is

µ− µ′

µ
· 1

µ− µ′ · Pr[GA
1,0 ⇒ 1] = 1

µ
Pr[GA

1,0 ⇒ 1],

where µ−µ′

µ is the probability that r∗ has not been corrupted yet and 1
µ−µ′ is the probability that the

responder that A impersonates in triggering ForgeKCR is r∗ (note that r∗ is sampled uniformly and
independently at random). If µ′ = µ, namely, A corrupts all users, then by definition of ForgeKCR, A
cannot trigger ForgeKCR. By calculating all possibilities of µ′, we have

Pr[GA
1,1 ⇒ 1] = 1

µ
Pr[GA

1,0 ⇒ 1]

- Game G1,2. In SessionI, if the responder r is user r∗, then we sample kr uniformly and independently
at random instead of using Encaps1 (cf. lines 37 to 38). We also use a list L (cf. line 01) that records all
ciphertext-key pairs generated in SessionI (with responder r∗) to make the simulation consistent (cf.
line 01 and lines 16 to 19). To bound the difference between G1,1 and G1,2, we construct a reduction B1
from MC-IND-CCA security of KEM1 (cf. Figure 23).
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BEnc,Dec
1 (par∗

1 , pk∗)
00 r∗ $← [µ], L := ∅
01 par1 := par∗

1 , pkr∗ := pk∗

02 par0 ← Setup0(1λ)
03 Lresp := ∅, ForgeKCR := false
04 for n ∈ [µ]\r∗ : (pkn , skn)← Gen1(par1)
05 b $← {0, 1}
06 b′ ← AO(par1, par0, pk1, · · · , pkµ)
07 if ForgeKCR = true: return 1
08 else return 0

SessionI((i, r) ∈ [µ]2)
09 cntS ++, sID := cntS
10 (Init[sID], Resp[sID]) := (i, r)
11 Type[sID] := “In”
12 (p̃k, s̃k)← Gen0(par0)
13 (cr , kr)← Encaps1(pkr)
14 if r = r∗

15 (cr , kr)← Enc(),L := L ∪ {(cr , kr)}
16 MsgI,1[sID] := mi,1 := (p̃k, cr)
17 ST[sID] := (pkr , p̃k, s̃k, cr , kr)
18 return (sID, mi,1)

Corr(n ∈ [µ])
19 if n = r∗: abort
20 cor[n] := true
21 return skn

SessionR((i, r) ∈ [µ]2, mi,1)
22 cntS ++, sID := cntS, Type[sID] := “Re”
23 (Init[sID], Resp[sID]) := (i, r)
24 (p̃k, c) := mi,1, (̃c, k̃)← Encaps0(p̃k)
25 (ci , ki)← Encaps1(pki)
26 if r = r∗

27 if ∃k s.t. (c, k) ∈ L: kr := k
28 else kr := Dec(c)
29 else kr := Decaps1(skr , c)
30 ctxt := (pki , pkr , p̃k, c̃, ci , cr)
31 πr := GR((k̃, ki , kr), ctxt)
32 π′

i := GI((k̃, ki , kr), ctxt)
33 K ′ := H((k̃, ki , kr), ctxt)
34 mr := (̃c, ci , πr), str := (π′

i , K ′)
35 Lresp := Lresp ∪ {πr}, st[sID] := str
36 (MsgI,1[sID], MsgR[sID]) := (mi,1, mr)
37 return (sID, mr)

DerI(sID ∈ [cntS], mr)�Omitted parts are the same as in Figure 22
· · ·

38 if π′
r = π

39 if peerPreCor[sID] = false
and π′

r /∈ Lresp and r = r∗

40 ForgeKCR := true
41 abort
· · ·

Fig. 23. Adversary B1 against MC-IND-CCA. B1 simulates G1,1 or G1,2 for A. B1 has access to oracles Enc and
Dec. For sake of simplicity, here we only present the codes of SessionI and SessionR, other oracles are the same
as in G1,1. Highlight lines show how we embed the challenge from MC-IND-CCA.

Reduction B1 plays the MC-IND-CCA game with at most S challenge ciphertexts. It firstly samples
r∗ uniformly at random, initializes a list L to record all challenge ciphertext-key pairs (cf. line 00), and
set the public key of user r∗ as the challenge public key. In SessionI, if the responder is r∗, B1 embeds a
challenge ciphertext-key pair into the protocol messages and records it in L (cf. line 38 and lines 14 to 15).
In SessionR, if the responder is r∗, B1 either uses the Dec oracle to decrypt the received ciphertext or
finds the decapsulated key from L, depends on whether the received ciphertext is challenge ciphertext
(cf. lines 26 to 28).

If B1 plays MC-IND-CCAKEM1,0, then it perfectly simulates G1,1 forA, and if it plays MC-IND-CCAKEM1,1,
then it perfectly simulates G1,2. In line 15, we use the recorded KEM key without decryption, so we also
need to consider the error bound δ1 of KEM1. Since there are at most S sessions in the AKE game, we
have

∣∣Pr[GA
1,1 ⇒ 1]− Pr[GA

1,2 ⇒ 1]
∣∣

≤
∣∣Pr[MC-IND-CCAB1

KEM1,0 ⇒ 1]− Pr[MC-IND-CCAB1
KEM1,1 ⇒ 1]

∣∣ + S · δ1

:= ε′
1 + Sδ1.

Now we bound Pr[GA
1,2 ⇒ 1]. To makes G1,2 output 1, A needs to send a tag π to DerI such that (1) r∗

is not corrupted yet when it sends π to DerI, (2) π is not from SessionR, namely, not recorded in Lresp,
and (3) π = GR((k̃, ki , kr∗), ctxt) where kr∗ is uniformly random. The condition (2) requires that such
tag π is forged by the adversary. To forge such π, the adversary needs to compute GR((k̃, ki , kr∗), ctxt)
where kr∗ is uniformly random by condition (3).

We can use the argument in the proof of Lemma 4 (given in Appendix E.3) to prove that such
GR((k̃, ki , kr∗), ctxt) are indistinguishable from independently and uniformly random tags except with
probability 2QGR

√
S · (

√
|K1|)−1 (since there are at most S session keys in the AKE game). Furthermore,

if all tags are random, then the probability that A can forge at least one of these random tags is at most
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S/2λ (similar to the event RandKC in the proof of Lemma 1). Therefore, we have

Pr[GA
1,2 ⇒ 1] ≤ 2QGR

√
S√

|K1|
+ S

2λ
,

and by combining all probability differences, we have

∣∣Pr[GA
1 ⇒ 1]− Pr[GA

2 ⇒ 1]
∣∣ ≤ Pr[ForgeKCR] ≤ µ(ε′

1 + Sδ1 + 2QGR

√
S√

|K1|
+ S

2λ
) .

Game G3. We add an flag ForgeKCI which captures the event that the adversary successfully forges a
valid key-confirmation tag on behalf of some initiator user i while user i is uncorrupted and does not
have such session. If A triggers ForgeKCI, then the game aborts and outputs a random bit.

