
From Random Probing to Noisy Leakages Without Field-Size

Dependence

Gianluca Brian1 ∗ Stefan Dziembowski2 Sebastian Faust3

1 ETH Zurich, Zurich, Switzerland
2 University of Warsaw and IDEAS NCBR, Warsaw, Poland

3 TU Darmstadt, Darmstadt, Germany

March 4, 2024

Abstract

Side channel attacks are devastating attacks targeting cryptographic implementations.
To protect against these attacks, various countermeasures have been proposed – in partic-
ular, the so-called masking scheme. Masking schemes work by hiding sensitive information
via secret sharing all intermediate values that occur during the evaluation of a cryptographic
implementation. Over the last decade, there has been broad interest in designing and for-
mally analyzing such schemes. The random probing model considers leakage where the value
on each wire leaks with some probability ϵ. This model is important as it implies security
in the noisy leakage model via a reduction by Duc et al. (Eurocrypt 2014). Noisy leakages
are considered the “gold-standard” for analyzing masking schemes as they accurately model
many real-world physical leakages. Unfortunately, the reduction of Duc et al. is non-tight,
and in particular requires that the amount of noise increases by a factor of |F| for circuits
that operate over F (where F is a finite field). In this work, we give a generic transformation
from ε-random probing to δ-average probing, with δ ≈ ε2, which avoids this loss of |F|. Since
the average probing is identical to the noisy leakage model (Eurocrypt 2014), this yields for
the first time a security analysis of masked circuits where the noise parameter in the noisy
leakage model is independent of |F|. The latter is particularly important for cryptographic
schemes operating over large fields, e.g., the AES or the recently standardized post-quantum
schemes.

1 Introduction

Side-channel attacks target cryptographic implementations by exploiting physical phenomena
such as the power consumption or running time of a device [Koc96, KJJ99]. They extract sen-
sitive information about the internals of the computation, often leading to devastating attacks
against cryptographic implementations. One of the most prominent countermeasures to defeat
side-channel attacks is the masking scheme [CJRR99, ISW03]. The basic idea of masking is to
hide sensitive information by randomizing all internal values that occur during the computation.
This typically works by encoding all internal values v ∈ F via a randomized encoding scheme
(v1, . . . , vn) ← Enc(v) and designing algorithms that securely compute on these encodings.
Since designing secure masking schemes is challenging, most state-of-the-art masking schemes
are proven secure within a security model. The security model captures the power of the adver-
sary, which in particular requires us to accurately model the side-channel leakage emitting from

∗Work partially done while at Sapienza University of Rome and University of Warsaw.

1

a device. Over the last decade, there has been lots of interest in designing and analyzing mask-
ing schemes (see, e.g., [ISW03, PR13, DDF14, BRTV21, AIS18, CRZ18, CS19, DFS19, CGZ20]
and many more), where one of the most fundamental challenges is to come up with an accurate
model for real-world side-channel attacks. Below we briefly recap the history of leakage models
that have been considered for masking schemes.

The t-probing model. The t-probing model was introduced in the seminal work of Ishai,
Sahai, and Wagner [ISW03]. The authors model (cryptographic) computation as a Boolean
circuit C, where the wires of the circuit carry the sensitive values. In the t-probing model, the
adversary obtains the values of up to t wires in C, which should not reveal more information
about the cryptographic computation than what can be learned by just black-box access to the
device. As this is a highly relevant attack in practice, security analysis in the t-probing model
is the de-facto standard when designing and analyzing masking schemes.

Noisy leakages. While the t-probing model is an excellent first step for verifying the security
of a masking scheme, it has two shortcomings for modeling real-world leakages accurately. On
the one hand, it is too restrictive as it requires that the leakage is quantitatively bounded. This
is in contrast to real-world leakages, which rarely can be described by a small number of bits;
e.g., a physical power measurement typically results in megabytes of data that the adversary
has to store. On the other hand, the t-probing leakage model is too generous. It allows the
adversary to learn the exact value on some of the wires of the computation. Non-invasive real-
world leakages, however, are typically rather noisy, and that noise is precisely what makes a
side-channel attack difficult to carry out in practice. To address this shortcoming, Prouff and
Rivain introduce the important model of noisy leakages [PR13]. Here, the adversary obtains a
noisy version of each value carried on a wire during the computation of the circuit (e.g., the
value perturbed by a Gaussian distribution).

More formally, consider a uniform random variable X over some finite field F. A leakage
function ν is said to be δ noisy if the statistical distance between the uniform distribution X and
the conditional distribution X|ν(X) is upper bounded by δ. Hence, by choosing δ appropriately,
we can cover a broad range of different noise distributions. Moreover, the noisy leakage model
eliminates the quantitative bound on the amount of leakage that an adversary obtains, thus
incorporating many realistic leakages such as the horizontal side-channel attacks [BCPZ16].
Hence, it is considered the practically most relevant leakage model for a security evaluation of
masked circuits. Unfortunately, however, the noisy leakage model has a significant drawback.
An analysis in this model is highly complex, which was one of the reasons why in their original
work, Prouff and Rivain were only able to give a security proof assuming that some parts of the
masked computation is leak free.

Random probing model. In a follow-up work, Duc, Dziembowski, and Faust [DDF14] ob-
served that, somewhat surprisingly, the noisy leakage model is equivalent to the random probing
model [ISW03]. In the random probing model, we consider a particular noise distribution, where
each wire leaks with some probability ε. More concretely, for a ε-random probing leakage func-
tion ρ, we have for all x ∈ F that Pr[ρ(x) ̸= ⊥] = ϵ. The main result of Duc et al. is then to
show that any δ-noisy leakage function can be simulated via some ε random probing function
(for some ε related to δ). As analyzing security in the random probing model is much simpler
than a security proof in the noisy leakage model, Duc et al. can show that the original ISW
construction is δ noisy leakage resilient for some parameter δ without requiring any leak-free
computation.

2

Because of the connection between noisy leakages and the random probing model, there has
been significant interest in proposing new constructions and analyzing their security in the ran-
dom probing model [ADF16, Ajt11, AIS18, BRT21, BRTV21, BMRT22, CFOS21]. Important
goals are finding new constructions that achieve security for a (nearly) optimal noise parameter
δ, optimizing overheads of the masked algorithms, and presenting new composition results and
automated tools for easing the analysis of masking schemes in the random probing model.

Shortcoming of an analysis in the random probing model. While δ-noisy leakage
and ε-random probing leakage functions are related via the reduction of Duc et al., there is a
significant loss between these two models. Concretely, for some δ > 0 to simulate the output
of the δ-noisy leakage function ν(·) via an ε-random probing ρ(·), we need that ε = δ · |F|. Put
differently: suppose that for some ε > 0 we prove the security of the masking scheme in the
ε-random probing model. When we transfer this result via the reduction of Duc et al. [DDF14]
to the more realistic δ-noisy leakage model, we lose a factor of |F|. While such a loss is generally
undesirable, it is particularly problematic when |F| is large. Examples of such cases include the
masking of the AES, which works in GF (28), or even worse when masking some of the recent
post-quantum schemes that typically operate in much larger fields.

Average probing model. To address the loss in the reduction of [DDF14], Dziembowski,
Faust and Skorski [DFS15] introduce the average probing model. The average probing model
makes a subtle but important change to the random probing model. In particular, a functionα is
said to be δ-average probing if for a uniformly random X← F, we have that Pr[α(X) ̸= ⊥] = δ.
Here, the probability is taken over the randomness of α and the choice of X. As a main result,
Dziembowski et al. present a tight reduction between average probing and noisy leakages.
Concretely, for any field F, any δ-noisy leakage function ν can efficiently be simulated by some
δ-average probing leakage function.

While at first sight average probing looks very similar to random probing leakage, it turns
out that a security analysis in the average probing model is significantly more challenging.
Concretely, in [DFS15] the authors present a masking compiler that while eliminating the loss
of |F| again requires that certain parts of the computation are leak-free.

Related work. By changing the metric for the computation of the noisy leakage, Prest,
Goudarzi, Martinelli and Passelègue [PGMP19] prove a tighter bound. Namely, the authors
consider two worst-case metrics, Relative Error and Average Relative Error, to measure the
noisy leakage. The advantage of using such metrics is that they allow for proofs that do not have
a security loss in the size of the field; in particular, they are able to reduce ε-random probing
to ε-ARE-noisy leakage. However, the ARE metric incurs in bigger overheads, compared to
Statistical Distance, when measuring leakage of functions; as an example, they consider the
hamming weight with gaussian noise, which has a overhead of

√
log(|F|) in the ARE setting

compared to the SD setting.
Other ways to get rid of the loss in the field size is to consider arithmetic programs [GJR18]

instead of circuits or consider fields of characteristic 2 [BCG+22]. In the first case, in particular,
even if arithmetic programs and circuits are equivalent, a program allows to split the computa-
tion in smaller logical instructions (i.e., the word size of the computer) and consider the noisy
leakage from those instructions. This, in turns, allows for a security loss of just log(|F|).

3

1.1 Our contribution

The main result of our work is to present a generic compiler that transforms any circuits C with
security against random probing into a circuit Ĉ with security in the average probing model. Our
transformation does not require leak free computation. Thus, using the tight relation between
average probing and noisy leakages, we can show that any circuit C working over an arbitrary
field F which is ε-random probing secure, can be transformed into a circuit Ĉ that is δ-noisy
leakage resilient, where (a) Ĉ does not require leak-free computation, and (b) δ is independent
of |F|. In particular, if ε is a constant, then δ ≈ ε2 is a constant (independent of |F| and the
security parameter λ).

High-level idea. The main idea of our compiler is to ensure that any value x ∈ F occurring in
the original circuit C is “encoded” into a sharing (x1, x2) ∈ F2 where individually each share xi
is (almost) uniformly distributed over F. Let us briefly discuss the main idea by taking a look at
the most simple case of a circuit that consists only of a single wire x. In our transformed circuit
Ĉ the value x is represented by a secret sharing (x1, x2), where x1, x2 are uniformly random
in F subject to the constrained that x1 + x2 = x. Our approach now works by using random
probing leakage from x to simulate the average probing leakage from (x1, x2). More concretely,
we show that for any δ-average probing leakage function α the leakage (α(x1),α(x2)) can be
simulated from ε = 2δ-random probing leakage of x.

The basic idea to show the above statement is as follows. Since (x1, x2) is a secret sharing
of x, each one of x1, x2 is uniformly random when considered independently, and therefore
the marginal probability that any of them leaks is exactly δ. Then, by the union bound, the
probability that any of x1, x2 leaks is bounded by 2δ. The strategy is then to construct a
simulator Sim that outputs (⊥,⊥) (i.e., no leakage occurred) when the random probing leakage
is ⊥, and is able to fully simulate the values on the wires (and, therefore, the corresponding
leakage) when the random probing leakage is x ∈ F. Clearly, upon input x ∈ F, the simulator
Sim(x) cannot naively output the real distribution, since otherwise (⊥,⊥) would be output too
often and the simulated average probing leakage would not be identically distributed to the real
one; instead, Sim(x) adjusts the probabilities so that (⊥,⊥) is output less often, in order to
match the real distribution. This can be done efficiently, e.g., by rejection sampling.

