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Abstract. The SHA-2 family including SHA-224, SHA-256, SHA-384,
SHA-512, SHA-512/224 and SHA512/256 is a U.S. federal standard pub-
lished by NIST. Especially, there is no doubt that SHA-256 is one of the
most important hash functions used in real-world applications. Due to
its complex design compared with SHA-1, there is almost no progress
in collision attacks on SHA-2 after ASIACRYPT 2015. In this work, we
retake this challenge and aim to significantly improve collision attacks
on the SHA-2 family. First, we observe from many existing attacks on
SHA-2 that the current advanced tool to search for SHA-2 characteristics
has reached the bottleneck. Specifically, longer differential characteristics
could not be found, and this causes that the collision attack could not
reach more steps. To address this issue, we adopt Liu et al.’s MILP-based
method and implement it with SAT/SMT for SHA-2, where we also add
more techniques to detect contradictions in SHA-2 characteristics. This
answers an open problem left in Liu et al.’s paper to apply the technique
to SHA-2. With this SAT/SMT-based tool, we search for SHA-2 charac-
teristics by controlling its sparsity in a dedicated way. As a result, we
successfully find the first practical semi-free-start (SFS) colliding message
pair for 39-step SHA-256, improving the best 38-step SFS collision attack
published at EUROCRYPT 2013. In addition, we also report the first
practical free-start (FS) collision attack on 40-step SHA-224, while the
previously best theoretic 40-step attack has time complexity 2110. More-
over, for the first time, we can mount practical and theoretic collision
attacks on 28-step and 31-step SHA-512, respectively, which improve the
best collision attack only reaching 27 steps of SHA-512 at ASIACRYPT
2015. In a word, with new techniques to find SHA-2 characteristics, we
have made some notable progress in the analysis of SHA-2 after the major
achievements made at EUROCRYPT 2013 and ASIACRYPT 2015.

Keywords: practical collision attack · SHA-2 · SAT/SMT

1 Introduction

Before the devastating attacks in 2005 [37,38,39,40] on the MD-SHA hash family,
there was a trend to design fast hash functions with a similar structure to MD4,
including MD5, SHA-0, SHA-1, SHA-2, RIPEMD-128 and RIPEMD-160, just to



name a few. After 2005, we have witnessed efficient collision attacks on full
MD4 [37], MD5 [39], SHA-0 [2,40], and SHA-1 [15,16,35,38] as well as the SFS
collision attack on full RIPEMD-128 [14]. In spite of these successful attacks
on the MD-SHA hash family, SHA-2 survived this game, mainly due to its more
conservative and complex design. Since SHA-2 has been used worldwide, studying
its collision and preimage resistances is always of practical interest, though it is
also challenging.

Preimage attacks on SHA-2. In the past few years, there have been many results
for the preimage attacks on SHA-256 and SHA-512. The first preimage attack on
SHA-256 and SHA-512 [11] based on the meet-in-the-middle (MITM) technique
reached 24 steps with a complexity of about 2240 and 2480, respectively. These
preimage attacks were significantly improved at ASIACRYPT 2009 [1], which
were improved to 43-step SHA-256 and 46-step SHA-512, respectively. Then, at
ASIACRYPT 2010, Guo et al. [9] presented advanced MITM preimage attacks on
42-step SHA-256 and SHA-512, respectively. At FSE 2012, the biclique technique
was applied to find preimages of SHA-2 [12], where preimage attacks on 45-
step SHA-256 and 50-step SHA-512 with time complexity of 2255.5 and 2511.5

were achieved, respectively. It should be noted that the authors in [12] also
presented pseudo-preimage attacks on 52-step SHA-256 and 57-step SHA-512
with a complexity of 2255 and 2511, respectively. However, all these preimage
attacks are far from practical.

Distinguishing attacks on the compression function of SHA-2. Compared with
preimage and collision attacks, distinguishing attacks are less meaningful for a
hash function, though they can help better understand its security. At the rump
session of EUROCRYPT 2008 [42], the non-randomness of 39-step SHA-256 was
presented, and a practical example for 33 steps was given by Yu and Wang.
In [10], free-start (FS) near-collisions for up to 31 steps of SHA-256 were pre-
sented. Then, Lamberger and Mendel gave a second-order differential attack on
46 steps of SHA-256 with a practical complexity in [13]. Later, this attack was
extended to 47 steps of SHA-256 with a practical complexity at ASIACRYPT
2011 [3]. At INSCRYPT 2014 [41], Yu and Bai further utilized the attack strategy
in [3] to mount a practical distinguishing attack on 48 steps of SHA-512.

Collision attacks on SHA-2. The first practical collision attack on SHA-256 [29]
was presented at FSE 2006, only reaching 18 steps. At FSE 2008, Nikolic and
Biryukov [32] improved this practical attack to 21 steps, and they also gave a SFS
collision attack on 23 steps of SHA-256. This attack was later further extended
to 24 steps of SHA-256 and SHA-512 in [10,33]. Then, at ASIACRYPT 2011, the
first major improvement was achieved, where the advanced guess-and-determine
(GnD) technique to search for SHA-2 characteristics was invented [25], and the
SFS collision for 32-step SHA-256 and the collision for 27-step SHA-256 were
presented, respectively. After this work at ASIACRYPT 2011, this advanced
automatic tool has been gradually improved in 3 papers published at EURO-
CRYPT 2013 [27], FSE 2014 [8] and ASIACRYPT 2015 [6]. In addition, much
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more complex message differences are used to mount (FS/SFS) collision attacks
on SHA-2 in these 3 papers. A summary of these collision attacks is shown in
Table 1.

Automatic tools to search for SHA-2 characteristics. Although major achieve-
ments have been made in collision attacks on SHA-2 in [6,8,25,27], the corre-
sponding advanced automatic tool to find SHA-2 characteristics is not open-
source. Due to the complex design of SHA-2, this significantly increased the
difficulty to follow these works without this tool, let alone to improve this tool.
Although Stevens open sourced his dedicated tools [34,35,36] to find MD5 and
SHA-1 characteristics, they could not be applied to SHA-2 as SHA-2 is too com-
plex, and contradictions easily occur in its differential characteristics [25]. Re-
cently, to make finding collision-generating signed differential characteristics eas-
ier, Liu et al. invented a novel MILP-based method [23] and it works quite well
for RIPEMD-160. As can be observed in [23], two main techniques are how to
describe signed difference transitions through each component of the step func-
tion and how to automatically detect contradictions in an efficient way. At the
end of [23], the authors left an interesting problem whether it is possible to ap-
ply this technique to SHA-2 because it is required for the model to detect more
contradictions in SHA-2 characteristics.

Our contributions. We briefly summarize our contributions as follows:

1. We demonstrate for the first time that the technique developed in [23] can be
applied to SHA-2, and this obviously gives a positive answer to the question
left in [23]. Specifically, we develop a SAT/SMT-based tool to efficiently
search for valid SHA-2 differential characteristics based on the technique
to search for signed differential characteristics in [23] and the technique to
automatically verify the correctness of a differential characteristic in [20].

2. We shed new insight into the (free-start/semi-free-start) collision attacks on
SHA-2. For the first time, we are able to propose:
– the first practical SFS colliding message pair for 39-step SHA-256, break-

ing the record of 38 steps kept by Mendel et al. at EUROCRYPT 2013 [27]
after 10 years;

– the first practical free-start colliding message pair for 40-step SHA-224,
improving the previously best theoretic 40-step attack with time com-
plexity 2110 published at FSE 2012 [17];

– the first practical colliding message pair for 28-step SHA-512, updating
the previously best record given at ASIACRYPT 2015 [6] by 1 step.

– the first collision attack on 31-step SHA-512 with time complexity 2115.6,
improving the previously best one published at ASIACRYPT 2015 [6]
by 4 steps.

In addition to these notable progress, we also improved the best collision attack
on 31-step SHA-256 published at EUROCRYPT 2013 [27], reducing the time
complexity from 265.5 to 249.8. Our results are summarized in Table 1. Espe-
cially, we note that there is gap between the previous (SFS) collision attacks
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on SHA-256 and SHA-512. Specially, due to the similarity between SHA-256 and
SHA-512, a (SFS) collision attack on r steps of SHA-256 should have been ap-
plicable to r steps of SHA-512, and vice versa. However, this is not the case in
previous attacks, as shown in Table 1. We believe this is caused by the infea-
sibility to find the corresponding valid SHA-2 characteristics with the current
GnD technique. Based on our new technique, we have made the (SFS) collision
attacks on SHA-256 and SHA-512 reach the same number of steps.

