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Abstract

The incentive-compatibility properties of blockchain transaction fee mechanisms have been
investigated with passive block producers that are motivated purely by the net rewards earned
at the consensus layer. This paper introduces a model of active block producers that have their
own private valuations for blocks (representing, for example, additional value derived from the
application layer). The block producer surplus in our model can be interpreted as one of the
more common colloquial meanings of the phrase “maximal extractable value (MEV).”

We first prove that transaction fee mechanism design is fundamentally more difficult with
active block producers than with passive ones: With active block producers, no non-trivial or
approximately welfare-maximizing transaction fee mechanism can be incentive-compatible for
both users and block producers. These impossibility results can be interpreted as a mathematical
justification for augmenting transaction fee mechanisms with additional components such as
order flow auctions, block producer competition, trusted hardware, or cryptographic techniques.

We then proceed to a more fine-grained model of block production that is inspired by current
practice, in which we distinguish the roles of “searchers” (who actively identify opportunities
for value extraction from the application layer and compete for the right to take advantage of
them) and “proposers” (who participate directly in the blockchain protocol and make the final
choice of the published block). Searchers can effectively act as an “MEV oracle” for a transac-
tion fee mechanism, thereby enlarging the design space. Here, we first consider a transaction
fee mechanism that resembles how searchers have traditionally been incorporated into the block
production process, with each transaction effectively sold off to a searcher through a first-price
auction. We then explore the design space with searchers more generally, and design a mecha-
nism that circumvents our impossibility results for mechanisms without searchers. Our mecha-
nism (the “SAKA” mechanism) is deterministic, incentive-compatible (for users, searchers, and
the block producer), and sybil-proof, and it guarantees roughly 50% of the maximum-possible
welfare when transaction sizes are small relative to block sizes. We conclude with a matching
negative result: even when transactions are small relative to blocks, no incentive-compatible,
sybil-proof, and deterministic transaction fee mechanism can guarantee more than 50% of the
maximum-possible welfare.

∗This paper subsumes an earlier working paper with a somewhat different title [6]. The results in Section 3 appear
also in [6], while the results in Sections 4 and 5 are new to this paper.
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1 Introduction

1.1 Transaction Fee Mechanisms for Allocating Blockspace

Blockchain protocols such as Bitcoin and Ethereum process transactions submitted by users, with
each transaction advancing the “state” of the protocol (e.g., the set of Bitcoin UTXOs, or the state
of the Ethereum Virtual Machine). Such protocols have finite processing power, so when demand
for transaction processing exceeds the available supply, a strict subset of the submitted transactions
must be chosen for processing. To encourage the selection of the “most valuable” transactions, the
transactions chosen for processing are typically charged a transaction fee. The component of a
blockchain protocol responsible for choosing the transactions to process and what to charge for
them is called its transaction fee mechanism (TFM).

Previous academic work on TFM design (surveyed in Section 1.5) has focused on the game-
theoretic properties of different designs, such as incentive-compatibility from the perspective of users
(ideally, with a user motivated to bid its true value for the execution of its transaction), of block
producers (ideally, with a block producer motivated to select transactions to process as suggested
by the TFM), and of cartels of users and/or block producers. Discussing incentive-compatibility
requires defining utility functions for the relevant participants. In most previous works on TFM
design (and in this paper), users are modeled as having a private value for transaction inclusion
and a quasi-linear utility function (i.e., value enjoyed minus price paid). In previous work—and,
crucially, unlike in this work—a block producer was modeled as passive, meaning its utility function
was the net reward earned (canonically, the unburned portion of the transaction fees paid by users,
possibly plus a block reward).

While this model is a natural one for the initial investigation of the basic properties of TFMs,
it effectively assumes that block producers are unaware of or unconcerned with the semantics of
the transactions that they process—that there is a clean separation between users (who have value
only for activity at the application layer) and block producers (who, if passive, care only about
payments received at the consensus layer).

1.2 MEV and Active Block Producers

It is now commonly accepted that, at least for blockchain protocols that support a decentralized
finance (“DeFi”) ecosystem, there are unavoidable interactions between the consensus layer (block
producers) and the application layer (users), and specifically with block producers deriving value
from the application layer that depends on which transactions they choose to process (and in which
order). For a canonical example, consider a transaction that executes a trade on an automated
market maker (AMM), exchanging one type of token for another (e.g., USDC for ETH). The
spot price of a typical AMM moves with every trade, so by executing such a transaction, a block
producer may move the AMM’s spot price out of line with the external market (e.g., on centralized
exchanges (CEXs) like Coinbase), thereby opening up an arbitrage opportunity (e.g., buying ETH
on a CEX at the going market price and then selling it on an AMM with a larger spot price). The
block producer is uniquely positioned to capture this arbitrage opportunity, by executing its own
“backrunning” transaction (i.e., a trade in the opposite direction) immediately after the submitted
trade transaction.

The first goal of this paper is to generalize the existing models of TFM design in the minimal
way that accommodates active block producers, meaning block producers with a utility function
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that depends on both the transactions in a block and the net fees earned. Specifically, in addition
to the standard private valuations for transaction inclusion possessed by users, the block producer
will have its own private valuation, which is an abstract function of the block that it publishes. We
then assume that a block producer acts to maximize its block producer surplus (BPS), meaning its
private value for the published block plus any additional profits (or losses) from fees (or burns).
In the interests of a simple but general model, we deliberately avoid microfounding the private
valuation function of a block producer or committing to any specifics of the application layer.
Our model captures, in particular, canonical on-chain DeFi opportunities such as arbitrage and
liquidation opportunities, but a block producer’s valuation can reflect arbitrary preferences, perhaps
derived also from off-chain activities (e.g., a bet with a friend that settles on-chain) or subjective
considerations.

The extraction of application-layer value by block producers, in DeFi and more generally, was
first studied by Daian et al. [18] under the name “MEV” (for “maximal extractable value”). At
this point, the term has transcended any specific definition—in both the literature and popular
discourse, it is used, often informally, to refer to a number of related but different concepts. We
argue that our definition of BPS captures, in a precise way and in a concrete economic model, one
of the more common colloquial meanings of the term “MEV.”

1.3 The Block Production Supply-Chain

In the first part of this paper, we treat a block producer as a single entity that publishes a block
based on the transactions that it is aware of. This would be an accurate model of block production,
as carried out by miners in proof-of-work protocols and validators in proof-of-stake protocols, up
until a few years ago. More recently, especially in the Ethereum ecosystem, block production has
evolved into a more complex process, typically involving “searchers” (who identify opportunities
for extraction from the application layer), “builders” (who assemble such opportunities into a
valid block), “relays” (who gather blocks from builders and select the most profitable one for the
proposer), and “proposers” (who participate directly in the blockchain protocol and make the final
choice of the published block), among others. One interpretation of a block producer in our basic
model is as a vertically integrated party that performs the jobs of all of these entities.

In the second part of the paper, we consider a more fine-grained model of the block production
process, in which the role of finding MEV extraction opportunities is decoupled from the proposer’s
role of participating in consensus and is instead performed by specialized searchers. An interpre-
tation of this model is that the proposer runs an open-source consensus client to collect block
rewards, while outsourcing the complicated task of finding MEV opportunies to searchers. This is
in the same spirit as mev-geth, which was a widely-used Ethereum client written by Flashbots that
proposers could run to allow for the submission of both regular transactions by users and wrapped
bundles of transactions by searchers.1 Prior to mev-geth, searchers and users were treated equally
by proposers and competed with each other for inclusion; among other issues, multiple searchers
pursuing the same MEV extraction opportunity would often have their extraction transactions in-
cluded in a block, with the first such transaction capturing the opportunity and the rest failing (but
still paying transaction fees for inclusion and wasting valuable blockspace). Mev-geth introduced an
explicit auction, upstream from the blockchain’s fee mechanism, in which searchers could compete
directly with each other to capture MEV extraction opportunities. Our model can be viewed as

1See https://github.com/flashbots/mev-geth/blob/master/README.md.
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formalizing this idea by allowing a TFM to treat searchers and users differently, subject to different
rules for inclusion and payment.

1.4 Overview of Results

Our starting point is the model for transaction fee mechanism design defined in [47]. In this model,
each user has a private valuation for the inclusion of a transaction in a block, and submits a bid
along with its transaction. As in [47], we consider TFMs that choose the included transactions and
payments based solely on the bids of the pending transactions (as opposed to, say, based also on
something derived from the semantics of those transactions). A block producer publishes any block
that it wants, subject to feasibility (e.g., with the total size of the included transactions respecting
some maximum block size). A TFM is said to be dominant-strategy incentive-compatible (DSIC)
if every user has a dominant (i.e., always-optimal) bidding strategy. The DSIC property is often
associated with a good “user experience (UX),” in the sense that each user has an obvious optimal
bid. In [47], a TFM was said to be incentive-compatible for myopic miners (MMIC) if it expects
a block producer to publish a block that maximizes the net fees earned (at the consensus layer).
Here, we introduce an analogous definition that accommodates active block producers: We call a
TFM incentive-compatible for block producers (BPIC) if it expects a block producer to publish a
block that maximizes its private valuation plus the net fees earned. An ideal TFM would satisfy,
among other properties, both DSIC and BPIC.

1.4.1 Vertically Integrated Active Block Producers

We begin with a model in which there are only users and a single (vertically integrated) active
block producer, and show that there are fundamental barriers to designing ideal transaction fee
mechanisms in this case.

Our first result (Theorem 3.1) is a proof that with active block producers no non-trivial TFM
satisfies both DSIC and BPIC, where “non-trivial” means that users must at least in some cases
pay a nonzero amount for transaction inclusion. (In contrast, with passive block producers and no
MEV, the “tipless mechanism” suggested in [47] is non-trivial and satisfies both DSIC and BPIC
(see also Example 2.12); the same is true of the EIP-1559 mechanism of Buterin et al. [12] (see
Example 2.11), provided the mechanism’s base fee is not excessively low [47].) In particular, the
EIP-1559 and tipless mechanisms fail to satisfy DSIC and BPIC when block producers can be
active. Intuitively, for these mechanisms, a user might be motivated to underbid in the hopes of
receiving an effective subsidy by the block producer (who may include the transaction anyways, if
it derives outside value from it).

Our second result (Theorem 3.3) formalizes the intuition that TFMs that do not charge non-zero
transaction fees—and in particular (by Theorem 3.1), TFMs that are both DSIC and BPIC—cannot
guarantee any approximation of the maximum-possible social welfare. Intuitively, the issue is the
lack of alignment between the preferences of users and of the block producer: If a block producer
earns no transaction fees from any block, it might choose a block with non-zero private value but
only very low-value transactions over one with no private value but very high-value transactions.