In the previous paragraph, we only described the most simple case where we simulate av-
erage probing leakage from a single encoding (x1, x2) ← Enc(x). Our analysis gets much more
involved, when we move to the setting where the adversary obtains leakage from the entire
computation. For a high-level overview how we can simulate average random probing leakage
of an encoded complex circuit from random probing leakage of an (unencoded) circuit, we refer
the reader to the technical overview in Section 1.2.

Impact. We believe that our work shows a missing piece for the analysis of masking schemes.
As discussed above, currently there is lots of interest in designing new masking countermeasures
in the random probing model. However, to transform these results to the noisy leakage model, all
these works will require a noise parameter δ that decreases by 1/|F|.1 Our result shows that any
of the existing constructions for random probing leakage can be transformed into a construction
that is secure against noisy leakage without suffering this loss. One direct application of our
result is to show that for any field F the ISW construction is noisy leakage resilient for δ ≈ 1/n2

(where n is the number of shares used in the ISW-masked circuit). Earlier results required
either leak-free gates [DFS15] or required a noise parameter of δ ≈ 1/(n|F|) [DDF14]. We leave

1Notice that means that we need an amount of noise that is at least proportional to |F|.

4

it as an important open question to apply our result to some of the existing constructions for
random probing security and further optimize their parameters.

1.2 Technical overview

In the previous section, we showed how to simulate average probing leakage of a single encoding
(x1, x2) ← Enc(x) given random probing leakage from x. To extend our analysis to complex
circuits, we follow a standard gate-by-gate approach. More precisely, we show that for each
gate g in C there is an efficient gadget ĝ in Ĉ (in fact, the overhead is a small constant), where
average probing leakage from ĝ can be simulated by random probing leakage from the inputs
of g. The simulation and analysis of this transformation is significantly more involved, and in
particular requires us to take care of internal wires that are not uniformly distributed.2 For
instance, this is the case for the multiplication gadget, where internally we compute values x ·y,
where x and y are uniform over F.

Then, we also need to show that the gadgets we construct are composable in a “safe” way,
meaning that one cannot break the simulatability of a gadget by looking at other parts of the
circuit. This turns out to be quite involved, as in particular the simulation must be careful
with sampling the outputs of the gadgets that are consistent with whatever an adversary has
observed in the past. To explain the main technical challenge, let us consider a concrete toy
example that highlights the technical difficulty of our analysis. Suppose that we are working in
the finite field F = F5 with 5 elements and that the leakage function α leaks 0 with probability
1 and everything else with probability 0. Clearly, α is a 1

5 -average probing function. We show
two different ways to construct a uniform encoding of 4 ∈ F5 which lead to two different leakage
distributions when we consider leakage from the the whole circuit.

First, suppose the simplest way to generate an encoding (x1, x2)
$←− Enc(4) by sampling

from the distribution Enc(4). Assuming that the leakage from the encoding is (⊥,⊥), then the
possible encodings given the leakage are (1, 3), (2, 2), (3, 1). Notice that they also all appear
with the same probability of 1

3 .
A second circuit that produces an encoding of 4 is through a sum of encodings of 3 and

1. Suppose again that nothing in the circuit leaks, then the possible encodings for 3 are
(4, 4), (2, 1), (1, 2) and the possible encodings for 1 are (4, 2), (3, 3), (2, 4). By writing a ta-
ble with all the possible sums, we can eliminate some of the outcomes as they are impossible
(since they contain 0, which leaks with probability 1, and we assumed that nothing leaks); the
remaining outcomes are, again, (1, 3), (2, 2), (3, 1). However, this time (2, 2) appears slightly
less often as shown in the table below.

+ (4, 4) (2, 1) (1, 2)

(4, 2) (3, 1) (1, 3) (0, 4)

(3, 3) (2, 2) (0, 4) (4, 0)

(2, 4) (1, 3) (4, 0) (3, 1)

This, in turn, means that the probability of the outcome being (2, 2) is 1
5 , compared to (1, 3) and

(3, 1) which appear with probability 2
5 . As can be seen from the above example, the simulation

of the leakage from a gadget depends on the leakage that occured in other parts of the circuit.
Notably, this is even true, when nothing leaked, i.e., when the leakage was only ⊥. This is
unlike in the random probing model, where leaking ⊥ gives freedom to the gadget simulator
and thus allows for much simpler composition results.

2Recall that in the case of the encoding each of the xi is individual uniform over F.

5

Approximation. In the above example, a naive simulation that does not take into account
leakage from other parts of the circuit fails because even if the output distribution is uniform, it
is not uniform anymore if we condition on some event such as “something leaks from the circuit
computation” or “nothing leaks from the computation”. However, the above example also shows
a way to deal with such dependencies. Indeed, we can see that, even if the output distribution of
the gadget (i.e., the encoding of 4) is not uniform conditioned on the leakage, it is still somewhat
close to the simplest case in which we only consider leakage from the encoding and nothing else.
We exploit this observation to construct a simulator that is able to approximate the output
distribution of gadgets even when the simulator knows nothing about the input or the rest of
the circuit. Then, we can follow a similar strategy as the one for simulating average probing
leakage from the simple encoding. Concretely, as previously, when the simulator receives some
additional information that allows to simulate the exact distributions, we can compensate for the
above approximation error such that the final distribution output by the simulator is identical
to the real distribution, even conditioned on the exact input encoding and leakage from the
gadget.

In order to apply the above strategy, we need two additional properties from our gadgets.
The first one is that all the wires on the gadget need to be uniform when considered inde-
pendently, so that we can apply the same idea as in the simple encoding (x1, x2) ← Enc(x).
Unfortunately, this is not possible due to the presence of multiplication gates (recall that, when
x,y are uniform over F, the product xy takes the value 0 slightly more often); however, we are
able to show that the strategy still holds if we relax this requirement and only ask for close-to-
uniform wires. The second property, which we call output-independence, states that the values
on the wires of the gadget are (close-to-)uniform even when the output of the gadget is known
in full, and, additionally, the output of the gadget is identically distributed to the one of a fresh
encoding. Looking ahead, this is needed so that the simulator is always able to approximate
the output distribution.

Fortunately, it turns out that the above two properties are not hard to achieve. Indeed,
the internal wires are close-to-uniform when all the input encodings are re-randomized and,
additionally, re-randomizing the output of the gadget allows to achieve the output-independence
property. Furthermore, some of the gadgets (i.e., addition, subtraction) already satisfy the
output-independence property due to the properties of Enc (i.e., Enc(x) + Enc(y) is identically
distributed to Enc(x+ y)).

Gadget simulators. Now that we established the main strategy to construct the gadgets and
the basic idea to simulate their leakage, we will provide the high-level idea of the composition.
We start by describing the security guarantee that the gadget simulator has to satisfy and which
will suffice for composition. For simplicity assume that the gate g only has 1 input and 1 output.
A first attempt to define the gadget simulator Simĝ is to require for any input encoding x̂ to
the gadget ĝ that the following holds:

Λ
?≡ Simĝ (ρ(x)) ,

where Λ is the random variable of the average-probing leakage from the gadget ĝ on input x̂
and x ∈ F is the input value on the unmasked circuit. Unfortunately, as discussed above, this
is not sufficient, because the simulator needs to receive some additional information from the
environment to produce the output encoding of the gadget as well:3

Realĝ(x̂) ≡ Simĝ (ρ(x), info) ,

3Looking ahead, this information is needed for composition in order to produce a consistent simulation.

6

where Realĝ(x̂) = (Λ, ŷ) is the joint distribution of the real leakage and the real output upon
input x̂. Moreover, info denotes some auxiliary information that we will explain in a moment.

Unfortunately, the input ρ(x) does not suffice for the gadget simulator to produce Realĝ(x̂)
and hence we slightly strengthen the power of the simulator by giving it as input Blindρ(x)(x̂)
which outputs x̂ if ρ(x) = x and outputs ⊥ otherwise. This allows us to let the simulator play
“safe” and make it output everywhere ⊥ when ρ(x) = ⊥ and compensate for this “overestima-
tion” when getting x̂ as input. Hence, we get:

Realĝ (x̂) ≡ Simĝ

(
Blindρ(x) (x̂) , info

)
,

where we explain the meaning of info next. Observe that the simulator needs to correctly sample
ŷ as discussed in the previous paragraph. However, this cannot be done if ρ(x) = ⊥. Looking
ahead, the final observation here is that ŷ is only needed by the simulator of the next gadget
if the random probing of the output value y = g(x) reveals y. When this is the case, we can
give y to the simulator, which can then approximate the correct distribution ŷ as we described
above; the simulator will then compensate for this approximation error in the case in which it
receives x̂ in full. Hence, the final notion of a composable gadget simulator is given by:

(Λ,Blindy?(ŷ)) ≡ Simĝ

(
Blindρ(x) (x̂) , y?

)
,

where (Λ, ŷ) = Realĝ (x̂), y? = ρ(y) denotes the outcome of random probing y = g(x), and the
above holds for all x̂ and all ŷ = ĝ(x̂). This notion states that the above simulator outputs
a leakage distribution Λ and a “blinded” output distribution ŷ that is identical to the real
distribution even when considered jointly.

Sadly, this approach only works when all the inputs of the gate are given to the simulator,
which, for gates with fan-in 2, causes the leakage parameter to be squared, i.e., δ ≈ ε2 when
starting from ϵ-random probing. We leave the problem of filling this gap open for future work.

Composition of gadget simulators. Now that we established the correct notion for the
simulatable gadgets, we want to apply it to prove simulatability of the whole circuit. We plan
to do so by hybrid argument. Namely, we define as many hybrid experiments as there are
gates in the circuit, and we replace the real gadgets with the simulated gadgets one by one;
then, we show that two consecutive hybrids are identically distributed, by a reduction to the
simulatability of the gadgets. More in detail, the reduction would first run the real circuit until
the challenge gadget, then receives some either real or simulated leakage/output pair and finally
continues with the simulated gadgets. This is enabled by the above notion of simulatability,
which states that the distribution of the output does not change when moving from the real
to the simulated gadget. In turns, this means that we can completely replace the real gadget
with the corresponding simulator and use the output of the simulator to feed the subsequent
simulators in the circuit.

Structure of the paper. We state formally all the necessary notions for the gadgets in
Section 3, in which we also show how to achieve such notions. Then, in Section 4 we state the
simulatability notions for circuits, and we show how to use the simulatable gadgets to achieve
the simulatable circuit. Finally, we conclude in Section 5 and pose some open problems for
future research.