Moreover, based on our results for SHA-2, it indicates that the SAT/SMT-
based method performs much better than the dedicated but non-open-source
ones developed in [6,8,25,27]. This also contradicts the claims made in [8] that the
performance of SAT-based method for SHA-2 is bad. Note that our SAT/SMT-
based method is completely different from the one used in [8], which simply uses
a model to describe two parallel instances of the value transitions as in [31].

Table 1. Summary of collision attacks on SHA-2, where FS collision⋆ denotes the
free-start collision without considering padding, and SFS collision denotes the semi-
free-start collision.

State size Hash size Attack type Steps Time Memory References Year

256

All
collision

28 practical \ [27] 2013
31 265.5 234 [27] 2013
31 249.8 248 Sect. 4.2 2023

SFS collision 38 practical \ [27] 2013
39 practical \ Sect. 4.1 2023

256 FS collision 52 2127.5 \ [17] 2012

224
FS collision⋆ 39 practical \ [6] 2015
FS collision 40 2110 \ [17] 2012
FS collision⋆ 40 practical \ Sect. 4.5 2023

512

All
collision

27 practical \ [6] 2015
28 practical \ Sect. 4.4 2023
31 2115.6 277.3 Sect. 4.3 2023

SFS collision 38 practical \ [8] 2014
39 practical \ [6] 2015

384 FS collision 40 2183 \ [17] 2012
FS collision⋆ 41 practical \ [6] 2015

256 FS collision⋆ 43 practical \ [6] 2015

224 FS collision⋆ 44 practical \ [6] 2015

The source code to search for the differential characteristics and verify the
(SFS/FS) collisions for SHA-256 and SHA-512 is available at https://github.com
/Peace9911/sha_2_attack.git
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Outline. This paper is organized as follows. The notations and some preliminary
works of this paper are introduced in Section 2. A high-level overview of how to
implement the MILP-based method with an SAT/SMT-based method and how
to overcome more contradictions in the differential characteristics of SHA-2 in
is given Section 3. Then, we show how to find the differential characteristics to
mount the (SFS/FS) collisions for SHA-2 in Section 4. Finally, we conclude this
paper in Section 5.

2 Preliminaries

2.1 Notations

For a better understanding of this paper, we introduce the following notations.

1. ⊞ and ⊟ represent modulo addition and modulo subtraction on 32/64 bits,
respectively.

2. ≫, ≫, ⊕, ¬, ∨ and ∧ represent shift right, rotate right, exclusive or, not, or,
and and, respectively.

3. x[i] denotes the i-th bit of x and x[0] is the least significant bit.
4. δx denotes the modular difference, i.e., δx = x′ ⊟ x.
5. ∆x denotes the signed difference between x′ and x. We use the same notation

as in [21,23], i.e.,

∆x[i] =



n (x[i] = 0, x′[i] = 1)

u (x[i] = 1, x′[i] = 0)

= (x[i] = x′[i])

0 (x[i] = x′[i] = 0)

1 (x[i] = x′[i] = 1)

(1)

6. M = (m0,m1, . . . ,m15) and M ′ = (m′
0,m

′
1, . . . ,m

′
15) represent two message

blocks.

Definition 1. [23] The signed difference ∆x is said to be an expansion of the
modular difference δx only when ∆x corresponds to the modular difference δx.

Definition 2. [23] The hamming weight of the signed difference ∆x is denoted
by H(∆x) and H(∆x) is the number of indices i such that ∆x[i] ∈ {n, u}.

For example, let

∆x0 = [==== nu== ==== ==== ==== ==== ==== ====],
∆x1 = [==== =n== ==== ==== ==== ==== ==== ====].

Then, both ∆x0 and ∆x1 are the expansions of δx = 226. Moreover, we have
H(∆x0) = 2 and H(∆x1) = 1. As each signed difference corresponds to a
unique modular difference, for convenience, when computing δx⊞ δy for a given
(∆x,∆y), we also simply denote δx ⊞ δy by ∆x ⊞∆y. For the above example,
we have ∆x0 ⊞∆x1 = 227.
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2.2 Description of SHA-2

The SHA-2 family is a series of hash functions standardized by NIST as part of
the Secure Hash Standard (SHS) [7]. This family mainly consists of two versions,
namely SHA-256 and SHA-512. Furthermore, NIST defines a general truncation
procedure for SHA-256 and SHA-512, which includes SHA-224, SHA-512/224,
SHA-512/256 and SHA-384. SHA-2 adopts the well-known Merkle-Damgård con-
struction [5,30], and its compression functions employ the Davies-Meyer con-
struction. As the two main versions of SHA-2, SHA-256 and SHA-512 have 32-bit
and 64-bit state words, respectively. SHA-256 and SHA-512 utilize 512-bit mes-
sage words and 1024-bit message words as input, with their chaining variables
and final outputs being 256 bits and 512 bits, respectively.

The compression functions of SHA-256 and SHA-512 are computed through
iterative updates to internal states. The number of steps, which is denoted by
r, is 64 for SHA-256 and 80 for SHA-512. In the following, we provide a brief
overview of their compression functions. They consist of two main parts: the
message expansion and the state update transformation. A complete description
of SHA-2 is given in [7].

Message Expansion. The 512-bit message block for SHA-256 and the 1024-bit
message block for SHA-512 are divided into 16 message words of sizes 32 bits and
64 bits, respectively, which are denoted by (m1, . . . ,m15). Then, the 16 message
words are expanded to r expanded message words Wi, i.e., W0,W1, . . . ,Wr−1:

Wi =

{
mi 0 ≤ i ≤ 15,

σ1(Wi−2)⊞Wi−7 ⊞ σ0(Wi−15)⊞Wi−16 16 ≤ i ≤ r − 1.

The functions σ0(x) and σ1(x) in SHA-256 are given by

σ0(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x ≫ 3),

σ1(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x ≫ 10).

The functions σ0(x) and σ1(x) in SHA-512 are given by

σ0(x) = (x ≫ 1)⊕ (x ≫ 8)⊕ (x ≫ 7),

σ1(x) = (x ≫ 19)⊕ (x ≫ 61)⊕ (x ≫ 6).

State update transformation. We utilize the alternate description for the
state update of SHA-256 and SHA-512, as illustrated in Figure 1.

The state update transformation starts from a 256-bit (resp. 512-bit) chain-
ing value iv = (A−1, . . . , A−4, E−1, . . . , E−4) for SHA-256 (resp. SHA-512), and
updates it by applying the step function r times. In each step i = 0, . . . , r − 1,
one expanded message word Wi is used to compute the two state words Ei and
Ai as follows, where Ki is a predefined constant and can be referred to [7].

Ei = Ai−4 ⊞ Ei−4 ⊞Σ1(Ei−1)⊞ IF(Ei−1, Ei−2, Ei−3)⊞Ki ⊞Wi,

Ai = Ei ⊟Ai−4 ⊞Σ0(Ai−1)⊞MAJ(Ai−1, Ai−2, Ai−3).
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Ai−1 Ai−2 Ai−3 Ai−4 Ei−1 Ei−2 Ei−3 Ei−4

Σ0

Maj

Σ1

If

Ei−3Ei−2Ei−1EiAi−3Ai−2Ai−1Ai

Wi

Ki

Fig. 1. The state update transformation of SHA-2.

Both SHA-256 and SHA-512 utilize the same Boolean functions IF and MAJ,
as defined below:

IF(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ z,

MAJ(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z).

However, the linear functions Σ0 and Σ1 are different for SHA-256 and
SHA-512. For SHA-256, they are defined below:

Σ0(x) = (x ≫ 2)⊕ (x ≫ 13)⊕ (x ≫ 22),

Σ1(x) = (x ≫ 6)⊕ (x ≫ 11)⊕ (x ≫ 25).

For SHA-512, they are defined below:

Σ0(x) = (x ≫ 28)⊕ (x ≫ 34)⊕ (x ≫ 39),

Σ1(x) = (x ≫ 14)⊕ (x ≫ 18)⊕ (x ≫ 41).