1.4.2 TFMs with Competing Searchers

We then consider a more fine-grained model of block production that is inspired by current practice,
in which we distinguish the roles of “searchers” (who actively identify opportunities for value
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extraction from the application layer and compete for the right to take advantage of them) and
“proposers” (who participate directly in the blockchain protocol and make the final choice of the
published block). Searchers can effectively act as an “MEV oracle” for a transaction fee mechanism,
thereby enlarging the mechanism design space.

In this model, we first consider a TFM that resembles how searchers have traditionally been
incorporated into the block production process, and specifically mev-geth (see Section 2.5). Intu-
itively, this mechanism runs a first-price auction for each transaction among the interested searchers;
the winning bid then acts as an estimate of the transaction’s MEV, which the TFM can then use
to charge prices in a way that recovers the DSIC property for users (Theorem 4.2).

We then explore the TFM design space with searchers more generally, with a focus on good
approximate welfare guarantees. Our main contribution here is what we call the SAKA mecha-
nism, which is deterministic, DSIC for users, DSIC for searchers, BPIC, and sybil-proof, and which
guarantees roughly 50% of the maximum-possible welfare when transaction sizes are small relative
to block sizes (as they are in practice); see Theorems 5.3 and 5.5. In particular, this combination
of guarantees shows that TFMs with searchers can evade impossibility results that apply to TFMs
without searchers (such as Theorem 3.3). We further show in Theorem 5.7 that, even when transac-
tions are small relative to blocks, no deterministic, DSIC, and sybil-proof TFM can guarantee more
than 50% of the maximum-possible welfare. (By “sybil-proof,” we mean that no user or searcher
can ever profit from creating additional user or searcher identities and submitting fake transactions
or bundles under those identities.)

1.5 Related Work

Defining MEV. Daian et al. [18] introduced the notion of miner/maximal extractable value.
They defined MEV as the value that miners or validators could obtain by manipulating the trans-
actions in a block. Since this work there have been many follow-up works attempting to formalize
MEV and analyze its effects in both theory and practice. Attempts to give exact theoretical char-
acterizations of MEV appear in [48, 41, 9, 5]. Broadly, these works define MEV by defining sets of
valid transaction sequences and allowing the block producer to maximize their value over these se-
quences. These definitions are very general, but in exchange have to this point proved analytically
intractable. Several empirical papers study the impact and magnitude of MEV using heuristics
applied to on-chain data [43, 44, 50]. Another line of work [32, 28, 8] studies MEV in specific
contexts, such as for arbitrage in AMMs, in which it is possible to characterize how much MEV
can be realized from certain transactions. In particular, Kulkarni et al. [32] give formal statements
on how, under different AMM designs, MEV affects the social welfare of the overall system.

General TFM literature. The model in this paper is closest to the one used by Roughgar-
den [47] to analyze (with passive block producers) the economic properties of the EIP-1559 mech-
anism [12], the TFM used currently in the Ethereum blockchain.

Precursors to that work (also with passive block producers) include studies of a “monopolistic
price” transaction fee mechanism [34, 53] (also considered recently by Nisan [40]), and work of Basu
et al. [10] that proposed a more sophisticated variant of that mechanism. There have also been
several follow-up works to [47] that use similar models (again, with passive block producers). Chung
and Shi [17], Chung et al. [16], and Gafni and Yaish [26] proved impossibility results showing that the
incentive-compatible guarantees of the EIP-1559 mechanism are in some respects the best possible.
There have also been attempts to circumvent such impossibility results by relaxing the notion of
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incentive compatibility [17, 25], using cryptography [49], considering a Bayesian setting [55], or
mixtures of these ideas [51]. Other recent works [21, 35] study the dynamics of the base fee in the
EIP-1559 mechanism.

MEV-aware mechanism design. There has been much interest among both researchers and
practitioners in restructuring the block production supply chain to address MEV [52, 28]. On the
academic side, the bulk of these approaches involve cryptographic techniques [31, 36, 54, 11] or
changes at the consensus layer [30, 29, 13, 33]. Relatively recently, there have been some initial
studies on the impact of economic mechanisms for mitigating MEV such as order-flow auctions [27]
and mev-boost [2]; see [42, 45, 7]. In practice, to this point, economic approaches to addressing
MEV have been more popular than cryptographic ones; examples include, among others, mev-
share [38], UniswapX [3], and MEV Blocker [1]. The model in this paper integrates some of the
ideas behind these deployed applications into the existing mathematical frameworks for the design
and analysis of transaction fee mechanisms.

Impossibility results in mechanism design. The impossibility results in Section 3 may appear
superficially related to other such results in mechanism design. For example, the classic Myerson-
Satterwhaite Theorem [39] states that there is no efficient, individually rational, Bayesian incentive
compatible, and budget-balanced mechanism for bilateral trade. Fundamentally, the Myerson-
Satterwhaite Theorem is driven by the tension between welfare and budget-balance in the presence
of incentive-compatibility constraints on the participants. Our main impossibility result (Theo-
rem 3.1), meanwhile, is driven by the combination of incentive-compatibility constraints for users
(analogous to the usual participants of a mechanism design problem) and also such a constraint for
a self-interested party that is tasked with carrying out the allocation rule of the mechanism (the
block producer). As such, our setup more closely resembles that of credible mechanisms (discussed
below) than more traditional mechanism design settings. In particular, Theorem 3.1 holds even in
the absence of any welfare-maximization or exact budget-balance requirements (a non-zero burning
rule in the sense of Section 2.3 is tantamount to relaxing budget-balance).

Credible mechanisms. Akbarpour and Li [4] introduce the notion of credible mechanisms, where
any profitable deviations by the auctioneer can be detected by at least one user. While similar in
spirit to the concept of BPIC introduced here (and the special case of MMIC introduced in [47]),
there are several important differences. For example, the theory of credible mechanisms assumes
fully private communication between bidders and the auctioneer and no communication among
bidders, whereas TFM bids are commonly collected from a public mempool. Another difference
is that a block producer in our model can manipulate only the allocation rule of a mechanism (as
the payment and burning rules are enforced by the code of the blockchain protocol), while in the
credible mechanisms framework the auctioneer can also manipulate the payment rule. In a different
direction, there is also a line of follow-up work that takes advantage of cryptographic primitives to
build credible auctions on the blockchain [23, 20, 15, 22].

2 Model

This section defines transaction fee mechanisms, the players and their objectives, and the relevant
incentive-compatibility notions. Sections 2.1–2.4 describe the basic model (with vertically inte-
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grated, active block producers) that is considered in Section 3. Section 2.5 augments this model
with searchers, which play a central role in Sections 4 and 5.

2.1 The Players and Their Objectives

Users. Users submit transactions to the blockchain protocol. The execution of a transaction
updates the state of the protocol (e.g., users’ account balances). The rules of the protocol specify
whether a given transaction is valid (e.g., whether it is accompanied by the required cryptographic
signatures). From now on, we assume that all transactions under consideration are valid. Every
transaction t has a publicly known size st (e.g., the gas limit of an Ethereum transaction).

We assume that each user submits a single transaction t and has a nonnegative valuation vt,
denominated in a base currency like USD or ETH, for its execution in the next block. This valuation
is private, in the sense that it is initially unknown to all other parties. We assume that the utility
function of each user—the function that the user acts to maximize—is quasi-linear, meaning that
its utility is either 0 (if its transaction is not included in the next block) or vt− p (if its transaction
is included and it must pay a fee of p).

Blocks. A block is a finite set of transactions. A feasible block is a block that respects any
additional constraints imposed by the protocol. For example, if the protocol specifies a maximum
block size, then feasible blocks might be defined as those that comprise only valid transactions and
also respect the block size limit.

Block producers (BPs). We consider blockchain protocols for which the contents of each block
are selected by a single entity, which we call the block producer (BP). We focus on the decision-
making of the BP that has been chosen at a particular moment in time (perhaps using a proof-of-
work or proof-of-stake-based lottery) to produce the next block. We assume that whatever block
the BP chooses is in fact published, with all the included transactions finalized and executed.

A BP chooses a block B from some abstract non-empty set B of feasible blocks, called its blockset.
For example, the set B might consist of all the feasible blocks that comprise only transactions that
the BP knows about (perhaps from a public mempool, or perhaps from private communications)
along with transactions that the BP is in a position to create itself (e.g., a backrunning transaction).
As with users, we model the preferences of a BP with a quasi-linear utility function, meaning the
difference between its private value for a block (again, denominated in a base currency like USD
or ETH) minus the (possibly negative) payment that it must make. Unlike with users, to avoid
modeling any details of why a BP might value a block (e.g., due to the extraction of value from
the application layer), we allow a BP to have essentially arbitrary preferences over blocks. More
formally, we assume that a BP has a private valuation that is an arbitrary (real-valued) function vBP

over blocks, and the BP acts to maximize its block producer surplus (BPS):

vBP (B) + net fees earned︸ ︷︷ ︸
block producer surplus (BPS)

.

Holders. The final category of participants, which are non-strategic in our model but relevant for
our definition of welfare in Section 2.2, is the holders of the blockchain protocol’s native currency.
As we’ll see in Section 2.3, TFMs are in a position to mint or burn this currency, which corresponds
to inflation or deflation, respectively. We treat TFM mints and burns as transfers from and to,
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respectively, the existing holders of this currency. Formally, we define the collective utility function
of currency holders to be the net amount of currency burned by a TFM.

2.2 Welfare

According to the principle of welfare-maximization, a scarce resource like blockspace should be
allocated to maximize the total utility of all the “relevant participants,” which in our case includes
the users, the BP, and the currency holders. Because all parties have quasi-linear utility functions
and all TFM transfers will be between members of this group (from users to the BP, from the BP
to holders, etc.), the welfare of a block is simply the sum of the user and BP valuations for it:

W (B) := vBP (B) +
∑
t∈B

vt︸ ︷︷ ︸
welfare of B

. (1)

Holders are assumed to be passive and thus have no valuations to contribute to the sum.2

2.3 Transaction Fee Mechanisms

The outcome of a transaction fee mechanism is a block to publish and a set of transfers (user
payments, burns, etc.) that will be made upon the block’s publication. In line with the preceding
literature on TFMs and the currently deployed TFM designs, we assume that each user that creates
a transaction t submits along with it a nonnegative bid bt (i.e., willingness to pay), and that a TFM
bases its transfers on the set of available transactions and the corresponding bids. (The BP submits
nothing to the TFM.) A TFM is defined primarily by its payment and burning rules, which specify
the fees paid by users and the burned funds implicitly received by holders (with the BP pocketing
the difference).

Payment and burning rules. The payment rule specifies the payments made by users in ex-
change for transaction inclusion.

Definition 2.1 (Payment Rule) A payment rule is a function p that specifies a nonnegative
payment pt(B,b) for each transaction t ∈ B in a block B, given the bids b of all known transactions.

