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Abstract

Collision-resistant hashing, a fundamental primitive in modern cryptography, ensures
that there is no efficient way to find distinct inputs that produce the same hash value. This
property underpins the security of various cryptographic applications, making it crucial to
understand its complexity. The complexity of this problem is well-understood in the classical
setting and Θ(N1/2) queries are needed to find a collision. However, the advent of quantum
computing has introduced new challenges since quantum adversaries — equipped with the
power of quantum queries — can find collisions much more efficiently. Brassard, Høyer and
Tapp [BHT98] and Aaronson and Shi [AS04] established that full-scale quantum adversaries
require Θ(N1/3) queries to find a collision, prompting a need for longer hash outputs, which
impacts efficiency in terms of the key lengths needed for security.

This paper explores the implications of quantum attacks in the Noisy-Intermediate Scale
Quantum (NISQ) era. In this work, we investigate three different models for NISQ algorithms
and achieve tight bounds for all of them:

1. A hybrid algorithm making adaptive quantum or classical queries but with a limited
quantum query budget, or

2. A quantum algorithm with access to a noisy oracle, subject to a dephasing or depolarizing
channel, or

3. A hybrid algorithm with an upper bound on its maximum quantum depth; i.e. a
classical algorithm aided by low-depth quantum circuits.

In fact, our results handle all regimes between NISQ and full-scale quantum computers.
Previously, only results for the preimage search problem were known for these models (by
Sun and Zheng [SZ19], Rosmanis [Ros22; Ros23], Chen, Cotler, Huang and Li [CCHL23])
while nothing was known about the collision finding problem.

Along with our main results, we develop an information-theoretic framework for recording
query transcripts of quantum-classical algorithms. The main feature of this framework is that
it allows us to record queries in two incompatible bases — classical queries in the standard
basis and quantum queries in the Fourier basis — consistently. We call the framework the
hybrid compressed oracle as it naturally interpolates between the classical way of recording
queries and the compressed oracle framework of Zhandry for recording quantum queries. We
demonstrate its applicability by giving simpler proofs of the optimal lower bounds for NISQ
preimage search and by showing optimal lower bounds for NISQ collision finding.

∗A previous version of this paper, which only covered model 1, was titled “Quantum-Classical Tradeoffs in the
Random Oracle Model” [HLS22].
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1 Introduction

In modern cryptography, collision-resistant hashing stands as a cornerstone, providing countless
cryptographic protocols and systems. Collision resistance refers to the intractability of recovering
two distinct inputs that produce the same hash value. Collision resistance is crucial to establishing
the security of many cryptographic applications, including digital signatures [KL07], Merkle
trees [Mer89], zero-knowledge proofs/arguments [BG09], and many more. Thus, understanding
collision resistance (or the complexity of collision finding) is particularly important to understand
the security of these cryptographic applications.

The so-called generic attacks or black-box query model has received a lot of attention in
understanding the security of various cryptographic primitives. In this model, when working
with hash functions, an algorithm can only take advantage of the input-output behavior of the
function, but does not have access to its actual implementation or other side-information. This
approach not only provides simpler proof techniques, but indeed effectively encapsulates real-
world attack scenarios. Classically, the complexity of collision finding in the black-box model is
well understood. For instance, when employing an ideal hash function, denoted as F : [M ] → [N ],
the best possible attack needs to make Ω(

√
N) queries to the hash function to find a collision

pair with high probability1, aligning with the upper bound implied by the Birthday problem.
In practical applications, it is imperative that adversaries with limited resources, typically no
more than 2128 units of computational time, are unable to find a collision. This requirement
necessitates a minimum output length of at least 256 bits. As an illustrative example, the latest
addition to the Secure Hash Algorithm family of standards, SHA3-256, as released by NIST,
frequently finds use in such applications.

The emergence of quantum computing requires us to significantly reevaluate existing cryp-
tography since quantum adversaries can be much more powerful. In the quantum black-box
model, quantum queries, i.e. the ability to access in superposition the values of a black-box
function [BW02] is treated as a fundamental resource. This idealized input model gave rise to
the early quantum algorithms by Deutsch and Jozsa [DJ92], Simon [Sim97] (paving the way for
Shor’s factoring algorithm [Sho97]), and Bernstein and Vazirani [BV97].

For collision finding, how should we set the output length such that the hash function is still
collision resistant even against quantum adversaries? Brassard, Høyer and Tapp [BHT98] and
Aaronson and Shi [AS04] proved that in the quantum black-box model, Θ(N1/3) queries are both
sufficient and necessary for finding a collision. This suggests that to maintain the same level
of security (i.e., secure against quantum algorithms that run in time 2128), the output length
of the hash function needs to be extended to 3× 128 = 384. Consequently, this adjustment in
output length has affected storage requirements and the overall efficiency of various cryptographic
protocols. However, as we are in the noisy-intermediate scale quantum (NISQ) era, quantum
computation is noisy and quantum memory is short-lived, we ask the following question:

Should we sacrifice efficiency for potential quantum attacks, especially in the NISQ era?

The question above has a natural motivation stemming from practice. In particular, various
constraints on near-term quantum hardware often necessitate the use of classical processing in
addition to quantum operations. For instance, in certain scenarios, it might not be feasible that
superposition queries could be made to the entire input, or the cost of making such queries might
be prohibitive. Furthermore, the depth of possible quantum computation in near-term devices
is also limited since the decoherence effects accumulate, thus additional classical processing is
warranted to fully utilize the capabilities of such devices.

Motivated by the above considerations, in this paper, we investigate the limitations of NISQ
algorithms for collision finding, as well as introduce a general technique/framework for proving
lower bounds in the NISQ era. Using the new framework, along with the lower bounds for

1We remark that for typical applications the parameter M satisfies M = Ω(N).
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collision finding, we also give simpler and unified proofs of several results on preimage finding by
Sun and Zheng [SZ19], Rosmanis [Ros22; Ros23], and Chen, Cotler, Huang and Li [CCHL23].

1.1 Contributions

We first present our contributions on the limitations of NISQ collision finding.

Collision Finding (Section 6). The problem is to find a pair of elements x ̸= y ∈ [M ] that
evaluate to the same value F (x) = F (y), given a uniformly random function F : [M ] → [N ].
Classically, a tight bound Θ(c2/N) for the optimal success probability is easily proved for this
problem, where c is the number of classical queries. When a full-scale quantum computer with q
quantum queries is available, one can use the so-called BHT algorithm [BHT98] to find a collision
pair with probability O(q3/N) (assuming M = Ω(N2/3)). However, this algorithm requires q
quantum queries, meaning no noise or upper bounds on quantum depth were considered for
implementing the algorithm, leaving the potential quantum speed-up elusive in the NISQ era.
Towards resolving this issue, we propose three different models for NISQ algorithms and show
tight bounds for each of these models.

Model 1. Bounded Quantum Queries. In this model, we consider a quantum algorithm
that only has limited access to its quantum capabilities: namely, an upper bound on the number
of quantum queries, denoted by q. Additionally, the algorithm can make (potentially significantly
more) c classical queries. This model is closely related to “d-QC model” discussed in the line of
work [CCL23; CM20; AGS22; HG22], where d quantum queries are interleaved with classical
queries. Rosmanis [Ros22] proved a tight bound for preimage search in this model, and posed an
open question on collision finding. We answer this question below:

Theorem 6.1, first bullet. The optimal success probability of an algorithm making q quantum
and c classical queries for solving the Collision Finding problem is Θ((c2 + cq2 + q3)/N). There
is a matching hybrid algorithm that achieves asymptotically the same success probability.

Our bound is tight when M = Ω(N2/3) because of the following variant of the BHT algorithm:
the first c+⌈q/2⌉ queries are classical2 and are used to collect distinct (x, F (x)) pairs. If there is a
collision among these values the algorithm terminates. Otherwise, the remaining ⌊q/2⌋ quantum
queries are used to run Grover’s search on the rest of F , where an element x is marked if its
image F (x) occurs among the collected pairs. This algorithm stops working for small domains of
size M = O(N2/3), as is the case for the BHT algorithm. In fact, we conjecture that the optimal
bound is Θ((c2 + q3)/N) when M = Θ(

√
N) (which is the regime of the Element Distinctness

problem). We also note that M > N is safe to assume for most cryptographic applications.

Model 2. Noisy Quantum Queries. In the second model, we consider noisy quantum
machines, whose only noise comes from quantum queries to the hash function. More explicitly,
we assume each quantum query to the hash function is affected by a dephasing noise b ∈ (0, 1]:
with probability 1 − b, it is a quantum query; otherwise (with probability b), it is a classical
query. We ignore all other noises in this model and only pose constraints on oracle queries.

Theorem 6.1, second bullet. The optimal success probability of an algorithm making t noisy
queries with dephasing noise b ∈ [1t , 1] for solving the Collision Finding problem is Θ(t2/(bN)).
There is a matching hybrid algorithm that achieves asymptotically the same success probability.

In the above theorem statement, we only consider b ≥ 1
t , as when b is sufficiently small, t noisy

queries are already very likely to be all quantum. Our bound is tight when M = Ω(N2/3) due to
2The first ⌈q/2⌉ quantum queries are also used to make classical queries.
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the following variant of the BHT algorithm. First, make t/2 classical queries to collect distinct
(x, F (x)) pairs (note that a noisy query can be made purely classical by simply measuring both
the input and output registers). Next, run bt independent instances of Grover’s search, each
using 1/(2b) noisy queries, and try to find a collision within the collected pairs. As there are
only 1/(2b) noisy queries, each instance is a purely quantum algorithm with high probability.
Thus, each instance succeeds with probability Ω(1/(2b)2 · t/(2N)) = Ω(t/(b2N)). Consequently,
this algorithm succeeds with probability Ω(bt · t/(b2N)) = Ω(t2/(bN)).

Model 3. Bounded Quantum Depth. In this model, we consider a quantum algorithm that
is almost classical, but has access to quantum helper subroutines that have bounded depth d.
In other words, the collection of algorithms in this model can be modeled as BPPQNCd . This
model captures a significant NISQ scenario where we have access to arbitrary polynomial-time
randomized classical algorithms, but all usable quantum machines are vulnerable to noise and
completely collapse after a certain period of time. This model is the “d-CQ model” discussed in
the line of work [CCL23; CM20; AGS22; HG22].

Theorem 6.1, third bullet. The optimal success probability of an algorithm making t quantum
queries with bounded depth d ≤ t for solving the Collision Finding problem is Θ(dt2/N). There is
a matching algorithm that achieves asymptotically the same success probability.

The tightness of the bound follows from a similar algorithm to the one in model 2 when b = 1/d.

Our results are proven using a new information-theoretic framework that we call the hybrid
compressed oracle. We next provide a high-level description of this framework.

Hybrid Compressed Oracle (Section 4). The main technical contribution of this work is
a new information-theoretic lower-bound framework, called the hybrid compressed oracle, for
analyzing the success probability of hybrid algorithms that perform a mix of quantum and
classical queries. As the name suggests, our framework is an extension of the compressed oracle
technique of Zhandry [Zha19]. This part of our work broadly fits under the long-term goal in
complexity theory to develop general lower-bound techniques that characterize the tradeoffs
between the number of queries and other computational resources. For instance, prior works have
studied the interplay between quantum queries and memory space [KŠW07; AŠW09; HM23],
circuit depth [SZ19; CCL23; CM20; AGS22; HG22; CH22], parallel computation [Zal99; GR04;
JMW17; AHU19; CFHL21; BLZ21], proof size [Aar12; ST23; AKKT20], advice size [NABT15;
HXY19; CLQ20; CGLQ20; GLLZ21], among others. These results are often tailored to the
problems at hand and do not provide general lower-bound frameworks however.

Our hybrid lower-bound framework departs from a recent method introduced by Zhandry
[Zha19], called the compressed oracle (see Section 2.1), that quantizes the classical lazy sampling
technique. The classical variant of the method records a query transcript representing the
knowledge gained by an algorithm (the “attacker”) on the input and on an intuitive level uses it
to argue that the algorithm does not record enough information via these queries to succeed.
However, the recording of quantum queries is a blurry task to define due to the no-cloning
theorem and the superposition input access. Some important features of Zhandry’s solution
to these problems are the construction of a quantum query transcript in the Fourier domain,
and the ability for the attacker to erase the transcript (for instance, by running its algorithm in
reverse).

We first extend Zhandry’s construction to support recording both classical and quantum
queries. This is not as easy as it may seem since it requires merging two ways of recording
on distinct bases (the standard and the Fourier basis). Our solution relies on replacing the
original classical and quantum query operators with two “recording query operators” (Section 4.1)
that maintain a consistent classical-quantum query transcript throughout the execution of the
algorithm (Proposition 4.4). In the extreme cases where all the queries are classical or quantum,

4



our framework recovers the classical lazy sampling and the quantum compressed oracle techniques,
respectively. Moreover, as in previous work, our hybrid recording perfectly simulates the behavior
of the original algorithm (Proposition 4.2).

We then further extend our framework to record mixtures of the classical and quantum
oracles. Such mixtures capture the model where a quantum query can collapse into a classical
one because of dephasing noise. We handle this setting by interpolating between the two types
of recording that happen when the query is purely classical or quantum. Our simulation is again
indistinguishable from the viewpoint of the algorithm. Furthermore, we demonstrate a close
connection between a mixture that puts probability b ∈ (0, 1] on the classical oracle and the
model where the quantum depth is bounded by 1/b. The latter amounts to a complete collapse
of the quantum memory after every 1/b quantum queries. We show that, when replacing each
quantum query with the aforementioned mixture and removing the depth constraint, the success
probability of the algorithm is barely changed. Hence, the depth-bounded model can be analyzed
in our framework using the appropriate interpolation parameter. A more detailed technical
overview of our framework is provided in Section 2.2.

Apart from proving NISQ lower bounds for collision finding, we also demonstrate the
applicability of our framework by proving NISQ lower bounds for preimage search in all three
models. These lower bounds were previously shown by [SZ19; CCHL23; Ros22; Ros23] and we
are able to give unified and simplified proofs of these results.

Preimage Search (Section 5). The preimage search concerns the problem of finding a
preimage x ∈ [M ] satisfying F (x) = 0 given a uniformly random function F : [M ] → [N ]. The
optimal success probability for solving this problem is Θ(c/N) with c classical queries, or Θ(q2/N)
with q quantum queries by using Grover’s algorithm [Gro97]. Rosmanis [Ros22], using a proof
tailored to the search problem, showed that no hybrid algorithm can interpolate between these
two cases efficiently. Here, we give a simpler proof of the same result using the hybrid compressed
oracle framework.

Theorem 5.1, first bullet. The optimal success probability of an algorithm making q quantum
and c classical queries for solving the Preimage Search problem is Θ((c+ q2)/N).

The proof relies on a simple application of our hybrid compressed oracle framework, where
the progress made towards finding a preimage is represented as the probability of measuring a
classical-quantum query transcript containing such a preimage. The central argument in our
analysis, that allows us to overcome the O((c+ q)2/N) upper bound derived from the original
compressed oracle, is a refinement of certain triangle inequalities when a classical query is made.

Sun and Zheng [SZ19], Chen, Cotler, Huang and Li [CCHL23] and Rosmanis [Ros23] also
considered the case of hybrid algorithms that make noisy queries or have bounded depth. We
also recover these results using the hybrid compressed oracle framework.

Theorem 5.1, second bullet. The optimal success probability of an algorithm making t noisy
queries with dephasing noise b ∈ [1/t, 1] for solving the Preimage Search problem is Θ(t/(bN)).
There is a matching algorithm that achieves asymptotically the same success probability.

Theorem 5.1, third bullet. The optimal success probability of an algorithm making t quantum
queries with bounded depth d ≤ t for solving the Preimage Search problem is Θ(dt/N). There is
a matching hybrid algorithm that achieves asymptotically the same success probability.

1.2 Related Work

Query Complexity Lower Bounds. There are two main systematic techniques for proving
lower bounds in quantum query complexity: the polynomial [BBC+01] and the adversary [Amb02]
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methods. A different information-theoretic method, called the compressed oracle technique, was
recently introduced by Zhandry [Zha19]. This method is useful in proving lower bounds for
search problems when the superposition queries are made to a uniformly random function, a
setting that is often used to model various cryptographic scenarios, and is commonly called the
random oracle model in the cryptography literature. The compressed oracle technique has led
to new and simpler lower bounds for certain search problems (e.g. [LZ19a; HM23; Ros21]) and
security proofs in post-quantum cryptography (e.g. [HI19; LZ19b; CMS19; CMSZ19; BHH+19;
AMRS20]).

