
WARPfold: Wrongfield ARithmetic for Protostar

folding

Lev Soukhanov ∗

February 2024

Abstract

Inspired by range-check trick from recent Latticefold paper [4] we
construct elliptic-curve based IVC capable of simulating non-native
arithmetic efficiently.

We explain the general principle (which can be applied to both
Protostar and Hypernova), and describe the Wrongfield ARithmetic
for Protostar folding in details.

Our construction supports circuits over mutilple non-native fields
simultaneously and allows interfacing between them using range-checked
elements.

WARPfold can be used to warp between different proof systems
and construct folding schemes over curves not admitting a dual partner
(such as BLS12-381).

1 Introduction

Simulation of non-native arithmetic in proof systems is, typically, hard, yet
most direct recursive constructions for elliptic curve based IVCs require it.
One way of avoiding it is using a pair of dual curves, i.e. finding such a pair
of elliptic curves that E1/Fp, |E1| = q, E2/Fq, |E2| = p.

This line of thoughts starts from [3], which uses direct SNARK recursion
over a pair of pairing-friendly elliptic curves, but most examples today are
either non pairing-friendly, or only use a single pairing-friendly curve with
non pairing-friendly partner.

These IVC schemes, both recursion and folding, such as Halo2 [5], Nova
[10] and its descendants - Hypernova [9] and Protostar [6], while technically

∗Privacy Scaling Exporations, Ethereum Foundation. email:0xdeadfae@gmail.com

1

can be run on non-native arithmetic simulation, typically require a cycle
of curves to be practical. The second curve circuit can be made relatively
lightweight, as shown in Cyclefold [8].

This situation has some downsides. Most notably, the decider for the
dual-curve IVC scheme is forced to be linear time at least in the size of one
of the circuits (assuming other one has pairings). Naively wrapping it into
the ”main curve” proof system seems to incur simulation of multi-scalar
multiplication of the size of the second circuit.

Another downside is the fact that there are currently no practically fea-
sible approaches to running IVC over curves not allowing a dual partner.
Notable such curves include the BLS family [1], gaining popularity in re-
cent zero knowledge proof systems as it is less vulnerable to index calculus
attacks than half-cycle friendly BN family [2].

Our source of inspiration is the recent Latticefold paper [4]. It uses Ajtai
commitments to construct a post-quantum folding scheme, and, as these
commitments are only binding for small vector values, does some range-
check tricks to ensure they stay bounded during the folding process.

We observe that these tricks can be adapted back to the elliptic curve
based world. We also make few modifications - namely, we do not ”refresh”
values on each folding, and instead ensure that they do not overflow by re-
stricting the folding topology. This, sadly, means that tree-like folding is
unavailable, but drastically reduces the amount of commitments being ma-
nipulated in a single recursive verifier. Another, rather trivial, modification
is that we do not insist that our range-check is sumcheck-based, and instead
use any lookup available in the base folding scheme.

Specifically, we describe our construction based on Protostar folding
scheme; but it seems to be clear that others can be adapted in the same
fashion.

Acknowledgement. Author would like to thank Yar Rebenko, Amir
Ismailov, Benedikt Bunz, Liam Eagen, Arnaucube, Carlos Perez, Dohoon
Kim, Soowon Jeong and Wanseob Lim for discussions on non-native arith-
metic and folding schemes.

2 Preliminaries

We recall the definition of the Protostar folding scheme, with a slight opti-
mization, resembling Protogalaxy [7]. This optimization is completely op-
tional, and it trades 2 elliptic curve multiplications for some hashing work,
which we believe is generally desirable.

2

We start by defining the circuit primitive.

Definition 1. n-round degree d homogeneous algebraic circuit over
field F consists of following data:

1. Vector spaces over F,

(P0, ...Pn−1), (W0, ...,Wn−1)

Pi for i > 0 called challenge spaces, P0 public witness, Wi - private
witness. We will also call Zi = Pi⊕Wi full witness, and conventionally
denote its elements with letter z, for example zi = (pi, wi)

2. The constraint space C.

3. Degree d homogeneous constraint mapping,

F :
⊕
i

Zi → C

Patricular coordinates ci = Fi(z) are called ”constraints”, but no addi-
tional assumptions are put on them by Protostar system. Efficient decider
might require some particular additional requirements on these constraints,
such as adhering to R1CS or some other arithmetization.