The value of pt(B,b) indicates the payment from the creator of an included transaction t ∈ B to
the BP that published that block. (Or, if the rule is randomized, the expected payment.3) We
consider only individually rational payment rules, meaning that pt(B,b) ≤ bt for every included
transaction t ∈ B. We can interpret pt(B,b) as 0 whenever t /∈ B. Finally, we assume that every
creator of an included transaction has the funds available to pay its full bid, if necessary (otherwise,
the block B should be considered infeasible).

2We stress that the welfare of a block (1) measures the “size of the pie” and says nothing about how this welfare
might be split between users, the BP, and holders (i.e., about the size of each slice). Distributional considerations
are important, of course, but they are outside the scope of this paper.

3We assume that users and BPs are risk-neutral when interacting with a randomized TFM.
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The burning rule specifies how much money must be burned by a BP along with the publication
of a given block.4

Definition 2.2 (Burning Rule) A burning rule is a function q that specifies a nonnegative
burn q(B,b) for a block B, given the bids b of all known transactions.

The value of q(B,b) indicates the amount of money burned (i.e., paid to currency holders) by the
BP upon publication of the block B. (Or, if the rule is randomized, the expected amount.)5 We
assume that, after receiving users’ payments for the block, the BP has sufficient funds to pay the
burn required of the block that it publishes (otherwise, the block B should be considered infeasible).

We stress that the payment and burning rules of a TFM are hard-wired into a blockchain
protocol as part of its code. This is why their arguments—the transactions chosen for execution and
their bids, and perhaps (as in [17]) the bids of some additional, not-to-be-executed transactions—
must be publicly recorded as part of the blockchain’s history. (E.g., late arrivals should be able
to reconstruct users’ balances, including any payments dictated by a TFM, from this history.) A
BP cannot manipulate the payment and burning rules of a TFM, except inasmuch as it can choose
which block B ∈ B to publish.

Allocation rules. In our model, a BP has unilateral control over the block that it chooses to
publish. Thus, a TFM’s allocation rule—which specifies the block that should be published, given
all of the relevant information—can only be viewed as a recommendation to a BP. Because the
(suggested) allocation rule would be carried out by the BP and not by the TFM directly, it can
sensibly depend on arguments not known to the TFM (but known to the BP), specifically the BP’s
valuation vBP and blockset B.

Definition 2.3 (Allocation Rule) An allocation rule is a function x that specifies a block
x(b, vBP ,B) ∈ B, given the bids b of all known transactions, the BP valuation vBP , and the BP
blockset B.

An allocation rule x induces per-transaction allocation rules with, for a transaction t, xt(b, vBP ,B) =
1 if t ∈ x(b, vBP ,B) and 0 otherwise.

Definition 2.4 (Transaction Fee Mechanism (TFM)) A transaction fee mechanism (TFM)
is a triple (x,p, q) in which x is a (suggested) allocation rule, p is a payment rule, and q is a burning
rule.

A TFM is defined relative to a specific block publishing opportunity. A blockchain protocol is free
to use different TFMs for different blocks (e.g., with different base fees), perhaps informed by the
blockchain’s past history.

4This differs superficially from the formalism in [47], in which a burning rule specifies per-transaction (rather than
per-block) transfers from users (rather than the BP) to currency holders. The payment rule here can be interpreted
as the sum of the payment and burning rules in [47], and the per-block burning rule here can be interpreted as the
sum of the burns of a block’s transactions in [47].

5An alternative to money-burning that has similar game-theoretic and welfare properties is to transfer q(B,b) to
stakeholders other than the BP, such as a foundation or the producers of future blocks.
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Utility functions and BPS revisited. With Definitions 2.1–2.4 in place, we can express more
precisely the strategy spaces and utility functions introduced in Section 2.1. We begin with an
expression for the utility of a user (as a function of its bid) for a TFM’s outcome, under the
assumption that the BP always chooses the block suggested by the TFM’s allocation rule.

Definition 2.5 (User Utility Function) For a TFM (x,p, q), BP valuation vBP , BP blockset B,
and bids b−t of other transactions, the utility of the originator of a transaction t with valuation vt
and bid bt is

ut(bt) := vt · xt((bt,b−t), vBP ,B)− pt(B, (bt,b−t)), (2)

where B := xt((bt,b−t), vBP ,B).

In (2), we highlight the dependence of the utility function on the argument that is directly under
a user’s control, the bid bt submitted with its transaction.

The BP’s utility function, the block producer surplus, is then:

Definition 2.6 (Block Producer Surplus (BPS)) For a TFM (x,p, q), BP valuation vBP , BP
blockset B, and transaction bids b, the block producer surplus of a BP that chooses the block B ∈ B
is

uBP (B) := vBP (B) +
∑
t∈B

pt(B,b)− q(B,b). (3)

In (3), we highlight the dependence of the BP’s utility function on the argument that is under its
direct control, its choice of a block. The BP’s utility depends on the payment and burning rules of
the TFM, but not on its allocation rule (which the BP is free to ignore, if desired).

Finally, the collective utility function of (passive) currency holders for a block B with transaction
bids b is q(B,b), the amount of currency burned by the BP. (As promised, for a block B, no matter
what the bids and the TFM, the sum of the utilities of users, the BP, and holders is exactly the
welfare defined in (1).)

2.4 Incentive-Compatible TFMs

In this paper, we focus on two incentive-compatibility notions for TFMs—which, as we’ll see, are
already largely incompatible—one for users and one for block producers. We begin with the latter.

BPIC TFMs. We assume that a BP will choose a block to maximize its utility function, the
BPS (Definition 2.6). The defining equation (3) shows that, once the payment and burning rules
of a TFM are fixed, a BP’s valuation and blockset dictate the unique (up to tie-breaking) BPS-
maximizing block for each bid vector. We call an allocation rule consonant if, given the payment
and burning rules, it instructs a BP to always choose such a block (breaking ties in an arbitrary
but consistent fashion).

Definition 2.7 (Consonant Allocation Rule) An allocation rule x is consonant with the pay-
ment and burning rules p and q if:
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(a) for every BP valuation vBP and blockset B, and for every choice of transaction bids b,

x(b, vBP ,B)︸ ︷︷ ︸
recommended block

∈ argmax
B∈B

{
vBP (B) +

∑
t∈B

pt(B,b)− q(B,b)

}
︸ ︷︷ ︸

BPS-maximizing block

;

(b) for some fixed total ordering on the blocks of B, the rule breaks ties between BPS-maximizing
blocks according to this ordering.

Because a BP can see all bids after they are submitted, they can also insert their own “fake”
transactions along with “shill” bids for them (e.g., to manipulate the payment or burning rules of
the TFM); we require that a BP is never incentivized to include such shill bids.

Definition 2.8 (Shill-Proof) Payment and burning rules p and q are shill-proof if for every set T
of user-submitted transactions with bids b, every feasible block B ⊆ T , every set F of BP-submitted
fake transactions with bids bF , and every feasible block B ∪ S with S ⊆ F ,(∑

t∈B
pt(B,b)

)
− q(B,b)︸ ︷︷ ︸

net fees without fake transactions

≥

(∑
t∈B

pt(B ∪ S, (b,bF ))

)
− q(B ∪ S, (b,bF ))︸ ︷︷ ︸

net fees with fake transactions

.

BPIC TFMs are then precisely those that are shill-proof and always instruct a BP to choose a
BPS-maximizing block (breaking ties consistently).

Definition 2.9 (Incentive-Compatibility for Block Producers (BPIC)) A TFM (x,p, q) is
incentive-compatible for block producers (BPIC) if:

(a) x is consonant with p and q;

(b) p and q are shill-proof.

DSIC TFMs. Dominant-strategy incentive-compatibility (DSIC) is one way to formalize the
idea of a “good user experience (UX)” for TFMs. The condition asserts that every user has an
“obviously optimal” bid, meaning a bid that, provided the BP follows the TFM’s allocation rule,
is guaranteed to maximize the user’s utility (no matter what other users might be bidding). In the
next definition, by a bidding strategy, we mean a function σ that maps a valuation to a recommended
bid for a user with that valuation.

Definition 2.10 (Dominant-Strategy Incentive-Compatibility (DSIC)) A TFM (x,p, q) is
dominant-strategy incentive-compatible (DSIC) if there is a bidding strategy σ such that, for every
BP valuation vBP and blockset B, every user i with transaction t, every valuation vt for i, and
every choice of other users’ bids b−t,

σ(vt)︸ ︷︷ ︸
recommended bid

∈ argmax
bt

{ut(bt)}︸ ︷︷ ︸
utility-maximizing bid

, (4)

where ut is defined as in (2).
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That is, bidding according to the recommendation of the bidding strategy σ is guaranteed to
maximize a user’s utility.6 This is a strong property: a bidding strategy can depend only on
what a user knows (i.e., its private valuation), while the right-hand side of (4) implicitly depends
(through (2)) also on the bids of the other users and the BP’s preferences.

Example 2.11 (EIP-1559) The EIP-1559 mechanism [12] is parameterized by a “base fee” r,
which for each transaction t (with size st) defines a reserve price of r · st. This mechanism charges
each user its bid— pt(B,b) = bt for all t ∈ B—and the portion of this revenue generated by the base
fee goes to holders rather than the BP. That is, the mechanism’s burning rule is q(B,b) =

∑
t∈B r·st.

(We allow a BP to include transactions with bt < r · st, but the BP must still burn the full amount
r · st; see also Remark 2.13.)

Following [47], call the base fee r excessively low if the BP cannot fit all the transactions t
satisfying bt ≥ r · st into a single (feasible) block. When the base fee is not excessively low, the
standard allocation rule for the EIP-1559 mechanism instructs the BP to include all transactions t
for which bt ≥ r · st (and to leave out any transactions t with bt < r · st). With a passive BP, this
allocation rule is consonant with the payment and burning rules of the mechanism: In this case,
including a transaction t in the block contributes precisely bt− r · st to the BPS, so a passive BP is
motivated to include all and only the transactions for which this expression is nonnegative. With
this allocation rule (and a base fee that is not excessively low), the TFM is also DSIC, with the
bidding strategy σ defined by σ(vt) = min{vt, r · st}.

With an active BP, however, the usual allocation rule above is no longer consonant with the
payment and burning rules of the mechanism, even when the base fee is not excessively low: A BP
might be motivated to include a transaction t with bt < r · st, if the deficit can be compensated for
with the BP’s own private value for including the transaction. Thus, this version of the EIP-1559
mechanism is not BPIC. The mechanism’s allocation rule can be redefined to restore consonance,
by instructing the BP to choose the block that maximizes its BPS (rather than its revenue), but
this robs the mechanism of its DSIC property: Intuitively, without knowing the BP’s valuation, a
user cannot know whether to underbid (below its reserve price) to take advantage of a BP that
might be willing to subsidize the difference.