While the classical counterparts of these methods are often easy to manipulate, it is generally
unknown how to adapt them to the hybrid setting. Indeed, the only prior works concerning
the hybrid quantum-classical query model, that we are aware of, use ad-hoc methods that are
tailor-made for the specific problem being studied.

Lower Bounds for Hybrid and NISQ Algorithms. As mentioned before, in a recent work,
Rosmanis [Ros22] characterized the optimal success probability of solving the preimage search
problem, although not in the random oracle model. The proof techniques are specific to the
search problem and inspired by a lower bound for Grover’s search with quantum faulty oracles
by Regev and Schiff [RS08].

Another related line of work [CCL23; CM20; AGS22; HG22; CH22] proves lower bounds
for hybrid algorithms in the so-called “d-QC model” where d quantum queries are interleaved
with polynomially (in the number of input qubits) many classical queries. This model is akin
to small-depth measurement-based quantum computation, where measurement outcomes are
classically processed to select subsequent quantum gates and is encompassed by our hybrid
quantum-classical query model when the number of quantum queries is bounded by d. This
model is captured by the first hybrid model with a bound on the number of quantum queries.
The aforementioned works show that certain carefully constructed variants of Glued-Trees and
Simons problems require a large quantum depth. For the preimage search problem, Sun and
Zheng [SZ19], Chen, Cotler, Huang and Li [CCHL23] and Rosmanis [Ros23] also considered the
case of hybrid algorithms that make noisy queries or have bounded depth, as mentioned above.

In post-quantum cryptography, several works [JST21; ABKM22] studied the post-quantum
security of the Even-Mansour and FX constructions when the attacker has quantum access
to the underlying block cipher and classical access to the keyed primitive. These results are
based on new “reprogramming” lemmas for analyzing the advantage of distinguishing between
two oracles that differ in some specific way. Additionally, [JST21] introduced a variant of the
compressed oracle for recording both classical and quantum queries in the Fourier domain. It
allows the authors to argue that, for a variant of the FX construction, the classical and quantum
queries can be (approximately) treated as acting on disjoint domains. This method does not
seem generalizable to the proof of more general hybrid results.

2 Technical Overview

2.1 Overview of the Compressed Oracle

First we give a detailed overview of the compressed oracle framework [Zha19]. As mentioned
before, this framework gives an information-theoretic method that is useful in proving lower
bounds against quantum algorithms that get black-box query access to a uniformly random
function F : [M ] → [N ]. The framework allows one to store a compressed encoding of the
uniformly random function conditioned on the knowledge gained from the queries.

To illustrate the framework, we first consider the case of classical and quantum algorithms
separately and then discuss the ideas involved in extending the framework to the setting of
hybrid algorithms. For pedagogical reasons, we shall primarily focus on the preimage search

6



problem as a running example and use D (instead of F ) to denote a uniformly random function
(or database) henceforth.

Classical Algorithms. Let us first consider classical query algorithms for the search problem.
After c classical queries at most c entries of the uniformly random function D can be assumed to
be fixed, since the entries that have not been queried are still uniformly random in [N ]. This
observation allows one to model the random function D as being generated by lazy sampling : we
may think of a location x ∈ [M ] that has not been queried to be marked with a special symbol ⊥
and whenever that location is queried for the first time, D(x) is replaced with a uniformly random
value in [N ]. In other words, after c queries, we store a compressed encoding of D where only c
locations are fixed, and others are compressed to a special symbol ⊥. Whenever a query is made
to a location that is still compressed, it is uncompressed and replaced by a uniformly random
value. It follows that if after c queries we have not seen a zero preimage, then the probability of
seeing a zero preimage in the next query is 1/N . Thus the probability of success after t queries,
denoted pt, satisfies pt+1 ≤ pt + 1/N and is bounded by c/N after c queries.

Quantum Algorithms. The compressed oracle framework quantizes the lazy sampling idea
and allows one to define a compressed encoding of a random function that works well with
quantum queries. Unlike the classical case, quantum information can not be cloned and could
be forgotten, so some care needs to be taken in defining this compressed encoding. Consider a
quantum algorithm that has an index register X , a phase register P, a workspace register W
and has black-box access to a uniformly random function D via the following phase3 unitary:

OQ
D : |x, p, w⟩ 7→ ω

pD(x)
N |x, p, w⟩ where ωN = e

2iπ
N .

A quantum algorithm starts with the all-zero state |0, 0, 0⟩ and applies arbitrary unitaries
interleaved with phase queries. For a fixed D : [M ] → [N ], the state of the algorithm at any
point is some arbitrary state |ψD⟩. After averaging over uniformly random D, the state is the
mixed state ED[|ψD⟩⟨ψD|] and it will be more convenient for us to work with a purification of
this state. We add a purification register D = D0 · · · DM−1 where the subregister Dx for x ∈ [M ]
holds a value D(x) ∈ [N ] and we refer to it as the database register. Then, the state

1

NM/2

∑
D∈[N ]M

|ψD⟩ ⊗ |D⟩D

is a purification, as after tracing out D we obtain the same mixed state as before. Note that in
the above encoding, the database register is never altered during the run of the algorithm.

Motivated by the classical case, we would like to have a compressed encoding of the random
function D. For this, we extend the range of D to allow for a compressed symbol ⊥ and define
compression and uncompression operations that act on the database register D whenever a query
is made. In particular, let D : [M ] → {⊥} ∪ [N ] and extend the register Dx so that it can now
also hold the value ⊥. The initial state of the register D (at the beginning of the algorithm) is
|⊥, . . . ,⊥⟩D, which corresponds to a completely compressed database. We also define a Hermitian
unitary operation S that is controlled on the index register X and uncompresses an entry that
is ⊥: if the index register is |x⟩X and the database register is |⊥⟩Dx , then it is mapped to
1√
N

∑
y∈[N ]|y⟩Dx while it maps the last state back to |⊥⟩Dx (for details on how to unitarily

implement this, see Section 4). Before a quantum query, the database is uncompressed by
applying S and after the query it is compressed again by applying S.

3Note that the value of D(x) is returned in the phase of the complex state and p is an additional control
register. This kind of query is usually called a phase query in the literature. There is another standard way
of defining a quantum query by a unitary that maps |x, p, w⟩ to |x, p⊕D(x), w⟩. The two kinds of queries are
equivalent up to a unitary transformation, and we focus on phase queries as they work better with our framework.
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With the above framework, one can prove a lower bound for the preimage search problem
against any quantum algorithm by following a similar template as in the classical case. In
particular, the probability pt of succeeding after t queries is essentially the squared norm of the
projection of the state at time t onto the subspace spanned by databases |D⟩D that contain a
zero preimage. One can show that the norm of this projection is initially 0 and increases by at
most O(1/

√
N) after each query and thus

√
pt+1 ≤

√
pt +O

(
1√
N

)
=⇒ pq = O

(
q2

N

)
.

We stress out that the compressed encoding is just a technique for proving lower bounds in
the real random oracle model. An algorithm will never encounter the compressed symbol ⊥ in
practice, as the simulation is statistically indistinguishable from the real world.

2.2 Overview of the Hybrid Compressed Oracle

One of the main contributions of this work is to extend the compressed oracle framework to the
setting of hybrid algorithms that make both quantum and classical queries. In fact, we consider
an even more general scenario where each query can behave as a superposition of the quantum
and classical oracles according to some interpolation parameter. This setting allows us to capture
a wide variety of NISQ models based on noisy oracles and depth-bounded quantum algorithms.

Since a quantum query can always simulate a classical query, one could hope to analyze such
algorithms using the compressed oracle framework for quantum algorithms above. However, it is
not straightforward in such an analysis to capture that classical queries do not create additional
interference. In fact, such attempts run into significant technical difficulties.

Here we start from first principles and define another purification compatible with both
classical and quantum queries and that allows us to store a compressed encoding of the random
function D conditioned on the queries made by the algorithm. There are two main principles
behind the new purification that take into account the classical nature of the queries:

Measurement Classical queries can be measured, so we add an additional history register H
that records all the classical queries (x,D(x)). The contents of a recorded query in this
register are never changed.

Consistency We define compression and uncompression operations for the database D condi-
tioned on the history. In particular, under the standard compressed oracle framework |y⟩Dx

can be changed during (un)compression if the index register contains |x⟩X , which captures
the fact that quantum algorithms could forget information. However, in the new purifica-
tion, if (x,D(x)) is in the history, which happens if x has been queried classically, then the
register Dx is never compressed or uncompressed again.

Lower Bound for Preimage search with classical/quantum queries (Model 1). With
the above framework, we give an alternative lower-bound proof for the search problem against
hybrid algorithms that use c classical and q quantum queries (when c = 0 or q = 0 we recover the
usual quantum or classical bounds). As remarked before, this was first shown by Rosmanis [Ros22]
with a proof tailored for the search problem. Although there are some similarities between his
approach and ours, the proof using the hybrid compressed oracle framework follows in a more
principled way, is arguably simpler and works in the random oracle model.

To prove the lower bound, we again bound the probability pt of succeeding after t queries.
To do this, we now keep track of whether there is a zero preimage in the classical history or in
the quantum database: let |ϕ⟩ be the current joint state of all registers, we define Πc as the
projector on the span of the basis state where the classical history H contains a zero preimage
and Πq·c as the projector on those basis states where there is a zero preimage in the quantum
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database D but none in the history. The norms ∥Πc|ϕ⟩∥ and ∥Πq·c|ϕ⟩∥ can be considered the
classical and quantum progress respectively.

We show that after a quantum query, the quantum progress ∥Πq·c|ϕ⟩∥ increases by O(1/
√
N)

as in the completely quantum case, while the classical progress ∥Πc|ϕ⟩∥ does not change. However,
under a classical query, the classical progress could increase by a much larger amount, but only
at the cost of decreasing the quantum progress. As an example, consider a hybrid algorithm that
creates a superposition over all preimages of zero by performing Grover’s search, then measures
its internal register to get a random preimage x and finally makes a classical query on x. Clearly,
before the only classical query, we have ∥Πc|ϕ⟩∥ = 0 and ∥Πq·c|ϕ⟩∥ ≈ 1 but right after the
query, ∥Πq·c|ϕ⟩∥ becomes almost zero whereas ∥Πc|ϕ⟩∥ ≈ 1.

This phenomenon does not appear when the algorithm is purely classical or quantum.
Nonetheless, upon making a classical query, we show that the total progress defined as

Ψt = ∥Πc|ϕ⟩∥2 + 3∥Πq·c|ϕ⟩∥2

increases by at most O(1/N), behaving as in the classical case. Note that Ψt upper bounds the
total probability of having a preimage in either the database or the classical history.

More precisely, let |ϕ′⟩ be the resulting quantum state after a classical query is made. Although
∥Πc|ϕ′⟩∥2 can be much larger than ∥Πc|ϕ⟩∥2, the state Πc|ϕ′⟩ consists of three parts:

1. |ϕ1⟩: This corresponds to the basis states that already contained a zero preimage in their
history register prior to the last classical query. The squared norm of this part can be
bounded by ∥Πc|ϕ⟩∥2.

2. |ϕ2⟩: This corresponds to the basis states where there was no zero preimage either in the
history or the database (prior to the classical query) and the classical query sampled a new
zero preimage. The squared norm of this term is roughly at most 1/N .

3. |ϕ3⟩: The last part consists of the basis states where there was at least one zero preimage
in the database but none in the history (prior to the classical query) and the classical query
either sampled a new preimage or “moved” one from the quantum database to the classical
history. We denote the squared norm of |ϕ3⟩ by δq→c (denoting the amplitude that moved
from Πq·c to Πc). This exactly captures the scenario mentioned in the above example
using Grover’s search.

On a high level, we show that Πc|ϕ′⟩ = |ϕ1⟩+ |ϕ2⟩+ |ϕ3⟩ and |ϕ1⟩ is also orthogonal to |ϕ2⟩
and |ϕ3⟩. Thus, we have that

∥Πc|ϕ′⟩∥2 = ∥|ϕ1⟩∥2 + ∥|ϕ2⟩+ |ϕ3⟩∥2 ≤ ∥Πc|ϕ⟩∥2 + 2∥|ϕ2⟩∥2 + 2∥|ϕ3⟩∥2.

The increase ∥Πc|ϕ′⟩∥2 − ∥Πc|ϕ⟩∥2 is then O( 1
N ) + 2δq→c. On the other hand, ∥Πq·c|ϕ⟩∥2 will

decrease by at least δq→c due to a similar reason. Thus, we conclude that after a classical query, Ψt

increases by at most O(1/N) (in fact, O(1/N)− δq→c but we do not need that refinement here).
Combined with the fact that a quantum query increases

√
Ψt by O(1/

√
N), this shows that the

success probability after c classical and q quantum queries is at most Ψc+q = O
( c+q2

N

)
.

Lower Bound for Preimage search with interpolated queries (Model 2). We adapt
the above proof to the case where each query is a mixture of the classical and quantum oracles
(instead of being purely classical or quantum). For simplicity, we assume that all queries have
the same probability b ∈ (0, 1] of being classical, which is equivalent to making quantum queries
affected by dephasing noise b.

The success probability of Grover’s search using t such queries is Ω((1− b)tt2/N) since the
probability that all queries are quantum is (1 − b)t. This is nearly optimal when the noise is
sufficiently small b ≤ 1/t, as noiseless algorithms succeed with probability O(t2/N) anyway.
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However, when b ≥ 1/t, a better algorithm consists of running ⌊bt⌋ independent instances of
Grover’s search, each using ⌊1/b⌋ queries, to succeed with probability Ω(bt·1/(b2N)) = Ω(t/(bN)).

We show that the above algorithm is optimal by tracking the same progress measure Ψt as
before, but now making interpolated queries. One can immediately apply the analysis of the
previous paragraph to show that the progress increases by at most O((1 − b)

√
Ψt/N + 1/N)

after each query. This is however not sufficient to conclude that Ψt = O(t/(bN)). The proof
involves refining the analysis of how the quantum progress changes after a query. We consider
the exact value δq→q = ∥Πq·c|ϕ⟩∥2 − ∥Πq·c|ϕ′⟩∥2 by which it decreases when making a classical
query. Since it is at least the amount δq→c transferred to the classical progress, we obtain that Ψt

increases by at most O(1/N)− δq→q after a classical query. On the other hand, we show that
the quantum progress increases by at most O(

√
δq→q/N + 1/N) when making a quantum query,

which is sometimes smaller than the quantity O(∥Πq·c|ϕ⟩∥/
√
N + 1/N) used to analyze the

model 1. Overall, by interpolating between the two oracles, we conclude that Ψt increases by

O
(
(1− b)

√
δq→q/N − b · δq→q + 1/N

)
= O(1/(bN))

after each interpolated query, since the function Z 7→ (1 − b)Z/
√
N − bZ2 + 1/N is at most

O(1/(bN)). Hence the success probability after t queries is at most Ψt = O
(

t
bN

)
.

Lower Bound for Preimage search with bounded depth (Model 3). At first sight, the
bounded-depth model is more subtle to analyze since it concerns all the memory of the algorithm
(which has to decohere every d queries), instead of only the query registers. We do not know
if a variant of the hybrid compressed oracle can capture this property optimally. Instead, we
aim to relax that model to focus the analysis on the query registers. A first attempt could be to
only decohere the latter registers, which amounts imposing a classical query every d quantum
queries. This is however a very weak constraint, since an algorithm can swap the query registers
with garbage qubits before and after making the classical queries to avoid the decoherence. Our
solution is to instead show that a depth-bounded algorithm can always be simulated by an
algorithm – in model 2 – where each query is classical with probability b = 1/d. Intuitively, this
amounts to “spread out” the decoherence occurring every d queries (in the bounded-depth model)
into a smaller probability 1/d of decohering only the query registers but at every query. The
details of the reduction are provided in Proposition 3.4. Plugging the parameter b = 1/d in the
above bound established in model 2, we immediately obtain that the success probability after t
queries in the bounded-depth model is at most O

(
dt
N

)
. This is easily shown to be optimal.

Lower Bounds for Collision Finding. The intuition behind the proof for the collision lower
bounds is similar to that for the search problem. However, the details are quite involved because
of one crucial difference. For the preimage search problem, the preimage is either in the history H
or only in the quantum database D, allowing us to define classical and quantum measures of
progress. For the collision finding problem, there could also be hybrid collisions, meaning a
colliding pair (x, x′) where x is in the history while x′ is only in the database D. This makes the
proof substantially more involved, as one also needs to keep track of other progress measures for
such hybrid collisions.