2 Preliminaries

Notation. For a number n ∈ N, we denote by [n] the set {1, . . . , n}. We denote sets by
uppercase calligraphic letters A,B,X ,Y, . . . and random variables by bold letters A,B,x,y, . . .;

7

similarly, we use bold letters for randomized functions, like f ,g,α,ρ. For a set X , we denote

by x
$←− X the fact that x is uniformly sampled from X . For two random variables X,Y over

the same set X , the statistical distance between X and Y is denoted as ∆(X,Y) and defined as

∆(X,Y) :=
1

2

∑
x∈X
|Pr [X = x]− Pr [Y = x]| .

Whenever ∆(X,Y) = 0, we say that X and Y are identically distributed, and we denote this
fact by writing X ≡ Y. We denote by d(X) := ∆(X,U) the distance between X and the
uniform random variable U over X . In general, we will refer to X as uniform if d(X) = 0, and,
for γ ∈ [0, 1], as γ-close-to-uniform if d(X) ≤ γ.

For a function f : X → Y and a vector x = (x1, . . . , xn) ∈ X n, we overload the notation
and write f(x) for the function (x1, . . . , xn) 7→ (f(x1), . . . , f(xn)); this applies to randomized
functions f as well. Furthermore, for x ∈ (X ∪ {⊥})n, we overload the notation of ⊥ as well
and write x = ⊥ if x = (⊥, . . . ,⊥).

Circuits. Wemodel computation as an arithmetic circuit C carrying values from an (arbitrary)
finite field F on their wires and using the following gates to carry out computation in F:

• ADD, SUB,MUL, which compute, respectively, the sum, the difference and the product in
F of their inputs,

• IN, which has no input and models either some constant or the external input to the
circuit,

• OUT, which has one input and no output, and models the output produced by the circuit,

• RND, which has no input and produces a uniformly random and independent element of
F,

• and CPY, which takes as input a single value and outputs two copies.

We say that the gates ADD,SUB,MUL,CPY are functional gadgets, in that they compute a
function (respectively, (x, y) 7→ x+ y, (x, y) 7→ x− y, (x, y) 7→ xy, x 7→ (x, x)). Furthermore, we
view the circuit as a directed acyclic graph C = (G,W) in which

• G is the set of the gates of the circuit, seen as a set of nodes of the graph,

• W is the set of the wires of the circuit, seen as a set of edges of the graph.

We also assume that C is connected (otherwise, it suffices to look at each connected component
separately, since they act independently) and that G is topologically sorted. Namely, for every
two gates gi, gj ∈ G with i < j, then gi comes before gj . Intuitively, this means that gj is not
needed to compute gi.

A circuit C models computation on some (possibly randomized) input x ∈ Fm∗
and produces

some output y ∈ Fn∗
; we denote this by writing y ← C(x). The numbers m∗ and n∗ are

respectively the fan-in and the fan-out of the circuit, and they correspond respectively to the
number of input gates and the number of output gates of C. Sometimes, we need more detail
about the computation of the circuit. In this case, we denote by W(x) the list of all the values
that the wires of the circuit take upon input x.

8

Circuit compiler. A circuit compiler Γ takes as input the original circuit C and produces
a new circuit Ĉ = Γ(C). Unless stated otherwise, we denote by regular letters everything that
belongs to the original circuit, like C, x, g ∈ G, w ∈ W, and by letters with hats everything that
belongs to the transformed circuit, like Ĉ, x̂, ĝ ∈ Ĝ, ŵ ∈ Ŵ.

The compiler Γ is associated with an encoding scheme Enc : F → Fℓ, Dec : Fℓ → F such
that, for all x ∈ F, Dec(Enc(x)) = x (or, more formally, this happens with probability 1 over
the randomness of the encoding). Then, the wires of the original circuit C are represented in
the transformed circuit Ĉ as wire bundles that carry the value of the wire in encoded form. The
input x ∈ Fm∗

to C is then transformed into the encoded input Enc(x) to Ĉ. The main challenge
to compile C to Ĉ is to describe how to transform the gates. For each gate g ∈ G, the compiler
constructs a sub-circuit ĝ, the so-called gadget, that represents the computation of ĝ in Ĉ and
carries out the output of g in encoded form. We emphasize that the computation in the gadgets
use the standard gates defined in the previous section. Notice also that, for simplicity, we focus
in this work on stateless circuits, i.e., the circuits do not have memory gates. Hence, we require
that compiled circuits Ĉ receive their inputs in encoded form.

In what follows, we partition the wires of every gadget ĝ into three disjoint subsets:

• the input wires are the wires that carry the input encoding x̂;

• the output wires are the wires that carry the output encoding ŷ = ĝ(x̂);

• all the other wires belong to the set of the internal wires, which carry the computation
inside ĝ.

Notice that, whenever a gadget ĝ1 is connected to ĝ2, the wires from ĝ1 to ĝ2 are both input
wires for ĝ2 and output wires for ĝ1. Since every value that is output by a gadget is then input
into another gadget, we can ignore the input wires and consider every gadget to be just its
internal and output wires.

Finally, we now establish some notation that is useful when reasoning about gadgets. For a
gadget ĝ, we denote by Inĝ the set of the possible inputs and by Outĝ(x̂) the set of the possible
outputs upon input x̂.

Leakage. A leakage function is a (possibly randomized) function f : F → Ω for some set Ω.
As discussed in detail in the introduction, in this work we focus on probing functions, and we
use two probing models. Let F be a finite field. A randomized function φ : F → F ∪ {⊥} is
called a (wire) probing function (over the field F) if for every x ∈ F we have that φ(x) is equal
either to x or to ⊥, where ⊥ is a special symbol that denotes that the probing function failed
to probe the wire. For ε ∈ (0, 1), such a function is called:

• ε-random if for every x ∈ F, Pr [φ(x) = x] = ε, and

• ε-average if for the uniform random variable x over F, Pr [φ(x) = x] = ε.

In what follows, we use the letter ρ to denote random probing and the letter α to denote average
probing.

Sometimes we need to keep or discard values depending on the outcome of a probing function.
Towards this, for any x ∈ F ∪ {⊥} and any x̂ ∈ Fℓ, we define the function

Blindx(x̂) :=

{
x̂ if x ∈ F,
⊥ if x = ⊥.

9

We extend Blindx to a function Fn → Fℓn in the usual way, i.e., by applying it to every component
of x = (x1, . . . , xn) and x̂ = (x̂1, . . . , x̂n):

Blindx(x̂) := (Blindx1 (x̂1) , . . . ,Blindxn (x̂n)) .

Furthermore, we consider an all-or-nothing function Blind∗x defined for every x ∈ (F ∪ {⊥})n
such that

Blind∗x(x̂) :=

{
x̂ if x ∈ Fn,

⊥ otherwise.

2.1 Simple facts

In this section we list some results that we are going to use later in this work.
First of all, we state two general fact about products of uniform distributions.

Lemma 2.1. Let F be a field and let x,y be two independent and uniform random variables
over F. Then, the product xy is 1

|F| -close to uniform.

The proof of this fact can be found in Appendix A.1.

Lemma 2.2 ([MPR07]). Let G be a group x,y be two independent random variables over G.
Then,

d(x+ y) ≤ 2d(x)d(y).

A consequence of the above is the following.

Lemma 2.3. Let γ ∈
[
0, 12

]
be a parameter, let F be a field and let x,y be two independent and

γ-close-to-uniform distributions over F. Then, x+ y is γ-close-to-uniform.

The following lemma states that, informally, if a distribution over a set of values is “uniform
enough”, then it is always possible that nothing leaks even in the stronger model of average
probing.

Lemma 2.4. Let γ ∈
[
0, 12

]
, δ ∈ [0, 1] be parameters. Let x = (x1, . . . ,xk) be a distribution

over Fk and assume that there exist k′ values xi1 , . . . ,xi′k
that are γ-close to uniform and that

all the other k − k′ values xi are uniform. Finally, let α be any δ-average-probing function.
Then,

Pr [α(x) = ⊥] ≥ 1−
(
k + k′γ|F|

)
δ

The proof of this fact can be found in Appendix A.2.

3 Composable gadgets against average probing

In this section, we design the gadgets that we are using in our circuit compiler. In Section 4
we will define a circuit simulator to prove that, intuitively, our compiler transforms random-
probing-resilient circuits into average-probing-resilient circuits. To do so, the simulator only
receives as input the random probing leakage ρ(W(x)) from the original circuit C. Our strategy
is to construct gadgets in a composable way so that we can reduce the simulatability of the
circuit to the simulatability of every gadget. In particular, the circuit simulator will forward
the random probing leakage (or part of it) to the gadget simulator, which will then produce
leakage from the wires of the gadgets. The main difficulty here is that, for every gadget, the
distribution of the values on the wires depends on the distribution of the input values, and such
distribution is not always the same if we condition on all the leakage that happened before the

10

gadget. However, if we allow the gadget simulator to also receive, when available, the encoding
of the input, then the simulation can be accurate. Intuitively, the notion of simulatabilty should
look like

∀x̂ ∈ Fℓm : Λ ≡ Simĝ

(
Blind∗ρ(x) (x̂)

)
,

where Λ is the leakage from the wires of the real gadget and x = Dec(x̂). Looking forward,
when simulating two consecutive gadgets, the circuit simulator has no way to generate the input
to the second gadget simulator, since it does not come from the real circuit. This means that
every simulator is required to simulate the output of the gadget as well, unless it is not needed
(i.e., when the random probing ρ(y) of the output value y results in ⊥). The following definition
captures exactly this property.

Definition 3.1 (Gadget simulatability). Let ε, δ ∈ [0, 1], ℓ ∈ N be parameters. Let g be a
functional gate with fan-in m and fan-out n. Let ĝ be the corresponding gadget for an encoding
of size ℓ. We say that ĝ is ε-random to δ-average leakage-simulatable if for every δ-average
probing function α there exists a simulator Simĝ such that

∀x̂ ∈ Fℓm : Realĝ (x̂) ≡ Simĝ

(
Blind∗ρ(x) (x̂) , y

)
and

∀x̂ ∈ Fℓm : (Λ,⊥) ≡ Simĝ

(
Blind∗ρ(x) (x̂) ,⊥

)
.

In the above, x = Dec(x̂), y = g(x), ρ is the ε-random probing function and (Λ, ŷ) = Realĝ is a
sample from the real experiment, which computes ŷ ≡ ĝ(x̂), obtains the average-probing leakage
Λ from the wires and then outputs (Λ, ŷ).

Additional properties. Now that we established the notion, we want to show that we are
actually able to achieve it. Intuitively, we should construct every gadget and then prove that
they meet the above definitions; however, the proofs are quite long and very similar. Instead,
we proceed the other way around: first, we show a general technique to construct a simulator,
and then we show that such general technique can be applied to simulate all the gadgets that
we construct. In this way, we only have a general proof for the simulator and then one corollary
for every gadget. However, to proceed in this way, we need two additional properties from the
gadgets.

The first property states, informally, that every wire on the gadget carries a close-to-uniform
value when considered independently of the rest of the gadget.

