
A data aggregation protocol based on TFHE

Maria Ferrara, Antonio Tortora and Maria Tota*

Dipartimento di Matematica e Fisica, Università della Campania “Luigi Vanvitelli”

viale Lincoln, 5 - 81100 - Caserta, Italy

E-mail: maria.ferrara1@unicampania.it, antonio.tortora@unicampania.it

Dipartimento di Matematica, Università di Salerno

via Giovanni Paolo II, 132 - 84084 - Fisciano (SA), Italy

E-mail: mtota@unisa.it

Abstract

Torus Fully Homomorphic Encryption (TFHE) is a probabilistic cryp-
tosytem over the real torus which allows one to operate directly on
encrypted data without first decrypting them. We present an aggre-
gation protocol based on a variant of TFHE for computing the sum of
sensitive data, working only with the corresponding ciphertexts. Our
scheme is an ideal choice for a system of smart meters - electronic
devices for measuring energy consumption - that demands consumers’
privacy. In contrast to some other solutions, our proposal does not
require any communication among smart meters and it is quantum-
safe.

Keywords: TFHE, fully homomorphic encryption, data aggregation,
privacy
2020 Mathematics Subject Classification: 94A60, 08A99

1 Introduction

In the last few years, much attention has been devoted to the aggregation of
time-series data from smart meters, which are electronic devices that record

*The authors are members of National Group for Algebraic and Geometric Structures,
and their Applications (GNSAGA–INdAM), and members of the non-profit association
Advances in Group Theory and Applications.

1



the electric energy consumption, at regular intervals of 30 minutes or less,
and communicate it to an energy supplier. The use of smart meters can make
any energy distribution system more efficient for the energy supplier and final
customers, by monitoring the effective amount of energy used: the former
can develop an energy plan to prevent unnecessary energy production and
the latter can take advantage of different prices and more accurate billing.
However, the collected data may contain sensitive consumer information, and
therefore a privacy-preserving solution is needed.

In literature there are several proposals for privacy protection in smart
metering (see [9] or [12] for a survey). They can be classified according to
three main techniques such as anonymization, perturbation, and aggregation.
In particular, for the aggregation, data can be aggregated by a trusted third
party or by making use of the homomorphic property of some cryptosystems.
For example, in [3], the aggregation is performed by using an additive homo-
morphic version of ElGamal cryptosystem (see [6]), where a discrete logarithm
computation is necessary for obtaining the desired information, say µ. Hence,
the computation can be done efficiently when µ is not too large. Other
solutions are based on the Paillier cryptosystem [14] and its additive homo-
morphic property. Nevertheless, it is well-known that the ElGamal and Paillier
cryptosystems are not quantum-safe.

In this paper, we present a protocol that enables an unreliable data
aggregator to compute the sum of several plaintexts (readings in the case
of smart meters), working only with the corresponding ciphertexts. More
precisely, we assume to have l devices and that each of them sends an
encrypted plaintext e(µi) to the aggregator, that obtains µ = µ1 + . . . + µl

without knowing any µi. Our approach is similar to the energy monitoring
system proposed in [3], even if we require a trusted third party for the
generation of a group key for all devices. On the other hand, our protocol
bases its safety on the LearningWith Errors problem that is widely considered
to be post-quantum.

1.1 Fully homomorphic encryption

For our protocol, we will rely on a Fully Homomorphic Encryption (FHE)
scheme, that is, a probabilistic cryptosystem that allows one to operate
directly on encrypted data without first decrypting them. Given a non-
empty finite set S, a probabilistic cryptosystem may be seen as a five-tuple
(P × S, C,K, E ,D) of finite sets, where P , C and K are respectively the sets
of plaintexts, ciphertexts and keys, whereas E and D are the following sets:

E =
{
ek : P × S → C | k ∈ K

}
, D =

{
dk : C → P | k ∈ K

}
;

2



moreover we require that, for any encryption function ek1 ∈ E , there is a
decryption function dk2 ∈ D such that dk2

(
ek1(x, r)