After the last step of the state update transformation, the previous chaining
value is added to the output of the state update. The result of this feed-forward
sum is the chaining value h:

h = (A63 ⊞A−1, . . . , A60 ⊞A−4, E63 ⊞ E−1, . . . , E60 ⊞ E−4).

On finding (FS/SFS) collisions. Denote the compression function of SHA-2
by hi = H(hi−1,Mi). To find a collision with j message blocks, we need to
find (M1, . . . ,Mj) and (M ′

1, . . . ,M
′
j) ̸= (M1, . . . ,Mj) such that hj = h′

j where
h′
i = H(h′

i−1,M
′
i) and h0 = h′

0 is a predefined constant. In most cases, only
Mj ̸= M ′

j is required and we have Mk = M ′
k for 1 ≤ k < j. To find SFS

collisions, we need to find H(h,M) = H(h,M ′) where M ̸= M ′ and h can be
an arbitrary value. To find FS collisions, we need to find H(h,M) = H(h′,M ′)
where M ̸= M ′ and (h, h′) can be arbitrary values.
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2.3 Previous Methods to Search for Differential Characteristics

Almost all effective collision attacks on the MD-SHA hash family rely on Wang et
al.’s techniques [37,38,39]. One of the most important steps is to find a collision-
generating differential characteristic. For this purpose, there are three methods
in the literature, as summarized below.

– Hand-crafted method: This remarkable work was first done by Wang et
al. in their ground-breaking works on MD4 [37], MD5 [39], SHA-0 [40], and
SHA-1 [38]. However, for complex designs like SHA-256 and RIPEMD-160,
finding such differential characteristics for a large number of steps by hand
is almost impossible, or at least considerably time-consuming.

– Ad-hoc heuristic search tools: De Cannière and Rechberger developed
the first heuristic search tool for this problem based on the guess-and-
determine (GnD) technique, and successfully applied it to SHA-1 [4]. Sub-
sequently, this heuristic search tool were further developed and it has been
applied to many hash functions like RIPEMD-128, RIPEMD-160, SHA-256,
and SHA-512 [6,8,14,18,19,22,24,25,26,27,28]. However, the implementation
of this GnD-based tool is not open-source. Although Stevens made his tools
for MD5 and SHA-1 [34,35,36] open-source, it requires a significant amount
of work to tweak them for SHA-2 because contradictions much more easily
occur in the differential characteristics of SHA-2, and no existing tools for
SHA-2 are based on this method.

– Off-the-shelf solvers: The method was first explored in [31] with SAT
solvers after Wang et al.’s attacks and it was later also applied to SHA-1
in [35]. The main idea is to construct a model to describe two parallel in-
stances of the value transitions. A new MILP-based method proposed by
Liu et al. [23] is to model the pure signed difference transitions through each
component of the round function, aided with some contradiction-detecting
techniques. Especially, this technique [23] works quite well for RIPEMD-160.

3 SAT/SMT-based Tools for the MD-SHA Hash Family

The first SAT-based method to find collision-generating differential characteris-
tics was proposed in 2006 [31], but the model is to simply describe two parallel
instances of the value transitions. To efficiently capture the information of the
signed difference propagation, the MILP-based method was proposed in [23].
Although the authors of [23] only target RIPEMD-160, since the MD-SHA hash
functions share similar structures, the authors also mention that there are indeed
much more applications beyond RIPEMD-160. Especially, whether it is applicable
to SHA-2 is left as an interesting problem.

We answer this question in this paper. First, we show how to implement
the MILP-based method [23] with an SAT/SMT-based method, and how to
detect more contradictions in SHA-2 characteristics. Then, we demonstrate how
to utilize our tools to find suitable differential characteristics to significantly
improve the (SFS) collision attacks on SHA-2.
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For the MILP-based method in [23], the constraints are already in Conjunc-
tive Normal Form (CNF) due to the usage of the software Friday, which can
output the minimized CNF for a given truth table with the Quine-McCluskey
(QM) algorithm. However, they choose to further convert CNF into linear in-
equalities in order to use the solver Gurobi [23]. In this sense, we can not claim
any novelty for how to re-implement the propagation of signed difference tran-
sitions with SAT/SMT. To make this paper self-contained, we briefly describe
the idea to model the signed difference propagation with SAT/SMT. Note that
when applying it to searching for valid SHA-2 characteristics, nontrivial addi-
tional techniques are required, as can be seen later in our detailed description of
the search strategy.

For the MD-SHA hash family, it can be observed that in their round func-
tions, there are three basic operations:

– modular addition;
– logic shift;
– Boolean functions.

Hence, we only describe how to describe the signed difference transitions through
the modular addition and Boolean functions. For the logic shift, it does affect
the model for RIPEMD-160 as shown in [23]. However, in the case of SHA-2,
there is no such problem and it only affects the order of the variables. Hence, we
simply omit it in this section.

Since we will target both SHA-256 and SHA-512, and their state sizes are 32
and 64 bits, respectively, to make the description of the model general, we treat
the state size as n bits, i.e., the modular addition is within modulo 2n.

3.1 SAT/SMT Models for the Signed Difference Transitions

Similar to [23], we use 2 binary variables (v, d) to describe the signed difference.
Specifically, (0, 0), (0, 1) and (1, 1) correspond to [=], [n] and [u], respectively,
while we always exclude (1, 0) as it carries the same information as (0, 0). For
the n-bit signed difference ∆x, throughout this paper, the signed difference at
the i-th (0 ≤ i ≤ n− 1) bit is always represented by (xv[i], xd[i]). For example,
if n = 5 and ∆x = [=u==n], we have

(xv[0], xd[0]) = (0, 0), (xv[1], xd[1]) = (1, 1), (xv[2], xd[2]) = (0, 0),

(xv[3], xd[3]) = (0, 0), (xv[4], xd[4]) = (0, 1).

Modelling the modular addition. As explained in [23], given the signed
difference ∆x and ∆y, it is sufficient to pick only 1 signed difference ∆z to
describe the modular difference δz = δx⊞ δy.

To achieved this, the intermediate variable ∆c with ∆c[0] = [=] is introduced
and the propagation rules for

(∆x[i], ∆y[i], ∆c[i])
Add−→ (∆z[i], ∆c[i+ 1])
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Table 2. The propagation rules for (∆x[i],∆y[i],∆c[i])
Add−→ (∆z[i],∆c[i+ 1]) in [23]

[=== → ==], [==n → n=], [==u → u=], [=n= → n=],
[=u= → u=], [=nn → =n], [=un → ==], [=nu → ==],
[=uu → =u], [n== → n=], [u== → u=], [n=n → =n],
[u=n → ==], [n=u → ==], [u=u → =u], [nn= → =n],
[nun → n=], [unn → n=], [nnu → n=], [uun → u=],
[unu → u=], [nuu → u=], [uuu → uu].

are shown in Table 2, where 0 ≤ i ≤ n− 1.
With the above method to describe the signed difference, there are 27 possible

values for

(xv[i], xd[i], yv[i], yd[i], cv[i], cd[i], zv[i], zd[i], cv[i+ 1], cd[i+ 1])

based on Table 2. With the software LogicFriday, we can obtain the correspond-
ing CNF to describe that this tuple can only take these 27 possible values. For
convenience, we denote the CNF by CAdd(i). In this way, the complete model
for the modular addition can be described with CAdd(i) for 0 ≤ i ≤ n − 1 and
(cv[0], cd[0]) = (0, 0).

For convenience, we denote the model for the modular addition δz = δx⊞ δy
by CAdd(∆x,∆y,∆z,∆c).

Modelling the expansions of the modular difference [23]. In the above
model, the signed difference transition through the modular addition is deter-
ministic. To obtain all possible signed differences corresponding to the same
modular difference, the authors of [23] introduce a model to describe the expan-
sions of the modular difference. Given one ∆z, the aim is to find all possible ∆ξ
such that δξ = δz, i.e., ∆ξ and ∆z correspond to the same modular difference.
To achieve this, as in [23], an intermediate variable ∆c is introduced and there
are two methods to model it, as shown in Table 3.

Table 3. Two methods to describe the propagation rules for the expansion of modular
difference [23]

Method 1 [nn → =n], [uu → =u], [nu → ==], [un → ==],
[n= → n=], [n= → un], [u= → u=], [u= → nu],

(∆z[i],∆c[i])
Exp−→ (∆ξ[i],∆c[i+ 1])

[=n → n=], [=n → un], [=u → u=], [=u → nu],
[== → ==].