Definition 3.2 (Close-to-uniform gadget). Let g be any gate and let ĝ be the corresponding
gadget. Let k be the number of wires in ĝ and let γ ∈

[
0, 12

]
, k′ ∈ N be parameters such that

k′ ≤ k. Furthermore, let (w1, . . . ,wk) be the random variable of the values on the wires of ĝ.
We say that ĝ is a (k, k′, γ)-close-to-uniform gadget if w1, . . . ,wk are all γ-close-to-uniform
and, additionally, there are k − k′ indices i ∈ [k] such that wi is uniform. If k′ = 0 (i.e., the
gadget does not contain non-uniform wires), we simply say that the gadget is k-uniform.

In the following corollary, which is a direct consequence of Lemma 2.4, we show that, intu-
itively, close-to-uniform gadgets have nice “hiding” properties.

Corollary 3.3. Let δ ∈ (0, 1), γ ∈
[
0, 12

]
, k, k′, ℓ,m ∈ N be parameters such that k′ ≤ k and ℓ is

the size of the encoding. Let g be a functional gate with fan-in m, and let ĝ be the corresponding
gadget for an encoding of size ℓ. Assume that ĝ is (k, k′, γ)-close-to-uniform. Then, for all
x̂ ∈ Fℓm and all δ-average probing functions α,

Pr [Λ = ⊥] ≥ 1− kδ − k′γδ|F|,

11

where Λ := Leakĝ(α, x̂) is the distribution of the leakage from the wires of ĝ upon input x̂.

The second property states, informally, that every internal wire of the gadget carries a
value that, when considered independently of the other internal wires, is also independent of
the output of the gadget.

Definition 3.4 (Output independence). Let g be any gate with fan-out n and let ĝ be the
corresponding gadget for an encoding of size ℓ ∈ N. Let k ∈ N be the number of wires in ĝ and
let n ∈ N be the fan-out of g. Furthermore, let (w1, . . . ,wk−ℓn) be the random variable of the
values on the internal wires of ĝ and let ŷ be the random variable of the values on the output
wires. We say that ĝ is output-independent if

∀i ∈ [k − ℓn], ∀w ∈ F : Pr [wi = w | ŷ = ŷ] = Pr [wi = w]

and, additionally,
ŷ ≡ Enc(Dec(ŷ)).

The following lemma shows a useful lower bound on the distribution of any non-leaking
output of close-to-uniform gadgets with output-independence. Roughly speaking, this means
that, when the gadget does not leak anything (i.e., Λ = ⊥), it is still possible to approximate
from below the output distribution of the gadget with a distribution that does not depend on
the input value x̂, namely, the distribution Enc(y)|α(Enc(y)) = ⊥.

Lemma 3.5. Let γ ∈
[
0, 12

]
, δ ∈ (0, 1), k, k′, ℓ,m, n ∈ N be parameters such that k′ ≤ k and (k+

k′γ|F|)δ < 1. Let g be any gate with fan-in m and fan-out n and let ĝ be the corresponding gadget
for an encoding of size ℓ. Assume that ĝ is (k, k′, γ)-close-to-uniform and output-independent.
Then, for all x̂ ∈ Fℓm and all ŷ ∈ Outĝ(x̂),

Pr [Enc(y) = ŷ |α(Enc(y)) = ⊥] ≤ Pr [Realg(x̂) = (⊥, ŷ)]
1− (k + k′γ|F|)δ

, (1)

where y = Dec(ŷ).

The proof of this fact can be found in Appendix A.3.

The gadget simulator. Now we are ready to define the actual gadget simulator. Recall that
the simulator receives two inputs which are possibly “blinded”, namely the input of the gadget
x̂ and the output of the original gate y. In what follows, we assume that, whenever y ̸= ⊥,
y ∈ Fn or, in other words, y is given in full to the simulator;4 it is easy to extend the simulator
and the analysis to the general case.

For a gate g with fan-in m and fan-out n and its respective gadget ĝ for an encoding of size
ℓ, we consider the following simulator Simĝ.

• Upon input (⊥,⊥), simply output (⊥,⊥).

• Upon input (⊥, y), sample ŷ with probability

Pr [Enc(y) = ŷ |α(Enc(y)) = ⊥]

and output (⊥, ŷ).
4Notice that the only gate with n > 1 is the copy gate, for which all the components of y are the same.

12

• Upon input (x̂,⊥), sample Λ ̸= ⊥ with probability

1

εm
Pr [Λ = Λ] ,

where Λ is the leakage performed by the real experiment Realĝ, or set Λ = ⊥ with
probability

1

εm
Pr [Λ = ⊥]− 1− εm

εm
.

Then, output (Λ,⊥).

• Upon input (x̂, y), sample (Λ, ŷ) for Λ ̸= ⊥ with probability

1

εm
Pr

[
Realĝ(x̂) = (Λ, ŷ)

]
and sample (⊥, ŷ) with probability

1

εm
Pr

[
Realĝ(x̂) = (⊥, ŷ)

]
− 1− εm

εm
Pr [Enc(y) = ŷ |α(Enc(y)) = ⊥] .

Finally, output the sampled values.

The remainder of the section is dedicated to the proof of the following theorem stating
that, informally, the output of the simulator is identically distributed to the output of the real
experiment.

Theorem 3.6. Let γ ∈
[
0, 12

]
, ε, δ ∈ (0, 1), k, k′, ℓ,m, n ∈ N be parameters such that k′ ≤ k and

(k + k′γ|F|)δ < εm.

Let g be a functional gate with fan-in m and fan-out n and let ĝ be the corresponding gadget
for an encoding of size ℓ. Assume that ĝ is (k, k′, γ)-close-to-uniform and output-independent.
Then, the above simulator is such that

∀x̂ ∈ Fℓm : Realĝ (x̂) ≡ Simĝ

(
Blind∗ρ(x) (x̂) , y

)
and

∀x̂ ∈ Fℓm : (Λ,⊥) ≡ Simĝ

(
Blind∗ρ(x) (x̂) ,⊥

)
.

In the above, x = Dec(x̂), y = g(x), ρ is the ε-random probing function and (Λ, ŷ) = Realĝ is a
sample from the real experiment, which computes ŷ ≡ ĝ(x̂), obtains the average-probing leakage
Λ from the wires and then outputs (Λ, ŷ).

Proof. First of all, we need to show that the simulator is well-defined. Namely, we need to show
that the output of the simulator is actually a distribution, meaning that all the probabilities are
non-negative and sum up to 1. This is trivial when the simulator receives (⊥,⊥) or (⊥, y) as
input, therefore, in what follows, we focus on the case in which the simulator actually receives
x̂.

• When the simulator receives (x̂,⊥) as input, it samples Λ and outputs (Λ,⊥). All the
probabilities of the simulator outputting Λ ̸= ⊥ are trivially non-negative. When summing
all of them, we get that the probability of outputting any Λ ̸= ⊥ is

1

εm
Pr [Λ ̸= ⊥] .

13

Since ĝ is close-to-uniform, we can apply Corollary 3.3 to obtain that

1

εm
Pr [Λ ̸= ⊥] ≤ 1

εm
(k + k′γ|F|)δ < 1, (2)

where the last inequality holds by the hypothesis on the parameters. On the other side,
the simulator outputs Λ = ⊥ with probability

1

εm
Pr [Λ = ⊥]− 1− εm

εm
= 1− 1

εm
Pr [Λ ̸= ⊥] > 0,

where the last inequality follows from Eq. (2). It follows that the probabilities are non-
negative and that they sum up to 1.

• When the simulator receives (x̂, y) as input, the proof is very similar to the above. Indeed,
the simulator samples (Λ, ŷ) for Λ ̸= ⊥ always with non-negative probability; on the other
side, the probability of sampling (⊥, ŷ) is non-negative if and only if

Pr
[
Realĝ(x̂) = (⊥, ŷ)

]
− (1− εm) Pr [Enc(y) = ŷ |α(Enc(y)) = ⊥] ≥ 0

or, by rearranging the terms, if and only if

Pr [Enc(y) = ŷ |α(Enc(y)) = ⊥] ≤
Pr

[
Realĝ(x̂) = (⊥, ŷ)

]
1− εm

. (3)

However, since ĝ is close-to-uniform and output-independent by hypothesis, we can apply
Lemma 3.5, which gives

Pr [Enc(y) = ŷ |α(Enc(y)) = ⊥] ≤ Pr [Realg(x̂) = (⊥, ŷ)]
1− (k + k′γ|F|)δ

.

Then, Eq. (3) follows from the hypothesis (k + k′γ|F|)δ < εm. Finally, it is easy to see
that all the terms sum up to 1.

Now it remains to show that the simulator perfectly simulates the real distribution. We start
the analysis of the simulator from the simple case of Λ ̸= ⊥. Notice that Simĝ only outputs
Λ ̸= ⊥ if it receives x̂ as input (otherwise, the simulator plays safe and outputs ⊥). Therefore,

Pr
[
Simĝ

(
Blind∗ρ(x) (x̂) , y

)
= (Λ, ŷ)

]
= Pr

[
Blind∗ρ(x) (x̂) = x̂

]
Pr

[
Simĝ (x̂, y) = (Λ, ŷ)

]
(4)

= Pr [ρ(x) = x] Pr
[
Simĝ (x̂, y) = (Λ, ŷ)

]
(5)

= εm Pr
[
Simĝ (x̂, y) = (Λ, ŷ)

]
(6)

= Pr
[
Realĝ (x̂) = (Λ, ŷ)

]
, (7)

where Λ is the leakage produced by the real experiment Realĝ. In the above derivation,

• Eq. (4) follows by definition of conditional probability;

• Eq. (5) holds because Blind∗ρ(x) (x̂) = x̂ if and only if ρ(x) = x;

• Eq. (6) follows by definition of random probing and from the fact that x ∈ Fm;

• and finally, Eq. (7) follows by how we defined the simulator to behave upon input (x̂, y).

14

x̂11 $ x̂12 x̂21 $ x̂22

⊕ □ ⊖ ⊕ □ ⊖

⊕ ŷ1

⊕ ŷ2

Figure 1: Scheme for the ÂDD gadget.

