
Key-Recovery Attack on a Public-Key Encryption
Related to Planted Clique

Caicai Chen∗ Chris Jones†

February 28, 2024

Abstract

Hudoba [Hud16] proposed a public key encryption (PKE) scheme and conjectured
its security to be based on the Planted Clique problem. In this note, we show that this
scheme is not secure. We do so by devising an efficient algorithm for the even neighbor
independent set problem proposed by [Hud16]. This leaves open the possibility of
building PKE based on Planted Clique.

1 Introduction

The Planted Clique problem is a well-known average-case problem that is suspected to exhibit
a statistical/computational gap. In the Planted Clique problem, we are given an n-vertex
graph G drawn from one of the following two random models, and the task is to determine
which:

1. G is an Erdős-Rényi graph G ∼ G(n, 1/2)

2. G is an Erdős-Rényi graph G ∼ G(n, 1/2), then a random subset of k vertices is chosen,
and the subset is replaced by a clique. k is a parameter of the problem

On the one hand, with high probability, the size of the largest clique in G(n, 1/2) is
(2 + o(1)) log2 n, and therefore the two cases are statistically distinguishable once k ≥
(2 + ε) log2 n. On the other hand, no algorithm is known to detect the presence of the
planted clique until k = Ω(

√
n) [AKS98]. The range of k between 2 log n and Ω(

√
n) is a

conjectured hard regime for the problem, in which the planted clique cannot be identified
by any polynomial time algorithm.

Can we use the Planted Clique problem for cryptography? The general idea is to use
the planted clique as a secret key for a scheme based on the graph G. Thinking in this
direction, Hudoba [Hud16] proposed a public key encryption (PKE) scheme and conjectured

∗Department of Computing Sciences, Bocconi University. caicai.chen@unibocconi.it
†Department of Computing Sciences and BIDSA, Bocconi University. chris.jones@unibocconi.it

1

its security to be based on Planted Clique. In this note, we observe that the suggested scheme
is not secure, and we implement a key recovery attack. This leaves open the possibility of
building PKE based on Planted Clique.

On the success side, the Planted Clique problem was suggested as a candidate one-way
function by Juels and Peinado [JP00], but that is not known to imply a public key encryption
scheme.

Note that the Planted Clique problem for any k can be solved by a quasipolynomial
algorithm i.e. time nO(logn) which brute-force checks for the existence of a clique of size
(2 + ε) log2 n. This is much faster than the exponential or subexponential time hardness
typically desired for cryptographic uses. That being said, the Densest k-Subgraph problem
is a noisy variant of Planted Clique for which a subexponential time brute-force algorithm is
predicted to be optimal [BBH18]. Planted Clique is a simpler starting point for approaching
these problems.

Acknowledgements. We are grateful to Alon Rosen for the discussions on this problem.
The authors are partly supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (Grant agreements No.
101019547 and No. 834861).

2 Proposed PKE and Attack

2.1 Key Generation

Let n denote the graph size, let p denote edge probability, let k denote planted clique size,
and let padd denote the probability of adding.

The key generation steps ([Hud16, Algorithm 1 in Section 3.1]) are as follows:

1. Choose a random G← G(n, p) graph.

2. Choose a random k sized subset from the nodes of the graph containing the nth vertex.
Denote it with S ⊂ [n].

3. Remove all edges between nodes contained in S: replace E by E \ {(u, v) | u, v ∈ S}
(plant an independent set at the positions corresponding to S).

4. Iterate through {u ∈ V \ S : |ΠG(u) ∩ S| ≡ 1 (mod 2)} in random order

(a) with padd probability add (u, v) for v ← S \ ΠG(u) to E,

(b) else remove (u, v) for v ← ΠG(u) ∩ S from E.

The outcome of step 4 is that every vertex u ∈ V has an even number of neighbors in S.

2

2.2 Encryption and Decryption

Following is the encryption method proposed in [Hud16, Section 2.1] originates from [ABW10]:

Public key: G in Section 2.1.

Private key: S in Section 2.1.

Encryption: LetA be the adjacency matrix ofG. Choose a random vector x← {0, 1}n
and a random noise vector ei ← Bernoulli(ε), i ∈ [n]. Let b = Ax+ e (mod 2).

• To encrypt 0, send the vector b.

• To encrypt 1, send the vector b with its last bit flipped.

Decryption: To decrypt y ∈ {0, 1}n, output
∑

i∈S yi (mod 2).

2.3 Attack based on computing null space of A

The even neighbor independent set problem is defined as follows:

Definition 2.1 (Even neighbor independent set problem, [Hud16, Definition 6.1]).

Input: graph G, positive integer k.

Output: A subset of k nodes S ⊆ V (G) such that

(a) S is an independent set, i.e. there are no edges inside S, and

(b) Each node outside S has an even number of neighbors in S.

We show how to solve this problem in a random graph.

Theorem 2.1. There is an algorithm solving the even neighbor independent set problem that
runs in time nO(1) with high probability for the input G ∼ G(n, 1/2).

Let A be the adjacency matrix of G. The approach is to observe that the indicator vector
1S satisfies

A1S ≡ 0⃗ mod 2

The equality holds on S because of the independent set property, and it holds on V \ S
because of the even neighbor property. Therefore, 1S lies in the null space of A over F2.