)
= x for all x ∈ P and

r ∈ S. Note that, unlike a deterministic cryptosystem, a random value r ∈ S
is used to encrypt x and so any plaintext can be encrypted in different ways.
Following [8], we say:

Definition 1.1. A probabilistic cryptosystem is somewhat homomorphic if
P and C are each equipped with two operations, say +, · for P and ⊕, ∗ for
C, and

1. (P ,+, ·) and (C,⊕, ∗) are rings,

2. there exists U ⊆ S, with U ̸= ∅, such that, for any xi, yi ∈ P and any
ui, vi ∈ U , there exist t, z ∈ S for which

ek1(x1, u1)⊕ ek1(x2, u2) = ek1(x1 + x2, t),

ek1(y1, v1) ∗ ek1(y2, v2) = ek1(y1 · y2, z),

whenever ek1 ∈ E . In addition, the cryptosystem is fully homomorphic if the
elements t and z belong to U .

As a consequence, for a somewhat homomorphic cryptosystem, we could
do other additions or multiplications: for example, ek1(x1 + x2, t)⊕ ek1(x2, u2)
if t ∈ U , or ek1(y1 · y2, z) ∗ ek1(y2, v2) if z ∈ U . On the other hand, for a fully
homomorphic cryptosystem where P = C, and for any function

f : P × . . .× P︸ ︷︷ ︸
m

→ P

such that f(x1, . . . , xm) is given by some additions and multiplications of the
xi’s in the ring P , we have

dk2
(
f
(
ek1(x1, u1), . . . , ek1(xm, um)

))
= f(x1, . . . , xm)

for all xi ∈ P and ui ∈ U .

1.2 The bootstrapping

In 2009, Gentry put forward the first fully homomorphic encryption scheme
[11] (see also [10]). His idea consists in taking a somewhat homomorphic
cryptosystem and make it fully homomorphic. For this purpose, it is needed to
produce a new ciphertext before proceeding with further operations. Indeed,
the security of communications in a somewhat homomorphic cryptosystem

3



is ensured by the presence of some noise in ciphertexts; however, the noise
level increases during homomorphic operations until when it is impossible
to decrypt. To restrict the growth of noise, Gentry used a groundbreaking
technique, the so-called bootstrapping, that can be described as follows.

Consider a somewhat homomorphic cryptosystem, as in Definition 1.1.
Suppose futher that, for a given plaintext x, the element (x, t) ∈ P × S is
noisy, in the sense that t ̸∈ U . Then, for a function gk : C → C, depending
on the (public) bootstrapping key k = e′k3(k1, r) where e′k3 is an encryption
function (not necessarily in E), the bootstrapping enables to reduce the
noise: indeed, it yields an element u ∈ U such that gk

(
ek1(x, t)

)
= ek1(x, u).

Similarly, if y ∈ P and z ̸∈ U , we get gk
(
ek1(y, z)

)
= ek1(y, v) for some v ∈ U .

Hence, one can compute ek1(xi, ui)⊕ ek1(x, u) and ek1(yi, vi) ∗ ek1(y, v).
Following Gentry’s scheme, many other FHE cryptosystems were intro-

duced but all these had a common issue: the bootstrapping took too long to
run (minutes) and the bootstrapping key was too large (gigabytes). In 2015,
Ducas and Micciancio [7] presented a new method to reduce the running
time of the bootstrapping procedure. Their work inspired the birth of the
Torus Fully Homomorphic Encryption (TFHE) cryptosystem [4], which runs
the bootstrapping in terms of milliseconds and produces a bootstrapping key
whose size is measured in megabytes rather than gigabytes.

TFHE will be explained in detail in Section 2 and then will be used, in
Section 3, for the above-mentioned aggregation protocol.

2 Torus fully homomorphic encryption

The letter T in TFHE stands for the real torus T = R/Z. TFHE is implemen-
ted in the open-source library CONCRETE [5] where, for technical requirements,
the elements 0, 1

q
, . . . , q−1

q
of T are identified with the elements of Zq, i.e., the

group of integers modulo q = 2r with r = 32 or 64.
This variant of TFHE can be described as follows [8].