We also always assume that P0 contains a special variable u which is
always set to 1. This allows us to express non-homogeneous circuits as
homogeneous ones, and is called ”relaxation factor”.

Such algebraic circuit naturally corresponds to a public coin protocol
- namely, given p0, prover sends w0, gets a uniformly random challenge
response p1, responds with w1, and, after 2n− 1 rounds of communication,
verifier checks the constraint equations F (z) = 0.

In original Protostar terminology, this protocol is assumed to be a special-
sound interactive protocol for some NP-relation RNP. Then, Fiat-Shamir
heuristic suggests the following definition.

Assume that we have a linearly homomorphic commitment scheme commi :
Wi → G for some cryptographic group G.

Definition 2. Committed witness to the multi-round circuit (Z,C, F)
with public parameters p0 is the witness z ∈ Z satisfying the following prop-
erties:

∀i > 1 : pi = Hash(pi−1, commi−1(wi−1))

F (z) = 0

3

Committed instance is a collection (p0, ..., pn−1), (g0, ..., gn−1), satis-
fying

pi = Hash(pi−1, gi−1)

We refer to original Protostar paper [6] for the details and assumptions
of the reduction of RNP to the knowledge of committed witness of Fiat-
Shamir transform of a protocol. In what follows, we will reason in terms of
committed witnesses and associated relation RR

cm(z, g) saying that witness
z corresponds to a committed instance g.

Next, we define our version of Protostar transform. Original transform
turns an n-round protocol into n+1-round protocol, replacing |C| constraints
of degree d with 2

√
|C| constraints of degree 2, and a single equation of

degree d+ 2.
We typically use a slight modification, which instead replaces equations

with a single equation of degree d+⌈log |C|⌉, strongly resembling the layout
from Protogalaxy [7]. All our constructions work the same in the original
Protostar too.

Definition 3. Protostar-transform (log-version) of a multiround circuit
F : Z → C is defined as follows:

A new round is appended to the witness space Z̃ = Z⊕Zn, without private
variables at all Wn = 0, and with public variables Pn = (γ0, ..., γ⌈log |C|⌉−1).

Denote ℓ = ⌈log |C|⌉
The constraint space is replaced by a single one-dimensional constraint,

with equation:

F̃ (z̃) =
∑

j∈{0..|C|−1}
b0+2b1+4b2+...=j

∀i: bi∈{0,1}

Fj(z)γ
b0
0 γb11 ...γ

bℓ−1

ℓ−1 u
(d+ℓ−

∑
0≤i<ℓ

bi)

= 0

4

Note 1. We have defined this transform for a homogeneous circuit. In case
the circuit was non-homogeneous, the sum∑

j∈{0..|C|−1}
b0+2b1+4b2+...=j

∀i: bi∈{0,1}

Fj(z)γ
b0
0 γb11 ...γ

bℓ−1

ℓ−1

can be considered, and then homogenized. This also works, and can some-
times lead to smaller degree of the resulting circuit.

In what follows, we assume that we have our field larger than security
parameter λ - because discrete logarithm problem is

√
|F| hard, its bitsize

must be assumed to be at least 2λ. Challenges that we generate will be,
typically, not uniform, but distributed in the segment {0..2λ − 1}.

Lemma 1. The protocol of the original circuit has a special-sound reduction
to its protostar-transform even in a restricted case where verifier sends the
following message in the last round: γi = t2

i
, for a single challenge t < 2λ.