We only sketch the lower bound in model 1, where c queries are classical and q queries are
quantum. The lower bounds in the two other models build upon these ideas in a similar way to
what is discussed above for preimage search.

The proof consists again of bounding the probability pt of finding a collision after t queries.
To do this, we now keep track of whether there is a classical, hybrid, or quantum collision. We
define various projectors onto the span of basis states containing such collisions and use these
as measures of classical, hybrid, or quantum progress. Similar to the case of preimage search,
a quantum query can only increase all these measures of progress by a small amount, but a
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classical query might increase some of them by a large amount while decreasing others at the
same time. We are able to show how much amplitude is transferred onto the subspace spanned
by basis states containing classical, hybrid or quantum collisions after making a quantum or
classical query.

To be more precise, we define three projectors: Πc,Πh·c,Πq·h·c. The support of Πc consists
of the span of all basis states whose classical history contains a collision. We similarly define Πh·c
for hybrid collisions only (no classical collisions) and Πq·h·c for quantum collisions only (no hybrid
or classical collisions). Similar to our discussion on preimage search, a classical query can move a
large amplitude from Πh·c to Πc, or from Πq·h·c to Πh·c. This is more complicated than the case
of preimage search, as there is a hierarchy of three projectors, instead of two in the prior case
— let |ϕ⟩ be the current state and let ∆c,∆h·c,∆q·h·c be the increment in the squared norms
∥Πc|ϕ⟩∥2, ∥Πh·c|ϕ⟩∥2, ∥Πq·h·c|ϕ⟩∥2 after a classical query is made. By a refinement of certain
triangle inequalities, we show that:

∆c ≤ 2δh→c +O
( t
N

)
,

∆h·c ≤ −δh→c + 2δq→h +O
( t
N

)
,

∆q·h·c ≤ −δq→h +O

(√
t · δh→c

N

)
.

Using these facts, we prove that the following potential

Ψt := ∥Πc|ϕ⟩∥2 + 3∥Πh·c|ϕ⟩∥2 + 7∥Πq·h·c|ϕ⟩∥2,

which upper bounds the total progress, always increases as follows:
√
Ψt ≤

√
Ψt−1 +O

(√
t
N

)
if

the t-th query is quantum and Ψt ≤ Ψt−1 + O
(

t
N

)
if the t-th query is classical. Overall, this

shows that the success probability of finding a collision after c classical and q quantum queries is
at most Ψc+q = O

(
c2+cq2+q3

N

)
.

3 Hybrid Random Oracle Model

Below we define a computational model that captures hybrid algorithms that make both classical
and quantum queries to a random function (which we also refer to as a random oracle for
consistency with the compressed oracle framework). We also note that our model captures the
QC model [CCL23], a generalized model for measurement-based quantum computation, as a
special case.4

Memory. The memory of an algorithm accessing an oracle D : [M ] → [N ] is made of three
quantum registers defined as follows:

• Index register X holding x ∈ [M ].

• Phase register P holding p ∈ [N ].

• Workspace register W holding w ∈ {0, 1}∗ (the size of the register may increase during the
computation as we allow appending new qubits to it).

We represent a basis state in the corresponding Hilbert space as |x, p, w⟩A, where A = XPW is
a shorthand for the registers on which the algorithm operates. The initial state of the memory is
the all-zero basis state |0, 0, 0⟩A.

4In the QC model, there are 2q rounds of computation where in the even numbered rounds, c/q classical
queries are made, and in the odd numbered round, one quantum query is made followed by a (possibly partial)
measurement. The measurements can be deferred till the end using ancilla qubits.
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Quantum Phase Oracle. We define the quantum oracle OD
0 as the unitary operator acting

on the memory of the algorithm as follows.

OD
0 : |x, p, w⟩A 7→ ω

pD(x)
N |x, p, w⟩A where ωN = e

2iπ
N .

Note that this oracle returns the value D(x) in the phase but it is equivalent to the standard
oracle that maps |x, p, w⟩A to |x, p⊕D(x), w⟩A up to a unitary transformation.

Classical Oracle. A classical oracle query is defined as a query to the standard oracle that
maps |x, p, w⟩A to |x, p ⊕ D(x), w⟩A followed by a measurement on the index register X and
phase register P . Since we are working with phase oracles for convenience, we define them in the
following way, equivalent to the above up to a unitary transformation.

We add a history register H = H1 · · ·Ht where the c-th subregister Hc is used to purify the
c-th classical query (there are at most t queries in total) and stores a value in ([M ]× [N ]) ∪ {⋆}.
The initial state of that register is |⋆, . . . , ⋆⟩H. The classical oracle OD

1 is defined as the unitary
operator acting as follows

OD
1 : |x, p, w⟩A|(x1, y1), . . . , (xc, yc), ⋆, . . . , ⋆⟩H

7→ ω
pD(x)
N |x, p, w⟩A|(x1, y1), . . . , (xc, yc), (x,D(x)), ⋆, . . . , ⋆⟩H.

Since we only care about a bounded number of t queries, the above oracle can easily be made
a unitary. For convenience, we denote the list ((x1, y1), . . . , (xc, yc), ⋆, . . . , ⋆) by H and we say
x ∈ H if and only if there exists 1 ≤ i ≤ c such that xi = x. We use the following shorthand for
appending a new pair (x, y) to H.

Definition 3.1 (Hx←y). Given a history H = ((x1, y1), . . . , (xc, yc), ⋆, . . . , ⋆) with at least one
star entry, we define

Hx←y = ((x1, y1), . . . , (xc, yc), (x, y), ⋆, . . . , ⋆)

where the leftmost star has been replaced with (x, y).

Sometimes, we will identify the above list with a function H : [M ] → [N ] ∪ {⋆} if there are
no ambiguous pairs, i.e. no pairs of the form (x, y) and (x, y′) where y ̸= y′. We also let H
denote the set of all possible histories H.

Hybrid Oracle. We extend the above definitions by allowing for probabilistic choices between
the two oracles. This is represented by a channel that applies the quantum oracle OD

0 with
probability 1− b, for some b ∈ [0, 1], and applies the classical oracle OD

1 otherwise. Additionally,
we assume that the algorithm is provided with a query type bit (or “flag”) indicating which oracle
has been applied. We represent this operation by an isometry OD

b acting as

OD
b : |x, p, w⟩A|H⟩H 7→ ω

pD(x)
N |x, p⟩XP

(√
1− b · |w0⟩W |H⟩H +

√
b · |w1⟩H|Hx←D(x)⟩H

)
where the bit appended to the workspace w indicates the nature of the oracle. We recover the
quantum and classical oracles when b = 0 and b = 1 respectively (ignoring the query type bit).
We will use b /∈ {0, 1} in the analysis of noisy and bounded-depth quantum algorithms.

Hybrid Algorithm. An algorithm with t queries is defined as a sequence U0, . . . , Ut of unitary
transformations acting on the memory register A and a list of real numbers b(1), . . . , b(t) ∈ [0, 1]
that specifies which interpolation parameter is used at each query. The state |ψD

t ⟩ of the algorithm
after t queries is

|ψD
t ⟩ = UtOD

b(t) Ut−1 · · · U1OD
b(1) U0 (|0⟩A|⋆, . . . , ⋆⟩H). (3.1)
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The function D is chosen uniformly at random from the set {D : [M ] → [N ]}. We model that by
adding another purification register (the database) D = D0 . . .DM−1 where each subregister Dx

for x ∈ [M ] holds a value D(x) ∈ [N ] and we define the following joint state,

|ψt⟩ =
1

NM/2

∑
D∈[N ]M

|ψD
t ⟩AH ⊗ |D⟩D = UtOb(t) Ut−1 · · · U1Ob(1) U0 |ψ0⟩, (3.2)

where Ob :=
∑

D OD
b ⊗ |D⟩⟨D|D and |ψ0⟩ := |0⟩A ⊗ |⋆, · · · , ⋆⟩H ⊗ 1

NM/2

∑
D|D⟩D.

Output. The output of a hybrid algorithm is obtained by performing a computational basis
measurement on the final state |ψt⟩ where we measure a designated part of the workspace
register W. Since in this paper the output is always a tuple (x1, . . . , xk) ∈ [M ]k with k ≤ 2, by
making k extra classical queries, we may assume that all the indices x1, . . . , xk are in the history
register at the end.

3.1 Models for NISQ Algorithms

We describe the three models of NISQ quantum query complexity than can be analyzed in our
framework of hybrid algorithms and state some of their properties.

Model 1. Bounded Quantum Queries and Adaptiveness. We first consider the case
of algorithms that make only two types of queries: quantum queries and classical queries
(i.e. b ∈ {0, 1}). Here, one can consider two types of algorithms: static or adaptive. A “static”
algorithm fixes the order of which type of queries to make before it interacts with the oracle. An
“adaptive” algorithm adaptively chooses the query type for each individual query, as long as the
total number of quantum (and classical) queries is unchanged.

Below, we present a theorem, as a special case of [DFH22, Theorem 1], showing that any
hybrid algorithm can be assumed to be static without loss of generality.

Theorem 3.2. In the hybrid random oracle model, for any adaptive hybrid quantum algorithm
making at most q quantum queries and c classical, there exists a static hybrid algorithm making
at most 2q quantum queries and 2c classical queries such that their outputs are always identical.

Given the above theorem, we will only consider lower bounds for static algorithms in the rest
of the paper.

Before we move on, we give some intuition on why Theorem 3.2 holds. For fixed c, q, there
exists a sequence b∗ = b∗1b

∗
2 · · · b∗2c+2q ∈ {0, 1}2c+2q with exactly 2c elements being 1, such that

every b = b1, · · · , bc+q ∈ {0, 1}c+q is a subsequence of b∗. This was proved in [DFH22, Lemma
1]; we ignore the proof and refer interested readers to [DFH22] for full details. Assuming the
statement about the existence of such a sequence is true, a static hybrid algorithm just picks the
fixed sequence b∗ and every time it makes the next query, it checks if the current query type in b∗

is equal to the next query type in b. If yes, it makes the query; otherwise, it makes a junk query
(for example, regardless of the query type, querying on input 0 classically and discarding both
the input and output). This strategy results in identical behavior of the static hybrid algorithm
and any adaptive hybrid algorithm.

Model 2. Noisy Quantum Queries. We next consider the case of algorithms that have access
to a noisy quantum oracle with noise level b ∈ [0, 1]. We define this model using the mixed state rep-
resentation ρ of the memory of an algorithm (over the registers XPW) and the channel NXP that
dephases the index and phase registers (i.e. NXP(ρ) =

∑
x,p(|x, p⟩⟨x, p| ⊗ IW)ρ(|x, p⟩⟨x, p| ⊗ IW)).

The noisy oracle is represented by the channel

ND
b : ρ 7→ (1− b) · OD

0 ρOD
0 ⊗ |0⟩⟨0|+ b · NXP

(
OD

0 ρOD
0

)
⊗ |1⟩⟨1|. (3.3)
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This channel dephases the query registers after each quantum query with probability b ∈ [0, 1]
and appends a “noise flag” qubit indicating whether the dephasing occurred. The state of the
algorithm after t queries is defined recursively as ρD0 = |0, 0, 0⟩⟨0, 0, 0| and ρDt = UtND

b (ρDt−1)U
†
t

where Ut is the unitary operator applied by the algorithm after the t-th query. One can observe
that the hybrid oracle OD

b is a purification of the noise channel ND
b , where the environment is

enacted by the history register H.

Fact 3.3. Let |ψD
t ⟩ be the state defined in Equation (3.1) for a given sequence of unitaries

U0, . . . , Ut and hybrid oracles OD
b(1), . . . ,O

D
b(t). Let ρDt be the state obtained by applying the same

sequence of unitaries and replacing each oracle OD
b(i) with ND

b(i). Then, ρDt = TrH(|ψD
t ⟩⟨ψD

t |).

This fact implies that the complexity of solving any problem using noisy quantum oracles is
captured by the above model of hybrid algorithms. We will use this connection to derive the
complexity of the preimage search and collision finding problems with noisy oracles.

Notice that our model is particularly versatile for proving hardness results (as is the goal in
the present paper). Indeed, it can simulate algorithms that do not have access to the noise flag
(just ignore the flag), algorithms that are subject to depolarizing noise (measure the flag qubit
and depolarize the state on purpose when it is 1) and algorithms whose entire memory is subject
to noise. Hence, our lower bounds apply to these models as well.

Model 3. Bounded Quantum Depth. Finally, we consider the model of bounded-depth
quantum computation where the entire system decoheres periodically. Given a depth parameter d,
this amounts to applying the channel NXPW that dephases all the memory (i.e. NXPW(ρ) =∑

x,p,w|x, p, w⟩⟨x, p, w|ρ|x, p, w⟩⟨x, p, w|) every d queries. The state of the algorithm can again be
defined recursively as ρD0 = |0, 0, 0⟩⟨0, 0, 0|, ρDt = UtNXPW

(
OD

0 ρ
D
t−1OD

0

)
U †t if t is a multiple of d,

and ρDt = UtOD
0 ρ

D
t−1OD

0 U
†
t otherwise. This captures the scenario where a classical computer has

access to a quantum computer of depth d and performs t queries in total, which is also known as
the d-CQ scheme [CCL23; CM20].

We show that any d-depth algorithm can be simulated by an unbounded-depth algorithm that
uses the hybrid oracle O1/d without increasing the query complexity significantly. Intuitively, the
interpolation parameter 1/d is sufficiently small so that d calls to the hybrid oracle will behave
almost as d calls to the quantum oracle.

Proposition 3.4. Fix any d-depth algorithm that makes t quantum queries in total. Then, there
exists an algorithm in the hybrid model that makes at most 2t queries in expectation to the
oracle O1/d and outputs the same outcome as the bounded-depth algorithm.

Proof. It is sufficient to explain how to simulate a sequence of d quantum queries using at
most 2d queries in expectation to the hybrid oracle O1/d. The proposition follows by applying
this simulation to the ⌈t/d⌉ sequences of queries occurring between the applications of the
channel NXPW in the bounded-depth model.

Consider an algorithm making d queries to a quantum oracle OD
0 . Suppose that we instead

use the hybrid oracle OD
1/d and measure after each query whether the query type bit is 0 –

indicating that the query is quantum. If it is not 0, we restart the simulation (the initial memory
is classical, hence it can be cloned to restart as many times as needed). The algorithm stops
once it obtains a sequence of d consecutive 0 (which will perfectly simulate the bounded-depth
algorithm). Since each query is quantum with probability 1− 1/d, the expected number of calls
to OD

1/d corresponds to the number of coin flips needed to get d consecutive heads when a coin
has probability 1− 1/d of coming up heads. This is equal to ((1− 1/d)−d − 1)d ≤ 2d.

We can easily modify the above algorithm to make exactly 4t queries to O1/d and succeeds
in doing the simulation with probability at least 1/2. This leads to the following corollary for
deriving lower bounds in the depth-bounded model.
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Corollary 3.5. Let σ(t, b) denote the optimal success probability for solving a given problem
using t queries to the oracle Ob where b ∈ (0, 1]. Then, the optimal success probability for solving
the same problem using t quantum queries in the bounded-depth model with depth d = ⌈1/b⌉ is at
most 2σ(4t, b).

While this reduction may not be tight in general, we show in this paper that it provides
optimal bounds (up to constant factors) for the preimage search and collision finding problems.

4 Hybrid Compressed Oracle

In this section, we define the hybrid compressed oracle framework and prove some of its main
properties. We also describe general results for constructing and analyzing progress measures in
this framework.

4.1 Construction

We start by defining the compressed encoding of the database that will be compatible with the
history register. For this, we first augment the alphabet used for the database register such
that Dx can now hold D(x) ∈ {⊥} ∪ [N ] and with the convention that ωpD(x)

N = 1 if D(x) = ⊥.
The initial state of the database is defined to be |⊥, . . . ,⊥⟩D. We also augment the alphabet of
the history register so it can also store tuples of the form (x,⊥) where x ∈ [M ]. We say that
x ∈ H if there is a tuple of the form (x, y) ∈ H where y ∈ {⊥} ∪ [N ]. Note that if there are no
ambiguous pairs in the list, we can identify H as a function mapping [M ] to {⊥, ⋆} ∪ [N ] with
the extended alphabet (we will prove in Proposition 4.4 that such a property always holds in
practice).