The proof for the case in which the simulator does not get y is analogous, therefore we now only
focus on the case Λ = ⊥. This case is a bit more involved, because Simĝ may output Λ = ⊥
both when the input x̂ is given and when the simulator receives ⊥. Namely,

Pr
[
Simĝ

(
Blind∗ρ(x) (x̂) , y

)
= (Λ, ŷ)

]
= Pr

[
Blind∗ρ(x) (x̂) = x̂

]
Pr

[
Simĝ (x̂, y) = (⊥, ŷ)

]
(8)

+ Pr
[
Blind∗ρ(x) (x̂) = ⊥

]
Pr

[
Simĝ (⊥, y) = (⊥, ŷ)

]
= Pr [ρ(x) = x] Pr

[
Simĝ (x̂, y) = (⊥, ŷ)

]
(9)

+ Pr [ρ(x) = ⊥] Pr
[
Simĝ (⊥, y) = (⊥, ŷ)

]
= εm Pr

[
Simĝ (x̂, y) = (⊥, ŷ)

]
(10)

+ (1− εm) Pr
[
Simĝ (⊥, y) = (⊥, ŷ)

]
= Pr

[
Realĝ(x̂) = (⊥, ŷ)

]
− (1− εm) Pr [Enc(y) = ŷ |α(Enc(y)) = ⊥] (11)

+ (1− εm) Pr [Enc(y) = ŷ |α(Enc(y)) = ⊥]
= Pr

[
Realĝ(x̂) = (⊥, ŷ)

]
. (12)

In the above derivation,

• Eqs. (8) to (10) follow for the same reasoning as in Eqs. (4) to (6);

• Eq. (11) follows by how we defined the simulator to behave upon input (x̂, y);

• and finally, Eq. (12) follows by simplifying the sum and subtraction of the same term.

This concludes the proof.

Now that we proved the main result of this section, we define the gadgets that we are going
to use in the final construction.

3.1 Basic arithmetic gadgets

We start by constructing the ÂDD gadget, depicted in Fig. 1 and consisting of 2 RND gates,

2 CPY gates, 4 ADD gates and 2 SUB gates, for a total of 10 gates. Furthermore, the ÂDD
gadget consists of 12 wires. The random gates output uniform random values r1 and r2, which
are then copied and used to refresh the input values. Then, the refreshed values are summed

15

component-wise in order to obtain ŷ1, ŷ2. Overall, without taking into account wires carrying
the same value, the wires in the gadget carry the following values:

r1, r2, (From the random gates)

x̂11 + r1, x̂12 − r1, (Refreshing of the first input)

x̂21 + r2, x̂22 − r2, (Refreshing of the second input)

x̂11 + r1 + x̂21 + r2, x̂12 − r1 + x̂22 − r2 (Output encoding)

It is easy to see that every one of the above values is uniformly distributed when taken inde-
pendently. Finally, ADD is a deterministic gate with fan-in 2 and fan-out 1, therefore it is a
functional gate.

From the above, ÂDD is a 12-uniform gadget for a deterministic functional gate. We now
show that the gadget is output-independent. Indeed, we have that

ŷ1 = x̂11 + r1 + x̂21 + r2 and ŷ2 = x̂12 − r1 + x̂22 − r2,

which means that, by uniformity of r1 and r2, the output is identically distributed to a fresh
encoding. Furthermore, for the internal wires we have that, for every r ∈ F, every x̂ ∈ F4, and
every ŷ ∈ Out

ÂDD
(x̂),

Pr [r1 = r | ŷ = ŷ] = Pr

[
r1 = r

∣∣∣∣ x̂11 + r1 + x̂21 + r2 = ŷ1
x̂12 − r1 + x̂22 − r2 = ŷ2

]
= Pr [r1 = r | r1 = c1 − r2]

= Pr [r2 = c1 − r]

= Pr [r1 = r] ,

where c1 = ŷ1− x̂11− x̂21, the first equality follows from making ŷ explicit, the second equality
follows by rearranging the terms and the fact that ŷ ∈ Out

ÂDD
(x̂), the third equality follows by

replacing r1 with its value given by the condition, and the last equality follows because both
r1, r2 are uniform samples from F. A similar reasoning can be applied to the values carried by
all the other internal wires, thus proving output-independence.

Now that we proved that the gadget is 12-uniform and output-independent, we can apply
Theorem 3.6 to obtain the following.

Corollary 3.7. Let ε, δ ∈ (0, 1) be parameters such that

12δ < ε2.

Then, ÂDD is ε-random to δ-average simulatable.

By replacing the last two ADD gates with SUB gates in ÂDD, we obtain the new gadget
ŜUB, depicted in Fig. 2, which computes SUB. The analysis is completely analogous to the one
for ŜUB, hence we have the following.

Corollary 3.8. Let ε, δ ∈ (0, 1) be parameters such that

12δ < ε2.

Then, ŜUB is ε-random to δ-average simulatable.

16

x̂11 $ x̂12 x̂21 $ x̂22

⊕ □ ⊖ ⊕ □ ⊖

⊖ ŷ1

⊖ ŷ2

Figure 2: Scheme for the ŜUB gadget.

x̂11 $ x̂12 x̂21 $ x̂22

⊕ □ ⊖ ⊕ □ ⊖

□ □

□ ⊗ ⊕ ⊗ ⊕ ŷ1

$ □

□ ⊗ ⊖ ⊗ ⊕ ŷ2

Figure 3: Scheme for the M̂UL gadget. To make the diagram easier to understand, the wires
carrying an encoding of x1 are marked in red, the wires carrying an encoding of x2 are marked
in green, and the wires after the multiplication are marked in blue.

17

3.2 Multiplication gadget

The M̂UL gadget, depicted in Fig. 3, is probably the most complex gadget due to the properties
of multiplication. Indeed, it is the only non-uniform gadget, consisting of 3 RND gates, 7 CPY
gates, 5 ADD gates, 3 SUB gates, and 4 MUL gates, for a total of 22 gates. Furthermore, the

M̂UL gadget consists of 29 wires. The first two random gates output uniform random values r1
and r2, which are then copied and used to refresh the input values. Then, the refreshed values
are (copied and) multiplied so to obtain the four terms of the product of two binomials:

(a1 + a2) (b1 + b2) = a1b1 + a1b2 + a2b1 + a2b2.

Finally, the partial sums are computed, in order to have encodings of only two elements, and
then a third random gate is used to refresh the output encoding. Overall, without taking into
account wires carrying the same value, the wires in the gadget carry the following values:

r1, r2, r3 (From the random gates)

x̂11 + r1, x̂12 − r1, (Refreshing of the first input)

x̂21 + r2, x̂22 − r2, (Refreshing of the second input)

(x̂12 − r1) (x̂21 + r2) , (First column of multiplications)

(x̂11 + r1) (x̂21 + r2)

(x̂12 − r1) (x̂22 − r2) , (Second column of multiplications)

(x̂11 + r1) (x̂22 − r2)

(x̂12 − r1) (x̂21 + r2) + r3, (First column rerandomized)

(x̂11 + r1) (x̂21 + r2)− r3

(x̂12 − r1) (x̂21 + r2) + r3 (First output component)

+ (x̂12 − r1) (x̂22 − r2)

(x̂11 + r1) (x̂21 + r2)− r3 (Second output component)

+ (x̂11 + r1) (x̂22 − r2) .

It is easy to see that all the values on the red and green wires are uniform when considered
independently, and so are the output wires and the wires carrying r3. The only wires that are
not uniform are the outputs of the four MUL gates. However, by Lemma 2.1, the outputs of the
MUL gates are 1

|F| -close-to-uniform. Finally, a reasoning similar to the one in Section 3.1 shows
that multiplication gadgets are also output-independent. This suffices to apply Theorem 3.6
with parameters k = 29, k′ = 6 and γ = 1

|F| , and obtain the following result.

Corollary 3.9. Let ε, δ ∈ (0, 1) be parameters such that(
29 + 6 · 1

|F|
· |F|

)
δ = 35δ < ε2.

Then, M̂UL is ε-random to δ-average simulatable.

3.3 Copy gadget

The last functional gadget is the ĈPY gadget, depicted in Fig. 4, which is fairly simple. It
consists of 3 RND gates, 5 CPY gates, 3 ADD gates and 3 SUB gates, for a total of 14 gates.
Furthermore, the ĈPY gadget consists of 19 wires. There are no arithmetic operations except
for the ones needed to refresh the encodings; on the other hand, the encodings are refreshed

18

x̂1 ⊕ □ ⊕ ŷ11

$ □ $ □

x̂2 ⊖ □ ⊖ ŷ12

⊕ ŷ21

$ □

⊖ ŷ22

Figure 4: Scheme for the ĈPY gadget.

both on the input side, to ensure that the gadget is uniform, and on the output side, to ensure
that the gadget is output-independent.

By applying Theorem 3.6, we obtain the following.

Corollary 3.10. Let ε, δ ∈ (0, 1) be parameters such that

19δ < ε2.

Then, ĈPY is ε-random to δ-average simulatable.

3.4 Putting everything together

The only missing gadgets are the ones for IN,OUT,RND. However, OUT only has input wires,
therefore the corresponding gadget would be empty. On the other hand, IN and RND are very
similar, therefore we focus on IN and then explain later the differences with RND.

Let g0 be any input gate and let g1 be the gate that receives the input from g0; finally, let
w = (g0, g1) be the wire connecting the two gates. By assuming a leak-free encoder before the
circuit, the encoding that we would place on the wire bundle ŵ is already a fresh encoding or,
in other words, the value on every wire of the bundle is uniformly distributed when considered
independently. This actually means two things:

• there is no need to re-randomize the values directly coming from the input in gadget ĝ1;

• if we consider ĝ0 ∪ ŵ ∪ ĝ1, we are only adding two uniform wires.

By applying the above, we can remove the re-randomization component (thus removing 3 wires)
and consider the input wires as part of the gadget instead (thus adding 2 wires). As an example,

Fig. 5 is what the ÂDD gadget looks like when we apply the above strategy.

Corollary 3.11. Let k, k′ ∈ N, γ ∈
[
0, 12

]
, ε, δ ∈ (0, 1) be parameters such that(

k + k′γ|F|
)
δ ≤ ε2

and assume that ĝ is a (k, k′, γ)-close-to-uniform and output-independent gadget. Then, the
above operation of merging the input wires and removing the re-randomization component pro-
duces a new gadget ĝ′ that is (k − 1, k′, γ)-close-to-uniform and output-independent.

19

x̂11 x1 x̂12 x̂21 $ x̂22

⊕ □ ⊖

⊕ ŷ1

⊕ ŷ2

Figure 5: Scheme for the ÂDD gadget, in which we replaced the rerandomizing component with
the input wires; the box represents the leak-free encoding circuit that takes as input x1 and
outputs the fresh encoding (x̂11, x̂12).

Proof. Notice that the above operation removes three uniform wires (namely, the ones from the
random gate that are used to re-randomize the encoding) and adds two uniform wires (namely,
the ones carrying the fresh encoding). Hence, this operation converts a (k, k′, γ)-close-to-uniform
gadget into a (k− 1, k′, γ)-close-to-uniform gadget. Finally, this operation does not modify any
other wire, and it is easy to see that the output-independence property is preserved.

Since we addressed all gadgets, we can have the following general corollary that handles all
of them.

Corollary 3.12. Let ε, δ ∈ (0, 1) be parameters such that

35δ ≤ ε2.

Then, all the gadgets defined so far are ε-random to δ-average simulatable.

4 The circuit compiler

The circuit compiler simply replaces every wire with the respective wire bundle and every gate
with the respective gadget. Our goal is to achieve the following definition.

