
Stateless Deterministic Multi-Party EdDSA Signatures with Low
Communication

Qi Feng * Kang Yang † Kaiyi Zhang ‡ Xiao Wang §

Yu Yu ¶ Xiang Xie || Debiao He **

February 28, 2024

Abstract

EdDSA, standardized by both IRTF and NIST, is a variant of the well-known Schnorr signature based
on Edwards curves, and enjoys the benefit of statelessly and deterministically deriving nonces (i.e., it
does not require reliable source of randomness or state continuity). Recently, NIST calls for multi-
party threshold EdDSA signatures in one mode of deriving nonce statelessly and deterministically and
verifying such derivation via zero-knowledge (ZK) proofs. Multi-party full-threshold EdDSA signatures
in the dishonest-majority malicious setting have the advantage of strong security guarantee, and specially
cover the two-party case. However, it is challenging to translate the stateless and deterministic benefit of
EdDSA to the multi-party setting, as no fresh randomness is available for the protocol execution.

We present the notion of information-theoretic message authenticated codes (IT-MACs) over groups
in the multi-verifier setting, and adopt the recent pseudorandom correlation function (PCF) to generate
IT-MACs statelessly and deterministically. Furthermore, we generalize the two-party IT-MACs-based
ZK protocol by Baum et al. (Crypto’21) into the multi-verifier setting, which may be of independent
interest. Together with multi-verifier extended doubly-authenticated bits (mv-edaBits) with errors, we
design a multi-verifier zero-knowledge (MVZK) protocol to derive nonces statelessly and determinis-
tically. Building upon the MVZK protocol, we propose a stateless deterministic multi-party EdDSA
signature, tolerating all-but-one malicious corruptions. Compared to the state-of-the-art multi-party Ed-
DSA signature by Garillot et al. (Crypto’21), we improve communication cost by a factor of 61×, at the
cost of increasing computation cost by about 2.25× and requiring three extra rounds.

1 Introduction

Edwards-curve digital signature algorithm (EdDSA) [BDL+11] is a highly efficient Schnorr-variant digital
signature over twisted Edwards curves. It has been standardized by both NIST Federal Information Process-
ing Standard (FIPS) for Digital Signatures [nis19] and IRTF Request for Comments 8032 [JL17] to facilitate
its adoption in the Internet community. Unlike ECDSA or primitive Schnorr, EdDSA largely benefits from
its deterministic signature structure, i.e., the nonce value is derived by r = PRFdk(msg) with a pseudoran-
dom function PRF (standardized as SHA512). Ignoring some encoding details, an EdDSA signature over
a message is defined as r =

∑ℓ
i=1 r[i] · 2i−1 mod q,R = r · G and σ = s · H(R, pk,msg) + r mod q.

*Wuhan University, fengqi.whu@whu.edu.cn
†State Key Laboratory of Cryptology, yangk@sklc.org
‡Shanghai Jiao Tong University, kzoacn@cs.sjtu.edu.cn
§Northwestern University, wangxiao@northwestern.edu
¶Shanghai Jiao Tong University & Shanghai Qi Zhi Institute, yuyu@yuyu.hk
||PADO Labs & Shanghai Qi Zhi Institute, xiexiangiscas@gmail.com

**Wuhan University, hedebiao@163.com

1

fengqi.whu@whu.edu.cn
yangk@sklc.org
kzoacn@cs.sjtu.edu.cn
wangxiao@northwestern.edu
yuyu@yuyu.hk
xiexiangiscas@gmail.com
hedebiao@163.com

Assuming the long-term dk has enough entropy and PRF generates pseudorandom output, r will be pseu-
dorandomly and deterministically derived for each message msg. The EdDSA signature has been proven as
secure as the original Schnorr scheme that consumes fresh random for each signature.

Multi-party signing. Threshold signature (primarily for ECDSA and Schnorr) was studied in the late 1980s
and the 1990s, c.f. [BN06, Des88, DF90, GJKR96, SG98, Sho00, MR01, MOR01, NKDM03], but has
recently gained a lot of interest due to its application to the key protection [Lin17, DKLs18, LN18, GG18,
DKLs19, CGG+20, YCX21, ANO+22, KOR23, GKMN21]. Generally, a t-out-of-n threshold signature
allows n parties to secretly share the private key with a property that any subset of t parties can jointly
sign a message while preventing any subset of less than t parties from doing so. Multi-party signature
protocol is a special case of n-out-of-n, also called full-threshold signature. It can protect the secret key
for any t < n corruptions, making sense in some core areas by keeping the key shares in independent
devices or emulating multiple signers on a proposal, specifically covering the two-party case. Recently,
NIST [BP23] published the first call for multi-party threshold cryptography and made a specific comment
on EdDSA signing. Therefore, in this work, we aim to translate the benefit of the multi-party setting to
EdDSA signature.

Multi-party EdDSA signing. The core challenge in multi-party EdDSA signing is the nonlinear PRF-based
nonce derivation operation. The first attempt is to combine the secret r with all parties’ “deterministic” nonce
contributions. Unfortunately, it was broken soon by Maxwell et al. [MPSW19]. Consider two executions
to sign the same message msg, malicious adversary A can launch the forking attack to extract the honest
party’s secret key: in the first session, A runs the honest signing program with correct ri and obtains the
correct transcripts from honest party Pj :

R = Ri +Rj , e = H(pk, R,msg), σj = sj · e+ rj (1)

Then it cheats the honest party to sign the same message msg with different nonce r∗i . The honest party still
uses the same rj (as the long-time derived key and message are identical in both sessions). Therefore, A
obtains another set of transcripts as:

R∗ = R∗
i +Rj , e

∗ = H(pk, R∗,msg), σ∗
j = sj · e∗ + rj (2)

At this time, the adversary can easily extract the secret key share sj via Eq.(1) and Eq.(2).

Why Stateless? Folklore would suggest that the problem is simple: invoking the PRF with a fresh counter
to ”simulate” a random tape. Cryptographically, this strategy is secure if the counter is well maintained.
However, this approach inherently relies on a state continuity may not be cheaper than reliability storing the
long-time secret key. Parno et al. [PLD+11] found that even secure hardened devices with strong isolation
guarantees can not take this property for granted. Malicious attackers or circumstance mistakes (software
errors, power interruptions, etc.) may lead to a high delay or bad randomization reuse. Therefore, Bonte
et al. [BST21] made another attempt to exactly evaluate the nonce derivation function with a prepossessed
secretly-shared seed by MPC protocol in the honest majority setting. Their work does not require a contin-
uous state, yet is limited by non-deterministic processing and expensive costs.

Why Deterministic? The fact that uniformly random chosen during the signing process probably introduces
an attack hock in practice, because a consistent source of entropy being available for use has repeatedly
turned out to be ill-founded. For example, Kumari et al. [KASN15] given the detailed random number
generator (RNG) experiments in different settings. Their results indicate that a guest running in a virtual
machine tends to generate entropy at a lower rate and that it may be possible to predict the RNG output by
increasing the disk activity rate on the guest. Consequently, even a slight noticeable deviation of the chosen
value from uniform distribution can be used to break the scheme [HGS01, ANT+20, DH20]. Therefore,

2

deterministic nonce generation has gained traction [MNPV99, KW03]. Kondi et al. [KOR23] proposed a
two-round stateless deterministic two-party Schnorr signature using the pseudorandom correlation function
(PCF). Although their work achieves high performance, the randomness derived from the PCF part does
not meet the PRF function in the EdDSA standard.

Following the type-II comment on multi-party threshold signing in NIST document [BP23], where
pseudorandom per quorum via a zero-knowledge proof of pseudorandom contribution per party, a line of
works have been promised to build the deterministic, stateless multi-party signing based on zero-knowledge
proof [NRSW20, GKMN21]. Nick et al. [NRSW20] proposed a two-round multi-signature scheme (MuSign-
DN). They opt for Bulletproofs [BBB+18] to prove the correctness of nonce derivation with roughly a
kilobyte of proof but incurring high computation costs. Besides, MuSign-DN does not support EdDSA sig-
nature. The closest work to ours is that of Garillot et al. [GKMN21]. They partially addressed these issues
by incorporating the zero-knowledge from the garbled circuit (ZKGC) [JKO13] paradigm. Garillot et al.
consider the dishonest majority adversarial model and achieve provable security based on the DDH assump-
tion over a standardized elliptic curve. Still, its applicability is somewhat limited by heavy communication
overheads.

1.1 Our Contributions

Protocol PRF in EdDSA Asymptotic Comm. Concrete Comm. Rounds Assumptions

[CGM16] yes O(|C| · κ+ s · |q| · κ) 1.94 MB 1 PRG+Hash+DH

[NRSW20] no O(|q|) 1.1 KB 2 RO + DDH

[GKMN21] yes O(|C| · κ+ |q| · κ) 1.01 MB 3 RO+PRF

[KOR23] no O(ℓ′ − |q|+ 2κ) 0.87 KB 1 RO+DCR+Strong RSA

This work yes O(|C|+ (log(|C|) + ℓ) · κ) 16.33 KB 4 LPN+RO

Table 1: Comparing two-party verifiable nonce derivation protocol with prior related works. Costs to prove
R = PRFdk(msg) · G. The offline phase includes the input and preprocessing phases. Concrete costs
are given for ℓ′ = 3597, |q| = 256, κ = 128, ℓ = 512, |C| = 58k for SHA-512 as standard PRF for
EdDSA [nis19].

Protocol
Stateless and

Asymptotic Comm. Concrete Comm. Rounds Corruptions Type
deterministic

[BST21] no O(n · |C| · κ) 2294.3 MB 9 t < n/2 IV

[GKMN21] yes O(n · (|C| · κ+ |q| · κ)) 5.37 MB 3 t < n II

This work yes O(n · (|C|+ (log(|C|) + ℓ) · κ)) 49.19 KB 6 t < n II

Table 2: Comparison of multi-party EdDSA signature protocols. We do not consider the key generation
phase as it is executed only once. Costs are given for the Ed25519 curve among three parties. Type IV is
functionality equivalent to HashEdDSA via MPC hashing and type II is the mode of pseudo-random per
quorum via a ZKP commented by the NIST document

In this paper, we present a multi-party stateless and deterministic EdDSA that is secure in the presence
of a malicious adversary corrupting any number of parties. Our circuit-based zero-knowledge proof (in the

3

multi-verifier setting) for standard nonce derivation only needs to send few bits per multiplication gate per
party and take constant rounds of communication.

IT-MACs over Group in the Multi-Verifier Setting. In this paper, we consider the information-theoretic
message authenticated codes (IT-MACs) over group for verifiable nonce derivation. According to the def-
inition of Smart et al. [STA19], for a group element X ∈ G, its IT-MAC correlation for two-party setting
enforces that [[X]]q := {(X,M),K} of the form M = K+Λ ·X . We extend it to a multi-verifier IT-MACs
as [[X]]q := {(X, {Mi}i∈[N]), {Ki}i∈[N]} of the form Mi = Ki + Λi · X . Besides, Smart et al. [STA19]
leaves an open problem to construct the IT-MACs from bit vectors of the form m = k + x · ∆ ∈ F2κ .
We fill this gap by extending the edaBits [EGK+20] in the multi-verifier setting. This paradigm could be
of independent interest. Specifically, for input wires r[1], . . . , r[ℓ], they will be masked with the boolean
parts of edaBits using a ℓ-bit adder circuit, followed by revealing c = r + ρ mod q. This enables each
party to locally subtract and obtain [[r]]q, which can be used as the authenticated context over the group
for element [[R]]q := [[r]]q · G. The communication complexity is roughly O(|Gen.edaBits| + |Cadd|) with
constant rounds.

Stateless Deterministic Nonce Derivation. Table 1 summarizes a comparison of two-party determinis-
tic, stateless verifiable nonce derivation. Both garbling protocols of Chase et al. [CGM16] and Garil-
lot et al. [GKMN21] are achieved by a garbled circuit with the output of a bit string r (i.e., nonce r :=
PRFdk(msg)) and a transformation gadget with the output of an algebraic encoding of value

∑ℓ
i=1(2

i−1 ·
r[i]) ·G. However, their constructions by garbling an explicit PRF circuit are costly. Kondi et al. [KOR23]
takes another PCF-style approach of having much better performance. However, their nonce derivation
method in the malicious setting is r = PCF.Eval(PCF.Key,msg) for each party with a specific PRF func-
tion, leaving a gap to the standard definition of EdDSA, i.e., r = SHA512(dk,msg). Our verifiable nonce
derivation protocol develops on top of LPN-based PCF [BCG+22] and edaBits [EGK+20], offering asymp-
totically O(κ)× improvement with comparable round complexity and PRF in the standard EdDSA defini-
tion.

Multi-Party EdDSA Signing. Table 2 summarizes a comparison of multi-party EdDSA signing. Consider
the Ed25519 version of EdDSA, which aims at the security level of κ = 128 bits, and sets |q| = 256
bits and PRF as SHA512 (i.e., ℓ = 512). Bonte et al. [BST21] securely evaluate the PRF function
of EdDSA by MPC protocol in the honest majority setting, costing constant round complexity during the
generation of daBits. Another zero-knowledge proof-based multi-party EdDSA signing protocol presented
by Garillot et al. [GKMN21] also has constant rounds. However, Garillot et al. [GKMN21] relies on the
garbled circuit between each pair of parties and takes higher communication overheads. This work follows
Garillot et al. [GKMN21] to securely prove SHA512 in a zero-knowledge manner, we handle the gate-
by-gate circuit by n bit per AND gate per party. For the correctness check of multiplication triples, we
extend the Mac’n’Cheese [BMRS21] to the multi-verifier setting, costing O(n · log(t) · κ) bits for each
party to send. An important note is that our approach can also be applied to deterministic ECDSA in the
secret-shared-input model, where the hash e of the message is secret-shared by the client.

1.2 Road-map

The remainder of this paper is organized as follows. Section 2 establishes the technical overview. Section 3
presents the preliminaries, such as the security definition and cryptographic primitives. Section 4 shows
how to construct multi-verifier verifiable nonce derivation and to build a communication-efficient multi-
party EdDSA signing. Section 5 will present a performance evaluation. Finally, Section 6 concludes this
paper.