Method 2 [=un → n], [=nn → =], [=uu → =], [=nu → u],
[u=n → =], [n=n → n], [u=u → u], [n=u → =],

(∆ξ[i],∆z[i],∆c[i])
Exp−→ (∆c[i+ 1])

[nu= → n], [nn= → =], [uu= → =], [un= → u],
[=== → =].
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Similarly, based on the above way to describe the signed difference and using
the software LogicFriday, the corresponding CNF to describe the constraints on

(zv[i], zd[i], cv[i], cd[i], ξv[i], ξd[i], cv[i+ 1], cd[i+ 1])

for Method 1 can be obtained, which is denoted by CExp(i). The complete model
for the expansion of the modular difference is thus CExp(i) for 0 ≤ i ≤ n− 1 and
(cv[0], cd[0]) = (0, 0) for Method 1.

In the same way, we can also obtain the corresponding CNF denoted by
C′
Exp(i) to describe the constraints on

(ξv[i], ξd[i], zv[i], zd[i], cv[i], cd[i], cv[i+ 1], cd[i+ 1])

for Method 2. The complete model for the expansion of the modular difference
is thus C′

Exp(i) for 0 ≤ i ≤ n− 1 and (cv[0], cd[0]) = (0, 0) for Method 2.
For convenience, we denote the model for the expansions of the modular

addition in Method 1 and Method 2 by CExp(∆z,∆ξ,∆c) and C′
Exp(∆z,∆ξ,∆c).

Modelling the vectorial Boolean functions w = f(x, y, z) [23]. In SHA-2,
there are some vectorial Boolean functions, i.e., f can be XOR, IF or MAJ
where XOR(x, y, z) = x ⊕ y ⊕ z. Note that σ0, σ1, Σ0 and Σ1 in SHA-2 are
basically the same as XOR. Generally speaking, we can have

w[i] = fi(x[i], y[i], z[i])

where fi is a Boolean function F3
2 7→ F2 and 0 ≤ i ≤ n− 1. As described in [23],

there are two models for (fi)0≤i≤n−1 : (i) the fast filtering model; (ii) the full
model.

For the fast filtering model, we first need to build a table to include all valid
propagation rules for (∆x[i], ∆y[i], ∆z[i], ∆w[i]) and then obtain the correspond-
ing valid values for

(xv[i], xd[i], yv[i], yd[i], zv[i], zd[i], wv[i], wd[i]).

Finally, LogicFriday is used to obtain the corresponding CNF for the constraints
on this tuple.

For the full model, we need to involve both the signed difference and bit
values. Specifically, the first step is to list all possible propagation rules for

(∆x[i], ∆y[i], ∆z[i], ∆w[i], x[i], y[i], z[i]),

where (x[i], y[i], z[i]) can make the signed difference transition

(∆x[i], ∆y[i], ∆z[i])
fi−→ ∆w[i]

hold with probability 1. Then, we can obtain all the possible valid values for

(xv[i], xd[i], yv[i], yd[i], zv[i], zd[i], wv[i], wd[i], x[i], y[i], z[i]).
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Finally, with LogicFriday, we obtain the corresponding CNF to describe the
constraints on this tuple.

For convenience, we denote the fast filtering model and full model for w =
f(x, y, z) by Cf

fast(∆x,∆y,∆z,∆w) and Cf
full(∆x,∆y,∆z,∆w, x, y, z), respec-

tively.

3.2 SAT/SMT Models for the Value Transitions

In SHA-2, contradictions easily occur in the collision-generating differential char-
acteristics. To avoid this, we use the technique proposed by Liu et al. at CRYPTO
2020 [20]: using one model for the differential characteristic and another model
for the value transitions. In the above model for the differential characteristic, we
have included the relations between the value and the differential characteristic
if using the full model for the Boolean functions. Specially, if the full model is
applied to step i, the conditions on the internal states at step i−1, i−2 and i−3
to ensure the difference transitions have been added. Then, we can further build
a model to optionally describe how to compute the internal state i− 1 or i− 2
or i − 3 in order to test whether these conditions can hold, which is the model
for the value transitions. It is easy to build the model for the value transitions
as we only need to model the modular addition and Boolean functions.

To compute z = x⊞ y, we can simply introduce a variable c with c[0] = 0 to
denote the carry. Then, we list all possible values for the tuple (x[i], y[i], c[i], z[i])
and get the corresponding CNF for the model addition. For convenience, we
denote the model for the modular addition of the value by CAdd

V al (x, y, z, c).
To compute w = f(x, y, z), we can simply list all possible valid values for the

tuple (x[i], y[i], z[i], w[i]) and get the corresponding CNF. For convenience, the
model for the vectorial Boolean function f is denoted by Cf

V al(x, y, z, c).
With the two basic models CAdd

V al and Cf
val, we can simply build the model for

the value transitions through the step function of SHA-2 by decomposing the step
function with intermediate variables. For convenience, the models to compute
Ei, Ai and Wi are denoted by CE

V al(i), CA
V al(i) and CW

V al(i), respectively.

Remark 1. With the model for value transitions, we can also use it to search
for conforming input pairs for some dense parts of the differential characteristic.
Specially, after a differential characteristic is obtained, we first derive all the
differential conditions. Then, to find the conforming input pairs for the dense
part of the characteristic, we simply use the value transitions for this part and
add the corresponding differential conditions on the internal states to the model.
This will be frequently used in our attacks in order to search for conforming
message pairs automatically. Indeed, it is not surprising that this method has
been used in [20,31].

3.3 Models for SHA-2

we can give a high-level description of the model for the step function of SHA-2,
as shown in Algorithm 1. In this algorithm, we implicitly introduce many in-
termediate variables (∆Bi,j , ∆Ci,j), where ∆Bi,j is used to decompose the step
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function and ∆Ci,j is used to denote the carry. Their concrete meanings should
be clear from the context. In addition, we also provide several optional parame-
ters (OP1,OP2,OP3,OP4,OP5,OP6,OP7,OP8) to control the search strategy to increase
the flexibility of the model.

4 New (SFS/FS) Collision Attacks on SHA-2

In the (FS/SFS) collision attacks on SHA-2 [6,8,25,27] with the GnD tools, a
crucial step is to first search for a relatively complex local collision in the message
expansion, where nonzero message differences exist in the middle steps, and the
differences will be cancelled in as many consecutive steps as possible in the
forward and backward directions.

Basically, after determining the local collision in the message expansion, the
number of attacked steps is also known. However, finding a valid attack further
requires attackers to finish the following two tasks:

Task 1: searching for a corresponding differential characteristic in (Ai, Ei);
Task 2: finding the conforming message pair to ensure the validity of the differ-

ential characteristic since contradictions easily occur.

In some cases, even though we know there may exist a good local collision in
the message expansion, it may be still infeasible to find a valid attack due to the
difficulty of Task 1 or Task 2. For example, the SFS collision attack can reach
39 steps of SHA-512, but could not reach 39 steps of SHA-256. Moreover, the
best collision attack on SHA-256 could reach 31 steps, while it is only 27 steps
for SHA-512.

4.1 The First Practical SFS Collision for 39-Step SHA-256

We note that there is a practical SFS collision attack on 39-step SHA-512 pub-
lished at ASIACRYPT 2015 [6]. However, the authors did not report any attacks
on 39-step SHA-256, even though SHA-256 and SHA-512 share almost the same
message expansion and state update function, i.e., only with different state sizes
and different rotation numbers in Σ and σ. Specifically, the strategy to construct
the local collision for 39-step SHA-512 should have been applicable to 39-step
SHA-256, and this cannot be the bottleneck. We thus believe that the difficulty
exists in either Task 1 or Task 2.

Hence, we aim to retake this challenge with the new SAT/SMT-based tech-
nique. First, we observe that in the differential characteristic for 39-step SHA-512
in [6], the local collision spans over 19 steps (steps 8−26), and the nonzero mes-
sage differences exist in 9 words (W8, . . . ,W12,W16,W17,W24,W26). In addition,
in (W26,W17, A18), there is only a one-bit difference, respectively.