The main result of Section 3 (Theorem 3.1) shows that the whack-a-mole between the DSIC and
BPIC properties in Example 2.11 is not particular to the EIP-1559 mechanism: When BPs are
active, no TFM that charges non-zero user fees can be both DSIC and BPIC.

Our final example shows that, with a passive BP, the DSIC and BPIC properties can be achieved
simultaneously even without the assumption in Example 2.11 about the accuracy of a base fee.

Example 2.12 (Tipless Mechanism) In the tipless mechanism [47], the burning rule is the same
as in Example 2.11 (i.e., q(B,b) =

∑
t∈B r · st), while the payment rule changes from pt(B,b) = bt

to pt(B,b) = min{bt, r · st} for t ∈ B. The mechanism’s allocation rule instructs the BP to include
only transactions t satisfying bt ≥ r · st and, subject to this constraint and block feasibility, to
maximize the total size of the included transactions. (Ties are broken according to some fixed

6The term “DSIC” is often used to refer specifically to mechanisms that satisfy the condition in Definition 2.10
with the truthful bidding strategy, σ(vt) = vt. Any mechanism that is DSIC in the sense of Definition 2.10 can be
transformed into one in which truthful bidding is a dominant strategy, simply by enclosing the mechanism in an outer
wrapper that accepts truthful bids, applies the assumed bidding strategy σ to each, and passes on the results to the
given DSIC mechanism. (This trick is known as the “Revelation Principle”; see e.g. [46].)
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ordering over feasible blocks.) The contribution of an included transaction to a BP’s revenue is
either 0 (if bt ≥ r · st) or negative (otherwise). This implies that a passive BP cannot improve its
BPS by deviating from the allocation rule’s recommendation. This TFM is also DSIC, under the
same bidding strategy used in Example 2.11 or, alternatively, under the truthful bidding strategy.

Off-chain agreements. For completeness, we briefly mention a third incentive-compatibility
notion, which concerns a cartel of the BP and the users. Such cartels can in some cases coordinate
off-chain to manipulate the intended behavior of a TFM. For example, one of the primary reasons
that the EIP-1559 mechanism burns its base fee revenue is resilience to coordination of this type. (If
that revenue were instead passed on to the BP, low-value users could collude with the BP to evade
the base fee, by overbidding on-chain to clear the base fee while accepting a rebate from the BP
off-chain.) Informally, a TFM is OCA-proof if it is robust to collusion of this type. (“OCA” stands
for “off-chain agreement”; see [47] for the precise definition.) OCA-proofness shaped the design
of the EIP-1559 mechanism, and it and related notions are fundamental to the TFM impossibility
results (with passive BPs) in [17, 16, 26].7 OCA-proofness plays a limited role in this paper, as our
impossibility results (Theorems 3.1 and 3.3) apply already to mechanisms that are merely DSIC
and BPIC (and not necessarily OCA-proof).

Remark 2.13 (OCAs and the Two Versions of the EIP-1559 and Tipless Mechanisms)
In the versions of the EIP-1559 and tipless mechanisms described in Examples 2.11 and 2.12, a BP
is free to include in a block any transaction it wants, whether or not the bid bt submitted with the
transaction is high enough to cover the required burn r · st. An alternative design would change
the definition of transaction validity so that such transactions are ineligible for inclusion. There is
effectively no difference between the two designs when BPs are passive: A rational such BP would
never include a transaction with bt < r · st, even were it free to do so. An active BP, however, will
be motivated to include such a transaction if it has a sufficiently high private value for it.

Off-chain agreements render these second versions of the EIP-1559 and tipless mechanisms
equivalent to those described in Examples 2.11 and 2.12, even with active BPs. The reason is
similar to the reason why base fee revenue must be withheld from a BP: If users collude with a BP,
they can always bid r · st on-chain to ensure inclusion eligibility while accepting an off-chain rebate
of r · st − bt from the BP.

2.5 Adding Competitive Searchers

Next we describe the changes to the basic model that are needed in Sections 4 and 5, in which we
suppose that block proposers outsource the problem of value extraction to searchers.

Searchers and bundles. Searchers submit bundles to the blockchain protocol, where a bundle
consists of a single user-submitted transaction t and any additional transactions needed to extract
value from t. We assume that there is a canonical way to extend a transaction with size st into
a bundle, and denote by s′t the size of the latter (with s′t ≥ st). For example, if t represents an
AMM trade, the corresponding canonical bundle might include a subsequent backrunning trade.
Just as users submit bids with their transactions, searchers submit bids with their bundles. We

7For example, one way to interpret the difference between the EIP-1559 mechanism (Example 2.11) and the tipless
mechanism (Example 2.12) is that, when the base fee is excessively low, the former mechanism gives up on DSIC
(but retains OCA-proofness) while the latter gives up on OCA-proofness (but remains DSIC).

13



use the notation w for a generic bundle. When we wish to emphasize that a bundle involves the
user-submitted transaction t, we write it as ti, where i denotes the searcher that assembled the
bundle.

A TFM now takes as input both transactions (with their user bids) and bundles (with their
searcher bids), and its allocation, payment, and burning rules can depend on the bids of all users
and all searchers. We assume that a TFM can distinguish between transactions and bundles, and
can therefore treat them differently (e.g., the output of the payment rule can be defined differently
for users and for searchers). Like users, searchers have private nonnegative valuations for bundle
inclusion and quasi-linear utility functions. The DSIC condition is defined for searchers exactly as
it is for users (Definition 2.10).

Blocks. Blocks can now include both transactions and bundles. Multiple searchers may submit
bundles corresponding to the same transaction, but in a feasible block, a given transaction can be
included (directly or as part of a bundle) at most once. The inclusion of a bundle that contains
a transaction t necessarily implies the inclusion of t itself—in this sense, the space of feasible
allocations is no longer downward-closed. Equivalently, a block now specifies a set of user-submitted
transactions and, for each such transaction t, the searcher (if any) responsible for the included
bundle that contains t. Users continue to have a private value vt for inclusion (whether as part of
a bundle or not).

Revised incentive-compatibility goals. Thus far, the addition of searchers strictly generalizes
the model in Sections 2.1–2.4, and so our impossibility results (Theorems 3.1 and 3.3) for the basic
model apply immediately to it as well.

But the whole point of accommodating a competitive ecosystem of searchers is for proposers
(the entities that participate directly in the blockchain protocol) to outsource the specialized task
of assembling high-value blocks to searchers. That is, searchers are meant to allow proposers to on
the one hand act passively (by simply using the most valuable bundles submitted by searchers) and
on the other hand earn almost all of the extractable value (with searchers competing the value of
their bundles away to the proposer through the bidding process).8 Mathematically, with searchers,
the idea is that what had been the private valuation vBP of the (vertically integrated) BP in
Section 2.1 is now distributed specifically across the searchers. This interpretation is particularly
clear in the additive case—meaning the vertically integrated BP valuation vBP (B) would have been∑

t∈B µt, with µt the value extractable from a transaction t and no interactions between different
transactions—with every searcher that submits a bundle involving transaction t having a value
of µt for that bundle.

9

With this interpretation in mind, in the model with searchers, there will be three incentive-
compatibility goals: (i) DSIC for users; (ii) DSIC for searchers; and (iii) BPIC for the proposer,
assuming that the proposer is passive (i.e., with the all-zero valuation for blocks and with utility
equal to the net revenue at the consensus layer, including any payments to it from searchers). In
effect, this revised model shatters what had been a vertically integrated BP into a single proposer
and a number of searchers, and what had been BPIC (with an active BP) now translates to DSIC

8See [7] for a rigorous analysis of this idea.
9Transactions that are well modeled as additive in this sense include trades on different AMMs, or once-per-

block MEV opportunities such as top-of-block CEX-DEX arbitrage or liquidation opportunities (the latter two types
modeled via a dummy transaction that has a user bid of zero but non-zero value for searchers).
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for (active) searchers and BPIC for a passive proposer.10

Welfare. With searchers, we redefine the welfare (1) of a block B to reflect the private valuations
of searchers and the fact that the proposer is assumed to have an all-zero valuation:

W (B) :=
∑
t∈BT

vt +
∑
w∈BS

vw, (5)

where BT and BS denote the transactions and bundles, respectively, in the block B.

3 An Impossibility Result for DSIC and BPIC Mechanisms

3.1 Can DSIC and BPIC Be Achieved Simultaneously?

The DSIC property (Definition 2.10) encodes the idea of a transaction fee mechanism with “good
UX,” meaning that bidding is straightforward for users. Given the unilateral power of BPs in
typical blockchain protocols, the BPIC property (Definition 2.9) would seem necessary, absent any
additional assumptions, to have any faith that a TFM will be carried out by BPs as intended. One
can imagine a long wish list of properties that we’d like a TFM to satisfy; can we at least achieve
these two?

The tipless mechanism (Example 2.12) is an example of a TFM that is DSIC and BPIC in
the special case of passive BPs. This TFM is also “non-trivial,” in the sense that users generally
pay for the privilege of transaction inclusion. With active BPs, meanwhile, the DSIC and BPIC
properties can technically be achieved simultaneously by the following “trivial” TFM: the payment
rule p and burning rule q are identically zero, and the allocation rule x instructs the BP to choose
the feasible block that maximizes its private value (breaking ties in a bid-independent way). This
TFM is BPIC by construction, and it is DSIC because a user has no control over whether it is
included in the chosen block (it’s either in the BP’s favorite block or it’s not) or its payment (which
is always 0).

Thus, the refined version of the key question is:

Does there exist a non-trivial TFM that is DSIC and BPIC with active BPs?

3.2 Only Trivial Mechanisms Can Be DSIC and BPIC

The main result of this section is a negative answer to the preceding question. By the range of a
bidding strategy σ, we mean the set of bid vectors realized by nonnegative valuations: {σ(v) : v ≥
0}, where σ(v) denotes the componentwise application of σ.

Theorem 3.1 (Impossibility of DSIC, BPIC, Non-Triviality) If the TFM (x,p, q) is DSIC
with bidding strategy σ and BPIC with active block producers, then the payment rule p is identically
zero on the range of σ.

10The combination of (i)–(iii) can technically be achieved by using the tipless mechanism (Example 2.12) and
always ignoring any searchers that might be present. Our interest in Section 4 will be the incentive-compatibility
properties of a more interesting TFM that incorporates searchers in a way that resembles current practice; the goal
in Section 5 is to design novel TFMs that, in addition to satisfying (i)—(iii) and unlike the searcher-excluding tipless
mechanism, guarantee a constant fraction of the maximum-possible welfare.
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The proof of Theorem 3.1 will show that the result holds even if BPs are restricted to have
nonnegative additive valuations and all known transactions can be included simultaneously into a
single feasible block.