4

2 Technical Overview

Notations Let κ be the security parameter and n be the number of parties. We denote by [n] the set
{1, . . . , n} and [a, b] the set {a, . . . , b}. Bold lower-case letters, e.g., x denote the vectors, and x[i] is
the i-th element of x with x[1] as the first entry and x[a : b] as the sub-vector {x[a], . . . ,x[b]}. Let G
be an additive cycle group of generator G and order q. For a circuit C, we use |C| to denote the number
of multiplication gates. We use [[x]]2 denote the multi-verifier authenticated share of x over F2κ and [[x]]q
denotes the multi-verifier authenticated share of x over Zq.

This section provides a technical overview of our work. The full descriptions and security proofs are
left in the later section. To give an overview, we define the IT-MACs over group and adopt them to design
a multi-party stateless deterministic EdDSA signing protocol. We provide a multi-verifier verifiable nonce
derivation protocol with optimal communication performance.

2.1 Multi-Verifier IT-MACs over Group

We use multi-verifier information-theoretic message authenticated codes (IT-MACs), originally proposed
for two-party computation. We authenticate values in F2, and the authentication is done over the binary
extension field F2κ . Specifically, let V1, . . . ,VN be N verifiers and ∆i ∈ F2κ be a uniform global key
known only to Vi. A value x ∈ F2 known by the prover P is authenticated by

[[x]]2 = {(x,m1, . . . ,mN), k1, . . . , kN},

satisfying mi = ki+x ·∆i ∈ F2κ with the same x. Each Vi holds a local MAC key ki, i ∈ [N], and P holds
the secret value and corresponding MAC tags (x,m1, . . . ,mN). Besides, we extend the above notation to
vectors, arithmetic, or group of authenticated values as well. In this case:

• [[x]]2 = {(x,m1, . . . ,mN),k1, . . . ,kN} means that P holds x ∈ Fℓ
2,m1, . . . ,mN ∈ Fℓ

2κ while Vi
holds local key ∆i ∈ F2κ and local MAC key ki ∈ Fℓ

2κ with mi = ki +∆i · x ∈ F2κ .

• [[x]]q = {(x,m1, . . . ,mN), k1, . . . , kN} means that P holds x,m1, . . . ,mN ∈ Zq while Vi holds
glocal key Λi ∈ Zq and local MAC key ki ∈ Zq with mi = ki + Λi · x mod q.

• [[X]]q = {(X,M1, . . . ,MN),K1, . . . ,KN} means that P holds X,M1, . . . ,MN ∈ G while Vi holds
glocal key Λi ∈ Zq and Ki ∈ G with Mi = Ki + Λi ·X .

All authenticated values are additively homomorphic. For example, given authenticated bits over F2,
i.e., [[x1]]2, . . . , [[xℓ]]2 and public coefficients c1, . . . , cℓ, c ∈ F2κ , the parties can calculate [[y]]2 =

∑ℓ
i=1 ci ·

[[xi]]2 + c locally. Here, we give the definition of macros used in this paper as follows.

Shr. On input x ∈ Fℓ
2 from P , it first encodes x into a public value v with secret code βx. In PCF.Genmv,

instead of using random β, we now input the βx which will be used to define the secret value x. Then,
all the parties execute PCF.Evalmv and obtain [[x]]2 as a linear combination of the output (c.f. Figure 12
of [BCG+22] for more details). We denote this sharing procedure using Shr(x). Remark that Shr macro is
only used in the key generation with a reliable source of randomness.

Random. Generate an authenticated value [[r]]2, where r ∈ F2 is a uniformly random value. This can be
achieved by P and Vs invoke PCF.Evalmv (c.f. Figure 8) with prepared k0 and ki for i ∈ [N], respectively.
We use Random to denote this subroutine.

Assign. On input x ∈ F2 from P , P and Vs execute [[r]]2 ← Random. Then P sends y = r − x ∈ F2 to Vs
and all parties computes [[x]]2 = [[r]]2 + y. We denote this assigning procedure using Assign(x).

5

Checking Zero. An authenticated value [[x]]2 can be checked if x = 0 by havingP send mi to corresponding
verifier Vi, who verifies if mi = ki holds. We use CheckZero([[x]]2) to denote this checking procedure.

Remark that we do not need broadcast here, which means malicious P might send correct (mi) to Vi and
send incorrect (mj) to Vj , that is mi = ki, but mj ̸= kj , causing Vi continues yet Vj aborts. All verifiers
could fix this by announcing their response and checking consistency. As long as one verifier is honest, this
inconsistency will be found. Since the signature scheme is verifiable, we retrench the broadcast channels
here. Therefore, the security is following the two-party IT-MACs and PCF.

2.2 Stateless Deterministic Nonce Derivation in the Multi-Verifier Setting

The previous section introduces why the stateless and deterministic manner is essential. Recent works [NRSW20,
GKMN21, KOR23] have contributed to the zero-knowledge proof-based pattern. These works all follow the
same paradigm below.

1. The prover P commits to the same nonce derivation key dk in the key generation phase, which is in
the form of verifiable commitments. Specifically, P commits to each bit of dk, while verifier V (i.e.,
the other party who checks the correctness of nonce derivation) keeps authentication keys.

2. Subsequently, P proves an unbounded number of statements (i.e., correctly PRF and exponentiation
evaluation circuit) in the signing phase. Specifically, P and V jointly evaluate the target circuit gate-
by-gate while masking the input with committed derived keys. If P uses the correct dk, they must
open to the same nonce R = PRFdk(msg) ·G.

Unlike prior works, we want to prove the nonce derivation against multiple verifiers simultaneously.
In our multi-verifier verifiable nonce derivation protocol, each wire value is secretly shared in the multi-

verifier IT-MACs. Therefore, ADD gates can be calculated locally by each party and MULT gates are jointly
processed by invoking the Assign(ωα · ωβ) procedure. Finally, all parties obtain t multiplication gates with
wire values (ωα,j , ωβ,j , ωγ,j), j ∈ [t]. They can prove the correctness by randomized linear combination on
ωα,j · ωβ,j − ωγ,j = 0. Here, we follow the polynomial-based batch verification technique [BMRS21] and
extend their work to the multi-verifier setting. Let’s first arrange these multiplication triples into a 2 × t

2
matrix, i.e.,

ωα,1 ωα,2 ωα,3 . . . ωα, t
2

ωα, t
2
+1 ωα, t

2
+2 ωα, t

2
+3 . . . ωα,t

Now, each column could define a 2-degree polynomial. In particular, if P is honest, it will define t
2

polynomials for all α-wires as f1, . . . , f t
2

and another t
2 polynomials for all β-wires as g1, . . . , g t

2
. Consider

the following crucial equation:∑
i∈[t

2
]

∑
j∈[2]

fi(j) · gi(j) =
∑
i∈[t]

(ωα,i · ωβ,i) =
∑
i∈[t]

ωγ,i

Let’s generalize a product polynomial as h =
∑

i∈[t
2
] fi · gi ∈ F2κ [X]. If all multiplication triples are

correct, the aggregation of outputs must be a point of h. P further commits to the coefficients of h(·) to all
the verifiers. At this time, all parties could jointly check if

∑
j∈[2][[h(j)]]2 − [[z]]2 is [[0]]2. This is achieved

by invoking CheckZero subroutine.
To complete the proof, P also needs to demonstrate that the commitment on polynomial h is ex-

actly the inter-product of f1, . . . , f t
2

and g1, . . . , g t
2

The key insight is that all parties can use the IT-

MACs {[[ωα,i]]2, [[ωβ,i]]2}i∈[t] to homomorphically derive the authenticated sharing of those t
2 polynomi-

als, i.e., [[f1]]2, . . . , [[f t
2
]]2 and [[g1]]2, . . . , [[g t

2
]]2, a further check on these commitments is performed as

6

∑
i∈[t

2
][[fi]]2 · [[gi]]2 − [[h]]2 = [[0̃]]2, where 0̃ denotes a zero-polynomial that is always evaluated to 0. By

Schwartz-Zippel, this can be done by checking that∑
i∈[t

2
]

[[fi(η)]]2 · [[gi(η)]]2 − [[h(η)]]2 = [[0]]2

with a random η ∈ F2κ . To keep deterministic, we generate η using Fiet-Shamir heuristic. Observe that the
equivalent verification of [[f1(η)]]2, . . . , [[f t

2
(η)]]2, [[g1(η)]]2, . . . , [[g t

2
(η)]]2 and [[h(η)]]2 evaluated on a public

value η boils down to another t
2 -batched verification on multiplication triples. Thus, we can recursively

apply to rearrange the triples, multiplying the two polynomials, committing to the inter-product polynomial,
and checking until one or two triples are left. The last multiplication triples could be efficiently verified
using the sacrifice technique [KOS16]. If any check fails, the party’s output is false. Otherwise, all parties
get a correct vector [[r]]2 that is the evaluation result of derivation function PRFdk(msg).

Smart et al. [STA19] defined an authenticated secret sharing over group, i.e., for an elliptic curve point
R ∈ G with R = r·G, it will be secretly shared via a correlation {Ri,Mi} for i ∈ [n] such as R =

∑
i∈[n]Ri

and
∑

i∈[n]Mi = Λ · R, where Λ ∈ Zq is the same global key as used in [[r]]q. We extend their work by
converting [[r]]2 to [[R]]q. The core challenge is that r ∈ Fℓ

2 are secretly-shared over F2κ , while [[R]]q and
[[r]]q are secretly-shared over Zq. Inspired by prior work [BST21], we use the idea of extended doubly-
authenticated bits (edaBits) [EGK+20]. We extend original edaBits to the multi-verifier friendly form,
i.e., mv-edaBits:= {([[ρ]]q, [[ρ[1]]]2, . . . , [[ρ[ℓ]]]2)} such that the random value ρ ∈ Zq is secret-shared over
the arithmetic field in the multi-verifier setting and its binary representations (i.e., ρ =

∑ℓ
j=1 2

j−1ρ[j]
mod q) are secret-shared over the boolean field also in the multi-verifier setting. An important observation
is that when P is corrupted, we allow the adversary to choose different ρ. That is, we do not require the
consistency check of edaBits, which is heavily expensive and performed by cut-and-choose technique. These
are sufficient to design multi-party signing protocols in the malicious setting as the signature is inherently
verifiable. Therefore, we can efficiently generate the edaBits by calling two times PCF.Evalmv, implemented
with F2 and Zq respectively. Therefore, incorporated with an addition circuit, P and Vs can evaluate the
PRF circuit with inputs of [[r[1]]]2, . . . , [[r[ℓ]]]2 and [[ρ[1]]]2, . . . , [[ρ[ℓ]]]2, opening to the result of c = r + ρ
mod q in clear. We could naturally define the IT-MACs over group by [[R]]q = (c− [[ρ]]q) ·G.

Suppose a cheating P does not use a consistent r and ρ. This can be repaired by adding a batch ver-
ification. Specifically, when n parties get {[[R1]]q, . . . , [[Rn]]q} with {[[ρ1]]q, . . . , [[ρn]]q}, they jointly open
{R1, . . . , Rn} and

S = (
∑
i∈[n]

χi · ci) ·G = (
∑
i∈[n]

χi · ri + χi · ρi) ·G

=
n∑

i=1

χi ·Ri + (
∑
i∈[n]

χi · ρi) ·G

where χ1, . . . , χn ∈ Zq are common random values generated using Fiet-Shamir heuristic and check if

∑
i∈[n]

(Λi · S) = Λ ·
n∑

i=1

χi ·Ri

+
∑
i∈[n]

(
∑
j ̸=i

(χj · kj,iρ + χi ·mi,j
ρ) + χi · ρi · Λi) ·G

holds, where for [[ρi]]q of Pi, its corresponding MAC tags are mi,j
ρ ∈ Zq and local MAC keys are ki,jρ ∈ Zq

for all j ∈ [n], j ̸= i. This is workable because if the equation holds, we can obtain (Λ ·
∑n

i=1 χi · ci −

7

∑
i,j(χi · ρi · Λj)) ·G = Λ ·

∑n
i=1 χi ·Ri. That is (

∑n
i=1 χi · (ρi + ri)−

∑n
i=1 χi · ρi) ·G =

∑n
i=1 χi ·R

(the red ρi is aggregated by binary representations of mv-edaBits and the blue ρi is generated from integer
part of mv-edaBits). If Λ is uniformly random and χ1, . . . , χn ∈ Zq are computationally unpredictable, the
advantage of A to forge an inconsistent mv-edaBits will be negl(κ). After all n signers prove their derived
nonce acting as P , they obtain the correct nonce from others if no failure happens.

2.3 Multi-Party EdDSA Signing

We concentrate on the Ed25519 version of the EdDSA signature, with the case of Ed448 being virtually
identical (except using a different elliptic curve). Parameterized by the EdDSA standard parameters, the
multi-party EdDSA signing could be achieved in two phases. In the key generation phase, each party gener-
ates all the keys, i.e., secret key ski, random seed k∗i , derived key dki, global keys ∆i and Λi. Furthermore,
the signing public key is easy to construct based on the additive cycle group.

Given the message msg, a core step is to derive signing session id as sid = H0(msg, R) and all the
randomness needed by H1(k

∗
i , sid,MVND) in a deterministic, stateless manner. Then the verifiable nonce

derivation could be performed as follows:

1. Each Pi proves its Ri acting as the prover P while all other Pj , j ∈ [n]\{i}, acting as the verifiers Vs.

2. Pi aborts if it finds any false in the multi-verifier nonce derivation process. Otherwise, Pi obtains R.

The remaining steps are easy. Each Pi computes h = Hsig(R, pk,msg) and σi = ri + h · si mod q. All
parties open the σ =

∑n
i=1 σi mod q. Finally, each party checks if verify(pk,msg, (R, σ)) = false, then

it aborts. Otherwise, the parties output (R, σ). Thus, the computation and communication costs heavily
depend on the multi-verifier nonce derivation.