Concretely, we use a list Linit to record all key confirmation tags output by responder oracle DerI

(cf. lines 03 and 60). We raise the boolean flag ForgeKCI (which is initialized as false in line 04) to true
if A sends a valid key-confirmation tag π to DerR where π is not output by DerR and the initiator party
of this DerR query is not corrupted at the time when DerR receives π (cf. lines 70 to 72). If ForgeKCI
is raised to true, then the game aborts and returns a random bit.

If ForgeKCI = false, then G2 proceeds identically with G3 and the winning probabilities of A in these
two games are the same. Therefore, we have∣∣Pr[GA

2 ⇒ 1]− Pr[GA
3 ⇒ 1]

∣∣ ≤ Pr[ForgeKCI],

where Pr[ForgeKCI] is the probability that ForgeKCI is raised to true in G2.
Bounding Pr[ForgeKCI] is similar to bounding Pr[ForgeKCR] since these two events are symmetric.

For sake of simplicity, we leave it as a lemma (cf. Lemma 5) and prove it in Appendix E.3.

Lemma 5. With the notations and assumptions from the proof of Theorem 5, there exists an adversary
B1 that breaks the (t′, ε′

1, S)-MC-IND-CCA-security of KEM1 (that has key space K1 and error bound δ1)
with t ′ ≈ t and∣∣Pr[GA

2 ⇒ 1]− Pr[GA
3 ⇒ 1]

∣∣ ≤ Pr[ForgeKCI] ≤ µ(ε′
1 + Sδ1 + 2QGI

√
S√

|K1|
+ S

2λ
).

Game G4. If A tests a session sID that is of type 5 or 6, then the Test oracle returns a random session
key (cf. lines 36 to 37). Now in G4, all session keys output by Test are independently and uniformly
random, thus A does not have have any distinguishing advantage. Therefore,

Pr[GA
4 ⇒ 1] = 1

2
.

We claim that Pr[GA
3 ⇒ 1] = Pr[GA

4 ⇒ 1]. In fact, the abort events introduced in G2 and G3 make A
unable to test any type-5 or type-6 session, and thus the modification of returned session keys of type-5
and type-6 sessions do not change A’s view.

To see this, let sID be an arbitrary type-5 session. Let i = owner[sID]. By definition (cf. Table 2),
sID is an initiator session (i.e., Type[sID] = “In”), so A acts as some responder r of user i in sID.

To complete session sID, A firstly activates sID via querying SessionI((i, r)) (which responses
(sID, (p̃k, cr))) and then queries DerI(sID, (c̃, ci , π)). By the definition of type-5 session (cf. Table 2),
sID does not have partially matching session, which implies that such π is not from any SessionR(i, r)
query. By the definition of type-5 session, r is not corrupted at the time A queries DerI(sID, (c̃, ci , π)).
Therefore, if such DerI does not reply ⊥, then A produces the correct key confirmation tag πr of this
session. By lines 51 to 53, this will trigger ForgeKCR and make the game abort. Therefore, A cannot test
any type-5 session.

Similarly, A cannot test any type-6 session. Let sID be an arbitrary type-6 session. This case is
symmetric to the type-5 case. To complete sID, A has to produce the correct key confirmation tag πi of
this session. By the definition of type-6 session (cf. Table 2), such tag is not from any initiator session
and the initiator user of sID is not corrupted at the time A sends πi to DerR. Therefore, if A produces
such correct key confirmation tag, then it triggers ForgeKCR and makes the game abort.
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Combining all the probability differences in the games sequence G0-G4, we have

ε = |Pr[IND-FSA
AKEkem

⇒ 1]− 1
2
| ≤ 2ε′

0 + 2µε′
1 + 2µS(δ0 + δ1) + µ22−γ1 + µS2−λ+1

+ S2 · (2−α1 + 2−γ0 + 2−α0) + 2µ(QGR + QGI)
√

S√
|K1|

+ 2QH
√

S√
|K0|

GAME G0

00 par1 ← Setup1(1λ), par0 ← Setup0(1λ)
01 for n ∈ [µ]
02 (pkn , skn)← Gen1(par1)
03 b $← {0, 1}
04 b′ ← AO(par1, par0, pk1, · · · , pkµ)
05 for sID∗ ∈ Stest

06 if Fresh(sID∗) = true
07 return b �session not fresh
08 if Valid(sID∗) = true
09 return b �no valid attack
10 return Jb = b′K
SessionR((i, r) ∈ [µ]2, mi,1)
11 cntS ++
12 sID := cntS
13 (Init[sID], Resp[sID]) := (i, r)
14 Type[sID] := “Re”
15 (p̃k, c) := mi,1

16 (̃c, k̃)← Encaps0(p̃k)
17 (ci , ki)← Encaps1(pki)
18 kr := Decaps1(skr , c)
19 ctxt := (pki , pkr , p̃k, c̃, ci , cr)
20 πr := GR((k̃, ki , kr), ctxt)
21 π′

i := GI((k̃, ki , kr), ctxt)
22 K ′ := H((k̃, ki , kr), ctxt)
23 mr := (̃c, ci , πr), str := (π′

i , K ′)
24 (MsgI,1[sID], MsgR[sID]) := (mi,1, mr)
25 st[sID] := str
26 return (sID, mr)

DerR(sID ∈ [cntS], mi,2)
27 if SK[sID] ̸= ⊥ or Type[sID] ̸= “Re”
28 return ⊥ �no re-use
29 (i, r) := (Init[sID], Resp[sID])
30 str := ST[sID]
31 peerPreCor[sID] := cor[i]
32 π := mi,2, (π′, K ′) := str
33 if π′ = π
34 K := K ′

35 SK[sID] := K
36 else
37 SK[sID] := “reject”
38 return ⊥
39 MsgI,2[sID] := mi,2
40 return ε

SessionI((i, r) ∈ [µ]2)
41 cntS ++, sID := cntS
42 (Init[sID], Resp[sID]) := (i, r)
43 Type[sID] := “In”
44 (p̃k, s̃k)← Gen0(par0)
45 (cr , kr)← Encaps1(pkr)
46 MsgI,1[sID] := mi,1 := (p̃k, cr)
47 ST[sID] := (pkr , p̃k, s̃k, cr , kr)
48 return (sID, mi,1)

DerI(sID ∈ [cntS], mr)
49 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In”
50 return ⊥ �no re-use
51 (i, r) := (Init[sID], Resp[sID])
52 sti := ST[sID]
53 peerPreCor[sID] := cor[r ]
54 (̃c, c, π) := mr

55 sti := (pkr , p̃k, s̃k, cr , kr)
56 ki := Decaps1(ski , c)
57 k̃ := Decaps0(s̃k, c̃)
58 ctxt := (pki , pkr , p̃k, c̃, ci , cr)
59 π′

r := GR((k̃, ki , kr), ctxt)
60 πi := GI((k̃, ki , kr), ctxt)
61 if π′

r = π
62 K := H((k̃, ki , kr), ctxt)
63 SK[sID] := K
64 else
65 SK[sID] := “reject”
66 return ⊥
67 mi,2 := πi
68 return mi,2