Discussion. The role of an impossibility result like Theorem 3.1 is to illuminate the most promis-
ing paths forward. From it, we learn that our options are (i) constrained; and (ii) already being
actively explored by the blockchain research community. Specifically, with active BPs, to design a
non-trivial TFM, we must choose from among three options:

1. Give up on “good UX,” at least as it is expressed by the DSIC property.

2. Give up on the BPIC property, presumably compensating with restrictions on block pro-
ducer behavior (perhaps enforced using, e.g., trusted hardware [24] or cryptographic tech-
niques [14]).

3. Expand the TFM design space, for example by incorporating order flow auctions (e.g., [38]) or
block producer competition (e.g., [19]) to expose information about a BP’s private valuation
to a TFM. We explore this idea further in Sections 4 and 5.

Proof of Theorem 3.1: Let (x,p, q) be a TFM that is BPIC, and DSIC with the bidding strategy σ.
By the Revelation Principle (see footnote 6), we can assume that σ is the truthful bidding strategy
(i.e., the identity function). Toward a contradiction, suppose there is a nonnegative additive BP
valuation vBP , a BP blockset B, a set of transactions with bids b, and a transaction t∗ such that
pt∗(B,b) > 0, where B = x(b, vBP ,B). Because the pricing rule p is individually rational (see
Section 2.3), we must have t∗ ∈ B. Because the TFM (x,p, q) is BPIC, the block B must maximize
the BP’s BPS over all blocks in its blockset B.

We next define a modified BP valuation and a modified bid vector. First, let b′ = (0,b−t∗)
denote the bid vector in which the original bid bt∗ for transaction t∗ is dropped to 0 and all
other bids are held fixed. Second, let P denote the sum of the bids of all known transactions
(i.e., P =

∑
t bt) and Q the burn that the TFM would require on the modified bid vector for

the block B (i.e., Q = q(B,b′)), and define a modified (but still additive) valuation v̂BP so that
v̂BP ({t}) > vBP ({t}) + P +Q for all t ∈ B and v̂BP ({t}) = 0 for all t /∈ B.

The key claim is that the BPS-maximizing block x(b′, v̂BP ,B) for the modified valuation with
the modified bid vector contains every transaction of B, and in particular t∗. Under this modified
valuation and bid vector, the BPS of a block B′ ∈ B can be written as

v̂BP (B
′) +

∑
t∈B′

pt(B
′,b′)− q(B′,b′). (6)

By the definition of v̂BP , any transaction in B omitted from B′ results in a loss of more than P +Q
in the private valuation of the BP:

v̂BP (B) > v̂BP (B
′) + P +Q (7)

for every feasible block B′ ̸⊇ B. Next, individual rationality of the payment rule p implies that the
maximum revenue a BP can receive from including a transaction t is the attached bid bt, and thus
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the maximum revenue it receives from any block in B is at most P . Because the payment rule p is
nonnegative, we have ∑

t∈B′

pt(B
′,b′) ≤

∑
t∈B

pt(B,b′) + P (8)

for every B′ ∈ B. Finally, because the burning rule q is nonnegative,

q(B,b′) ≤ q(B′,b′) +Q (9)

for every B′ ∈ B. Combining the inequalities (6)–(9) then implies that, with the modified valuation
and bid vector, the BPS of the block B is strictly higher than that of every block that omits at
least one of B’s transactions:

>v̂BP (B′)+P+Q︷ ︸︸ ︷
v̂BP (B) +

≥0︷ ︸︸ ︷∑
t∈B

pt(B,b′)−

=Q︷ ︸︸ ︷
q(B,b′)︸ ︷︷ ︸

BPS of B

> v̂BP (B
′) +

≤P︷ ︸︸ ︷∑
t∈B′

pt(B
′,b′)−

≥0︷ ︸︸ ︷
q(B′,b′)︸ ︷︷ ︸

BPS of B′

for every B′ ̸⊇ B. This completes the proof of the key claim.
The point of this claim is that, when the BP has valuation v̂BP and blockset B and the other

transactions’ bids are b−t∗ , the transaction t∗ will be included in the BP’s chosen block B′ =
x(b′, v̂BP ,B) even when its creator sets bt∗ = 0. Because the payment rule p is individually
rational, pt∗(b

′, B′) = 0. Because the user that created transaction t∗ can guarantee inclusion at
price 0 with a bid of 0, any bid that leads to a positive price is automatically suboptimal for it.
Because the TFM (x,p, q) is DSIC with the truthful bidding strategy, t∗ must be included at a
price of 0 also when its creator submits the original bid bt∗ ; that is, if B̂ denotes x(b, v̂BP ,B), then
t∗ ∈ B̂ and pt∗(B̂,b) = 0.

We can complete the contradiction and the proof by arguing that B̂ = B. (This would imply
that pt∗(B,b) = 0, in direct contradiction of our initial assumption.) By definition, the block B
is a BPS-maximizing block for a BP with valuation vBP and blockset B with transaction bids b,
and it is the first such block with respect to some fixed ordering over B (recall Definition 2.7(b)).
By construction of the modified valuation v̂BP , the block B enjoys at least as large a private value
increase v̂BP (B) − vBP (B) as any other block of B. Because the payment and burning rules of a
TFM are independent of the BP valuation, holding the bids b fixed, the block B also enjoys at least
as large a BPS increase as any other block of B. Thus, the BPS-maximizing blocks with respect to
the modified valuation v̂BP are a subset of those with respect to the original valuation vBP , and this
subset includes the block B. Because the allocation rule breaks ties consistently, B̂ = x(b, v̂BP ,B)
must be the original block B. ■

Remark 3.2 (Variations of Theorem 3.1) Variations on the proof of Theorem 3.1 show that
the same conclusion holds for:

(a) BPs that have a non-zero private value for only one block (a very special case of single-
minded valuations). This version of the argument does not require the consistent tie-breaking
assumption in Definition 2.7(b).

(b) Burning rules that need not be nonnegative (i.e., rules that can print money), provided
that, for every bid vector b, there is a finite lower bound on the minimum-possible burn
minB∈B q(B,b). (This would be the case if, for example, the blockset B is finite.)

17



(c) Bid spaces and payment rules that need not be nonnegative (i.e., with negative bids and
user rebates allowed, subject to individual rationality), provided there is a finite minimum
bid bmin ∈ (−∞, 0] and that pt(B,b) = bmin whenever t ∈ B with bt = bmin. In this case, the
argument shows that the payment rule p must be identically equal to bmin on the range of σ.

3.3 The Welfare Achieved by DSIC and BPIC Mechanisms

Theorem 3.1 shows that TFMs that are DSIC and BPIC must be “trivial,” in the sense that
users are never charged for the privilege of transaction inclusion. The next result formalizes the
intuitive consequence that such TFMs may, if both users and the BP follow their recommended
actions, produce blocks with welfare arbitrarily worse than the maximum possible. (Recall that the
welfare W (B) of a block B is defined in expression (1) in Section 2.2.) That is, no approximately
welfare-maximizing TFM can be both DSIC and BPIC with active BPs. This result is not entirely
trivial because the conclusion of Theorem 3.1 imposes no restrictions on the burning rule of a TFM.

Theorem 3.3 (Impossibility of DSIC, BPIC, and Non-Trivial Welfare Guarantees) Let
(x,p, q) denote a TFM that is BPIC and DSIC with bidding strategy σ. For every approximation
factor ρ > 0, there exists a BP valuation vBP , BP blockset B, block B∗ ∈ B, and transactions with
corresponding user valuations v such that

W (B) ≤ ρ ·W (B∗),

where B = x(σ(v), vBP ,B).

Proof: Let (x,p, q) denote a TFM that is DSIC and BPIC. By Theorem 3.1, the payment rule p
is identically zero on the range of its recommended bidding strategy σ. We assume that (appeal-
ing to DSIC) users always follow this bidding strategy σ and that (appealing to BPIC) the BP
always chooses the block recommended by the allocation rule x. By the Revelation Principle (see
footnote 6), we can assume that σ is the identity function.

Suppose there are two known transactions, y and z, with arbitrary positive user valuations vy
and vz. Suppose the BP blockset B comprises three feasible blocks, B0 = {}, By = {y}, and
Bz = {z}. Set vBP (B0) = vBP (By) = 0 and

vBP (Bz) = q(Bz,v) + ϵ

for some small ϵ > 0. Then, because the burning rule q is nonnegative and the payment rule p is
identically zero, the BP will choose the block Bz (i.e., x(v, vBP ,B) = Bz).

To complete the proof, we range over all valuation vectors of the form v′ = (v′y, vz) and treat
separately three (non-exclusive but exhaustive) cases:

(C1) Every choice of v′y leads the BP to choose Bz (i.e., x(v′, vBP ,B) = Bz for all v′y).

(C2) Some choice of v′y leads the BP to choose By (i.e., x(v′, vBP ,B) = By).

(C3) Some choice of v′y leads the BP to choose the empty block (i.e., x(v′, vBP ,B) = B0).

In case (C1), because the BP always, no matter the value of v′y, chooses the block Bz (with
welfare vz + q(Bz,v) + ϵ) over the block By (with welfare v′y), letting v′y tend to infinity proves the
desired result (with B = Bz and B∗ = By).
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Case (C2) cannot occur, for if it did, the creator of transaction y would prefer to misreport its
valuation (as v′y) when its true valuation is vy, contradicting the assumption that the TFM (x,p, q)
is DSIC with the truthful bidding strategy. (Because p is identically 0 and vy > 0, the creator of y
always strictly prefers inclusion to exclusion.)

Finally, in case (C3), the result follows immediately from the facts thatW (B0) is zero whileW (By)
and W (Bz) are positive. ■

Remark 3.4 (Generalizations of Theorem 3.3) The proof of Theorem 3.3 shows that the re-
sult holds already with BPs that have additive or single-minded valuations. (As discussed in
Remark 3.2, Theorem 3.1 holds in both these cases, and the BP valuation vBP used in the proof
of Theorem 3.3 is both additive and single-minded). A slight variation of the proof shows that the
result holds more generally for DSIC and BPIC TFMs that use a not-always-nonnegative burning
rule, under the same condition as in Remark 3.2(b).

4 Transaction Fee Mechanisms with Searchers

4.1 Incorporating Searchers

The impossibility results in Section 3 are consistent with practice, in the sense that modern attempts
to mitigate the negative consequence of MEV through economic mechanisms generally lie outside
the basic design space of TFMs introduced in Sections 2.1–2.4. The most popular such mechanisms
distribute the task of block production across multiple parties; in this section and the next, we adopt
the model described in Section 2.5, which captures some of this complexity through the addition
of searchers that can submit bundles (of a user-submitted transaction together with the searcher’s
value-extracting transactions) to a TFM. Recall from Section 2.5 that, in this model, what had
been the private valuation vBP of a vertically integrated BP is effectively distributed across a set
of searchers, with the block proposer, having outsourced the task of value extraction, then acting
passively to maximize its revenue (including the payments from searchers for included bundles).
The winning bid of a searcher can be interpreted as an “MEV oracle” that provides a TFM with an
estimate of the value that can be extracted from the bundled transaction. In this sense, the TFM
design space with searchers is richer than the basic model with users only, and there is hope that a
TFM can take advantage of such estimates to define payments for user-submitted transactions in
a DSIC-respecting way (e.g., with searchers’ bids leading in some cases to user refunds). Indeed,
we’ll see that this expanded design space allows for positive results that would be impossible in the
basic model with active BPs.