3 Preliminaries

This section presents the preliminaries used in the multi-party EdDSA signing protocol. We first review the
universal definitions, such as UC security model, commitment functionality FCom, and committed NIZK
functionality for DLP FRDL

com-zk. Then we present the definitions of EdDSA schemes and PCF.

3.1 Universal Composability

We prove the security of our protocols in the universal composability (UC) framework [Can01] against a
static, malicious adversary who corrupts up to n− 1 out of n parties. We say that a protocol Π UC-realizes
an ideal functionality F if for any probabilistic polynomial time (PPT) adversary A, there exists a PPT
adversary (called the simulator) S such that for any PPT environment Z with arbitrary auxiliary input z,
the output distribution of Z in the real-world execution where the parties interact with A and execute Π is
computationally indistinguishable from the output distribution of Z in the ideal-world execution where the
parties interact with S and F. Environment Z is a powerful entity with total control over adversary A and
can choose the inputs and see the outputs of all parties.

We use P1, . . . , Pn to denote n parties and I to denote the set of corrupted parties. In this paper, we
consider security with abort, meaning that a corrupted party can obtain output while the honest party does
not. In this case, the ideal-world adversary receives output first and then sends either (deliver, i) or (abort, i)
to the ideal functionality, for i /∈ I to instruct the functionality either to deliver the output to Pi or to send
abort to Pi. We always assume that output is sent this way and omit it hereafter for the sake of simplicity.

8

3.2 Functionality of Commitment FCom

To realize threshold EdDSA signing, we use an ideal commitment functionality FCom, formally defined in
Figure 1. In our protocol, all the inputs to be committed have a sufficient-high entropy. In this case, we can
securely realizeFCom by simply defining Com(x) = H(x) for high-entropy input x, where H(·) : {0, 1}∗ →
{0, 1}κ is a cryptographic hash function with security parameter κ. This has no impact on security, as the
simulation of commitments and the extraction of inputs still work in the random-oracle model.

Functionality FCom

This functionality runs with parties P1, . . . , Pn, as follows:

• Upon receiving (commit, sid, i, x) from a party Pi (for i ∈ [n]), record (commit, sid, i, x) and send
(receipt, sid, i) to all the other parties. If some (commit, sid, i, ∗) is already recorded, ignore the message.

• Upon receiving (decommit, sid, i) from a party Pi (for i ∈ [n]): if (commit, sid, i, x) has been stored then
send (decommit, sid, i, x) to all the other parties.

Figure 1: The Commitment Functionality

3.3 Functionality of Committed NIZK FRDL
com-zk

Functionality FRDL

com-zk

This functionality runs with parties P1, . . . , Pn, as follows:

• Upon receiving (com-prove, sid,Q, x) from a party Pi (for i ∈ [n]), if Q ̸= x · G or sid has been
previously used then ignore the message. Otherwise, store (sid, i,Q) and send (proof-receipt, sid) to the
other parties.

• Upon receiving (decom-proof, sid) from a party Pi (for i ∈ [n]): (sid, i,Q) has been stored then send
(decom-proof, sid,Q) to the other parties.

Figure 2: The Committed NIZK Functionality for DL Relation

Figure 2 overview a description of the committed non-interactive zero-knowledge proof functionality for
discrete logarithm relation, denoted as FRDL

com-zk. The NIZK proof of knowledge in the random-oracle model
can be achieved following many multi-party signing protocols such as [Lin17, LN18, DKLs18, DKLs19].
In this paper, we apply the standard Schnorr proof [Sch91] to prove knowledge of the discrete logarithm of
an elliptic-curve point, which is shown as follows:

• Prove: Given a statement Q = w · G and a witness w, sample r ← Zq, compute R = r · G,
c = H(G,Q,R) and s = r + c · w mod q. Output a proof π = (s,R).

• Verify: Given a statement (G, q, G,Q) and a proof π = (s,R), compute c′ = H(G,Q,R) and accept
the proof if and only if s ·G = R+ c′ ·Q.

Here, H(·) : {0, 1}∗ → Zq denotes a cryptographic hash-to-integer function. This protocol can be trans-
formed to the non-interactive version using Fiat-Shamir heuristic [FS87]. Combining above instantiation
for FCom with Schnorr proof, we can obtain an efficient instantiation for functionality FRDL

com-zk, which will

9

be used in our key generation phase of the multi-party EdDSA signing protocol. Note that “high-entropy
random source” is available in the key generation phase of EdDSA, therefore, the above instantiation does
not impact our contribution.

3.4 EdDSA Signature Algorithm

This section introduces details of EdDSA. Following the standards of NIST and IRTF [JL17, nis19], there are
two variants of EdDSA, depending on how the randomness is generated: the first case is r = PRF(dk,msg)
while the second case is r = PRF(dk,H(msg)). This paper focuses on the second case, as the input of PRF
circuit is flexible in the first case. For the sake of readability, we write H(msg) as simple msg, which has few
impact on a publicly known message. In addition, there are two versions of EdDSA, based on the Edwards
curves Ed25519 and Ed448 respectively. We only consider the Ed25519 curve, as mostly implementations
for EdDSA-based applications adopt this curve. In addition, we can easily modify our multi-party EdDSA
signature protocol to the Ed448 curve. Figure 3 presents the detailed three algorithms of EdDSA scheme.

Algorithm EdDSA

Parameters: EdDSA is parameterized by params = (Ep,G, q, G, ℓb, ℓ,Hsig,PRF), where Ep is the twisted
elliptic curve, G is an additive cycle group of generator G and order q, ℓb is the bit-length of secret EdDSA
scalars, PRF : {0, 1}ℓb+ℓ → {0, 1}ℓ is a pseudorandom function with ℓ-bit output (satisfying ℓ = 2ℓb) and
Hsig : {0, 1}∗ → Zq is a hash-to-integer function.

KeyGen(params):

1. Sample a private key sk← {0, 1}ℓb , and compute a hash value (h[1],h[2], . . . ,h[2ℓb]) := PRF(sk).

2. Assign h[1] = h[2] = h[3] = h[ℓb] = 0 and h[ℓb−1] = 1. Then use the updated vector h[1 : ℓb] to define
a secret scalar s ∈ Zq i.e., s =

∑ℓb
i=1 h[i] · 2i−1 mod q, and use the higher second half h[ℓb + 1 : 2ℓb] as

the derived key dk.

3. Compute the public key pk = s ·G.

Sign(dk, s, pk,msg):

1. Derive pseudorandom value as r = PRF(dk,msg) and compute r =
∑ℓ

i=1 2
i−1 · r[i] mod q.

2. Compute R = r ·G, h = Hsig(R, pk,msg) and σ = r + h · s mod q.

3. Output a signature (R, σ).

Verify(pk,msg, (R, σ)):

1. Compute h′ = H(R, pk,msg).

2. Output 1 (accept) iff (23 · σ) ·G = 23 ·R+ (23 · h′) · pk holds; otherwise, output 0 (reject).

Figure 3: The EdDSA Scheme

3.5 Pseudorandom Correlation Function

Pseudorandom correlation function (PCF) was originally presented by Boyle [BCG+20] using LPN assump-
tion and has been studied since than [BCG+22, CD23]. It incrementally allows the local generation of an
arbitrary polynomial amount of pseudorandom correlations on demand from a pair of short correlated keys.
Below, we provide the definitions for PCF-based vector oblivious linear evaluation (VOLE) correlations.

10

Definition 1. Let 1 ≤ τ0(κ), τ1(κ) ≤ poly(κ) be the output-length functions, and letM ⊆ F be a set of
allowed master keys for verifier. Let (Setup,Y) be probabilistic algorithms such that:

• Setup(1κ,M) sample a master secret key fromM, for example, msk := ∆;

• Y(1κ,msk) return a pair of outputs (y0, y1) ∈ {0, 1}τ0(κ) × {0, 1}τ1(κ), defining a correlation on the
outputs.

We say that (Setup,Y) define a reverse sampleable correlation, if there exists a PPT algorithm RSample
such that

• RSample(1κ,msk, b ∈ {0, 1}, yb ∈ {0, 1}τb(κ)) return y1−b ∈ {0, 1}τ1−b(κ), such that for all msk ∈
M and b ∈ {0, 1} the following distributions are statistically close:

– {(y0, y1)|(y0, y1 ← Y(1κ,msk)} and

– {(y0, y1)|(y∗0, y∗1 ← Y(1κ,msk),

yb ← y∗b , y1−b ← RSample(1κ,msk, b, y∗b)}

To show how this reverse sampling definition works, we give the distribution for VOLE correlations if
Y(1κ,∆) samples x← F, k ← F, computes m = k + x ·∆ ∈ F and outputs ((x,m), k), where F could be
F2 (with p = 2κ) or Zq (with p = q).

Definition 2. Let (Setup,Y) fix a reverse-sampleable correlation with setup which has output length func-
tions τ0(κ), τ1(κ) and sets M of allowed master keys, and let κ ≤ n(κ) ≤ poly(κ) be an input length
function. Let (PCF.Gen,PCF.Eval) be a pair of algorithms with the following syntax:

• PCF.Gen(1κ,msk) is a PPT algorithm that outputs a pair of keys (k0, k1);

• PCF.Eval(b, kb, v) is a deterministic polynomial-time algorithm that on input b ∈ {0, 1}, key kb and
input value v ∈ {0, 1}n(κ), outputs a value yb ∈ {0, 1}τb(κ)

The (PCF.Gen,PCF.Eval) is a (weak) pseudorandom correlation function (PCF) for Y , if the following
conditions hold:

• Pseudorandom Y-correlated outputs. For every msk ∈ M, and non-uniform adversary A of size
poly(κ), and every Q = poly(κ), it holds that

|Pr[exppr0 (κ) = 1| − |Pr[exppr1 (κ) = 1| ≤ negl(κ)

for all sufficiently large κ, where expprb (κ) for b ∈ {0, 1} is defined in Figure 4 and Figure 5 (with
Q(κ) samples given access to A).

• Security. For each b ∈ {0, 1} there is a simulator Sb such that for every msk ∈ M, any every
non-uniform adversary A of size B(κ), and every Q = poly(κ), it holds that

|Pr[expsec0 (κ) = 1| − |Pr[expsec1 (κ) = 1| ≤ negl(κ)

for all sufficiently large κ, where expsecb (κ) for b ∈ {0, 1} is defined in Figure 6 and Figure 7 (again,
with Q(κ) samples).

11

Experiment exppr0 (κ)

for i = 1 to Q(κ):

vi ← {0, 1}n(κ)

(y
(i)
0 , y

(i)
1)← Y(1κ,msk)

b← A(1κ, (vi, y(i)0 , y
(i)
1)i∈[Q(κ])

return b

Figure 4: Correlated outputs of the Y-function

Experiment exppr1 (κ)

(k0, k1)← PCF.Gen(1κ,msk)
for i = 1 to Q(κ):

vi ← {0, 1}n(κ)

for b← {0, 1}: y(i)b ← PCF.Eval(b, kb, v
(i))

b← A(1κ, (vi, y(i)0 , y
(i)
1)i∈[Q(κ])

return b

Figure 5: Pseudorandom Y-correlated outputs of a PCF

Experiment expsec0 (κ)

(k0, k1)← PCF.Gen(1κ,msk)
for i = 1 to Q(κ):

vi ← {0, 1}n(κ)

y
(i)
1−b ← PCF.Eval(1− b, k1−b, v

(i))

b← A(1κ, kb, (vi, y(i)1−b)i∈[Q(κ])
return b

Figure 6: Output distributions of a PCF

3.6 Multi-Verifier Programmable PCF

The PCF as described above works for the two-party setting. In the multi-verifier setting, P would
generate a VOLE correlation with every verifier Vi, for i ∈ [N] such that P obtains the same x ∈ Fℓ and
Vi obtains the same ∆i ∈ F among all VOLE correlations. Note that the existing PCF schemes satisfy
programmability defined in [BCG+22], i.e., PCF.Gen takes additional inputs (x,∆i) and outputs a pair of
seeds that are expanded to a VOLE correlation with fixed x, ∆i. Based on the programmability, we are
able to construct PCF for VOLE in the multi-verifier setting (see [BCG+22] for details). Building upon
multi-verifier PCF for VOLE, we show the construction of a PCF scheme (PCF.Genmv, PCF.Evalmv) of

12

Experiment expsec1 (κ)

kb ← Sb(1κ,msk)
for i = 1 to Q(κ):

vi ← {0, 1}n(κ)

y
(i)
b ← PCF.Eval(b, kb, v

(i))

y
(i)
1−b ← RSample(1κ,msk, b, y

(i)
b)

b← A(1κ, kb, (vi, y(i)1−b)i∈[Q(κ])
return b

Figure 7: Output distributions with RSample algorithm as in Definition 1

Macro Multi-verifier PCF

PCF.Genmv (1
κ,F) runs N executions of PCF.Gen(1κ,msk) to generate (k0, k1, . . . , kN) such that the size of

every seed ki is at most Oκ(N log2(ℓ)). In particular, PCF.Genmv (1
κ) executes as follows:

1. Sample u← Fℓ and β ← Fℓ. For each i ∈ [N], sample ∆i ← Fp.

2. For each i ∈ [N], run PCF.Gen(1κ,u,β ·∆i) to generate a pair of seeds (ki0, k
i
1).

3. For each i ∈ [N], output ki := ki1 to Vi. Then, output k0 := {u,β, ki0}i∈[N] to P .

PCF.Evalmv (i, ki, v) runs N executions of PCF.Eval to generate parties’ shares on a vector of multi-verifier
authenticated sharing [[x]]2. For each i ∈ [N], PCF.Evalmv (i, ki) performs the following:

1. For each i ∈ [N], run PCF.Eval(1, ki1, v) to generate yi1 = {k(i),∆i}.

2. For each i ∈ [N], run PCF.Eval(0, ki0, v) to generate yi0 = {x,m(i)} such that m(i) = k(i) + x ·∆i.

Figure 8: Multi-verifier PCF scheme

multi-verifier authenticated sharing as defined in Section 2.1, while guaranteeing the security.
We can further optimize the PCF in a client-server model, where the key management servers escrow

the client’s key and the client executes PCF.Genmv (even the multi-party key generation protocol) for the
servers. It is a trending service in the lightweight internet (e.g., internet of things or mobile internet) with
the features of availability and elasticity. Many internet companies have recently released key management
services, such as Google, Microsoft, Apple and Alibaba, to help encrypt and protect sensitive data assets.
Benefiting from the stateless and deterministic advantages, our protocol may be a promising proposal as
the deployment costs, specifically state synchronization and high-entropy random number generator are
unnecessary for the key management servers.