Definition 2.1. Put B = {0, 1} (or Zq) and let h, n be positive integers with
h < r − 1.

1. The plaintext space of TFHE is

P =
{
µ ∈ Zq |µ = µh · 2h + . . .+ µr−1 · 2r−1, µi ∈ B

}
,

whereas C = Zn+1
q is the ciphertext space.

2. For a secret key s = (s1, . . . , sn) ∈ Bn and a random mask a = (a1,
. . . , an) ∈ Zn

q , the encryption function is given by

Es : (µ, a, e) ∈ P × S 7→ (a, b) ∈ C

4



where S = Zn
q × U with

U =
{
e ∈ Zq | e = ϵ0 · 20 + . . .+ ϵh−1 · 2h−1, ϵi ∈ B

}
,

and

b =
n∑

k=1

aksk + µ+ e (mod q).

3. The decryption function is π ◦ φ, indeed the composition of functions

φ : (a, b) ∈ C 7→ b−
n∑

k=1

skak ∈ Zq

and

π : µ0 · 20 + . . .+ µr−1 · 2r−1 ∈ Zq 7→ µh · 2h + . . .+ µr−12
r−1 ∈ P ;

hence π
(
φ(a, b)

)
= π(µ+ e) = µ.

Although P is only a subgroup of the additive group of Zq, TFHE is
somewhat homomorphic with respect to the addition. In fact, for µ1, µ2 ∈ P
and a(1) = (a11, . . . , a1n), a

(2) = (a21, . . . , a2n) ∈ Zn
q , we have

Es

(
µ1, a

(1), e1
)
+ Es

(
µ2, a

(2), e2
)
= Es

(
µ1 + µ2, a

(1) + a(2), e1 + e2
)
,

provided that e1 + e2 ∈ U . For example, in order to compute

Es

(
µ1 + µ2, a

(1) + a(2), e1 + e2
)
+ Es

(
µ3, a

(3), e3
)
,

the bootstrapping is needed when

U =
{
e ∈ Zq | e = ϵ0 · 20 + . . .+ ϵh−2 · 2h−2, ϵi ∈ B

}
,

for h > 1, ei ∈ U and e1+ e2 ̸∈ U : for e1+ e2+ e3 could not belong to U . The
result is a new ciphertext of µ1+µ2, that is Es

(
µ1+µ2, a

(1)+ a(2), e1+ e2
)
=

Es

(
µ1 + µ2, a, e

)
for some a and e, with e ∈ U .

Suppose now that b =
n∑

i=1

siai + µ∗, with µ∗ = µ + e, is a noisy LWE

ciphertext. Let consider the so-called test polynomial

t(x) = t0 + t1x+ . . .+ tN−1x
N−1 ∈ Zq[x]/I

where N > 1 is a power of 2, I is the ideal generated by the polynomial
xN + 1 and each tj = π( q

2N
j) with π as in Definition 2.1.3. Assume further

5



that b has at least one bit of padding left, that is b < 2r−1. Then µ∗ < 2r−1

and it is easy to see that µ̄∗ = ⌊2N
q
µ∗⌉ ≤ N − 1. Hence, tµ̄∗ = µ.

In TFHE the bootstrapping procedure involves three main algorithms:
the blind rotation, the sample extraction and the key switching. The blind
rotation consists in finding a Ring-LWE ciphertext of the polynomial x−µ̄∗

t(x),
whose constant term is actually tµ̄∗ . This constant term is then extracted, by
using the sample extraction, as a refreshed LWE encryption of µ with less
noise, but under a different key. Finally, the key switching algorithm converts
the new LWE ciphertext into a LWE ciphertext under the initial key s.

For completeness, we mention that the above bootstrapping is also pro-
grammable, in the sense that it enables the evaluation of a given function
on the input ciphertext while reducing the noise. This makes TFHE a fully
homomorphic cryptosystem over real numbers: in fact, the product x · y =
(x+y)2

4
− (x−y)2

4
of two real numbers can be computed using two bootstrapping

operations with the real function z 7→ z2

4
. For more details we refer the reader

to [5] or [8, Section 4].