In this section, we propose an abstraction of how searchers have traditionally been incorporated
into the block production process, inspired specifically by mev-geth (see Section 2.5), and study the
incentive-compatibility properties of the resulting mechanism. Section 5 explores the TFM design
space with searchers more generally, with a focus on welfare guarantees.

4.2 The s-Tipless Mechanism

We next introduce the Searcher Augmented Tipless Mechanism (s-tipless mechanism). Like the
EIP-1559 and tipless mechanisms (Examples 2.11 and 2.12), it has a fixed base fee r that is charged
per unit size. Intuitively, for each user-submitted transaction t, the mechanism runs a first-price
auction among the interested searchers; such an auction is often referred to as an “order-flow
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auction.” (Thus, the mechanism does not attempt to be DSIC for searchers.) If the winning bid bw
in this auction is high enough to pay the base fee charges (i.e., bw ≥ r · s′t, where s′t is the size of
a bundle that contains t), then w’s bundle is included in the block and w pays its bid (while the
user that submitted t pays nothing). If the winning searcher bid is less than r · s′t then, if the user
that submitted t bids at least the relevant base fee charges (i.e., bt ≥ r · st), the transaction t is
included in the block and the submitting user pays r · st. In either case, all base fee revenues (r · st
or r · s′t) are burned. (The block proposer may still collect revenue from the first-price auction
among searchers if the winning bid exceeds r · s′t.) In effect, searchers can cover base fee charges
for a user if their transaction is sufficiently valuable to them.

Definition 4.1 (Searcher-Augmented Tipless Mechanism (s-tipless mechanism)) Fix a
base fee r ≥ 0:

(a) Allocation rule: A transaction should be included if its bid clears its base fee payment, or
it is contained in a bundle with a bid that clears the bundle’s base fee payment. If multiple
bundles for a transaction have bids that clear the base fee payment, the bundle with the
highest bid is included (breaking ties arbitrarily). Formally, for each t ∈ T , let St denote the
submitted bundles that contain t, w a generic such bundle, and t∗ = argmaxw∈St

{bw}. Define

S∗ = {t∗ : t ∈ T, bt∗ ≥ r · s′t} and T ∗ = {t ∈ T : bt ≥ r · st ∨ St ∩ S∗ ̸= ∅},

and the allocation rule by
x(b,B) = T ∗ ∪ S∗.

(b) Payment rule: For all transactions t in a block B:

pt(B,b) =

{
0 if St ∩B ̸= ∅
r · st otherwise.

For all bundles w in a block B:
pw(B,b) = bw.

(c) Burning rule: For a block B with transactions BT and bundles BS ,
11

q(B,b) =
∑
t∈BT

r · st +
∑
w∈BS

r · (s′t − st).

In Definition 4.1 and Theorem 4.2 below, we assume for simplicity that the base fee r is large
enough that T ∗ ∪ S∗ ∈ B, meaning there is sufficient room in a block for all of the transactions
that the mechanism would like to include (i.e., all transactions for which either the user or some
searcher is willing to cover the relevant base fee charges). In practice, a la the EIP-1559 mechanism,
the base fee r would generally be adjusted by local search so that this property typically holds.
Definition 4.1 and Theorem 4.2 can be extended to the general case (with contention between
sufficiently high-bidding transactions and bundles) by redefining the allocation rule to maximize
the total proposer revenue (i.e.,

∑
ti∈BS

(bti − r · s′t)) over B ∈ B, breaking ties in a consistent way.

11We subtract st for every bundle w ∈ Bs so as not to double-count st both as part of a bundle and as a standalone
transaction.
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Theorem 4.2 (Properties of the s-Tipless Mechanism) The s-tipless mechanism is DSIC for
users and BPIC.

Informally, to see that the mechanism is DSIC for users, note that if a transaction has a bundle
included for it, then it always pays 0 regardless of what it bids, trivially giving the user a dominant
bidding strategy. Otherwise, the user faces a fixed price for inclusion and hence has a dominant
strategy to bid above that price if and only if their value exceeds it. To see that the mechanism is
BPIC, note that the only revenue the BP gets is from searcher bids that exceed the base fee charges.
Standalone transactions have no net effect on the BP’s BPS. Thus any allocation rule that includes
the highest-bidding searchers that clear their base fee charges along with the transactions that clear
their base fee charges is consonant. Furthermore, because the searchers’ payments depend only on
their own bids, the BP has no way to increase their BPS through the insertion of shill bids. A
formal proof of Theorem 4.2 follows.

Proof of Theorem 4.2: We first show that the s-tipless mechanism is DSIC for users. Because the
setting is single-parameter, it suffices to show that the allocation rule is monotone in users’ bids
and that users pay their minimal bids for inclusion. Fix a user with transaction t. If there is a
bundle containing t with bid at least r · s′t, then t is always included and the user is charged 0 (the
minimal bid for inclusion). Otherwise, t is included if and only if bt ≥ r · st, in which case the user
pays r · st (again, the minimal bid for inclusion).

For BPIC, we first note that the mechanism is shill-proof (Definition 2.8): adding fake trans-
actions with shill bids to a block has no effect on the payments or burns associated with the other
transactions in the block, and thus only causes the BP to suffer a larger burn. Next, note that the
BP is disincentivized to include any transactions or bundles outside of S∗ ∪ T ∗ (i.e., with bids that
do not cover the corresponding base fee charges); deleting such a transaction or bundle from a block
does not affect the payments or burns associated with the other transactions, and therefore results
in a new block with a strictly higher BPS. Restricting attention accordingly to the transactions
and bundles in S∗ ∪ T ∗, because the payments and burns of the included transactions and bundles
are independent, it suffices to consider each transaction t in isolation. The BP can: (i) include t
directly; (ii) include t as part of the highest-bidding corresponding bundle w (with bid bw); or (iii)
exclude t. The BP’s revenue from t in case (iii) is 0. Its revenue from t in case (i) is min{0, bt−r ·st}.
Its revenue from w in case (ii) is bw−r ·s′t. Thus, the BP’s revenue from t is maximized by following
the recommendation of the allocation rule: including w if the revenue in case (ii) is nonnegative,
and otherwise including t directly for zero revenue. (Because t ∈ S∗ ∪ T ∗, bw < r · s′t implies that
bt ≥ r · st and hence min{0, bt − r · st} = 0.) ■

5 Welfare Guarantees

This section further investigates transaction fee mechanism design in the presence of searchers, as
in the model in Section 2.5, with a focus on welfare guarantees.

5.1 What Do We Want from a TFM?

Starting from a blank page, we naturally want to design a mechanism that scores well with respect
to all the criteria we have considered thus far:

(P1) DSIC for users;
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(P2) DSIC for (active) searchers;

(P3) BPIC (with a passive block proposer);

(P4) good welfare guarantees.

Without searchers and with an active BP, Theorem 3.3 shows that the combination of (P1), (P3),
and (P4) is unachievable. We also noted in passing (footnote 10) that the tipless mechanism
(Example 2.12), modified to always ignore searchers, satisfies (P1)–(P3). (Such a mechanism
can obviously lead to a highly welfare-suboptimal outcome when the valuations of searchers are
significantly bigger than those of the users.)

Given the welfare-maximization goal (P4), one obvious starting point is the Vickrey-Clarke-
Groves (VCG) mechanism, which in this context would accept bids from all users and searchers,
output a feasible block that maximizes the social welfare (5) (taking users’ and searchers’ bids
at face value), and charge each included user or searcher its externality (i.e., the loss in welfare
its bid causes to others). As always, the VCG mechanism is DSIC (in this case, for both users
and searchers) and maximizes the social welfare at its dominant-strategy equilibrium. It does not,
however, satisfy property (P3). For example, even with only one user-submitted transaction and
a number of corresponding searchers (i.e., a second-price auction), the block proposer is generally
incentivized to masquerade as a searcher and insert a shill bid (just below the highest searcher bid)
to increase its revenue. (A similar problem arises if the s-tipless mechanism in Section 4 is defined
with second-price rather than first-price searcher auctions.)

One easy way to turn the VCG mechanism—or really, any TFM with a passive block proposer—
into a BPIC mechanism is to always burn all the payments made by users and searchers. The block
proposer would then be indifferent over blocks and willing to carry out an arbitrary allocation rule.
An extension of this idea that attempts to trade welfare for a non-zero amount of BP revenue would
be to use bidder-specific reserve prices (like r · st and r · s′t in the s-tipless mechanism), the revenue
from which is not burned.

12

Summarizing, the VCG mechanism with all payments burned satisfies all of (P1)–(P4), and in
particular shows that the addition of searchers allows TFMs to circumvent the impossibility result
in Theorem 3.3. Should we declare victory?

5.2 Sybil-Proof Mechanisms

In a permissionless blockchain protocol like Bitcoin or Ethereum, it is easy to generate multiple
identities in an undetectable way. For example, a user can easily participate as a “fake searcher”
in a TFM if it so chooses. This challenge of “sybils,” especially in tandem with the non-downward-
closed nature of the set of feasible blocks (with inclusion of a bundle implying inclusion of the
corresponding transaction), renders the VCG mechanism extremely easy to manipulate (despite
being DSIC for users and searchers separately).

For example, consider an instance with a block size of k in which all transactions and bundles
have unit size and with one searcher per transaction, i.e., st = s′t = 1 and St = {t∗} for all t ∈ T .

12A mechanism with any non-zero reserve prices cannot offer any worst-case approximate welfare guarantees: for all
the mechanism knows, only one participant has a non-zero valuation, which is just below the mechanism’s non-zero
reserve price for that participant. We leave a Bayesian analysis (e.g., with the choice of reserve prices informed by
historical bidding data) of the revenue-welfare trade-offs of such mechanisms to future work.
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In this case, the VCG mechanism will include the transactions and bundles corresponding to the k
highest values of bt + bt∗ . Let the (k + 1)th-highest of these values be r. The included user and
searcher for transaction t would then pay max{r − bt∗ , 0} and max{r − bt, 0}, respectively. Thus,
if both bt ≥ r and bt∗ ≥ r, neither user nor searcher pays anything at all. There is then an
obvious incentive for a user to submit an arbitrarily high bid while simultaneously masquerading
as a searcher and submitting an arbitrarily high searcher bid. Every user with a non-zero valuation
for inclusion is incentivized to do this. And if users engage in such manipulations, the welfare
of the outcome of the mechanism could be very far from optimal. The ease and costs of such
manipulations motivate seeking out TFMs that are, among other properties, “sybil-proof” in some
sense.