4 The Designed Protocols

Recall that we have defined multi-party IT-MACs over groups in Section 2.1. Thus, this section directly
shows the detailed multi-verifier friendly extended doubly-authenticated bits (mv-edaBits) nonce derivation

13

protocol. In Section 4.3, we present the practical application of the multi-verifier nonce derivation protocol
in multi-party EdDSA signatures.

4.1 Extended Doubly-Authenticated Bits for Multi-Verifier Zero-Knowledge Proof

The extended doubly-authenticated bits in the multi-verifier setting mv-edaBits is a key tool in this work
to efficiently convert [[x]]2 to an authenticated sharing [[X]]q over group. A mv-edaBits is defined as a tuple
([[ρ]]q, {[[ρ[1]]]2, . . . , [[ρ[ℓ]]]2}) where the identical random value ρ ∈ F2κ is secret-shared in the arithmetic
domain Zq and its binary representation bits are secret-shared in the binary domain F2κ , i.e., ρ =

∑ℓ
i=1 2

i−1·
ρ[i] mod q. We provide the macro definition for mv-edaBits in Figure 9.

Macro MV-edaBits

This macro runs with two types of parties, i.e., multiple verifiers V1, . . . ,VN and the prover P . We use the
symbols {[[·]]q, [[·]]2} to distinguish the authenticated fields in the Zq and F2κ respectively.

Setup runs PCF.Genmv to generates keys for each Vi, i ∈ [N] and P . Specifically, Setup executes as follows:

1. P and Vs run PCF.Genmv(1
κ,Zq) to generate (k

(q)
0) for P and (k

(q)
i) for Vi.

2. Similarly, P and Vs run PCF.Genmv(1
κ,F2) to generate (k

(2)
0) for P and (k

(2)
i) for Vi.

Create mv-edaBits runs PCF.Evalmv to derive authenticated mv-edaBits for each Vi, i ∈ [N] andP . Specifically,
Create executes with common strings v1 and v2 as follows:

1. P runs PCF.Evalmv(0, k
(q)
0 , v1), while for each i ∈ [N], Vi runs PCF.Evalmv(i, k

(q)
i , v1) to generate [[ρ]]q .

2. In parallel, P runs PCF.Evalmv(0, k
(2)
0 , v2) and for each i ∈ [N], Vi runs PCF.Evalmv(i, k

(2)
i , v2) to gen-

erate [[ρ]]2.

Figure 9: The Generation Macro of mv-edaBits

The prover P and N verifiers V1, . . . ,VN can generate faulty mv-edaBits by simply invoking PCF
macro. Observed we need to check the consistency of bits {ρ[1], . . . ,ρ[ℓ]} and random value ρ shared in
two fields. It can be further achieved by cut-and-choose verification phase of [EGK+20]. In this paper, we
observe that these values can be succinctly checked with the aid of verifiability of the signature. See the
proof given in Appendix. B), if red ρis (the Boolean parts) are not consistent with the blue ρ (the arithmetic
part), the check subroutine will fail except with probability at most 1

q . Thus, we omit the detailed protocol
here.

4.2 Multi-Verifier Nonce Derivation

Our multi-verifier zero-knowledge proof (MVZK)-based nonce derivation protocol follows a gate-by-gate
paradigm, where the value on each wire is formally secretly shared as

[[x]]2 = {(x,m1, . . . ,mN), k1, . . . , kN}

for N verifiers, such that mi = ki+x ·∆i ∈ F2κ , and each Vi holds (ki,∆i), i ∈ [N]. It could be generated
by invoking PCF (see Figure 8). FMV-ND shown in Figure 10 defines our multi-verifier nonce derivation
functionality.

Before going into the achievement of FMV-ND, we need to present a core check subroutine in used. It
works in the multi-verifier setting and adopts polynomial-based batch verification technique. We show the

14

Functionality FMV-ND

This functionality runs with P1, . . . , Pn. This functionality is parameterized by the nonce derivation circuit C∗ :=
1{R = PRFdk(msg) ·G} where G is a generator of the elliptic curve group G with order q.

1. For each i ∈ [n]:

• Upon receiving (mvzk-input, i, dki) from Pi (acting as the prover P) and (mvzk-input, i) from all
the other parties (acting as the verifiers V1, . . . ,VN), with a fresh identifier sid, store (i, dki).

• Upon receiving (mvzk-prove, i, (msg, Ri)) from Pi (acting as P) and (mvzk-verify, i, (msg, Ri))
from all the other parties (acting as V1, . . . ,VN). If (i, dki) has been stored, set resi = true if
C∗(dk,msg, R) = 1 and resi = false otherwise.

2. If all the res1, . . . , resn is true, set res = R1 + · · ·+Rn; res =⊥ otherwise.

3. Send res to the adversary. Wait for input from the adversary, and perform as follows. If it is continue,
send (mvzk-proof,msg, res) to all the parties. If it is abort, send abort.

Figure 10: The Multi-Verifier Zero-Knowledge Proof Functionality for Nonce Derivation

Functionality FMV-CheckMULs

This functionality runs with P and N verifiers V1, . . . ,VN , and inherit all the features of PCF (shown in Figure 8)
and FMV-ND (shown in Figure 10). Let the honest verifiers be H ⊂ [n] be the honest verifiers. Furthermore, this
functionality is invoked by the following commands.

Check Multiplications: Upon receiving (CheckMuls, sid, {[[ωα,j]]2, [[ωβ,j]]2, [[ωγ,j]]2}j∈[t]) from P and Vs,
where t multiplication tuples are defined in multi-verifier IT-MACs. If for any j ∈ [t] s.t. ωγ,j ̸= ωα,j ·ωβ,j , then
set res = false. Otherwise, set res = true. Send the set of {resi} to the adversary where i ∈ [N] − H and Vi’s
authenticated shares cause failure. For each i ∈ H, wait for an input from the adversary and perform as follows:

• If it is continuei, send res to Vi.

• If it is aborti, send abort to Vi.

Figure 11: The Multi-Verifier Check Multiplications Functionality

ideal functionality FMV-CheckMULs and its instantiation protocol CheckMuls in Figure 11 and Figure 12, re-
spectively, which are generalizations in the multi-verifier setting from AssertMultVec protocol of [BMRS21].
Therefore, the security of FMV-CheckMULs is similar to one-verifier protocol, except that we allow an adver-
sary to control which honest verifier aborts while other verifiers output results. This could be fixed by all
verifiers broadcasting their results and checking consistency. As long as one verifier is honest, this incon-
sistency will be found. Since the simulator can simulate the input round of any subprotocol following the
description, it is sufficient even if the adversary is inconsistent. Additionally, consistency is guaranteed in the
protocol

∏
MV-ND, where the parties broadcast c and check the aggregated values. Thus, the malicious be-

havior where corrupted prover sends different values to different honest verifiers would be detected, which
may be of independent interest. Figure 13 gives an example of CheckMuls when t = 24 multiplication
triples given.

Lemma 1. If the one-verifier protocol AssertMultVec passes, then the input commitments have the required
relation except with probability t+4 log t+1

2κ−2 .

15

Protocol CheckMuls

The CheckMuls is a subroutine for
∏

MV-ND. The prover P and N verifier V1, . . . ,VN perform the consistency
check on t multiplication triples each of the form ([[ωα,i]]2, [[ωβ,i]]2, [[ωγ,i]]2), for i ∈ [t]. All the parties execute as
follows:

1. Each verifier Vi, i ∈ [N] and P inherit the string as str := MVND||sid||k∗i ||{dj}j∈[t]
a, run H1(str) to

generate common randoms χ1, . . . , χt ∈ F2κ , and append str := str||χ1|| . . . ||χt. The parties randomize
[[z]]2 =

∑
i∈[t] χi · [[ωγ,i]]2 and [[ω̂α,i]]2 = χi · [[ωα,i]]2 for i ∈ [t].

2. While t > 2:

(a) Set t = t
2 . All parties define t polynomial shares as [[f1]]2, . . . , [[ft]]2 ∈ F2κ [X] and another t poly-

nomial shares [[g1]]2, . . . , [[gt]]2 ∈ F2κ [X] such that [[fi(j)]]2 = [[ω̂α,j×t+i]]2, [[gi(j)]]2 = [[ωβ,j×t+i]]2
for j ∈ {0, 1}, i ∈ {1, . . . , t}.

(b) P generalizes a polynomial as h =
∑

i∈[t] fi · gi ∈ F2κ [X]. Note that h has a degree ≤ 2.

(c) Let {c0, c1, c2} being the coefficients of h, P and Vs execute Assign(cj) and define [[h]]2 using
[[cj]]2, j ∈ {0, 1, 2}. (Denote the transcripts sent by P here as dc,j , for j ∈ {0, 1, 2})

(d) The parties run CheckZero(
∑2

j=1[[h(j)]]2 − [[z]]2). If this check fails, the parties output false and
abort.

(e) Each verifier Vi and P append str := str||{dc,j}j∈{0,1,2}, runs H1(str) to generate a common
random η ∈ F2κ and append str := str||η.

(f) All parties locally evaluate [[f1(η)]]2, . . . , [[ft(η)]]2, [[g1(η)]]2, . . . , [[gt(η)]]2 and [[h(η)]]2. They recur-
sively back to 2.(a) until t ≤ 2.

3. Now P and Vs have at most two multiplication triples, denoted as ([[xi]]2, [[yi]]2, [[z]]2), for i ∈ [t] and t ≤ 2.
They check the validity as follows:

(a) For i ∈ [t], all parties generate authenticated random using [[vi]]2 ← Random and compute

[[zi]]2 = Assign(xi · yi), [[ẑi]]2 = Assign(yi · vi)

(Denote the transcripts sent by P here as {dz,i, dẑ,i}i∈[t])

(b) Each verifier Vi and P append str := str||{dz,i||dẑ,i}i∈[t], runs H1(str) to generate common ran-
dom e ∈ F2κ and append str := str||e.

(c) For i ∈ [t], the parties open εi with [[εi]]2 = e · [[xi]]2 − [[vi]]2 and run CheckZero(e · [[zi]]2 − [[ẑi]]2 −
εi · [[yi]]2).

(d) All parties run CheckZero(
∑

i∈[t][[zi]]2 − [[z]]2). If any checking fails, the parties output false. Oth-
erwise, they output true and pass the string parameter str to

∏
MV-ND.

aThe keys and transcripts, i.e., sid, k∗
i , {dj}j∈[t] are defined

∏
MV-ND

Figure 12: Multi-Verifier Check Multiplication Subprotocol

Proof. The proof follows from [[BMRS21], Theorem.4] where the case
∑

i∈[t] ωα,i·ωβ,i·χi ̸=
∑

i∈[t] ωγ,i·χi

has soundness error t+4 log t+1
2κ−2 .

We then have the following theorem. We provide a sketch here and the full security proof can be found
in Appendix A

Theorem 1. CheckMuls UC-realizes FMV-CheckMULs in the presence of an adversary statically corrupting

16

t=16

CheckMuls

def CheckMuls
 :

if t == 2 :
return CheckZero

else :

if !CheckZero() :
return 0

else :

CheckMuls

t=16

t=8

def CheckMuls
 :

if t == 2 :
return CheckZero

else :

if !CheckZero() :
return 0

else :

CheckMuls

t=8

def CheckMuls
 :

if t == 2 :
return CheckZero

else :

if !CheckZero() :
return 0

else :

CheckMuls

t=4

t=4

def CheckMuls :

for i = 1 to 2 :

var = Open()

if !CheckZero():

return 0

else :

return CheckZero()

t=2

t=2

Figure 13: An Example of CheckMuls When t = 24 Multiplication Triples Given

Protocol
∏

MV-ND

Parameterized by the security parameter κ, an elliptic curve group G generated by G with order q. n parties hold
a circuit for keyed PRF function C := PRFdk(msg). C consists of t multiplication gates and inputs of derived key
dk ∈ F2κ and message msg ∈ {0, 1}ℓ. Furthermore, all parties consensus on an adder circuit Cadd : {x+ y = z}
with t′ = |Cadd| multiplication gates. Let C̃ being a circuit computed via the C followed by Cadd and t̃ = t + t′.
When each party acts as prover P and the other N = n − 1 parties act as verifiers V1, . . . ,VN in turns. Let
H0 : {0, 1}∗ → {0, 1}κ, H1 : {0, 1}∗ → (F2κ)

∗

Setup: Run once, with each Pi (acting as P) using private derived key dki ∈ Fℓ
2:

1. All parties run the setup of MV-edaBits, such that for each verifier Vj obtains the global keys ∆j ∈ F2κ

and Λj ∈ Zq .

2. Pi invokes Shr(dki) with constant input session id siddk to generate the secretly shared [[dki]]2

3. Pi samples seedi,j ← {0, 1}κ as a random PRF key, and then sends it to Pj over a private channel for each
j < i.

4. Pi samples k∗i ← F2κ .

Figure 14: Multi-Verifier Stateless Deterministic Nonce Derivation based on MVZK

17

Protocol
∏

MV-ND (continued)

Proof Phase: Now the message msg and R is known by the parties:

1. Each Pi computes sid = H0(msg, R).

2. Each Pi initializes a string for random generator as str := H1(MVND||sid||k∗i).

3. All parties invoke (Create mv-edaBits) of MV-edaBits, which returns secret tuples
{[[ρi]]q, [[ρi[1]]]2, . . . , [[ρi[ℓ]]]2} for each i ∈ [n].