2.1 Learning with errors

The security of TFHE is based on the Learning With Errors (LWE) problem,
introduced by Regev in [17] (see also [13] for its variant on rings). In our
context, for n ≥ 1 and q ≥ 2, the (search-)LWE problem asks to recover
s = (s1, . . . , sn) ∈ Zn

q given any desired m = poly(n) independent linear
equations such as the following

a11s1 + . . .+ a1nsn + e1 = b1 (mod q)

a21s1 + . . .+ a2nsn + e2 = b2 (mod q)
...

...
...

am1s1 + . . .+ amnsn + em = bm (mod q)

where the matrix A = (ajk) ∈ Zm×n
q is chosen uniformly, and each ei is usually

taken from a Gaussian distribution χ and rounded to the nearest integer
(modulo q). Of course, when e1 = e2 = . . . = em, after about n+1 equations,
it is possible to recover s in polynomial time using Gaussian elimination.
There is also a decision version of the LWE problem, that is as follows: given
(A, b), with A as before, distinguish with some non-negligible probability if
b = (b1, . . . , bm) is chosen uniformly from Zm

q or chosen to be As + e with
e = (e1, . . . , em) ∈ Zm

q taken according to χ. However, by [2, Theorem 2.15],
the search-LWE and decision-LWE problems are equivalent whenever q is a
power of 2.

6



The LWE problem is believed to be computationally hard, because of
a reduction from the worst-case hardness of some lattice problems, such as
GapSVP (the decision version of the Shortest Vector Problem), to the search-
LWE problem [17] (see also [16]). Recall that the lattice L generated by some
vectors v1, . . . , vn ∈ Rm is the set of all linear combinations of v1, . . . , vn with
coefficients in Z. Furthermore, the shortest vector problem consists in finding
a non-zero vector v ∈ L that minimizes the Euclidean norm.

We also point out that the above Regev’s reduction works for any modulus
q ≥ 2

√
n/α, with 0 < α < 1, but it requires the use of quantum computation.

In [15], Peikert proved that LWE is classically at least as hard as worst-case
GapSVP on lattices for large modulus q ≥ 2n/2. Since then, the LWE problem
has become one of the most attractive and promising topics for post-quantum
cryptography.

2.2 TFHE: from private-key to public-key

TFHE is a private-key encryption scheme which, according to [18], can be
converted into a public-key encryption scheme, as follows.

First note that, given the private-key s = (s1, . . . , sn) ∈ Bn, a plaintext
µ ∈ P and a mask a = (a1, . . . , an) ∈ Zn

q , we have

Es(µ, a, e) = Es(0, a, e) + (0, . . . , 0︸ ︷︷ ︸
n

, µ) = (a1, . . . , an, b) + (0, . . . , 0︸ ︷︷ ︸
n

, µ)

where b =
n∑

k=1

aksk + e (mod q). Consider now m encryptions of 0, namely

cj = (aj1, . . . , ajn, bj) with bj =
n∑

k=1

ajksk + ej for any j ∈ {1, . . . ,m}. Since

TFHE is additively somewhat homomorphic, any linear combination of cj’s
is also an encryption of 0, provided that the resulting noise e1+ . . .+em ∈ U .
This leads to a public-key version of TFHE, where the public key is the
matrix

A =


a11 . . . a1n b1
a21 . . . a2n b2
...

...
...

...
am1 . . . amn bm

 ∈ Zm×(n+1)
q

and the encryption function is given by

EA : (µ, β1, . . . , βm) ∈ P × Bm 7→
(
β1 . . . βm

)
A+

(
0 n. . . 0 µ

)
∈ Z(n+1)

q .

Hence, the encryption of µ is obtained by adding a random subset of
encryptions of 0 to (0, . . . , 0︸ ︷︷ ︸

n

, µ). On the other hand, if EA(µ, β1, . . . , βm) =

7



(
a′1 . . . a′n b′

)
, the plaintext µ can be recovered computing π(b′ −

n∑
k=1

a′ksk)

with π as in Definition 2.1.3.