Next, we define the uncompression operator S. Let |p̂⟩Dx = 1√
N

∑
y∈[N ] ω

py
N |y⟩Dx for p =

0, . . . , N − 1, denote the Fourier basis states and let Sx be the unitary operator acting on Dx

such that

Sx :


|⊥⟩Dx 7−→ |0̂⟩Dx

|0̂⟩Dx 7−→ |⊥⟩Dx

|p̂⟩Dx 7−→ |p̂⟩Dx for p = 1, . . . , N − 1.

Note that Sx is unitary and Hermitian. We now define a controlled unitary Sx,H acting on Dx:

Sx,H =

{
I if x ∈ H

Sx otherwise.
(4.1)

Define the Hermitian unitary operator S acting on AHD such that:

S =
∑

x∈[M ],H∈H

|x⟩⟨x|X ⊗ IPW ⊗ |H⟩⟨H|H ⊗ (ID0...Dx−1 ⊗ Sx,H ⊗ IDx+1...DM−1
).

The hybrid compressed oracle Rb is defined as follows,

Rb = SObS where Ob =
∑

D∈({⊥}∪[N ])M

OD
b ⊗ |D⟩⟨D|D,

for b ∈ [0, 1]. The idea behind these definitions is that, for any basis state |x, p, w⟩A|H,D⟩HD:

• If the queried input satisfies x ∈ H, it means that x has been queried classically before;
then we stop (un)compressing Dx, and it behaves like a regular phase oracle on input x.

• Otherwise x ̸∈ H, then Dx is simulated as a compressed oracle.
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In particular, note that the quantum compressed oracle R0 only acts on the register H as control.
We provide an alternative definition to R0 and R1 in Section 4.3 that makes these observations
more formal. Finally, the joint state |ϕt⟩ of the algorithm and the oracle after t queries in the
compressed oracle model is defined as

|ϕt⟩ = UtRb(t) Ut−1 · · · U1Rb(1) U0 (|0⟩A|⋆, . . . , ⋆⟩H|⊥, . . . ,⊥⟩D). (4.2)

Following from Equation (4.2), we define the initial state |ϕ0⟩ = |0⟩A⊗|⋆, · · · , ⋆⟩H⊗|⊥, . . . ,⊥⟩D.

4.2 Structural Properties

Indistinguishability. We show that the compression and uncompression operations behave as
intended. For this, we will need some auxiliary definitions and lemmas. Let us define the unitary
operator Sall that applies Sx,H on every Dx:

Sall =
∑
H∈H

IXPW ⊗ |H⟩⟨H|H ⊗ (S0,H ⊗ S2,H ⊗ · · · ⊗ SM−1,H).

In other words, we uncompress every entry of D (that is not in H) instead of only Dx. Observe
that Sall|ϕ0⟩ = |ψ0⟩. We also have the following proposition:

Proposition 4.1. Rb = SObS = SallObSall for all b ∈ [0, 1].

Proof. This is because for |x, p, w⟩A, the oracle Ob acts as identity on the registers D<x and D>x.
Therefore, for every x′ ≠ x, we have that Sx′ in the left multiplication with Sall cancels with Sx′
in the right multiplication with Sall.

The next proposition shows that |ϕt⟩ in the compressed oracle framework can be viewed as a
compressed encoding of the state |ψt⟩.

Proposition 4.2 (Indistinguishability). The states |ψt⟩ from (3.2) and |ϕt⟩ from (4.2) satisfy
Sall|ϕt⟩ = |ψt⟩. In particular, the two states are identical when we trace out the database register.

Proof. Using (4.2), the left-hand side is equal to

Sall |ϕt⟩ = Sall UtRb(t) Ut−1 · · · U1Rb(1) U0 |ϕ0⟩
= Sall Ut (SallOb(t)Sall)Ut−1 · · · U1 (SallOb(1)Sall)U0 |ϕ0⟩
= (Sall Sall)UtOb(t)(Sall Sall)Ut−1 · · · U1Ob(1) U0 Sall |ϕ0⟩
= UtOb(t) Ut−1 · · · U1Ob(1) U0 |ψ0⟩
= |ψt⟩.

The second line follows from Proposition 4.1. The third line is true because Ui only operates
on A and commutes with Sall (which only operates on HD). Finally, the last line uses that Sall
is Hermitian, unitary and satisfies Sall|ϕ0⟩ = |ψ0⟩.

Consistency. We aim at characterizing what basis states can be in the support of |ϕt⟩. We
introduce the following vector space Ht spanned by consistent states.

Definition 4.3 (History-Database Consistent State). Given an integer t, we say that (H,D) is
a history-database t-consistent pair it it has the following properties:

1. (Database size) The database satisfies D(x) ̸= ⊥ for at most t different values of x.

2. (History size) The history is of the form H = ((x1, y1), . . . , (xc, yc), ⋆, . . . , ⋆) where
x1, . . . , xc ∈ [M ] and y1, . . . , yc ∈ {⊥} ∪ [N ] for some c ≤ t.
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3. (Uniqueness) We can identify the history with a function H : [M ] → {⋆,⊥} ∪ [N ] where
H(xj) = yj for all j ∈ {1, 2, · · · c} (meaning no two pairs in the history can differ on the
second coordinate only) and H(x) = ⋆ for x /∈ {x1, . . . , xc}.

4. (Equality) The database coincides with the history on non-⋆ values, meaning that
H(x) ̸= ⋆ implies D(x) = H(x).

We let Ht denote the vector space spanned by all basis state |x, p, w⟩A|H,D⟩HD where (H,D)
is history-database t-consistent. We say that a basis state is history-database consistent if it is
in Ht for some integer t.

The reader may wonder why we allow the history register to contain (x,⊥) in the above
definition since such a case shall not occur in |ψt⟩ and |ϕt⟩ because of Proposition 4.2. This is
only to provide more flexibility in further analysis. We now prove that |ϕt⟩ is supported over
consistent basis states only.

Proposition 4.4 (Consistency). Any state |ϕt⟩ obtained after t queries in the compressed oracle
model satisfies |ϕt⟩ ∈ Ht.

Proof. We check the four properties stated in Definition 4.3. The first property follows from the
fact that each query can increase the number of non-⊥ entries in D by at most 1. For the second
and third properties, we note that they hold for |ψt⟩ and, by Proposition 4.2, the states |ψt⟩
and |ϕt⟩ have the same reduced density matrix over H. Finally, the fourth property holds for |ψt⟩
since H(x) ̸= ⋆ implies that D(x) = H(x). By Proposition 4.2 and Equation (4.1), for any x
such that H(x) ̸= ⋆, the unitary Sall acts like an identity on Dx. Therefore, the same holds
for |ϕt⟩ as well.

Because of the above proposition, it suffices to only consider history-database consistent basis
states while analyzing any algorithm and we shall tacitly assume that this is the case in any of
the proofs that follow.

4.3 Sampling and Resampling

In this section, we prove that the compressed oracle follows a similar behavior as the classical
lazy-sampling strategy, namely the sampling of each input coordinate is delayed until it gets
queried. There are some crucial differences yet, due to the reversibility of quantum computation.
In particular, a coordinate can get “resampled” to a different value with a small probability.

In the rest of the paper, we abbreviate the root of unity ωN = e
2iπ
N as ω. We also adopt

the following notation to modify one entry of a database (we recall that for a history H the
notation Hx←y is used for appending (x, y) to the list).

Definition 4.5 (Dx←y). Let (x, y) ∈ [M ]× ({⊥} ∪ [N ]). Given D : [M ] → {⊥} ∪ [N ], we define
the database Dx←y over the same domain as D by

Dx←y(x
′) =

{
y if x′ = x,
D(x′) if x′ ̸= x.

The next lemmas describe what happens to the history and database when making a quantum
or classical query. Among all the cases described below, the most interesting one is when the
query is made at an index x that is in the database but not in the history (i.e. D(x) ̸= ⊥ and
H(x) = ⋆): up to a small resampling error, the database remains unchanged apart from an added
phase.

17



Lemma 4.6 (Quantum Query R0). Let |x, p, w⟩|H,D⟩ be a history-database consistent basis
state. Then, R0 maps this state to |x, p, w0⟩|H⟩|φ⟩ where the state |φ⟩ of the database register is

· ωpD(x)|D⟩ (if H(x) ̸= ⋆ or p = 0)

·
∑
y∈[N ]

ωpy

√
N

|Dx←y⟩ (if H(x) = ⋆, D(x) = ⊥, p ̸= 0)

· ωpD(x)|D⟩+ ωpD(x)

√
N

|Dx←⊥⟩+
∑
y∈[N ]

1− ωpD(x) − ωpy

N
|Dx←y⟩ (if H(x) = ⋆, D(x) ̸= ⊥, p ̸= 0)

Lemma 4.7 (Classical Query R1). Let |x, p, w⟩|H,D⟩ be a history-database consistent basis state.
Then, R1 maps this state to |x, p, w1⟩|φ⟩ where the state |φ⟩ of the history-database registers is

· ωpD(x)|Hx←D(x), D⟩ (if H(x) ̸= ⋆)

·
∑
y∈[N ]

ωpy

√
N

|Hx←y, Dx←y⟩ (if H(x) = ⋆, D(x) = ⊥)

· ωpD(x)|Hx←D(x), D⟩+ 1√
N

|Hx←⊥, Dx←⊥⟩ −
∑
y∈[N ]

ωpy

N
|Hx←y, Dx←y⟩ (if H(x) = ⋆, D(x) ̸= ⊥)

In the above lemmas, when x is not in the history but is in the database, after making a
quantum or classical query, most likely D(x) remains unchanged (corresponding to the |D⟩ term),
but there is a small probability that D(x) gets removed (corresponding to the |Dx←⊥⟩ term) or
resampled (corresponding to a superposition of |Dx←y⟩ over y). We call the first term “unchanged
term” (the database does not get updated), the second term “removed term” (the outcome on x
gets removed) and the last one “resampled term” in both items above. The proofs can be found
in Appendix A.1.

4.4 Progress Measures

All progress measures studied in this paper will be expressed in terms of the norm of the projection
onto basis states satisfying certain predicates.

Definition 4.8 (Basis-State Predicate). Let P : (x, p, w,H,D) 7→ {False,True} be a predicate
function over all basis states |x, p, w⟩A|H,D⟩HD. We define the projection

ΠP =
∑

(x,p,w,H,D)∈P−1(True)

|x, p, w,H,D⟩⟨x, p, w,H,D|

over all basis states satisfying P. We let P denote the negation of P and, given two predicates
P1 and P2, we let P1 · P2 denote their conjunction and P1 + P2 denote their disjunction.

Fact 4.9. Let P1 and P2 be two basis-state predicates. Then, the projections ΠP1 and ΠP2 are
commuting operators. We have ΠP1

= I−ΠP1, ΠP1·P2 = ΠP1ΠP2 and ΠP1+P2 = ΠP1 +ΠP2 −
ΠP1ΠP2. Moreover, P1 ⇒ P2 if and only if ΠP1 ⪯ ΠP2, where ⪯ is the Loewner order.

Most of the predicates considered in this paper will in fact depend only on the values of H
and D (a few predicates will also depend on the query index x).

We define the following general notions of progress measure and overlap.

Definition 4.10 (Progress Measure and Progress Overlap). Given a state |ϕ⟩, a real b ∈ [0, 1]
and a projector Π over AHD, we define

∆b(Π, |ϕ⟩) = ∥ΠRb|ϕ⟩∥2 − ∥Π|ϕ⟩∥2 and Γb(Π, |ϕ⟩) =
∥ΠRb(I−Π)|ϕ⟩∥2

∥(I−Π)|ϕ⟩∥2
,

with the convention that Γb(Π, |ϕ⟩) = 0 if ∥(I−Π)|ϕ⟩∥ = 0.
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The quantity ∆b(Π, |ϕ⟩) ∈ [−1, 1] represents the increase in norm of the projection onto Π
after applying a hybrid query Rb. These will be used as a measure of progress later in the proofs.

The quantity Γb(Π, |ϕ⟩) ∈ [0, 1] tracks the amplitude that moves after making a query from
a subspace to its orthogonal complement. In particular, if Γb(Π, |ϕ⟩) ≤ γ, then we have that
∥ΠRb(I − Π)|ϕ⟩∥2 ≤ γ∥(I − Π)|ϕ⟩∥2. In this paper, we only consider projectors ΠP for some
predicates P. In such cases, we can equivalently write

Γb(ΠP, |ϕ⟩) =
∥ΠPRbΠP|ϕ⟩∥2

∥ΠP|ϕ⟩∥2
.

Next, we give two general lemmas that bound how much increase a single classical or quantum
query can have towards a target history–database pair. These lemmas will apply when the
predicate satisfies the following definition, which is similar to the notion of “database property”
introduced in [CMS19; CFHL21]. One difference in our definition is that we need to take the
classical history into account.

Definition 4.11 (History-Database Predicate). Let P : (H,D) 7→ {False,True} be a predicate
function over all history-database pairs. We say that it is a history-database predicate if for every
true-pair (H,D) ∈ P−1(True),

• (Consistent) The pair (H,D) is history-database consistent (see Definition 4.3).

• (History Invariant) For every list H ′ such that (H ′, D) is history-database consistent
and H(x′) = H ′(x′) for all x′ ∈ [M ], we have (H ′, D) ∈ P−1(True).

• (Database Monotone) For every database D′ that is obtained by replacing a ⊥ in D
with another value (i.e. D = D′x′←⊥ for some x′ ∈ [M ]), we have (H,D′) ∈ P−1(True).

By extension, we say that P : (x, p, w,H,D) 7→ {False,True} is a history-database predicate
if it does not depend on (x, p, w) and its restriction to (H,D) satisfies the above properties.

The next lemmas bound the progress overlap Γ0 (resp. Γ1) in terms of the probability γ that
a history-database predicate becomes true when a new uniformly random value y is added to
the database (resp. database and history). We first provide the lemma for quantum queries,
which follows the ideas used in previous work, starting from [Zha19]. Then we state the lemma
for classical queries, which is new, but the core argument in the proof is similar. These results
encompass most, although not all (see Lemma 6.9), of the progress overlap bounds needed in
subsequent applications. The proofs can be found in Appendix A.2.

Lemma 4.12 (Progress Overlap, Quantum Query). Let P be a history-database predicate, t
be an integer and γ ∈ [0, 1] be a real parameter. Suppose that, for every false-state (H,D) ∈
P−1(False) ∩Ht where D(x) = ⊥, the probability to make the predicate true by replacing D(x)
with a random value y is at most

Pr
y←[N ]

[
(H,Dx←y) ∈ P−1(True)

]
≤ γ. (4.3)

Then, the quantum progress overlap is at most Γ0(ΠP, |ϕ⟩) ≤ 10γ for all |ϕ⟩ ∈ Ht.

The adaptation of the above lemma to the classical query case requires making one extra
assumption stated in Equation (4.5) below. This condition rules out predicates that can become
true by simply copying a value from the database to the history.

Lemma 4.13 (Progress Overlap, Classical Query). Let P be a history-database predicate, t
be an integer and γ ∈ [0, 1] be a real parameter. Suppose that, for every false-state (H,D) ∈
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P−1(False) ∩Ht where D(x) = ⊥, the probability to make the predicate true by replacing H(x)
and D(x) with the same random value y is at most

Pr
y←[N ]

[
(Hx←y, Dx←y) ∈ P−1(True)

]
≤ γ. (4.4)

Assume further that, for every false-state (H,D) ∈ P−1(False), the predicate does not become
true when (x,D(x)) is appended to the history, i.e.

(H,D) ∈ P−1(False) ⇒ (Hx←D(x), D) ∈ P−1(False). (4.5)

Then, the classical progress overlap is at most Γ1(ΠP, |ϕ⟩) ≤ 2γ for all |ϕ⟩ ∈ Ht.

Note that γ will often depend on the maximum number t of values contained in the database
and in the history. Moreover, if Lemmas 4.12 and 4.13 hold with parameters γ0 and γ1 respectively,
then the progress interpolates as Γb(ΠP, |ϕ⟩) ≤ 10(1− b)γ0 + 2bγ1.

Finally, we state some simple facts that will be used frequently throughout the paper.

Fact 4.14. Let |ϕ⟩, |ϕ′⟩ be two states defined over the registers AHD. Let U be a unitary operator
over A. Let Π,Π′ be two projectors over AHD. Then,

• (Monotonicity) If Π ⪯ Π′ then Π ·Π′ = Π′ ·Π = Π.