// Gate-by-Gate Evaluation

4. For each i ∈ [n], Pi’s derived key dki and random bits ρi[1], . . . ,ρi[ℓ] have been secretly shared between
Pi (acting as P) and all the other parties (acting as V1, . . . ,VN), they evaluate the circuit C̃ as follows:

(a) In a topological order, for each gate (α, β, γ, T) ∈ C̃ with input wire values of (ωα, ωβ) and output
wire value of ωγ :

- If T = ADD, P and Vs locally compute [[ωγ]]2 = [[ωα]]2 + [[ωβ]]2.
- If T = MULT and this is j-th multiplication gate, P and Vs execute [[ωγ]]2 ← Assign(ωα · ωβ).

(Denote the transcript sent by P here as dj)

(b) P and Vs jointly check the correctness of multiplication triples by invoking

CheckMuls({[[ωα,j]]2, [[ωβ,j]]2, [[ωγ,j]]2}j∈[t̃]).

If any failure happens, the parties output false.

// Aggregated Check

5. For each i ∈ [n], all parties now obtain the output wires {[[ci[1]]]2, . . . , [[ci[ℓ]]]2} that satisfy
∑ℓ

j=1 2
j−1 ·

ci[j] = (
∑ℓ

j=1 2
j−1 · ri[j]) + (

∑ℓ
j=1 2

j−1 · ρi[j]) and {ri[1], . . . , ri[ℓ]} = PRFdki(msg). Each party Pi

opens them to ci ∈ Fℓ
2. If any of them is invalid, the parties output false and abort.

6. For each i ∈ [n], all parties compute ci =
∑ℓ

j=1 2
j−1 ·ci[j] mod q, and compute [[Ri]]q = (ci−[[ρi]]q)·G.

Note that ci − [[ρi]]q is actually [[ri]]q defined with global key Λj , j ∈ [N] over Zq .

7. Each party Pi continuously append str = str||{c1|| . . . ||cn}, generate n + 1 common randoms by
h, χ1, . . . , χn := H1(str) and append str := str||h||χ1|| . . . ||χn. Then Pi sends Si = ((n − 1)−1 ·∑

j ̸=i χj · cj +
∑

j<i(PRFseedi,j (h))−
∑

j>i(PRFseedj,i(h))) ·G to all the others.

8. Pi computes S =
∑

i∈[n] Si, R̂ =
∑

i∈[n] χi ·Ri and Zi = Λi · (S − R̂) + (
∑

j ̸=i(χj · kj,iρ − χi ·mi,j
ρ)−

χi · ρi ·Λi) ·G, where kj,iρ ∈ Zq is Pi’s local MAC key corresponding to ρj of Pj’s edaBits and mi,j
ρ ∈ Zq

is Pi’s MAC tag of ρi established with Pj , j ̸= i. Then Pi sends Zi to all the others using FCom.

9. Pi checks if
∑

i∈[n] Zi = O holds. If this check fails, Pi aborts. Otherwise, each party outputs the correct
R.

Figure 15: Multi-Verifier Stateless Deterministic Nonce Derivation based on MVZK (continued)

up to N − 1 verifiers, in the PCF assumption.

Proof. (Sketch) Assume that if P is corrupted, S samples ∆i ← F2κ and receives {ωα,i, ωβ,i, ωγ,i}i∈[τ],
randoms and their MAC tags by simulating PCF. S defines kα,kβ,kγ and local MAC keys of randoms
using ∆i. S executes the protocol honestly and checks the transcripts using its local MAC keys and global
keys. Finally, if any check fails, S aborts and outputs whatever A outputs. The simulated view of A has

18

the identical distribution as its view in the real execution. Whenever honest verifier Vi, i ∈ H in the real
execution aborts, S acting as Vi in the ideal execution aborts. Thus, it remains to bound the probability that
Vi in the real execution accepts but the transcripts received by S fail to pass the CheckZero subcheck. In
this case, the malicious P will successfully trick honest Vi into accepting a forged MAC tag. According to
Lemma 1, the probability that the honest Vi in the real execution does not abort is at most t+4 log t+1

2κ−2 .
If P is honest and H is the set of honest verifiers, S firstly receives res from FMV-CheckMULs, receives

∆i ∈ F2κ and all the MAC keys for secret values (i.e., kα,kβ,kγ) and randoms from the simulating of PCF.
S executes the protocol as an honest prover, except that sending random values to Vs. S computes the check
transcripts using its MAC keys and global keys. Finally, if res = true received from FMV-CheckMULs, S
sends 0-sharing on final CheckZero to A, otherwise, S sends random values and aborts. Finally, S outputs
whateverA outputs. This simulation is identical to a real execution since the local MAC keys are uniformly
random and perfectly hidden against the view of adversary A. Regarding honest P , there is no output in the
real protocol. Thus, the view of A simulated by S is distributed identically to its view in the real execution.
This completes the proof sketch.

Given the correctness check subroutine, we can design the instance protocol of multi-verifier zero-
knowledge proof for nonce derivation in the (FMV-CheckMULs,FCom)-hybrid model and PCF assumption, as
shown in Figure 14. The

∏
MV-ND phase will be deterministic, stateless to serve the multi-party EdDSA

signing setting, where the common random generators are realized by H1(long-term key||transcripts) with
a cryptographic hash function H1 : {0, 1}∗ → (F2κ)

∗. In particular, (1) the gate-by-gate paradigm consumes
t̃ bits, where t̃ is the number of combined circuit C̃; (2) the polynomial-based batch verification technique
consumes log(t̃) · 4κ + 9κ bits and the communication complexity is roughly O(t̃ + log(t̃) · κ) in a non-
interactive setting; (3) the final aggregated check phase consumes κ · ℓ + 2ℓG + ℓcom per party, with three
rounds. Therefore, the communication complexity of a

∏
MV-ND protocol is O(t̃+ log(t̃) · κ+ κ · ℓ) bits for

each party and four rounds in total.
Note that P does not broadcast di for i ∈ [t̃] here. The core challenge is thatA may bias an inconsistent

authenticated bits, i.e., the adversary could choose different x1, . . . , xN such that for each i ∈ [N], mi =
ki + xi ·∆i, therefore, we must prove that the consistency check techniques are UC-secure in the presence
of an adversary statically corrupting up to n− 1 parties. The security of

∏
MV-ND is proved in the following

theorem. The details of security proof can be found in Appendix B.

Theorem 2.
∏

MV-ND UC-realizes FMV-ND in the presence of an adversary statically corrupting up to n−1
parties, in the (FMV-CheckMULs, FCom)-hybrid random oracle model and PCF assumption.

4.3 Multi-Party EdDSA Signature Protocol

Based on prior definitions [LN18, BST21], we present an EdDSA ideal functionality as shown in Figure 16,
where the (KeyGen) command is allowed to be called only once and the (Sign) command could be called
multiple times.

In Figure 17, we describe the multi-party EdDSA signing protocol details, which enable us to obtain
O(n) communication bandwidth. This protocol works in (FMV-ND, FCom, FRDL

com-zk)-hybrid model and is
executed by n parties. In the key generation phase, each party Pi, i ∈ [n] generates ski and jointly computes
pk =

∑
i∈[n] si ·G. Pi also invokes FMV-ND to commit to the PRF key dki := PRF(ski)[ℓ+ 1; 2ℓ], acting

as the prover and other n− 1 parties act as all the verifiers. Remark that in this phase, each party Pi samples
all the uniformly random long-term keys, such as k∗i ,∆

i,Λi, seedi,j and PCF keys for
∏

MV-ND.
In the signing phase, each party proves its derived nonce Ri = PRFdki(msg) · G by calling FMV-ND.

If all the parties see res ̸=⊥ from FMV-ND, they obtain R. Still, we do not require to broadcast transcripts
in this protocol. The communication overheads is |FMV-ND | + ℓG + q for each party. As discussed in

19

Functionality FEdDSA

This functionality is parameterized by EdDSA params = (Ep,G, q, G, ℓb, ℓ,Hsig,PRF) and runs with parties
P1, . . . , Pn as follows:

• Upon receiving (KeyGen, params) from all parties, generate a key pair (dk, s, pk) by running
KeyGen(params), and store (pk, dk, s). Then, send pk to P1, . . . , Pn, and ignore all subsequent
(KeyGen) commands.

• Upon receiving (Sign, msg) from all parties, if (KeyGen) has not been called then abort; if msg has
been signed previously, then send (msg, (σ,R)) back; otherwise, generate an EdDSA signature (σ,R) by
running Sign(dk, s, pk,msg) and store (msg, (σ,R)). Then, wait for an input from the adversary, either
abort or continue. If continue, send (σ,R) to all parties.

Figure 16: The EdDSA Functionality

Section 2.3, we instantiate FMV-ND by the Fiat-Shamir heuristic; the communication rounds of the signing
phase are six rounds.

The security of this protocol is proved in the following theorem, and the detailed proof is presented in
Appendix C

Theorem 3. Assume that PRF is a pseudorandom function. Then,
∏

MP,Sign UC-realizes FEdDSA in the

presence of an adversary statically corrupting up to n − 1 parties, in the (FMV-ND, FCom, FRDL
com-zk)-hybrid

random oracle model.

5 Performance and Evaluation

The evaluation is configured in the Ed25519 curve. In particular, it provides κ = 128 security and SHA512
as PRF nonce derivation function specified by EdDSA standard. According to the estimated by [AAL+24],
SHA-512 has 58k AND gates. The multi-party signing protocol is essentially a thin wrapper on the top
of FMV-ND, and consequently, the cost is dominated by running FMV-ND among parties. Note that by the
structure of our signing protocol

∏
MV-ND, instantiating FMV-ND in both directions induces little computa-

tional overhead on top of a single instantiation: while P evaluates the circuit Vs sit idle, and while Vs check
the circuit P has nothing to do. This means that when each party Pi acting as P in its nonce verification
session, it will be idling in its Vj for j ∈ [N] role in the other parties’ nonce verification sessions. Therefore,
the workload for each party is roughly the same.

• Gate-by-Gate Evaluation. As discussed in Section 4.2, a single transfer and secret addition cost one
VOLE instance for each AND gate. Therefore, each party requires roughly 58k× VOLEs for the
gate-by-gate evaluation phase.

• CheckMuls. For EdDSA, plugging in the Fiet-Shamir heuristic, the parties require hashing 50.9KB
messages, followed by log(58k) computation iterations within a single transfer. An iteration con-
sists of hashing 112B messages, one polynomial inter-product over F2κ [X] with the degree of 2, 3κ
VOLEs, and 2t polynomial evaluation with the degree of 1. The final iteration consumes four VOLE
correlations and hashing 128B messages. Therefore, each party requires 3κ × log(58k) + 4 ≈ 6.1k
VOLEs and some little overhead.

• Aggregated Check. Each party additionally performs up to four elliptic curve multiplications, 2n
elliptic curve additions and (n− 1) PRF, at little overheads.

20

Protocol
∏

MP,Sign

This protocol is run among multiple parties P1, . . . , Pn and is parameterized by the EdDSA parameters params
= (Ep,G, q, G, ℓb, ℓ,Hsig,PRF), with ℓ = 2ℓb, Hsig is hash function for signature and PRF is instantiated by
SHA512. This protocol makes use of the ideal oracle FMV-ND.

Distributed Key Generation: Upon receiving (KeyGen, params), each party Pi, i ∈ [n] executes as follows:

1. Pi samples private key as ski ← {0, 1}ℓb and computes (hi[1], . . . ,hi[ℓ]) := PRF(ski).

2. Pi sets derived key as dki := {hi[ℓb + 1], . . . ,hi[2ℓb])} and sends (mvzk-input, i, dki) to FMV-ND.

3. Pi sets hi[1] = hi[2] = hi[3] = hi[ℓb] := 0 and hi[ℓb − 1] := 1, then use the updated vector (hi[1], . . . ,

hi[ℓb]) to define si =
∑ℓb

j=1 2
j−1 · hi[j] mod q.

4. Pi computes public key share as pki = si ·G.

5. All parties broadcast pki for i ∈ [n] using FRDL

com-zk.

6. After receiving correct pki for all i ∈ [n] from FRDL

com-zk, Pi computes common public key pk =
∑

i∈[n] pki
and stores {pk, ski, dki, si}.

7. The key generation phase is run only once.

Distributed Signing: With common input (Sign,msg), each party Pi, i ∈ [n] executes as follows:

1. Pi derives nonce vector by ri = PRFdki(msg) and computes ri =
∑ℓ

j=1 2
j−1 · ri[j] mod q,Ri = ri ·G.

2. Pi sends Ri to all the others, receives Rj for j ̸= i and computes R =
∑

i∈[n] Ri.

3. Pi proves the Ri by sending (mvzk-prove, i, (msg, Ri)) to FMV-ND acting as prover P and all other Pj ,
j ̸= i, send (mvzk-verify, i, (msg, Ri)) to FMV-ND acting as verifiers Vs.

4. Wait to receive (mvzk-proof,msg, res) fromFMV-ND, Pi aborts if any res =⊥. Otherwise, each Pi obtains
correct R.

5. Pi locally computes h = Hsig(pk, R,msg) and the signature share σi = si · h+ ri mod q. Then Pi sends
σi to all the parties using commitment FCom.

6. Upon receiving all the σj , j ̸= i from FCom, each party computes σ =
∑

i∈[n] σi mod q. If (σ,R) is not
a valid signature on msg, then Pi aborts. Otherwise, Pi outputs (σ,R).

Figure 17: The Stateless Deterministic Multi-Party EdDSA Signing Protocol

In summary, the workload for each party is ≈ 64.1k VOLEs, additionally with little overhead. Boyle et
al. [BCG+22] estimate PCF evaluation times. Specifically, the VOLE can be instantiated using fixed-
key AES, measured by AES-NI instructions of modern CPUs and a 3GHz processor, one PCF evaluation
consumes 3.57× 10−3 milliseconds. Concretely, we estimate around 230 ms for one signature among two
parties with one corruption. The number can be scaled up linearly with GPU as the AES calls in PCF are
perfectly independent and, therefore, parallelizable. Unfortunately, PCF [BCG+22], no open source code
released to date, puts a formidable barrier on our evaluation. Therefore, the timings here are estimated
theoretically.