3 The protocol

Our protocol requires a trusted third party (TTP), a data aggregator, and
l > 2 devices sharing their data with the aggregator. The data aggregation
is preceded by a phase that involves the TTP in the generation of a group
key for all devices.

3.1 Group key generation

In what follows we refer to the notation of Definition 2.1. A sketch of this
first step is given in Fig. 1.

1. For a secret key s = (s1, . . . , sn) ∈ {0, 1}n, the TTP chooses m encryp-

tions of 0, say (aj1, . . . , ajn, bj) with bj =
n∑

k=1

ajksk + ej for any j ∈

{1, . . . ,m}, and sends the matrix

A =


a11 . . . a1n b1
a21 . . . a2n b2
...

...
...

...
am1 . . . amn bm

 .

to each device Di, i = 1, . . . , l.

2. Each Di, storing a secret key (si1, . . . , sin) ∈ Zn
q , generates a random

m-tuple (βi1, . . . , βim) ∈ {0, 1}m and computes

σik =
(
βi1 . . . βim

)
A+

(
0 n. . . 0 sik

)
for any k ∈ {1, . . . , n}; next, it sends (σi1, . . . , σin) to the TTP.

3. For any i ∈ {1, . . . , l} and any k ∈ {1, . . . , n}, the TTP recovers sik to
obtain a new (secret) key s = (s1, . . . , sn), where sk = s1k + . . .+ slk ∈
Zq; then, as in the first step, it produces the matrix

B =


a′11 . . . a′1n b′1
a′21 . . . a′2n b′2
...

. . .
...

...
a′m1 . . . a′mn b′m


8



where each b′j =
n∑

k=1

a′jksk + e′j.

4. The TTP sends the group key B to all devices and the bootstrapping
key, corresponding to s, to the aggregator.

3.2 Data aggregation

The second part of the protocol consists in data aggregation: each device
sends an encryption of its plaintext µi ∈ Zq to the aggregator, which obtains
µ1 + . . . + µl without any decryption process. It works as follows (see also
Fig.2).

1. Each Di chooses γi1, . . . , γim ∈ {0, 1}, c1, . . . , cn ∈ Zq and, using its
secret key (si1, . . . , sin) ∈ Zn

q , computes(
γi1 . . . γim

)
C +

(
0 n. . . 0 c1si1 + . . .+ cnsin

)
=

(
∗ n. . . ∗ zi

)
with C = A or B, as in Subsection 3.1.

2. For a given plaintext µi ∈ Zq and some δi1, . . . , δim ∈ {0, 1}, each Di

sends (
δi1 . . . δim

)
B +

(
0 n. . . 0 µi + zi

)
=

(
αi1 . . . αin ζi

)
to the aggregator. Hence, ζi =

n∑
k=1

αiksik +µi+ zi+ ēi for some αi1, . . . ,

αin ∈ Zq and ēi ∈ U .

9



Fig. 1

Device Di Trusted third party TTP

secret key : secret key :

(si1, . . . , sin) ∈ Zn
q s = (s1, . . . , sn) ∈ {0, 1}n;

chooses (aj1, . . . , ajn, bj)

with bj =

n∑
k=1

ajksk + ej

A =
(
aj1 . . . ajn bj

)
1≤j≤m←−−−−−−−−−−−−−−−−−−−

computes

σik =
(
βi1 . . . βim

)
A+(

0 n. . . 0 sik
)

(σi1,..., σin)−−−−−−−−−−−→
recovers sik and computes

s = (s1, . . . , sn)

where sk = s1k + . . .+ slk;

chooses (a′j1, . . . , a
′
jn, b

′
j)

with b′j =

n∑
k=1

a′jksk + e′j

B =
(
a′j1 . . . a′jn b′j

)
1≤j≤m←−−−−−−−−−−−−−−−−−−−

3. The aggregator, applying the boostrapping if needed, adds up the
received ciphertexts:

l∑
i=1

(αi1, . . . , αin, ζi) =
l∑

i=1

Es

(
µi + zi, αi, ēi

)
= (a1, . . . , an, b),

with αi = (αi1, . . . , αin); after that, it sends (a1, . . . , an) to all devices.