This is, of course, very similar to what happens with original Protostar
paper, Lemma 3. Indeed:

Proof. For a random challenge t, and u = 1 (recall that we always require
that from our public inputs), the equation reduces to∑

j∈0..|C|−1

tjFj(z)

Given access to adversary’s code, run it up to the last challenge to obtain
a witness. In order to ensure that the witness is correct, we can fork the
adversary |C| times, and then feed it different values of t. Then, using
Lagrange interpolation, we recover that all Fi(z) indeed were 0. (alternative
point of view is saying that unless all Fi(z) = 0, the adversary would not pass
a random challenge t due to Schwartz-Zippel lemma, except with soundness
error |C|

|2λ|)

Now, we can define the following relations:

Definition 4. Strict Protostar instance is the committed instance to the
Protostar-transform of a circuit, with last challenge being computed as

5

t = Hash(pn−1, gn−1)

γi = t2
i

Note that it has no gn, because the last round lacks private witness (and
so commitment is trivial).

Strict protostar witness to this instance is a witness, according to
Definition 2.

Definition 5. Relaxed Protostar instance is the same as strict commit-
ted instance, but without any requirements on challenges being obtained as
hashes, without requirement u = 1, and an additional value e, called ”error
term”.

Relaxed Protostar witness is decommitment of all commitments gi
involved, satisfying the relaxed equation

F̃ (z̃) = e

Typically, folding schemes are presented as a protocol reducing knowl-
edge of witness to some strict instance U and some relaxed instance U ′ to the
knowledge of a single relaxed instance. However, there is also a reduction
between from two relaxed instances to a single one.

WARPfold, sadly, does not support it - it can only fold together strict
and relaxed instances.

Protocol 1. Folding protocol starts with two instances, strict instance U
and relaxed instance U ′. Prover claims that it knows corresponding witnesses
w,w′

1. Prover sends a d+ℓ−1-degree univariate polynomial e(t) = F̃ (z̃′+tz̃).

2. Verifier checks that e(0) = e′. (Note that the fact that this polynomial
has degree d+ ℓ− 1 stems from condition e = 0 - that U is strict. For
two relaxed instances verifier would also check that highest coefficient
lim
t→∞

e(t)/td+ℓ = e).

3. Verifier samples challenge c, and the new instance is set as follows:

g′′i = g′i + cgi

p′′i = p′i + cpi

e′′ = e(c)

6

Proof. The soundness of this reduction is proven in essentially the same way
as in original paper. We only provide sketch here, referring to the original
paper for details.

Provided that we have an adversary that outputs w′′, our goal is to
extract w, w′ back. This is done by forking it just before the challenge c
arrives, and, having witnesses wα to the commitment g′+ cαg and wβ to the
commitments g′+cβg, construct w = (wβ−wα)/(cβ−cα) and w′ = wα−cαw.

Now, the claim is that reconstructed witnesses will satisfy F (z) = 0,
F (z′) = e′. Indeed, if any of those relations are broken, then ”true” polyno-
mial e(t) was different from the one sent by the prover. Then, by Schwartz-
Zippel lemma for all c-s but negligible d+ℓ

2λ
part the decommitment w′ + cw

of g′ + cg does not satisfy F .
This leaves us with dichotomy - either adversary fails to output satisfying

instance in all but negligible amount of cases, or it can output different
decommitment - which is a commitment break.

3 WARPfold

Now, we are ready to discuss modifications necessary to support wrongfield
arithmetic.

Consider a collection of fields (F;F1, ...,Fs), first one called ”rightfield”,
and others ”wrongfields”,

Fields all must be prime, and the order of wrongfields is not bounded
from above, but is bounded from below as Ω(2λ).

Suppose we are also given limb base b - the size of a primitive range-check
over F.

Note 2. It is unclear what way of range-checking elements is desirable; in
Latticefold [4] it is done by directly computing indicator polynomial, so b is
relatively small. This does impact commitment cost, albeit insignificantly.
For decider, however, this option is worse than the second one.

Other option is using a lookup argument, which is available in Proto-
star by default. It is unclear which of these approaches is better (as lookup
argument has some overhead in terms of additional, non-small witness ele-
ments).

Definition 6. We define (b, (F;F1, ...,Fs))-multicircuit to be a collection of
circuits over these fields, with additional native representation of wrongfield
elements - i.e. for every wrongfield witness element there is, actually, its
representation in base b over rightfield, with all limbs being range-checked.