Reveal(sID)
69 revSK[sID] := true
70 return SK[sID]

Corr(n ∈ [µ])
71 cor[n] := true
72 return skn

Test(sID)
73 if sID ∈ Stest return ⊥ �already tested
74 if SK[sID] = ⊥ return ⊥
75 Stest := Stest ∪ {sID}
76 K∗

0 := SK[sID]
77 K∗

1
$← K

78 return K∗
b

Fig. 24. Full codes of G0 in proving Theorem 5. A has access to oracles O := {SessionI,SessionR,DerI,DerR,
Reveal,Corr,Test, GR, GI, H}, where A has quantum access to random oracles GR, GI, and H. Fresh and Valid
are defined in Figure 3.
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E.3 Postponed Proofs of Lemmas 4 and 5

Proof (Lemma 4). To make the games transition more readable, we use intermediate games G0,0-G0,3
to show the transition step by step. The codes of G0,0-G0,3 is shown in Figure 25.

- Game G0,0 and G0,3. In these games, we use a list L̃ to record all public keys, ciphertexts, and
KEM keys of KEM0 that are generated in oracles: (1) All public keys for KEM0 generated in SessionI

are recorded in L̃ (cf. line 42). (2) In SessionR, if the received public key p̃k for KEM0 is recorded in L̃,
then the simulator also records the ciphertext and KEM key encapsulated by p̃k in L̃ (cf. lines 18 to 22).
(3) In DerI, if the received ciphertext for KEM0 is recorded in L̃, then the simulator will use the key
recorded in L̃ as the decapsulated key (cf. lines 53 to 55).

These modifications do not change the view ofA unless there exist at least one of ciphertexts generated
in DerI cause decryption error of KEM0 (cf. Definition 6). We have∣∣∣Pr[GA

0 ⇒ 1]− Pr[GA
0,0 ⇒ 1]

∣∣∣ ≤ S · δ0∣∣∣Pr[GA
0,3 ⇒ 1]− Pr[GA

1 ⇒ 1]
∣∣∣ ≤ S · δ0

- Game G0,1 and G0,2. Compared with games G0,0 and G0,3, respectively, G0,1 and G0,2 use indepen-
dent random keys as the encapsulated KEM key in SessionR (cf. line 20). To tell the difference between
G0,0 and G0,1 (and similarly, G0,2 and G0,3), the adversary needs to distinguish if the encapsulated KEM
keys generated in SessionR are real or random. We bound the differences between G0,0 and G0,1 by a
direction reduction from KEM0.

We construct a reduction B0 that simulates G0,0 or G0,1 for A to attack the MUC-IND-CCA security
of KEM0. B0 works as follows: It plays the MUC-IND-CCA game with S users and at most S challenge
ciphertexts per users (S is the number of session in the AKE game). By Definition 9, B0 has oracle access
to Enc and Dec. B0 embeds the challenge public keys in SessionI, embeds the challenge ciphertexts
(output by Enc) in SessionR, and maintains a list L̃ which records all embedded challenges. In Session′

I,
if the receiving ciphertext c̃ is not generated from SessionR (which means that it is not challenge
ciphertext), then B0 uses Dec to decrypt it. The full description of B0 is given in Figure 26.

If B0 plays MUC-IND-CCAKEM0,b, then it perfectly simulates G0,b for A. Therefore, we have∣∣Pr[GA
0,0 ⇒ 1]− Pr[GA

0,1 ⇒ 1]
∣∣

≤
∣∣Pr[MUC-IND-CCAB0

KEM0,0 ⇒ 1]− Pr[MUC-IND-CCAB0
KEM0,1 ⇒ 1]

∣∣ =: ε′
0.

A similar argument applies when bounding G0,2 and G0,3. So, we also have∣∣Pr[GA
0,2 ⇒ 1]− Pr[GA

0,3 ⇒ 1]
∣∣ ≤ ε′

0,

where ε′
0 is the advantage to break MUC-IND-CCA security of KEM0.

Now we bound the probability difference between G0,1 and G0,2. Let sID∗ be arbitrary type-1 or type-2
(cf. Table 2) tested session. Let k̃∗ be the KEM key of KEM0 in the hash input of SK[sID∗]. To distinguish
G0,1 and G0,2, A needs to distinguish if the output of Test(sID∗) is the same as SK[sID∗]. That is, A
needs to distinguish if Test(sID∗) $← K or Test(sID∗) = H((k̃∗, k∗

i , k∗
r ), ctxt∗), where ((k̃∗, k∗

i , k∗
r ), ctxt∗)

is the hash input of SK[sID∗].
We first claim that, in G0,1, if a tested session sID∗ is type-1 or type-2 in Table 2, then the KEM

key for KEM0, k̃∗, of the hash input of SK[sID∗] is independently and uniformly at random. To see this,
suppose that sID∗ is type-1, then by definition, SK[sID∗] has a partially matching session, which means
that the KEM ciphertext of KEM0 received by sID is generated by SessionR. By the codes of G0,1 (cf.
line 54), the KEM key of KEM0 in session sID is uniformly random. A similar argument also applies to
the case of type-2.

Now we are ready to use Lemma 3 to bound the distinguishing probability of A. We observed that
H in G0,1 differs H in G0,2 on the set of hash inputs of type-1 or type-2 tested sessions, and this set can
be viewed as uniformly at random over K0 since their k̃∗ value is uniformly at random, as we claimed
before. To use Lemma 3, H in G0,1 and H in G0,2 are viewed as qRO0 and qRO1 in Lemma 3, respectively,
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GAMES G0, G0,0-G0,3, G1

00 par1 ← Setup1(1λ), par0 ← Setup0(1λ)
01 for n ∈ [µ]
02 (pkn , skn)← Gen1(par1)
03 b $← {0, 1}
04 L̃ := {} �G0,0-G0,3
05 b′ ← AO(par1, par0, pk1, · · · , pkµ)
06 for sID∗ ∈ Stest

07 if Fresh(sID∗) = false
08 return b �session not fresh
09 if Valid(sID∗) = false
10 return b �no valid attack
11 return Jb = b′K
SessionR((i, r) ∈ [µ]2, mi,1)
12 cntS ++
13 sID := cntS
14 (Init[sID], Resp[sID]) := (i, r)
15 Type[sID] := “Re”
16 (p̃k, c) := mi,1