Definition 4.1 (Simulatability of circuits). Let C be a circuit with fan-in m∗ and fan-out n∗.
Let Ĉ be the corresponding transformed circuit. Let Φ,Ψ be two families of (possibly randomized)
functions. Finally, let ℓ ∈ N be the size of the encoding. We say that Ĉ is Φ-to-Ψ-simulatable
(from C) if there exists a simulator SimC such that for every x∗ ∈ Fm∗

input to C and every
function ψ ∈ Ψ there exists a function φ ∈ Φ:

LeakC (Enc(x
∗)) ≡ SimC (φ (W(x∗))) . (13)

In the above, W(x∗) is the distribution of the values on the wires of the original circuit C upon
input x∗.

In what follows, we show the following.

Theorem 4.2. Let ε, δ ∈ (0, 1) be parameters such that 35δ < ε2. Let C be a circuit and let Ĉ
be the circuit transformed in the following way:

• for every functional gate g ∈ C, we place the corresponding gadget, as described in Sec-
tion 3, in Ĉ;

• for every wire w ∈ C, we place the corresponding wire bundle in Ĉ, consisting of 2 wires;

20

• if w = (g1, g2), the corresponding wire bundle ŵ will connect ĝ1 to ĝ2.

Then, the transformed circuit Ĉ is ε-random to δ-average simulatable.

The proof proceeds by hybrid argument. Namely, let k∗ be the number of functional gates
in C. Then, the real experiment LeakC(Enc(x

∗)) can be rewritten as follows.

1. Sample x̂∗ = Enc(x∗).

2. For every j ∈ [k∗], compute Λj , ŷj as follows.

(a) For every input bundle of gadget ĝj that comes from an input of the circuit, place
the corresponding value taken from the vector x̂∗.

(b) For every input bundle of gadget ĝj that comes from a random gate of the circuit,
sample uniform r ∈ F and place Enc(r) on the wires.

(c) Since C is topologically sorted, every other input bundle of gadget ĝj already has a
value, which has been computed in a previous iteration as ŷj′ for some j′ < j.

(d) Let Ŵj ∈ Fkj be the list of values on all the kj wires of ĝj .

(e) The leakage Λj is set to be Λj := α(Ŵj), while the output ŷj is taken from the output

values stored in Ŵj .

3. Output Λ = Λ1|| . . . ||Λk∗ .

The above experiment, which we denote as Hybk∗+1(x
∗), only differs from the original experi-

ment LeakC(Enc(x
∗)) in when the leakage occurs. Namely, in LeakC first the circuit is computed

entirely and then the leakage is computed, while Hybk∗+1 computes the leakage immediately
after the values on the wires are available. Therefore,

LeakC(Enc(x
∗)) ≡ Hybk∗+1(x

∗).

Now we define, for i ∈ [k∗], the following hybrid experiment Hybi(x
∗).

1. Sample x̂∗ = Enc(x∗) and x̂∗? = Blindρ(x∗)(x̂∗).

2. For every j ∈ [k∗], compute Λj , ŷj as follows.

• If j < i, do the following.

(a) For every input bundle of gadget ĝj that comes from an input of the circuit,
place the corresponding value taken from the vector x̂∗.

(b) For every input bundle of gadget ĝj that comes from a random gate of the circuit,
sample uniform r ∈ F and place Enc(r) on the wires.

(c) Since C is topologically sorted, every other input bundle of gadget ĝj already has
a value, which has been computed in a previous iteration as ŷj′ for some j′ < j.

(d) Let Ŵj ∈ Fkj be the list of values on all the kj wires of ĝj .

(e) The leakage Λj is set to be Λj := α(Ŵj), while the output ŷj is taken from the

output values stored in Ŵj .

(f) Compute yj = Dec(ŷj) and sample ŷj? = Blindρ(yj)(ŷj).

If j ≥ i, the leakage and the output will be generated by the corresponding simulator
Simĝj . Namely, do the following.

21

(a) Let x̂? be possibly blinded the values on the input bundles of gadget ĝj . Notice
that, for every input bundle, there are only four possibilities:

– the input bundle comes from input gates, in which case x̂? has already been
computed among the circuit inputs x̂∗? = Blindρ(x∗)(x̂∗);

– the input bundle comes from random gates, in which case just sample uniform
r ∈ F and sample x̂? = Blindρ(r)(Enc(r));

– the input bundle is an output bundle of a functional gadget ĝj′ for j′ < i,
in which case we already computed x̂? as ŷj? = Blindρ(yj)(ŷj) in a previous
step;

– the input bundle is an output bundle of a functional gadget ĝj′ for j
′ ≥ i and

j′ < j, in which case x̂? has already been output by a previous simulator as
ŷj?.

In any case, x̂? is always available.

(b) If some of the values of x̂? are ⊥, set x̂? ← ⊥; otherwise, leave it unchanged.
This is equivalent to convert the output of Blind into the output of Blind∗.

(c) Let y = g(x), where x = Dec(x̂) and x̂ is the collection of the input values
computed as above. Notice that, even if x̂ is not available to the experiment, x
is always available: indeed, the experiment knows the input x∗ and the random
coins sampled so far, therefore is able to deterministically reconstruct x.

(d) Probe y? ← ρ(y).

(e) Run the simulator (Λj , ŷ?)← Simĝi (x̂?, y?).

3. Output Λ = Λ1|| . . . ||Λk∗ .

Notice that, if we instantiate the above algorithm with i = k∗ + 1, the part j ≥ i is never
executed, and the part j < i is exactly the same as in Hybk∗+1(x

∗).
The following lemma says that the changes that we are introducing do not affect the final

distribution of the leakage.

Lemma 4.3. Let x∗ be any input to C. Then, for every i ∈ [k∗],

Hybi(x
∗) ≡ Hybi+1(x

∗)

The proof of this fact is a simple but long reduction, which can be found in Appendix A.4.
For the next step of the proof, we take a closer look at Hyb1(x

∗). Namely, since the branch
j < 1 is never executed and all the real functional gadgets have been replaced with the respective
simulators, the description of Hyb1(x

∗) looks as follows.

1. Sample x̂∗ = Enc(x∗) and x̂∗? = Blindρ(x∗)(x̂∗).

2. For every j ∈ [k∗], compute Λj , ŷj as follows.

(a) Let x̂? be the possibly blinded values on the input bundles of gadget ĝj . Notice that,
for every input bundle, there are only three possibilities:

• the input bundle comes from input gates, in which case x̂? has already been
computed among the circuit inputs x̂∗? = Blindρ(x∗)(x̂∗);

• the input bundle comes from random gates, in which case just sample uniform
r ∈ F and sample x̂? = Blindρ(r)(Enc(r));

• the input bundle is an output bundle of a functional gadget ĝj′ for j′ < j, in
which case x̂? has already been output by a previous simulator as ŷj?.

22

In any case, x̂? is always available.

(b) If some of the values of x̂? are ⊥, set x̂? ← ⊥; otherwise, leave it unchanged. This is
equivalent to convert the output of Blind into the output of Blind∗.

(c) Let y = g(x), where x = Dec(x̂) and x̂ is the collection of the input values computed
as above. Notice that, even if x̂ is not available to the experiment, x is always
available: indeed, the experiment knows the input x∗ and the random coins sampled
so far, therefore is able to deterministically reconstruct x.

(d) Probe y? ← ρ(y).

(e) Run the simulator (Λj , ŷ?)← Simĝi (x̂?, y?).

3. Output Λ = Λ1|| . . . ||Λk∗ .

We define the last hybrid experiment Hyb0 (x
∗) as follows. Here we underline the differences

between Hyb1 and Hyb0.

1. Run C(x∗) and sample W? := ρ(W(x∗)).

2. For every j ∈ [k∗], compute Λj , ŷj as follows.

(a) Let x̂? be possibly blinded the values on the input bundles of gadget ĝj . Notice that,
for every input bundle, there are only three possibilities:

• the input bundle comes from input gates, in which case we set x̂? = Enc(x) if the
random probing on the original input x was successful and x̂? = ⊥ otherwise.

• the input bundle comes from random gates, in which case just sample uniform
r ∈ F and sample x̂? = Blindρ(r)(Enc(r));

• the input bundle is an output bundle of a functional gadget ĝj′ for j′ < j, in
which case x̂? has already been output by a previous simulator as ŷj?.

In any case, x̂? is always available.

(b) If some of the values of x̂? are ⊥, set x̂? ← ⊥; otherwise, leave it unchanged. This is
equivalent to convert the output of Blind into the output of Blind∗.

(c) Let y? be the random probing of the output y of the original gate gj , as already
sampled in W?.

(d) Run the simulator (Λj , ŷ?)← Simĝj (x̂?, y?).

3. Output Λ = Λ1|| . . . ||Λk∗ .

Lemma 4.4. Let x∗ be any input to C. Then, for every i ∈ [k∗],

Hyb0(x
∗) ≡ Hyb1(x

∗)

Proof. The only differences between the two hybrid experiments are when and how the random
probing is sampled. In particular, Hyb1 runs the transformed circuit Ĉ, decodes the values on
the wires and then samples random and average probing leakage. On the other hand, Hyb0
runs the original circuit C, computes the random probing and then only samples the average
probing when needed, i.e., for the input bundles that are part of the input of the circuit or
for the input bundles that come from random gates. Finally, the average probing samples in
Hyb0 are identically distributed to the ones of Hyb1, since both are identically distributed to
the samples in the real case. The lemma follows.

23

Finally, notice that the only use that Hyb0(x
∗) makes of x∗ is to compute the values on

the wires of the original circuit, which is then only used to sample the random probing W? :=
ρ(W(x∗)). We can now extract this procedure outside the hybrid experiment and directly give
the value W? to the experiment; the simulator is then defined as receiving the random probing
W? from the wires and then running exactly as Hyb0(x

∗) from the second step on. Therefore,
the following holds.

Corollary 4.5. Let x∗ be any input to C. Then, for every i ∈ [k∗],

Hyb0(x
∗) ≡ SimC(ρ(W(x∗))).

By putting everything together, we are finally able to prove Theorem 4.2.

Proof. As observed at the beginning, Hybk∗+1(x
∗) is just a syntactic change from LeakC(Enc(x

∗))
and is, otherwise, identical. Hence:

LeakC(Enc(x
∗)) ≡ Hybk∗+1(x

∗)

≡ Hybk∗(x
∗) (By applying Lemma 4.3)

≡ Hyb1(x
∗) (By repeatedly applying Lemma 4.3)

≡ Hyb0(x
∗) (By applying Lemma 4.4)

≡ SimC(ρ(W(x∗))). (By applying Corollary 4.5)

This concludes the proof.

5 Conclusions and open problems

In this work, we presented the first generic compiler that compiles any ε-random probing resilient
circuit C into a δ-average probing resilient circuit Ĉ, as long as

35δ < ε2.