7

We denote parts of the circuit living over different fields the same way as
in Protostar, with index superscript such as F (i) to signify that this system
of equations lives over a wrongfield, and superscript F · to signify that it lives
in the rightfield. We denote s-th limb of the wrongfield witness as Ls(w

(i)).
For simplicity, we assume that all challenges in our protocols are auto-

matically sent to all fields (as they are already range-checked and of size
2λ).

Note 3. Reader might ask, what is the purpose of this construction if every
wrongfield element is represented as a collection of limbs. The answer to
this is that committing to limbs themselves is, typically, not a problem - it is
the simulation of modular reductions and arithmetic operations that gets us
in trouble with non-native arithmetic. The point of WARPfold is to avoid
this until the decider.

Definition 7. Strict WARPfold instance corresponding to the multicir-
cuit is the normal Protostar instance of the main circuit, but with additional

wrongfield public inputs γ
(j)
i , obtained from the same 2λ-sized last challenge.

Strict WARPfold witness is a witness to the rightfield part of the mul-
ticircuit, additionally satisfying wrongfield constraints (recall that wrongfield
part of the witness is encoded in limbs of the rightfield part).

Definition 8. Relaxed WARPfold instance is the same as strict WARP-
fold instance, but with additional error terms e ∈ F, (..., e(i) ∈ Fi, ...), and a
degradation counter N . Each time the folding occurs, this parameter will
be increased by 1, and there is a maximal size of N such that folding after
it is achieved is impossible.

N must be small enough to ensure limbs do not overflow (which happens

at N = |F|
bλ), but in practice it is useful for decider to set up maximal N even

smaller - around 2λ/3.
We also set base case for N = 0 to be trivial relaxed solution z̃ = 0.
Relaxed WARPfold witness is a witness to corresponding rightfield

instance, which additionally satisfies the following: for every limb Ls(w
(i)),

it is no larger than bN2λ, and satisfies relaxed wrongfield equations

F̃ (i)(z̃) = e(i)

where the wrongfield witness is reconstructed from limbs using modular re-
duction:

∑
k

bsLs(w
(i))(in Fi).

Folding is defined unsurprisingly (and requires sending e·(t), (..., e(i)(t), ...)),
however, the direct approach at constructing extractor, of course, fails: the

8

extracted relaxed witness is not guaranteed to satisfy any range require-
ments, and without range requirements limbs might indeed overflow, break-
ing the non-native arithmetic part.

Therefore, we instead construct an extractor for a sequence of fold-
ings, starting from non-relaxed ones. Similar to situation in regular folding
schemes, this extractor runs in time exponential in sequence length. This
is believed to not be an actual issue, and there is a paper analyzing Nova
in Algebraic Group Model [11], which could, potentially, be adapted to this
case. We do not conduct such analysis.

Theorem 1. Consider the adversary which, on the setup phase, samples
sequence of strict WARPfold instances U0,U1, ...,Un−1, and then engages in
a sequence of folding protocols:

U ′
i+1 = Fold(U ′

i ,Ui)

where U0 = 0, and with non-negligible probability outputs the witness to U ′
n.

We extract from this adversary the witnesses for all Ui’s.

Proof. First, we prove by induction the following statement: any adversary
that provides a witness to U ′

n satisfying rightfield constraints does, in fact,
output witness that satisfies Ls(w

(i)) < bN2λ condition.
This is clear, because rightfield part of the circuit can always be extracted

(using normal Protostar extractor). Then, we observe that strictf witnesses
actually do satisfy the range-checks, and the statement is trivial - as relaxed
witness limbs are obtained by accumulating in N elements of size < b,
multiplied by folding challenge < 2λ

Then, as no overflows occur in the limbs, we can be sure that extracted
wrongfield witness indeed satisfies

(w
(i)
n−1)

′ + cw
(i)
n−1 = (w(i)

n)′(in Fi)

Now, we can use the same argument as in normal Protostar, but for

wrongfield. Indeed, unless both F (i)(w
(i)
n−1) = 0 and F (i)((w

(i)
n−1)

′) = (e
(i)
n−1)

′,
the communicated univariate polynomial over Fi was incorrect.