17 (̃c, k̃)← Encaps0(p̃k) �G0,G1

18 if (p̃k, (⊥,⊥)) ∈ L̃ �G0,0-G0,3

19 (̃c, k̃)← Encaps0(p̃k) �G0,0-G0,3

20 k̃ $← K0 �G0,1-G0,2

21 L̃ := L̃ ∪ {(p̃k, c̃, k̃)} �G0,0-G0,3

22 else (̃c, k̃)← Encaps0(p̃k) �G0,0-G0,3
23 (ci , ki)← Encaps1(pki)
24 kr := Decaps1(skr , c)
25 ctxt := (pki , pkr , p̃k, c̃, ci , cr)
26 πr := GR((k̃, ki , kr), ctxt)
27 π′

i := GI((k̃, ki , kr), ctxt)
28 K ′ := H((k̃, ki , kr), ctxt)
29 K ′ := H((k̃, ki , kr), ctxt)
30 mr := (̃c, ci)
31 str := (π′

i , K ′)
32 (MsgI,1[sID], MsgR[sID]) := (mi,1, mr)
33 st[sID] := str
34 return (sID, mr)

SessionI((i, r) ∈ [µ]2)
35 cntS ++, sID := cntS
36 (Init[sID], Resp[sID]) := (i, r)
37 Type[sID] := “In”
38 (p̃k, s̃k)← Gen0(par0)
39 (cr , kr)← Encaps1(pkr)
40 MsgI,1[sID] := mi,1 := (p̃k, cr)
41 ST[sID] := (pkr , p̃k, s̃k, cr , kr)
42 L̃ := L̃ ∪ {(p̃k, (⊥,⊥))} �G0,0-G0,3
43 return (sID, mi,1)

DerI(sID ∈ [cntS], mr)
44 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In”
45 return ⊥ �no re-use
46 (i, r) := (Init[sID], Resp[sID])
47 sti := ST[sID]
48 peerPreCor[sID] := cor[r ]
49 (̃c, c, π) := mr

50 sti := (pkr , p̃k, s̃k, cr , kr)
51 ki := Decaps1(ski , c)
52 k̃ := Decaps0(s̃k, c̃) �G0,G1

53 if ∃k̃′ s.t. (p̃k, (̃c, k̃′)) ∈ L̃ �G0,0-G0,3

54 k̃ := k̃′ �G0,0-G0,3

55 else k̃ := Decaps0(s̃k, c̃) �G0,0-G0,3

56 ctxt := (pki , pkr , p̃k, c̃, ci , cr)
57 π′

r := GR((k̃, ki , kr), ctxt)
58 πi := GI((k̃, ki , kr), ctxt)
59 if π′

r = π
60 K := H((k̃, ki , kr), ctxt)
61 SK[sID] := K
62 else
63 SK[sID] := “reject”
64 return ⊥
65 mi,2 := πi
66 return mi,2

Test(sID)
67 if sID ∈ Stest return ⊥ �already tested
68 if SK[sID] = ⊥ return ⊥
69 Stest := Stest ∪ {sID}
70 K∗

0 := SK[sID]
71 if sID is type 1 or 2 in Table 2 �G0,2-G0,3,G1
72 K∗

0
$← K

73 K∗
1

$← K
74 return K∗

b

Fig. 25. Games sequence G0, G0,0-G0,3, G1 in proving Lemma 4.A has access to oracles O := {SessionI,SessionR,
DerI,DerR,Reveal,Corr,Test, GR, GI, H}, where A has quantum access to random oracles GR, GI, and H.
Omitted oracles are the same as in Figure 24.
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BEnc,Dec
0 (par∗

0 , p̃k
∗
1, ..., p̃k

∗
S)

00 par1 ← Setup1(1λ), par0 := par∗
0

01 for n ∈ [µ]: (pkn , skn)← Gen1(par1)
02 b $← {0, 1}, L̃ := {}
03 b′ ← AO(par1, par0, pk1, · · · , pkµ)
04 for sID∗ ∈ Stest

05 if Fresh(sID∗) = false
06 return b
07 if Valid(sID∗) = false
08 return b
09 return b′

SessionR((i, r) ∈ [µ]2, mi,1)
10 cntS ++, sID := cntS
11 (Init[sID], Resp[sID]) := (i, r)
12 Type[sID] := “Re”
13 (p̃k, c) := mi,1

14 (̃c, k̃)← Encaps0(p̃k)
15 if (p̃k,⊥,⊥) ∈ L̃
16 k̃← Enc(p̃k)
17 L̃ := L̃ ∪ {(p̃k, c̃, k̃)}
18 else (̃c, k̃)← Encaps0(p̃k)
19 (ci , ki)← Encaps1(pki)
20 kr := Decaps1(skr , c)
21 ctxt := (pki , pkr , p̃k, c̃, ci , cr)
22 πr := GR((k̃, ki , kr), ctxt)
23 π′

i := GI((k̃, ki , kr), ctxt)
24 K ′ := H((k̃, ki , kr), ctxt)
25 K ′ := H((k̃, ki , kr), ctxt)
26 mr := (̃c, ci), str := (π′

i , K ′)
27 (MsgI,1[sID], MsgR[sID]) := (mi,1, mr)
28 st[sID] := str
29 return (sID, mr)

SessionI((i, r) ∈ [µ]2)
30 cntS ++, sID := cntS
31 (Init[sID], Resp[sID]) := (i, r)
32 Type[sID] := “In”
33 p̃k := p̃k

∗
sID

34 (cr , kr)← Encaps1(pkr)
35 MsgI,1[sID] := mi,1 := (p̃k, cr)
36 ST[sID] := (pkr , p̃k, ⊥ , cr , kr)
37 L̃ := L̃ ∪ {(p̃k, (⊥,⊥))}
38 return (sID, mi,1)

DerI(sID ∈ [cntS], mr)
39 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In”
40 return ⊥ �no re-use
41 (i, r) := (Init[sID], Resp[sID])
42 sti := ST[sID]
43 peerPreCor[sID] := cor[r ]
44 (̃c, c, π) := mr

45 sti := (pkr , p̃k,⊥, cr , kr)
46 ki := Decaps1(ski , c)
47 if ∃k̃′ s.t. (p̃k, (̃c, k̃′)) ∈ L̃
48 k̃ := k̃′

49 else k̃ := Dec(p̃k, c̃)
50 ctxt := (pki , pkr , p̃k, c̃, ci , cr)
51 π′

r := GR((k̃, ki , kr), ctxt)
52 πi := GI((k̃, ki , kr), ctxt)
53 if π′

r = π
54 K := H((k̃, ki , kr), ctxt)
55 SK[sID] := K
56 else
57 SK[sID] := “reject”
58 return ⊥
59 mi,2 := πi
60 return mi,2

Fig. 26. Adversary B0 against MUC-IND-CCA. B0 simulates G0,0 or G0,1 for A. B0 has access to oracles Enc and
Dec. For sake of simplicity, here we only present the codes of SessionR, DerI, and DerI, other oracles are the
same as in G0,0. Highlight lines show how we embed the challenge from MUC-IND-CCA.

and the set of hash inputs of type-1 or type-2 tested sessions is viewed as the set S in Lemma 3. Now
distinguishing G0,1 and G0,2 boils down to distinguishing QROs qRO0 and qRO1, and such distinguishing
probability can be upper bounded by Lemma 3. Since |S| is bounded by the number of sessions in the
AKE game and we view S as a uniformly random subset of K0, by Lemma 3, we have∣∣Pr[GA

0,1 ⇒ 1]− Pr[GA
0,2 ⇒ 1]

∣∣ ≤ 2QH
√

S/
√
|K0|.