• (Commutativity) If Π = IA ⊗ΠHD for some projector ΠHD then ∥ΠU |ϕ⟩∥ = ∥Π|ϕ⟩∥.

• (Sub-multiplicativity) ∥Π|ϕ⟩∥ ≤ ∥|ϕ⟩∥.

5 Preimage Search

In this section, we prove the lower bound for preimage search against hybrid algorithms.

Theorem 5.1. The success probability of finding a zero preimage, in a uniformly random function
D : [M ] → [N ], is at most

• (Model 1.) O
( c+q2

N

)
using q quantum queries and c classical queries,

• (Model 2.) O
(

t
bN

)
using t queries to the hybrid oracle Ob where 1/t ≤ b ≤ 1,

• (Model 3.) O
(
dt
N

)
using t quantum queries with bounded-depth 1 ≤ d ≤ t.

The above inequalities are optimal. The proof proceeds as mentioned in the technical overview;
we will define a notion of quantum and classical progress to keep track of the success probability
of the algorithm after each query. To formally define these measures, we now give a series of
predicates that characterize whether the history or the database contains a zero preimage:

Definition 5.2. The following predicates evaluate a basis state |x, p, w,H,D⟩ to True if and
only if it is history-database consistent (see Definition 4.3) and satisfies the next conditions:

• q: there exists a zero preimage in the quantum database D that is not in the history H,
i.e. x′ such that D(x′) = 0 and H(x′) = ⋆.

• c: there exists a zero preimage in the classical history H, i.e. x′ such that H(x′) = 0. Note
that for any history-database consistent basis state (x′, y) ∈ H implies D(x′) = y, and thus
if c is true, then there exists x′ such that D(x′) = H(x′) = 0.

• xq: the predicate q holds and the query index x is the only zero preimage in the quantum
database D that is not in the history H, i.e. D(x) = 0, H(x) = ⋆ and H(x′) = 0 if D(x′) = 0
for all x′ ̸= x.

20



• xq: the predicate q holds but not xq (i.e., there exists x′ ̸= x such that D(x′) = 0
and H(x′) = ⋆).

We shall also use negations, conjunctions and disjunctions of the above predicates.

To prove the lower bound, we first note that the squared norm ∥Πc|ϕt⟩∥2 is an upper bound
on the success probability of the algorithm after the last query since we can assume that the
final output is always in the history register (by making one extra classical query at the end)
and hence also in the database. We remark that because of the above, our hybrid compressed
oracle framework avoids the need of using [Zha19, Lemma 5] that is typically needed for proofs
in the usual compressed oracle framework.

To keep track of the progress of the algorithm, we will need more fine-grained control and
for this we keep track of the change in the quantities ∥Πc|ϕt⟩∥ and ∥Πq·c|ϕt⟩∥, which can be
thought of as classical and (purely) quantum progress respectively. Initially, both quantities are
equal to zero. Each time the algorithm makes a quantum (b = 0) or classical (b = 1) query, we
show that the progress evolves as follows in terms of the quantity defined in Definition 4.10:

∆b(Π, |ϕ⟩) = ∥ΠRb|ϕ⟩∥2 − ∥Π|ϕ⟩∥2.

Proposition 5.3 (Progress after a quantum query). Given an integer t and a state |ϕ⟩ ∈ Ht

with norm at most 1, the progress caused by one quantum query on |ϕ⟩ are at most,

∆0(Πc, |ϕ⟩) = 0 and ∆0(Πq·c, |ϕ⟩) ≤ 2

√
10

N
∥Πxq·c|ϕ⟩∥+

10

N
.

Proposition 5.4 (Progress after a classical query). Given an integer t and a state |ϕ⟩ ∈ Ht with
norm at most 1, the progress caused by one quantum query on |ϕ⟩ are at most,

∆1(Πc, |ϕ⟩) ≤ 2∥Πxq·c|ϕ⟩∥2 + δ +
4

N
and ∆1(Πq·c, |ϕ⟩) = −∥Πxq·c|ϕ⟩∥2 − δ

where δ = ∥ΠcR1Πxq·c|ϕ⟩∥2.

The first proposition follows from a similar (but refined) analysis of the preimage search in
the compressed oracle framework of [Zha19]. The second proposition is different from the usual
analysis in this framework as it shows that a classical query can also decrease the progress the
algorithm has made. We shall give their proofs later. First we show how the above imply optimal
lower bounds for preimage search. It suffices to prove the results in models 1 and 2 since the
result in model 3 follows by that in model 2 and Corollary 3.5.

Theorem 5.5. The progress made by any algorithm after t queries satisfies

• (Model 1.) ∥Πc|ϕt⟩∥2 = O
( c+q2

N

)
if q queries use the quantum oracle and c queries use the

classical oracle with c+ q = t,

• (Model 2.) ∥Πc|ϕt⟩∥2 = O
(

t
bN

)
if all queries use the hybrid oracle Ob for some 1/t ≤ b ≤ 1.

Proof. It will be more convenient to keep track of the potential

Ψt := ∥Πc|ϕt⟩∥2 + 3∥Πq·c|ϕt⟩∥2.

Observe that ∥Πc|ϕt⟩∥2 ≤ Ψt
5. We claim that the following recurrence holds for the potential Ψt

if the t-th query is made to the oracle Ob with b ∈ [0, 1]:

Ψt ≤ Ψt−1 +min

(
11

√
Ψt−1
N

,
90

bN

)
+

30

N
(5.1)

5In fact, since Πc +Πq·c = Πq+c where the projectors in the sum are orthogonal, we also have that 1
3
Ψt ≤

∥Πq+c|ϕt⟩∥2 ≤ Ψt but we do not use this fact.
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with the initial condition that Ψ0 = 0. Recalling the definition of ∆b(Π, |ϕ⟩), it follows from the
fact Ψt = ∥ΠcRb|ϕt−1⟩∥2 + 3∥Πq·cRb|ϕt−1⟩∥2 = Ψt−1 +∆b(Πc, |ϕt−1⟩) + 3∆b(Πh·c, |ϕt−1⟩) and
Propositions 5.3 and 5.4 that

Ψt ≤ Ψt−1 − b∥Πxq·c|ϕt−1⟩∥2 + 6(1− b)

√
10

N
∥Πxq·c|ϕt−1⟩∥ − 2δb+

30− 26b

N

≤ Ψt−1 − b∥Πxq·c|ϕt−1⟩∥2 + 6

√
10

N
∥Πxq·c|ϕt−1⟩∥+

30

N
.

We obtain Equation (5.1) by bounding the term −b∥Πxq·c|ϕt−1⟩∥2 + 6
√

10
N ∥Πxq·c|ϕt−1⟩∥ in

two different ways: (1) using that ∥Πxq·c|ϕt−1⟩∥ ≤ ∥Πq·c|ϕt−1⟩∥ ≤
√
Ψt−1/3, it is at most

11
√

Ψt−1/N , (2) using that the polynomial −bZ2 + 6
√

10
N Z is maximized at Z =

√
90
b2N

when
b > 0, it is at most 90

bN .
If all queries use the same oracle Ob, for some b ̸= 0, then by Equation (5.1) we get

∥Πc|ϕt⟩∥2 ≤ Ψt = O
( t

bN

)
,

which proves the second statement in the theorem. If instead each query is either to the
quantum (b = 0) or classical (b = 1) oracle then the potential increases by at most Ψt −Ψt−1 ≤
11
√
Ψt−1/N + 30/N when making a quantum query and Ψt −Ψt−1 ≤ 120/N when making a

classical query by Equation (5.1). We can assume that the last two inequalities are replaced
with equalities as it can only increase the maximum possible value for Ψt. Observe in this case
that the potential always increases by the same amount 120/N when making a classical query,
whereas for quantum queries it is advantageous to first maximize the value of Ψt−1. Hence, for an
algorithm making c classical and q quantum queries, the optimal strategy is to use the classical
recurrence for the first c steps and the quantum recurrence afterward. In this case, it follows
that for t = q + c queries, we have that

∥Πc|ϕt⟩∥2 ≤ Ψt = O

(
c+ q2

N

)
.

To complete the proof, we now prove Propositions 5.3 and 5.4.

Proof of Proposition 5.3. The first equality is due to the fact that a quantum query R0 only uses
the register H as a control. Thus, for any basis state in the support of the projector Πc, which
does not contain a zero preimage in H by definition, the state after applying R0 will still not
contain a zero preimage in H and thus be orthogonal to the support of Πc. On the other hand,
a basis state in the support of Πc contains a zero preimage in H and remains in the support
even after applying R0. Since I = Πc +Πc and the projectors in the summation are orthogonal,
the statement ∥ΠcR0|ϕ⟩∥ = ∥Πc|ϕ⟩∥ follows and hence ∆0(Πc, |ϕ⟩) = 0.

To see the second inequality, we have that

∥Πq·cR0|ϕ⟩∥2 = ∥Πq·cR0(Πc +Πq·c +Πq·c)|ϕ⟩∥2

= ∥Πq·cR0(Πq·c +Πq·c)|ϕ⟩∥2

= ∥Πq·cR0Πxq·c|ϕ⟩∥2 + ∥Πq·cR0(Πxq·c +Πq·c)|ϕ⟩∥2

≤ ∥Πxq·c|ϕ⟩∥2 + (∥Πxq·c|ϕ⟩∥+ ∥Πq·cR0Πq·c|ϕ⟩∥)2

= ∥Πq·c|ϕ⟩∥2 + 2∥Πxq·c|ϕ⟩∥ · ∥Πq·cR0Πq·c|ϕ⟩∥+ ∥Πq·cR0Πq·c|ϕ⟩∥2. (5.2)

The second equality uses that Πq·cR0Πc = 0 since any basis state in the support of Πc will
remain in the support of the same projector. This is because R0 acts as a control on H and
there is already a zero preimage x ∈ H before applying R0. The third equality uses that
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Πq·cR0Πxq·c|ϕ⟩ is orthogonal to Πq·cR0(Πxq·c + Πq·c)|ϕ⟩ since the former is supported over
basis states |x⟩X |D⟩D containing a zero preimage in D not equal to x, whereas the latter can
only contain the preimage x. The last two lines uses the triangle inequality and the fact that
∥Πxq·c|ϕ⟩∥2 + ∥Πxq·c|ϕ⟩∥2 = ∥Πq·c|ϕ⟩∥2.

To bound the term ∥Πq·cR0Πq·c|ϕ⟩∥ in (5.2), we use that Πq·c = Πc ·Πq and Πq·c = Πq ·Πc
and thus, ∥Πq·cR0Πq·c|ϕ⟩∥ ≤ ∥ΠqR0ΠqΠc|ϕ⟩∥. Since q is a history-database predicate, we can

apply Lemma 4.12 to bound the above by
√

10
N ∥Πc|ϕ⟩∥. Plugging this into (5.2) and rearranging,

we get the desired inequality about ∆0(Πq·c, |ϕ⟩).

Proof of Proposition 5.4. Towards proving the first inequality in the statement of the proposition,
we have that

∥ΠcR1|ϕ⟩∥2 = ∥ΠcR1(Πc +Πq·c +Πq·c)|ϕ⟩∥2

= ∥ΠcR1Πc|ϕ⟩∥2 + ∥ΠcR1(Πq·c +Πq·c)|ϕ⟩∥2

= ∥ΠcR1Πc|ϕ⟩∥2 + ∥ΠcR1Πxq·c|ϕ⟩∥2 + ∥ΠcR1(Πxq·c +Πq·c)|ϕ⟩∥2

≤ ∥Πc|ϕ⟩∥2 + ∥ΠcR1Πxq·c|ϕ⟩∥2 + 2∥Πxq·c|ϕ⟩∥2 + 2∥ΠcR1Πq·c|ϕ⟩∥2. (5.3)

The second equality in the above sequence follows since ΠcR1Πc|ϕ⟩ is orthogonal to
ΠcR1(Πq·c +Πq·c)|ϕ⟩. This can be seen from the fact that the history register H in ΠcR1Πc|ϕ⟩
is supported over basis states |H⟩H where the first c entries of H contains a zero preimage.
Therefore, it is orthogonal to ΠcR1(Πq·c +Πq·c)|ϕ⟩. Similarly, the third equality uses that
ΠcR1Πxq·c|ϕ⟩ is orthogonal to ΠcR1(Πxq·c +Πq·c)|ϕ⟩ since the latter is supported over basis
states |x⟩X |D⟩D where the only possible zero preimage in D is x. The last inequality follows
from Fact 4.14 and the fact that ∥|a⟩+ |b⟩∥2 ≤ 2∥|a⟩∥2 + 2∥|b⟩∥2 for any states |a⟩ and |b⟩.

Since q+ c is a history-database predicate satisfying Equation (4.5), we can use Lemma 4.13
to bound the last term in Equation (5.3). It gives us that for γ = 1

N ,

Γ1(Πq+c, |ϕ⟩) ≤ 2γ =⇒ ∥Πq+cR1Πq·c|ϕ⟩∥2 ≤ 2γ∥Πq·c|ϕ⟩∥2 ≤
2

N

and ∥ΠcR1Πq·c|ϕ⟩∥2 ≤ ∥Πq+cR1Πq·c|ϕ⟩∥2. Recalling Definition 4.10, we thus have shown that

∆1(Πc, |ϕ⟩) ≤ 2∥Πxq·c|ϕt⟩∥2 + ∥ΠcR1Πxq·c|ϕ⟩∥2 +
4

N
,

proving the first inequality in the statement of the proposition.

The second equality is relatively straightforward:

∥Πq·cR1|ϕ⟩∥2 = ∥Πq·cR1(Πc +Πxq·c +Πxq·c +Πq·c)|ϕ⟩∥2

= ∥Πq·cR1Πxq·c|ϕ⟩∥2

= ∥ΠcR1Πxq·c|ϕ⟩∥2

= ∥Πxq·c|ϕ⟩∥2 − ∥ΠcR1Πxq·c|ϕ⟩∥2

= ∥Πq·c|ϕ⟩∥2 − ∥Πxq·c|ϕ⟩∥2 − ∥ΠcR1Πxq·c|ϕ⟩∥2,

where the second line is true as Πq·cR1(Πc +Πxq·c +Πq·c) = 0. This holds since a classical
query R1 can not remove a zero preimage from H or lead to a zero preimage in the database
that is not in the classical history as well. The third line follows since the state R1Πxq·c|ϕ⟩ must
necessarily contain a zero preimage in the database (by the predicate xq). The last two lines use
that Πc +Πc = I and Πxq·c +Πxq·c = Πq·c where the projectors in each sum are orthogonal.
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6 Collision Finding

In this section, we prove our main theorem on hybrid collision-finding algorithms:

Theorem 6.1. The success probability of finding a colliding pair, in a uniformly random function
D : [M ] → [N ], is at most

• (Model 1.) O
( c2+cq2+q3

N

)
using q quantum queries and c classical queries,

• (Model 2.) O
(

t2

bN

)
using t queries to the hybrid oracle Ob where 1/t ≤ b ≤ 1,

• (Model 3.) O
(
dt2

N

)
using t quantum queries with bounded-depth 1 ≤ d ≤ t.

The section is organized as follows. The progress measures needed for the proof of the above
theorem are introduced in Section 6.1. The main part of the proof is contained in Section 6.2. It
uses some auxiliary lemmas whose demonstrations are deferred to Sections 6.3 and 6.4.

6.1 Progress Measure

We define three types of collision pairs that can be recorded by a hybrid compressed oracle.

Definition 6.2 (Collision Type). Given a history-database consistent pair (H,D), we say that it
contains a collision if there exist two values x1 ̸= x2 such that D(x1) = D(x2) ̸= ⊥. Additionally,
if x1, x2 /∈ H the collision is said to be quantum, if x1, x2 ∈ H it is said to be classical and if
x1 /∈ H, x2 ∈ H it is said to be hybrid.

We now give a series of predicates that characterize what types of collisions have been recorded
in a basis state. Later on, we will combine these predicates together to define the measures of
progress needed in our proofs.

Definition 6.3. The following predicates evaluate a basis state |x, p, w,H,D⟩ to True if and
only if it is history-database consistent (see Definition 4.3) and satisfies the next conditions:

• q, h, c: there is respectively at least one quantum, one hybrid or one classical collision
contained in (H,D).

• xq: the predicate q holds and the query index x is contained in every quantum collision.

• xh: the predicate h holds and the query index is contained in every hybrid collision and
the query index is not in the history.