In our new attack on 39-step SHA-256, we use the same strategy to construct
the local collision, as shown in Figure 2(a). Different from the ad-hoc GnD
techniques [6,8,27], it is efficient to use our SAT/SMT-based technique to find a
sparse differential characteristic by minimizing the Hamming weight of the signed
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Algorithm 1 High-level description of the model for the step function of SHA-2
1: procedure SHA2(i,OP1,OP2,OP3,OP4,OP5,OP6,OP7,OP8)
2: SHA2-E(i,OP1,OP2,OP3)
3: SHA2-A(i,OP4,OP5,OP6)
4: if i ≥ 16 then
5: SHA2-W(i,OP7)
6: if OP8==1 then
7: CE

V al(i), CA
V al(i), CW

V al(i)

8: procedure SHA2-E(i,OP1,OP2,OP3)
9: CAdd(∆Ai−4,∆Wi,∆Bi,0,∆Ci,0)

10: CAdd(∆Ei−4,∆Bi,0,∆Bi,1,∆Ci,1)
11: Es

i−1 = Ei−1 ≫ s,
12: if OP1==1 then CXOR

fast (∆E2
i−1,∆E13

i−1,∆E22
i−1,∆Bi,2)

13: else
14: CXOR

full (∆E2
i−1,∆E13

i−1,∆E22
i−1,∆Bi,2, E

2
i−1, E

13
i−1, E

22
i−1)

15: CAdd(∆Bi,1,∆Bi,2,∆Bi,3,∆Ci,2)
16: if OP2==1 then CIF

fast(∆Ei−1,∆Ei−2,∆Ei−3,∆Bi,4)
17: else
18: CIF

full(∆Ei−1,∆Ei−2,∆Ei−3,∆Bi,4, Ei−1, Ei−2, Ei−3)

19: CAdd(∆Bi,3,∆Bi,4,∆Bi,5,∆Ci,3)
20: if OP3==1 then CExp(∆Bi,5,∆Ei,∆Ci,4)
21: else
22: C′

Exp(∆Bi,5,∆Ei,∆Ci,4)

23: procedure SHA2-A(i,OP4,OP5,OP6)
24: As

i−1 = Ai−1 ≫ s,
25: if OP4==1 then CXOR

fast (∆A6
i−1,∆A11

i−1,∆A25
i−1,∆Bi,6)

26: else
27: CXOR

full (∆A6
i−1,∆A11

i−1,∆A25
i−1,∆Bi,6, A

6
i−1, A

11
i−1, A

25
i−1)

28: if OP5==1 then CMAJ
fast (∆Ai−1,∆Ai−2,∆Ai−3,∆Bi,7)

29: else
30: CMAJ

full (∆Ai−1,∆Ai−2,∆Ai−3,∆Bi,7, Ai−1, Ai−2, Ai−3)

31: CAdd(∆Bi,6,∆Bi,7,∆Bi,8,∆Ci,5)
32: CAdd(∆Ai−4,∆Bi,8,∆Bi,9,∆Ci,6)
33: CAdd(∆Ai,9,∆Bi,10,∆Ei,∆Ci,7)
34: if OP6==1 then CExp(∆Bi,10,∆Ai,∆Ci,8)
35: else
36: C′

Exp(∆Bi,10,∆Ai,∆Ci,8)

37: procedure SHA2-W(i,OP7)
38: W s

i−2 = Wi−2 ≫ s,W s
i−2

′ = Wi−2 ≫ s,
39: CXOR

full (∆W 17
i−2,∆W 19

i−2,∆W 10
i−2

′
,∆Bi,10,W

17
i−2,W

19
i−2,W

10
i−2

′
)

40: W s
i−15 = Wi−15 ≫ s,W s

i−15
′ = Wi−15 ≫ s,

41: CXOR
full (∆W 7

i−15,∆W 18
i−15,∆W 3

i−15
′
,∆Bi,11,W

7
i−15,W

18
i−15,W

3
i−15

′
)

42: CAdd(∆Bi,10,∆Wi−7,∆Bi,12,∆Ci,9)
43: CAdd(∆Bi,11,∆Bi,12,∆Bi,13,∆Ci,10)
44: CAdd(∆Bi,13,∆Wi−16,∆Bi,14,∆Ci,11)
45: if OP7==1 then CExp(∆Bi,14,∆Wi,∆Ci,12)
46: else
47: C′

Exp(∆Bi,14,∆Wi,∆Ci,12)
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differences. This is crucial to improve the uncontrolled differential probability
and to make the message modification more practical. Our general procedure
to search for the differential characteristic for 39-step SHA-256 is summarized
below:

Step 1: Minimize the Hamming weight of ∆Wi. Specifically, find the mini-
mal value of tw =

∑38
i=0 H(∆Wi) such that the nonzero differences only

exist in the 9 expanded message words (W8, . . . ,W12,W16,W17,W24,W26).
Note that the concrete message differences are not specified at this step
and the only goal is to find the minimal value tw.

Step 2: Minimize the Hamming weight of ∆Ai. Specifically, under the con-
ditions

∀i ∈ [19, 38] : δAi = 0,

∀i ∈ [23, 38] : δEi = 0,

∀i ∈ [0, 38] and i /∈ {8, . . . , 12, 16, 17, 24, 26} : δWi = 0,
38∑
i=0

H(∆Wi) = tw,

find the minimal value of tA =
∑38

i=0 H(∆Ai) such that there exists a
solution of a 39-step collision-generating differential characteristic, i.e.,
there is a solution to (∆Wi, ∆Ai, ∆Ei) for 0 ≤ i ≤ 38 to allow a 39-
step attack. Still, we only aim at the minimal value tA, and do not fix
(∆Wi, ∆Ai, ∆Ei) according to the solution at this step.

Step 3: Minimize the Hamming weight of ∆Ei. In addition to the condi-
tions at Step 2, we further add the condition

38∑
i=0

H(∆Ai) = tA.

Under these conditions, find and output the solution of (∆Wi, ∆Ai, ∆Ei)

for 0 ≤ i ≤ 38 that minimizes
∑38

i=0 H(∆Ei).

Following the above procedure, we successfully found a corresponding 39-step
differential characteristic, as shown in Table 4. By our procedure, this differential
characteristic can be kept as sparse as possible and hence it is expected to be
valid.

Remark 2. Our strategy to search for a concrete 39-step differential character-
istic is different from the GnD technique in [6] because we first minimize the
Hamming weight of (∆Wi, ∆Ai) and then search the solution under such con-
straints. However, there is no such a minimization procedure when searching for
the differential characteristic in 39-step SHA-512 in [6]. Without this strategy,
the differential characteristic may be dense and there is a high chance that it is
invalid, which may somehow explain why the technique in [6] failed for 39-step
SHA-256.
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Message modification. As the differential characteristic is still relatively
dense, we could not ensure that there must exist a conforming message pair. To
verify this, we first extract all the constraints on (Ai, Ei)−4≤i≤22 and (Wi)0≤i≤38

for this differential characteristic. Then add these constraints to the SAT/SMT
model for the value transitions of SHA-256, and solve the model to find a solu-
tion of these variables. We succeed in finding a practical SFS colliding message
pair for 39-step SHA-256 in 120 seconds with 26 threads, as shown in Table 5.
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Fig. 2. (a) represent the shape of the 39-step differential SHA-256 and (b) represent
the shape of the differential characteristic for 31-step SHA-256

4.2 Improved Collision Attacks on 31-Step SHA-256

The best existing collision attack on SHA-256 reaches 31 steps, which was pub-
lished at EUROCRYPT 2013 [27]. The main idea is to use a two-block method
to convert a SFS collision into a collision by utilizing the available degrees of
freedom in the first few message words. To achieve this purpose, the first step
is to find a suitable differential characteristic for 31-step SHA-256. In [27], this
31-step differential characteristic relies on a properly constructed local collision
in the message expansion, which spans over 14 steps (steps 5−18). Specifically,
the nonzero message differences only exist in 7 expanded message words

(W5,W6,W7,W8,W9,W16,W18).

Moreover, there are no conditions on the first 5 expanded message words (Wi)0≤i≤4

and hence they can be freely chosen to efficiently convert a SFS collision into
a collision. The shape of the 31-step differential characteristic is shown in Fig-
ure 2(b).