Then, by Schwartz-Zippel lemma for all but negligible part of challenges
c the adversary would not output a valid witness, which contradicts the
assumption.

4 IVC

Any folding scheme has a corresponding IVC. In our opinion, the original
Nova paper [10] is the best source for this part.

9

However, as our construction is not, technically, a folding scheme (as it
lacks standard extractor and only supports finite amount of foldings), we
take some time to discuss the implications of these changes for IVC.

Naturally, we can only construct bounded IVC (supporting finite amount
of steps). This is not a problem in practice, both because the supported
amount of steps is very large, and because the computation can be continued
by calling a decider or flushing limbs in some other way.

However, there are more significant differences.
Let us briefly recall how standard IVC construction works. Given a

step-circuit S, implementing some (potentially, non-deterministic) function,
we construct a new wrapping circuit with the following functionality (some
values will be denoted by index k on the k-th step of the IVC - the actual
circuit is the same for each k, this is added for clarity).

1. It has a single nontrivial public output x.

2. It has private input Uk, which is a strict instance with the structure
of the circuit itself. It validates the strictness (in Nova, that means
just Uk.u = 1,Uk.e = 0, in Protostar this also means validating that
challenges were produced correctly).

3. Uk.x = Hash(q0, qk, k,U ′
k), where U ′

k is a relaxed instance with the
same structure.

4. It runs the (Fiat-Shamir, non-interactive) version of folding protocol
verifier on Uk,U ′

k, and outputs U ′
k+1.

5. It sets x = Hash(q0, qk+1 = S(qk), k + 1,U ′
k+1)

6. For case k = 0 it validates some additional conditions, namely qk = q0,
U ′
0 = 0.

7. For case k = −1 it accepts any dummy inputs into folding, and instead
outputs U ′

k+1 = U ′
0 = 0, and, similarly, sets input qk+1 = q0.

Now, to run the IVC, prover performs the following recursive construc-
tion: given witnesses wk, w

′
k to instances Uk,U ′

k, they perform (non-interactive)
folding to obtain w′

k+1. Then, they are now capable of calculating the wit-
ness to the IVC circuit, and its execution trace becomes wk+1.

Let us first consider rather boring case, that we will call weak - in that
case, all wrongfield arithmetic is contained in the implementation of step
circuit S, and the rest of the construction is implemented in the rightfield

10

arithmetic. This case is not entirely impractical - for example, we could
want to emulate some external field, but it doesn’t help us with recursion
itself.

4.1 Weak case

Assume the weak case - the IVC circuit is built entirely over the rightfield
F, and all wrongfield arithmetic is contained in implementation of S.

Then, we do not modify the construction at all (and only check that
program counter is less than Nmax). Indeed

Theorem 2. Assume (heuristically) that there exists an extractor for stan-
dard non-interactive rightfield Protostar scheme (in fact, its small modifica-
tion which also hashes additional wrongfield-related prover messages without
doing any checks).

Assume that we also have access to non-interactive version of the extrac-
tor from Theorem 1.

Then, for an adversary outputting valid instance-witness data (Uk,U ′
k),

(wk, w
′
k), it is true that there is an extractor returning the sequence of valid

witnesses (Uj ,U ′
j), (wj , w

′
j) for j < k.

Proof. First, let us call the extractor for rightfield Protostar to obtain the
sequence of Uj ,U ′

j for j < k. Note that it is always doable, because the
recursive circuit itself is defined over the rightfield. We are now in the exactly
the same situation as in Theorem 1, and can apply non-interactive version
of its extractor to validate that our witnesses satisfy wrongfield constraints
too.

This is already useful, but this still leaves us with large recursive over-
head. However, the same argument clearly does not work in case where
there are wrongfield constraints in the definition of recursive circuit itself.

We believe this approach is also unsound, but couldn’t come up with
falsifying example. We leave it as a conjecture.

Conjecture 1. Naive construction which uses wrongfield arithmetic in IVC
circuit is unsound.