• xq (resp. xh): the predicate q (resp. h) holds, but not xq (resp. xh).

Note that xq + xq = q and xh + xh = h. Furthermore, the predicate xq is equivalent to
the existence of a quantum collision not containing the query index. The last four predicates are
the only ones that depend on the value x contained in the index register. The other predicates
depend only on the history-database (H,D).

We will combine the above predicates into the potential

Ψ(|ϕ⟩) = ∥Πc|ϕ⟩∥2 + 3∥Πh·c|ϕ⟩∥2 + 7∥Πq·h·c|ϕ⟩∥2

that allows for bounding the probability ∥Πq+h+c|ϕ⟩∥2 = ∥Πc|ϕ⟩∥2 + ∥Πh·c|ϕ⟩∥2 + ∥Πq·h·c|ϕ⟩∥2
of recording any type of collision.

24



6.2 Main Result

We now turn to the proof of Theorem 6.1, delaying auxiliary lemmas to later sections. First, it is
simple to argue that, for a t-query algorithm computing a state |ϕt⟩ in the hybrid compressed
oracle model, the probability ∥Πq+h+c|ϕt⟩∥2 of recording any type of collision is an upper bound
on the success probability. Since a direct bound on this quantity is difficult to obtain, we instead
analyze the three predicates c, h · c, q ·h · c separately, and later combine them into a bound on
the potential Ψ(|ϕt⟩).

We first show that performing a quantum query incurs the following progress increases.

Lemma 6.4 (Progress Measure, Quantum Query). Given an integer t and a state |ϕ⟩ ∈ Ht with
norm at most 1, the progress caused by one quantum query on |ϕ⟩ are at most,

∆0(Πc, |ϕ⟩) = 0 ,

∆0(Πh·c, |ϕ⟩) ≤ 2

√
10t

N
∥Πxh·c|ϕ⟩∥+

10t

N
,

∆0(Πq·h·c, |ϕ⟩) ≤
√

8t

N
∥Πxh·c|ϕ⟩∥+ 2

√
20t

N
∥Πxq·h·c|ϕ⟩∥+

20t

N
.

Recall that, by Definition 4.10, the quantity ∆0(ΠP, |ϕ⟩) ∈ [−1, 1] for a predicate P represents
the progress increase ∆0(ΠP, |ϕ⟩) = ∥ΠPR0|ϕ⟩∥2 − ∥ΠP|ϕ⟩∥2 when doing a quantum query.
Hence, the first equality reflects the fact that a quantum query cannot create or destroy a classical
collision. The second inequality is based on the observation that, when adding a random value
to the database, the probability that it creates a hybrid collision is at most t/N since it must
collide with one of the at most t values contained in the history. The third inequality is slightly
more involved since it must also take into account the case of removing a hybrid collision from
the history-database.

We next look at the progress increase when the query is classical.

Lemma 6.5 (Progress Measure, Classical Query). Given an integer t and a state |ϕ⟩ ∈ Ht with
norm at most 1, the progress caused by one classical query on |ϕ⟩ are at most,

∆1(Πc, |ϕ⟩) ≤ 2∥Πxh·c|ϕ⟩∥2 + δ1 +
4t

N
,

∆1(Πh·c, |ϕ⟩) ≤ −∥Πxh·c|ϕ⟩∥2 + 2∥Πxq·h·c|ϕ⟩∥2 − δ1 + 2δ2 +
12t

N
,

∆1(Πq·h·c, |ϕ⟩) ≤
√

2t

N
∥Πxh·c|ϕ⟩∥ − ∥Πxq·h·c|ϕ⟩∥2 − δ2

where δ1 = ∥ΠcR1Πxh·c|ϕ⟩∥2 and δ2 = ∥Πh·cR1Πxq·h·c|ϕ⟩∥2.

The negative terms on the right-hand side represent the amount of progress transferred
by one classical query between different progress measures. Note that, as a simple case, if
an algorithm makes only classical queries then there can be no hybrid or quantum collision,
hence ∥Πxh·c|ϕt⟩∥ = ∥Πxq·h·c|ϕt⟩∥ = 0 and the above inequalities simplify to ∆1(Πc, |ϕt⟩) =
∥ΠcR1|ϕt⟩∥2 − ∥Πc|ϕt⟩∥2 ≤ 4t/N . Thus, we recover the birthday bound ∥Πc|ϕt⟩∥2 = O(t2/N)
after t classical queries.

We now combine the two lemmas to bound the potential increase under applying the hybrid
compressed oracle Rb.

Proposition 6.6. Given an integer t and a state |ϕ⟩ ∈ Ht with norm at most 1, upon applying
the hybrid compressed oracle Rb, the potential increases by at most

Ψ(Rb|ϕ⟩) ≤ Ψ(|ϕ⟩) + min

(
81

√
t ·Ψ(|ϕ⟩)

N
,
1641t

bN

)
+

170t

N
(6.1)

for all b ∈ [0, 1].
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Proof. We start by proving

Ψ(Rb|ϕ⟩) ≤ Ψ(|ϕ⟩)− b∥Πxh·c+xq·h·c|ϕ⟩∥2 + 81

√
t

N
∥Πxh·c+xq·h·c|ϕ⟩∥+

170t

N
(6.2)

for all b ∈ [0, 1]. By combining Lemmas 6.4 and 6.5 with the fact that

Ψ(Rb|ϕ⟩) = (1− b)Ψ(R0|ϕ⟩) + bΨ(R1|ϕ⟩)
= Ψ(|ϕ⟩) + ∆b(Πc, |ϕ⟩) + 3∆b(Πh·c, |ϕ⟩) + 7∆b(Πq·h·c, |ϕ⟩),

we have that

Ψ(Rb|ϕ⟩) ≤ Ψ(|ϕ⟩)− b(∥Πxh·c|ϕ⟩∥2 + ∥Πxq·h·c|ϕ⟩∥2)

+ 40

√
t

N
∥Πxh·c|ϕ⟩∥+ 70

√
t

N
∥Πxq·h·c|ϕ⟩∥+

170t

N
.

Equation (6.2) follows by observing that

∥Πxh·c|ϕ⟩∥2 + ∥Πxq·h·c|ϕ⟩∥2 = ∥Πxh·c+xq·h·c|ϕ⟩∥2, and

40∥Πxh·c|ϕ⟩∥+ 70∥Πxq·h·c|ϕ⟩∥ ≤
√
402 + 702∥Πxh·c+xq·h·c|ϕ⟩∥,

where the last inequality follows from Cauchy–Schwarz.
Finally, the proposition is derived from Equation (6.2) and the fact that

−b∥Πxh·c+xq·h·c|ϕ⟩∥2 + 81

√
t

N
∥Πxh·c+xq·h·c|ϕ⟩∥

≤ min{81
√

t

N
∥Πxh·c+xq·h·c|ϕ⟩∥,

1641t

bN
}

≤ min{81
√

t

N
·Ψ(|ϕ⟩), 1641t

bN
}

since the polynomial −bZ2 + 81
√

t
NZ is maximized at Z = 81

√
t

4b2N
.

Finally, we can prove our main theorem by tuning the interpolation coefficient b.

Proof of Theorem 6.1. We first consider the case of hybrid algorithms that only make classical
or quantum queries (model 1). We want to upper bound the probability that an algorithm
outputs a collision pair after t = c + q queries, of which c are classical and q are quantum.
Fix any such algorithm and let |ϕt⟩ denote its state as defined in Equation (4.2). We can
always assume, at the cost of doing two extra classical queries, that the output is contained in
the history register. Hence, the success probability of the algorithm is upper bounded by the
probability ∥Πc|ϕt⟩∥2 of having recorded a classical collision. We now prove the upper bound
∥Πc|ϕt⟩∥2 = O((c2 + cq2 + q3)/N) that matches our theorem. For that, we consider the potential
after t queries defined as

Ψt := ∥Πc|ϕt⟩∥2 + 3∥Πh·c|ϕt⟩∥2 + 7∥Πq·h·c|ϕt⟩∥2.

Our proof is by induction on t. Initially, Ψ0 = 0 since the history and database registers of |ϕ0⟩
are empty by definition. By Proposition 6.6, at each query, the potential increases by at most,

Ψt ≤


(√

Ψt−1 + 41
√

t−1
N

)2
if the t-th query is quantum (b = 0),

Ψt−1 +
1811(t−1)

N if the t-th query is classical (b = 1).
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The maximum increase permitted by the above two inequalities is achieved when all the classical
queries are performed first. Thus, we conclude that

Ψc+q = O

(
c · c+ q

N
+ q2 · c+ q

N

)
= O

(
c2 + cq2 + q3

N

)
.

We now study the case of algorithms that make t queries to the same hybrid oracle Ob

where b > 0 (model 2). By using the same definition of Ψt as above, together with Proposition 6.6,
we obtain that

Ψt = O

(
t2

bN

)
since each query increases the potential by at most O(t/(bN)).

Finally, the case of bounded-depth algorithms (model 3) follows by the result in model 2 and
Corollary 3.5.

6.3 Progress Overlap Lemmas

In this section, we prove several simple lemmas that upper bound the progress overlap when
making one classical or quantum query. Roughly speaking, these quantities correspond to the
probability of recording new collisions in the history-database register when a new coordinate of
the input is revealed by a query.

We first give a central fact that will be used throughout the next sections. It describes certain
subspaces that remain orthogonal after applying one (classical or quantum) query to them.

Fact 6.7. The following linear maps are equal to zero over the subspace Ht of consistent states:

ΠcR0Πc, ΠcR0Πc, Πq·hR0Πq·h, ΠhR0Πxh

and
ΠcR1Πc, ΠqR1Πq, ΠqR1Πxq, ΠhR1Πxh .

For any states |ϕ1⟩, |ϕ2⟩ ∈ Ht and basis-state predicate P, the following vectors are orthogonal:

ΠPRbΠxq|ϕ1⟩ ⊥ Rb(Πq +Πxq)|ϕ2⟩ and ΠPRbΠxh|ϕ1⟩ ⊥ Rb(Πh +Πxh)|ϕ2⟩.

for b ∈ {0, 1}.

Proof. The statement follows by simple applications of Lemmas 4.6 and 4.7.
We detail the proof of the equality ΠqR1Πq = 0. Consider any basis state |x, p, w,H,D⟩ ∈

supp(Πq). By Lemma 4.7, every history-database (H ′, D′) contained in the support of the
post-query state R1|x, p, w,H,D⟩ must be identical to (H,D) except possibly on the value x.
Furthermore, since x must be in the history after the classical query (i.e. H ′(x) ̸= ⋆) it cannot
contribute to any quantum collision in (H ′, D′). Thus, no quantum collision can be contained
in (H ′, D′).

We sketch the proof of ΠPR1Πxh|ϕ1⟩ ⊥ R1Πh|ϕ2⟩. Every basis state in the support of
R1Πxh|ϕ1⟩ has a hybrid collision that does not contain the query index. On the other hand,
none of the basis states in the support of R1Πh|ϕ2⟩ satisfy this property since the only possible
hybrid collisions must contain the index on which R1 is queried. Hence, R1Πxh|ϕ1⟩ ⊥ R1Πh|ϕ2⟩.
Finally, applying ΠP does not change the orthogonality property since it can only remove basis
states from the support of these states.

We now analyze the effect of quantum and classical queries on the progress overlaps
Γ0(Π, |ϕ⟩),Γ1(Π, |ϕ⟩) ∈ [0, 1] for different projectors Π. Recall that, by Definition 4.10, these
numbers give the relative amplitude that moves from the support of I−Π to the support of Π
after making a query, i.e. Γb(Π, |ϕ⟩) = ∥ΠRb(I− Π)|ϕ⟩∥2/∥(I− Π)|ϕ⟩∥2. Notice that Fact 6.7
already shows that Γ0(Πc, |ϕ⟩) = Γ0(Πc, |ϕ⟩) = Γ1(Πc, |ϕ⟩) = 0.
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Lemma 6.8. Given an integer t and a state |ϕ⟩ ∈ Ht, the progress overlap caused by one quantum
query on |ϕ⟩ are at most,

Γ0(Πq, |ϕ⟩) ≤
10t

N
, (6.3) Γ0(Πq+h, |ϕ⟩) ≤

10t

N
, (6.4)

Γ0(Πh, |ϕ⟩) ≤
10t

N
, (6.5)

and the progress overlap caused by one classical query on |ϕ⟩ are,

Γ1(Πq, |ϕ⟩) = 0 , (6.6) Γ1(Πq+h, |ϕ⟩) ≤
2t

N
. (6.7)

Proof. The inequalities for quantum queries follow from Lemma 4.12 as q,q + h and h are
history-database predicates (Definition 4.11) with the γ parameters being t/N . Similarly, for
classical queries, the two inequalities follow from Lemma 4.13 with the γ parameters being 0
and t/N respectively.

Finally, we give four inequalities that do not follow from Lemmas 4.12 and 4.13. Equa-
tions (6.8) and (6.10) below upper bound the progress made towards removing all hybrid and
classical collisions from the history-database, which is not a database monotone property (see Def-
inition 4.11). The purpose of Equation (6.9) is to upper bound the probability that a classical
query transfers the query index x from one hybrid collision to a different hybrid collision. Finally,
Equation (6.11) overcomes the fact that the predicate h+ c does not satisfy the condition stated
in Equation (4.5).

Lemma 6.9. Given an integer t and a state |ϕ⟩ ∈ Ht, we have

Γ0(Πh+c, |ϕ⟩) ≤
10t

N
, (6.8) ∥ΠhR1Πxh|ϕ⟩∥2 ≤

t

N
· ∥Πxh|ϕ⟩∥2 , (6.9)

Γ1(Πh+c, |ϕ⟩) ≤
2t

N
, (6.10) ∥ΠcR1Πh+c|ϕ⟩∥2 ≤

2t

N
· ∥Πh+c|ϕ⟩∥2 . (6.11)

The proofs of these equations use similar ideas to those of Lemmas 4.12 and 4.13. They are
deferred to Appendix B.

6.4 Progress Increase Lemmas

In this section, we analyze the progress measures for: (1) finding a classical collision, (2) finding
a hybrid collision but no classical ones and (3) finding quantum collisions only. We start with
the case of quantum queries.

Lemma 6.4 (Progress Measure, Quantum Query). Given an integer t and a state |ϕ⟩ ∈ Ht with
norm at most 1, the progress caused by one quantum query on |ϕ⟩ satisfies

∆0(Πc, |ϕ⟩) = 0 , (6.12)

∆0(Πh·c, |ϕ⟩) ≤ 2

√
10t

N
∥Πxh·c|ϕ⟩∥+

10t

N
, (6.13)

∆0(Πq·h·c, |ϕ⟩) ≤
√

8t

N
∥Πxh·c|ϕ⟩∥+ 2

√
20t

N
∥Πxq·h·c|ϕ⟩∥+

20t

N
. (6.14)

Proof of Equation (6.12). We have ∥ΠcR0|ϕ⟩∥2 = ∥ΠcR0Πc|ϕ⟩∥2 = ∥Πc|ϕ⟩∥2 since I = Πc +Πc
and ΠcR0Πc = ΠcR0Πc = 0 by Fact 6.7.
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Proof of Equation (6.13). We use the decomposition I = Πxh·c +Πxh·c +Πh·c +Πc. By Fact 6.7,
Πh·cR0Πc = 0 and the states Πh·cR0Πxh·c|ϕ⟩ = Πh·cR0ΠxhΠc|ϕ⟩ and Πh·cR0(Πxh·c+Πh·c)|ϕ⟩ =
Πh·cR0(Πxh +Πh)Πc|ϕ⟩ are orthogonal. Therefore,

∥Πh·cR0|ϕ⟩∥2 = ∥Πh·cR0(Πxh·c +Πxh·c +Πh·c +Πc)|ϕ⟩∥2

= ∥Πh·cR0Πxh·c|ϕ⟩∥2 + ∥Πh·cR0(Πxh·c +Πh·c)|ϕ⟩∥2

≤ ∥Πxh·c|ϕ⟩∥2 + (∥Πxh·c|ϕ⟩∥+ ∥ΠhR0Πh|ϕ⟩∥)2

= ∥Πh·c|ϕ⟩∥2 + 2∥Πxh·c|ϕ⟩∥ · ∥ΠhR0Πh|ϕ⟩∥+ ∥ΠhR0Πh|ϕ⟩∥2

where the third line uses the triangle inequality, and the last line uses that ∥Πh·c|ϕ⟩∥2 =
∥Πxh·c|ϕ⟩∥2 + ∥Πxh·c|ϕ⟩∥2. Finally, ∥ΠhR0Πh|ϕ⟩∥2 ≤ 10t/N by Equation (6.5).