The method in [27] to convert SFS collisions into collisions is described below:

Step 1: Find 2ℓ solutions of (Ai)−3≤i≤12, (Ei)1≤i≤12 and (Wi)5≤i≤12 that satisfy
the differential conditions on steps 5−12. Store them in a table denoted
by TAB1.
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Table 4. The differential characteristic for 39 steps of SHA-256

i ∆Ai ∆Ei ∆Wi

-4 ================================ ================================
-3 ================================ ================================
-2 ================================ ================================
-1 ================================ ================================
0 ================================ ================================ ================================
1 ================================ ================================ ================================
2 ================================ ================================ ================================
3 ================================ ================================ ================================
4 ================================ ================================ ================================
5 ================================ ================================ ================================
6 ================================ ===0============================ ================================
7 ================================ ===1=========11=====11======0=== ================================
8 ===u============================ unnn1=1110=0=0101==00011==11110= ===u============================
9 ==============n=u====u======n=== 010n0n0111010nu01001un011n10n=10 ======n===u==========u==========
10 ================================ 0101u1n=1n0n010=u0=11nuu=1u00=n1 ===n============================
11 ================================ =100010000=0101=0===0010=10=1=0= =======nn=======n===n===nn==uu=n
12 ================================ =unn010000=1000011=00011==0=101= =============u=======nn=========
13 ================================ 10110nuuuuuuuuu0u101un000010n111 ================================
14 ================================ =111=0000000000=0=1=001111111=1= ================================
15 ============================n=== 11001101101000000001nuuuuuuuu001 ================================
16 =======u=u=======u============== 010100unu000001001u1000110unn=n1 ======n===u==========u==========
17 ================================ 1100111u00nn=100110=u1u00unn000n ===n============================
18 ===n============================ uuu1uuuu01000=110n000111101=0101 ================================
19 ================================ 000u0n1000101=0un01=1100=u11n000 ================================
20 ================================ 011100un0u001unnnn11000000001111 ================================
21 ================================ =110=111=0===000=1=======1==1=== ================================
22 ================================ =nuu==0110===00101=0110=====110= ================================
23 ================================ =000============================ ================================
24 ================================ =111============================ =======n=n=======n==============
25 ================================ ================================ ================================
26 ================================ ================================ ===u============================
27 ================================ ================================ ================================
28 ================================ ================================ ================================
29 ================================ ================================ ================================
30 ================================ ================================ ================================
31 ================================ ================================ ================================
32 ================================ ================================ ================================
33 ================================ ================================ ================================
34 ================================ ================================ ================================
35 ================================ ================================ ================================
36 ================================ ================================ ================================
37 ================================ ================================ ================================
38 ================================ ================================ ================================

Table 5. The SFS colliding message pair for 39 steps of SHA-256

cv 02b19d5a 88e1df04 5ea3c7b7 f2f7d1a4 86cb1b1f c8ee51a5 1b4d0541 651b92e7

M
c61d6de7 755336e8 5e61d618 18036de6 a79f2f1d f2b44c7b 4c0ef36b a85d45cf
f72b8c2f 0def947c a0eab159 8021370c 4b0d8011 7aad07f6 33cd6902 3bad5d64

M ′ c61d6de7 755336e8 5e61d618 18036de6 a79f2f1d f2b44c7b 4c0ef36b a85d45cf
e72b8c2f 0fcf907c b0eab159 81a1bfc1 4b098611 7aad07f6 33cd6902 3bad5d64

hash 431cadcd ce6893bb d6c9689a 334854e8 3baae1ab 038a195a ccf54a19 1c40606d
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Step 2: Compute 296−ℓ arbitrary first message blocks and get 296−ℓ chaining
inputs (A−4, . . . , A−1) and (E−4, . . . , E−1). Check TAB1 and find a match
in (A−3, A−2, A−1). Then, (Wi)0≤i≤4 and E0 are all determined for this
match.

Step 3: At this step, (Wi)0≤i≤12 have been fixed. Use the degrees of freedom
in (W13,W14,W15) to fulfill the remaining uncontrolled conditions on
(E13, E14, E15,W16,W18). If it fails, go to Step 2.

Supposing Step 3 succeeds with probability 2−γ , the time complexity for this
two-block method to find a collision is 296−ℓ+γ + 2ℓ · Ttool, where Ttool denotes
the time to find a solution of (Ai)−3≤i≤12, (Ei)1≤i≤12 and (Wi)5≤i≤12 at Step
1. The memory complexity is 2ℓ. In [27], ℓ ≈ 34, γ ≈ 3.5 and Ttool is negligible.
Hence the time complexity is estimated as 265.5 and the memory complexity is
234.

According to the above analysis, it is clear that ℓ and γ should be improved to
get better attacks. Moreover, the best time-memory trade-off cannot be achieved
with their 31-step differential characteristic [27]. Note that the maximal value
of ℓ is dominated by the number of differential conditions on steps 5−12 and
hence we can expect a relatively larger ℓ with a sparser differential character-
istic. Therefore, we are interested whether it is possible to find a new sparser
differential characteristic with our tool that can help achieve the optimal time-
memory trade-off, i.e., with time and memory complexity close to 296/2 = 248.
The overall searching procedure is stated as follows:

1. Minimize the Hamming weight of ∆Wi. Specifically, find the mini-
mal value of tw =

∑30
i=0 H(∆Wi) while keeping the minimal H(∆W16) and

the minimal H(∆W18) such that the nonzero differences only exist in the
7 expanded message words (W5,W6,W7,W8,W9,W16,W18). Note that the
concrete message differences are not specified at this step.

2. Minimize the Hamming weight of ∆Ai. Specifically, under the condi-
tions

∀i ∈ [11, 30] : δAi = 0,

∀i ∈ [15, 30] : δEi = 0,

∀i ∈ [0, 30] and i /∈ {5, . . . , 9, 16, 18} : δWi = 0,
30∑
i=0

H(∆Wi) = tw,

find the minimal value of tA =
∑30

i=0 H(∆Ai) such that there is a solution
to (∆Wi, ∆Ai, ∆Ei) for 0 ≤ i ≤ 30 to allow a 31-step attack. Still, we only
aim at the minimal value tA, and do not fix (∆Wi, ∆Ai, ∆Ei) according to
the solution at this step.

3. Minimize the Hamming weight of ∆Ei. In addition to the conditions
at Step 2, we further add the condition

30∑
i=0

H(∆Ai) = tA.
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Under these conditions, find and output the solution minimizing
∑30

i=0 H(∆Ei)
to allow a 31-step attack.

As already mentioned in our SAT/SMT models, to further detect the contra-
dictions caused by the complex relationship between (Ai, Ei,Wi), we sometimes
add the value transitions at certain steps to ensure its validity. In our model for
the 31-step differential characteristic, this strategy is applied to (Ai, Ei,Wi)7≤i≤10.
Without this strategy, we found that the obtained differential characteristic was
indeed invalid3. Our new 31-step differential characteristic is shown in Table 6.

Estimating ℓ and γ. We use a dedicated method to find valid solutions of
(Ai)−3≤i≤12, (Ei)1≤i≤12 and (Wi)5≤i≤12 such that ℓ can be better estimated.
First, use the model for the value transitions to find a solution of (Ai)1≤i≤12,
(Ei)5≤i≤12 and (Wi)9≤i≤12 that satisfy the differential conditions on steps 5−12.
For simplicity, this solution is called a starting point for 31-step SHA-256. Due
to

Ai = Ei ⊟Ai−4 ⊞Σ0(Ai−1)⊞MAJ(Ai−1, Ai−2, Ai−3), (2)

(A−3, A−2, A−1, A0) will then depend on (E1, E2, E3, E4) for this starting
point. Moreover, according to

Ei = Ai−4 ⊞ Ei−4 ⊞Σ1(Ei−1)⊞ IF(Ei−1, Ei−2, Ei−3)⊞Ki ⊞Wi, (3)

(E1, E2, E3, E4) will depend on (W5, W6, W7, W8) for this starting point. By
analyzing the conditions on (W5, W6, W7, W8) to ensure the local collision in the
message expansion, we find that there are in total 214, 223, 227 and 225 possible
values of W5, W6, W7 and W8, respectively. Since there are no conditions on
(E1, E2) or (A−3, A−2, A−1, A0) for this differential characteristic to hold, we
only need to check how many (W7,W8) are left to ensure the conditions on
(E3, E4) for this starting point. Experiments suggest that there are 211 valid
(W7,W8) left. Hence, based on this starting point, we can expect to generate
214+23+11 = 248 valid solutions of (Ai)−3≤i≤12, (Ei)1≤i≤12 and (Wi)5≤i≤12. For
γ, since we do not have enough degrees of freedom in (W13,W14,W15), we found
that γ ≈ 1.3 by 100 tests. If we can generate 2ℓ1 starting points, then we have
2ℓ = 2ℓ1+48. Hence, the time complexity of the new collision attack on 31-step
SHA-256 is estimated as