Combining all the probability differences in the games sequence G0, G0,0-G0,3, G1, we have

∣∣Pr[GA
0 ⇒ 1]− Pr[GA

1 ⇒ 1]
∣∣ ≤ 2ε′

0 + 2Sδ0 + 2QH
√

S√
|K0|

.

Proof (Lemma 5). We use intermediate games G2,0-G2,2 (cf. Figure 27) to bound the probability of
Pr[ForgeKCI]. For simplicity, we say A triggers ForgeKCI if ForgeKCI is raised to true.

- Game G2,0. G2,0 proceeds identically with G2 except that G2,0 outputs 1 if and only if A triggers
ForgeKCI in G2 (cf. lines 09 and 64). We have

Pr[ForgeKCI : GA
2 ] = Pr[GA

2,0 ⇒ 1].

- Game G2,1. We guess which initiator user will be impersonated by the adversary A when A causes
ForgeKCI to be true, and if we guess wrong, then the game aborts with output 0. Concretely, we guess
a user i∗ uniformly at random before running A (cf. line 00), and abort the game with output 0 if A
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GAMES G2,0-G2,2

00 i∗ $← [µ] �G2,1-G2,2
01 L := {} �G2,2
02 par1 ← Setup1(1λ), par0 ← Setup0(1λ)
03 Lresp := {}, ForgeKCR := false
04 Linit := {}, ForgeKCI := false
05 for n ∈ [µ]: (pkn , skn)← Gen1(par1)
06 b $← {0, 1}
07 b′ ← AO(par1, par0, pk1, · · · , pkµ)
08 if ForgeKCI = true: return 1
09 else return 0

DerI(sID ∈ [cntS], mr)
10 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In”
11 return ⊥
12 (i, r) := (Init[sID], Resp[sID])
13 sti := ST[sID]
14 peerPreCor[sID] := cor[r ]
15 (̃c, c, π) := mr

16 sti := (pkr , p̃k, s̃k, cr , kr)
17 k̃ := Decaps0(s̃k, c̃)
18 ki := Decaps1(ski , c) �G2,0-G2,1
19 if i = i∗ �G2,2
20 if ∃k s.t. (c, k) ∈ L: ki := k �G2,2
21 else kr := Decaps1(ski∗ , c) �G2,2
22 else ki := Decaps1(ski , c) �G2,2

23 ctxt := (pki , pkr , p̃k, c̃, ci , cr)
24 π′

r := GR((k̃, ki , kr), ctxt)
25 πi := GI((k̃, ki , kr), ctxt)
26 if π′

r = π
27 if peerPreCor[sID] = false and π /∈ Lresp

28 ForgeKCR := true
29 abort
30 K := H((k̃, ki , kr), ctxt)
31 SK[sID] := K
32 else
33 SK[sID] := “reject”
34 return ⊥
35 mi,2 := πi
36 Linit := Linit ∪ {πi}
37 return mi,2

SessionR((i, r) ∈ [µ]2, mi,1)
38 cntS ++, sID := cntS
39 Type[sID] := “Re”
40 (Init[sID], Resp[sID]) := (i, r)
41 (p̃k, c) := mi,1, (̃c, k̃)← Encaps0(p̃k)
42 (ci , ki)← Encaps1(pki)
43 if i = i∗ �G2,2
44 ki

$← K1,L := L ∪ {(ci , ki)} �G2,2
45 kr := Decaps1(skr , c)
46 ctxt := (pki , pkr , p̃k, c̃, ci , cr)
47 πr := GR((k̃, ki , kr), ctxt)
48 π′

i := GI((k̃, ki , kr), ctxt)
49 K ′ := H((k̃, ki , kr), ctxt)
50 mr := (̃c, ci , πr), str := (π′

i , K ′)
51 Lresp := Lresp ∪ {πr}, st[sID] := str
52 (MsgI,1[sID], MsgR[sID]) := (mi,1, mr)
53 return (sID, mr)

DerR(sID ∈ [cntS], mi,2)
54 if SK[sID] ̸= ⊥ or Type[sID] ̸= “Re”
55 return ⊥
56 (i, r) := (Init[sID], Resp[sID])
57 str := ST[sID]
58 peerPreCor[sID] := cor[i]
59 π := mi,2, (π′, K ′) := str
60 if π′ = π
61 if peerPreCor[sID] = false and π′ /∈ Linit

62 and i = i∗ �G2,1-G2,2
63 ForgeKCI := true
64 abort
65 K := K ′

66 SK[sID] := K
67 else
68 SK[sID] := “reject”
69 return ⊥
70 MsgI,2[sID] := mi,2
71 return ε

Corr(n ∈ [µ])
72 if n = i∗: abort �G2,1-G2,2
73 cor[n] := true
74 return skn

Fig. 27. Games sequence G2,0-G2,2 for bounding Pr[ForgeKCI]. Different to G2, G2,0-G2,2 output 1 if and only
if A causes ForgeKCI to be true. For simplicity, we only present the codes that different from G2. All omitted
oracles are the same as in G2.

corrupts i∗ (cf. line 72). ForgeKCI now is raised to true only if the initiator that A impersonates is i∗

(cf. line 62). By a similar argument used in bounding Pr[GA
1,1 ⇒ 1], we have

Pr[GA
2,1 ⇒ 1] = (1/µ) · Pr[GA

2,0 ⇒ 1].

- Game G2,2. In SessionR, if the initiator i is user i∗, then we sample ki uniformly and independently
at random instead of using Encaps1 (cf. lines 43 to 44). We also use a list L (cf. line 01) that records all
embedded challenge ciphertext-key pairs generated in SessionR (with initiator i∗) to make the simulation
consistent (cf. line 01 and lines 19 to 22).

We construct a reduction B1 (in Figure 28) against the MC-IND-CCA security of KEM1 to bound the
difference between G2,1 and G2,2. B1 plays the MC-IND-CCA game with at most S challenge ciphertexts.
It firstly samples i∗ uniformly at random, initialize a list L to record all embed challenge ciphertext-key
pairs, and set the public key of user i∗ as the challenge public key. In SessionR, if the initiator is i∗, B1
embeds a challenge ciphertext-key pair into the protocol messages and records it in L. In DerI, if the
initiator is i∗, B1 either uses the Dec oracle to decapsulate or finds the decapsulated key from L.
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BEnc,Dec
1 (par∗

1 , pk∗)
00 i∗ $← [µ], L := {}
01 par1 := par∗

1 , pki∗ := pk∗

02 par0 ← Setup0(1λ)
03 Lresp := {}, ForgeKCR := false
04 for n ∈ [µ]\i∗ :
05 (pkn , skn)← Gen1(par1)
06 b $← {0, 1}
07 b′ ← AO(par1, par0, pk1, · · · , pkµ)
08 return 0