Compare with two existing works on the multi-party EdDSA signing protocol, i.e., Bonte et al. [BST21]
and Garillot et al. [GKMN21]. Bonte et al. [BST21] implemented their experiments using SCALE-MAMBA
and tested in a LAN setting, with each party running on an Intel i7-7700K CPU (4 cores at 4.2GHz with 2
threads per core) with 32GB of RAM over a 10Gb/s network switch. The running time is 1406 ms under

21

the Shamir (3,1) access structure, averaged over 100 experiments. The overall burden for each party of
Garillot et al. [GKMN21] is roughly the same with 132k AES invocations of 128 bit-ciphertext, hashing a
245KB message, three curve multiplications, and 256 additions in Zq. Garillot et al. also does not empiri-
cally measure their πn,Sign protocol. To give a P2P comparison, we estimate Garillot et al.’ protocol by the
measurement of Boyle et al. [BCG+22], where one byte of fixed-key AES can be computed in 1.3 CPU
cycles. Thus, using a 3GHz processor, it consumes 102 ms for a signature. We notice that our computation
time is not huge, but achieves one or two orders of magnitude of communication overheads over what is
consumed in prior related works.

6 Conclusion

This paper presents a communication-friendly verifiable nonce derivation in the multi-verifier setting and
builds multi-party EdDSA signing on top of it. Our protocol has made huge progress in proving the standard
PRF execution per party. However, there are still limitations to our multi-party EdDSA signing protocol that
deserve further exploration in future works. Firstly, although our MVZK protocol can prove to multiple veri-
fiers at a time, the participants are chosen in advance, which has little impact on the signing scenario yet puts
constraints on dynamic applications compared to non-interactive ZK proofs like zk-SNARKs. Secondly, we
observed a high computation overhead for PCF-based VOLE, which may potentially be further optimized,
for example using half-tree [GYW+23].

Acknowledgments

Qi Feng and Debiao He are supported by the National Key Research and Development Program of China
(Grant No. 2021YFA1000600), the National Natural Science Foundation of China (Grant Nos. 62202339,
62172307, U21A20466), the Science and Technology on Communication Security Laboratory Foundation
(Grant No. 6142103022202). Kang Yang is supported by the National Natural Science Foundation of
China (Grant Nos. 62102037 and 61932019). Xiao Wang is supported by NSF award #2236819. Yu Yu
is supported by the National Natural Science Foundation of China (Grant Nos. 62125204 and 61872236).
Yu Yu’s work has also been supported by the New Cornerstone Science Foundation through the XPLORER
PRIZE.

References

[AAL+24] David Archer, Victor Arribas Abril, Steve Lu, Pieter Maene, Nele Mertens, Danilo Sijacic,
and Nigel Smart. ’Bristol Fashion’ MPC Circuits. https://nigelsmart.github.io/
MPC-Circuits/, Accessed at Jan 2024.

[ANO+22] Damiano Abram, Ariel Nof, Claudio Orlandi, Peter Scholl, and Omer Shlomovits. Low-
bandwidth threshold ECDSA via pseudorandom correlation generators. In 2022 IEEE Sym-
posium on Security and Privacy, pages 2554–2572, San Francisco, CA, USA, May 22–26,
2022. IEEE Computer Society Press.

[ANT+20] Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi, and Yuval
Yarom. LadderLeak: Breaking ECDSA with less than one bit of nonce leakage. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 225–242,
Virtual Event, USA, November 9–13, 2020. ACM Press.

22

https://nigelsmart.github.io/MPC-Circuits/
https://nigelsmart.github.io/MPC-Circuits/

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy, pages 315–334, San Francisco, CA, USA, May 21–23,
2018. IEEE Computer Society Press.

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In Alexandra Boldyreva and Daniele Mic-
ciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 67–97, Santa Barbara,
CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

[BCG+20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Corre-
lated pseudorandom functions from variable-density LPN. In 61st FOCS, pages 1069–1080,
Durham, NC, USA, November 16–19, 2020. IEEE Computer Society Press.

[BCG+22] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch, and Peter
Scholl. Correlated pseudorandomness from expand-accumulate codes. In Yevgeniy Dodis and
Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages 603–633,
Santa Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg, Germany.

[BDL+11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed
high-security signatures. In Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011, volume
6917 of LNCS, pages 124–142, Nara, Japan, September 28 – October 1, 2011. Springer, Hei-
delberg, Germany.

[BMRS21] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. Mac’n’cheese: Zero-
knowledge proofs for boolean and arithmetic circuits with nested disjunctions. In Tal Malkin
and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 92–122,
Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general
forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors,
ACM CCS 2006, pages 390–399, Alexandria, Virginia, USA, October 30 – November 3, 2006.
ACM Press.

[BP23] Luı́s T.A.N. Brandão and René Peralta. NIST first call for multi-party threshold schemes (initial
public draft). Technical report, National Institute of Standards and Technology, 2023.

[BST21] Charlotte Bonte, Nigel P Smart, and Titouan Tanguy. Thresholdizing HashEdDSA: MPC to
the rescue. International Journal of Information Security, 20(6):879–894, 2021.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136–145, Las Vegas, NV, USA, October 14–17, 2001. IEEE Computer
Society Press.

[CD23] Geoffroy Couteau and Clément Ducros. Pseudorandom correlation functions from variable-
density LPN, revisited. In Alexandra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023,
Part II, volume 13941 of LNCS, pages 221–250, Atlanta, GA, USA, May 7–10, 2023. Springer,
Heidelberg, Germany.

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. UC
non-interactive, proactive, threshold ECDSA with identifiable aborts. In Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1769–1787, Virtual
Event, USA, November 9–13, 2020. ACM Press.

23

[CGM16] Melissa Chase, Chaya Ganesh, and Payman Mohassel. Efficient zero-knowledge proof of al-
gebraic and non-algebraic statements with applications to privacy preserving credentials. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 499–530, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Ger-
many.

[Des88] Yvo Desmedt. Society and group oriented cryptography: A new concept. In Carl Pomer-
ance, editor, CRYPTO’87, volume 293 of LNCS, pages 120–127, Santa Barbara, CA, USA,
August 16–20, 1988. Springer, Heidelberg, Germany.

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 307–315, Santa Barbara, CA, USA, August 20–24,
1990. Springer, Heidelberg, Germany.

[DH20] Gabrielle De Micheli and Nadia Heninger. Recovering cryptographic keys from partial in-
formation, by example. Cryptology ePrint Archive, Report 2020/1506, 2020. https:
//eprint.iacr.org/2020/1506.

[DKLs18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-party threshold ECDSA
from ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy, pages 980–997,
San Francisco, CA, USA, May 21–23, 2018. IEEE Computer Society Press.

[DKLs19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Threshold ECDSA from ECDSA
assumptions: The multiparty case. In 2019 IEEE Symposium on Security and Privacy, pages
1051–1066, San Francisco, CA, USA, May 19–23, 2019. IEEE Computer Society Press.

[EGK+20] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl. Improved
primitives for MPC over mixed arithmetic-binary circuits. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 823–852, Santa
Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194, Santa Barbara, CA, USA, August 1987. Springer, Heidelberg, Germany.

[GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless
setup. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018, pages 1179–1194, Toronto, ON, Canada, October 15–19, 2018. ACM Press.

[GJKR96] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust threshold DSS
signatures. In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 354–
371, Saragossa, Spain, May 12–16, 1996. Springer, Heidelberg, Germany.

[GKMN21] François Garillot, Yashvanth Kondi, Payman Mohassel, and Valeria Nikolaenko. Threshold
Schnorr with stateless deterministic signing from standard assumptions. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 127–156, Virtual
Event, August 16–20, 2021. Springer, Heidelberg, Germany.

[GYW+23] Xiaojie Guo, Kang Yang, Xiao Wang, Wenhao Zhang, Xiang Xie, Jiang Zhang, and Zheli
Liu. Half-tree: Halving the cost of tree expansion in COT and DPF. In Carmit Hazay and
Martijn Stam, editors, EUROCRYPT 2023, Part I, volume 14004 of LNCS, pages 330–362,
Lyon, France, April 23–27, 2023. Springer, Heidelberg, Germany.

24

https://eprint.iacr.org/2020/1506
https://eprint.iacr.org/2020/1506

[HGS01] Nick A Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital signature schemes.
Designs, Codes and Cryptography, 23:283–290, 2001.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using garbled
circuits: how to prove non-algebraic statements efficiently. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013, pages 955–966, Berlin, Germany, Novem-
ber 4–8, 2013. ACM Press.

[JL17] Simon Josefsson and Ilari Liusvaara. Edwards-curve digital signature algorithm (EdDSA). In
Internet Research Task Force, Crypto Forum Research Group, RFC, volume 8032, 2017.

[KASN15] Rashmi Kumari, Mohsen Alimomeni, and Reihaneh Safavi-Naini. Performance analysis of
Linux RNG in virtualized environments. In Proceedings of the 2015 ACM Workshop on Cloud
Computing Security Workshop – CCSW ’15, pages 29–39, New York, NY, USA, October 2015.
Association for Computing Machinery.

[KOR23] Yashvanth Kondi, Claudio Orlandi, and Lawrence Roy. Two-round stateless deterministic two-
party schnorr signatures from pseudorandom correlation functions. In Helena Handschuh and
Anna Lysyanskaya, editors, CRYPTO 2023, Part I, volume 14081 of LNCS, pages 646–677,
Santa Barbara, CA, USA, August 20–24, 2023. Springer, Heidelberg, Germany.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic
secure computation with oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 830–842,
Vienna, Austria, October 24–28, 2016. ACM Press.

[KW03] Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with tight secu-
rity reductions. In Sushil Jajodia, Vijayalakshmi Atluri, and Trent Jaeger, editors, ACM CCS
2003, pages 155–164, Washington, DC, USA, October 27–30, 2003. ACM Press.

[Lin17] Yehuda Lindell. Fast secure two-party ECDSA signing. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 613–644, Santa Barbara, CA,
USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1837–1854, Toronto,
ON, Canada, October 15–19, 2018. ACM Press.

[MNPV99] David M’Raı̈hi, David Naccache, David Pointcheval, and Serge Vaudenay. Computational
alternatives to random number generators. In Stafford E. Tavares and Henk Meijer, editors,
SAC 1998, volume 1556 of LNCS, pages 72–80, Kingston, Ontario, Canada, August 17–18,
1999. Springer, Heidelberg, Germany.

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures: Ex-
tended abstract. In Michael K. Reiter and Pierangela Samarati, editors, ACM CCS 2001, pages
245–254, Philadelphia, PA, USA, November 5–8, 2001. ACM Press.

[MPSW19] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple schnorr multi-
signatures with applications to bitcoin. Designs, Codes and Cryptography, 87(9):2139–2164,
2019.

25

[MR01] Philip D. MacKenzie and Michael K. Reiter. Two-party generation of DSA signatures. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 137–154, Santa Barbara, CA,
USA, August 19–23, 2001. Springer, Heidelberg, Germany.

[nis19] FIPS PUB 186-5 (Draft): Digital Signature Standard (DSS). https://doi.org/10.
6028/NIST.FIPS.186-5, 2019.

[NKDM03] Antonio Nicolosi, Maxwell N. Krohn, Yevgeniy Dodis, and David Mazières. Proactive two-
party signatures for user authentication. In NDSS 2003, San Diego, CA, USA, February 5–7,
2003. The Internet Society.

[NRSW20] Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. MuSig-DN: Schnorr multi-
signatures with verifiably deterministic nonces. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 2020, pages 1717–1731, Virtual Event, USA, Novem-
ber 9–13, 2020. ACM Press.

[PLD+11] Bryan Parno, Jacob R. Lorch, John R. Douceur, James W. Mickens, and Jonathan M. McCune.
Memoir: Practical state continuity for protected modules. In 2011 IEEE Symposium on Security
and Privacy, pages 379–394, Berkeley, CA, USA, May 22–25, 2011. IEEE Computer Society
Press.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, January 1991.

[SG98] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen cipher-
text attack. In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 1–16,
Espoo, Finland, May 31 – June 4, 1998. Springer, Heidelberg, Germany.

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, EUROCRYPT 2000, vol-
ume 1807 of LNCS, pages 207–220, Bruges, Belgium, May 14–18, 2000. Springer, Heidelberg,
Germany.

[STA19] Nigel P Smart and Younes Talibi Alaoui. Distributing any elliptic curve based protocol. In IMA
International Conference on Cryptography and Coding, pages 342–366. Springer, 2019.

[YCX21] Tsz Hon Yuen, Handong Cui, and Xiang Xie. Compact zero-knowledge proofs for threshold
ECDSA with trustless setup. In Juan Garay, editor, PKC 2021, Part I, volume 12710 of LNCS,
pages 481–511, Virtual Event, May 10–13, 2021. Springer, Heidelberg, Germany.

A Security Proof of Theorem 1

Proof. The security of CheckMuls shown in Figure A in the presence of N malicious parties crucially
depends on the iterative check procedure. As in previous work [BBC+19, BMRS21], we first consider the
case of a malicious prover and N−1 malicious verifiers, and then consider an honest prover and N malicious
verifiers. In each case, we always implicitly assume that S passes all communication between adversary A
and environment Z . Besides, S is given access to functionality FMV-CheckMULs, which runs an adversary A
as a subroutine when emulating PCF and RO. In both case, we show that no environment Z can distinguish
the real-world execution from the ideal-world execution.