4.2 Reinforcement

Using wrongfield arithmetic for the IVC circuit is highly desirable (as a lot
of operations there are defined over the base field of the circuit), so we need
to do some adjustment.

11

We start by discussing a primitive allowing us to copy chunks of data
between different instances cheaply.

Definition 9. Multi-commitment circuit is a circuit as in Definition 1,
but with commitment target groups potentially being cartesian powers of G,
such as G×G× ...×G. All definitions naturally trivially generalize.

We will use this to split our rounds into pieces - i.e. we will have a normal
circuit with rounds split into subsets, each of these committed separately.

This can also be simulated without introducing new multi-commitment
formalism at all, by just splitting the round into few subrounds without any
challenges.

We will refer to these subsets of the circuits as exposed subsets. They
can be used to efficiently copy data between different instances - by declaring
that commitments to them coincide we can ensure that large batches of data
are correctly copied. This is useful in standard folding schemes for inter-
step communication, and originally was introduced by author in a forum
post [12].

Collection of tricks related to usage of the exposed subsets later became
known as Moon-Moon, and it currently seems to largely be unpublished
folklore. Related tricks were rediscovered independently in the context of
ZK - virtual machines and are known as ”memory continuations”.

We, however, use them in a new context - we are copying a subset of
data from relaxed instance to a subset of strict one.

Definition 10. (b; (F;F′, ...))-multicircuit with reinforced field F′ is a mul-
ticircuit with the following additional structure:

1. There are two new exposed subsets of the same size, using the same
commitment key. Their witness spaces are called Wlimbs and Wcheck.

2. Subset Wlimbs hosts (large) limbs of F′ elements of bitsize µ. Note
that earlier we kept elements in small limbs, but here we insist that
we group them and represent their linear combinations as large limbs.
We require that Nmax < |F|/(2µ+λ) to prevent these limbs from over-
flowing, and suggest that realistically µ ∼ 2

3λ seems like a good choice,

as it allows us to do at least 2
λ
3 foldings, which, for 256-bit base field

and λ = 128 gives > 241 sequential foldings, more than enough for any
realistic application.

3. Subset Wcheck hosts values that are range-checked to be < 2µ+λ(Nmax−
1), and no other requirements are applied in circuit.

12

Now, we are ready to describe our modifications to IVC circuit.

Definition 11. Reinforced IVC circuit is standard IVC circuit with two
additional checks:

1. k < Nmax − 1.

2. Uk.gcheck = U ′
k.glimbs

The recursive construction rule then becomes the following: given (Uk,U ′
k),

(wk, w
′
k), we perform non-interactive folding to obtain U ′

k+1, w
′
k+1. Then, we

use execution trace of the circuit to populate default part of wk+1, and copy
(wk+1)limbs into (wk+1)check to populate the rest.

Definition 12. Reinforced IVC instance-witness pair is data ((Uk,U ′
k), (wk, w

′
k)),

satisfying the following requirements:

1. Standard: wk, w
′
k are satisfying witnesses to Uk,U ′

k.

2. Standard: Uk.x = Hash(q0, qk, k,U ′
k)

3. New: Uk.gcheck = U ′
k.glimbs

Theorem 3. Assume there is a non-interactive extractor for Protostar.
Then, there is a non-interactive extractor for the reinforced IVC (extracting
wk−1, w

′
k−1)

Proof. Given an adversary outputting valid ((Uk,U ′
k), (wk, w

′
k)), first, we will

apply Protostar extractor to obtain (wk−1, w
′
k−1) - as non-interactive folding

for U ′
k−1,Uk−1 is contained in the execution trace wk.

Then, we observe that rightfield part of wk−1 satisfies all the equations
(this is guaranteed by the extractor), and so values in (wk−1)check are, indeed,
properly range-checked to be less than 2µ+λ(Nmax − 1). On the other hand,
they must be equal to (w′

k−1)limbs, unless our extractor has computed a
commitment break.

Hence, there is no overflow in limbs, and so wk = w′
k−1 + cwk−1 (in F′).

Hence, Protostar extractor also guarantees that w′
k−1, wk−1 satisfy rein-

forced wrongfield equations.