DerR(sID ∈ [cntS], mi,2)� This oracle is the same as in Figure 27
· · ·

09 if π′ = π
10 if peerPreCor[sID] = false

and π′ /∈ Linit and i = i∗

11 ForgeKCI := true
12 abort and return 1
· · ·

DerI(sID ∈ [cntS], mr)� Omitted parts are the same as in Figure 27
· · ·

13 k̃ := Decaps0(s̃k, c̃)
14 if i = i∗

15 if ∃k s.t. (c, k) ∈ L: ki := k
16 else ki := Dec(c)
17 else ki := Decaps1(ski , c)
18 ctxt := (pki , pkr , p̃k, c̃, ci , cr)
· · ·

SessionR((i, r) ∈ [µ]2, mi,1)� Omitted parts are the same as in Figure 27
· · ·

19 (̃c, k̃)← Encaps0(p̃k)
20 (ci , ki)← Encaps1(pki)
21 if i = i∗

22 (ci , ki)← Enc(),L := L ∪ {(ci , ki)}
23 kr := Decaps1(skr , c)
24 ctxt := (pki , pkr , p̃k, c̃, ci , cr)
· · ·

Fig. 28. Adversary B1 against MC-IND-CCA. B1 simulates G2,1 or G2,2 for A. B1 has access to oracles Enc and
Dec. For sake of simplicity, here we only present the codes of SessionR, DerI, and DerR, other oracles are the
same as in G2,1. Highlight lines show how we embed the challenge from MC-IND-CCA.

If B1 plays MC-IND-CCAKEM1,0, then it perfectly simulates G2,1 forA, and if it plays MC-IND-CCAKEM1,1,
then it perfectly simulates G2,2. In line 15, we use the recorded KEM key without decapsulation, so we
also need to consider the error bound δ1 of KEM1. Since there are S sessions in total, we have∣∣Pr[GA

2,1 ⇒ 1]− Pr[GA
2,2 ⇒ 1]

∣∣ ≤ ε′
1 + Sδ1.

To makes G2,2 output 1, A needs to send a tag π to DerR such that (1) i∗ is not corrupted yet when
A sends π to DerR, (2) π is not from DerI, namely, not recored in Linit, and (3) π = GI((k̃, ki∗ , kr), ctxt)
where ki∗ is uniformly random. By adjusting the argument used in bounding Pr[GA

1,2 ⇒ 1], we have

Pr[GA
2,2 ⇒ 1] ≤ 2QH

√
S/

√
|K0|+ S/2λ.

By combining all probability differences, we have

∣∣Pr[GA
2 ⇒ 1]− Pr[GA

3 ⇒ 1]
∣∣ ≤ Pr[ForgeKCI] ≤ µ(ε′

1 + Sδ1 + 2QH
√

S√
|K0|

+ S
2λ

).
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F Omitted Instiantiation: The CCGJJ Protocol

We can view the core of the protocol from Cohn-Gordon et al. [CCG+19] as a verifiable AKE protocol,
ignoring the session key hash. We denote the underlying protocol by vCCGJJ (cf. Figure 29). Thus, our
result describes an alternative approach to prove security of the extended protocol with key confirmation
and an optimally tight proof which was recently shown in [GGJJ23]. We denote the protocol with key
confirmation by CCGJJKC which combines Figure 29 with Figure 5. In contrast to the proof in [GGJJ23]
which loses the factor µ when adding key confirmation, we will lose it when proving that vCCGJJ is a
OW-VwFS secure AKE protocol. As prior work we do not consider state reveals.

Party Pi (Xi , xi) ∈ G× Zp Party Pr (Xr , xr) ∈ G× Zp

s $← Zp

t $← Zp

k := (T xi , X s
r , T s) k := (X t

i , Sxr , S t)

S := gs

T := gt

Fig. 29. AKE protocol vCCGJJ.

Security of vCCGJJ and CCGJJKC. Protocol vCCGJJ (and hence CCGJJKC) is perfectly correct and has
public keys and messages with log(p) bits entropy. We prove security based on the StCDH assumption
which asks to compute gxy given (gx , gy) for x, y, $← Zp and access to a decision oracle Dhx(·, ·). On
input (Y , Z ), Dhx returns a Boolean value whether Y x = Z .

Lemma 6. For every adversary A that breaks the (t, ε, µ, S , T , QCor, QVer)-OW-VwFS-security of vCCGJJ,
there exist adversaries Bi for i ∈ {1, 2, 3}, that break (ti , εi , QDDH,i)-StCDH with ti ≈ t and ε ≤
ε1 + µ · (ε2 + ε3), where QDDH,i ≤ QVer + 1 for all i ∈ {1, 2, 3}.

The proof is very similar to that of the original CCGJJ protocol. From this, we can recover the result for
the CCGJJKC protocol provided by [GGJJ23].

Theorem 7. Let CCGJJKC be the protocol obtained by adding key confirmation as described in Figure 5
to protocol vCCGJJ. Then for every adversary A that breaks the (t, ε, µ, S , T , QCor)-IND-FS-security of
CCGJJKC, there exists an adversary B that breaks (t′, ε′, QDDH)-StCDH with t ′ ≈ t and

ε ≤ Θ(µ) · ε′ + (S + S2) · 2−λ + (µ2 + S2 + QGI + QGR + QH) · 2− log(p) ,

where QGI , QGR and QH are the number of queries to random oracles GI, GR and H, QDDH ≤ S + QGI +
QGR + QH + 1.

Proof (Theorem 7). The theorem follows from combining Lemma 6 and Theorem 1, where we fold
adversaries B1, B2 and B3 into a single adversary. To bound the advantage from Lemma 6, we use a
similar argument as described in Remark 2.

Proof (Lemma 6). Let A be an adversary that breaks the (t, ε, µ, S , T , QCor, QVer)-OW-VwFS-security
of vCCGJJ. That is A computes the key k∗ = (k∗

1 , k∗
2 , k∗

3 ) for a fresh and valid sID∗ according to game
OW-VwFS.

We proceed similar to the proof of Lemma 1, i. e., we will make a case distinction, only this time, we
will consider case (2) and (3) separately and construct three adversaries in total. We will bound ϵ by

ϵ ≤
∑

i∈{1,2,3}

Pr[OW-VwFSA
vCCGJJ ⇒ 1 ∧ Case (i)] .