First, we compute a basis for the null space of A over F2 using Gaussian elimination.
Then, we enumerate all vectors in the null space to search for 1S. The following lemmas
bound the runtime for implementing this algorithm.

Lemma 2.1. For G ∼ G(n, 1
2
) and its adjacency matrix A, dim(null(A)) = O(log n) whp.

3

Proof. We consider picking the rows of A one at a time. If a row lies in the span of the
previous rows, then this will increase the dimension of null(A) by one. The probability of
row i lying in the span of rows 1 through i − 1 is at most 2(i−1)−n since the previous rows
span a space of dimension at most i− 1. So we have the upper bound,

dim(null(A)) ≤
n∑

i=1

Bernoulli(2i−1−n) .

Let Xi = Bernoulli(2i−1−n). We prove Pr[
∑n

i=1 Xi ≥ O(log n)] ≤ 1
n
using the Chernoff bound

technique i.e. we upper bound the moment generating function. For any t ≥ 0,

E[et
∑n

i=1 Xi]

=
n∏

i=1

E[etXi]

=
n∏

i=1

(
2i−1−n · et + 1− 2i−1−n

)
=

n∏
i=1

(1 + 2−i(et − 1))

= 1 +

(
n∑

i=1

2−i

)
(et − 1) +

 n∑
i,j=1
i<j

2−i2−j

 (et − 1)2 +

 n∑
i,j,k=1
i<j<k

2−i2−j2−k

 (et − 1)3 + · · ·

≤ 1 +

(
∞∑
i=1

2−i

)
(et − 1) +

(
∞∑
i=1

2−i

)2
(et − 1)2

2!
+

(
∞∑
i=1

2−i

)3
(et − 1)3

3!
+ · · ·

= 1 + (et − 1) +
(et − 1)2

2!
+

(et − 1)3

3!
+ · · · = ee

t−1 .

The final bound ee
t−1 is the moment generating function of a Poisson(1) random variable,

so heuristically
∑n

i=1Xi ≈ Poisson(1). Using Markov’s inequality, for any L ∈ R,

Pr

[
n∑

i=1

Xi ≥ L

]
= Pr

[
et

∑n
i=1 Xi ≥ etL

]
≤ E

[
et

∑n
i=1 Xi

]
· e−tL ≤ ee

t−1−tL

Choosing t = 1 and L = O(log n), the tail probability is at most 1/n.

Lemma 2.2. If the dimension of the null space is m, there exist 2m potential 1C vectors.

Consider a graph G = (V,E) defined by the method detailed in Section 2.1. Breaking
the scheme requires discovering 1S with its n-th entry being 1.

An attacker can potentially breach the scheme by executing the following steps:

4

1. Compute the null space of A, denoting it as null(A).

2. Identify 1C ∈ null(A) and 1C [n] = 1 where
n∑

i=1

1C [i] = k. This will recover the indicator

of the independent set, which is the secret key.

2.4 Experiments

The experimental framework was designed to operate on randomly generated graph in-
stances. We executed it on different graph sizes, ranging from 1024 to 16384 nodes, each
with a planted independent set of size k = 2 log2(n). For each graph size, the experiment
was repeated across 1000 distinct instances. The results show that the dimension of the null
space is essentially constant, aligning with Lemma 2.1. The maximum dimension of the null
space across all runs was 6. The algorithm successfully recovered all planted independent
sets.

We used Julia to implement the attacking algorithm in our experiments. We used the
LightGraphs package to handle graph-related operations and the Nemo package for finite
field operations.

n 1024 1450 2048 2898 4096 5794 8192 11586 16384

k 20 21 22 23 24 25 26 27 28

Mean 2.322 2.338 2.392 2.342 2.314 2.316 2.332 2.364 2.372

Max 6 6 6 6 6 6 6 6 6

Table 1: Mean and Max of the dimension of nullspace for planted independent set size
k = 2 log2(n) for graph size n, each value is an average of 1000 instances.

References

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography
from different assumptions. In Proceedings of the forty-second ACM symposium
on Theory of computing, pages 171–180, 2010. 3

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden
clique in a random graph. Random Structures & Algorithms, 13(3-4):457–466,
1998. 1

[BBH18] Matthew Brennan, Guy Bresler, and Wasim Huleihel. Reducibility and compu-
tational lower bounds for problems with planted sparse structure. In Conference
On Learning Theory, pages 48–166. PMLR, 2018. 2

[Hud16] Péter Hudoba. “public key cryptography based on the clique and learning parity
with noise problems for post-quantum cryptography”. In Proceedings of the 11th

5

Joint Conference on Mathematics and Computer Science, pages 102–112, 2016. 1,
2, 3

[JP00] Ari Juels and Marcus Peinado. Hiding cliques for cryptographic security. Designs,
Codes and Cryptography, 20(3):269–280, 2000. 2

6

	1 Introduction
	2 Proposed PKE and Attack
	2.1 Key Generation
	2.2 Encryption and Decryption
	2.3 Attack based on computing null space of A
	2.4 Experiments