296−48−ℓ1+1.3 + 248+ℓ1 + 2ℓ1 · Tmodel,

where Tmodel ≈ 231.7 denotes the time to generate a starting point and is always
negligible. With ℓ1 = 0, i.e., only using one starting point, the time complexity
is about 249.8 and the memory complexity is 248. With this improved attack,
we are much closer to a practical collision attack on 31-step SHA-256 and the
bottleneck is the memory consumption. A possible practical implementation is
to use less memory at the cost of increased time complexity.
3 When searching for the differential characteristic for 39-step SHA-256, this strategy

was not applied because we found that the obtained differential characteristic was
valid.
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Table 6. The differential characteristic for 31 steps of SHA-256

i ∆Ai ∆Ei ∆Wi

-4 ================================ ================================
-3 ================================ ================================
-2 ================================ ================================
-1 ================================ ================================
0 ================================ ================================ ================================
1 ================================ ================================ ================================
2 ================================ ================================ ================================
3 ================================ ==========================10==== ================================
4 ================================ ============0===0=========01===0 ================================
5 ===================n=unnnnnnn=n= 000111010001111110nu=11111unnnu1 ================nuuu=======0=uu=
6 ========n======================u 101011=11==0n0==u11110==1110011n ==========u=====u===u======n===u
7 ===u===n==n========n=========n=u un0u1100n=01u11111001u1=n110u10n =u=u=======n=====n=nu=n=====nun=
8 =============================n== 1u01un0u0=1=1=11n=0=u0=001001u0= =u=nn==========u===u===u==1=====
9 ================================ 01100001110=0=010===00=11101u0=1 ================u==========1=u==
10 ================u============u== =1n1uuuuu0100=1un0=10unnnnnnn010 ================================
11 ================================ =01u1010uu1==11100===1000001n=0= ================================
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4.3 The First Collision Attack on 31-Step SHA-512

While the best existing collision attack on SHA-256 reaches 31 steps, the best
collision attack on SHA-512 could only reach up to 27 steps, which was reported
at ASIACRYPT 2015 [6]. The authors also stated in [6] that they could not
find better collision attacks on SHA-512 because they could not find a suitable
differential characteristic with their tools. In this part, we show how to overcome
this obstacle.

Our practical SFS collision attack on 39-step SHA-256 benefits much from
the practical SFS collision attack on 39-step SHA-512 due to their similarity.
Hence, we feel interested to know whether it is possible to find a suitable differ-
ential characteristic for 31-step SHA-512 based on the collision attack on 31-step
SHA-256 [27] with our new tool.

Specifically, similar to the 31-step attack on SHA-256, the nonzero message
differences are injected in

(W5,W6,W7,W8,W9,W16,W18),

and the local collision in the message expansion spans over 14 steps (steps 5−28),
as shown in Figure 2(b). Similar to the collision attack on 31-step SHA-256, we
first find SFS collisions and then convert them into collisions with the two-
block method. The general procedure to convert SFS collisions into collisions is
essentially the same and we refer the readers to the above improved attack on
31-step SHA-256.

The most challenging step to achieve the collision attack on 31-step SHA-512
is how to find a valid differential characteristic. In what follows, we describe how
to use our tool to solve this problem.

Step 1: Find a solution of (∆Wi)0≤i≤30 with the minimal
∑30

i=0 H(∆Wi), while
keeping the minimal H(∆W16) and the minimal H(∆W18), which allows
a local collision in the message expansion.

Step 2: With the fixed solution of (∆Wi)0≤i≤30 obtained at Step 1, find a valid
solution of (∆Ai, ∆Ei)0≤i≤30, which follows the shape of the 31-step
differential characteristic shown in Figure 2(b). Here, set a threshold to∑30

i=0 H(∆Ai). Specifically, choose an integer tr and add the constraint

30∑
i=0

H(∆Ai) ≤ tr

to the model. If the solver cannot output a solution in a reasonable time,
e.g., 72 hours, increase tr until a valid solution of (∆Ai, ∆Ei)0≤i≤30 is
found. Keep the solution of (∆Ai)0≤i≤30.

Step 3: With the fixed solution of (∆Ai, ∆Wi)0≤i≤30, find a valid solution of
(∆Ei)0≤i≤30 with the minimal

∑30
i=0 H(∆Ei), which allows a 31-step

collision attack.

It is found that the obtained 31-step differential characteristic is invalid. There-
fore, we propose to use the following method to correct this obtained solution.
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Step 1: Set (∆Ei)5≤i≤7 as unknown variables. For the remaining (∆Ei)0≤i≤30

where i /∈ {5, 6, 7}, keep them the same as those in the obtained solu-
tion. For (∆Ai)0≤i≤30 and (∆Wi)0≤i≤30, they are also kept the same
as those in the obtained solution.

Step 2: Add the constraints describing the value transitions for (Ai, Ei,Wi)7≤i≤12

to the model.

In summary, we utilize the degrees of freedom in (∆Ai, ∆Ei)5≤i≤7 and the model
for value transitions to correct an invalid 31-step differential characteristic. In
our search, the corresponding 31-step differential characteristic is shown in Table
7.

Complexity evaluation. As already mentioned, the only challenge to achieve
the collision attack on 31-step SHA-512 is to find a suitable differential char-
acteristic. Once it is found, the two-block method for 31-step SHA-256 can be
directly applied. For consistency, we use the same notation, i.e., use (ℓ, γ, ℓ1) to
describe the time complexity and memory complexity as in the above collision
attack on 31-step SHA-256. For our 31-step differential characteristic, there are
in total 236, 226, 225 and 243 possible values for W5, W6, W7 and W8, respec-
tively. For each starting point, i.e., the solution of (Ai)1≤i≤12, (Ei)5≤i≤12 and
(Wi)9≤i≤12, we have experimentally found that there are on average 215.3 pos-
sible (W7,W8) that can make the conditions on (E3, E4) hold. Therefore, for
each starting point, we can generate 236+26+15.3 = 277.3 candidate solutions of
(Ai)−3≤i≤12, (Ei)1≤i≤12 and (Wi)5≤i≤12. For 2ℓ1 starting points, we thus can
expect to generate 2ℓ = 2ℓ1+77.3 such many solutions. For γ, similarly, we found
γ ≈ 0.9 according to 100 experiments. Since the time complexity to generate a
starting point is negligible, the whole time complexity is estimated as

264×3−(ℓ1+77.3)+0.9 + 2ℓ1+77.3

and the memory complexity is 2ℓ1+77.3. With ℓ1 = 0, i.e., only one starting point,
the time and memory complexity are 2115.6 and 277.3, respectively.

4.4 The Practical Collision Attack on 28-Step SHA-512

Similar to the 28-step attack on SHA-256 [27], the nonzero message differences
are injected in

(W8,W9,W13,W16,W18),

and the local collision in the message expansion spans over 11 steps (steps 8−18),
resulting in a collision on 28-step SHA-512.

The most challenging step to achieve the collision attack on 28-step SHA-512
is how to find a valid differential characteristic. In what follows, we describe how
to use our tool to solve this problem.

Step 1: Find a solution of (∆Wi)0≤i≤27 with the minimal
∑27

i=0 H(∆Wi) while
keeping the minimal H(∆W16) and the minimal H(∆W18), which allows
a local collision in the message expansion.
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Step 2: Find the suitable ∆Ei. With the fixed solution of (∆Wi)0≤i≤27 ob-
tained at Step 1, find a valid solution of (∆Ai, ∆Ei)0≤i≤27.

To improve the efficiency of the message modification, we have tried three
strategies for Step 2, as detailed below:

Strategy 1: First, with the fixed solution of (∆Wi)0≤i≤27, find a valid solution
of (∆Ai, ∆Ei)0≤i≤27, and we minimize

∑27
i=0 H(∆Ai).

Then, with the fixed solution of (∆Wi, ∆Ai)0≤i≤27, find a valid so-
lution of (∆Ei)0≤i≤27 with the minimal

∑27
i=0 H(∆Ei).