Case (1). We start with adversary B1 which is given in Figure 30. B1 gets as input a CDH challenge
(S̄ , T̄ ) and has access to a decision oracle Dhs̄. We will embed S̄ in initiator sessions and T̄ in responder
sessions, re-randomizing group elements. The idea is that when A computes a session key for a matching
session (note that it may have corrupted both parties in this case), k3 will give us the CDH solution.
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BDhs̄
1 (S̄ , T̄)

00 for n ∈ [µ]
01 skn := xn

$← Zp
02 pkn := Xn := gskn

03 (sID∗, (k∗
1 , k∗

2 , k∗
3 ))← AO(pk1, · · · , pkµ)

04 if sID∗ > cntS
or Valid(sID∗) = false

05 return 0
06 return KVer(sID∗, (k∗

1 , k∗
2 , k∗

3 ))

Der′
R((i, r) ∈ [µ]2, S)

07 cntS ++
08 sID := cntS
09 (Init[sID], Resp[sID]) := (i, r)
10 Type[sID] := “Re”
11 t $← Zp
12 if ∃sID′ s. t. (Init[sID′], Resp[sID′]) = (i, r)

and MsgI[sID′] = S
13 T := T̄ · gt

14 k := (k1, k2, k3) := (T xi , Sxr , ⋄)
15 ST[sID] := t
16 else
17 T := gt

18 k := (k1, k2, k3) := (X t
i , Sxr , S t)

19 (MsgI[sID], MsgR[sID]) := (S , T)
20 SK[sID] := k
21 return (sID, T)

Corr′(n ∈ [µ])
22 cor[n] := true
23 return skn

Session′
I((i, r) ∈ [µ]2)

24 cntS ++
25 sID := cntS
26 (Init[sID], Resp[sID]) := (i, r)
27 Type[sID] := “In”
28 s $← Zp
29 S := S̄ · gs

30 (MsgI[sID], ST[sID]) := (S , s)
31 return (sID, S)

Der′
I(sID ∈ [cntS], T)

32 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In”
33 return ⊥
34 (i, r) := (Init[sID], Resp[sID])
35 S := MsgI[sID]
36 k := (k1, k2, k3) := (T xi , Sxr , ⋄)
37 (MsgR[sID], SK[sID]) := (T , k)
38 return ε

KVer(sID, (k1, k2, k3))
39 if SK[sID] = (k1, k2, ⋄)
40 if FindMatch(sID) = (sID1, sID2) ̸= ⊥
41 (s, t) := (ST[sID1], ST[sID2])
42 T := MsgR[sID1]
43 if Dhs̄(T , k3 · T−s)
44 Stop with k3 · T−s · S̄−t

45 return false
46 else �Type[sID] = “In”
47 (s, T) := (ST[sID], MsgR[sID])
48 return Dhs̄(T , k3 · T−s)
49 return JSK[sID] = (k1, k2, k3)K

FindMatch(sID)
50 if Type[sID] = “In”
51 if ∃sID′ s. t. (Init[sID′], Resp[sID′]) = (Init[sID], Resp[sID])

and (MsgI[sID′], MsgR[sID′]) = (MsgI[sID], MsgR[sID]) and Type[sID′] ̸= Type[sID]
52 return (sID, sID′)
53 else
54 if ∃sID′ s. t. (Init[sID′], Resp[sID′]) = (Init[sID], Resp[sID])

and MsgI[sID′] = MsgI[sID] and Type[sID′] ̸= Type[sID]
55 return (sID′, sID)
56 return ⊥

Fig. 30. Adversary B1 against StCDH for the proof of Lemma 6. A has access to oracles O =
{Session′

I,Der′
R,Der′

I,Corr′,KVer}. Procedure FindMatch is a helper algorithm, not available to the adver-
sary. Highlight lines show how we embed the StCDH challenge.

We now describe B1 in more detail. It first generates all long-term keys which will allow it to answer
all queries to Corr′. For queries to Session′

I, B1 picks s to randomize S̄ and stores s in the state variable.
For queries to Der′

R, B1 will only embed the challenge when there is a partially matching session. In
this case it randomizes T̄ and computes k1 and k2 using the long-term keys of the respective parties. It
marks k3 with a special symbol ⋄ and stores randomization exponent t in an additional state variable. If
there is no partially matching session than B1 simply follows the protocol which allows to compute the
full session key. On a query to Der′

I, B1 also computes the session key as (k1, k2, ⋄) because it does not
know the actual exponent for k3.

Queries to KVer can be simulated as follows: If the session ID sID provided by A has stored k3 = ⋄
for correct values of k1 and k2, we have to consider two cases. First, there exists a (partially) matching
session to sID which we can find via the helper procedure FindMatch, we retrieve the exponents used
for randomization and check whether k3 is valid using the Dhs̄ oracle. If it returns true, then B1 stops
immediately and outputs the correct solution. Second, if there is no (partial) matching session, then we
know this is an initiator session and use exponent s to de-randomize k3 and check its validity using the
Dhs̄ oracle. In all other cases, we know the complete session key and can simulate KVer consistently.

Finally, if B1 has not yet stopped, A returns (sID∗, (k∗
1 , k∗

2 , k∗
3 )) and B1 computes the checks of KVer.

If sID∗ has a (partially) matching session and A has computed the correct key, B1 outputs the correct
CDH solution. We have Pr[OW-VwFSA

vCCGJJ ⇒ 1∧Case (1)] ≤ εB1 , which analysis the description of B1.
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BDhx
2 (X , S̄)

00 n∗ $← [µ]
01 pkn∗ := Xn∗ := X
02 for n ∈ [µ] \ {n∗}
03 skn := xn

$← Zp
04 pkn := Xn := gskn

05 (sID∗, (k∗
1 , k∗

2 , k∗
3 ))← AO(pk1, · · · , pkµ)

06 if sID∗ > cntS
or Valid(sID∗) = false

07 return 0
08 return KVer(sID∗, k∗)

Der′
R((i, r) ∈ [µ]2, S)

09 cntS ++
10 sID := cntS
11 (Init[sID], Resp[sID]) := (i, r)
12 Type[sID] := “Re”
13 t $← Zp
14 T := gt

15 if r ̸= n∗

16 k := (k1, k2, k3) = (X t
i , Sxr , S t)

17 else
18 k := (k1, k2, k3) = (X t

i , ⋄, S t)
19 ST[sID] := t
20 (MsgI[sID], MsgR[sID]) := (S , T)
21 SK[sID] := k
22 return (sID, T)

Corr′(n ∈ [µ])
23 if n = n∗ abort
24 cor[n] := true
25 return skn

Session′
I((i, r) ∈ [µ]2)

26 cntS ++
27 sID := cntS
28 (Init[sID], Resp[sID]) := (i, r)
29 Type[sID] := “In”
30 s $← Zp
31 if r = n∗

32 S := S̄ · gs

33 else
34 S := gs

35 (MsgI[sID], ST[sID]) := (S , s)
36 return (sID, S)

Der′
I(sID ∈ [cntS], T)

37 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In”
38 return ⊥
39 (i, r) := (Init[sID], Resp[sID])
40 (S , s) := (MsgI[sID], ST[sID])
41 if i = r = n∗

42 k := (k1, k2, k3) := (⋄, ⋄, ⋄)
43 elseif r = n∗

44 k := (k1, k2, k3) := (T xi , ⋄, ⋄)
45 elseif i = n∗

46 k := (k1, k2, k3) := (⋄, X s
r , T s)

47 else
48 k := (k1, k2, k3) := (T xi , X s

r , T s)
49 (MsgR[sID], SK[sID]) := (T , k)
50 return ε

KVer(sID, (k1, k2, k3))
51 (S , T) := (MsgI[sID], MsgR[sID])
52 if SK[sID] = (k1, ⋄, k3)
53 return Dhx(S , k2)
54 if SK[sID] = (⋄, k2, k3)
55 return Dhx(T , k1)
56 if SK[sID] = (k1, ⋄, ⋄)

or SK[sID] = (⋄, ⋄, ⋄)
57 s := ST[sID]
58 if Dhx(S , k2 ·X−s)
59 Stop with k2 ·X−s

60 return false
61 return JSK[sID] = (k1, k2, k3)K

Fig. 31. Adversary B2 against StCDH for the proof of Lemma 6. Highlight lines show how we embed the StCDH
challenge.