Our definition of sybil-proofness (for users and searchers) mirrors our definition of BPIC, in that
it asserts that the party in question cannot increase their utility through the submission of shill
bids. In the following definition, ūi(b

′) denotes the utility of a user or searcher i when submitting
the bid vector b′ = (b′1, . . . , b

′
m) for the transactions and bundles (y1, . . . , ym) under m different

identities (with respect to fixed bids b−i for the other participants). We assume that i has one
real transaction or bundle y∗, for which it has value vi; any number of the yj ’s may equal y∗. We
assume that i may use any identities that are distinct from the identities used by other agents.
Agent i’s utility ūi(b

′) is then vi (if at least one yi with yi = y∗ is included in the block chosen by
the TFM) or 0 (otherwise), minus the combined payment the TFM charges to its m identities.

Definition 5.1 (Sybil-Proofness) A transaction fee mechanism (x,p, q) is sybil-proof if for every
user or searcher i, every set of bids b−i for the other agents, and every vector of bids b′, there exists
some bid bi such that ui(bi) ≥ ūi(b

′), where ui(·) denotes the utility (2) of a single bid under the
agent’s true identity for its real transaction or bundle, and ūi(·) denotes the agent’s utility when
submitting multiple bids for transactions and/or bundles under multiple identities.

Intuitively, this definition asserts that a user or searcher should never earn more utility from submit-
ting bids under multiple identities than they could have through a single bid for their transaction
or bundle under their true identity.

We now augment our previous desiderata with:

(P5) sybil-proof.

Next we provide a TFM that satisfies the full set (P1)–(P5) of desired properties.

5.3 The Searcher-Augmented Knapsack Auction

We assume in this section that block feasibility depends only on the validity and the total size of
the included transactions (which should be at most the block size k). We consider a mechanism
that chooses which transactions and bundles to include based on their bid-to-size ratios. For
ease of exposition, we assume that these ratios are distinct. (This assumption can be removed
through standard lexicographic tie-breaking.) The mechanism finds a threshold ratio such that all
transactions and bundles that have bid-to-size ratios above this threshold can fit into a block. This
ratio is then used as a per-size price charged to included transactions and bundles. Similarly to the
s-tipless mechanism, an included bundle pays all the costs for its corresponding transaction. For
an included bundle, in the case that the second-highest searcher bid for the transaction is greater
than the threshold payment, the winning searcher pays this second-highest bid instead. Finally,
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the burning rule is set to be the sum of users’ and searchers’ payments so that the block proposer
always receives zero BPS.

Definition 5.2 (Searcher-Augmented Knapsack Auction (SAKA))

(a) Allocation rule: Recall that t∗ denotes the bundle with the highest bid for transaction t.
For a given µ, let

Sµ = {t∗ : t ∈ T, bt∗/s
′
t ≥ µ} and Tµ = {t ∈ T : bt/st ≥ µ ∨ St ∩ Sµ ̸= ∅}.

Then let Bµ = Tµ ∪ Sµ be the block consisting of all transactions and bundles that have a
bid-to-size ratio greater than µ.13

Define µ∗ := inf{µ :
∑

t∈Bµ
T
st +

∑
ti∈Bµ

S
(s′t − st) ≤ k}, where Bµ

T and Bµ
S denote the transac-

tions and bundles, respectively, in the block Bµ. Then,

x(b,B) = Bµ∗
.

(b) Payment rule: Define bt′ := maxti∈St,ti ̸=t∗{bti} as the second-highest bundle bid for trans-
action t. (If there is no such bid, interpret bt′ as 0.) For t ∈ BT :

pt(B,b) =

{
0 if St ∩B ̸= ∅
µ∗ · st otherwise.

For ti ∈ BS :
pti(B,b) = max{µ∗ · s′t, bt′}.

(c) Burning rule:

q(B,b) =
∑
t∈BT

pt(B,b) +
∑
w∈BS

pw(B,b).

5.4 Analysis

We consider the incentive-compatibility properties of the SAKA mechanism in Theorem 5.3 and its
welfare guarantee in Theorem 5.5. We conclude with Theorem 5.7, which shows that the welfare
guarantee in Theorem 5.5 is near-optimal among TFMs that satisfy properties (P1)–(P5).

Theorem 5.3 (Incentive-Compatibility Properties of the SAKA Mechanism) The Sear-
cher-Augmented Knapsack Auction (SAKA) mechanism is DSIC for both users and searchers,
BPIC, and sybil-proof.

We give the main ideas of the proof here and the full proof below. The BPIC property follows
immediately from the burning rule. To see that the mechanism is DSIC for users, we can focus on a
transaction that is not included as part of a bundle (otherwise, the user pays 0). The allocation rule
is monotone because once a user’s bid clears µ∗ ·st they will always be included. Furthermore, µ∗ ·st
is the minimal amount t can bid and be included; being included at any lower bid would contradict
the definition of µ∗. The mechanism is DSIC for searchers for similar reasons, with the addition of

13Subject to the usual constraint that each transaction is included (by itself or as part of a bundle) at most once.
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needing to pay at least the second-highest searcher bid to still be included. Sybil-proofness follows
from the fact that µ∗ is weakly increasing in the number of bids, and thus users and searchers have
no way to decrease their payment by bidding on fake transactions.

Proof of Theorem 5.3: The BPIC property is immediate (due to the choice of burning rule). Next
we show that the mechanism is DSIC for users. In the case that a bundle t∗ is included, t pays 0
and is included regardless of what it bids, so bidding truthfully is trivially an optimal strategy. So,
assume that no included bundle includes transaction t. Fixing the other bids b−t, it suffices to
show that the allocation rule is monotone in bt and that t pays its minimal price for inclusion.

To see that the allocation rule is monotone in bt, note that once t is included, increasing bt
further has no effect on µ∗. Thus, because t is included as long as bt ≥ µ∗ · st, t will continue to be
included for all higher bids. To see that µ∗ · st is the minimal price for inclusion for t, let t drop
its bid to b̂t < µ∗ · st and let µ̂ be the equivalent of µ∗ for the bid vector b̂ = (b̂t,b−t). We claim
that b̂t < µ̂ · st. Otherwise, we would have

∑
t∈Bµ̂

T
st +

∑
ti∈Bµ̂

S
(s′t − st) ≤ k under bid vector b̂,

with the same inequality holding under the bid vector b (as all the bids in b−t are identical in both
cases); given that µ̂ ≤ b̂t/st < µ∗, this would contradict the definition of µ∗. The argument that
the mechanism is DSIC for searchers mirrors that for users, with the addition that, because only
highest-bidding searchers are included, a searcher’s minimal price for inclusion is the maximum of
µ∗ · s′t and b′t.

Finally, we show that the SAKA mechanism is sybil-proof. Given that it is DSIC for users and
searchers, it suffices to consider whether any agent can use sybils to increase their utility compared
to bidding their true value. Note that µ∗ and b′t for all t ∈ T can only increase as additional bids
are inserted. Thus, a searcher can never increase their utility through the addition of fake bids,
and a user can never increase their utility through the addition of fake transaction bids or fake
searcher bids for other transactions. It remains to show that a user cannot increase their utility by
adding fake searcher bids for their own transaction. This follows from the fact that, given that the
size s′t of a bundled transaction is at least the size st of the transaction itself, the winning searcher
always pays at least as much for its bundle (max{µ∗ · s′t, bt′}) as the corresponding user would for
its transaction (µ∗ · st). ■

Remark 5.4 (Deferred Acceptance Implementation) The SAKA auction can be implemented
as a deferred acceptance mechanism [37] and is therefore also robust to certain forms of collusion
between users and searchers (formally, the mechanism is weakly groupstrategypoof).

Because the allocation rule of the SAKA mechanism differs from that of the VCG mechanism,
we can immediately deduce that the SAKA mechanism does not always output the maximum-
welfare solution. We parameterize the mechanism’s welfare guarantee by the maximum fraction γ
of a block’s capacity that is consumed by a single transaction or bundle. (In many blockchain
protocols, γ is typically 2% or less.)

Theorem 5.5 (Welfare Guarantee of the SAKA Mechanism) Assuming truthful bids by us-
ers and searchers, the social welfare of the block Bµ∗

output by the SAKA mechanism is at least
(1− γ)/2 times that of a welfare-maximizing block B∗, where γ denotes the fraction of a block that
can be consumed by a single transaction or bundle.

The SAKA mechanism effectively implements as its allocation rule a standard greedy approxi-
mation algorithm for the knapsack problem, with the twist that it scores bundles’ densities according
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to vt∗/s
′
t rather than their true densities (i.e., (vt + vt∗)/s

′
t). Intuitively, this twist cannot cause

more than a factor-2 loss in social welfare because any bundle from the optimal solution that is not
included is replaced by a transaction or bundle with density at least half as large. We can then use
the fact that the greedy algorithm fills up at least a 1− γ fraction of the block in order to get the
final bound.

Proof of Theorem 5.5: Let B∗ denote a welfare-maximizing block. Assume that µ∗ > 0, as otherwise
the SAKA mechanism includes all transactions and bundles and therefore achieves the maximum-
possible social weldare. Let B̃ denote the transactions and bundles that are included in both B∗

and Bµ∗
but excluding transactions that have an associated bundle included in B∗ but not in Bµ∗

:

B̃ = (B∗ ∩Bµ∗
) \ {t ∈ Bµ∗

: t∗ ∈ B∗ \Bµ∗}.

Define

Q∗ =

{
t∗ ∈ B∗ \Bµ∗

:
vt∗

s′t
<

1

2

vt + vt∗

s′t
,
vt
st

≥ µ∗
}
.

Denote by Q the transactions that correspond to bundles of Q∗. Because every such transaction
satisfies vt ≥ µ∗ ·st, every such transaction belongs to Bµ. Both Q and Q∗ are, by definition, disjoint
from B̃. Let R and R∗ denote the sets of remaining transactions and bundles in Bµ∗ \ (B̃ ∪Q) and
B∗ \ (B̃ ∪Q∗), respectively. From these definitions we have W (Bµ∗

) = W (B̃)+W (Q)+W (R) and
W (B∗) = W (B̃) +W (Q∗) +W (R∗).

Denote the total size of all the transactions and bundles in a set X by sX . We next note
that W (Q) > 1

2W (Q∗) and that sQ ≤ sQ∗ . Specifically, for every bundle t∗ ∈ Q∗, we have that
vt∗/s

′
t < (vt + vt∗)/2s

′
t and hence vt∗ < vt and vt > (vt + vt∗)/2. Also, because each transaction t

of Q corresponds to a bundle t∗ of Q∗ and st ≤ s′t, sQ ≤ sQ∗ .
To bound W (R∗) from above, we use the following lemma.