Proof of Equation (6.14). We use the decomposition I = Πq·h·c + Πxq·h·c + Πxq·h·c + Πxh·c +
Πxh·c + Πc. By Fact 6.7, Πq·h·cR0(Πxh·c + Πc) = 0 and the states Πq·h·cR0Πxq·h·c|ϕ⟩ and
Πq·h·cR0(Πq·h·c +Πxq·h·c)|ϕ⟩ are orthogonal. Therefore,

∥Πq·h·cR0|ϕ⟩∥2

= ∥Πq·h·cR0(Πq·h·c +Πxq·h·c +Πxq·h·c +Πxh·c +Πxh·c +Πc)|ϕ⟩∥2

≤ ∥Πq·h·cR0Πxq·h·c|ϕ⟩∥2 + ∥Πq·h·cR0(Πq·h·c +Πxq·h·c)|ϕ⟩∥2 + 3∥Πq·h·cR0Πxh·c|ϕ⟩∥
≤ ∥Πxq·h·c|ϕ⟩∥2 + (∥ΠqR0Πq|ϕ⟩∥+ ∥Πxq·h·c|ϕ⟩∥)2 + 3∥ΠhR0Πxh·c|ϕ⟩∥
= ∥Πq·h·c|ϕ⟩∥2 + 2∥Πxq·h·c|ϕ⟩∥ · ∥ΠqR0Πq|ϕ⟩∥+ ∥ΠqR0Πq|ϕ⟩∥2 + 3∥ΠhR0Πxh·c|ϕ⟩∥

where the second line uses the identity ∥a+ b∥2 ≤ ∥a∥2 + 3∥b∥ when ∥a∥, ∥b∥ ≤ 1, the third line
uses the triangle inequality and the last line uses that ∥Πq·h·c|ϕ⟩∥2 = ∥Πxq·h·c|ϕ⟩∥2+∥Πxq·h·c|ϕ⟩∥.
Finally, ∥ΠqR0Πq|ϕ⟩∥2 ≤ 10t/N by Equation (6.3) and ∥ΠhR0Πxh·c|ϕ⟩∥2 ≤ (10t/N)∥Πxh·c|ϕ⟩∥2
by Equation (6.8).

We now analyze the case of classical queries.

Lemma 6.5 (Progress Measure, Classical Query). Given an integer t and a state |ϕ⟩ ∈ Ht with
norm at most 1, the progress caused by one classical query on |ϕ⟩ are at most,

∆1(Πc, |ϕ⟩) ≤ 2∥Πxh·c|ϕ⟩∥2 + δ1 +
4t

N
, (6.15)

∆1(Πh·c, |ϕ⟩) ≤ −∥Πxh·c|ϕ⟩∥2 + 2∥Πxq·h·c|ϕ⟩∥2 − δ1 + 2δ2 +
12t

N
, (6.16)

∆1(Πq·h·c, |ϕ⟩) ≤
√

2t

N
∥Πxh·c|ϕ⟩∥ − ∥Πxq·h·c|ϕ⟩∥2 − δ2 (6.17)

where δ1 = ∥ΠcR1Πxh·c|ϕ⟩∥2 and δ2 = ∥Πh·cR1Πxq·h·c|ϕ⟩∥2.

Proof of Equation (6.15). We use the decomposition I = Πc +Πxh·c +Πxh·c +Πh·c. By Fact 6.7,
the states ΠcR1Πc|ϕ⟩, ΠcR1Πxh·c|ϕ⟩ and ΠcR1(Πxh·c +Πh·c)|ϕ⟩ are orthogonal. Therefore,

∥ΠcR1|ϕ⟩∥2 = ∥ΠcR1(Πc +Πxh·c +Πxh·c +Πh·c)∥2

= ∥ΠcR1Πc∥2 + ∥ΠcR1Πxh·c∥2 + ∥ΠcR1(Πxh·c +Πh·c)|ϕ⟩∥2

≤ ∥Πc∥2 + ∥ΠcR1Πxh·c∥2 + 2∥Πxh·c|ϕ⟩∥2 + 2∥ΠcR1Πh·c|ϕ⟩∥2

where the last line uses the identity ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2. Finally, ∥ΠcR1Πh·c|ϕ⟩∥2 ≤ 2t/N
by Equation (6.11).
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Proof of Equation (6.16). We use the decomposition I = Πc +Πxh·c +Πxh·c +Πh·c. By Fact 6.7,
Πh·cR1Πc = 0 and the states Πh·cR1Πxh·c|ϕ⟩ and Πh·cR1(Πxh·c + Πh·c)|ϕ⟩ are orthogonal.
Therefore,

∥Πh·cR1|ϕ⟩∥2 = ∥Πh·cR1Πxh·c∥2 + ∥Πh·cR1(Πxh·c +Πh·c)|ϕ⟩∥2

= ∥Πh·c∥2 − ∥Πxh·c∥2 − ∥ΠcR1Πxh·c∥2 + ∥Πh·cR1(Πxh·c +Πh·c)|ϕ⟩∥2

where the second line uses that ∥Πh·c∥2−∥Πxh·c∥2−∥ΠcR1Πxh·c∥2 = ∥Πxh·c∥2−∥ΠcR1Πxh·c∥2 =
∥ΠcR1Πxh·c∥2 = ∥Πh·cR1Πxh·c∥2 since Πh·cR1Πxh·c = 0 by Fact 6.7. It remains to bound
∥Πh·cR1(Πxh·c +Πh·c)|ϕ⟩∥2. We further decompose Πh·c into Πh·c = Πxq·h·c +Πxq·h·c +Πq·h·c
and observe that Πh·cR1Πxq·h·c|ϕ⟩ and Πh·cR1Πxq·h·c|ϕ⟩ are orthogonal by Fact 6.7. Hence,

∥Πh·cR1(Πxh·c +Πh·c)|ϕ⟩∥2

≤ 2∥Πh·cR1(Πxq·h·c +Πxq·h·c)|ϕ⟩∥2 + 2∥Πh·cR1(Πxh·c +Πq·h·c)|ϕ⟩∥2

= 2∥Πh·cR1Πxq·h·c|ϕ⟩∥2 + 2∥Πh·cR1Πxq·h·c|ϕ⟩∥2 + 2∥Πh·cR1(Πxh·c +Πq·h·c)|ϕ⟩∥2

≤ 2∥Πxq·h·c|ϕ⟩∥2 + 2∥Πh·cR1Πxq·h·c|ϕ⟩∥2 +
12t

N

where the last line uses the triangle inequality and Equations (6.7) and (6.9) on ∥Πh·cR1(Πxh·c +
Πq·h·c)|ϕ⟩∥2 ≤ (∥Πh·cR1Πxh·c|ϕ⟩∥+ ∥Πh·cR1Πq·h·c)|ϕ⟩∥)2 ≤ (1 +

√
2)2t/N .

Proof of Equation (6.17). We use the decomposition I = Πq·h·c + Πxq·h·c + Πxq·h·c + Πxh·c +
Πxh·c +Πc. By Fact 6.7, Πq·h·cR1(Πq·h·c +Πxq·h·c +Πxh·c +Πc) = 0. Therefore,

∥Πq·h·cR1|ϕ⟩∥2 = ∥Πq·h·cR1(Πxq·h·c +Πxh·c)|ϕ⟩∥2

≤ ∥Πq·h·cR1Πxq·h·c|ϕ⟩∥2 + 3∥Πq·h·cR1Πxh·c|ϕ⟩∥
≤ ∥Πq·h·c|ϕ⟩∥2 − ∥Πxq·h·c|ϕ⟩∥2 − ∥Πh·cR1Πxq·h·c|ϕ⟩∥2 + 3∥Πq·h·cR1Πxh·c|ϕ⟩∥

where the last line uses ∥Πq·h·cR1Πxq·h·c|ϕ⟩∥2 ≤ ∥(Πh·c +Πc)R1Πxq·h·c|ϕ⟩∥2 = ∥Πq·h·c|ϕ⟩∥2 −
∥Πxq·h·c|ϕ⟩∥2 − ∥Πh·cR1Πxq·h·c|ϕ⟩∥2. Finally, ∥Πq·h·cR1Πxh·c|ϕ⟩∥2 ≤ (2t/N)∥Πxh·c|ϕ⟩∥2 by
Equation (6.10).
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A Missing Proofs for Section 4 (Hybrid Compressed Oracle)

A.1 Resampling Lemma (Lemmas 4.6 and 4.7)

Proof of Lemma 4.6. We only prove the third item, corresponding to H(x) = ⋆, D(x) ̸= ⊥,
p ̸= 0, as it is the most involved of the three. The operator R0 = SO0S appends |0⟩ to the
workspace register and acts as a control on all registers except Dx, which contains the x-th entry
of the database. Let z = D(x) ̸= ⊥ be the value in Dx. Writing |z⟩ = 1√

N

∑
p∈[N ] ω

−pz|p̂⟩ in the
Fourier basis, we can see that S maps |z⟩Dx to

1√
N

∑
p∈[N ]

ω−pz|p̂⟩+ 1√
N

|⊥⟩ − 1√
N

|0̂⟩ = |z⟩+ 1√
N

|⊥⟩ − 1

N

∑
y∈[N ]

|y⟩.

Applying O0 to the above state, we get

ωpz|z⟩+ 1√
N

|⊥⟩ − 1

N

∑
y∈[N ]

ωpy|y⟩ = ωpz

√
N

∑
p′∈[N ]

ω−p
′z|p̂′⟩+ 1√

N
|⊥⟩ − 1√

N
|p̂⟩.

Applying S again to the above and simplifying we get
ωpz

√
N

∑
p′∈[N ]

ω−p
′z|p̂′⟩+ ωpz

√
N

|⊥⟩+1− ωpz

√
N

|0̂⟩− 1√
N

|p̂⟩ = ωpz|z⟩+ ωpz

√
N

|⊥⟩+
∑
y∈[N ]

1− ωpz − ωpy

N
|y⟩.

thus proving the third item.

Proof of Lemma 4.7. We only prove the third item, corresponding to H(x) = ⋆, D(x) ̸= ⊥. Let
|H⟩H = |(x1, y1), . . . , (xc, yc), ⋆, . . . , ⋆⟩H, for some integer c, denote the value contained in the
history register. The operator R1 = SO1S appends |1⟩ to the workspace register and acts as
a control on all registers except Hc+1Dx, which contain |⋆, z⟩Hc+1Dx for some z = D(x) ̸= ⊥.
Similarly as in the above proof of Lemma 4.6, after applying the first two operators O1S, this
state gets mapped to

ωpz|(x, z), z⟩+ 1√
N

|(x,⊥),⊥⟩ − 1

N

∑
y∈[N ]

ωpy|(x, y), y⟩.

where the value contained in the database register Dx has been appended to the history (by
definition of a the classical query operator O1). Finally, applying S to the above state does
nothing since the query index x is now contained in the history.

A.2 Progress Overlap Lemmas (Lemmas 4.12 and 4.13)

We first give the proof for Lemma 4.13 (classical query) as it differs the most from previous work
on the compressed oracle. The proof will be next adapted for Lemma 4.12 (quantum query).

Proof of Lemma 4.13. Let ΠP|ϕ⟩ =
∑

x,p,w,H,D αx,p,w,H,D|x, p, w⟩|H,D⟩ ∈ Ht∩ supp(ΠP) be any
state supported over consistent basis-states evaluating the predicate P to false. We show that, after
making a classical query, the probability of satisfying P is at most ∥ΠPR1ΠP|ϕ⟩∥2 ≤ 2γ ·∥ΠP|ϕ⟩∥2.
We define three projections Π1,Π2,Π3 such that Π1 +Π2 +Π3 = ΠP.

• Π1: all basis states |x, p, w,H,D⟩ ∈ Ht ∩ supp(ΠP) such that H(x) = ⋆ and D(x) = ⊥.

• Π2: all basis states |x, p, w,H,D⟩ ∈ Ht ∩ supp(ΠP) such that H(x) = ⋆ and D(x) ̸= ⊥.

• Π3: all basis states |x, p, w,H,D⟩ ∈ Ht ∩ supp(ΠP) such that H(x) ̸= ⋆.

Below, we prove the inequalities ∥ΠPR1Π1|ϕ⟩∥2 ≤ γ∥Π1|ϕ⟩∥2, ∥ΠPR1Π2|ϕ⟩∥2 ≤ γ∥Π2|ϕ⟩∥2
and ∥ΠPR1Π3|ϕ⟩∥ = 0. Hence, by the triangle inequality and Cauchy–Schwarz inequality, we
conclude that

∥ΠPR1ΠP|ϕ⟩∥
2 ≤ (∥ΠPR1Π1|ϕ⟩∥+ ∥ΠPR1Π2|ϕ⟩∥+ ∥ΠPR1Π3|ϕ⟩∥)2 ≤ 2γ∥ΠP|ϕ⟩∥

2.
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Analysis of Π1. The projection Π1 corresponds to sampling a new outcome at x. We have

∥ΠPR1Π1|ϕ⟩∥2 =

∥∥∥∥∥ΠPR1

∑
x,p,w,H,D:

H(x)=⋆,D(x)=⊥

αx,p,w,H,D|x, p, w⟩|H,D⟩

∥∥∥∥∥
2

=

∥∥∥∥∥ΠP
∑

x,p,w,H,D:
H(x)=⋆,D(x)=⊥

αx,p,w,H,D|x, p, w1⟩
(∑

y∈[N ]

ωpy

√
N

|Hx←y, Dx←y⟩
)∥∥∥∥∥

2

=
∑

x,p,w,H,D:
H(x)=⋆,D(x)=⊥

|αx,p,w,H,D|2 · Pr
y←[N ]

[
(Hx←y, Dx←y) ∈ P−1(True)

]
≤ γ∥Π1|ϕ⟩∥2.

The first line is by definition of Π1. The second line is by Lemma 4.7. The third line uses the
orthogonality of the basis states. Finally, the last line is by Equation (4.4).

Analysis of Π2. The projection Π2 corresponds to resampling a new outcome at index x
(see the third item of Lemma 4.7). There are three components and the only states that may
be in the support of ΠP after the query is done are those for which D(x) is resampled to a
different value y ≠ D(x). Indeed, the other two cases are where D(x) = ⊥ gets removed or D(x)
remains unchanged in the database. The former case cannot make the predicate true because of
the database monotone property (Definition 4.11), the latter case cannot either because of the
condition stated in Equation (4.5). Hence, we have

∥ΠPR1Π2|ϕ⟩∥2 =
∥∥∥∥ΠPR1

∑
x,p,w,H,D:

H(x)=⋆,D(x)̸=⊥

αx,p,w,H,D|x, p, w⟩|H,D⟩
∥∥∥∥2

=

∥∥∥∥ΠP
∑

x,p,w,H,D:
H(x)=⋆,D(x)̸=⊥

∑
y∈[N ]

αx,p,w,H,D
ωpy

N
|x, p, w1⟩|Hx←y, Dx←y⟩

∥∥∥∥2.
Next, observe that for any two tuples (x, p, w,H,Dx←⊥, y) ̸= (x′, p′, w′, H ′, D′x′←⊥, y

′), the
basis states |x, p, w1⟩|Hx←y, Dx←y⟩ and |x′, p′, w′1⟩|H ′x′←y′ , D

′
x′←y′⟩ must be orthogonal. Thus,

we can exploit this orthogonality property to simplify the above expression as follows.

∥ΠPR1Π2|ϕ⟩∥2 =
∑

x,p,w,H,D,y:
y∈[N ],H(x)=⋆,D(x)=y

∥∥∥∥ΠP
∑
z∈[N ]

αx,p,w,H,Dx←z

ωpy

N
|x, p, w1⟩|Hx←y, D⟩

∥∥∥∥2

=
∑

x,p,w,H,D,y:
y∈[N ],H(x)=⋆,D(x)=y,

P(Hx←y ,D)=True

∣∣∣∣ ∑
z∈[N ]

αx,p,w,H,Dx←z

ωpy

N

∣∣∣∣2.
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Applying the Cauchy–Schwarz inequality, we have

∥ΠPR1Π2|ϕ⟩∥2 ≤
∑

x,p,w,H,D,y:
y∈[N ],H(x)=⋆,D(x)=y,

P(Hx←y ,D)=True

∑
z∈[N ]

|αx,p,w,H,Dx←z |2

N

=
∑

x,p,w,H,D:
H(x)=⋆,D(x)̸=⊥

( ∑
y∈[N ]:P(Hx←y ,Dx←y)=True

|αx,p,w,H,D|2

N

)

=
∑

x,p,w,H,D:
H(x)=⋆,D(x)̸=⊥

|αx,p,w,H,D|2 · Pr
y←[N ]

[
(Hx←y, Dx←y) ∈ P−1(True)

]
.