Malicious prover. Assume that if P and N − 1 verifiers are corrupted, without loss of generality, we let
V1 denote the honest verifier and other Vi, i ∈ [2, N] denote the corrupted verifiers. S interacts with A as
follows:

26

 https://doi.org/10.6028/NIST.FIPS.186-5
 https://doi.org/10.6028/NIST.FIPS.186-5

1. In the input phase, S sampling “dummy” global key ∆1 ← F2κ and simulates PCF forA by record-
ing all the values {ωα,i, ωβ,i, ωγ,i}i∈[τ] and their corresponding MAC tags received from the adversary
A. Note that these values and MAC tags naturally define corresponding MAC keys. Furthermore, S
sends χ1, . . . , χt ← F2κ to A and computes [[z]]2, {[[ω̂α,i]]2}i∈[t] honestly.

2. While t > 2:

(a) S executes Step 4.(a)-(f) honestly as an honest verifier, except that S checks the zero-sharing us-
ing transcripts of corruptedP , i.e., checking whether what it received fromA equal to

∑2
j=1 kh(j)−

kz using “dummy” global key and local key kh of the polynomial h. This equation is check-
able as S knows all the secret values {ωα,i, ωβ,i, ωγ,i}i∈[τ] and µj , j ∈ {0, 1, 2} in the Assign
subroutine.

3. For i ∈ [t], S simulates RO by receiving vi,mv,i fromA and computes their corresponding “dummy”
local keys.

4. S simulates RO for A by sampling uniform e← F2κ and sending it to P

5. S plays the role of the honest verifier V1 to perform the CheckZero procedures with A, using the
“dummy” global key and local keys.

6. If the honest V1 (simulated by S) aborts in any CheckZero procedure, then S sends abort toFMV-CheckMULs

and aborts. Otherwise, S sends {[[ωα,i]]2, [[ωβ,i]]2, [[ωγ,i]]2}i∈[τ] to functionality FMV-CheckMULs on be-
half of corrupted prover P and corrupted verifiers V2, . . . ,VN .

It is clear that the simulated view of A has the identical distribution as its view in the real execution.
Note that the “dummy” global key sampled by S has the same distribution as the real global key, S emulates
PCF and, in each extend execution, the MAC tags sent to A is computed as follows. S has access to
the Sσ (c.f. Definition 2) using its chosen mski := ∆i, i ∈ [N]. At the beginning of each concurrent
execution: S first compute y

(j)
σ := PCF.Eval(σ, kσ, sid). Then it queries RSample with (1κ,msk, σ, y

(j
σ)

and receives y
(j)
1−σ as the local MAC keys. Based on the security definition of PCF, the simulated view is

computationally indistinguishable from that in the real execution. Furthermore, whenever honest verifier
V1 in the real execution aborts, S acting as V1 in the ideal execution aborts. Thus, it remains to bound the
probability that the V1 in the real execution accepts but the transcripts received by S pass the CheckZero
subcheck. In this case, the malicious P will successfully trick honest V1 into accepting a forged MAC
tag. According to Lemma 1, the probability that the honest V1 in the real execution doesn’t abort is at most
t+4 log t+1

2κ−2 . Thus, the output distribution of the honest verifier in the real-world execution is indistinguishable
from that in the ideal-world execution.

Malicious verifiers. Assume that if P is honest and N verifiers are corrupted. S interacts withA as follows:

1. In the input phase, S emulates PCF by recording global key ∆1, . . . ,∆N ∈ F2κ and the local MAC
keys for all input values, which are sent by A.

2. Upon receiving {[[ωα,i]]2, [[ωβ,i]]2, [[ωγ,i]]2}i∈[t], S sends them to FMV-CheckMULs and receives {resi},
where i ∈ B ⊆ [N] denotes Vi’s authenticated share cause the failure result.

3. S emulates RO by sending χ1, . . . , χt ← F2κ to A and computes [[z]]2, {[[ω̂α,i]]2, [[ωβ,i]]2}i∈[t].

4. While t > 2:

(a) S emulates PCF by recording the local MAC keys for the random value used in the Assign
subroutine, which is sent by A.

27

(b) S samples {d0,t, d1,t, d2,t} and sends them to A in the Assign subroutine. Then it computes
their MAC keys using the keys received from A.

(c) S runs the CheckZero subroutine withA according to the set of {resi}, i ∈ B: If resi, S sends
random m∗ ← F2κ to Vi; Otherwise, S sends

∑2
i=1 kh(j)− kz to Vi where the local MAC keys

kh and kz are computed with the global keys and local keys recorded by S.

5. For i ∈ [t], S simulates PCF by receiving kv,i from A.

6. S simulates RO for A by sampling uniform e← F2κ and sending it to Vs.

7. S plays the role of the honest prover P to perform the remaining CheckZero procedures with A,
using the global keys and local keys received from A. Specifically, if resj , j ∈ B, S sends random
m∗ ← F2κ to Vj ; Otherwise, S computes 0-sharing using kv,i, kx,i, ky,i, kz and global keys recorded
by S, and then sends it to Vj .

We use a hybrid argument to prove that the two worlds are computationally indistinguishable.

• Hybrid0. This is the real world.

• Hybrid1. This hybrid is identical to the previous one, except that S emulates PCF and, in each
Extend execution, the transcripts {di,0, di,1, di,2}i∈[t] sent to A is computed as follows.

S has access to the Sσ (c.f. Definition 2) using the global keys mski := ∆i, i ∈ [N] received from
A. At the beginning of each concurrent execution:

- In the input phase, S first compute ki := PCF.Eval(σ, kσ, sid). Then it queries RSample with
(1κ,mski, σ,ki) and receives (xi,mi) where xi denotes all the input values corresponding with
Vi and mi = ki +∆i · xi.

- For Assign(cj) for j ∈ {0, 1, 2}, simulator S computes kiµ,j := PCF.Eval(σ, kσ, sid+ j). Then it
queries RSample with (1κ,mski, σ, kiµ,j) and receives (µi

j ,m
i
µ,j) where µi

j denotes the authen-
ticated random values used in Assign subroutine and mi

µ,j = kiµ,j +∆i · µi
j .

- For the final t multiplication triples, i.e., Assign(xj · yj) and Assign(yj · vj) for j ∈ [t], S similarly
compute

kixy,j := PCF.Eval(σ, kσ, sid+ log t+ 2j),

kiyv,j := PCF.Eval(σ, kσ, sid+ log t+ 2j+ 1).

Then it queries RSample with the following operations:

(µi
xy,j ,m

i
xy,j) := RSample((1κ,mski, σ, kixy,j),

(µi
yv,j ,m

i
yv,j) := RSample((1κ,mski, σ, kiyv,j).

- In the rest of the execution, S uses these oracle responses for the transcript of the honest P .

The resulting view is equivalently defined as in the previous hybrid under the security definition of
PCF (c.f. Definition 2) with probability negl(κ). Therefore, this hybrid is computationally indistin-
guishable from the previous one.

• Hybrid2. This hybrid is identical to the previous one, except that PCF accesses the Y-function to
generate the authenticated secret shares instead of the real-world PCF function. It follows from the as-
sumption of pseudorandom Y-correlated outputs that this hybrid is computationally indistinguishable
from the previous one.

28

• Hybrid3. This hybrid is identical to the previous one, except that in each iteration execution, i.e.,
while t > 2, S replaces {d0,t, d1,t, d2,t} and {dxy,i, dyv,i} by random values. Observe that in each
Assign subroutine, the difference d-values are pseudorandomly due to the Y-function and serve as
pseudorandom one-time pad for all the coefficients {c0,t, c1,t, c2,t} and products {xi · yi, yi · vi}.
Therefore, this hybrid is computationally indistinguishable from the previous one.

• Hybrid4. This hybrid is identical to the previous one, except that S emulates PCF and, upon
receiving t multiplication triples {[[ωα,i]]2, [[ωβ,i]]2, [[ωγ,i]]2}i∈[t], it follows protocol CheckMuls to run
CheckZero and control the output of the corrupted Vi, i ∈ B ⊆ [N] by using the transcripts received
from A, and the responses from FMV-CheckMULs. This hybrid is computationally indistinguishable
from the previous one: (1) if Vi, i ∈ B ⊆ [N], the polynomial points evaluated by random η ∈ F2κ

essentially serve as the one-time pad for MAC tags of
∑2

j=1 h(j)−z, except with collision probability
of 1

q . (2) if Vi, i /∈ B, the output of Vi is exactly as expected.

It is clear that this hybrid is the ideal world.

The above hybrid argument completes the proof.

B Security Proof of Theorem 2

Proof. We consider the case that n− 1 parties are corrupted. First, we analyze its correctness as follows.

Correctness. The correctness of MV-ND protocol
∏

MV-ND as described in Figure 14 and Figure 15 relies
on the gate-by-gate evaluation and aggregated check. In the honest case, for each i ∈ [n], the parties obtain
ci := {ci[1], . . . , ci[ℓ]} such that

∑ℓ
j=1 2

j−1 · ci[j] =
∑ℓ

j=1 2
j−1 · ri[j] +

∑ℓ
j=1 2

j−1 · ρi[j] and therefore

Ri = (

ℓ∑
j=1

2j−1 · ri[j] mod q) ·G

= (

ℓ∑
j=1

2j−1 · ci[j] mod q −
ℓ∑

j=1

2j−1 · ρi[j] mod q) ·G

= (ci − ρi) ·G

Furthermore, for any h, χ1, . . . , χn which are generated by a hash chain as

H1(H1(. . .H1(MVND||sid||k∗i)||transcripts)||{ci}i∈[n]),

we have the following: ∑
i∈[n]

(
∑
j<i

(PRFseedi,j (h))−
∑
j>i

(PRFseedj,i(h))) = 0.

29

Then, we observe that

S =
∑
i∈[n]

Si =
∑
i∈[n]

(

∑
j ̸=i χj · cj
n− 1

) ·G

+
∑
i∈[n]

(
∑
j<i

PRFseedi,j (h)−
∑
j>i

PRFseedj,i(h)) ·G

=
∑
i∈[n]

χi · ci ·G

=
∑
i∈[n]

χi · (ri + ρi) ·G

=
∑
i∈[n]

χi ·Ri +
∑
i∈[n]

χi · ρi ·G

According to the definition of mv-edaBits, each party Pi holds {[[ρi]]q, [[ρi[1]]]2, . . . , [[ρi[ℓ]]]2} where the
integer part [[ρi]]q := {ρi, {ki,jρ ,mi,j

ρ }j∈[N]} ∈ Zq × (Zq × Zq)
N satisfying ρi =

∑ℓ
j=1 2

j−1 · ρi[j] mod q

and mi,j
ρ = ki,jρ + ρi · Λj ∈ Zq. Thus, if all parties execute correctly, we have∑

i∈[n]

Zi =
∑
i∈[n]

Λi · (S −
∑
i∈[n]

χi ·Ri)

+
∑
i∈[n]

(
∑
j ̸=i

(χj · kj,iρ − χi ·mi,j
ρ)− χi · ρi · Λi) ·G

=
∑
i∈[n]

Λi · (S −
∑
i∈[n]

χi ·Ri)

+
∑
i∈[n]

(
∑
j ̸=i

(χi · ki,jρ − χi ·mi,j
ρ)− χi · ρi · Λi) ·G

=
∑
i∈[n]

Λi ·
∑
i∈[n]

χi · ρi ·G

+
∑
i∈[n]

(
∑
j ̸=i

(−χi · ρi · Λj)− χi · ρi · Λi) ·G

=
∑

i,j∈[n]

Λj · χi · ρi ·G+
∑

i,j∈[n]

χi · (−ρi · Λj) ·G

= O

In the following, we prove the security of our
∏

MV-ND protocol in the multi-party malicious setting.
Without loss of generality, we let P1 denote the honest party and Pi, i ∈ I = [2, n] denote the corrupted
parties. We always implicitly assume that S passes all communication between adversary A and environ-
ment Z . Besides, S needs to simulate honest prover when P1 acts as P and honest verifier when P1 acts
as V1. First, the simulator S must extract the corrupted prover’s witness or corrupted verifier’s global key
to send to the trusted party. This is possible because in the (FMV-CheckMULs, FCom)-hybrid model and PCF
assumption S receives the secret inputs from A.

For the input phase:

1. If P1 acts as P (the case of honest prover), S executes as follows:

(a) S receives the global key ∆1, . . . ,∆N ∈ F2κ and Λ1, . . . ,ΛN ∈ Zq from MV-edaBits.

30

(b) S receives the MAC keys for all secret values (i.e., kdki ∈ Fℓ
2κ) from A.

(c) In the zero-sharing setup, on behalf of P1, S receives seedi,1 from A for each i ∈ [2, n] and sets
k∗1 ← F2κ .

2. If P1 acts as V1 (the case of corrupt prover), S executes as follows:

(a) S samples uniformly random ∆1 ← F2κ ,Λ
1 ← Zq.

(b) S receives the global key ∆2, . . . ,∆N ∈ F2κ and Λ2, . . . ,ΛN ∈ Zq from MV-edaBits.

(c) S records all the values (i.e., dki[1], . . . , dki[ℓ] ∈ F2) and their corresponding MAC tags (i.e.,
mdki ∈ Fℓ

2κ) by simulating PCF for A. Here, S can define the corresponding MAC keys of
these values (i.e., kdki ∈ Fℓ

2κ).

(d) Similarly, on behalf of P1, S receives seedi,1 from A for each i ∈ [2, n] and sets k∗1 ← F2κ .

For the proof phase: For given message msg,

1. S computes sid = RO(msg, R).

2. S records all the randomness used by A from the set of queries made by Pi to RO. S sets random
tape as RO(k∗1, sid, MVND) acting as P1

3. S extracts the secret edaBits values as follows:

- If P1 acts as P (the case of honest prover), S receives the MAC keys for all edaBits values (i.e.,
kρi ∈ Fℓ

2κ , k̂ρi ∈ Zq) by emulating MV-edaBits.

- If P1 acts as V1 (the case of corrupt prover), S records all the edaBits values (i.e., ρi[1], . . . , ρi[ℓ] ∈
F2, ρi ∈ Zq) and corresponding MAC tags (i.e., mρi ∈ Fℓ

2κ , m̂ρi ∈ Zq), which are extracted by
emulating MV-edaBits for the adversary. Similarly, S define the corresponding MAC keys of
these values (i.e., kρi ∈ Fℓ

2κ , k̂ρi ∈ Zq).