Now we turn to the case, where the session that A outputs does not have a (partially) matching
session. We proceed similar to the proof of the full CCGJJ protocol in [CCG+19] and consider initiator
and responder sessions separately.
Case (2). We will start with initiator sessions and construct adversary B2 in Figure 31. B2 gets as input
a CDH challenge (X , S̄) and has access to a decision oracle Dhx . It first guesses a user n∗ and hopes that
this user will be the responder of the session sID∗ of type “In”. Recall that in this case the responder
of sID∗ must not be corrupted. For all other users, it chooses long-term key pairs itself. If A wants to
corrupt user n∗, then B2 aborts.

The other oracles are simulated as follows. The challenge S̄ will be embedded in all queries to Session′
I,

where n∗ is the intended peer. We randomize S̄ as in the previous case. In all other sessions, B2 computes
the message as in the protocol. We only care about initiator session which do not have a partner, so
queries to Der′

R are answered as in the protocol. However, if the holder of the session is n∗, we do not
know how to compute k2 and put a placeholder symbol ⋄. When Der′

I is queried, then we need to do
another case distinction: (1) if the holder and peer of the session are the same party n∗9, then we may not
know how to compute any ki and put placeholders everywhere. If the peer is n∗, then we also embedded
S̄ and we will not be able to compute k2 and k3. If the holder of the session is n∗, then we will not be
able to compute k1. In all other cases, we can simply compute the key.
9 This captures reflection attacks.

48



BDhx
3 (X , T̄)

00 n∗ $← [µ]
01 pkn∗ := Xn∗ := X
02 for n ∈ [µ] \ {n∗}
03 skn := xn

$← Zp
04 pkn := Xn := gskn

05 (sID∗, (k∗
1 , k∗

2 , k∗
3 ))← AO(pk1, · · · , pkµ)

06 if sID∗ > cntS
or Valid(sID∗) = false

07 return 0
08 return KVer(sID∗, k∗)

Der′
R((i, r) ∈ [µ]2, S)

09 cntS ++
10 sID := cntS
11 (Init[sID], Resp[sID]) := (i, r)
12 Type[sID] := “Re”
13 t $← Zp
14 if i = n∗

15 T := T̄ · gt

16 if r = n∗

17 k := (k1, k2, k3) = (⋄, ⋄, ⋄)
18 else
19 k := (k1, k2, k3) = (⋄, Sxr , ⋄)
20 else
21 T := gt

22 k := (k1, k2, k3) = (X t
i , ⋄, S t)

23 ST[sID] := t
24 (MsgI[sID], MsgR[sID]) := (S , T)
25 SK[sID] := k
26 return (sID, T)

Corr′(n ∈ [µ])
27 if n = n∗ abort
28 cor[n] := true
29 return skn

Session′
I((i, r) ∈ [µ]2)

30 cntS ++
31 sID := cntS
32 (Init[sID], Resp[sID]) := (i, r)
33 Type[sID] := “In”
34 s $← Zp
35 S := gs

36 (MsgI[sID], ST[sID]) := (S , s)
37 return (sID, S)

Der′
I(sID ∈ [cntS], T)

38 if SK[sID] ̸= ⊥ or Type[sID] ̸= “In”
39 return ⊥
40 (i, r) := (Init[sID], Resp[sID])
41 (S , s) := (MsgI[sID], ST[sID])
42 if i = n∗

43 k := (k1, k2, k3) := (⋄, X s
r , T s)

44 else
45 k := (k1, k2, k3) := (T xi , X s

r , T s)
46 (MsgR[sID], SK[sID]) := (T , k)
47 return ε

KVer(sID, (k1, k2, k3))
48 (S , T) := (MsgI[sID], MsgR[sID])
49 if SK[sID] = (⋄, k2, k3)
50 return Dhx(T , k1)
51 if SK[sID] = (k1, ⋄, k3)
52 return Dhx(S , k2)
53 if SK[sID] = (⋄, k2, ⋄)

or SK[sID] = (⋄, ⋄, ⋄)
54 t := ST[sID]
55 if Dhx(T , k1 ·X−t)
56 Stop with k1 ·X−t

57 return false
58 return JSK[sID] = (k1, k2, k3)K

Fig. 32. Adversary B3 against StCDH for the proof of Lemma 6. Highlight lines show how we embed the StCDH
challenge.

Based on this, we will now describe how to simulate the KVer oracle consistently. If only k2 is
unknown, we know this is a responder session and we can use Dhx to decide whether this is the correct
session key. If only k1 is unknown, then this is an initiator session where n∗ is the holder (and thus not
relevant for this case), so we also use Dhx to check whether the key is correct. If k2 and k3 or all key
values are unknown, then this is a session where n∗ is the peer and we will use k2 to either solve the
CDH challenge or decide that the key is incorrect. We do this by removing the randomization s from
k2. Then we have k2 · X s = gx(s̄+s) · gxs = gxs̄ and can stop immediately. If Dhx outputs false, then we
know the session key cannot be correct and B2 outputs false as well.

Finally, if B2 has not yet stopped (or aborted), A returns (sID∗, (k∗
1 , k∗

2 , k∗
3 )) and B2 computes the

checks of KVer. B2 will be successful if n∗ is indeed the peer of session sID∗ and sID∗ is of type “In”.
Thus, we have εB2 ≥ 1

µ · Pr[OW-VwFSA
vCCGJJ ⇒ 1 ∧ Case (2)], which analysis the description of B2.

Case (3). Finally, we look at responder sessions where the peer is not corrupted. We construct an
adversary B3 in Figure 32 which gets as input a CDH challenge (X , T̄ ) and access to oracle Dhx . B3
works exactly as adversary B2, except that it embeds the challenge in responder sessions. More specifically,
it simulates Session′

I as in the protocol. Then it embeds T̄ whenever the peer of a query to Der′
R is n∗

and computes all keys it can trivially compute, marking all others with ⋄. Keys for queries to Der′
I can

be computed except if the holder of the session is n∗. Oracle KVer is also exactly simulated as adversary
B2 did.

We get εB3 ≥ 1
µ · Pr[OW-VwFSA

vCCGJJ ⇒ 1 ∧ Case (3)], which concludes the proof of Lemma 6.
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