Our compiler takes a circuit C with W wires and G gates and produces a new circuit Ĉ with
W ′ ≤ 2W + 27G wires and G′ ≤ 22G gates. Notice that W ′ and G′ are maximum when C only
contains multiplication gates, and in practical settings, we will usually be below such bounds.

As an immediate application, we are able to achieve the first random-probing to noisy-
leakage compiler where the loss in the noise parameter does not depend on the size of the
underlying field. We briefly recall below the definition of noisy-leakage from [PR13] and the
main result of [DFS15].

Definition 5.1 ([PR13]). Let ε ∈ (0, 1) be a parameter. A (randomized) function ν : F→ Ω is
ε-noisy leakage if

∆
(
(ν(x),x) ,

(
ν(x),x′)) ≤ ε,

where x,x′ are uniform over F.

Theorem 5.2 ([DFS15]). For every ε ∈ (0, 1), and every circuit C, C is ε-average-probing to
ε-noisy-leakage simulatable.

24

In the above, we formalized the result of [DFS15] using Definition 4.1. Notice that [DFS15]
does not use a compiler to transform the circuit C, therefore the circuit is simulatable from
C itself. The following corollary is an immediate consequence of the above and Theorem 4.2.
It implies that circuits transformed by our compiler from Section 4 are δ-noisy secure, if the
original circuit is secure against ϵ-random probing leakage for parameters ϵ and δ as given in
the corollary below.

Corollary 5.3. Let ε, δ ∈ (0, 1) be parameters such that

35δ < ε2.

Let C be any circuit and let Ĉ be the circuit transformed according to the compiler in Section 4.
If C is ε-random-probing resilient, then Ĉ is δ-average-probing to δ-noisy-leakage simulatable.

One limitation of our current analysis is a tightness loss in the noise parameters. Concretely,
if the circuit C is ϵ-random probing secure, then Ĉ is δ-noisy leakage resilient where 35δ < ε2.
The quadratic loss is a consequence of the fact that our gadget simulator in Section 3 only
simulates the leakage when random-probing is successful on all the inputs of the gate in the
original circuit. This happens with probability ε2 for gates with 2 inputs. With our current
techniques, this is somewhat inherent due to the nature of average-probing. In particular, the
simulator cannot simulate the leakage in a consistent way by just receiving partial leakage from
one of the inputs (e.g., because the simulator may incorrectly assume some values being on
the wires that contradict previous leakage from the circuit). We leave it as an important open
problem to further improve our result and eliminate the quadratic loss.

Acknowledgements

Stefan Dziembowski and Gianluca Brian were supported by an NCNGrant 2019/35/B/ST6/04138
and by the Copernicus Awards (agreement no. COP/01/ 2020). This work has been partially
funded by the German Research Foundation (DFG) CRC 1119 CROSSING (project S7), the
German Federal Ministry of Education and Research and the Hessen State Ministry for Higher
Education, Research and the Arts within their joint support of the National Research Center
for Applied Cybersecurity ATHENE, by the ERC Grant 101044770 (CRYPTOLAYER) and the
Copernicus Award (INST 18989/419-1).

References

[ADF16] Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit compilers
with O(1/ log(n)) leakage rate. pages 586–615, 2016.

[AIS18] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private circuits: A modular
approach. pages 427–455, 2018.

[Ajt11] Miklós Ajtai. Secure computation with information leaking to an adversary. pages
715–724, 2011.

[BCG+22] Julien Béguinot, Wei Cheng, Sylvain Guilley, Yi Liu, Löıc Masure, Olivier Rioul, and
François-Xavier Standaert. Removing the field size loss from duc et al.’s conjectured
bound for masked encodings. Cryptology ePrint Archive, Report 2022/1738, 2022.
https://eprint.iacr.org/2022/1738.

25

https://eprint.iacr.org/2022/1738

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun.
Horizontal side-channel attacks and countermeasures on the ISW masking scheme.
pages 23–39, 2016.

[BMRT22] Sonia Beläıd, Darius Mercadier, Matthieu Rivain, and Abdul Rahman Taleb. Iron-
Mask: Versatile verification of masking security. pages 142–160, 2022.

[BRT21] Sonia Beläıd, Matthieu Rivain, and Abdul Rahman Taleb. On the power of expan-
sion: More efficient constructions in the random probing model. pages 313–343,
2021.

[BRTV21] Sonia Beläıd, Matthieu Rivain, Abdul Rahman Taleb, and Damien Vergnaud. Dy-
namic random probing expansion with quasi linear asymptotic complexity. pages
157–188, 2021.

[CFOS21] Gaëtan Cassiers, Sebastian Faust, Maximilian Orlt, and François-Xavier Standaert.
Towards tight random probing security. pages 185–214, 2021.

[CGZ20] Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-channel masking
with pseudo-random generator. pages 342–375, 2020.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. pages 398–412, 1999.

[CRZ18] Jean-Sébastien Coron, Franck Rondepierre, and Rina Zeitoun. High order masking
of look-up tables with common shares. 2018(1):40–72, 2018. https://tches.iacr.
org/index.php/TCHES/article/view/832.

[CS19] Gaëtan Cassiers and François-Xavier Standaert. Towards globally optimized mask-
ing: From low randomness to low noise rate. 2019(2):162–198, 2019. https:

//tches.iacr.org/index.php/TCHES/article/view/7389.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models:
From probing attacks to noisy leakage. pages 423–440, 2014.

[DFS15] Stefan Dziembowski, Sebastian Faust, and Maciej Skorski. Noisy leakage revisited.
pages 159–188, 2015.

[DFS19] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making masking
security proofs concrete (or how to evaluate the security of any leaking device),
extended version. 32(4):1263–1297, October 2019.

[GJR18] Dahmun Goudarzi, Antoine Joux, and Matthieu Rivain. How to securely compute
with noisy leakage in quasilinear complexity. pages 547–574, 2018.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. pages 463–481, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. pages
388–397, 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. pages 104–113, 1996.

26

https://tches.iacr.org/index.php/TCHES/article/view/832
https://tches.iacr.org/index.php/TCHES/article/view/832
https://tches.iacr.org/index.php/TCHES/article/view/7389
https://tches.iacr.org/index.php/TCHES/article/view/7389

[MPR07] Ueli M. Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguishability am-
plification. pages 130–149, 2007.

[PGMP19] Thomas Prest, Dahmun Goudarzi, Ange Martinelli, and Alain Passelègue. Unifying
leakage models on a Rényi day. pages 683–712, 2019.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A
formal security proof. pages 142–159, 2013.

27

A Missing proofs

In this appendix, we put all the proofs that we omitted for space reasons.

A.1 Proof of Lemma 2.1

Proof. We have that, for all z ∈ F \ {0},

Pr [xy = z] =
∑

x∈F\{0}

Pr [xy = z ∧ x = x]

=
∑

x∈F\{0}

Pr [x = x] Pr
[
y =

z

x

]
=

∑
x∈F\{0}

1

|F|
1

|F|

=
1

|F|
− 1

|F|2
,

while, for z = 0,

Pr [xy = 0] =
∑

x∈F\{0}

Pr [xy = 0 ∧ x = x] + Pr [xy = 0 ∧ x = 0]

=
∑

x∈F\{0}

Pr [x = x] Pr [y = 0] + Pr [x = 0]

=
∑

x∈F\{0}

1

|F|
1

|F|
+

1

|F|

=
2

|F|
− 1

|F|2
.

Therefore,

∆ (xy,U) =
1

2

∑
z∈F
|Pr [xy = z]− Pr [U = z]|

=
1

2

∑
z∈F\{0}

|Pr [xy = z]− Pr [U = z]|

+
1

2
|Pr [xy = 0]− Pr [U = 0]|

=
1

2

∑
z∈F\{0}

∣∣∣∣ 1

|F|
− 1

|F|2
− 1

|F|

∣∣∣∣
+

1

2

∣∣∣∣ 2

|F|
− 1

|F|2
− 1

|F|

∣∣∣∣
=

1

2

∑
z∈F\{0}

1

|F|2
+

1

2

∣∣∣∣ 1

|F|
− 1

|F|2

∣∣∣∣
=
|F| − 1

2|F|2
+
|F| − 1

2|F|2
≤ 1

|F|
,

where the first equality holds by definition of ∆, in the second equality we just split the sum
in z = 0 and z ̸= 0, the third equality follows from the above derivations, and the remaining
equalities and inequalities are just calculations.

28

A.2 Proof of Lemma 2.4

Proof. Without loss of generality, we can consider the first values x1, . . . ,xk′ to be the γ-close-
to-uniform ones and all the other ones to be the uniform ones. Then, the proof proceeds by
applying the union bound to the complementary event α(x) ̸= ⊥. Indeed,

Pr [α(x) ̸= ⊥] = Pr

 ∨
i∈[k]

α(xi) = xi

 (14)

≤
∑
i∈[k]

Pr [α(xi) = xi]

=
∑
i∈[k′]

Pr [α(xi) = xi] +
∑

i∈[k]\[k′]

Pr [α(U) = U]

=
∑
i∈[k′]

Pr [α(xi) = xi] +
(
k − k′

)
δ. (15)

In the above, the first inequality comes from the union bound, the subsequent equality comes
from the partition in γ-close-to-uniform values and uniform values and the last equality comes
from the definition of δ-average probing. Now we apply the definition of close-to-uniform to
obtain a similar bound on the left part. Namely, for every i ∈ [k′],

Pr [α(xi) = xi] =
∑
x∈F

Pr [xi = x] Pr [α(x) = x]

≤
∑
x∈F

(Pr [U = x] + γ) Pr [α(x) = x]

=
∑
x∈F

(1 + γ|F|) Pr [U = x] Pr [α(x) = x]

= (1 + γ|F|) Pr [α(U) = U]

= (1 + γ|F|) δ.

In the above, the first equality comes from splitting the event α(xi) = xi into disjoint events and
applying the conditional probability (recall that α(x) is a random variable that only depends
on the value x), the inequality comes from the definition of being γ-close-to-uniform, and the
subsequent equalities come from the fact that Pr [U = x] = 1

|F| , from reversing the conditional

probability and from the definition of average probing. By applying the above to Eq. (15), we
can continue the derivation of Eq. (14).

Pr [α(x) ̸= ⊥] ≤
∑
i∈[k′]

Pr [α(xi) = xi] +
(
k − k′

)
δ

≤ k′ · (1 + γ|F|) δ +
(
k − k′

)
δ

=
(
k + k′γ|F|

)
δ.

The lemma follows by applying again the rules for complementary events:

Pr [α(x) = ⊥] = 1− Pr [α(x) ̸= ⊥]
≥ 1−

(
k + k′γ|F|

)
δ.

29

A.3 Proof of Lemma 3.5

Proof. We start by lower-bounding the right-hand term of Eq. (1). Namely, we can write
Realĝ(x̂) as (Λ, ŷ), and we can further split Λ into the leakage from the internal wires Λint and
the leakage from the output wires α(ŷ):

Pr
[
Realĝ(x̂) = (⊥, ŷ)

]
= Pr [ŷ = ŷ,Λint = ⊥,α(ŷ) = ⊥] (16)

= Pr [ŷ = ŷ,α(ŷ) = ⊥] Pr [Λint = ⊥ | ŷ = ŷ,α(ŷ) = ⊥] .