Lemma 5.6 For every transaction t ∈ R∗, vt
st

< µ∗; for every bundle t∗ ∈ R∗, vt+vt∗
s′t

< 2µ∗.

Applying Lemma 5.6 to each transaction and bundle in R∗ and summing up the resulting
inequalities then shows that W (R∗) < 2µ∗sR∗ .

Proof of Lemma 5.6: If a transaction t belongs to R∗, it does not belong to B̃ and hence does
not belong to Bµ∗

, implying that vt/st < µ∗. Now consider a bundle t∗ ∈ R∗. Because t∗ /∈ B̃,
vt∗/s

′
t < µ∗. If vt ≤ vt∗ , then (vt + vt∗)/s

′
t ≤ 2vt∗/s

′
t < 2µ∗, as required. So suppose vt > vt∗ . In

this case, t∗ /∈ Q∗ implies that vt/st < µ∗ (and therefore vt/s
′
t < µ∗); again, (vt + vt∗)/s

′
t < 2µ∗, as

required. ■

Returning to the proof of Theorem 5.5, we next claim that sBµ∗ > (1−γ)k. By our choice of µ∗,
for every µ < µ∗, Bµ has size greater than k. Because all transactions and bundles have distinct
densities, for µ sufficiently close to µ∗, Bµ has exactly one more transaction or bundle than Bµ∗

.
Because the size of every transaction or bundle is at most γ · k, sBµ∗ ≥ sBµ − γk > (1− γ)k.

Writing µQ = W (Q)/sQ ≥ µ∗ and putting everything together, we can derive the desired welfare
guarantee:
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W (Bµ∗
)

W (B∗)
=

W (B̃) +W (Q) +W (R)

W (B̃) +W (Q∗) +W (R∗)

>
µ∗sB̃ + µQsQ + µ∗sR

µ∗sB̃ + 2µQsQ + 2µ∗sR∗
(10)

>
µ∗sB̃ + µQsQ + µ∗((1− γ)k − sB̃ − sQ)

µ∗sB̃ + 2µQsQ + 2µ∗(k − sB̃ − sQ)
(11)

=
sQ(µQ − µ∗) + (1− γ)µ∗k

2sQ(µQ − µ∗) + 2µ∗k − µ∗sB̃

≥ 1− γ

2
,

where in (10) we use the facts that every bundle and transaction of B̃ ⊆ Bµ∗
has value-to-size ratio

at least µ∗, W (Q∗) < 2W (Q), and W (R∗) < 2µ∗sR∗ ; and in (11), we use that sBµ∗ > (1 − γ)k,
sB∗ ≤ k, and sQ ≤ sQ∗ . ■

Our final result shows that, modulo the factor of 1− γ—which, as discussed above, is typically
close to 1 in our context—the welfare approximation guarantee in Theorem 5.5 is optimal among
deterministic mechanisms that are both DSIC (for users and searchers) and sybil-proof in the sense
of Definition 5.1.

Theorem 5.7 (Limitations on the Welfare of DSIC and Sybil-Proof Mechanisms)
No deterministic TFM that is DSIC for users and searchers and sybil-proof can achieve better
than a 1/2-approximation to the optimal social welfare, even when transaction sizes are a negligible
fraction of the block size.

Proof: We first give a proof that uses large transactions, and then extend the argument to hold
for arbitrarily small transactions. Let M = (x,p, q) be a TFM that is both DSIC (for users and
searchers) and sybil-proof. Let ϵ > 0 be arbitrary. We show that M cannot achieve at least
a 1

2 + ϵ fraction of the maximum-possible welfare in all of three instances I1, I2, and I3. In all
instances, the block size k is 1, the transaction set is T = {t1, t2}, and the bundle set is S = {t∗1}.
Both transactions have unbundled and bundled sizes of 1 (i.e., st1 = s′t1 = st2 = 1). The three
instances will differ only in the valuations of the transactions and bundle. Appealing to DSIC and
the Revelation Principle, when analyzing the welfare achieved by M, we can assume that each user
and searcher bids their valuation. We use B∗ to denote the (feasible) block {t1, t∗1}, which will be
the maximum-welfare block in each of the three instances.

Define I1 by vt1 = 1− ϵ/4, vt∗1 = 1− ϵ/4, and vt2 = 1; denote this valuation vector by v1. Note
that M must choose B∗ to achieve a (1/2+ϵ)-approximation of the maximum-possible welfare. The
key claim is that pt1(v

1, B∗)+pt∗1(v
1, B∗) ≥ 1. Assume otherwise, and consider an instance I ′ with

the transactions t1 and t2 (with st1 = st2 = 1 and k = 1) but no searchers, and with v′t1 = v′t2 = 1.
In I ′, to achieve a non-trivial welfare guarantee, M must include either t1 or t2 (and cannot include
both). Assume that M chooses to include t2. (Otherwise, redefine instance I1, swapping the roles
of t1 and t2.) Then, if the creator of t1 bids truthfully in I ′, they receive zero utility; by DSIC (for
users), no single bid would result in positive utility. But suppose instead they misreported their
valuation as 1 − ϵ/4 while also submitting a fake bundle with a shill bid of 1 − ϵ/4; the resulting
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input to M is identical to the truthful input to M in I1, and so M will include t1 at a combined
price (for both the transaction and the fake bundle) of pt1(v

1, B∗) + pt∗1(v
1, B∗) < 1, resulting in

strictly positive utility for t1’s creator. This contradicts the assumed sybil-proofness of M and
proves the key claim.

Now define the instance I2 by vt1 = 1 − ϵ/4, vt∗1 = 3, and vt2 = 1, and denote this valuation

vector by v2. For M to achieve at least a 1
2 + ϵ fraction of the maximum-possible welfare in I2,

it must choose B∗. Arguing as in I1, because M is sybil-proof and DSIC for users, pt1(v
2, B∗) +

pt∗1(v
2, B∗) ≥ 1. Because v1

−t∗ = v2
−t∗ and M is DSIC for searchers, pt∗1(v

2, B∗) = pt∗1(v
1, B∗).

Individual rationality of M in I1 implies that pt∗1(v
1, B∗) ≤ 1− ϵ/4, and we can therefore conclude

that z := pt1(v
2, B∗) > 0. Because M is DSIC, z is the minimum bid at which t1 would be included:

for all bid vectors (z′, 3, 1) with z′ < z, M would choose a block that excludes t1.
Finally, define the instance I3 by vt1 = z/2, vt∗1 = 3, and vt2 = 1. If users and searchers

bid truthfully, then, as noted above, M must choose a block that excludes t1 (and therefore also
excludes t∗1). This block has welfare at most 1 which, provided ϵ is sufficiently small, is less than
1/2+ϵ times the maximum-possible welfare. This contradiction completes the proof of Theorem 5.7
for the case of large transactions.

To extend the proof to the case of arbitrarily small transactions, choose an arbirarily small
value for ϵ > 0 and an arbitrarily large block size k. We consider two types of transactions: type 1
transactions t with vt = vt∗ = 1− ϵ/4, and type 2 transactions t with vt = 1 and St = ∅. Assume
that st = s′t = 1 for both types, so that every transaction or bundle consumes at most a 1/k fraction
of a block. Suppose for contradiction that M is a deterministic TFM that is DSIC for users and
searchers, is sybil-proof, and (assuming truthful bids) always results in welfare at least a 1/2 + ϵ
time the maximum possible.

Let I1 be an instance with k type 1 transactions and 2k+1 type 2 transactions. Let v1 denote the
corresponding valuation vector. Let B1 denote x(v1,B). Because M guarantees at least a 1/2 + ϵ
fraction of the maximum-possible welfare, B1 includes some type 1 transaction t1 (along with t∗1).
We claim that pt1(B1,v

1) + pt∗1(B1,v
1) ≥ 1. Suppose not, so that pt1(B1,v

1) + pt∗1(B1,v
1) < 1,

and consider an instance I2 that is identical to I1 except that t1 is converted from a type 1 to
a type 2 transaction. Denoting the valuation vector in I2 by v2 and x(v2,B) by B2, we must
have t1 ∈ B2 and pt1(B2,v

2) ≤ pt1(B1,v
1) + pt∗1(B1,v

1) < 1; otherwise, in I2, the creator of t1
would be incentivized to sybil as a type 1 transaction (i.e., to report a false bid of 1 − ϵ/4 and
also participate as a fake searcher with bid 1 − ϵ/4). Now consider a third instance I3 that is
identical to I2 except with t1 removed. Denote the valuation vector for I3 by v3 and x(v3,B)
by B3. Apart from t1, I2 and I3 have the same set of 2k + 1 type 2 transactions. Thus, there
must be some type 2 transaction t2 in both I2 and I3 such that t2 /∈ B2 and t2 /∈ B3. But then,
in I3, the creator i of t2 could submit an additional copy of its transaction as t1 (with bid 1),
resulting in the same outcome B2 as in I2. Because t1 ∈ B2 and t2 /∈ B2, agent i’s utility for
this outcome is vi − pt1(B2,v

2). As vi = 1 and pt1(B2,v
2) < 1, this utility is strictly positive and

therefore more than i would receive from a truthful bid (or, by DSIC, any single bid) under its true
identity. This contradicts the assumed sybil-proofness of M and proves the claim: it must be that
pt1(B1,v

1) + pt∗1(B1,v
1) ≥ 1.

Next, define instance I4 as identical to I1 except with vt∗1 = 4k. Denote the corresponding
valuation vector by v4 and x(v4,B) by B4. Because M guarantees at least a 1/2 + ϵ fraction
of the maximum-possible welfare, t∗1 ∈ B4. Arguing as for I1, the fact that M is both DSIC
and sybil-proof implies that pt1(B4,v

4) + pt∗1(B4,b
4) ≥ 1. Because M is DSIC (for searchers),
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v4
−t∗1

= v1
−t∗1

, and t∗1 ∈ B1 ∩B4, pt∗1(B4,v
4) = pt∗1(B1,v

1). Individual rationality of M in I1 implies

that pt∗1(B1,v
1) ≤ 1 − ϵ/4, and we can therefore conclude that z := pt1(B4,v

4) > 0. Because M
is DSIC, z is the minimum bid at which t1 would be included: for all bid vectors (z′,v4

−t1) with
z′ < z, M would chose a block that excludes t1.

Finally, define an instance I5 that is identical to I4 except that vt1 = z/2. As noted above, if
users and searchers bid truthfully, M must chose a block that excludes t1 and hence also t∗1; such
a block has welfare at most 2k − 1. Because any outcome that includes t1 and t∗1 achieves welfare
at least 4k, this contradicts the assumption that M guarantees at least a 1/2 + ϵ fraction of the
maximum-possible welfare. This contradiction shows that M cannot exist, completing the proof.
■
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