Finally, for each |x, p, w,H,D⟩ in the support of Π2, we must have P(H,Dx←⊥) = False
by the database monotone property (see Definition 4.11). Hence, by Equation (4.4), the above
inequality implies that ∥ΠPR1Π2|ϕ⟩∥2 ≤ γ · ∥Π2|ϕ⟩∥2.

Analysis of Π3. By Lemma 4.7, the operator R1 maps any state |x, p, w⟩|H,D⟩ ∈ supp(Π3) to
ωpD(x)|x, p, w1⟩|Hx←D(x), D⟩ since H(x) ̸= ⋆. Moreover, H and Hx←D(x) have the same function
representation (since the initial state is history-database consistent). Thus, by the history invariant
property (see Definition 4.11), we have P(Hx←D(x), D) = False and ∥ΠPR1Π3|ϕ⟩∥ = 0.

The proof of Lemma 4.12 is similar to the above one, the main difference being that quantum
queries do not act on the history register.

Proof of Lemma 4.12. Let ΠP|ϕ⟩ =
∑

x,p,w,H,D αx,p,w,H,D|x, p, w⟩|H,D⟩ ∈ Ht ∩ supp(ΠP). We
will prove that ∥ΠPR0ΠP|ϕ⟩∥2 ≤ 10γ · ∥ΠP|ϕ⟩∥2. We first define three projections Π1,Π2,Π3

such that Π1 +Π2 +Π3 = ΠP.

• Π1: all basis states |x, p, w,H,D⟩ ∈ Ht ∩ supp(ΠP) such that H(x) = ⋆, D(x) = ⊥, p ̸= 0.

• Π2: all basis states |x, p, w,H,D⟩ ∈ Ht ∩ supp(ΠP) such that H(x) = ⋆, D(x) ̸= ⊥, p ̸= 0.

• Π3: all basis states |x, p, w,H,D⟩ ∈ Ht ∩ supp(ΠP) such that H(x) ̸= ⋆ or p = 0.

Below, we prove that ∥ΠPR0Π1|ϕ⟩∥2 ≤ γ∥Π1|ϕ⟩∥2, ∥ΠPR0Π2|ϕ⟩∥2 ≤ 9γ∥Π2|ϕ⟩∥2 and
∥ΠPR0Π3|ϕ⟩∥ = 0. Hence, by the triangle and Cauchy–Schwarz inequalities, we conclude
that ∥ΠPR0ΠP|ϕ⟩∥2 ≤ 10γ · ∥ΠP|ϕ⟩∥2.

Analysis of Π1. The effect of applying R0 on a basis state in the support of Π1 is described in
the second item of Lemma 4.6. Similarly to the analysis of Π1 in the proof of Lemma 4.13, we
deduce that

∥ΠPR0Π1|ϕ⟩∥2 =
∑

x,p,w,H,D:
H(x)=⋆,D(x)=⊥,p ̸=0

|αx,p,w,H,D|2 · Pr
y←[N ]

[
(H,Dx←y) ∈ P−1(True)

]
≤ γ∥Π1|ϕ⟩∥2.

where the second line is by Equation (4.3).
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Analysis of Π2. The effect of applying R0 on a basis state in the support of Π2 is described in
the third item of Lemma 4.6. By using the bound |1− ωpD(x) − ωpy| ≤ 3 on the term displayed
there, we can follow a similar analysis as in the proof of Lemma 4.13 for Π2 and deduce that

∥ΠPR0Π2|ϕ⟩∥2 ≤ 9
∑

x,p,w,H,D:
H(x)=⋆,D(x)̸=⊥,p ̸=0

|αx,p,w,H,D|2 · Pr
y←[N ]

[
(H,Dx←y) ∈ P−1(True)

]
≤ 9γ∥Π2|ϕ⟩∥2.

where the second line is by Equation (4.3).

Analysis of Π3. By the first item in Lemma 4.6, the operator R0 maps any basis state in the
support of Π3 to itself, up to a phase factor. Thus, we have ∥ΠPR0Π3|ϕ⟩∥ = 0.

B Missing Proofs for Section 6 (Collision Finding)

In this section, we prove the following lemma:

Lemma 6.9 (Restated). Given an integer t and a state |ϕ⟩ ∈ Ht, we have

Γ0(Πh+c, |ϕ⟩) ≤
10t

N
, (6.8) ∥ΠhR1Πxh|ϕ⟩∥2 ≤

t

N
· ∥Πxh|ϕ⟩∥2 , (6.9)

Γ1(Πh+c, |ϕ⟩) ≤
2t

N
, (6.10) ∥ΠcR1Πh+c|ϕ⟩∥2 ≤

2t

N
· ∥Πh+c|ϕ⟩∥2 . (6.11)

We will use the following simple fact about the predicate xh.

Fact B.1. For any basis state |x, p, w,H,B,D⟩ satisfying the predicate xh, we have

1. The query index x is in the database but not in the history, that is D(x) ̸= ⊥ and H(x) = ⋆.

2. There is no hybrid collision in (H,Dx←⊥).

3. The query index x does not belong to a quantum collision.

Proof. The first two items are immediate by definition of x and h. For the last item, if x was in
a quantum collision then, since it also belongs to a hybrid collision, there would exist a second
hybrid collision that does not contain x (which contradicts x).

Since the proofs of Equations (6.8) to (6.11) share strong similarities with those of Lemmas 4.6
and 4.7, we skip some details in the calculation below.

Proof of Equation (6.8). We first claim that it is sufficient to show that

∥ΠhR0Πxh|ϕ⟩∥2 ≤
10t

N
· ∥Πxh|ϕ⟩∥2. (B.1)

Indeed, Πh+cR0Πh+c|ϕ⟩ = Πh+cR0ΠxhΠh+c|ϕ⟩ by Fact 6.7. Thus, using Equation (B.1), we
conclude that ∥Πh+cR0Πh+c|ϕ⟩∥2 ≤ ∥ΠhR0ΠxhΠh+c|ϕ⟩∥2 ≤ 10t

N · ∥Πh+c|ϕ⟩∥2.
We now prove Equation (B.1). Let Πxh|ϕ⟩ =

∑
x,p,w,H,B,D αx,p,w,H,B,D|x, p, w,H,B,D⟩ ∈

Ht ∩ supp(Πxh). Notice that if the phase register contains p = 0 then doing a quantum query
on such a state will not modify (H,D). Hence, we only need to consider the basis states for
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which p ̸= 0. Together with Fact B.1, it implies that the post-query state is given by the third
item of Lemma 4.6,

ΠhR0Πxh|ϕ⟩ = Πh

∑
x,p,w,H,B,D

αx,p,w,H,B,D|x, p, w,H,B←0⟩
(
ωpD(x)

√
N

|Dx←⊥⟩

+
∑
y∈[N ]

1− ωpD(x) − ωpy

N
|Dx←y⟩

)
.

Next, using the orthogonality between basis states, the norm of the above state is equal to,

∥ΠhR0Πxh|ϕ⟩∥2

=
∑

x,p,w,H,B,D:
H(x)=⋆,D(x)=⊥

∥∥∥∥Πh

∑
z∈[N ]

αx,p,w,H,B,Dx←z

ωpz

√
N

|x, p, w⟩|H,B←0, D⟩
∥∥∥∥2

+
∑

x,p,w,H,B,D,y:
y∈[N ],H(x)=⋆,D(x)=y

∥∥∥∥Πh

∑
z∈[N ]

αx,p,w,H,B,Dx←z

1− ωpz − ωpy

N
|x, p, w⟩|H,B←0, D⟩

∥∥∥∥2

=
∑

x,p,w,H,B,D:
H(x)=⋆,D(x)=⊥,

h(x,p,w,H,B,D)=False

∣∣∣∣ ∑
z∈[N ]

αx,p,w,H,B,Dx←z

ωpz

√
N

∣∣∣∣2

+
∑

x,p,w,H,B,D,y:
y∈[N ],H(x)=⋆,D(x)=y,
h(x,p,w,H,B,D)=False

∣∣∣∣ ∑
z∈[N ]

αx,p,w,H,B,Dx←z

1− ωpz − ωpy

N

∣∣∣∣2.
By the Cauchy–Schwarz inequality, the above term is at most

∥ΠhR0Πxh|ϕ⟩∥2

≤
∑

x,p,w,H,B,D:
H(x)=⋆,D(x)=⊥,

h(x,p,w,H,B,D)=False

(∑
z∈[N ]

|αx,p,w,H,B,Dx←z |2
)

Pr
z←[N ]

[h(x, p, w,H,B,Dx←z) = True]

+
∑

x,p,w,H,B,D,y:
y∈[N ],H(x)=⋆,D(x)=y,

h(x,p,w,H,B,Dx←⊥)=False

9

N

(∑
z∈[N ]

|αx,p,w,H,B,Dx←z |2
)

Pr
z←[N ]

[h(x, p, w,H,B,Dx←z) = True]

=
∑

x,p,w,H,B,D:
H(x)=⋆,D(x)=⊥,

h(x,p,w,H,B,D)=False

10

(∑
z∈[N ]

|αx,p,w,H,B,Dx←z |2
)

Pr
z←[N ]

[h(x, p, w,H,B,Dx←z) = True]

where we used that the non-zero amplitudes αx,p,w,H,B,Dx←z must satisfy h(x, p, w,H,B,Dx←z) =
True (since Πxh|ϕ⟩ ∈ supp(Πh)), we extended the range of the second summation to all pairs
(H,D) that contain no hybrid collision in (H,Dx←⊥) and we used that |1− ωpz − ωpy| ≤ 3.

Finally, since Πxh|ϕ⟩ is supported over basis states whose history register contains at most t
non-⋆ entries, the probability to create a hybrid collision by adding one value to the database is
at most Prz←[N ][h(x, p, w,H,B,Dx←z) = True] ≤ t/N . We conclude that, ∥ΠhR0Πxh|ϕ⟩∥2 ≤
10t
N

∑
x,p,w,H,B,D|αx,p,w,H,B,D|2 = 10t

N ∥Πxh|ϕ⟩∥2.

Proof of Equation (6.10). Similarly to the above proof, by Fact 6.7, it is sufficient to show that

∥Πh·cR1Πxh|ϕ⟩∥2 ≤
10t

N
· ∥Πxh|ϕ⟩∥2 (B.2)
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where we keep the predicate c on the left-hand side to rule out the case where the classical query
transforms the hybrid collision into a classical collision (the inequality would not hold without
this predicate).

Let Πxh|ϕ⟩ =
∑

x,p,w,H,B,D αx,p,w,H,B,D|x, p, w,H,B,D⟩ ∈ Ht ∩ supp(Πxh). By Fact B.1, the
effect of doing a classical query on this state is given by the third item of Lemma 4.7. Since we
must not have classical collisions, we can ignore the |Hx←D(x), D⟩ term therein, which gives

Πh·cR1Πxh|ϕ⟩ = Πh·c
∑

x,p,w,H,B,D

αx,p,w,H,B,D|x, p, w⟩
(

1√
N

|Hx←⊥, B←1, Dx←⊥⟩

−
∑
y∈[N ]

ωpy

N
|Hx←y, B←1, Dx←y⟩

)
.

Next, using the orthogonality between basis states, the norm of the above state is at most,

∥Πh·cR1Πxh|ϕ⟩∥2 ≤
∑

x,p,w,H,B,D:
H(x)=⋆,D(x)=⊥,

h(x,p,w,H,B,D)=False

∣∣∣∣ ∑
z∈[N ]

αx,p,w,H,B,Dx←z

1√
N

∣∣∣∣2

+
∑

x,p,w,H,B,D,y:
y∈[N ],H(x)=⋆,D(x)=y,
h(x,p,w,H,B,D)=False

∣∣∣∣ ∑
z∈[N ]

αx,p,w,H,B,Dx←z

ωpy

N

∣∣∣∣2.

Hence, we can conclude in the same way as in the proof of Equation (6.8) by using Cauchy–
Schwarz inequality, which gives that ∥Πh·cR1Πxh|ϕ⟩∥2 ≤ 2t

N ∥Πxh|ϕ⟩∥2.

Proof of Equation (6.9). Let us denote Πxh|ϕ⟩ =
∑

x,p,w,H,B,D αx,p,w,H,B,D|x, p, w,H,B,D⟩ ∈
Ht ∩ supp(Πxh). By Fact B.1, the effect of doing a classical query on this state is given by the
third item of Lemma 4.7. Moreover, the only terms therein that can lead to a hybrid collision
are those for which D(x) gets replaced with a new value y, which gives

ΠhR1Πxh|ϕ⟩ = −Πh
∑

x,p,w,H,B,D

αx,p,w,H,B,D|x, p, w⟩
∑
y∈[N ]

ωpy

N
|Hx←y, B←1, Dx←y⟩.

Next, using the orthogonality between basis states, the norm of the above state is equal to,

∥ΠhR1Πxh|ϕ⟩∥2 =
∑

x,p,w,H,B,D,y:
y∈[N ],H(x)=⋆,D(x)=y

∥∥∥∥Πh
∑
z∈[N ]

αx,p,w,H,B,Dx←z

ωpy

N
|x, p, w⟩|Hx←y, B←1, D⟩

∥∥∥∥2

=
∑

x,p,w,H,B,D,y:
y∈[N ],H(x)=⋆,D(x)=y,

h(x,p,w,Hx←y ,B,D)=True

∣∣∣∣ ∑
z∈[N ]

αx,p,w,H,B,Dx←z

N

∣∣∣∣2.

Applying the Cauchy–Schwarz inequality and rearranging the expression, we have

∥ΠhR1Πxh|ϕ⟩∥2 ≤
∑

x,p,w,H,B,D:
H(x)=⋆,D(x)̸=⊥

|αx,p,w,H,B,D|2 · Pr
y←[N ]

[h(x, p, w,Hx←y, B,Dx←y) = True].

For each (H,D) in the above state, D contains at most t entries different from ⊥ (by
definition of Ht). Moreover, there is exactly one hybrid collision in (H,D) and this collision
contains x. Hence, the probability to still have a hybrid collision when D(x) is replaced with
a random y ∈ [N ] is at most Pry←[N ][h(x, p, w,Hx←y, B,Dx←y) = True] ≤ t/N . We conclude
that ∥ΠhR1Πxh|ϕ⟩∥2 ≤ t

N ∥Πxh|ϕ⟩∥2.
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Proof of Equation (6.11). The proof is almost identical to that of Lemma 4.13. The reason for
which we cannot apply this lemma directly to the predicate h+c is because it does not satisfy the
condition stated in Equation (4.5). Nevertheless, the latter equation is only needed in analyzing
the projector Π2 in the proof of Lemma 4.13, where it is used to argue that if a basis state
|x, p, w,H,B,D⟩ is not in the support of ΠP then |x, p, w,Hx←D(x), B,D⟩ will not be either. This
statement is wrong for the predicate P = h + c (indeed, if x is contained in a quantum collision
then (Hx←D(x), D) will contain a hybrid collision). However, if a basis state |x, p, w,H,B,D⟩ is
not in the support of Πh+c then |x, p, w,Hx←D(x), B,D⟩ will not be in the support of Πc. Hence,
we can carry out the same argument as in the original proof if we replace the outer projector ΠP
with Πc. This leads to ∥ΠcR1Πh+c|ϕ⟩∥2 ≤ 2t

N · ∥Πh+c|ϕ⟩∥2.

40


	Introduction
	Contributions
	Related Work

	Technical Overview
	Overview of the Compressed Oracle
	Overview of the Hybrid Compressed Oracle

	Hybrid Random Oracle Model
	Models for NISQ Algorithms

	Hybrid Compressed Oracle
	Construction
	Structural Properties
	Sampling and Resampling
	Progress Measures

	Preimage Search
	Collision Finding
	Progress Measure
	Main Result
	Progress Overlap Lemmas
	Progress Increase Lemmas

	References
	Missing Proofs for Hybrid Compressed Oracle
	Resampling Lemma
	Progress Overlap Lemmas

	Missing Proofs for Collision Finding