13

5 Cost analysis

From the standpoint of the commitment cost, non-reinforced wrongfield el-
ements cost is comparable to rightfield, but with range-check overhead.

This overhead can be made small by choosing small l (as committing to
a large amount of limbs costs roughly the same as to one large element).

Alternative choice is using some lookup argument - this decreases the
witness size, and, thus, decider work, but, a bit paradoxically, increases
commitment cost. Standard Protostar lookup likely has around 2× overhead
for rangechecks, though, practical evaluations are required to elaborate this.

Reinforced wrongfield elements cost roughly 2.5 times more: for sug-
gested value µ = 2λ

3 this means that means that instead of µ-sized rangecheck
of a limb we additionally do a rangecheck of size µ+ λ = 2.5µ.

Costs for the decider involve actually simulating the non-native arith-
metic of the circuit, and so are highly specific on the exact nature of used
constraints. However, we believe that decider overhead will not be sig-
nificantly larger than Cyclefold, as Cyclefold decider requires computing a
commitment to the secondary circuit, which has size ranging from ∼ 400
(author’s high degree circuit from [13]), to roughly 1700 for naive R1CS
implementation, which is to be traded against 4 non-native in-circuit scalar
multiplications.

We also point out that this scheme works in contexts where cyclefold is
not available at all (such as BLS family of curves), and allows to simulate
fields completely external to the proof system.

References

[1] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing
elliptic curves with prescribed embedding degrees. Cryptology ePrint
Archive, Paper 2002/088, 2002. https://eprint.iacr.org/2002/088.

[2] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic
curves of prime order. Cryptology ePrint Archive, Paper 2005/133,
2005. https://eprint.iacr.org/2005/133.

[3] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
Scalable zero knowledge via cycles of elliptic curves. Cryptology ePrint
Archive, Paper 2014/595, 2014. https://eprint.iacr.org/2014/595.

14

[4] Dan Boneh and Binyi Chen. Latticefold: A lattice-based folding scheme
and its applications to succinct proof systems. Cryptology ePrint
Archive, Paper 2024/257, 2024. https://eprint.iacr.org/2024/257.

[5] Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof com-
position without a trusted setup. Cryptology ePrint Archive, Paper
2019/1021, 2019. https://eprint.iacr.org/2019/1021.

[6] Benedikt Bünz and Binyi Chen. Protostar: Generic efficient accumu-
lation/folding for special sound protocols. Cryptology ePrint Archive,
Paper 2023/620, 2023. https://eprint.iacr.org/2023/620.

[7] Liam Eagen and Ariel Gabizon. Protogalaxy: Efficient protostar-
style folding of multiple instances. Cryptology ePrint Archive, Paper
2023/1106, 2023. https://eprint.iacr.org/2023/1106.

[8] Abhiram Kothapalli and Srinath Setty. Cyclefold: Folding-
scheme-based recursive arguments over a cycle of elliptic
curves. Cryptology ePrint Archive, Paper 2023/1192, 2023.
https://eprint.iacr.org/2023/1192.

[9] Abhiram Kothapalli and Srinath Setty. Hypernova: Recursive argu-
ments for customizable constraint systems. Cryptology ePrint Archive,
Paper 2023/573, 2023. https://eprint.iacr.org/2023/573.

[10] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recur-
sive zero-knowledge arguments from folding schemes. Cryptology ePrint
Archive, Paper 2021/370, 2021. https://eprint.iacr.org/2021/370.

[11] Hyeonbum Lee and Jae Hong Seo. On the security of nova recur-
sive proof system. Cryptology ePrint Archive, Paper 2024/232, 2024.
https://eprint.iacr.org/2024/232.

[12] Lev Soukhanov. Folding endgame. zkresear.ch forum, 2023.
https://zkresear.ch/t/folding-endgame/106.

[13] Lev Soukhanov. Reverie: an end-to-end accumulation scheme
from cyclefold. Cryptology ePrint Archive, Paper 2023/1888, 2023.
https://eprint.iacr.org/2023/1888.

15