4. Each Di, using its own secret key (si1, . . . , sin), determines

di = a1si1 + . . .+ ansin + zi

and sends it to the aggregator.

10



5. The aggregator gets µ1 + . . . + µl (modulo the noise) just computing
b− (d1 + . . .+ dl).

Fig. 2

Device Di Aggregator

plaintext: µi ∈ Zq;

computes(
γi1 . . . γim

)
C+(

0 n. . . 0 c1si1 + . . .+ cnsin
)
=

(
∗ n. . . ∗ zi

)
and(
δi1 . . . δim

)
B+(

0 n. . . 0 µi + zi
)
=

(
αi1 . . . αin ζi

)
(αi1,..., αin, ζi)−−−−−−−−−→

adds up the ciphertexts:

l∑
i=1

(αi1, . . . , αin, ζi) =

(a1, . . . , an, b)

(a1,..., an)←−−−−−−−
determines

di = a1si1 + . . .+ ansin + zi
di−−−−−−→

gets µ1 + . . .+ µl

computing b− (d1 + . . .+ dl)

The following result guarantees the correctness of the protocol transmis-
sion.

Proposition 3.1. At the end of the protocol, the aggregator obtains µ1 +
. . .+ µl if all parties act honestly.

Proof. First, recall that

b =
n∑

k=1

aksk +
l∑

i=1

(µi + zi) + e

for some e ∈ U , where sk = s1k+ . . .+ slk for any k ∈ {1, . . . , n}. Taking into

11



account that di = a1si1 + . . .+ ansin + zi for any i ∈ {1, . . . , l}, we have:

b−
l∑

i=1

di =

=
n∑

k=1

aksk +
l∑

i=1

(µi + zi) + e−
l∑

i=1

( n∑
k=1

aksik + zi
)

=
n∑

k=1

( l∑
i=1

aksik
)
+

l∑
i=1

µi +
l∑

i=1

zi + e−
l∑

i=1

( n∑
k=1

aksik
)
+

l∑
i=1

zi

=
l∑

i=1

µi + e.

Thus, the aggregator gets
l∑

i=1

µi applying the map π, defined in Definition

2.1.3.

3.3 Security analysis

The group key generated during the set-up protocol is the matrix

B =


a′11 . . . a′1n b′1
a′21 . . . a′2n b′2
...

. . .
...

...
a′m1 . . . a′mn b′m


where b′j =

n∑
k=1

a′jksk + e′j and each sk is only known to the TTP. As a

consequence, obtaining s = (s1, . . . , sn) is hard as solving the LWE problem.

For data aggregation, each device sends first ζi =
n∑

k=1

αiksik + µi + zi + ēi

and then di = a1si1 + . . .+ ansin + zi to the aggregator. Recall that(
γi1 . . . γim

)
C +

(
0 n. . . 0 c1si1 + . . .+ cnsin

)
=

(
∗ n. . . ∗ zi

)
with γi1, . . . , γim ∈ {0, 1}, c1, . . . , cn ∈ Zq, and C = A or B as in Subsection
3.1. Then any di contains the noise of zi, and the coefficient of each sik changes
according to ck. Hence, for any device, given a list of ciphertexts of the form
ζi or di, recovering its secret key (si1, . . . , sin) is very difficult assuming that
the LWE problem is hard.

Note finally that if one device is corrupted, the privacy of others is still
guaranteed but we cannot obtain just the aggregation of all plaintexts of the

12



honest devices. Moreover, if a device is eliminated or a new one is added, we
need to perform the group key phase again. This makes our solution more
suitable for scenarios where the set of devices is relatively static.

References

[1] J.-M. Bohli, C. Sorge and O. Ugus, A Privacy Model for Smart Metering,
Proceedings of the First IEEE International Workshop on Smart Gride
Communications (in conjunction with IEEE ICC 2010), 2010.