Notice that, in the last probability of Eq. (16), we are conditioning on two events, namely ŷ = ŷ
and α(ŷ) = ⊥; however, the first event allows to replace ŷ with ŷ in the second event, which
becomes α(ŷ) = ⊥. Furthermore, notice that, once ŷ is fixed, the probability of α(ŷ) = ⊥ only
depends on ŷ and is independent of anything else; in particular, it is independent of Λint, and
hence can be removed from the condition:

Pr [Λint = ⊥ | ŷ = ŷ,α(ŷ) = ⊥] = Pr [Λint = ⊥ | ŷ = ŷ] .

Now we make Λint even more explicit. Let (w1, . . . ,wk−ℓn) be the distribution of the values on
the internal wires of ĝ upon input x̂. Then,

Pr [Λint = ⊥ | ŷ = ŷ] (17)

= Pr

 ∧
i∈[k−ℓn]

α(wi) = ⊥

∣∣∣∣∣∣ ŷ = ŷ

 (By making Λint explicit)

= 1− Pr

 ∨
i∈[k−ℓn]

α(wi) = wi

∣∣∣∣∣∣ ŷ = ŷ

 (By complementing the event)

≥ 1−
∑

i∈[k−ℓn]

Pr [α(wi) = wi | ŷ = ŷ] . (By the union bound)

Thanks to the properties of α and the gadget, we can simplify the term inside the sum. Indeed,

Pr [α(wi) = wi | ŷ = ŷ] =
∑
w∈F

Pr [wi = w ∧α(wi) = wi | ŷ = ŷ]

=
∑
w∈F

Pr [wi = w | ŷ = ŷ] Pr [α(w) = w | ŷ = ŷ] , (18)

respectively by splitting into disjoint events and then by applying conditional probability. Then
we can apply the output-independence property, which states that, for every internal wire of
the gadget,

Pr [wi = w | ŷ = ŷ] = Pr [wi = w] ,

and we can also apply, again, the fact that the output of α only depends on its input:

Pr [α(w) = w | ŷ = ŷ] = Pr [α(w) = w] .

These two facts allow to rewrite the last sum in Eq. (18) as∑
w∈F

Pr [wi = w | ŷ = ŷ] Pr [α(w) = w | ŷ = ŷ] =
∑
w∈F

Pr [wi = w] Pr [α(w) = w]

=
∑
w∈F

Pr [wi = w ∧α(wi) = wi]

= Pr [α(wi) = wi] ,

30

which, together with the beginning of Eq. (18), allows to conclude that

Pr [α(wi) = wi | ŷ = ŷ] = Pr [α(wi) = wi] . (19)

Now we can continue the derivation in Eq. (17):

Pr [Λint = ⊥ | ŷ = ŷ] (20)

≥ 1−
∑

i∈[k−ℓn]

Pr [α(wi) = wi | ŷ = ŷ] , (From Eq. (17))

= 1−
∑

i∈[k−ℓn]

Pr [α(wi) = wi] , (From Eq. (19))

≥ 1−
(
k − ℓn+ k′γ|F|

)
δ, (By Lemma 2.4)

where the last step is possible because ĝ is (k, k′, γ)-close-to-uniform and has fan-out ℓn, there-
fore the set of the internal wires is (k− ℓn, k′, γ)-close-to-uniform. Finally, we can lower-bound
the right-hand term of Eq. (1):

Pr [Realg(x̂) = (⊥, ŷ)]
1− (k + k′γ|F|)δ

=
Pr [ŷ = ŷ,α(ŷ) = ⊥] Pr [Λint = ⊥ | ŷ = ŷ,α(ŷ) = ⊥]

1− (k + k′γ|F|)δ
(From Eq. (16))

≥ Pr [ŷ = ŷ,α(ŷ) = ⊥] (1− (k − ℓn+ k′γ|F|) δ)
1− (k + k′γ|F|)δ

(From Eq. (20))

≥ Pr [ŷ = ŷ,α(ŷ) = ⊥]
1− ℓnδ

, (21)

where the last step comes from the fact that

1−
(
k + k′γ|F|

)
δ

= (1− ℓnδ)
(
1−

(
k − ℓn+ k′γ|F|

)
δ
)
− ℓnδ ·

(
k − ℓn+ k′γ|F|

)
δ

≤ (1− ℓnδ)
(
1−

(
k − ℓn+ k′γ|F|

)
δ
)

and therefore, rearranging the terms,

1− (k − ℓn+ k′γ|F|) δ
1− (k + k′γ|F|) δ

≥ 1

1− ℓnδ
.

The last step of the proof comes from Lemma 2.4, from which we get

Pr [α(Enc(y)) = ⊥] ≥ 1− ℓnδ,

or, rearranging the terms,
1

1− ℓnδ
≥ 1

Pr [α(Enc(y)) = ⊥]
.

31

By plugging the above into Eq. (21), we get

Pr [Realg(x̂) = (⊥, ŷ)]
1− (k + k′γ|F|)δ

≥ Pr [ŷ = ŷ,α(ŷ) = ⊥]
1− ℓnδ

(From Eq. (21))

≥ Pr [ŷ = ŷ,α(ŷ) = ⊥]
Pr [α(Enc(y)) = ⊥]

(From the above)

=
Pr [Enc(y) = ŷ,α(Enc(y)) = ⊥]

Pr [α(Enc(y)) = ⊥]
(By definition of output-independence)

= Pr [Enc(y) = ŷ |α(Enc(y)) = ⊥] , (By definition of conditional probability)

which concludes the proof.

A.4 Proof of Lemma 4.3

Proof. By reduction to the simulatability of gadget ĝi. Assume that Hybi(x
∗) and Hybi+1(x

∗)
are not identically distributed. Consider the following reduction, consisting of two algorithms
R1,R2. Algorithm R1 takes as input x∗ and computes the following.

1. Sample x̂∗ = Enc(x∗) and x̂∗? = Blindρ(x∗)(x̂∗).

2. For every j ∈ [i− 1], compute Λj , ŷj as follows.

(a) For every input bundle of gadget ĝj that comes from an input of the circuit, place
the corresponding value taken from the vector x̂∗.

(b) For every input bundle of gadget ĝj that comes from a random gate of the circuit,
sample uniform r ∈ F and place Enc(r) on the wires.

(c) Since C is topologically sorted, every other input of gadget ĝj has already been
computed in a previous iteration.

(d) Let Ŵj ∈ Fkj be the list of values on all the kj wires of ĝj .

(e) The leakage Λj is set to be Λj := α(Ŵj), while the output ŷj is taken from the output

values stored in Ŵj .

(f) Compute yj = Dec(ŷj) and sample ŷj? = Blindρ(yj)(ŷj).

3. Let st be the internal state of R containing everything that has been computed so far.

4. Let x̂ be the input to gadget ĝi, as computed in the previous steps, and let x = Dec(x̂)
and y = gi(x) (recall that gi is a deterministic gadget, hence y is uniquely defined).

5. Let Λ = Λ1|| . . . ||Λi−1.

6. Output (st, x̂, x, y?,Λ).

Let (Λ∗, ŷ?
∗) be sampled either from the real distribution (Λ,Blindy? (ŷ)), where (Λ,y) =

Realĝ(x̂), or from the simulator Simĝ

(
Blind∗x?

(x̂) , y?
)
, where x?

$←− ρ(x); then, let Λ← Λ||Λ∗.
Algorithm R2 takes as input st,Λ, ŷ?

∗ and computes the following.

1. For every j ∈ [k∗] \ [i], compute Λj , ŷj as follows.

32

(a) Let x̂? be the possibly blinded values on the input bundles of gadget ĝj . Notice that,
for every input bundle, there are five possibilities:

• the input bundle comes from input gates, in which case x̂? has already been
computed among the circuit inputs x̂∗? = Blindρ(x∗)(x̂∗) by R1;

• the input bundle comes from random gates, in which case just sample uniform
r ∈ F and sample x̂? = Blindρ(r)(Enc(r));

• the input bundle is an output bundle of a functional gadget ĝj′ for j′ < i, in
which case we already computed x̂? as ŷj? = Blindρ(yj)(ŷj) in a previous step;

• the input bundle is an output bundle of a functional gadget ĝj′ for j′ > i and
j′ < j, in which case x̂? has already been output by a previous simulator as ŷj?.

• the input bundle is an output bundle of the functional gadget ĝi, in which case
x̂? has been received as input as ŷ?

∗.

In any case, x̂? is always available.

(b) If some of the values of x̂? are ⊥, set x̂? ← ⊥; otherwise, leave it unchanged. This is
equivalent to convert the output of Blind into the output of Blind∗.

(c) Let y = g(x), where x = Dec(x̂) and x̂ is the collection of the input values computed
as above. Notice that, even if x̂ is not available to the experiment, x is always
available: indeed, the experiment knows the input x∗ and the random coins sampled
so far, therefore is able to deterministically reconstruct x.

(d) Probe y? ← ρ(y).

(e) Run the simulator (Λj , ŷ?)← Simĝi (x̂?, y?).

2. Output Λ← Λ||Λi+1|| . . . ||Λk∗ .

Notice that the reduction is perfect. In particular, if (Λ∗, ŷ?
∗) comes from the real distri-

bution, the reduction gets the real Λ∗ and the value ŷ?
∗ is computed starting from the real

ŷ and applying the function Blindρ(y), which is exactly how Λi and ŷ?
∗ would be computed

in hybrid Hybi+1(x
∗). On the other hand, if (Λ∗, ŷ?

∗) comes from the simulator, the step

(x̂?, y?) ←
(
Blind∗ρ(x) (x̂) , y?

)
that would appear in hybrid Hybi(x

∗) appears instead in the

argument passed to the simulator, and the simulator outputs Λi and ŷ?
∗ exactly as in hybrid

Hybi+1(x
∗). Since everything else is the same, the assumption that Hybi(x

∗) and Hybi+1(x
∗) are

not identically distributed implies that the real distribution (Λ(x̂),Blindy? (ŷ(x̂))) and the sim-
ulator Simĝ

(
Blind∗y? (x̂) ,ρ(y)

)
are not identically distributed, which contradicts Theorem 3.6.

The lemma follows.

33

	Introduction
	Our contribution
	Technical overview

	Preliminaries
	Simple facts

	Composable gadgets against average probing
	Basic arithmetic gadgets
	Multiplication gadget
	Copy gadget
	Putting everything together

	The circuit compiler
	Conclusions and open problems
	Missing proofs
	Proof of lemma:preliminaries:simple-facts:product-of-uniform
	Proof of lemma:preliminaries:simple-facts:close-to-uniform-bound
	Proof of lemma:gadgets:output-independence
	Proof of lemma:circuit:step-hybrid