Strategy 2: With the fixed solution of (∆Wi)0≤i≤27, find a valid solution of
(∆Ai, ∆Ei)0≤i≤27, and we minimize

∑27
i=0 H(∆Ei).

Strategy 3: With the fixed solution of (∆Wi)0≤i≤27, find a valid solution of
(∆Ai, ∆Ei)0≤i≤27, and we minimize

∑27
i=11 H(∆Ei).

After testing, it is found that Strategy 3 is more suitable for message mod-
ifications. However, such a 28-step differential characteristic is invalid. Similar
to the method to correct the SHA-512 31-step differential characteristic, we also
use the same technique to correct this invalid 28-step differential characteristic.

Step 1: Set (∆Ei)8≤i≤10 as unknown variables. For the remaining (∆Ei)0≤i≤27

where i /∈ {8, 9, 10}, keep them the same as those in the obtained so-
lution. For (∆Ai)0≤i≤27 and (∆Wi)0≤i≤27, they are also kept the same
as those in the obtained solution.

Step 2: Add the constraints describing the value transitions for (Ai, Ei,Wi)10≤i≤12

to the model.

With this method, we eventually found a valid 28-step differential characteristic,
as shown in Table 8.

Message modification. We use a different message modification technique
than in [27]. In our message modification technique, we first determine all ex-
panded message words and state variables in steps 8−12. Since the first 8 message
words can be (almost) freely chosen, it is easy to connect the (Ai, Ei)−4≤i≤−1 and
(Ai, Ei)8≤i≤12 by using (Wi)0≤i≤7. Currently, (Ai, Ei)−4≤i≤12 and (Wi)0≤i≤12

has been determined. Then, the degree of freedom in message words W13 −W15

can be used to fulfill the conditions on E13 − E15 and (W16,W18). With this
method, the cost to find the colliding message pair is almost negligible. The
colliding message pair is shown in Table 9.

4.5 The First Practical FS Collision for 40-step SHA-224

In SHA-224, the last one output word (E60 + E−4) was truncated. Therefore,
similar to [6], we inject differences in E−4 to mount a FS collision attack. The
best practical FS collision attack on SHA-224 was presented in [6] and it reaches

24
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Table 9. The colliding message pair for 28 steps of SHA-512

M

1f736d69a0368ef6 7277e5081ad1c198 e953a3cdc4cbe577 bd05f6a203b2f75f
dd18b3e39f563fca cad0a5bb69049fcd 4d0dd2a06e2efdc0 86db19c26fc2e1cf
0184949e92cdd314 82fb3c1420112000 e4930d9b8295ab26 5500d3a2f30a3402
26f0aa8790cb1813 a9c09c5c5015bc0d 53892c5a64e94edb 8e60d500013a1932

M ′

1f736d69a0368ef6 7277e5081ad1c198 e953a3cdc4cbe577 bd05f6a203b2f75f
dd18b3e39f563fca cad0a5bb69049fcd 4d0dd2a06e2efdc0 86db19c26fc2e1cf
037a8f464c0bb995 83033bd41e111fff e4930d9b8295ab26 5500d3a2f30a3402
26f0aa8790cb1813 a9809e5c4015bc45 53892c5a64e94edb 8e60d500013a1932

hash dceb3d88adf54bd2 966c4cb1ab0cf400 01e701fdf10ab603 796d6e5028a5e89a
f29a7517b216c09f 46dbae73b1db8cce 8ea44d45041010ea 26a7a6b902f2632f

39 steps. With our tool, we could find a practical FS collision for 40-step SHA-224
for the first time. Specifically, we inject message differences at 10 expanded words

(W0,W9,W10,W11,W12,W13,W17,W18,W25,W27),

and then search for the corresponding 40-step differential characteristic. The
searching strategy is almost the same as in our attack on 39-step SHA-256.

The 40-step differential characteristic and the conforming message pair are
shown in Table 10 and Table 11, respectively.

5 Summary and Future Work

Although there was major progress on collision attacks on SHA-2 between 2011
and 2015, which essentially benefited from the development of the GnD tech-
nique to search for SHA-2 characteristics, no other progress has been made for
nearly 8 years. One reason we believe is that the GnD technique has reached
the bottleneck. In addition, the code for this GnD technique is not open source,
which may further increase the difficulty to follow these works. Given the im-
portance of SHA-2, there is no doubt that advancing the understanding of its
collision resistance is always of practical interest.

By this work, we report for the first time that it is possible to overcome the
obstacle to find SHA-2 characteristics with a SAT/SMT-based method, which
is supported by several new improved attacks on the SHA-2 family. As can be
observed, these new attacks highly depend on our SAT/SMT-based tool and how
to use it in a dedicated way. Especially, we could find useful SHA-2 characteristics
that could not be found with the GnD technique.

Through this work, we also expect that there could be more efforts to further
improve this SAT/SMT-based method in the future, and that more and more
researchers can easily perform analysis of SHA-2 with our tool.

Acknowledgement. We would like to thank the anonymous reviewers for their
insightful comments. Yingxin Li and Gaoli Wang are supported by the National
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Table 10. The differential characteristic for 40 steps of SHA-224

i ∆Ai ∆Ei ∆Wi

-4 ================================ ===u============================
-3 ================================ ================================
-2 ================================ ================================
-1 ================================ ================================
0 ================================ ================================ ===n============================
1 ================================ ================================ ================================
2 ================================ ================================ ================================
3 ================================ ================================ ================================
4 ================================ ================================ ================================
5 ================================ ================================ ================================
6 ================================ ================================ ================================
7 ================================ 0111============================ ================================
8 ================================ 1000=========10======1===1==1=== ================================
9 ===u============================ unnn1=0=00=0=00=01=1=100=0110=1= ===u============================
10 ==============n=u====u======n=== 100n0n110111=nu00011un101n11n=00 ======n===u==========u==========
11 ================================ 0101u0n=1n0n010=u0=10nun=1u01=n1 ===n============================
12 ================================ =10001000010001=0===0110=10=1=0= =======nn=======n===n===nn==uu=u
13 ================================ =unn00000001100011=00011==0=101= =============u=======nn=========
14 ================================ 11100nuuuuuuuuu1u=01un000001n001 ================================
15 ================================ =111=0000000000=0=1=001111111=1= ================================
16 ============================n=== 11001101101000000101nuuuuuuuu001 ================================
17 =======u=u=======u============== 010100unu000001001u1000110unn=n1 ======n===u==========u==========
18 ================================ 1100111u00nn=100110=u1u00unn000n ===n============================
19 ===n============================ uuu1uuuu01000=110n000111101=0101 ================================
20 ================================ 000u0n1000101=0un01=1100=u11n000 ================================
21 ================================ 011100un1u001unnnn11000000101111 ================================
22 ================================ =110=111=0===11101=======1==1=== ================================
23 ================================ =nuu==0110===00101=0110=====110= ================================
24 ================================ =000============================ ================================
25 ================================ =111============================ =======n=n=======n==============
26 ================================ ================================ ================================
27 ================================ ================================ ===u============================
28 ================================ ================================ ================================
29 ================================ ================================ ================================
30 ================================ ================================ ================================
31 ================================ ================================ ================================
32 ================================ ================================ ================================
33 ================================ ================================ ================================
34 ================================ ================================ ================================
35 ================================ ================================ ================================
36 ================================ ================================ ================================
37 ================================ ================================ ================================
38 ================================ ================================ ================================
39 ================================ ================================ ================================

Table 11. The FS colliding message pair for 40 steps of SHA-224

CV 791c9c6b baa7f900 f7c53298 9073cbbd c90690c5 5591553c 43a5d984 af92402d

CV ′ 791c9c6b baa7f900 f7c53298 9073cbbd c90690c5 5591553c 43a5d984 bf92402d

M
f41d61b4 ce033ba2 dd1bc208 a268189b ee6bda2c 5ddbe94d 9675bbd3 32c1ba8a
7eba797d 88b06a8f 3bc3015c d36f38cc cfcb88e0 3c70f7f3 faa0c1fe 35c62535

M ′ e41d61b4 ce033ba2 dd1bc208 a268189b ee6bda2c 5ddbe94d 9675bbd3 32c1ba8a
7eba797d 98b06a8f 39e3055c c36f38cc ce4b002d 3c74f1f3 faa0c1fe 35c62535

hash 9af50cac c165a72f b6f1c9f3 ef54bad9 af0cfb1f 57d357c9 c6462616
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