[2] Z. Brakerski, A. Langlois, C. Peikert, O. Regev and D. Stehlé,
Classical hardness of learning with errors (extended abstract), STOC’13–
Proceedings of the 2013 ACM Symposium on Theory of Computing,
pages 575–584.

[3] N. Busom, R. Petrlic, F. Sebé, C. Sorge and M. Valls, Efficient
smart metering based on homomorphic encryption, Computer
Communications, 82 (2016), pages 95–101.

[4] I. Chillotti, N. Gama, M. Georgieva and M. Izabachene, TFHE: fast
fully homomorphic encryption over the torus, J. Cryptology 33 (2020),
no. 1, pages 34–91.

[5] I. Chillotti, M. Joye, D. Ligier, J.-B. Orfila and S. Tap, CONCRETE:
Concrete Operates oN Ciphertexts Rapidly by Extending TfhE, WAHC
2020 – 8thWorkshop on Encrypted Computing & Applied Homomorphic
Cryptography, Dec 2020, [Virtual], France.

[6] R. Cramer, R. Gennaro and B. Schoenmakers, A Secure and Optimally
Efficient Multi-Authority Election Scheme, European Transactions on
Telecommunications, 8(5) (1997), pages. 481–490.

[7] L. Ducas and D. Micciancio, FHEW: Bootstrapping homomorphic
encryption in less than a second, In: Oswald, E., Fischlin, M. (eds)
Advances in Cryptology – EUROCRYPT 2015, Part I, 617–640, Lecture
Notes in Comput. Sci., 9056, Springer, Heidelberg, 2015.

[8] M. Ferrara, A. Tortora and M. Tota, An overview of torus
fully homomorphic encryption, Int. J. Group Theory (2023), doi:
10.22108/IJGT.2023.139030.1869.

13



[9] S. Finster and I. Baumgart, Privacy-Aware Smart Metering: A Survey.
IEEE Communications Surveys & Tutorials, vol. 17 (2015), no. 2, pp.
1088-1101.

[10] C. Gentry, Computing arbitrary functions on encrypted data,
Communications of the ACM 53 (2010), no. 3, 97–105.

[11] C. Gentry, Fully homomorphic encryption using ideal lattices, STOC’09–
Proceedings of the 2009 ACM International Symposium on Theory of
Computing, 169–178, Association for Computing Machinery, New York,
2009.

[12] M. Jawurek, F. Kerschbaum and G. Danezis Sok: Privacy Technologies
for Smart Grids - A Survey of Options, Technical report, Microsoft
Technical Report, 2012.

[13] V. Lyubashevsky, C. Peikert and O. Regev, On ideal lattices and learning
with errors over rings. In: Gilbert, H. (eds) Advances in Cryptology –
EUROCRYPT 2010. EUROCRYPT 2010. Lecture Notes in Computer
Science, vol 6110. Springer, Berlin, Heidelberg, pages 1–23, 2010.

[14] P. Paillier, Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In: Stern, J., editor, Advances in Cryptology –
EUROCRYPT ’99. EUROCRYPT 1999. Lecture Notes in Computer
Science, vol.1592, pages 223–238, 1999.

[15] C. Peikert, Public-key cryptosystems from the worst-case shortest
vector problem: extended abstract. STOC’09–Proceedings of the 2009
ACM International Symposium on Theory of Computing, 333–342.
Association for Computing Machinery (ACM), New York, 2009.

[16] O. Regev, Lattice-based cryptography. In: Dwork, C. (eds), Advances in
Cryptology - CRYPTO 2006. Lecture Notes in Computer Science, vol
4117, pages 131–141. Springer, Berlin, Heidelberg.

[17] O. Regev, On lattices, learning with errors, random linear codes, and
cryptography, Journal of the ACM 56 (2009), no. 6, Art. 34, 40 pp.

[18] R. Rothblum, Homomorphic encryption: From private-key to public-key.
In Y. Ishai, editor, Theory of Cryptography (TCC 2011), volume 6597
of Lecture Notes in Computer Science, pages 219–234. Springer, Berlin,
Heidelberg, 2011.

14