4. S evaluate the circuit C̃ cooperated with the other parties Pi, i ∈ [2, n]:

- If P1 acts as P (the case of honest prover), S simulates as follows:

(a) In the subroutine Assign, S receives the MAC keys for all random values (i.e., kµi ∈ Ft̃
2κ)

from A by emulating PCF.
(b) S executes Step 4.(a) as an honest prover, except that for j-th multiplication gates, S sam-

ples random dj ← F2 for all j ∈ [t̃] and sends them to Vs.
(c) S receives {[[ω∗

α,j]]2, [[ω
∗
β,j]]2, [[ω

∗
γ,j]]2}j∈[t̃] fromA on behalf of the functionalityFMV-CheckMULs,

if ∃j, s.t. [[ω∗
l,j]]2 ̸= [[ωl,j]]2, l ∈ {α, β, γ} where [[ωl,j]]2 is computed by S following the pro-

tocol, sends false on behalf of FMV-CheckMULs and aborts.

- If P1 acts as V1 (the case of corrupt prover), S simulates as follows:

(a) In the subroutine Assign, S records all the values (i.e., µi[1], . . . , µi[t̃] ∈ F2) and their
corresponding MAC tags (i.e., mµi ∈ Ft̃

2κ) by emulating PCF for A. Here, S can define
the corresponding MAC keys of these values (i.e., kµi ∈ Ft̃

2κ).
(b) S executes Step 4.(a) as an honest verifier.
(c) S receives {[[ω∗

α,j]]2, [[ω
∗
β,j]]2, [[ω

∗
γ,j]]2}j∈[t̃] fromA on behalf of the functionalityFMV-CheckMULs,

if ∀j, s.t. ω∗
α,j · ω∗

β,j = ω∗
γ,j , and ∃i, s.t. [[ω∗

l,i]]2,∈ {α, β, γ} is not a valid IT-MAC, sends
abort to Pi and sends true to all the other Pj , j ∈ [2, n]\{i} on behalf of FMV-CheckMULs.

31

5. S samples random c1 ← Zq and reveals its binary representation [[c1]]2 to all the other parties.

6. Upon receiving ci, i ∈ [2, n] from the other parties, if any cj is invalid, S aborts. Otherwise, S
continues.

7. S sends R1 = R−
∑

i∈[2,n]Ri with Ri = PRFdki(msg) ·G to all other parties on behalf of P1.

8. On receiving Ri from each Pi, for each i ∈ [2, n], if any of the Ri ̸= PRFdki(msg) ·G is incorrect, S
aborts. Otherwise, S continues.

9. S sends χ1, . . . , χt ← F2κ to A and computes S1 using {ci, seedi,1}i∈[2,n], sends it to other parties
and receives Si, i ∈ [2, n] from A and Zi, i ∈ [2, n] on behalf of FCom.

10. S checks whether
∑

i∈[2,n] Zi = (
∑

i∈[2,n] Λ
i)(S1−χ1 ·R1)+(

∑
i∈[2,n] χi ·k1,iρ)−(

∑
i∈[2,n] χ1 ·mi,1

ρ)
holds. If this check fails, S aborts.

11. Otherwise, it opens Z1 = O −
∑

i∈[2,n] Zi to A, and outputs whatever A outputs.

Indistinguishability of the simulation is argued as follows: first, the distributions of the random dj , c1
value in the simulated protocol and dj = ωα,j · ωβ,j + µj , c1 = r1 + ρ1 in the real protocol are identical.
Then, the only non-syntactic difference between the simulation and the real protocol is that when ∃i ∈ [2, n]
such that Ri ̸= PRFdki(msg) ·G. As the CheckMuls subroutine guarantees that the ci = ri + ρi is correctly
computed from binary parts of edaBits except with the negligible probability negl(κ). Now we consider
when red ρi (aggregated by binary representations of mv-edaBits) is not consistent with blue ρi (generated
from integer part of mv-edaBits). Assume that ρi = ρi + ei and R∗

i = Ri + eR,i · G, if
∑

i∈[n] Zi = O
holds, we have R̂∗ = R̂+

∑n
i=2 χi · eR,i ·G and

O =
∑
i∈[n]

Λi(S − R̂∗) +

∑
j ̸=i

(χj · kj,iρ − χi ·mi,j
ρ)− χiρi · Λi

 ·G

=
∑
i∈[n]

Λi · (S − R̂−
n∑

i=2

eR,i ·G)

+
∑
i∈[n]

∑
j ̸=i

χi · (ki,jρ −mi,j
ρ)− ρi · Λi

 ·G
=

∑
i∈[n]

Λi ·

(
∑
i∈[n]

χi · ri + χ1 · ρ1 +
∑

i∈[2,n]

χi · ρi) ·G

−
∑
i∈[n]

χi ·Ri −
∑

i∈[2,n]

χi · eR,i ·G

−

χ1 · ρ1 ·
∑
i∈[n]

Λi +
∑

i∈[2,n]

χi · ρi ·
∑
i∈[n]

Λi

 ·G

32

⇒ q =
∑
i∈[n]

Λi ·

χ1 · ρ1 +
∑

i∈[2,n]

χi · ρi −
∑

i∈[2,n]

χi · eR,i

− χ1 · ρ1 ·

∑
i∈[n]

Λi −
∑

i∈[2,n]

χi · ρi ·
∑
i∈[n]

Λi

=

− ∑
i∈[2,n]

χi · ei ·
∑
i∈[n]

Λi

+
∑
i∈[n]

Λi ·

− ∑
i∈[2,n]

χi · eR,i

= −Λ1 ·

∑
i∈[2,n]

χi · (eR,i + ei)

−
∑

i∈[2,n]

Λi ·
∑

i∈[2,n]

χi · (eR,i + ei)

⇒ Λ1 =
q + (

∑
i∈[2,n] Λ

i) ·
∑

i∈[2,n] χi · (eR,i + ei)∑
i∈[2,n] χi · (eR,i + ei)

Since that Λ1 ∈ Zq is uniformly random and kept secret from A, and χ1, . . . , χn are unpredictable ran-
dom, this equation holds with probability at most 1

q . In conclusion, Z cannot distinguish between the real
execution and ideal execution, except with probability negl(κ) + 1

q .

C Security Proof of Theorem 3

Proof. We begin by showing that
∏

MP,Sign computes FEdDSA (all honest parties running the protocol
generate the correct signature). This holds since when all parties are honest, we have:

R =
∑
i∈[n]

Ri =
∑
i∈[n]

ri ·G =
∑
i∈[n]

PRFdki(msg) ·G

σ =
∑
i∈[n]

σi mod q

=
∑
i∈[n]

si · H(pk, R,msg) + ri mod q

= (
∑
i∈[n]

si) · H(pk, R,msg) + (
∑
i∈[n]

ri) mod q

Thus, (R, σ) would be a valid signature with r =
∑

i∈[n] PRFdki(msg) and pk =
∑

i∈[n] si ·G.
We now proceed to prove security and consider the case that n − 1 parties are corrupted. Similarly, let

P1 denote the honest party and Pi, i ∈ I = [2, n] denotes the set of corrupted parties. First, the simulator
S needs to extract the corrupted party’s input in order to send it to the trusted party. As we will show,
this is possible by the fact that in the (FMV-ND, FRDL

com-zk, FCom)-hybrid model S receives the secret keys si
and dki from A. We always implicitly assume that S passes all communication between adversary A and
environment Z . Simulating this protocol for an adversary corrupting Pi is done as follows:

Key Generation:

1. The simulator S extract ski from the set of queries made by Pi to H.

33

2. The simulator S emulates FMV-ND for A by recording all the values (mvzk-input, i, dki) that are
received by FMV-ND from A.

3. S also emulates the functionality FRDL
com-zk by sending the transcript (proof-receipt, sidpk,1) to the

adversary A and recording the values (com-prove, sidpk,i, pki, si) that are received by FRDL
com-zk from

A.

4. Upon receiving pk fromFEdDSA, S computes pk1 = pk−
∑

i∈[2,n] pki and sends (decom-proof, sidpk,1, pk1)

to A on behalf of FRDL
com-zk.

5. S receives the messages (decom-proof, sidpk,i) that A sends to FRDL
com-zk, if pki ̸= si · G in the asso-

ciated com-prove values of Step 2 above, then S sends abort to FEdDSA, outputs whatever A outputs
and halts. Else, S stores all the values {dki, ski, si, pki, pk}i∈[2,n].

Signing: Upon receiving the message msg

1. The simulator S receives (nonce,msg, R) from FEdDSA, and sends R1 = R−
∑

i∈[2,n] PRFdki(msg) ·
G to A. It is computable as S knows all the dki of the corrupted parties.

2. On receiving Ri from A, if Ri has previously been seen, S reuses the value σ1 stored in the memory
from the last time. Otherwise, S proceeds to the next step.

3. Upon receiving (mvzk-verify, 1, (msg, R∗
1)) thatA sends toFMV-ND, S sends (mvzk-proof,msg, res)

to A, with res =⊥ if R∗
1 ̸= R1.

4. Otherwise, S receives (mvzk-prove, i, (msg, Ri)) from A, if Ri ̸= PRFdki(msg) · G, then sends
(mvzk-proof,msg, res) to A with res =⊥.

5. If no β =⊥ happens, S sends (mvzk-proof,msg, res) to A with res = R on behalf of FMV-ND.

6. S sends (proceed,msg) to FEdDSA and receives (msg, (σ,R)) in response.

7. S simulates (receipt, sid, 1) to A on behalf of FCom and receives (commit, sid, i, σ∗
i) from A.

8. S computes the signature share σ1 = σ −
∑

i∈[2,n](si · H(pk, R,msg) + ri) mod q with ri =
PRFdki(msg) mod q and sends (decommit, sid, 1, σ1) to A.

9. Upon receiving (decommit, sid, i) from A sent toFCom, S instructs FEdDSA to send (R, (
∑

i∈[2,n] σ
∗
i+

σ1)) to P1. If σ∗
i ̸= si · H(pk, R,msg) + ri mod q, S aborts. Otherwise, it stores the records

(msg, σ, R, {σi, Ri}i∈[2,n], σ1, R1) in the memory.

Indistinguishability of simulation. We show that the simulation by S in the ideal model results in a distri-
bution identical to that of an execution of

∏
MP,Sign in the (FMV-ND, FRDL

com-zk, FCom)-hybrid random oracle
model.

The simulation of the key generation phase is merely syntactically different from the real protocol. Note
that S successfully extracts si from the query of FRDL

com-zk. In the simulation of the signing phase, the actual
values obtained by the corrupted party Pi during the execution are pk, pk1(in the key generation), nonce R1

and signature share σ1. The distribution of these values in a real execution is

R1 = PRFdk1(msg) ·G,R = R1 +
∑

i∈[2,n]

Ri,

σ1 = s1 · h+ r1 ∈ Zq, σ = σ1 +
∑

i∈[2,n]

σi ∈ Zq,

34

where dk1 are random but fixed in the key generation phase, the same in all signing executions.
The distributions over these values in the simulated execution are

R1 = R−
∑

i∈[2,n]

PRFdki(msg) ·G,R,

σ1 = σ −
∑

i∈[2,n]

(si · h+ ri) mod q, σ,

where dki are fixed in the key generation phase, and R = PRFdk(msg) ·G, σ = s · h+ r mod q correctly
computed by FEdDSA. Observe that the simulation does not know dk and s, but this is the distribution since
it is derived from the output from FEdDSA.

As PRF is a pseudorandom function, the value R1 in the real protocol and the values Ri, R in both
protocols are pseudorandom, under the constraint that is fixed with the same message. In the simulation,
R1 = R−

∑
i∈[2,n]Ri is also pseudorandomly and set with the same message. Thus, these R1s are compu-

tationally indistinguishable except with probability negl(λ).
Finally, in the real protocol, we have the following holds

σ1 ·G = h · pk1 +R1

Similarly, in the simulation, since pk = pk1+
∑

i∈[2,n] pki, R = R1+
∑

i∈[2,n]Ri and σ = σ1+
∑

i∈[2,n](si ·
h+ ri) mod q, and σ,R are correct signature received from FEdDSA, we have

σ1 ·G = σ ·G−
∑

i∈[2,n]

(si · h+ ri) ·G

= h · (pk−
∑

i∈[2,n]

pki) + (R−
∑

i∈[2,n]

ri ·G) = h · pk1 +R1,

Thus, these σjs are identical.
If S does not abort and msg is first called, then we have σ∗ = σ1+

∑
i∈[2,n] σi where σi is received from

A, which has the same distribution as the output in the real protocol. That is if any modified σ∗
i ̸= si ·h+ ri

mod q, the honest party will abort by checking σ∗
i +

∑
j ̸=i σj ̸= h ·pk+R except with probability negl(λ),

just as what the S behaves in Step 8.
Thus, the simulator S aborts in the ideal-world execution only if the real-world execution aborts. Fur-

thermore, this also implies that the outputs of honest parties have the same distribution in both executions.
In conclusion, any unbounded environment Z cannot distinguish between the real execution and ideal exe-
cution, except with probability negl(κ). This completes the proof.

35

	Introduction
	Our Contributions
	Road-map

	Technical Overview
	Multi-Verifier IT-MACs over Group
	Stateless Deterministic Nonce Derivation in the Multi-Verifier Setting
	Multi-Party EdDSA Signing

	Preliminaries
	Universal Composability
	Functionality of Commitment [Com]
	Functionality of Committed NIZK Fcom-zkRDL
	EdDSA Signature Algorithm
	Pseudorandom Correlation Function
	Multi-Verifier Programmable PCF

	The Designed Protocols
	Extended Doubly-Authenticated Bits for Multi-Verifier Zero-Knowledge Proof
	Multi-Verifier Nonce Derivation
	Multi-Party EdDSA Signature Protocol

	Performance and Evaluation
	Conclusion
	Security Proof of Theorem 1
	Security Proof of Theorem 2
	Security Proof of Theorem 3

